Science.gov

Sample records for novo dna synthesis

  1. Genome Calligrapher: A Web Tool for Refactoring Bacterial Genome Sequences for de Novo DNA Synthesis.

    PubMed

    Christen, Matthias; Deutsch, Samuel; Christen, Beat

    2015-08-21

    Recent advances in synthetic biology have resulted in an increasing demand for the de novo synthesis of large-scale DNA constructs. Any process improvement that enables fast and cost-effective streamlining of digitized genetic information into fabricable DNA sequences holds great promise to study, mine, and engineer genomes. Here, we present Genome Calligrapher, a computer-aided design web tool intended for whole genome refactoring of bacterial chromosomes for de novo DNA synthesis. By applying a neutral recoding algorithm, Genome Calligrapher optimizes GC content and removes obstructive DNA features known to interfere with the synthesis of double-stranded DNA and the higher order assembly into large DNA constructs. Subsequent bioinformatics analysis revealed that synthesis constraints are prevalent among bacterial genomes. However, a low level of codon replacement is sufficient for refactoring bacterial genomes into easy-to-synthesize DNA sequences. To test the algorithm, 168 kb of synthetic DNA comprising approximately 20 percent of the synthetic essential genome of the cell-cycle bacterium Caulobacter crescentus was streamlined and then ordered from a commercial supplier of low-cost de novo DNA synthesis. The successful assembly into eight 20 kb segments indicates that Genome Calligrapher algorithm can be efficiently used to refactor difficult-to-synthesize DNA. Genome Calligrapher is broadly applicable to recode biosynthetic pathways, DNA sequences, and whole bacterial genomes, thus offering new opportunities to use synthetic biology tools to explore the functionality of microbial diversity. The Genome Calligrapher web tool can be accessed at https://christenlab.ethz.ch/GenomeCalligrapher  .

  2. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells

    PubMed Central

    Maddocks, Oliver D.K.; Labuschagne, Christiaan F.; Adams, Peter D.; Vousden, Karen H.

    2016-01-01

    Summary Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids. PMID:26774282

  3. De novo gene synthesis design using TmPrime software.

    PubMed

    Li, Mo-Huang; Bode, Marcus; Huang, Mo Chao; Cheong, Wai Chye; Lim, Li Shi

    2012-01-01

    This chapter presents TmPrime, a computer program to design oligonucleotide for both ligase chain reaction (LCR)- and polymerase chain reaction (PCR)-based de novo gene synthesis. The program divides a long input DNA sequence based on user-specified melting temperatures and assembly conditions, and dynamically optimizes the length of oligonucleotides to achieve homologous melting temperatures. The output reports the melting temperatures, oligonucleotide sequences, and potential formation of secondary structures in a PDF file, which will be sent to the user via e-mail. The program also provides functions on sequence pooling to separate long genes into smaller pieces for multipool assembly and codon optimization for expression based on the highest organism-specific codon frequency. This software has been successfully used in the design and synthesis of various genes with total length >20 kbp. This program is freely available at http://prime.ibn.a-star.edu.sg.

  4. Adaptive Reprogramming of De Novo Pyrimidine Synthesis Is a Metabolic Vulnerability in Triple-Negative Breast Cancer.

    PubMed

    Brown, Kristin K; Spinelli, Jessica B; Asara, John M; Toker, Alex

    2017-04-01

    Chemotherapy resistance is a major barrier to the treatment of triple-negative breast cancer (TNBC), and strategies to circumvent resistance are required. Using in vitro and in vivo metabolic profiling of TNBC cells, we show that an increase in the abundance of pyrimidine nucleotides occurs in response to chemotherapy exposure. Mechanistically, elevation of pyrimidine nucleotides induced by chemotherapy is dependent on increased activity of the de novo pyrimidine synthesis pathway. Pharmacologic inhibition of de novo pyrimidine synthesis sensitizes TNBC cells to genotoxic chemotherapy agents by exacerbating DNA damage. Moreover, combined treatment with doxorubicin and leflunomide, a clinically approved inhibitor of the de novo pyrimidine synthesis pathway, induces regression of TNBC xenografts. Thus, the increase in pyrimidine nucleotide levels observed following chemotherapy exposure represents a metabolic vulnerability that can be exploited to enhance the efficacy of chemotherapy for the treatment of TNBC.Significance: The prognosis for patients with TNBC with residual disease after chemotherapy is poor. We find that chemotherapy agents induce adaptive reprogramming of de novo pyrimidine synthesis and show that this response can be exploited pharmacologically, using clinically approved inhibitors of de novo pyrimidine synthesis, to sensitize TNBC cells to chemotherapy. Cancer Discov; 7(4); 391-9. ©2017 AACR.See related article by Mathur et al., p. 380This article is highlighted in the In This Issue feature, p. 339.

  5. Herpes simplex virus 1 induces de novo phospholipid synthesis

    SciTech Connect

    Sutter, Esther; Oliveira, Anna Paula de; Tobler, Kurt; Schraner, Elisabeth M.; Sonda, Sabrina; Kaech, Andres; Lucas, Miriam S.; Ackermann, Mathias; Wild, Peter

    2012-08-01

    Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [{sup 3}H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [{sup 3}H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and that de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.

  6. Identification of genes required for de novo DNA methylation in Arabidopsis

    PubMed Central

    Greenberg, Maxim VC; Ausin, Israel; Chan, Simon WL; Cokus, Shawn J; Cuperus, Josh T; Feng, Suhua; Law, Julie A; Chu, Carolyn; Pellegrini, Matteo; Carrington, James C

    2011-01-01

    De novo DNA methylation in Arabidopsis thaliana is catalyzed by the methyltransferase DRM2, a homolog of the mammalian de novo methyltransferase DNMT3. DRM2 is targeted to DNA by small interfering RNAs (siRNAs) in a process known as RNA-directed DNA Methylation (RdDM). While several components of the RdDM pathway are known, a functional understanding of the underlying mechanism is far from complete. We employed both forward and reverse genetic approaches to identify factors involved in de novo methylation. We utilized the FWA transgene, which is methylated and silenced when transformed into wild-type plants, but unmethylated and expressed when transformed into de novo methylation mutants. Expression of FWA is marked by a late-flowering phenotype, which is easily scored in mutant versus wild-type plants. By reverse genetics we discovered the requirement for known RdDM effectors AGO6 and NRPE5a for efficient de novo methylation. A forward genetic approach uncovered alleles of several components of the RdDM pathway, including alleles of clsy1, ktf1 and nrpd/e2, which have not been previously shown to be required for the initial establishment of DNA methylation. Mutations were mapped and genes cloned by both traditional and whole genome sequencing approaches. The methodologies and the mutant alleles discovered will be instrumental in further studies of de novo DNA methylation. PMID:21150311

  7. Synthesis of DNA

    DOEpatents

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  8. De novo synthesis of purine nucleotides in different fiber types of rat skeletal muscle

    SciTech Connect

    Tullson, P.C.; John-Alder, H.; Hood, D.A.; Terjung, R.L.

    1986-03-01

    The contribution of de novo purine nucleotide synthesis to nucleotide metabolism in skeletal muscles is not known. The authors have determined rates of de novo synthesis in soleus (slow-twitch red), red gastrocnemius (fast-twitch red), and white gastrocnemius (fast-twitch white) using the perfused rat hindquarter. /sup 14/C glycine incorporation into ATP was linear after 1 and 2 hours of perfusion with 0.2 mM added glycine. The intracellular (I) and extracellular (E) specific activity of /sup 14/C glycine was determined by HPLC of phenylisothiocyanate derivatives of neutralized PCA extracts. The rates of de novo synthesis when expressed relative to muscle ATP content show slow and fast-twitch red muscles to be similar and about twice as great as fast-twitch white muscles. This could represent a greater turnover of the adenine nucleotide pool in more oxidative red muscle types.

  9. Insulin rapidly increases diacylglycerol by activating de novo phosphatidic acid synthesis.

    PubMed

    Farese, R V; Konda, T S; Davis, J S; Standaert, M L; Pollet, R J; Cooper, D R

    1987-05-01

    The mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes were examined. When [3H]arachidonate labeling of phospholipids was used as an indicator of phospholipase C activation, transient increases in [3H]diacylglycerol were observed between 0.5 and 10 minutes after the onset of insulin treatment. With [3H]glycerol labeling as an indicator of de novo phospholipid synthesis, [3H]diacylglycerol was increased maximally at 1 minute and remained elevated for 20 minutes. [3H]Glycerol-labeled diacylglycerol was largely derived directly from phosphatidic acid. Insulin increased de novo phosphatidic acid synthesis within 5 to 10 seconds; within 1 minute, this synthesis was 60 times greater than that of controls. Thus, the initial increase in diacylglycerol is due to both increased hydrolysis of phospholipids and a burst of de novo phosphatidic acid synthesis. After 5 to 10 minutes, de novo phosphatidic acid synthesis continues as a major source of diacylglycerol. Both phospholipid effects of insulin seem important for generating diacylglycerol and other phospholipid-derived intracellular signaling substances.

  10. De novo synthesis of milk triglycerides in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary gland (MG) de novo lipogenesis contributes significantly to milk fat in animals but little is known in humans. Objective: To test the hypothesis that the incorporation of 13C carbons from [U-13C]glucose into fatty acids (FA) and glycerol in triglycerides (TG) will be greater: 1) in milk tha...

  11. Biphasic DNA Synthesis in Spumaviruses

    PubMed Central

    Delelis, Olivier; Saïb, Ali; Sonigo, Pierre

    2003-01-01

    Spumaviruses are complex retroviruses whose replication cycle resembles that of hepadnaviruses, especially by a late-occurring reverse transcription step. The possible existence of an early reverse transcription as observed in other retroviruses was not documented. Using real-time quantitative PCR, we addressed directly the kinetics of DNA synthesis during spumavirus infection. An early phase of viral DNA synthesis developed until 3 h postinfection, followed by a second phase, culminating 10 h postinfection. Both phases were abolished by the reverse transcriptase inhibitor 3′-azido-3′-deoxythymidine. Similar to other retroviruses, circular forms of viral DNA harboring two long terminal repeats were mainly found in the nucleus of infected cells. Interestingly, a fraction of these circular forms were detected in the cytoplasm and in extracellular virions, a feature shared with hepadnaviruses. Combined with packaging of both viral DNA and RNA genomes in virions, early and late reverse transcription might allow spumavirus to maximize its genome replication. PMID:12829852

  12. De novo synthesis of adenine nucleotides in different skeletal muscle fiber types

    SciTech Connect

    Tullson, P.C.; John-Alder, H.B.; Hood, D.A.; Terjung, R.L.

    1988-09-01

    Management of adenine nucleotide catabolism differs among skeletal muscle fiber types. This study evaluated whether there are corresponding differences in the rates of de novo synthesis of adenine nucleotide among fiber type sections of skeletal muscle using an isolated perfused rat hindquarter preparation. Label incorporation into adenine nucleotides from the (1-14C)glycine precursor was determined and used to calculate synthesis rates based on the intracellular glycine specific radioactivity. Results show that intracellular glycine is closely related to the direct precursor pool. Rates of de novo synthesis were highest in fast-twitch red muscle (57.0 +/- 4.0, 58.2 +/- 4.4 nmol.h-1.g-1; deep red gastrocnemius and vastus lateralis), relatively high in slow-twitch red muscle (47.0 +/- 3.1; soleus), and low in fast-twitch white muscle (26.1 +/- 2.0 and 21.6 +/- 2.3; superficial white gastrocnemius and vastus lateralis). Rates for four mixed muscles were intermediate, ranging between 32.3 and 37.3. Specific de novo synthesis rates exhibited a strong correlation (r = 0.986) with muscle section citrate synthase activity. Turnover rates (de novo synthesis rate/adenine nucleotide pool size) were highest in high oxidative muscle (0.82-1.06%/h), lowest in low oxidative muscle (0.30-0.35%/h), and intermediate in mixed muscle (0.44-0.55%/h). Our results demonstrate that differences in adenine nucleotide management among fiber types extends to the process of de novo adenine nucleotide synthesis.

  13. Glutamine supplementation, citrulline production, and de novo arginine synthesis: Is there a relation?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We would like to comment on the recent publications by Buijs et al. The authors hypothesized that a parenteral supplement of glutamine stimulates citrulline formation and enhances de novo arginine synthesis. To test this hypothesis, they conducted an experiment with stable isotopes in patients under...

  14. Computational modeling of a metabolic pathway in ceramide de novo synthesis.

    PubMed

    Dhingra, Shobhika; Freedenberg, Melissa; Quo, Chang F; Merrill, Alfred H; Wang, May D

    2007-01-01

    Studies have implicated ceramide as a key molecular agent in regulating programmed cell death, or apoptosis. Consequently, there is significant potential in targeting intracellular ceramide as a cancer therapeutic agent. The cell's major ceramide source is the ceramide de novo synthesis pathway, which consists of a complex network of interdependent enzyme-catalyzed biochemical reactions. To understand how ceramide works, we have initiated the study of the ceramide de novo synthesis pathway using computational modeling based on fundamental principles of biochemical kinetics. Specifically, we designed and developed the model in MATLAB SIMULINK for the behavior of dihydroceramide desaturase. Dihydroceramide desaturase is one of three key enzymes in the ceramide de novo synthesis pathway, and it converts a relatively inert precursor molecule, dihydroceramide into biochemically reactive ceramide. A major issue in modeling is parameter estimation. We solved this problem by adopting a heuristic strategy based on a priori knowledge from literature and experimental data. We evaluated model accuracy by comparing the model prediction results with interpolated experimental data. Our future work includes more experimental validation of the model, dynamic rate constants assessment, and expansion of the model to include additional enzymes in the ceramide de novo synthesis pathway.

  15. Concepts in Biochemistry: Chemical Synthesis of DNA.

    ERIC Educational Resources Information Center

    Caruthers, Marvin H.

    1989-01-01

    Outlines the chemistry of the rapid synthesis of relatively large DNA fragments (100-200 monomers each) with yields exceeding 99 percent per coupling. DNA synthesis methodologies are outlined and a polymer-supported synthesis of DNA using deoxynucleoside phosphoramidites is described with structural formulas. (YP)

  16. Tests for the mechanism of starch biosynthesis: de novo synthesis or an amylogenin primer synthesis.

    PubMed

    Mukerjea, Rupendra; Robyt, John F

    2013-05-03

    Studies in 1940 on potato phosphorylase reaction with starch found that d-glucopyranose from α-d-glucopyranosyl-1-phosphate was added to the nonreducing-ends of starch chains. This led to the hypothesis that the biosynthesis of starch required a preformed primer. Later it was found that phosphorylase was exclusively a degradative enzyme in vivo and that starch-synthase was the enzyme that reacted with ADPGlc to biosynthesize starch. Amylogenin, a putative self-glycosylated protein, was postulated to be the primer, although it was never demonstrated or found. In the present study, three reactions were performed in sequence with a highly purified potato starch-synthase to determine whether an amylogenin primer was present and required or whether the biosynthesis was de novo. Reaction 1 was performed by adding 2.0mM ADPGlc to synthesize the putative primer to a possible amylogenin in the preparation; in Reaction 2, 10mM ADP-[(14)C]Glc was added; and in Reaction 3, 10mM nonlabeled ADPGlc was added. After the isolation, reduction, and acid hydrolysis of the products of Reactions 2 and 3, (14)C-d-glucitol was obtained from Reaction 2 and was decreased by Reaction 3. The formation of (14)C-d-glucitol and its decrease showed that an amylogenin, protein primer was not involved in starch biosynthesis and the synthesis is de novo by the addition of d-glucose to the reducing-ends of growing starch chains.

  17. Enzymatic initiation of DNA synthesis by yeast DNA polymerases.

    PubMed Central

    Plevani, P; Chang, L M

    1977-01-01

    Partially purified yeast RNA polymerases (RNA nucleotidyltransferases) initiate DNA synthesis by yeast DNA polymerase (DNA nucleotidyltransferase) I and to a lesser extent yeast DNA polymerase II in the replication of single-stranded DNA. The enzymatic initiation of DNA synthesis on phage fd DNA template occurs with dNTPs alone and is further stimulated by the presence of rNTPs in DNA polymerase I reactions. The presence of rNTPs has no effect on the RNA polymerase initiation of the DNA polymerase II reaction. RNA polymerases I and III are more efficient in initiation of DNA synthesis than RNA polymerase II. Analyses of the products of fd DNA replication show noncovalent linkage between the newly synthesized DNA and the template DNA, and covalent linkage between the newly synthesized RNA and DNA. PMID:325562

  18. Constructing de novo biosynthetic pathways for chemical synthesis inside living cells.

    PubMed

    Weeks, Amy M; Chang, Michelle C Y

    2011-06-21

    Living organisms have evolved a vast array of catalytic functions that make them ideally suited for the production of medicinally and industrially relevant small-molecule targets. Indeed, native metabolic pathways in microbial hosts have long been exploited and optimized for the scalable production of both fine and commodity chemicals. Our increasing capacity for DNA sequencing and synthesis has revealed the molecular basis for the biosynthesis of a variety of complex and useful metabolites and allows the de novo construction of novel metabolic pathways for the production of new and exotic molecular targets in genetically tractable microbes. However, the development of commercially viable processes for these engineered pathways is currently limited by our ability to quickly identify or engineer enzymes with the correct reaction and substrate selectivity as well as the speed by which metabolic bottlenecks can be determined and corrected. Efforts to understand the relationship among sequence, structure, and function in the basic biochemical sciences can advance these goals for synthetic biology applications while also serving as an experimental platform for elucidating the in vivo specificity and function of enzymes and reconstituting complex biochemical traits for study in a living model organism. Furthermore, the continuing discovery of natural mechanisms for the regulation of metabolic pathways has revealed new principles for the design of high-flux pathways with minimized metabolic burden and has inspired the development of new tools and approaches to engineering synthetic pathways in microbial hosts for chemical production.

  19. Constructing de novo biosynthetic pathways for chemical synthesis inside living cells†

    PubMed Central

    Weeks, Amy M.; Chang, Michelle C. Y.

    2011-01-01

    Living organisms have evolved a vast array of catalytic functions that make them ideally suited for the production of medicinally and industrially relevant small-molecule targets. Indeed, native metabolic pathways in microbial hosts have long been exploited and optimized for the scalable production of both fine and commodity chemicals. Our increasing capacity for DNA sequencing and synthesis has revealed the molecular basis for the biosynthesis of a variety of complex and useful metabolites and enables the de novo construction of novel metabolic pathways for the production of new and exotic molecular targets in genetically tractable microbes. However, the development of commercially viable processes for these engineered pathways is currently limited by our ability to quickly identify or engineer enzymes with the correct reaction and substrate selectivity as well as the speed by which metabolic bottlenecks can be determined and corrected. Efforts in understanding the relationship between sequence, structure, and function in the basic biochemical sciences can advance these goals for synthetic biology applications while also serving as an experimental platform to elucidate the in vivo specificity and function of enzymes and to reconstitute complex biochemical traits for study in a living model organism. Furthermore, the continuing discovery of natural mechanisms for the regulation of metabolic pathways has revealed new principles for the design of high-flux pathways with minimized metabolic burden and has inspired the development of new tools and approaches to engineer synthetic pathways in microbial hosts for chemical production. PMID:21591680

  20. De novo DNA methylation of the paternal genome in 2-cell mouse embryos.

    PubMed

    Ma, X S; Wang, X G; Qin, L; Song, C L; Lin, F; Song, J M; Zhu, C C; Liu, H L

    2014-10-27

    The developmental dynamics of DNA methylation events have been well studied. Active demethylation of the paternal genome occurs in the zygote, passive demethylation occurs during cleavage stages, and de novo methylation occurs by the blastocyst stage. It is believed that the paternal genome has lower levels of methylation during early development than the maternal genome. However, in this study, we provide direct and indirect evidence of genome-wide de novo DNA methylation of the paternal genome after the first cell cycle in mouse embryos. Although very little methylation was detected within the male pronucleus in zygotes, an intense methylation signal was clearly visible within the androgenetic 2-cell embryos. Moreover, the DNA methylation level of the paternal genome in the post-zygotic metaphase embryos was similar to that of the maternal genome. Using indirect immunofluorescence with an antibody to methylated lysine 9 in histone H3, we provided new evidence to support the concept of spatial compartmentalization of parental genomes in 2-cell mouse embryos. Nevertheless, the transient segregation of parental genomes was not observed by determining the DNA methylation distribution in the 2-cell embryos even though DNA methylation asymmetry between the maternal and paternal pronucleus existed in the 1-cell stage. The disappearance of separate immunofluorescence signals of 5-methyl cytosine in the 2-cell embryos might be attributed to the de novo methylation of the paternal genome during the first mitotic cycle.

  1. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes.

    PubMed

    Stewart, Kathleen R; Veselovska, Lenka; Kim, Jeesun; Huang, Jiahao; Saadeh, Heba; Tomizawa, Shin-ichi; Smallwood, Sébastien A; Chen, Taiping; Kelsey, Gavin

    2015-12-01

    Erasure and subsequent reinstatement of DNA methylation in the germline, especially at imprinted CpG islands (CGIs), is crucial to embryogenesis in mammals. The mechanisms underlying DNA methylation establishment remain poorly understood, but a number of post-translational modifications of histones are implicated in antagonizing or recruiting the de novo DNA methylation complex. In mouse oogenesis, DNA methylation establishment occurs on a largely unmethylated genome and in nondividing cells, making it a highly informative model for examining how histone modifications can shape the DNA methylome. Using a chromatin immunoprecipitation (ChIP) and genome-wide sequencing (ChIP-seq) protocol optimized for low cell numbers and novel techniques for isolating primary and growing oocytes, profiles were generated for histone modifications implicated in promoting or inhibiting DNA methylation. CGIs destined for DNA methylation show reduced protective H3K4 dimethylation (H3K4me2) and trimethylation (H3K4me3) in both primary and growing oocytes, while permissive H3K36me3 increases specifically at these CGIs in growing oocytes. Methylome profiling of oocytes deficient in H3K4 demethylase KDM1A or KDM1B indicated that removal of H3K4 methylation is necessary for proper methylation establishment at CGIs. This work represents the first systematic study performing ChIP-seq in oocytes and shows that histone remodeling in the mammalian oocyte helps direct de novo DNA methylation events.

  2. De Novo Synthesis of Steroids and Oxysterols in Adipocytes*

    PubMed Central

    Li, Jiehan; Daly, Edward; Campioli, Enrico; Wabitsch, Martin; Papadopoulos, Vassilios

    2014-01-01

    Local production and action of cholesterol metabolites such as steroids or oxysterols within endocrine tissues are currently recognized as an important principle in the cell type- and tissue-specific regulation of hormone effects. In adipocytes, one of the most abundant endocrine cells in the human body, the de novo production of steroids or oxysterols from cholesterol has not been examined. Here, we demonstrate that essential components of cholesterol transport and metabolism machinery in the initial steps of steroid and/or oxysterol biosynthesis pathways are present and active in adipocytes. The ability of adipocyte CYP11A1 in producing pregnenolone is demonstrated for the first time, rendering adipocyte a steroidogenic cell. The oxysterol 27-hydroxycholesterol (27HC), synthesized by the mitochondrial enzyme CYP27A1, was identified as one of the major de novo adipocyte products from cholesterol and its precursor mevalonate. Inhibition of CYP27A1 activity or knockdown and deletion of the Cyp27a1 gene induced adipocyte differentiation, suggesting a paracrine or autocrine biological significance for the adipocyte-derived 27HC. These findings suggest that the presence of the 27HC biosynthesis pathway in adipocytes may represent a defense mechanism to prevent the formation of new fat cells upon overfeeding with dietary cholesterol. PMID:24280213

  3. Repeated quantitative measurements of De Novo synthesis of albumin and fibrinogen

    PubMed Central

    Rooyackers, Olav; Klaude, Maria; Hebert, Christina; Wernerman, Jan; Norberg, Åke

    2017-01-01

    The possibility of using two different isotopomers, for the incorporation of isotopically labeled amino acids, was explored to enable longitudinal studies of de novo synthesis of two export liver proteins, albumin and fibrinogen. The agreement of the synthesis rates between the two different labels was evaluated along with the reproducibility of repeated experiments using different time intervals. Healthy volunteers were studied in a standardized fed state. Protocol A (n = 10) involved two measurements 48 hours apart. Protocol B (n = 6) involved three measurements at baseline and five hours and then seven days after the initial measurement. De novo synthesis of albumin and fibrinogen by the incorporation of D5-phenylalanine or D8-phenylalanine were measured using the flooding dose technique. Albumin and fibrinogen were isolated from plasma using standard techniques. Fractional and absolute synthesis rates were calculated. Repeated measurements employing the two isotoptomers showed good agreement for albumin fractional synthesis rate after 48 hours (p = 0.92) and after 7 days (p = 0.99), with a coefficient of variation of 5.9% when using the same isotopic label. For fibrinogen, the coefficient of variation for the fractional synthesis rate employing the same isotopic label was 16.6%. Repeated measurements after 48 hours and seven days showed less agreement although there was no statistical difference (P = 0.32 and P = 0.30 respectively). Repeated measurement after five hours showed a statistical significant difference for the fractional synthesis rate of fibrinogen (p = 0.008) but not for albumin (p = 0.12). Repeated measurements of albumin de novo synthesis more than 48 hours apart show acceptable agreement using either one or two different isotopic labels. For fibrinogen the larger intra-individual scatter necessitates larger study groups to detect changes in longitudinal studies. Repeated measurements within 48 hours need to be validated further. PMID:28350862

  4. De novo design, synthesis and spectroscopic characterization of chiral benzimidazole-derived amino acid Zn(II) complexes: Development of tryptophan-derived specific hydrolytic DNA artificial nuclease agent

    NASA Astrophysics Data System (ADS)

    Parveen, Shazia; Arjmand, Farukh

    2012-01-01

    Novel ternary dizinc(II) complexes 1- 3, derived from 1,2-bis(1H-benzimidazol-2-yl)ethane-1,2-diol and L-form of amino acids (viz., tryptophan, leucine and valine) were synthesized and characterized by spectroscopic (IR, 1H NMR, UV-vis, ESI-MS) and other analytical methods. To evaluate the biological preference of chiral drugs for inherently chiral target DNA, interaction of 1- 3 with calf thymus DNA in Tris-HCl buffer was studied by various biophysical techniques which reveal that all these complexes bind to CT DNA non-covalently via electrostatic interaction. The higher Kb value of L-tryptophan complex 1 suggested greater DNA binding propensity. Further, to evaluate the mode of action at the molecular level, interaction studies of complexes 1 and 2 with nucleotides (5'-GMP and 5'-TMP) were carried out by UV-vis titrations, 1H and 31P NMR which implicates the preferential selectivity of these complexes to N3 of thymine rather than N7 of guanine. Furthermore, complex 1 exhibits efficient DNA cleavage with supercoiled pBR322. The complex 1 cleaves DNA efficiently involving hydrolytic cleavage pathway. Such chiral synthetic hydrolytic nucleases with asymmetric centers are gaining considerable attention owing to their importance in biotechnology and drug design, in particular to cleave DNA with sequence selectivity different from that of the natural enzymes.

  5. Integrative Analysis of Circadian Transcriptome and Metabolic Network Reveals the Role of De Novo Purine Synthesis in Circadian Control of Cell Cycle

    PubMed Central

    Li, Ying; Li, Guang; Görling, Benjamin; Luy, Burkhard; Du, Jiulin; Yan, Jun

    2015-01-01

    Metabolism is the major output of the circadian clock in many organisms. We developed a computational method to integrate both circadian gene expression and metabolic network. Applying this method to zebrafish circadian transcriptome, we have identified large clusters of metabolic genes containing mostly genes in purine and pyrimidine metabolism in the metabolic network showing similar circadian phases. Our metabolomics analysis found that the level of inosine 5'-monophosphate (IMP), an intermediate metabolite in de novo purine synthesis, showed significant circadian oscillation in larval zebrafish. We focused on IMP dehydrogenase (impdh), a rate-limiting enzyme in de novo purine synthesis, with three circadian oscillating gene homologs: impdh1a, impdh1b and impdh2. Functional analysis revealed that impdh2 contributes to the daily rhythm of S phase in the cell cycle while impdh1a contributes to ocular development and pigment synthesis. The three zebrafish homologs of impdh are likely regulated by different circadian transcription factors. We propose that the circadian regulation of de novo purine synthesis that supplies crucial building blocks for DNA replication is an important mechanism conferring circadian rhythmicity on the cell cycle. Our method is widely applicable to study the impact of circadian transcriptome on metabolism in complex organisms. PMID:25714999

  6. The 'de novo' DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium.

    PubMed

    Elliott, Ellen N; Sheaffer, Karyn L; Kaestner, Klaus H

    2016-01-25

    Dnmt1 is critical for immediate postnatal intestinal development, but is not required for the survival of the adult intestinal epithelium, the only rapidly dividing somatic tissue for which this has been shown. Acute Dnmt1 deletion elicits dramatic hypomethylation and genomic instability. Recovery of DNA methylation state and intestinal health is dependent on the de novo methyltransferase Dnmt3b. Ablation of both Dnmt1 and Dnmt3b in the intestinal epithelium is lethal, while deletion of either Dnmt1 or Dnmt3b has no effect on survival. These results demonstrate that Dnmt1 and Dnmt3b cooperate to maintain DNA methylation and genomic integrity in the intestinal epithelium.

  7. De novo synthesis of a sunscreen compound in vertebrates

    PubMed Central

    Osborn, Andrew R; Almabruk, Khaled H; Holzwarth, Garrett; Asamizu, Shumpei; LaDu, Jane; Kean, Kelsey M; Karplus, P Andrew; Tanguay, Robert L; Bakalinsky, Alan T; Mahmud, Taifo

    2015-01-01

    Ultraviolet-protective compounds, such as mycosporine-like amino acids (MAAs) and related gadusols produced by some bacteria, fungi, algae, and marine invertebrates, are critical for the survival of reef-building corals and other marine organisms exposed to high-solar irradiance. These compounds have also been found in marine fish, where their accumulation is thought to be of dietary or symbiont origin. In this study, we report the unexpected discovery that fish can synthesize gadusol de novo and that the analogous pathways are also present in amphibians, reptiles, and birds. Furthermore, we demonstrate that engineered yeast containing the fish genes can produce and secrete gadusol. The discovery of the gadusol pathway in vertebrates provides a platform for understanding its role in these animals, and the possibility of engineering yeast to efficiently produce a natural sunscreen and antioxidant presents an avenue for its large-scale production for possible use in pharmaceuticals and cosmetics. DOI: http://dx.doi.org/10.7554/eLife.05919.001 PMID:25965179

  8. Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol.

    PubMed

    Sonntag, Frank; Kroner, Cora; Lubuta, Patrice; Peyraud, Rémi; Horst, Angelika; Buchhaupt, Markus; Schrader, Jens

    2015-11-01

    Over the last 10 to 15 years, metabolic engineering of microbes has become a versatile tool for high-level de novo synthesis of terpenoids, with the sesquiterpenoids armopha-1,4-diene, farnesene and artemisinic acid as prime examples. However, almost all cell factory approaches towards terpenoids to date have been based on sugar as the raw material, which is mainly used as a food resource and subject to high price volatilities. In this study we present de novo synthesis of the sesquiterpenoid α-humulene from the abundantly available non-food carbon source methanol by metabolically engineered Methylobacterium extorquens AM1. Expression of α-humulene synthase from Zingiber zerumbet in combination with farnesyl pyrophosphate (FPP) synthase from Saccharomyces cerevisiae led to concentrations of up to 18 mg/L α-humulene. Introduction of a prokaryotic mevalonate pathway from Myxococcus xanthus in combination with ribosome binding site optimization of α-humulene and FPP synthases increased product concentration 3-fold. This value was additionally raised by 30% using a carotenoid synthesis deficient mutant strain. Final product concentrations of up to 1.65 g/L were obtained in methanol limited fed-batch cultivations, which is the highest titer of de novo synthesized α-humulene reported to date. This study demonstrates the potential of M. extorquens as a future platform strain for the production of high-value terpenoids from the alternative carbon source methanol.

  9. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells.

    PubMed

    Berod, Luciana; Friedrich, Christin; Nandan, Amrita; Freitag, Jenny; Hagemann, Stefanie; Harmrolfs, Kirsten; Sandouk, Aline; Hesse, Christina; Castro, Carla N; Bähre, Heike; Tschirner, Sarah K; Gorinski, Nataliya; Gohmert, Melanie; Mayer, Christian T; Huehn, Jochen; Ponimaskin, Evgeni; Abraham, Wolf-Rainer; Müller, Rolf; Lochner, Matthias; Sparwasser, Tim

    2014-11-01

    Interleukin-17 (IL-17)-secreting T cells of the T helper 17 (TH17) lineage play a pathogenic role in multiple inflammatory and autoimmune conditions and thus represent a highly attractive target for therapeutic intervention. We report that inhibition of acetyl-CoA carboxylase 1 (ACC1) restrains the formation of human and mouse TH17 cells and promotes the development of anti-inflammatory Foxp3(+) regulatory T (Treg) cells. We show that TH17 cells, but not Treg cells, depend on ACC1-mediated de novo fatty acid synthesis and the underlying glycolytic-lipogenic metabolic pathway for their development. Although TH17 cells use this pathway to produce phospholipids for cellular membranes, Treg cells readily take up exogenous fatty acids for this purpose. Notably, pharmacologic inhibition or T cell-specific deletion of ACC1 not only blocks de novo fatty acid synthesis but also interferes with the metabolic flux of glucose-derived carbon via glycolysis and the tricarboxylic acid cycle. In vivo, treatment with the ACC-specific inhibitor soraphen A or T cell-specific deletion of ACC1 in mice attenuates TH17 cell-mediated autoimmune disease. Our results indicate fundamental differences between TH17 cells and Treg cells regarding their dependency on ACC1-mediated de novo fatty acid synthesis, which might be exploited as a new strategy for metabolic immune modulation of TH17 cell-mediated inflammatory diseases.

  10. Drosophila melanogaster Prat, a Purine de Novo Synthesis Gene, Has a Pleiotropic Maternal-Effect Phenotype

    PubMed Central

    Malmanche, Nicolas; Clark, Denise V.

    2004-01-01

    In Drosophila melanogaster, two genes, Prat and Prat2, encode the enzyme, amidophosphoribosyltransferase, that performs the first and limiting step in purine de novo synthesis. Only Prat mRNA is present in the female germline and 0- to 2-hr embryos prior to the onset of zygotic transcription. We studied the maternal-effect phenotype caused by Prat loss-of-function mutations, allowing us to examine the effects of decreased purine de novo synthesis during oogenesis and the early stages of embryonic development. In addition to the purine syndrome previously characterized, we found that Prat mutant adult females have a significantly shorter life span and are conditionally semisterile. The semisterility is associated with a pleiotropic phenotype, including egg chamber defects and later effects on embryonic and larval viability. Embryos show mitotic synchrony and/or nuclear content defects at the syncytial blastoderm stages and segmentation defects at later stages. The semisterility is partially rescued by providing Prat mutant females with an RNA-enriched diet as a source of purines. Our results suggest that purine de novo synthesis is a limiting factor during the processes of cellular or nuclear proliferation that take place during egg chamber and embryonic development. PMID:15611171

  11. Inactive DNMT3B splice variants modulate de novo DNA methylation.

    PubMed

    Gordon, Catherine A; Hartono, Stella R; Chédin, Frédéric

    2013-01-01

    Inactive DNA methyltransferase (DNMT) 3B splice isoforms are associated with changes in DNA methylation, yet the mechanisms by which they act remain largely unknown. Using biochemical and cell culture assays, we show here that the inactive DNMT3B3 and DNMT3B4 isoforms bind to and regulate the activity of catalytically competent DNMT3A or DNMT3B molecules. DNMT3B3 modestly stimulated the de novo methylation activity of DNMT3A and also counteracted the stimulatory effects of DNMT3L, therefore leading to subtle and contrasting effects on activity. DNMT3B4, by contrast, significantly inhibited de novo DNA methylation by active DNMT3 molecules, most likely due to its ability to reduce the DNA binding affinity of co-complexes, thereby sequestering them away from their substrate. Immunocytochemistry experiments revealed that in addition to their effects on the intrinsic catalytic function of active DNMT3 enzymes, DNMT3B3 and DNMT34 drive distinct types of chromatin compaction and patterns of histone 3 lysine 9 tri-methylation (H3K9me3) deposition. Our findings suggest that regulation of active DNMT3 members through the formation of co-complexes with inactive DNMT3 variants is a general mechanism by which DNMT3 variants function. This may account for some of the changes in DNA methylation patterns observed during development and disease.

  12. Total synthesis of phorboxazole A via de novo oxazole formation: convergent total synthesis.

    PubMed

    Wang, Bo; Hansen, T Matthew; Weyer, Lynn; Wu, Dimao; Wang, Ting; Christmann, Mathias; Lu, Yingtao; Ying, Lu; Engler, Mary M; Cink, Russell D; Lee, Chi-Sing; Ahmed, Feryan; Forsyth, Craig J

    2011-02-09

    The phorboxazoles are mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic products that embody polyketide domains joined via two serine-derived oxazole moieties. Total syntheses of phorboxazole A and analogues have been developed that rely upon the convergent coupling of three fragments via biomimetically inspired de novo oxazole formation. First, the macrolide-containing domain of phorboxazole A was assembled from C3-C17 and C18-C30 building blocks via formation of the C16-C18 oxazole, followed by macrolide ring closure involving an intramolecular Still-Genarri olefination at C2-C3. Alternatively, a ring-closing metathesis process was optimized to deliver the natural product's (2Z)-acrylate with remarkable geometrical selectivity. The C31-C46 side-chain domain was then appended to the macrolide by a second serine amide-derived oxazole assembly. Minimal deprotection then afforded phorboxazole A. This generally effective strategy was then dramatically abbreviated by employing a total synthesis approach wherein both of the natural product's oxazole moieties were installed simultaneously. A key bis-amide precursor to the bis-oxazole was formed in a chemoselective one-pot, bis-amidation sequence without the use of amino or carboxyl protecting groups. Thereafter, both oxazoles were formed from the key C18 and C31 bis-N-(1-hydroxyalkan-2-yl)amide in a simultaneous fashion, involving oxidation-cyclodehydrations. This synthetic strategy provides a total synthesis of phorboxazole A in 18% yield over nine steps from C3-C17 and C18-C30 synthetic fragments. It illustrates the utility of a synthetic design to form a mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic product based upon biomimetic oxazole formation initiated by amide bond formation to join synthetic building blocks.

  13. The effect of bleomycin on DNA synthesis in ataxia telangiectasia lymphoid cells

    SciTech Connect

    Cohen, M.M.; Simpson, S.J.

    1982-01-01

    Bleomycin, a radiomimetic glycopeptide, inhibits de novo DNA synthesis in ataxia telangiectasia lymphoblastoid B cells to a markedly lesser extent than in normal and xeroderma pigmentosum lymphoid cells. This observation is similar to that following ionizing radiation; however, the effect is slower following the chemical treatment. Recovery of the normal cells occurs 15-18 hours after treatment, whereas the ataxia telangiectasia lines do not attain normal levels of DNA synthesis during the entire 24-hour observation period. Similar differences were not observed following treatment with mitomycin C, a bifunctional alkylating agent, indicating a specific effect of bleomycin on DNA synthesis in ataxia telangiectasia cells. Following bleomycin treatment and preincubation with hydroxyurea, residual DNA synthesis in ataxia telangiectasia cells was similar to that in both normal and xeroderma pigmentosum lymphoid lines, suggesting that the capacity to repair the induced DNA lesion is present.

  14. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics

    PubMed Central

    Yehezkel, Tuval Ben; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2016-01-01

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development. PMID:26481354

  15. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics.

    PubMed

    Ben Yehezkel, Tuval; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2016-02-29

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development.

  16. A Real-Time de novo DNA Sequencing Assembly Platform Based on an FPGA Implementation.

    PubMed

    Hu, Yuanqi; Georgiou, Pantelis

    2016-01-01

    This paper presents an FPGA based DNA comparison platform which can be run concurrently with the sensing phase of DNA sequencing and shortens the overall time needed for de novo DNA assembly. A hybrid overlap searching algorithm is applied which is scalable and can deal with incremental detection of new bases. To handle the incomplete data set which gradually increases during sequencing time, all-against-all comparisons are broken down into successive window-against-window comparison phases and executed using a novel dynamic suffix comparison algorithm combined with a partitioned dynamic programming method. The complete system has been designed to facilitate parallel processing in hardware, which allows real-time comparison and full scalability as well as a decrease in the number of computations required. A base pair comparison rate of 51.2 G/s is achieved when implemented on an FPGA with successful DNA comparison when using data sets from real genomes.

  17. De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation

    PubMed Central

    Maffeo, Christopher; Yoo, Jejoong; Aksimentiev, Aleksei

    2016-01-01

    The DNA origami method has brought nanometer-precision fabrication to molecular biology labs, offering myriads of potential applications in the fields of synthetic biology, medicine, molecular computation, etc. Advancing the method further requires controlling self-assembly down to the atomic scale. Here we demonstrate a computational method that allows the equilibrium structure of a large, complex DNA origami object to be determined to atomic resolution. Through direct comparison with the results of cryo-electron microscopy, we demonstrate de novo reconstruction of a 4.7 megadalton pointer structure by means of fully atomistic molecular dynamics simulations. Furthermore, we show that elastic network-guided simulations performed without solvent can yield similar accuracy at a fraction of the computational cost, making this method an attractive approach for prototyping and validation of self-assembled DNA nanostructures. PMID:26980283

  18. Fact or fiction: updates on how protein-coding genes might emerge de novo from previously non-coding DNA.

    PubMed

    Schmitz, Jonathan F; Bornberg-Bauer, Erich

    2017-01-01

    Over the last few years, there has been an increasing amount of evidence for the de novo emergence of protein-coding genes, i.e. out of non-coding DNA. Here, we review the current literature and summarize the state of the field. We focus specifically on open questions and challenges in the study of de novo protein-coding genes such as the identification and verification of de novo-emerged genes. The greatest obstacle to date is the lack of high-quality genomic data with very short divergence times which could help precisely pin down the location of origin of a de novo gene. We conclude that, while there is plenty of evidence from a genetics perspective, there is a lack of functional studies of bona fide de novo genes and almost no knowledge about protein structures and how they come about during the emergence of de novo protein-coding genes. We suggest that future studies should concentrate on the functional and structural characterization of de novo protein-coding genes as well as the detailed study of the emergence of functional de novo protein-coding genes.

  19. Fact or fiction: updates on how protein-coding genes might emerge de novo from previously non-coding DNA

    PubMed Central

    Schmitz, Jonathan F; Bornberg-Bauer, Erich

    2017-01-01

    Over the last few years, there has been an increasing amount of evidence for the de novo emergence of protein-coding genes, i.e. out of non-coding DNA. Here, we review the current literature and summarize the state of the field. We focus specifically on open questions and challenges in the study of de novo protein-coding genes such as the identification and verification of de novo-emerged genes. The greatest obstacle to date is the lack of high-quality genomic data with very short divergence times which could help precisely pin down the location of origin of a de novo gene. We conclude that, while there is plenty of evidence from a genetics perspective, there is a lack of functional studies of bona fide de novo genes and almost no knowledge about protein structures and how they come about during the emergence of de novo protein-coding genes. We suggest that future studies should concentrate on the functional and structural characterization of de novo protein-coding genes as well as the detailed study of the emergence of functional de novo protein-coding genes. PMID:28163910

  20. De novo DNMTs and DNA methylation: novel insights into disease pathogenesis and therapy from epigenomics.

    PubMed

    Leppert, Sylwia; Matarazzo, Maria R

    2014-01-01

    DNA methylation plays an important role in epigenetics signaling, having an impact on gene regulation, chromatin structure and development. Within the family of de novo DNA methyltransferases two active enzymes, DNMT3A and DNMT3B, are responsible for the establishment of the proper cytosine methylation profile during development. Defects in DNMT3s function correlate with pathogenesis and progression of monogenic diseases and cancers. Among monogenic diseases, Immunodeficiency, Centromeric instability and Facial anomalies (ICF) syndrome is the only Mendelian disorder associated with DNMT3B mutations and DNA methylation defects of satellite and non-satellite regions. Similar CpG hypomethylation of the repetitive elements and gene-specific hypermethylation are observed in many types of cancer. DNA hyper-methylation sites provide targets for the epigenetic therapy. Generally, we can distinguish two groups of epi-drugs affecting DNMTs activity, i) nucleoside inhibitors, covalently trapping the enzymes, and bringing higher cytotoxic effect and (ii) nonnucleoside inhibitors, which block their active sites, showing less side-effects. Moreover, combining drugs targeting chromatin and those targeting DNA methylation enhances the efficacy of the therapy and gives more chances of patient recovery. However, development of more specific and effective epigenetic therapies requires more complete understanding of epigenomic landscapes. Here, we give an overview of the recent findings in the epigenomics field, focusing on those related to DNA methylation defects in disease pathogenesis and therapy.

  1. INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis

    SciTech Connect

    Ausin, Israel; Greenberg, Maxim V.C.; Simanshu, Dhirendra K.; Hale, Christopher J.; Vashisht, Ajay A.; Simon, Stacey A.; Lee, Tzuu-fen; Feng, Suhua; Española, Sophia D.; Meyers, Blake C.; Wohlschlegel, James A.; Patel, Dinshaw J.; Jacobsen, Steven E.

    2012-10-23

    At least three pathways control maintenance of DNA cytosine methylation in Arabidopsis thaliana. However, the RNA-directed DNA methylation (RdDM) pathway is solely responsible for establishment of this silencing mark. We previously described INVOLVED IN DE NOVO 2 (IDN2) as being an RNA-binding RdDM component that is required for DNA methylation establishment. In this study, we describe the discovery of two partially redundant proteins that are paralogous to IDN2 and that form a stable complex with IDN2 in vivo. Null mutations in both genes, termed IDN2-LIKE 1 and IDN2-LIKE 2 (IDNL1 and IDNL2), result in a phenotype that mirrors, but does not further enhance, the idn2 mutant phenotype. Genetic analysis suggests that this complex acts in a step in the downstream portion of the RdDM pathway. We also have performed structural analysis showing that the IDN2 XS domain adopts an RNA recognition motif (RRM) fold. Finally, genome-wide DNA methylation and expression analysis confirms the placement of the IDN proteins in an RdDM pathway that affects DNA methylation and transcriptional control at many sites in the genome. Results from this study identify and describe two unique components of the RdDM machinery, adding to our understanding of DNA methylation control in the Arabidopsis genome.

  2. Proof of de novo synthesis of the qa enzymes of Neurospora crassa during induction

    PubMed Central

    Reinert, William R.; Giles, Norman H.

    1977-01-01

    In Neurospora crassa three inducible enzymes are necessary to catabolize quinic acid to protocatechuic acid. The three genes encoding these enzymes are tightly linked on chromosome VII near methionine-7 (me-7). This qa cluster includes a fourth gene, qa-1, which encodes a regulatory protein apparently exerting positive control over transcription of the other three qa genes. However, an alternative hypothesis is that the qa-1 protein simply activates preformed polypeptides derived from the three structural genes. The use of density labeling with D2O demonstrated conclusively that the qa enzymes are synthesized de novo only during induction on quinic acid. Native catabolic dehydroquinase (5-dehydroquinate dehydratase; 5-dehydroquinate hydro-lyase, EC 4.2.1.10) (a homopolymer of ca 22 identical subunits) has a density of 1.2790 g/cm3 as determined by centrifugation in a modified cesium chloride density gradient. Growth in H2O followed by induction in 95% D2O shifts the density of the enzyme to 1.3130 g/cm3, indicating de novo synthesis during induction. In the reciprocal experiment, i.e., growth in 80% D2O followed by induction in either 95% D2O or H2O, the densities of catabolic dehydroquinase were 1.3135 and 1.2800 g/cm3, respectively. Because growth on D2O does not affect the density of the H2O-induced enzyme, there can be no significant synthesis of catabolic dehydroquinase prior to induction. Similar results were obtained for a second qa enzyme, quinate dehydrogenase (quinate:NAD+ oxidoreductase, EC 1.1.1.24). Thus, induction of two qa enzymes involves de novo protein synthesis, not enzyme activation or assembly. PMID:144915

  3. A clinical measure of DNA methylation predicts outcome in de novo acute myeloid leukemia

    PubMed Central

    Luskin, Marlise R.; Gimotty, Phyllis A.; Smith, Catherine; Loren, Alison W.; Figueroa, Maria E.; Harrison, Jenna; Sun, Zhuoxin; Tallman, Martin S.; Paietta, Elisabeth M.; Litzow, Mark R.; Melnick, Ari M.; Levine, Ross L.; Fernandez, Hugo F.; Luger, Selina M.; Master, Stephen R.; Wertheim, Gerald B.W.

    2016-01-01

    BACKGROUND. Variable response to chemotherapy in acute myeloid leukemia (AML) represents a major treatment challenge. Clinical and genetic features incompletely predict outcome. The value of clinical epigenetic assays for risk classification has not been extensively explored. We assess the prognostic implications of a clinical assay for multilocus DNA methylation on adult patients with de novo AML. METHODS. We performed multilocus DNA methylation assessment using xMELP on samples and calculated a methylation statistic (M-score) for 166 patients from UPENN with de novo AML who received induction chemotherapy. The association of M-score with complete remission (CR) and overall survival (OS) was evaluated. The optimal M-score cut-point for identifying groups with differing survival was used to define a binary M-score classifier. This classifier was validated in an independent cohort of 383 patients from the Eastern Cooperative Oncology Group Trial 1900 (E1900; NCT00049517). RESULTS. A higher mean M-score was associated with death and failure to achieve CR. Multivariable analysis confirmed that a higher M-score was associated with death (P = 0.011) and failure to achieve CR (P = 0.034). Median survival was 26.6 months versus 10.6 months for low and high M-score groups. The ability of the M-score to perform as a classifier was confirmed in patients ≤ 60 years with intermediate cytogenetics and patients who achieved CR, as well as in the E1900 validation cohort. CONCLUSION. The M-score represents a valid binary prognostic classifier for patients with de novo AML. The xMELP assay and associated M-score can be used for prognosis and should be further investigated for clinical decision making in AML patients. PMID:27446991

  4. Palladium-catalyzed α-arylation of carbonyls in the de novo synthesis of aromatic heterocycles

    PubMed Central

    Potukuchi, Harish K.; Spork, Anatol P.

    2015-01-01

    Aromatic heterocycles are a very well represented motif in natural products and have found various applications in chemistry and material science, as well as being commonly found in pharmaceutical agents. Thus, new and efficient routes towards this class of compound are always desirable, particularly if they expand the scope of chemical methodology or facilitate more effective pathways to complex substitution patterns. This perspective covers recent developments in the de novo synthesis of aromatic heterocycles via palladium-catalysed α-arylation reactions of carbonyls, which is itself a powerful transformation that has undergone significant development in recent years. PMID:25789887

  5. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages

    PubMed Central

    2011-01-01

    Background We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Results Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway. Conclusions Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals. PMID:22118513

  6. Fractional synthesis rates of DNA and protein in rabbit skin are not correlated.

    PubMed

    Zhang, Xiao-jun; Chinkes, David L; Wu, Zhanpin; Martini, Wenjun Z; Wolfe, Robert R

    2004-09-01

    We developed a method for measurement of skin DNA synthesis, reflecting cell division, in conscious rabbits by infusing D-[U-(13)C(6)]glucose and L-[(15)N]glycine. Cutaneous protein synthesis was simultaneously measured by infusion of L-[ring-(2)H(5)]phenylalanine. Rabbits were fitted with jugular venous and carotid arterial catheters, and were studied during the infusion of an amino acid solution (10% Travasol). The fractional synthetic rate (FSR) of DNA from the de novo nucleotide synthesis pathway, a reflection of total cell division, was 3.26 +/- 0.59%/d in whole skin and 3.08 +/- 1.86%/d in dermis (P = 0.38). The de novo base synthesis pathway accounted for 76 and 60% of the total DNA FSR in whole skin and dermis, respectively; the contribution from the base salvage pathway was 24% in whole skin and 40% in dermis. The FSR of protein in whole skin was 5.35 +/- 4.42%/d, which was greater (P < 0.05) than that in dermis (2.91 +/- 2.52%/d). The FSRs of DNA and protein were not correlated (P = 0.33), indicating that cell division and protein synthesis are likely regulated by different mechanisms. This new approach enables investigations of metabolic disorders of skin diseases and regulation of skin wound healing by distinguishing the 2 principal components of skin metabolism, which are cell division and protein synthesis.

  7. Mechanism for priming DNA synthesis by yeast DNA Polymerase α

    PubMed Central

    Perera, Rajika L; Torella, Rubben; Klinge, Sebastian; Kilkenny, Mairi L; Maman, Joseph D; Pellegrini, Luca

    2013-01-01

    The DNA Polymerase α (Pol α)/primase complex initiates DNA synthesis in eukaryotic replication. In the complex, Pol α and primase cooperate in the production of RNA-DNA oligonucleotides that prime synthesis of new DNA. Here we report crystal structures of the catalytic core of yeast Pol α in unliganded form, bound to an RNA primer/DNA template and extending an RNA primer with deoxynucleotides. We combine the structural analysis with biochemical and computational data to demonstrate that Pol α specifically recognizes the A-form RNA/DNA helix and that the ensuing synthesis of B-form DNA terminates primer synthesis. The spontaneous release of the completed RNA-DNA primer by the Pol α/primase complex simplifies current models of primer transfer to leading- and lagging strand polymerases. The proposed mechanism of nucleotide polymerization by Pol α might contribute to genomic stability by limiting the amount of inaccurate DNA to be corrected at the start of each Okazaki fragment. DOI: http://dx.doi.org/10.7554/eLife.00482.001 PMID:23599895

  8. Inhibition of de novo synthesis of PCDD/Fs by SO2 in a model system.

    PubMed

    Ke, Shao; Jianhua, Yan; Xiaodong, Li; Shengyong, Lu; Yinglei, Wei; Muxing, Fu

    2010-03-01

    The effect of sulfur dioxide (SO(2)) on de novo synthesis of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/F) and biphenyls (PCB) was investigated in model systems containing carbon, activated by cupric chloride (CuCl(2)). Five types of carbons (activated carbon, three types of carbon blacks, and graphite) were used to test the universal character of our results. The influence of SO(2) on speciation and behavior of copper compounds, catalytic oxidation of carbons, and formation of organic chlorine (extractable organic chlorine and non-extractable organic chlorine) was also studied to investigate the inhibition mechanism of SO(2) on de novo synthesis. It was found that SO(2) can sulfate CuCl(2), but does not react with CuO and CuCl(2).CuO in a 10% O(2)/N(2) atmosphere at 300 degrees C. The suppression by SO(2) of organic chlorine (C-Cl) formation also confirmed these findings. It was also found that catalytic oxidation of carbons was strongly suppressed by SO(2). A dramatic decrease in PCDD/Fs formation was observed for all five carbons, while adding SO(2); at the same time the average chlorination level also decreased. However, the inhibiting effect on PCB was less apparent compared with that on PCDD/F. On the basis of the experimental results, the conversion of both cupric and cuprous chloride into the non-reactive sulfate was proposed as inhibition mechanism.

  9. Downregulation of de Novo Fatty Acid Synthesis in Subcutaneous Adipose Tissue of Moderately Obese Women.

    PubMed

    Guiu-Jurado, Esther; Auguet, Teresa; Berlanga, Alba; Aragonès, Gemma; Aguilar, Carmen; Sabench, Fàtima; Armengol, Sandra; Porras, José Antonio; Martí, Andreu; Jorba, Rosa; Hernández, Mercè; del Castillo, Daniel; Richart, Cristóbal

    2015-12-16

    The purpose of this work was to evaluate the expression of fatty acid metabolism-related genes in human adipose tissue from moderately obese women. We used qRT-PCR and Western Blot to analyze visceral (VAT) and subcutaneous (SAT) adipose tissue mRNA expression involved in de novo fatty acid synthesis (ACC1, FAS), fatty acid oxidation (PPARα, PPARδ) and inflammation (IL6, TNFα), in normal weight control women (BMI < 25 kg/m², n = 35) and moderately obese women (BMI 30-38 kg/m², n = 55). In SAT, ACC1, FAS and PPARα mRNA expression were significantly decreased in moderately obese women compared to controls. The downregulation reported in SAT was more pronounced when BMI increased. In VAT, lipogenic-related genes and PPARα were similar in both groups. Only PPARδ gene expression was significantly increased in moderately obese women. As far as inflammation is concerned, TNFα and IL6 were significantly increased in moderate obesity in both tissues. Our results indicate that there is a progressive downregulation in lipogenesis in SAT as BMI increases, which suggests that SAT decreases the synthesis of fatty acid de novo during the development of obesity, whereas in VAT lipogenesis remains active regardless of the degree of obesity.

  10. Antitumor effects of a drug combination targeting glycolysis, glutaminolysis and de novo synthesis of fatty acids.

    PubMed

    Cervantes-Madrid, Diana; Dueñas-González, Alfonso

    2015-09-01

    There is a strong rationale for targeting the metabolic alterations of cancer cells. The most studied of these are the higher rates of glycolysis, glutaminolysis and de novo synthesis of fatty acids (FAs). Despite the availability of pharmacological inhibitors of these pathways, no preclinical studies targeting them simultaneously have been performed. In the present study it was determined whether three key enzymes for glycolysis, glutaminolysis and de novo synthesis of FAs, hexokinase-2, glutaminase and fatty acid synthase, respectively, were overexpressed as compared to primary fibroblasts. In addition, we showed that at clinically relevant concentrations lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat, known inhibitors of the mentioned enzymes, exerted a cell viability inhibitory effect. Genetic downregulation of the three enzymes also reduced cell viability. The three drugs were highly synergistic when administered as a triple combination. Of note, the cytotoxicity of the triple combination was low in primary fibroblasts and was well tolerated when administered into healthy BALB/c mice. The results suggest the feasibility and potential clinical utility of the triple metabolic targeting which merits to be further studied by using either repositioned old drugs or newer, more selective inhibitors.

  11. Specific activation of human interleukin-5 depends on de novo synthesis of an AP-1 complex.

    PubMed

    Schwenger, Gretchen T F; Kok, Chee Choy; Arthaningtyas, Estri; Thomas, Marc A; Sanderson, Colin J; Mordvinov, Viatcheslav A

    2002-12-06

    It is clear from the biology of eosinophilia that a specific regulatory mechanism must exist. Because interleukin-5 (IL5) is the key regulatory cytokine, it follows that a gene-specific control of IL5 expression must exist that differs even from closely related cytokines such as IL4. Two features of IL5 induction make it unique compared with other cytokines; first, induction by cyclic adenosine monophosphate (cAMP), which inhibits other T-cell-derived cytokines, and second, sensitivity to protein synthesis inhibitors, which have no effect on other cytokines. This study has utilized the activation of different transcription factors by different stimuli in a human T-cell line to study the role of conserved lymphokine element 0 (CLE0) in the specific induction of IL5. In unstimulated cells the ubiquitous Oct-1 binds to CLE0. Stimulation induces de novo synthesis of the AP-1 members JunD and Fra-2, which bind to CLE0. The amount of IL5 produced correlates with the production of the AP-1 complex, suggesting a key role in IL5 expression. The formation of the AP-1 complex is essential, but the rate-limiting step is the synthesis of AP-1, especially Fra-2. This provides an explanation for the sensitivity of IL5 to protein synthesis inhibitors and a mechanism for the specific induction of IL5 compared with other cytokines.

  12. Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast

    SciTech Connect

    Pang, Jinsong; Dong, Mingyue; Li, Ning; Zhao, Yanli; Liu, Bao

    2013-03-01

    Highlights: ► A rice de novo DNA methyltransferase OsDRM2 was cloned. ► In vitro methylation activity of OsDRM2 was characterized with Escherichia coli. ► Assays of OsDRM2 in vivo methylation were done with Saccharomyces cerevisiae. ► OsDRM2 methylation activity is not preferential to any type of cytosine context. ► The activity of OsDRM2 is independent of RdDM pathway. - Abstract: DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo and maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5′-CCGG-3′ containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92–9.12%, and 2.88–6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA

  13. De novo reconstruction of consensus master genomes of plant RNA and DNA viruses from siRNAs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In antiviral defense, plants produce massive quantities of 21-24 nucleotide siRNAs. Here we demonstrate that the complete genomes of DNA and RNA viruses and viroids can be reconstructed by deep sequencing and de novo assembly of viral/viroid siRNAs from experimentally- and naturally-infected plants....

  14. De novo DNA methyltransferase DNMT3b interacts with NEDD8-modified proteins.

    PubMed

    Shamay, Meir; Greenway, Melanie; Liao, Gangling; Ambinder, Richard F; Hayward, S Diane

    2010-11-19

    DNA methylation and histone modifications play an important role in transcription regulation. In cancer cells, many promoters become aberrantly methylated through the activity of the de novo DNA methyltransferases DNMT3a and DNMT3b and acquire repressive chromatin marks. NEDD8 is a ubiquitin-like protein modifier that is conjugated to target proteins, such as cullins, to regulate their activity, and cullin 4A (CUL4A) in its NEDD8-modified form is essential for repressive chromatin formation. We found that DNMT3b associates with NEDD8-modified proteins. Whereas DNMT3b interacts directly in vitro with NEDD8, conjugation of NEDD8 to target proteins enhances this interaction in vivo. DNMT3b immunoprecipitated two major bands of endogenously NEDDylated proteins at the size of NEDDylated cullins, and indeed DNMT3b interacted with CUL1, CUL2, CUL3, CUL4A, and CUL5. Moreover, DNMT3b preferentially immunoprecipitated the NEDDylated form of endogenous CUL4A. NEDD8 enhanced DNMT3b-dependent DNA methylation. Chromatin immunoprecipitation assays suggest that DNMT3b recruits CUL4A and NEDD8 to chromatin, whereas deletion of Dnmt3b reduces the association of CUL4A and NEDD8 at a repressed promoter in a cancer cell line.

  15. De Novo mRNA Synthesis Is Required for Both Consolidation and Reconsolidation of Fear Memories in the Amygdala

    ERIC Educational Resources Information Center

    Duvarci, Sevil; Nader, Karim; LeDoux, Joseph E.

    2008-01-01

    Memory consolidation is the process by which newly learned information is stabilized into long-term memory (LTM). Considerable evidence indicates that retrieval of a consolidated memory returns it to a labile state that requires it to be restabilized. Consolidation of new fear memories has been shown to require de novo RNA and protein synthesis in…

  16. The de novo synthesis of ubiquitin: identification of deubiquitinases acting on ubiquitin precursors

    PubMed Central

    Grou, Cláudia P.; Pinto, Manuel P.; Mendes, Andreia V.; Domingues, Pedro; Azevedo, Jorge E.

    2015-01-01

    Protein ubiquitination, a major post-translational modification in eukaryotes, requires an adequate pool of free ubiquitin. Cells maintain this pool by two pathways, both involving deubiquitinases (DUBs): recycling of ubiquitin from ubiquitin conjugates and processing of ubiquitin precursors synthesized de novo. Although many advances have been made in recent years regarding ubiquitin recycling, our knowledge on ubiquitin precursor processing is still limited, and questions such as when are these precursors processed and which DUBs are involved remain largely unanswered. Here we provide data suggesting that two of the four mammalian ubiquitin precursors, UBA52 and UBA80, are processed mostly post-translationally whereas the other two, UBB and UBC, probably undergo a combination of co- and post-translational processing. Using an unbiased biochemical approach we found that UCHL3, USP9X, USP7, USP5 and Otulin/Gumby/FAM105b are by far the most active DUBs acting on these precursors. The identification of these DUBs together with their properties suggests that each ubiquitin precursor can be processed in at least two different manners, explaining the robustness of the ubiquitin de novo synthesis pathway. PMID:26235645

  17. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells.

    PubMed Central

    Okano, M; Xie, S; Li, E

    1998-01-01

    We have shown previously that de novo methylation activities persist in mouse embryonic stem (ES) cells homozygous for a null mutation of Dnmt1 that encodes the major DNA cytosine methyltransferase. In this study, we have cloned a putative mammalian DNA methyltransferase gene, termed Dnmt2 , that is homologous to pmt1 of fission yeast. Different from pmt1 in which the catalytic Pro-Pro-Cys (PPC) motif is 'mutated' to Pro-Ser-Cys, Dnmt2 contains all the conserved methyltransferase motifs, thus likely encoding a functional cytosine methyltransferase. However, baculovirus-expressed Dnmt2 protein failed to methylate DNA in vitro . To investigate whether Dnmt2 functions as a DNA methyltransferase in vivo , we inactivated the Dnmt2 gene by targeted deletion of the putative catalytic PPC motif in ES cells. We showed that endogenous virus was fully methylated in Dnmt2 -deficient mutant ES cells. Furthermore, newly integrated retrovirus DNA was methylated de novo in infected mutant ES cells as efficiently as in wild-type cells. These results indicate that Dnmt2 is not essential for global de novo or maintenance methylation of DNA in ES cells. PMID:9592134

  18. Pseudomonas syringae infection triggers de novo synthesis of phytosphingosine from sphinganine in Arabidopsis thaliana.

    PubMed

    Peer, Markus; Stegmann, Martin; Mueller, Martin J; Waller, Frank

    2010-09-24

    Sphingolipids are important membrane components and also regulate cell proliferation and apoptosis. We detected a fast increase of the free sphingobase t18:0 (phytosphinganine) in Arabidopsis leaves after inoculation with an avirulent strain of the bacterial pathogen Pseudomonas syringae pathovar tomato, characterized by host cell death reactions. The induction of phytosphinganine was more transient in virulent interactions lacking cell death reactions, suggesting a positive role of t18:0 in the plants' response to pathogens, e.g. the hypersensitive response. In the mutant sphingobase hydroxylase 1 (sbh1-1), Pseudomonas induced elevated free d18:0 levels. As total t18:0 contents (after hydrolysis of ceramides) were not reduced in sbh1-1, the pathogen-triggered t18:0 increase most likely results from de novo synthesis from d18:0 which would require SBH1.

  19. Direct electrical detection of DNA synthesis

    PubMed Central

    Pourmand, Nader; Karhanek, Miloslav; Persson, Henrik H. J.; Webb, Chris D.; Lee, Thomas H.; Zahradníková, Alexandra; Davis, Ronald W.

    2006-01-01

    Rapid, sequence-specific DNA detection is essential for applications in medical diagnostics and genetic screening. Electrical biosensors that use immobilized nucleic acids are especially promising in these applications because of their potential for miniaturization and automation. Current DNA detection methods based on sequencing by synthesis rely on optical readouts; however, a direct electrical detection method for this technique is not available. We report here an approach for direct electrical detection of enzymatically catalyzed DNA synthesis by induced surface charge perturbation. We discovered that incorporation of a complementary deoxynucleotide (dNTP) into a self-primed single-stranded DNA attached to the surface of a gold electrode evokes an electrode surface charge perturbation. This event can be detected as a transient current by a voltage-clamp amplifier. Based on current understanding of polarizable interfaces, we propose that the electrode detects proton removal from the 3′-hydroxyl group of the DNA molecule during phosphodiester bond formation. PMID:16614066

  20. De-novo protein function prediction using DNA binding and RNA binding proteins as a test case

    PubMed Central

    Peled, Sapir; Leiderman, Olga; Charar, Rotem; Efroni, Gilat; Shav-Tal, Yaron; Ofran, Yanay

    2016-01-01

    Of the currently identified protein sequences, 99.6% have never been observed in the laboratory as proteins and their molecular function has not been established experimentally. Predicting the function of such proteins relies mostly on annotated homologs. However, this has resulted in some erroneous annotations, and many proteins have no annotated homologs. Here we propose a de-novo function prediction approach based on identifying biophysical features that underlie function. Using our approach, we discover DNA and RNA binding proteins that cannot be identified based on homology and validate these predictions experimentally. For example, FGF14, which belongs to a family of secreted growth factors was predicted to bind DNA. We verify this experimentally and also show that FGF14 is localized to the nucleus. Mutating the predicted binding site on FGF14 abrogated DNA binding. These results demonstrate the feasibility of automated de-novo function prediction based on identifying function-related biophysical features. PMID:27869118

  1. De-novo protein function prediction using DNA binding and RNA binding proteins as a test case.

    PubMed

    Peled, Sapir; Leiderman, Olga; Charar, Rotem; Efroni, Gilat; Shav-Tal, Yaron; Ofran, Yanay

    2016-11-21

    Of the currently identified protein sequences, 99.6% have never been observed in the laboratory as proteins and their molecular function has not been established experimentally. Predicting the function of such proteins relies mostly on annotated homologs. However, this has resulted in some erroneous annotations, and many proteins have no annotated homologs. Here we propose a de-novo function prediction approach based on identifying biophysical features that underlie function. Using our approach, we discover DNA and RNA binding proteins that cannot be identified based on homology and validate these predictions experimentally. For example, FGF14, which belongs to a family of secreted growth factors was predicted to bind DNA. We verify this experimentally and also show that FGF14 is localized to the nucleus. Mutating the predicted binding site on FGF14 abrogated DNA binding. These results demonstrate the feasibility of automated de-novo function prediction based on identifying function-related biophysical features.

  2. De-novo NAD+ synthesis regulates SIRT1-FOXO1 apoptotic pathway in response to NQO1 substrates in lung cancer cells

    PubMed Central

    Cheng, Xuefang; Li, Qingran; Liu, Fang; Ye, Hui; Zhao, Min; Wang, Hong; Wang, Guangji; Hao, Haiping

    2016-01-01

    Tryptophan metabolism is essential in diverse kinds of tumors via regulating tumor immunology. However, the direct role of tryptophan metabolism and its signaling pathway in cancer cells remain largely elusive. Here, we establish a mechanistic link from L-type amino acid transporter 1 (LAT1) mediated transport of tryptophan and the subsequent de-novo NAD+ synthesis to SIRT1-FOXO1 regulated apoptotic signaling in A549 cells in response to NQO1 activation. In response to NQO1 activation, SIRT1 is repressed leading to the increased cellular accumulation of acetylated FOXO1 that transcriptionally activates apoptotic signaling. Decreased uptake of tryptophan due to the downregulation of LAT1 coordinates with PARP-1 hyperactivation to induce rapid depletion of NAD+ pool. Particularly, the LAT1-NAD+-SIRT1 signaling is activated in tumor tissues of patients with non-small cell lung cancer. Because NQO1 activation is characterized with oxidative challenge induced DNA damage, these results suggest that LAT1 and de-novo NAD+ synthesis in NSCLC cells may play essential roles in sensing excessive oxidative stress. PMID:27566573

  3. Effects of Asterias amurensis-derived Sphingoid Bases on the de novo Ceramide Synthesis in Cultured Normal Human Epidermal Keratinocytes.

    PubMed

    Mikami, Daisuke; Sakai, Shota; Sasaki, Shigefumi; Igarashi, Yasuyuki

    2016-08-01

    Asterias amurensis starfish provide several bioactive species in addition to being fishery waste. Glucosyl ceramides (GlcCers) were extracted from the viscera of these starfish and were isolated by silica gel column chromatography. Degraded GlcCers generated A. amurensis sphingoid bases (ASBs) that mainly consisted of the triene-type bases d18:3 and 9-methyl-d18:3. The effect of these bases on ceramide synthesis and content were analyzed using normal human epidermal keratinocytes (NHEKs). The bases significantly enhanced the de novo ceramide synthesis and gene expression in NHEKs for proteins, such as serine-palmitoyltransferase and ceramide synthase. Total ceramide, GlcCer, and sphingomyelin contents increased dramatically upon ASB treatment. In particular, GlcCer bearing very-long-chain fatty acids (≥C28) exhibited a significant content increase. These ASB-induced enhancements on de novo ceramide synthesis were only observed in undifferentiated NHEKs. This stimulation of the de novo sphingolipid synthesis may improve skin barrier functions.

  4. De novo synthesis and properties of analogues of the self-assembling chlorosomal bacteriochlorophylls

    SciTech Connect

    Mass, Olga; Pandithavidana, Dinesh R.; Ptaszek, Marcin; Santiago, Koraliz; Springer, Joseph W.; Jiao, Jieying; Tang, Qun; Kirmaier, Christine; Bocian, David F.; Holten, Dewey; Lindsey, Jonathan S.

    2011-01-01

    Natural photosynthetic pigments bacteriochlorophyllsc, d and e in green bacteria undergo self-assembly to create an organized antenna system known as the chlorosome, which collects photons and funnels the resulting excitation energy toward the reaction centers. Mimicry of chlorosome function is a central problem in supramolecular chemistry and artificial photosynthesis, and may have relevance for the design of photosynthesis-inspired solar cells. The main challenge in preparing artificial chlorosomes remains the synthesis of the appropriate pigment (chlorin) equipped with a set of functional groups suitable to direct the assembly and assure efficient energy transfer. Prior approaches have entailed derivatization of porphyrins or semisynthesis beginning with chlorophylls. This paper reports a third approach, the de novo synthesis of macrocycles that contain the same hydrocarbon skeleton as chlorosomal bacteriochlorophylls. The synthesis here of Zn(II) 3-(1-hydroxyethyl)-10-aryl-13¹-oxophorbines (the aryl group consists of phenyl, mesityl, or pentafluorophenyl) entails selective bromination of a 3,13-diacetyl-10-arylchlorin, palladium-catalyzed 13¹-oxophorbine formation, and selective reduction of the 3-acetyl group using BH₃·tBuNH₂. Each macrocycle contains a geminal dimethyl group in the pyrroline ring to provide stability toward adventitious dehydrogenation. A Zn(II) 7-(1-hydroxyethyl)-10-phenyl-17-oxochlorin also has been prepared. Altogether, 30 new hydroporphyrins were synthesized. The UV-Vis absorption spectra of the new chlorosomal bacteriochlorophyll mimics reveal a bathochromic shift of [similar]1800 cm-1 of the Qy band in nonpolar solvent, indicating extensive assembly in solution. The Zn(II) 3-(1-hydroxyethyl)-10-aryl-13¹-oxophorbines differ in the propensity to form assemblies based on the 10-substituent in the following order: mesityl

  5. Bulk De Novo Mitogenome Assembly from Pooled Total DNA Elucidates the Phylogeny of Weevils (Coleoptera: Curculionoidea)

    PubMed Central

    Gillett, Conrad P.D.T.; Crampton-Platt, Alex; Timmermans, Martijn J.T.N.; Jordal, Bjarte H.; Emerson, Brent C.; Vogler, Alfried P.

    2014-01-01

    Complete mitochondrial genomes have been shown to be reliable markers for phylogeny reconstruction among diverse animal groups. However, the relative difficulty and high cost associated with obtaining de novo full mitogenomes have frequently led to conspicuously low taxon sampling in ensuing studies. Here, we report the successful use of an economical and accessible method for assembling complete or near-complete mitogenomes through shot-gun next-generation sequencing of a single library made from pooled total DNA extracts of numerous target species. To avoid the use of separate indexed libraries for each specimen, and an associated increase in cost, we incorporate standard polymerase chain reaction-based “bait” sequences to identify the assembled mitogenomes. The method was applied to study the higher level phylogenetic relationships in the weevils (Coleoptera: Curculionoidea), producing 92 newly assembled mitogenomes obtained in a single Illumina MiSeq run. The analysis supported a separate origin of wood-boring behavior by the subfamilies Scolytinae, Platypodinae, and Cossoninae. This finding contradicts morphological hypotheses proposing a close relationship between the first two of these but is congruent with previous molecular studies, reinforcing the utility of mitogenomes in phylogeny reconstruction. Our methodology provides a technically simple procedure for generating densely sampled trees from whole mitogenomes and is widely applicable to groups of animals for which bait sequences are the only required prior genome knowledge. PMID:24803639

  6. Differential effect of aphidicolin on adenovirus DNA synthesis and cellular DNA synthesis.

    PubMed

    Kwant, M M; van der Vliet, P C

    1980-09-11

    There is strong evidence for a participation of DNA polymerase gamma in the replication of adenovirus (Ad) DNA. To study a possible additional role of DNA polymerase alpha we measured the effect of aphidicolin on viral DNA replication. In intact cells, aphidicolin inhibits Ad DNA synthesis weakly. The drug concentration required for 50% inhibition of Ad DNA replication was 300-400 fold higher than for a similar effect on cellular DNA synthesis. Such a differential inhibition was also observed in AGMK cells doubly infected with SV40 and the simian adenovirus SA7. No evidence was found for modification of aphidicolin in infected cells or for a change in aphidicolin sensitivity of DNA polymerase alpha after infection. The extent of inhibition of purified DNA polymerase alpha was dependent upon the dCTP concentration. The same situation was observed when DNA synthesis was studied in isolated nuclei from uninfected cells. However, in nuclei from Ad infected cells no effect of dCTP on aphidicolin sensitivity was found. These results were taken as evidence that DNA polymerase alpha does not participate in the replication of adenovirus DNA.

  7. Synthesis and Characterization of Metal-Organic Frameworks (MOFs) That Are Difficult to Access De Novo

    NASA Astrophysics Data System (ADS)

    Karagiaridi, Olga

    Metal-organic frameworks (MOFs) are a class of intriguing hybrid materials, comprised of metal-based nodes joined by organic linkers into a crystalline, porous, three-dimensional lattice. Their signature properties (well-defined surfaces, tailorability and ultra-high porosity) render them promising candidates for many applications, including, but not limited to, gas storage, gas separation, catalysis and sensing. One of the greatest challenges associated with MOF synthesis lies in the fact that obtaining a desired MOF structure that is tailored to perform a specific application is often not trivial. Traditional synthetic pathways termed "de novo synthesis" (typically one-pot reactions between the MOF structural building blocks under solvothermal conditions) often give rise to side products that do not possess the desired structure. To circumvent this problem, we have studied in depth two powerful MOF synthetic techniques -- solvent-assisted linker exchange (SALE) and transmetalation. These are heterogeneous reactions of parent MOF crystals with concentrated solutions of organic linkers and inorganic metal salts, respectively, that lead to the replacement of the linkers or metal nodes within the parent MOFs by the desired components, while the overall framework topology is preserved. The projects described in this dissertation have aimed to apply these techniques to transform simple (unfunctionalized) and easy to synthesize representative materials from various MOF systems to structurally and functionally interesting daughter products. Examples include synthesis of MOFs that are energetically "unfavorable", extension of MOF cages by longer linker incorporation, functionalization of MOF pores and endowment of MOFs with permanent and persistent porosity. Through these projects, we have been able to formulate a set of rules that can be applied to predict the successful outcome of SALE. Since the allure of MOFs lies in their applications, expanding the range of

  8. Salicylic acid treatment of pea seeds induces its de novo synthesis.

    PubMed

    Szalai, Gabriella; Horgosi, Szabina; Soós, Vilmos; Majláth, Imre; Balázs, Ervin; Janda, Tibor

    2011-02-15

    Salicylic acid (SA), which is known as a signal molecule in the induction of defense mechanisms in plants, could be a promising compound for the reduction of stress sensitivity. The aim of the present work was to investigate the distribution of SA in young pea (Pisum sativum L.) seedlings grown from seeds soaked in (3)H-labeled SA solution before sowing, and to study the physiological changes induced by this seed treatment. The most pronounced changes in SA levels occurred in the epicotyl and the seeds. Radioactivity was detected only in the bound form of SA, the majority of which was localized in the seeds, and only a very low level of radioactivity was detected in the epicotyl. SA pre-treatment increased the expression of the chorismate synthase and isochorismate synthase genes in the epicotyl. Pre-soaking the seeds in SA increased the activities of some antioxidant enzymes, namely ascorbate peroxidase (EC 1.11.1.11) and guaiacol peroxidase (EC 1.11.1.7) and the level of ortho-hydroxycinnamic acid, but decreased the level of polyamines. These results suggest that the increased level of free and bound SA detected in plants growing from seeds soaked in SA solution before sowing is the product of de novo synthesis, rather than having been taken up and mobilized by the plants.

  9. The Drosophila visual cycle and de novo chromophore synthesis depends on rdhB

    PubMed Central

    Wang, Xiaoyue; Wang, Tao; Ni, Jinfei D.; von Lintig, Johannes; Montell, Craig

    2012-01-01

    In mammalian rods and cones, light activation of the visual pigments leads to release of the chromophore, which is then recycled through a multistep enzymatic pathway, referred to as the visual or retinoid cycle. In invertebrates such as Drosophila, a visual cycle was thought not to exist since the rhodopsins are bistable photopigments, which consist of a chromophore that normally stays bound to the opsin following light activation. Nevertheless, we recently described a visual cycle in Drosophila that serves to recycle the free chromophore that is released following light induced internalization of rhodopsin, and a retinol dehydrogenase (RDH) that catalyzes the first step of the pathway. Here, we describe the identification of a putative RDH, referred to as RDHB (Retinal Dehydrogenase B), which functions in the visual cycle and in de novo synthesis of the chromophore. RDHB was expressed in the retinal pigment cells (RPCs), where it promoted the final enzymatic reaction necessary for the production of the chromophore. Mutation of rdhB caused moderate light-dependent degeneration of the phototransducing compartment of the photoreceptor cells— the rhabdomeres, reminiscent of the effects of mutations in some human RDH genes. Since the first and last steps in the visual cycle take place in the RPCs, it appears that these cells are the sites of action for this entire enzymatic pathway in Drosophila. PMID:22399771

  10. De Novo Reconstruction of Consensus Master Genomes of Plant RNA and DNA Viruses from siRNAs

    PubMed Central

    Seguin, Jonathan; Rajeswaran, Rajendran; Malpica-López, Nachelli; Martin, Robert R.; Kasschau, Kristin; Dolja, Valerian V.; Otten, Patricia; Farinelli, Laurent; Pooggin, Mikhail M.

    2014-01-01

    Virus-infected plants accumulate abundant, 21–24 nucleotide viral siRNAs which are generated by the evolutionary conserved RNA interference (RNAi) machinery that regulates gene expression and defends against invasive nucleic acids. Here we show that, similar to RNA viruses, the entire genome sequences of DNA viruses are densely covered with siRNAs in both sense and antisense orientations. This implies pervasive transcription of both coding and non-coding viral DNA in the nucleus, which generates double-stranded RNA precursors of viral siRNAs. Consistent with our finding and hypothesis, we demonstrate that the complete genomes of DNA viruses from Caulimoviridae and Geminiviridae families can be reconstructed by deep sequencing and de novo assembly of viral siRNAs using bioinformatics tools. Furthermore, we prove that this ‘siRNA omics’ approach can be used for reliable identification of the consensus master genome and its microvariants in viral quasispecies. Finally, we utilized this approach to reconstruct an emerging DNA virus and two viroids associated with economically-important red blotch disease of grapevine, and to rapidly generate a biologically-active clone representing the wild type master genome of Oilseed rape mosaic virus. Our findings show that deep siRNA sequencing allows for de novo reconstruction of any DNA or RNA virus genome and its microvariants, making it suitable for universal characterization of evolving viral quasispecies as well as for studying the mechanisms of siRNA biogenesis and RNAi-based antiviral defense. PMID:24523907

  11. Second generation noninvasive fetal genome analysis reveals de novo mutations, single-base parental inheritance, and preferred DNA ends

    PubMed Central

    Chan, K. C. Allen; Jiang, Peiyong; Sun, Kun; Cheng, Yvonne K. Y.; Tong, Yu K.; Cheng, Suk Hang; Wong, Ada I. C.; Hudecova, Irena; Leung, Tak Y.; Chiu, Rossa W. K.; Lo, Yuk Ming Dennis

    2016-01-01

    Plasma DNA obtained from a pregnant woman was sequenced to a depth of 270× haploid genome coverage. Comparing the maternal plasma DNA sequencing data with the parental genomic DNA data and using a series of bioinformatics filters, fetal de novo mutations were detected at a sensitivity of 85% and a positive predictive value of 74%. These results represent a 169-fold improvement in the positive predictive value over previous attempts. Improvements in the interpretation of the sequence information of every base position in the genome allowed us to interrogate the maternal inheritance of the fetus for 618,271 of 656,676 (94.2%) heterozygous SNPs within the maternal genome. The fetal genotype at each of these sites was deduced individually, unlike previously, where the inheritance was determined for a collection of sites within a haplotype. These results represent a 90-fold enhancement in the resolution in determining the fetus’s maternal inheritance. Selected genomic locations were more likely to be found at the ends of plasma DNA molecules. We found that a subset of such preferred ends exhibited selectivity for fetal- or maternal-derived DNA in maternal plasma. The ratio of the number of maternal plasma DNA molecules with fetal preferred ends to those with maternal preferred ends showed a correlation with the fetal DNA fraction. Finally, this second generation approach for noninvasive fetal whole-genome analysis was validated in a pregnancy diagnosed with cardiofaciocutaneous syndrome with maternal plasma DNA sequenced to 195× coverage. The causative de novo BRAF mutation was successfully detected through the maternal plasma DNA analysis. PMID:27799561

  12. Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting.

    PubMed

    Chung, Woo-Hyun; Zhu, Zhu; Papusha, Alma; Malkova, Anna; Ira, Grzegorz

    2010-05-13

    The formation of single-stranded DNA (ssDNA) at double-strand break (DSB) ends is essential in repair by homologous recombination and is mediated by DNA helicases and nucleases. Here we estimated the length of ssDNA generated during DSB repair and analyzed the consequences of elimination of processive resection pathways mediated by Sgs1 helicase and Exo1 nuclease on DSB repair fidelity. In wild-type cells during allelic gene conversion, an average of 2-4 kb of ssDNA accumulates at each side of the break. Longer ssDNA is formed during ectopic recombination or break-induced replication (BIR), reflecting much slower repair kinetics. This relatively extensive resection may help determine sequences involved in homology search and prevent recombination within short DNA repeats next to the break. In sgs1Delta exo1Delta mutants that form only very short ssDNA, allelic gene conversion decreases 5-fold and DSBs are repaired by BIR or de novo telomere formation resulting in loss of heterozygosity. The absence of the telomerase inhibitor, PIF1, increases de novo telomere pathway usage to about 50%. Accumulation of Cdc13, a protein recruiting telomerase, at the break site increases in sgs1Delta exo1Delta, and the requirement of the Ku complex for new telomere formation is partially bypassed. In contrast to this decreased and alternative DSB repair, the efficiency and accuracy of gene targeting increases dramatically in sgs1Delta exo1Delta cells, suggesting that transformed DNA is very stable in these mutants. Altogether these data establish a new role for processive resection in the fidelity of DSB repair.

  13. Second generation noninvasive fetal genome analysis reveals de novo mutations, single-base parental inheritance, and preferred DNA ends.

    PubMed

    Chan, K C Allen; Jiang, Peiyong; Sun, Kun; Cheng, Yvonne K Y; Tong, Yu K; Cheng, Suk Hang; Wong, Ada I C; Hudecova, Irena; Leung, Tak Y; Chiu, Rossa W K; Lo, Yuk Ming Dennis

    2016-12-13

    Plasma DNA obtained from a pregnant woman was sequenced to a depth of 270× haploid genome coverage. Comparing the maternal plasma DNA sequencing data with the parental genomic DNA data and using a series of bioinformatics filters, fetal de novo mutations were detected at a sensitivity of 85% and a positive predictive value of 74%. These results represent a 169-fold improvement in the positive predictive value over previous attempts. Improvements in the interpretation of the sequence information of every base position in the genome allowed us to interrogate the maternal inheritance of the fetus for 618,271 of 656,676 (94.2%) heterozygous SNPs within the maternal genome. The fetal genotype at each of these sites was deduced individually, unlike previously, where the inheritance was determined for a collection of sites within a haplotype. These results represent a 90-fold enhancement in the resolution in determining the fetus's maternal inheritance. Selected genomic locations were more likely to be found at the ends of plasma DNA molecules. We found that a subset of such preferred ends exhibited selectivity for fetal- or maternal-derived DNA in maternal plasma. The ratio of the number of maternal plasma DNA molecules with fetal preferred ends to those with maternal preferred ends showed a correlation with the fetal DNA fraction. Finally, this second generation approach for noninvasive fetal whole-genome analysis was validated in a pregnancy diagnosed with cardiofaciocutaneous syndrome with maternal plasma DNA sequenced to 195× coverage. The causative de novo BRAF mutation was successfully detected through the maternal plasma DNA analysis.

  14. Thymidine analogues for tracking DNA synthesis.

    PubMed

    Cavanagh, Brenton L; Walker, Tom; Norazit, Anwar; Meedeniya, Adrian C B

    2011-09-15

    Replicating cells undergo DNA synthesis in the highly regulated, S-phase of the cell cycle. Analogues of the pyrimidine deoxynucleoside thymidine may be inserted into replicating DNA, effectively tagging dividing cells allowing their characterisation. Tritiated thymidine, targeted using autoradiography was technically demanding and superseded by 5-bromo-2-deoxyuridine (BrdU) and related halogenated analogues, detected using antibodies. Their detection required the denaturation of DNA, often constraining the outcome of investigations. Despite these limitations BrdU alone has been used to target newly synthesised DNA in over 20,000 reviewed biomedical studies. A recent breakthrough in "tagging DNA synthesis" is the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU). The alkyne group in EdU is readily detected using a fluorescent azide probe and copper catalysis using 'Huisgen's reaction' (1,3-dipolar cycloaddition or 'click chemistry'). This rapid, two-step biolabelling approach allows the tagging and imaging of DNA within cells whilst preserving the structural and molecular integrity of the cells. The bio-orthogonal detection of EdU allows its application in more experimental assays than previously possible with other "unnatural bases". These include physiological, anatomical and molecular biological experimentation in multiple fields including, stem cell research, cancer biology, and parasitology. The full potential of EdU and related molecules in biomedical research remains to be explored.

  15. Cancer Cells Differentially Activate and Thrive on De Novo Lipid Synthesis Pathways in a Low-Lipid Environment

    PubMed Central

    Daniëls, Veerle W.; Smans, Karine; Royaux, Ines; Chypre, Melanie

    2014-01-01

    Increased lipogenesis is a hallmark of a wide variety of cancers and is under intense investigation as potential antineoplastic target. Although brisk lipogenesis is observed in the presence of exogenous lipids, evidence is mounting that these lipids may adversely affect the efficacy of inhibitors of lipogenic pathways. Therefore, to fully exploit the therapeutic potential of lipid synthesis inhibitors, a better understanding of the interrelationship between de novo lipid synthesis and exogenous lipids and their respective role in cancer cell proliferation and therapeutic response to lipogenesis inhibitors is of critical importance. Here, we show that the proliferation of various cancer cell lines (PC3M, HepG2, HOP62 and T24) is attenuated when cultured in lipid-reduced conditions in a cell line-dependent manner, with PC3M being the least affected. Interestingly, all cell lines - lipogenic (PC3M, HepG2, HOP62) as well as non-lipogenic (T24) - raised their lipogenic activity in these conditions, albeit to a different degree. Cells that attained the highest lipogenic activity under these conditions were best able to cope with lipid reduction in term of proliferative capacity. Supplementation of the medium with very low density lipoproteins, free fatty acids and cholesterol reversed this activation, indicating that the mere lack of lipids is sufficient to activate de novo lipogenesis in cancer cells. Consequently, cancer cells grown in lipid-reduced conditions became more dependent on de novo lipid synthesis pathways and were more sensitive to inhibitors of lipogenic pathways, like Soraphen A and Simvastatin. Collectively, these data indicate that limitation of access to exogenous lipids, as may occur in intact tumors, activates de novo lipogenesis is cancer cells, helps them to thrive under these conditions and makes them more vulnerable to lipogenesis inhibitors. These observations have important implications for the design of new antineoplastic strategies targeting

  16. Chemically-enzymatic synthesis of photosensitive DNA.

    PubMed

    Westphal, Kinga; Zdrowowicz, Magdalena; Zylicz-Stachula, Agnieszka; Rak, Janusz

    2017-02-01

    The sensitizing propensity of radio-/photosensitizing nucleoside depends on DNA sequence surrounding a sensitizer. Therefore, in order to compare sensitizers with regard to their ability to induce a DNA damage one has to study the sequence dependence of damage yield. However, chemical synthesis of oligonucleotides labeled with sensitizing nucleosides is hindered due to the fact that a limited number of such nucleoside phosphoramidites are accessible. Here, we report on a chemically-enzymatic method, employing a DNA polymerase and ligase, that enables a modified nucleoside, in the form of its 5'-triphosphate, to be incorporated into DNA fragment in a pre-determined site. Using such a protocol two double-stranded DNA fragments - a long one, 75 base pairs (bp), and a short one, 30bp in length - were pin-point labeled with 5-bromodeoxyuridine. Four DNA polymerases together with DHPLC for the inspection of reaction progress were used to optimize the process under consideration. As an ultimate test showing that the product possessing an assumed nucleotide sequence was actually obtained, we irradiated the synthesized oligonucleotide with UVB photons and analyzed its photoreactivity with the LC-MS method. Our results prove that a general approach enabling precise labeling of DNA with any nucleoside modification processed by DNA polymerase and ligase has been worked out.

  17. Magnetic control of the DNA synthesis

    NASA Astrophysics Data System (ADS)

    Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.

    2013-10-01

    By using polymerases β loaded with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ magnetic isotope effect was detected: 25Mg2+ ions with magnetic nuclei 25Mg suppress enzymatic activity by 2-3 times with respect to that of polymerases β loaded by 24Mg2+ and 26Mg2+ ions. No difference in enzymatic activity of polymerases β with 24Mg2+ and 26Mg2+ ions exists. The rate of DNA synthesis strongly depends on the magnetic field. The polymerase chain reaction is also suppressed by 25Mg2+ ions with respect to the ions with nonmagnetic nuclei. Magnetic control of the DNA synthesis may be used for medical purposes.

  18. De novo synthesis vs. sequestration: negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies.

    PubMed

    Engler-Chaouat, Helene S; Gilbert, Lawrence E

    2007-01-01

    Larvae of Heliconius butterflies (Nymphalidae: Heliconiinae) feed exclusively on cyanogenic leaves of Passiflora (passion vine). Most Heliconius manufacture cyanogenic glycosides (cyanogens) and some species sequester cyanogens from host plants. We compare ability to sequester simple monoglycoside cyclopentenyl (SMC) cyanogens and manufacture aliphatic cyanogens in 12 Heliconius species, including larvae that are specialized (single host species) and generalized (many host species). All butterflies tested higher for cyanide concentrations when reared on plants that larvae can sequester from (SMC plants) than when reared on plants that larvae do not sequester from (non-SMC plants). Specialists in the sara-sapho clade sequestered SMC cyanogens from specific host plants at seven times that of Passiflora generalists fed the same hosts. In contrast, sara-sapho clade species reared on non-SMC plants had significantly lower cyanide concentrations from de novo synthesis than generalists fed the same plants. Furthermore, cyanogen analyses indicated that Heliconius sara butterflies reared on an SMC host had a greater proportion of sequestered SMC cyanogens (95.0%) than de novo-synthesized aliphatic cyanogens (5.0%). Thus, sequestration and de novo synthesis are negatively correlated traits. Results suggest that losing the ability to synthesize cyanogens has restricted sara-sapho clade species to specific hosts containing SMC cyanogens and explains dietary restriction in this clade.

  19. De Novo Initiation of RNA Synthesis by the RNA-Dependent RNA Polymerase (NS5B) of Hepatitis C Virus

    PubMed Central

    Luo, Guangxiang; Hamatake, Robert K.; Mathis, Danielle M.; Racela, Jason; Rigat, Karen L.; Lemm, Julie; Colonno, Richard J.

    2000-01-01

    Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn2+ than in the presence of Mg2+. When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a “copy-back” mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3′ end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (≥50 μM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo. PMID:10623748

  20. An autoradiographic demonstration of nuclear DNA replication by DNA polymerase alpha and of mitochondrial DNA synthesis by DNA polymerase gamma.

    PubMed Central

    Geuskens, M; Hardt, N; Pedrali-Noy, G; Spadari, S

    1981-01-01

    The incorporation of thymidine into the DNA of eukaryotic cells is markedly depressed, but not completely inhibited, by aphidicolin, a highly specific inhibitor of DNA polymerase alpha. An electron microscope autoradiographic analysis of the synthesis of nuclear and mitochondrial DNA in vivo in Concanavalin A stimulated rabbit spleen lymphocytes and in Hamster cell cultures, in the absence and in the presence of aphidicolin, revealed that aphidicolin inhibits the nuclear but not the mitochondrial DNA replication. We therefore conclude that DNA polymerase alpha performs the synchronous bidirectional replication of nuclear DNA and that DNA polymerase gamma, the only DNA polymerase present in the mitochondria, performs the "strand displacement" DNA synthesis of these organelles. Images PMID:6262734

  1. De novo evolution of satellite DNA on the rye B chromosome.

    PubMed Central

    Langdon, T; Seago, C; Jones, R N; Ougham, H; Thomas, H; Forster, J W; Jenkins, G

    2000-01-01

    The most distinctive region of the rye B chromosome is a subtelomeric domain that contains an exceptional concentration of B-chromosome-specific sequences. At metaphase this domain appears to be the physical counterpart of the subtelomeric heterochromatic regions present on standard rye chromosomes, but its conformation at interphase is less condensed. In this report we show that the two sequence families that have been previously found to make up the bulk of the domain have been assembled from fragments of a variety of sequence elements, giving rise to their ostensibly foreign origin. A single mechanism, probably based on synthesis-dependent strand annealing (SDSA), is responsible for their assembly. We provide evidence for sequential evolution of one family on the B chromosome itself. The extent of these rearrangements and the complexity of the higher-order organization of the B-chromosome-specific families indicate that instability is a property of the domain itself, rather than of any single sequence. Indirect evidence suggests that particular fragments may have been selected to confer different properties on the domain and that rearrangements are frequently selected for their effect on DNA structure. The current organization appears to represent a transient stage in the evolution of a conventional heterochromatic region from complex sequences. PMID:10655237

  2. Chromatin inactivation precedes de novo dna methylation during the progressive epigenetic silencing of the rassf1a promoter

    SciTech Connect

    Strunnikova Maria; Schagdarsurengin, Undraga; Kehlen, Astrid; Garbe, James C.; Stampfer, Martha R.; Dammann, Reinhard

    2005-02-23

    Epigenetic inactivation of the RASSF1A tumor suppressor by CpG island methylation was frequently detected in cancer. However, the mechanisms of this aberrant DNA methylation are unknown. In the RASSF1A promoter, we characterized four Sp1 sites, which are frequently methylated in cancer. We examined the functional relationship between DNA methylation, histone modification, Sp1 binding, and RASSF1A expression in proliferating human mammary epithelial cells. With increasing passages, the transcription of RASSF1A was dramatically silenced. This inactivation was associated with deacetylation and lysine 9 trimethylation of histone H3 and an impaired binding of Sp1 at the RASSF1A promoter. In mammary epithelial cells that had overcome a stress-associated senescence barrier, a spreading of DNA methylation in the CpG island promoter was observed. When the RASSF1A-silenced cells were treated with inhibitors of DNA methyltransferase and histone deacetylase, binding of Sp1 and expression of RASSF1 A reoccurred. In summary, we observed that histone H3 deacetylation and H3 lysine 9 trimethylation occur in the same time window as gene inactivation and precede DNA methylation. Our data suggest that in epithelial cells, histone inactivation may trigger de novo DNA methylation of the RASSF1A promoter and this system may serve as a model for CpG island inactivation of tumor suppressor genes.

  3. DNA Compatible Multistep Synthesis and Applications to DNA Encoded Libraries.

    PubMed

    Satz, Alexander Lee; Cai, Jianping; Chen, Yi; Goodnow, Robert; Gruber, Felix; Kowalczyk, Agnieszka; Petersen, Ann; Naderi-Oboodi, Goli; Orzechowski, Lucja; Strebel, Quentin

    2015-08-19

    Complex mixtures of DNA encoded small molecules may be readily interrogated via high-throughput sequencing. These DNA encoded libraries (DELs) are commonly used to discover molecules that interact with pharmaceutically relevant proteins. The chemical diversity displayed by the library is key to successful discovery of potent, novel, and drug-like chemical matter. The small molecule moieties of DELs are generally synthesized though a multistep process, and each chemical step is accomplished while it is simultaneously attached to an encoding DNA oligomer. Hence, library chemical diversity is often limited to DNA compatible synthetic reactions. Herein, protocols for 24 reactions are provided that have been optimized for high-throughput production of DELs. These protocols detail the multistep synthesis of benzimidazoles, imidazolidinones, quinazolinones, isoindolinones, thiazoles, and imidazopyridines. Additionally, protocols are provided for a diverse range of useful chemical reactions including BOC deprotection (under pH neutral conditions), carbamylation, and Sonogashira coupling. Last, step-by-step protocols for synthesizing functionalized DELs from trichloronitropyrimidine and trichloropyrimidine scaffolds are detailed.

  4. The mur4 mutant of arabidopsis is partially defective in the de novo synthesis of uridine diphospho L-arabinose

    SciTech Connect

    Burget, E.G.; Reiter, W.D.

    1999-10-01

    To obtain information on the synthesis and function of arabinosylated glycans, the mur4 mutant of arabidopsis was characterized. This mutation leads to a 50% reduction in the monosaccharide L-arabinose in most organs and affects arabinose-containing pectic cell wall polysaccharides and arabinogalactan proteins. Feeding L-arabinose to mur4 plants restores the cell wall composition to wild-type levels, suggesting a partial defect in the de novo synthesis of UDP-L-arabinose, the activated sugar used by arabinosyltransferases. The defect was traced to the conversion of UDP-D-xylose to UDP-L-arabinose in the microsome fraction of leaf material, indicating that mur4 plants are defective in a membrane-bound UDP-D-xylose 4-epimerase.

  5. Neurotensin enhances estradiol induced DNA synthesis in immature rat uterus

    SciTech Connect

    Mistry, A.; Vijayan, E.

    1985-05-27

    Systemic administration of Neurotensin, a tridecapeptide, in immature rats treated with estradiol benzoate significantly enhances uterine DNA synthesis as reflected by the incorporation of /sup 3/H-thymidine. The peptide may have a direct action on the uterus. Substance P, a related peptide, had no effect on uterine DNA synthesis. 18 references, 4 tables.

  6. ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation.

    PubMed

    Moarefi, Amir H; Chédin, Frédéric

    2011-06-24

    The DNMT3B de novo DNA methyltransferase (DNMT) plays a major role in establishing DNA methylation patterns in early mammalian development, but its catalytic mechanism remains poorly characterized. Here, we provide a comprehensive biochemical analysis of human DNMT3B function through the characterization of a series of site-directed DNMT3B variants associated with immunodeficiency, centromere instability, and facial anomalies (ICF) syndrome. Our data reveal several novel and important aspects of DNMT3B function. First, DNMT3B, unlike DNMT3A, requires a DNA cofactor in order to stably bind to S-adenosyl-l-methionine (SAM), suggesting that it proceeds according to an ordered catalytic scheme. Second, ICF mutations cause a broad spectrum of biochemical defects in DNMT3B function, including defects in homo-oligomerization, SAM binding, SAM utilization, and DNA binding. Third, all tested ICF mutations, including the A766P and R840Q variants, result in altered catalytic properties without interfering with DNMT3L-mediated stimulation; this indicates that DNMT3L is not involved in the pathogenesis of ICF syndrome. Finally, our study reveals a novel level of coupling between substrate binding, oligomerization, and catalysis that is likely conserved within the DNMT3 family of enzymes.

  7. Macrophage-specific de Novo Synthesis of Ceramide Is Dispensable for Inflammasome-driven Inflammation and Insulin Resistance in Obesity*

    PubMed Central

    Camell, Christina D.; Nguyen, Kim Y.; Jurczak, Michael J.; Christian, Brooke E.; Shulman, Gerald I.; Shadel, Gerald S.; Dixit, Vishwa Deep

    2015-01-01

    Dietary lipid overload and calorie excess during obesity is a low grade chronic inflammatory state with diminished ability to appropriately metabolize glucose or lipids. Macrophages are critical in maintaining adipose tissue homeostasis, in part by regulating lipid metabolism, energy homeostasis, and tissue remodeling. During high fat diet-induced obesity, macrophages are activated by lipid derived “danger signals” such as ceramides and palmitate and promote the adipose tissue inflammation in an Nlrp3 inflammasome-dependent manner. Given that the metabolic fate of fatty acids in macrophages is not entirely elucidated, we have hypothesized that de novo synthesis of ceramide, through the rate-limiting enzyme serine palmitoyltransferase long chain (Sptlc)-2, is required for saturated fatty acid-driven Nlrp3 inflammasome activation in macrophages. Here we report that mitochondrial targeted overexpression of catalase, which is established to mitigate oxidative stress, controls ceramide-induced Nlrp3 inflammasome activation but does not affect the ATP-mediated caspase-1 cleavage. Surprisingly, myeloid cell-specific deletion of Sptlc2 is not required for palmitate-driven Nlrp3 inflammasome activation. Furthermore, the ablation of Sptlc2 in macrophages did not impact macrophage polarization or obesity-induced adipose tissue leukocytosis. Consistent with these data, investigation of insulin resistance using hyperinsulinemic-euglycemic clamps revealed no significant differences in obese mice lacking ceramide de novo synthesis machinery in macrophages. These data suggest that alternate metabolic pathways control fatty acid-derived ceramide synthesis in macrophage and the Nlrp3 inflammasome activation in obesity. PMID:26438821

  8. Restriction site associated DNA (RAD) for de novo sequencing and marker discovery in sugarcane borer, Diatraea saccharalis Fab. (Lepidoptera: Crambidae).

    PubMed

    Pavinato, V A C; Margarido, G R A; Wijeratne, A J; Wijeratne, S; Meulia, T; Souza, A P; Michel, A P; Zucchi, M I

    2016-08-30

    We present the development of a genomic library using RADseq (restriction site associated DNA sequencing) protocol for marker discovery that can be applied on evolutionary studies of the sugarcane borer Diatraea saccharalis, an important South American insect pest. A RADtag protocol combined with Illumina paired-end sequencing allowed de novo discovery of 12 811 SNPs and a high-quality assembly of 122.8M paired-end reads from six individuals, representing 40 Gb of sequencing data. Approximately 1.7 Mb of the sugarcane borer genome distributed over 5289 minicontigs were obtained upon assembly of second reads from first reads RADtag loci where at least one SNP was discovered and genotyped. Minicontig lengths ranged from 200 to 611 bp and were used for functional annotation and microsatellite discovery. These markers will be used in future studies to understand gene flow and adaptation to host plants and control tactics.

  9. Short-term magnesium deficiency upregulates sphingomyelin synthase and p53 in cardiovascular tissues and cells: relevance to the de novo synthesis of ceramide.

    PubMed

    Altura, Burton M; Shah, Nilank C; Li, Zhiqiang; Jiang, Xian-Cheng; Zhang, Aimin; Li, Wenyan; Zheng, Tao; Perez-Albela, Jose Luis; Altura, Bella T

    2010-12-01

    The present study tested the hypotheses that 1) short-term dietary deficiency of magnesium (21 days) in rats would result in the upregulation of sphingomyelin synthase (SMS) and p53 in cardiac and vascular (aortic) smooth muscles, 2) low levels of Mg(2+) added to drinking water would either prevent or greatly reduce the upregulation of both SMS and p53, 3) exposure of primary cultured vascular smooth muscle cells (VSMCs) to low extracellular Mg(2+) concentration ([Mg(2)](o)) would lead to the de novo synthesis of ceramide, 4) inhibition of either SMS or p53 in primary culture VSMCs exposed to low [Mg(2+)](o) would lead to reductions in the levels of de novo ceramide synthesis, and 5) inhibition of sphingomyelin palmitoyl-CoA transferase (SPT) or ceramide synthase (CS) in primary cultured VSMCs exposed to low [Mg(2+)](o) would lead to a reduction in the levels of de novo ceramide synthesis. The data indicated that short-term magnesium deficiency (10% normal dietary intake) resulted in the upregulation of SMS and p53 in both ventricular and aortic smooth muscles; even very low levels of water-borne Mg(2+) (e.g., 15 mg·l(-1)·day(-1)) either prevented or ameliorated the upregulation in SMS and p53. Our experiments also showed that VSMCs exposed to low [Mg(2+)](o) resulted in the de novo synthesis of ceramide; the lower the [Mg(2+)](o), the greater the synthesis of ceramide. In addition, the data indicated that inhibition of either SMS, p53, SPT, or CS in VSMCs exposed to low [Mg(2+)](o) resulted in marked reductions in the de novo synthesis of ceramide.

  10. Transient appearance of circulating tumor DNA associated with de novo treatment

    PubMed Central

    Kato, Kikuya; Uchida, Junji; Kukita, Yoji; Kumagai, Toru; Nishino, Kazumi; Inoue, Takako; Kimura, Madoka; Imamura, Fumio

    2016-01-01

    The limitation of circulating tumor DNA (ctDNA) is its inability to detect cancer cell subpopulations with few or no dying cells. Lung cancer patients subjected to the EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment were prospectively collected, and ctDNA levels represented by the activating and T790M mutations were measured. The first data set (21 patients) consisting of samples collected in the period from before initiation of EGFR-TKI to at least 2 weeks after initiation: the ctDNA dynamics generally exhibited a rapid decrease and/or a transient increase. In 4 patients, we detected a transient increase of ctDNA bearing activating mutations not identified in biopsy samples. ctDNA with the same genotypical pattern was identified in 7 out of the 39 patients of the second data set intended to include samples until the onset of disease progression. In 6 of the 7 patients, this unique ctDNA appeared in the early period after treatment initiation, and did not reappear even after disease progression or chemotherapy. In another patient, similar ctDNA appeared upon radiation therapy. The identification of ctDNA with a unique genotype indicates the presence of cancer cell subpopulations that normally contain few or no dying cells, but generate dead cells because of the treatment. PMID:27934896

  11. Differential effects of pertussis toxin on insulin-stimulated phosphatidylcholine hydrolysis and glycerolipid synthesis de novo. Studies in BC3H-1 myocytes and rat adipocytes

    SciTech Connect

    Hoffman, J.M.; Standaert, M.L.; Nair, G.P.; Farese, R.V. )

    1991-04-02

    Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, the authors found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in ({sup 3}H)glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked the later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 {mu}M sangivamycin, an effective PKC inhibitor. The results indicate that insulin increases DAG by pertussis toxin sensitive and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis.

  12. Activation of de novo GSH synthesis pathway in mouse spleen after long term low-dose γ-ray irradiation.

    PubMed

    Lee, E K; Kim, J A; Kim, J S; Park, S J; Heo, K; Yang, K M; Son, T G

    2013-02-01

    Glutathione (GSH) is an important cellular antioxidant and has a critical role in maintaining the balance of cellular redox. In this study, we investigated the GSH biosynthesis genes involved in the elevation of endogenous GSH levels using an irradiation system with an irradiation dose rate of 1.78 mGy/h, which was about 40,000 times less than the dose rates used in other studies. The results showed that GSH levels were significantly increased in the low-dose (0.02 and 0.2 Gy) irradiated group compared to those in the non-irradiated group, but enzymatic antioxidants such as superoxide dismutase and catalase were not induced at any doses tested. The elevation in GSH was accompanied by elevated expression of glutamate-cysteine ligase modifier subunit, but no changes were observed in the expression of glutamate-cysteine ligase catalytic subunit and thioredoxin in de novo GSH synthesis. In the case of genes involved in the GSH regeneration cycle, the expression of glutathione reductase was not changed after irradiation, whereas glutathione peroxidase was only increased in the 0.2 Gy irradiated group. Collectively, our results suggest that the de novo pathway, rather than the regeneration cycle, may be mainly switched on in response to stimulation with long-term low-dose radiation in the spleen.

  13. In-depth quantitative proteomic analysis of de novo protein synthesis induced by brain-derived neurotrophic factor.

    PubMed

    Zhang, Guoan; Bowling, Heather; Hom, Nancy; Kirshenbaum, Kent; Klann, Eric; Chao, Moses V; Neubert, Thomas A

    2014-12-05

    Measuring the synthesis of new proteins in the context of a much greater number of pre-existing proteins can be difficult. To overcome this obstacle, bioorthogonal noncanonical amino acid tagging (BONCAT) can be combined with stable isotope labeling by amino acid in cell culture (SILAC) for comparative proteomic analysis of de novo protein synthesis (BONLAC). In the present study, we show that alkyne resin-based isolation of l-azidohomoalanine (AHA)-labeled proteins using azide/alkyne cycloaddition minimizes contamination from pre-existing proteins. Using this approach, we isolated and identified 7414 BONCAT-labeled proteins. The nascent proteome isolated by BONCAT was very similar to the steady-state proteome, although transcription factors were highly enriched by BONCAT. About 30% of the methionine residues were replaced by AHA in our BONCAT samples, which allowed for identification of methionine-containing peptides. There was no bias against low-methionine proteins by BONCAT at the proteome level. When we applied the BONLAC approach to screen for brain-derived neurotrophic factor (BDNF)-induced protein synthesis, 53 proteins were found to be significantly changed 2 h after BDNF stimulation. Our study demonstrated that the newly synthesized proteome, even after a short period of stimulation, can be efficiently isolated by BONCAT and analyzed to a depth that is similar to that of the steady-state proteome.

  14. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis.

    PubMed

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C; García-Ruiz, Carmen

    2015-12-08

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy.

  15. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis

    PubMed Central

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C.; García-Ruiz, Carmen

    2015-01-01

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy. PMID:26539645

  16. Inhibition of De Novo Ceramide Synthesis Reverses Diet-Induced Insulin Resistance and Enhances Whole-Body Oxygen Consumption

    PubMed Central

    Ussher, John R.; Koves, Timothy R.; Cadete, Virgilio J.J.; Zhang, Liyan; Jaswal, Jagdip S.; Swyrd, Suzanne J.; Lopaschuk, David G.; Proctor, Spencer D.; Keung, Wendy; Muoio, Deborah M.; Lopaschuk, Gary D.

    2010-01-01

    OBJECTIVE It has been proposed that skeletal muscle insulin resistance arises from the accumulation of intramyocellular lipid metabolites that impede insulin signaling, including diacylglycerol and ceramide. We determined the role of de novo ceramide synthesis in mediating muscle insulin resistance. RESEARCH DESIGN AND METHODS Mice were subjected to 12 weeks of diet-induced obesity (DIO), and then treated for 4 weeks with myriocin, an inhibitor of serine palmitoyl transferase-1 (SPT1), the rate-limiting enzyme of de novo ceramide synthesis. RESULTS After 12 weeks of DIO, C57BL/6 mice demonstrated a doubling in gastrocnemius ceramide content, which was completely reversed (141.5 ± 15.8 vs. 94.6 ± 10.2 nmol/g dry wt) via treatment with myriocin, whereas hepatic ceramide content was unaffected by DIO. Interestingly, myriocin treatment did not alter the DIO-associated increase in gastrocnemius diacyglycerol content, and the only correlation observed between lipid metabolite accumulation and glucose intolerance occurred with ceramide (R = 0.61). DIO mice treated with myriocin showed a complete reversal of glucose intolerance and insulin resistance which was associated with enhanced insulin-stimulated Akt and glycogen synthase kinase 3β phosphorylation. Furthermore, myriocin treatment also decreased intramyocellular ceramide content and prevented insulin resistance development in db/db mice. Finally, myriocin-treated DIO mice displayed enhanced oxygen consumption rates (3,041 ± 124 vs. 2,407 ± 124 ml/kg/h) versus their control counterparts. CONCLUSIONS Our results demonstrate that the intramyocellular accumulation of ceramide correlates strongly with the development of insulin resistance, and suggests that inhibition of SPT1 is a potentially promising target for the treatment of insulin resistance. PMID:20522596

  17. DNA sequencing by synthesis based on elongation delay detection

    NASA Astrophysics Data System (ADS)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2015-03-01

    The one of most important problem in modern genetics, biology and medicine is determination of the primary nucleotide sequence of the DNA of living organisms (DNA sequencing). This paper describes the label-free DNA sequencing approach, based on the observation of a discrete dynamics of DNA sequence elongation phase. The proposed DNA sequencing principle are studied by numerical simulation. The numerical model for proposed label-free DNA sequencing approach is based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) and dynamics of nucleotides incorporation to rising DNA strand. The estimates for number of copied DNA sequences for required probability of nucleotide incorporation event detection and correct DNA sequence determination was obtained. The proposed approach can be applied at all known DNA sequencing devices with "sequencing by synthesis" principle of operation.

  18. RNA Primer Extension Hinders DNA Synthesis by Escherichia coli Mutagenic DNA Polymerase IV

    PubMed Central

    Tashjian, Tommy F.; Lin, Ida; Belt, Verena; Cafarelli, Tiziana M.; Godoy, Veronica G.

    2017-01-01

    In Escherichia coli the highly conserved DNA damage regulated dinB gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference. Moreover, we show that the poor DNA synthesis from an RNA primer is conserved in DNA polymerase Kappa, the human DinB homolog. The activity of DinB is modulated by interactions with several other proteins, one of which is the equally evolutionarily conserved recombinase RecA. This interaction is known to positively affect DinB’s fidelity on damaged templates. We find that upon interaction with RecA, DinB shows a significant reduction in DNA synthesis when using an RNA primer. Furthermore, with DinB or DinB:RecA a robust pause, sequence and lesion independent, occurs only when RNA is used as a primer. The robust pause is likely to result in abortive DNA synthesis when RNA is the primer. These data suggest a novel mechanism to prevent DinB synthesis when it is not needed despite its high concentrations, thus protecting genome stability. PMID:28298904

  19. RNA Primer Extension Hinders DNA Synthesis by Escherichia coli Mutagenic DNA Polymerase IV.

    PubMed

    Tashjian, Tommy F; Lin, Ida; Belt, Verena; Cafarelli, Tiziana M; Godoy, Veronica G

    2017-01-01

    In Escherichia coli the highly conserved DNA damage regulated dinB gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference. Moreover, we show that the poor DNA synthesis from an RNA primer is conserved in DNA polymerase Kappa, the human DinB homolog. The activity of DinB is modulated by interactions with several other proteins, one of which is the equally evolutionarily conserved recombinase RecA. This interaction is known to positively affect DinB's fidelity on damaged templates. We find that upon interaction with RecA, DinB shows a significant reduction in DNA synthesis when using an RNA primer. Furthermore, with DinB or DinB:RecA a robust pause, sequence and lesion independent, occurs only when RNA is used as a primer. The robust pause is likely to result in abortive DNA synthesis when RNA is the primer. These data suggest a novel mechanism to prevent DinB synthesis when it is not needed despite its high concentrations, thus protecting genome stability.

  20. Inhibition of DNA synthesis in Meth A cells by chlorpromazine.

    PubMed

    Mizushima, T; Natori, S; Sekimizu, K

    1993-10-01

    We examined the influence of chlorpromazine, a phenothiazine derivative, on DNA synthesis in Meth A cells. Pulse-labelling experiments with [3H]thymidine showed that chlorpromazine inhibited DNA synthesis in cells cultured in vitro. The drug also inhibited DNA synthesis in isolated nuclei. Observation by fluorescence microscopy of fibroblastic cells stained with chlorpromazine indicated that the drug was localized in the cytoplasm and nuclear membranes, suggesting that it inhibited DNA synthesis in a manner dependent on the interaction of replication proteins with nuclear membranes. Meth A sarcomas growing in the endoderm of BALB/c mice regressed on intra-tumor injection of chlorpromazine, indicating that the drug has an anticancer action.

  1. Analyte-driven switching of DNA charge transport: de novo creation of electronic sensors for an early lung cancer biomarker.

    PubMed

    Thomas, Jason M; Chakraborty, Banani; Sen, Dipankar; Yu, Hua-Zhong

    2012-08-22

    A general approach is described for the de novo design and construction of aptamer-based electrochemical biosensors, for potentially any analyte of interest (ranging from small ligands to biological macromolecules). As a demonstration of the approach, we report the rapid development of a made-to-order electronic sensor for a newly reported early biomarker for lung cancer (CTAP III/NAP2). The steps include the in vitro selection and characterization of DNA aptamer sequences, design and biochemical testing of wholly DNA sensor constructs, and translation to a functional electrode-bound sensor format. The working principle of this distinct class of electronic biosensors is the enhancement of DNA-mediated charge transport in response to analyte binding. We first verify such analyte-responsive charge transport switching in solution, using biochemical methods; successful sensor variants were then immobilized on gold electrodes. We show that using these sensor-modified electrodes, CTAP III/NAP2 can be detected with both high specificity and sensitivity (K(d) ~1 nM) through a direct electrochemical reading. To investigate the underlying basis of analyte binding-induced conductivity switching, we carried out Förster Resonance Energy Transfer (FRET) experiments. The FRET data establish that analyte binding-induced conductivity switching in these sensors results from very subtle structural/conformational changes, rather than large scale, global folding events. The implications of this finding are discussed with respect to possible charge transport switching mechanisms in electrode-bound sensors. Overall, the approach we describe here represents a unique design principle for aptamer-based electrochemical sensors; its application should enable rapid, on-demand access to a class of portable biosensors that offer robust, inexpensive, and operationally simplified alternatives to conventional antibody-based immunoassays.

  2. Systemic elimination of de novo capsid protein synthesis from replication-competent AAV contamination in the liver.

    PubMed

    Lu, Hui; Qu, Guang; Yang, Xiao; Xu, Ruian; Xiao, Weidong

    2011-05-01

    The capsid protein synthesis in targeted tissues resulting from residual contaminating replication-competent adeno-associated virus particles (rcAAV) remains a concern for hazardous immune responses that shut down the factor IX expression in the hemophilia B clinical trial. To systematically reduce/eliminate the effects of potential contaminating rcAAV particles, we designed a novel adeno-associated virus (AAV) helper (pH22mir) with a microRNA binding cassette containing multiple copies of liver-specific (hsa-mir-122) and hematopoietic-specific (has-mir-142-3p) sequences to specifically control cap gene expression. In 293 cells, the rep and cap gene from pH22mir functioned similarly to that of conventional helper pH22. The vector yields and compositions from pH22mir and pH22 were indistinguishable. The performance of vector produced in this new system was comparable to that of similar vectors produced by conventional methods. In the human hepatic cell line, the capsid expression was reduced significantly from cap-mir cassette driven by a cytomegalovirus promoter. In the liver, 99.9% of capsid expression could be suppressed and no cap expression could be detected by western blot. In summary, we demonstrated a new concept in reducing de novo capsid synthesis in the targeted tissue. This strategy may not only help AAV vectors in controlling undesirable capsid gene expression, but can also be adopted for lentiviral or adenoviral vector production.

  3. Cycloheximide prevents the de novo polypeptide synthesis required to recover from acetylene inhibition in Nitrosopumilus maritimus.

    PubMed

    Vajrala, Neeraja; Bottomley, Peter J; Stahl, David A; Arp, Daniel J; Sayavedra-Soto, Luis A

    2014-06-01

    Developing methods to differentiate the relative contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to ammonia (NH3) oxidation has been challenging due to the lack of compounds that selectively inhibit AOA. In this study, we investigated the effects of specific bacteria- and eukaryote-selective protein synthesis inhibitors on the recovery of acetylene (C2H2)-inactivated NH3 oxidation in the marine AOA Nitrosopumilus maritimus and compared the results with recovery of the AOB Nitrosomonas europaea. C2 H2 irreversibly inhibited N. maritimus NH3 oxidation in a similar manner to what was observed previously with N. europaea. However, cycloheximide (CHX), a widely used eukaryotic protein synthesis inhibitor, but not bacteria-specific protein synthesis inhibitors (kanamycin and gentamycin), inhibited the recovery of NH3-oxidizing activity in N. maritimus. CHX prevented the incorporation of (14)CO2 -labeling into cellular proteins, providing further evidence that CHX acts as a protein synthesis inhibitor in N. maritimus. If the effect of CHX on protein synthesis can be confirmed among other isolates of AOA, the combination of C2H2 inactivation followed by recovery of NH3 oxidation either in the presence of bacteria-selective protein synthesis inhibitors or CHX might be used to estimate the relative contributions of AOB and AOA to NH3 oxidation in natural environments.

  4. Analytical Devices Based on Direct Synthesis of DNA on Paper.

    PubMed

    Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M

    2016-01-05

    This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.

  5. A Hybrid Parallel Strategy Based on String Graph Theory to Improve De Novo DNA Assembly on the TianHe-2 Supercomputer.

    PubMed

    Zhang, Feng; Liao, Xiangke; Peng, Shaoliang; Cui, Yingbo; Wang, Bingqiang; Zhu, Xiaoqian; Liu, Jie

    2016-06-01

    ' The de novo assembly of DNA sequences is increasingly important for biological researches in the genomic era. After more than one decade since the Human Genome Project, some challenges still exist and new solutions are being explored to improve de novo assembly of genomes. String graph assembler (SGA), based on the string graph theory, is a new method/tool developed to address the challenges. In this paper, based on an in-depth analysis of SGA we prove that the SGA-based sequence de novo assembly is an NP-complete problem. According to our analysis, SGA outperforms other similar methods/tools in memory consumption, but costs much more time, of which 60-70 % is spent on the index construction. Upon this analysis, we introduce a hybrid parallel optimization algorithm and implement this algorithm in the TianHe-2's parallel framework. Simulations are performed with different datasets. For data of small size the optimized solution is 3.06 times faster than before, and for data of middle size it's 1.60 times. The results demonstrate an evident performance improvement, with the linear scalability for parallel FM-index construction. This results thus contribute significantly to improving the efficiency of de novo assembly of DNA sequences.

  6. Design and Synthesis of Biaryl DNA-Encoded Libraries.

    PubMed

    Ding, Yun; Franklin, G Joseph; DeLorey, Jennifer L; Centrella, Paolo A; Mataruse, Sibongile; Clark, Matthew A; Skinner, Steven R; Belyanskaya, Svetlana

    2016-10-10

    DNA-encoded library technology (ELT) is a powerful tool for the discovery of new small-molecule ligands to various protein targets. Here we report the design and synthesis of biaryl DNA-encoded libraries based on the scaffold of 5-formyl 3-iodobenzoic acid. Three reactions on DNA template, acylation, Suzuki-Miyaura coupling and reductive amination, were applied in the library synthesis. The three cycle library of 3.5 million diversity has delivered potent hits for phosphoinositide 3-kinase α (PI3Kα).

  7. DNA synthesis and DNA polymerase activity of herpes simplex virus type 1 temperature-sensitive mutants.

    PubMed Central

    Aron, G M; Purifoy, D J; Schaffer, P A

    1975-01-01

    Fifteen temperature-sensitive mutants of herpes simplex virus type 1 were studied with regard to the relationship between their ability to synthesize viral DNA and to induce viral DNA polymerase (DP) activity at permissive (34 C) and nonpermissive (39 C) temperatures. At 34 C, all mutants synthesized viral DNA, while at 39 C four mutants demonstrated a DNA+ phenotype, three were DNA+/-, and eight were DNA-. DNA+ mutants induced levels of DP activity similar to thhose of the wild-type virus at both temperatures, and DNA+/- mutants induced reduced levels of DP activity at 39 C but not at 34 C. Among the DNA- mutants three were DP+, two were DP+/-, and three showed reduced DP activity at 34 C with no DP activity at 39 C. DNA-, DP- mutants induced the synthesis of a temperature-sensitive DP as determined by in vivo studies. PMID:169388

  8. Cocaine-but not methamphetamine-associated memory requires de novo protein synthesis.

    PubMed

    Kuo, Yu-Min; Liang, Keng Chen; Chen, Hsiang-Hua; Cherng, Chianfang G; Lee, Hsueh-Te; Lin, Yinchiu; Huang, A-Min; Liao, Ruey-Ming; Yu, Lung

    2007-01-01

    Context-induced drug craving and continuous drug use manifest the critical roles of specific memory episodes associated with the drug use experiences. Drug-induced conditioned place preference (CPP) in C57BL/6J mouse model, in this regard, is an appropriate behavioral paradigm to study such drug use-associated memories. Requirement of protein synthesis in various forms of long-term memory formation and storage has been phylogenetically demonstrated. This study was undertaken to study the requirement of protein synthesis in the learning and memory aspect of the conditioned place preference induced by cocaine and methamphetamine, two abused drugs of choice in local area. Since pCREB has been documented as a candidate substrate for mediating the drug-induced neuroadaptation, the pCREB level in hippocampus, nucleus accumbens, and prefrontal cortex was examined for its potential participation in the formation of CPP caused by these psychostimulants. We found that cocaine (2.5 and 5.0 mg/kg/dose)-induced CPP was abolished by the pretreatment of anisomycin (50 mg/kg/dose), a protein synthesis inhibitor, whereas methamphetamine (0.5 or 1.0 mg/kg/dose)-induced CPP was not affected by the anisomycin pretreatment. Likewise, cocaine-induced CPP was mitigated by another protein synthesis inhibitor, cycloheximide (15 mg/kg/injection) pretreatment, whereas methamphetamine-induced CPP remained intact by such pretreatment. Moreover, anisomycin treatment 2h after each drug-place pairing disrupted the cocaine-induced CPP, whereas the same treatment did not affect methamphetamine-induced CPP. An increase of accumbal pCREB level was found to associate with the learning phase of cocaine, but not with the learning phase of methamphetamine. We further found that intraaccumbal CREB antisense oligodeoxynucleotide infusion diminished cocaine-induced CPP, whereas did not affect the methamphetamine-induced CPP. Taken together, these data suggest that protein synthesis and accumbal CREB

  9. Nonuniform distribution of excision repair synthesis in nucleosome core DNA

    SciTech Connect

    Lan, S.Y.; Smerdon, M.J.

    1985-12-17

    We have studied the distribution in nucleosome core DNA of nucleotides incorporated by excision repair synthesis occurring immediately after UV irradiation in human cells. The differences previously observed for whole nuclei between the DNase I digestion profiles of repaired DNA (following its refolding into a nucleosome structure) and bulk DNA are obtained for isolated nucleosome core particles. Analysis of the differences obtained indicates that they could reflect a significant difference in the level of repair-incorporated nucleotides at different sites within the core DNA region. To test this possibility directly, we have used exonuclease III digestion of very homogeneous sized core particle DNA to map the distribution of repair synthesis in these regions. Results indicate that in a significant fraction of the nucleosomes the 5' and 3' ends of the core DNA are markedly enhanced in repair-incorporated nucleotides relative to the central region of the core particle. A best fit analysis indicates that a good approximation of the data is obtained for a distribution where the core DNA is uniformly labeled from the 5' end to position 62 and from position 114 to the 3' end, with the 52-base central region being devoid of repair-incorporated nucleotides. This distribution accounts for all of the quantitative differences observed previously between repaired DNA and bulk DNA following the rapid phase of nucleosome rearrangement when it is assumed that linker DNA and the core DNA ends are repaired with equal efficiency and the nucleosome structure of newly repaired DNA is identical with that of bulk chromatin. The 52-base central region that is devoid of repair synthesis contains the lowest frequency cutting sites for DNase I in vitro, as well as the only internal locations where two (rather than one) histones interact with a 10-base segment of each DNA strand.

  10. De novo synthesis of natural products via the asymmetric hydration of polyenes.

    PubMed

    Wang, Yanping; Xing, Yalan; Zhang, Qi; O'Doherty, George A

    2011-08-14

    For the last ten years our group has been working toward the development of an asymmetric hydration approach to polyketide natural products based on the regioselective hydration of di- and tri-enoates. Key to the success of this approach is the recognition that both high regiocontrol and asymmetric induction could be obtained by the use of a Sharpless asymmetric dihydroxylation reaction. Herein we describe the development of the method and its application to natural product total synthesis.

  11. A combined de novo protein sequencing and cDNA library approach to the venomic analysis of Chinese spider Araneus ventricosus.

    PubMed

    Duan, Zhigui; Cao, Rui; Jiang, Liping; Liang, Songping

    2013-01-14

    In past years, spider venoms have attracted increasing attention due to their extraordinary chemical and pharmacological diversity. The recently popularized proteomic method highly improved our ability to analyze the proteins in the venom. However, the lack of information about isolated venom proteins sequences dramatically limits the ability to confidently identify venom proteins. In the present paper, the venom from Araneus ventricosus was analyzed using two complementary approaches: 2-DE/Shotgun-LC-MS/MS coupled to MASCOT search and 2-DE/Shotgun-LC-MS/MS coupled to manual de novo sequencing followed by local venom protein database (LVPD) search. The LVPD was constructed with toxin-like protein sequences obtained from the analysis of cDNA library from A. ventricosus venom glands. Our results indicate that a total of 130 toxin-like protein sequences were unambiguously identified by manual de novo sequencing coupled to LVPD search, accounting for 86.67% of all toxin-like proteins in LVPD. Thus manual de novo sequencing coupled to LVPD search was proved an extremely effective approach for the analysis of venom proteins. In addition, the approach displays impeccable advantage in validating mutant positions of isoforms from the same toxin-like family. Intriguingly, methyl esterifcation of glutamic acid was discovered for the first time in animal venom proteins by manual de novo sequencing.

  12. Properties and synthesis de novo of auxin-induced α-amylase in pea cotyledons.

    PubMed

    Hirasawa, E; Yamamoto, S

    1991-07-01

    Analysis of starch-degrading enzymes in a crude extract of detached cotyledons of Pisum sativum L. by polyacrylamide gel electrophoresis (PAGE) demonstrated the presence of one band of α-amylase (EC 3.2.1.1) activity. The activity of only this amylase was promoted in cotyledons incubated with 2,4-dichlorophenoxyacetic acid (2,4-D). The auxin-induced α-amylase from pea cotyledons was purified to homogeneity, as judged by the criterion of a single band after PAGE. The relative molecular mass (Mr), estimated by gel filtration, was approx. 42 000 and the enzyme contained no carbohydrate moiety. Sodium dodecylsulfate-PAGE yielded a single band that corresponded to an Mr of 41 000. The isoelectric point was 5.85 and the aminoacid composition was similar to that of α-amylase from other plants. When [(3)H]leucine was fed to detached dry cotyledons prior to incubation, the radioactivity in α-amylase from cotyledons incubated in the presence of 2,4-D was found to be approx. 10-fold higher than that from cotyledons incubated in distilled water. When α-amylase from cotyledons incubated with (2)H2O that contained 2,4-D and the tritiated amylase were centrifuged together in a CsCl density gradient, the peak of enzymatic activity of deuterated α-amylase was shifted to a denser fraction than the peak of radioactivity of the tritiated enzyme. These results show that auxin-induced α-amylase in pea cotyledons is synthesized de novo.

  13. Biochemical characterization of GDP-L-fucose de novo synthesis pathway in fungus Mortierella alpina

    SciTech Connect

    Ren, Yan; Perepelov, Andrei V.; Wang, Haiyan; Zhang, Hao; Knirel, Yuriy A.; Wang, Lei; Chen, Wei

    2010-01-22

    Mortierella alpina is a filamentous fungus commonly found in soil, which is able to produce large amount of polyunsaturated fatty acids. L-Fucose is an important sugar found in a diverse range of organisms, playing a variety of biological roles. In this study, we characterized the de novo biosynthetic pathway of GDP-L-fucose (the nucleotide-activated form of L-fucose) in M. alpina. Genes encoding GDP-D-mannose 4,6-dehydratase (GMD) and GDP-keto-6-deoxymannose 3,5-epimerase/4-reductase (GMER) were expressed heterologously in Escherichia coli. The recombinant enzymes were produced as His-tagged fusion proteins. Conversion of GDP-mannose to GDP-4-keto-6-deoxy mannose by GMD and GDP-4-keto-6-deoxy mannose to GDP-L-fucose by GMER were analyzed by capillary electrophoresis, electro-spray ionization-mass spectrometry, and nuclear magnetic resonance spectroscopy. The k{sub m} values of GMD for GDP-mannose and GMER for GDP-4-keto-6-deoxy mannose were determined to be 0.77 mM and 1.047 mM, respectively. Both NADH and NADPH may be used by GMER as the coenzyme. The optimum temperature and pH were determined to be 37 {sup o}C and pH 9.0 (GMD) or pH 7.0 (GMER). Divalent cations are not required for GMD and GMER activity, and the activities of both enzymes may be enhanced by DTT. To our knowledge this is the first report on the characterization of GDP-L-fucose biosynthetic pathway in fungi.

  14. COORDINATING DNA POLYMERASE TRAFFIC DURING HIGH AND LOW FIDELITY SYNTHESIS

    PubMed Central

    Sutton, Mark D.

    2009-01-01

    With the discovery that organisms possess multiple DNA polymerases (Pols) displaying different fidelities, processivities, and activities came the realization that mechanisms must exist to manage the actions of these diverse enzymes to prevent gratuitous mutations. Although many of the Pols encoded by most organisms are largely accurate, and participate in DNA replication and DNA repair, a sizeable fraction display a reduced fidelity, and act to catalyze potentially error-prone translesion DNA synthesis (TLS) past lesions that persist in the DNA. Striking the proper balance between use of these different enzymes during DNA replication, DNA repair, and TLS is essential for ensuring accurate duplication of the cell’s genome. This review highlights mechanisms that organisms utilize to manage the actions of their different Pols. A particular emphasis is placed on discussion of current models for how different Pols switch places with each other at the replication fork during high fidelity replication and potentially error-pone TLS. PMID:19540941

  15. Gammaherpesvirus gene expression and DNA synthesis are facilitated by viral protein kinase and histone variant H2AX.

    PubMed

    Mounce, Bryan C; Tsan, Fei Chin; Droit, Lindsay; Kohler, Sarah; Reitsma, Justin M; Cirillo, Lisa A; Tarakanova, Vera L

    2011-11-25

    Gammaherpesvirus protein kinases are an attractive therapeutic target as they support lytic replication and latency. Via an unknown mechanism these kinases enhance expression of select viral genes and DNA synthesis. Importantly, the kinase phenotypes have not been examined in primary cell types. Mouse gammaherpesvirus-68 (MHV68) protein kinase orf36 activates the DNA damage response (DDR) and facilitates lytic replication in primary macrophages. Significantly, H2AX, a DDR component and putative orf36 substrate, enhances MHV68 replication. Here we report that orf36 facilitated expression of RTA, an immediate early MHV68 gene, and DNA synthesis during de novo infection of primary macrophages. H2AX expression supported efficient RTA transcription and phosphorylated H2AX associated with RTA promoter. Furthermore, viral DNA synthesis was attenuated in H2AX-deficient macrophages, suggesting that the DDR system was exploited throughout the replication cycle. The interactions between a cancer-associated gammaherpesvirus and host tumor suppressor system have important implications for the pathogenesis of gammaherpesvirus infection.

  16. Potency of carcinogens derived from covalent DNA binding and stimulation of DNA synthesis in rat liver

    SciTech Connect

    Lutz, W.K.; Buesser, M.T.; Sagelsdorff, P.

    1984-01-01

    In order to investigate the role of the stimulation of cell division for the initiation (and possibly promotion) of liver tumors by chemical carcinogens, the incorporation of radiolabelled thymidine into liver DNA was determined in male rats. Single doses of various levels of aflatoxin B1, benzidine and carbon tetrachloride (all known to be genotoxic via DNA binding) did not affect cell division, whereas several hepatocarcinogens known not to bind to DNA (alpha-HCH, clofibrate, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) gave rise to a dose-dependent stimulation of liver DNA synthesis within 24 h. An equation combining the influences of mitotic stimulation, expressed as dose required to double the control level of DNA synthesis, and DNA binding potency, expressed as the Covalent Binding Index, correlated well with the carcinogenic potency for both classes of hepatocarcinogens.

  17. Characterization of human translesion DNA synthesis across a UV-induced DNA lesion

    PubMed Central

    Hedglin, Mark; Pandey, Binod; Benkovic, Stephen J

    2016-01-01

    Translesion DNA synthesis (TLS) during S-phase uses specialized TLS DNA polymerases to replicate a DNA lesion, allowing stringent DNA synthesis to resume beyond the offending damage. Human TLS involves the conjugation of ubiquitin to PCNA clamps encircling damaged DNA and the role of this post-translational modification is under scrutiny. A widely-accepted model purports that ubiquitinated PCNA recruits TLS polymerases such as pol η to sites of DNA damage where they may also displace a blocked replicative polymerase. We provide extensive quantitative evidence that the binding of pol η to PCNA and the ensuing TLS are both independent of PCNA ubiquitination. Rather, the unique properties of pols η and δ are attuned to promote an efficient and passive exchange of polymerases during TLS on the lagging strand. DOI: http://dx.doi.org/10.7554/eLife.19788.001 PMID:27770570

  18. De novo cellular synthesis of sulfated proteoglycans of the developing renal glomerulus in vivo.

    PubMed Central

    Kanwar, Y S; Jakubowski, M L; Rosenzweig, L J; Gibbons, J T

    1984-01-01

    The site of cellular synthesis of glomerular proteoglycans was investigated in developing glomeruli of 4- to 5-day-old rats. [35S]Sulfate was administered intravenously and animals were sacrificed 15 min to 12 hr later. The outermost layers of the kidney cortices were utilized for characterization of proteoglycans and electron microscopic autoradiography. Sepharose CL-6B chromatography and cellulose acetate electrophoresis revealed that most (approximately equal to 96%) of the radioactivity was associated with heparan sulfate-proteoglycan synthesized during maturation of glomerular capillaries. Tissue autoradiography revealed the following: (i) during the S-shaped body stage, there is rapid incorporation of [35S]sulfate by mesenchymal cells into the cleft region (site for development of future glomerular extracellular matrices); (ii) during the precapillary stage, mesenchyme-derived cells showed higher incorporation of radioisotope than did epithelial cells; and (iii) during the mature capillary stage, all glomerular cell types (mesangial, endothelial, and epithelial) incorporated [35S]sulfate, incorporation by mesangial cells being the greatest. Radiolabeling was also higher in the mesangial matrix than in the glomerular basement membrane of peripheral capillary loops. Synthesis of a single major species of sulfated glycosaminoglycan by cells of different embryologic origin may be unique to glomerular capillaries. Images PMID:6239287

  19. Strategies of chemical anti-predator defences in leaf beetles: is sequestration of plant toxins less costly than de novo synthesis?

    PubMed

    Zvereva, Elena L; Zverev, Vitali; Kruglova, Oksana Y; Kozlov, Mikhail V

    2017-01-01

    The evolution of defensive traits is driven both by benefits gained from protection against enemies and by costs of defence production. We tested the hypothesis that specialisation of herbivores on toxic host plants, accompanied by the ability to acquire plant defensive compounds for herbivore defence, is favoured by the lower costs of sequestration compared to de novo synthesis of defensive compounds. We measured physiological costs of chemical defence as a reduction in larval performance in response to repeated removal of secretions (simulating predator attack) and compared these costs between five species synthesising defences de novo and three species sequestering salicylic glucosides (SGs) from their host plants. Experiments simulating low predator pressure revealed no physiological costs in terms of survival, weight and duration of development in any of study species. However, simulation of high predation caused reduction in relative growth rate in Chrysomela lapponica larvae producing autogenous defences more frequently, than in larvae sequestering SGs. Still meta-analysis of combined data showed no overall difference in costs of autogenous and sequestered defences. However, larvae synthesising their defences de novo demonstrated secretion-conserving behaviour, produced smaller amounts of secretions, replenished them at considerably lower rates and employed other types of defences (regurgitation, evasion) more frequently when compared to sequestering larvae. These latter results provide indirect evidence for biosynthetic constraints for amounts of defensive secretions produced de novo, resulting in low defence effectiveness. Lifting these constraints by sequestration may have driven some leaf beetle lineages toward sequestration of plant allelochemicals as the main defensive strategy.

  20. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis

    PubMed Central

    2015-01-01

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the “structure elucidation problem”: the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS’s utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 104 molecules/bead and sequencing allowed for elucidation of each compound’s synthetic history. We applied DESPS to the combinatorial synthesis of a 75 645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and

  1. Facile dimer synthesis for DNA-binding polyamide ligands.

    PubMed

    Wetzler, Modi; Wemmer, David E

    2010-08-06

    Pyrrole-imidazole polyamide ligands are highly sequence specific synthetic DNA-binding ligands that bind with high affinity. To counter the synthetic difficulties associated with coupling the electron-rich heterocyclic acids to the electron-deficient nucleophilic imidazole amine, a novel approach is described for synthesis of Fmoc-protected dimers for solid-phase peptide synthesis (SPPS). This method produces the dimers in high yields, is broadly applicable to other heterocyclic-containing polyamides, and results in improved ligand yields and synthesis times.

  2. Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number.

    PubMed

    Thompson, Kyle; Majd, Homa; Dallabona, Christina; Reinson, Karit; King, Martin S; Alston, Charlotte L; He, Langping; Lodi, Tiziana; Jones, Simon A; Fattal-Valevski, Aviva; Fraenkel, Nitay D; Saada, Ann; Haham, Alon; Isohanni, Pirjo; Vara, Roshni; Barbosa, Inês A; Simpson, Michael A; Deshpande, Charu; Puusepp, Sanna; Bonnen, Penelope E; Rodenburg, Richard J; Suomalainen, Anu; Õunap, Katrin; Elpeleg, Orly; Ferrero, Ileana; McFarland, Robert; Kunji, Edmund R S; Taylor, Robert W

    2016-10-06

    Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.

  3. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases

    PubMed Central

    Zhao, Linlin; Washington, M. Todd

    2017-01-01

    DNA replication is constantly challenged by DNA lesions, noncanonical DNA structures and difficult-to-replicate DNA sequences. Two major strategies to rescue a stalled replication fork and to ensure continuous DNA synthesis are: (1) template switching and recombination-dependent DNA synthesis; and (2) translesion synthesis (TLS) using specialized DNA polymerases to perform nucleotide incorporation opposite DNA lesions. The former pathway is mainly error-free, and the latter is error-prone and a major source of mutagenesis. An accepted model of translesion synthesis involves DNA polymerase switching steps between a replicative DNA polymerase and one or more TLS DNA polymerases. The mechanisms that govern the selection and exchange of specialized DNA polymerases for a given DNA lesion are not well understood. In this review, recent studies concerning the mechanisms of selection and switching of DNA polymerases in eukaryotic systems are summarized. PMID:28075396

  4. Strand displacement synthesis by yeast DNA polymerase ε

    PubMed Central

    Ganai, Rais A.; Zhang, Xiao-Ping; Heyer, Wolf-Dietrich; Johansson, Erik

    2016-01-01

    DNA polymerase ε (Pol ε) is a replicative DNA polymerase with an associated 3′–5′ exonuclease activity. Here, we explored the capacity of Pol ε to perform strand displacement synthesis, a process that influences many DNA transactions in vivo. We found that Pol ε is unable to carry out extended strand displacement synthesis unless its 3′–5′ exonuclease activity is removed. However, the wild-type Pol ε holoenzyme efficiently displaced one nucleotide when encountering double-stranded DNA after filling a gap or nicked DNA. A flap, mimicking a D-loop or a hairpin structure, on the 5′ end of the blocking primer inhibited Pol ε from synthesizing DNA up to the fork junction. This inhibition was observed for Pol ε but not with Pol δ, RB69 gp43 or Pol η. Neither was Pol ε able to extend a D-loop in reconstitution experiments. Finally, we show that the observed strand displacement synthesis by exonuclease-deficient Pol ε is distributive. Our results suggest that Pol ε is unable to extend the invading strand in D-loops during homologous recombination or to add more than two nucleotides during long-patch base excision repair. Our results support the hypothesis that Pol ε participates in short-patch base excision repair and ribonucleotide excision repair. PMID:27325747

  5. Towards the Batch Synthesis of Long DNA

    DTIC Science & Technology

    2002-10-01

    MISMATCHES In a series of papers,136 the SantaLucia NN model137 of Watson - Crick paired DNA thermodynamics was successfully extended to incorporate...generally indicate a- helix coding or structural motifs for DNA incorporation into chromatin. Trifonov, E. N., “3-,!10.5-, 200- and 400-base...double-stranded DNA , is well-described by Hearst’s “weakly bending rod” model with 3.4 Å rise/bp and 13 Å radius for the helix ; its persistence length39

  6. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    SciTech Connect

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K. )

    1990-11-15

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling.

  7. 1α,25-dihydroxyvitamin D inhibits de novo fatty acid synthesis and lipid accumulation in metastatic breast cancer cells through down-regulation of pyruvate carboxylase.

    PubMed

    Wilmanski, Tomasz; Buhman, Kimberly; Donkin, Shawn S; Burgess, John R; Teegarden, Dorothy

    2017-02-01

    Both increased de novo fatty acid synthesis and higher neutral lipid accumulation are a common phenotype observed in aggressive breast cancer cells, making lipid metabolism a promising target for breast cancer prevention. In the present studies, we demonstrate a novel effect of the active metabolite of vitamin D, 1α,25-dihydroxyvitamin D (1,25(OH)₂D) on lipid metabolism in malignant breast epithelial cells. Treatment of MCF10CA1a breast epithelial cells with 1,25(OH)₂D (10 nM) for 5 and 7 days decreased the level of triacylglycerol, the most abundant form of neutral lipids, by 20%(±3.9) and 50%(±5.9), respectively. In addition, 1,25(OH)₂D treatment for 5 days decreased palmitate synthesis from glucose, the major fatty acid synthesized de novo (48%±5.5 relative to vehicle). We have further identified the anaplerotic enzyme pyruvate carboxylase (PC) as a target of 1,25(OH)₂D-mediated regulation and hypothesized that 1,25(OH)₂D regulates breast cancer cell lipid metabolism through inhibition of PC. PC mRNA expression was down-regulated with 1,25(OH)₂D treatment at 2 (73%±6 relative to vehicle) and 5 (56%±8 relative to vehicle) days. Decrease in mRNA abundance corresponded with a decrease in PC protein expression at 5 days of treatment (54%±12 relative to vehicle). Constitutive overexpression of PC in MCF10CA1a cells using a pCMV6-PC plasmid inhibited the effect of 1,25(OH)₂D on both TAG accumulation and de novo palmitate synthesis from glucose. Together, these studies demonstrate a novel mechanism through which 1,25(OH)₂D regulates lipid metabolism in malignant breast epithelial cells.

  8. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    PubMed Central

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  9. Inhibition of Ceramide De Novo Synthesis with Myriocin Affects Lipid Metabolism in the Liver of Rats with Streptozotocin-Induced Type 1 Diabetes

    PubMed Central

    Wiesiołek-Kurek, Patrycja; Piotrowska, Dominika M.; Łukaszuk, Bartłomiej; Chabowski, Adrian; Żendzian-Piotrowska, Małgorzata

    2014-01-01

    Nowadays diabetes is one of the most common metabolic diseases. Sphingolipids, which are vitally important constituents of intracellular signal transduction pathways, may be among the most pathogenic lipid moieties intermingled in the origin and development of diabetes. It is now well established that inhibition of de novo ceramide synthesis with myriocin exerts positive effects on lipid metabolism and glucose homeostasis in type 2 diabetes mellitus animal models. However, its influence on type I diabetes still remains unknown. Therefore, the scope of this paper is to fulfill that particular gap in our knowledge. PMID:24701589

  10. Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6.

    PubMed

    Hoeferlin, L Alexis; Fekry, Baharan; Ogretmen, Besim; Krupenko, Sergey A; Krupenko, Natalia I

    2013-05-03

    We have investigated the role of ceramide in the cellular adaptation to folate stress induced by Aldh1l1, the enzyme involved in the regulation of folate metabolism. Our previous studies demonstrated that Aldh1l1, similar to folate deficiency, evokes metabolic stress and causes apoptosis in cancer cells. Here we report that the expression of Aldh1l1 in A549 or HCT116 cells results in the elevation of C16-ceramide and a transient up-regulation of ceramide synthase 6 (CerS6) mRNA and protein. Pretreatment with ceramide synthesis inhibitors myriocin and fumonisin B1 or siRNA silencing of CerS6 prevented C16-ceramide accumulation and rescued cells supporting the role of CerS6/C16-ceramide as effectors of Aldh1l1-induced apoptosis. The CerS6 activation by Aldh1l1 and increased ceramide generation were p53-dependent; this effect was ablated in p53-null cells. Furthermore, the expression of wild type p53 but not transcriptionally inactive R175H p53 mutant strongly elevated CerS6. Also, this dominant negative mutant prevented accumulation of CerS6 in response to Aldh1l1, indicating that CerS6 is a transcriptional target of p53. In support of this mechanism, bioinformatics analysis revealed the p53 binding site 3 kb downstream of the CerS6 transcription start. Interestingly, ceramide elevation in response to Aldh1l1 was inhibited by silencing of PUMA, a proapoptotic downstream effector of p53 whereas the transient expression of CerS6 elevated PUMA in a p53-dependent manner indicating reciprocal relationships between ceramide and p53/PUMA pathways. Importantly, folate withdrawal also induced CerS6/C16-ceramide elevation accompanied by p53 accumulation. Overall, these novel findings link folate and de novo ceramide pathways in cellular stress response.

  11. The control of lambda DNA terminase synthesis.

    PubMed Central

    Murialdo, H; Davidson, A; Chow, S; Gold, M

    1987-01-01

    Nu1 and A, the genes coding for bacteriophage lambda DNA terminase, rank among the most poorly translated genes expressed in E. coli. To understand the reason for this low level of translation the genes were cloned into plasmids and their expression measured. In addition, the wild type DNA sequences immediately preceding the genes were reduced and modified. It was found that the elements that control translation are contained in the 100 base pairs upstream from the initiation codon. Interchanging these upstream sequences with those of an efficiently translated gene dramatically increased the translation of terminase subunits. It seems unlikely that the rare codons present in the genes, and any feature of their mRNA secondary structure play a role in the control of their translation. The elimination of cos from plasmids containing Nu1 and A also resulted in an increase in terminase production. This result suggests a role for cos in the control of late gene expression. The terminase subunit overproducer strains are potentially very useful for the design of improved DNA packaging and cosmid mapping techniques. Images PMID:3029667

  12. Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer

    DTIC Science & Technology

    2015-12-01

    AWARD NUMBER: W81XWH-13-1-0238 TITLE: Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer PRINCIPAL...of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Oxygen-rich environments can create pro-mutagenic DNA lesions such as 8-oxoguanine (8-oxo-G) that can be misreplicated during translesion DNA synthesis

  13. DNA profiling analysis of 100 consecutive de novo acute myeloid leukemia cases reveals patterns of genomic instability that affect all cytogenetic risk groups.

    PubMed

    Suela, J; Alvarez, S; Cifuentes, F; Largo, C; Ferreira, B I; Blesa, D; Ardanaz, M; García, R; Marquez, J A; Odero, M D; Calasanz, M J; Cigudosa, J C

    2007-06-01

    We have carried out a high-resolution whole genome DNA profiling analysis on 100 bone marrow samples from a consecutive series of de novo acute myeloid leukemia (AML) cases. After discarding copy number changes that are known to be genetic polymorphisms, we found that genomic aberrations (GA) in the form of gains or losses of genetic material were present in 74% of the samples, with a median of 2 GA per case (range 0-35). In addition to the cytogenetically detected aberration, GA were present in cases from all cytogenetic prognostic groups: 79% in the favorable group, 60% in the intermediate group (including 59% of cases with normal karyotype) and 83% in the adverse group. Five aberrant deleted regions were recurrently associated with cases with a highly aberrant genome (e.g., a 1.5 Mb deletion at 17q11.2 and a 750 kb deletion at 5q31.1). Different degrees of genomic instability showed a statistically significant impact on survival curves, even within the normal karyotype cases. This association was independent of other clinical and genetic parameters. Our study provides, for the first time, a detailed picture of the nature and frequency of DNA copy number aberrations in de novo AML.

  14. Influence of peptides and amino acids on fermentation rate and de novo synthesis of amino acids by mixed micro-organisms from the sheep rumen.

    PubMed

    Atasoglu, C; Valdés, C; Newbold, C J; Wallace, R J

    1999-04-01

    The influence of different N sources on fermentation rate and de novo amino acid synthesis by rumen micro-organisms was investigated in vitro using rumen fluid taken from four sheep receiving a mixed diet comprising (g/kg DM): grass hay 500, barley 299.5, molasses 100, fish meal 91, minerals and vitamins 9.5. Pancreatic casein hydrolysate (P; comprising mainly peptides with some free amino acids; 10 g/l), free amino acids (AA; casein acid hydrolysate + added cysteine and tryptophan; 10 g/l), or a mixture of L-proline, glycine, L-valine and L-threonine (M; 0.83 g/l each) were added to diluted (1:3, v/v), strained rumen fluid along with 15NH4Cl (A; 1.33 g/l) and 6.7 g/l of a mixture of starch, cellobiose and xylose (1:1:1, by weight). P and AA, but not M, stimulated net gas production after 4 and 8 h incubation (P < 0.05) in comparison with A alone. P increased microbial-protein synthesis (P < 0.05) compared with the other treatments. All of the microbial-N formed after 10 h was synthesized de novo from 15NH3 in treatment A, and the addition of pre-formed amino acids decreased the proportion to 0.37, 0.55, and 0.86 for P, AA, and M respectively. De novo synthesis of amino acids (0.29, 0.42 and 0.69 respectively) was lower than cell-N. Enrichment of alanine, glutamate and aspartate was slightly higher than that of other amino acids, while enrichment in proline was much lower, such that 0.83-0.95 of all proline incorporated into particulate matter was derived from pre-formed proline. Glycine, methionine, lysine, valine and threonine tended to be less enriched than other amino acids. The form in which the amino acids were supplied, as P or AA, had little influence on the pattern of de novo synthesis. When the concentration of peptides was decreased, the proportion of microbial-N formed from NH3 increased, so that at an initial concentration of 1 g peptides/l, similar to the highest reported ruminal peptide concentrations, 0.68 of cell-N was formed from NH3. Decreasing

  15. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.

    PubMed

    Ramachandran, Aparna; Nandakumar, Divya; Deshpande, Aishwarya P; Lucas, Thomas P; R-Bhojappa, Ramanagouda; Tang, Guo-Qing; Raney, Kevin; Yin, Y Whitney; Patel, Smita S

    2016-08-05

    Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA.

  16. Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration.

    PubMed

    Wilson, Marenda A; Kwon, YoungHo; Xu, Yuanyuan; Chung, Woo-Hyun; Chi, Peter; Niu, Hengyao; Mayle, Ryan; Chen, Xuefeng; Malkova, Anna; Sung, Patrick; Ira, Grzegorz

    2013-10-17

    During DNA repair by homologous recombination (HR), DNA synthesis copies information from a template DNA molecule. Multiple DNA polymerases have been implicated in repair-specific DNA synthesis, but it has remained unclear whether a DNA helicase is involved in this reaction. A good candidate DNA helicase is Pif1, an evolutionarily conserved helicase in Saccharomyces cerevisiae important for break-induced replication (BIR) as well as HR-dependent telomere maintenance in the absence of telomerase found in 10-15% of all cancers. Pif1 has a role in DNA synthesis across hard-to-replicate sites and in lagging-strand synthesis with polymerase δ (Polδ). Here we provide evidence that Pif1 stimulates DNA synthesis during BIR and crossover recombination. The initial steps of BIR occur normally in Pif1-deficient cells, but Polδ recruitment and DNA synthesis are decreased, resulting in premature resolution of DNA intermediates into half-crossovers. Purified Pif1 protein strongly stimulates Polδ-mediated DNA synthesis from a D-loop made by the Rad51 recombinase. Notably, Pif1 liberates the newly synthesized strand to prevent the accumulation of topological constraint and to facilitate extensive DNA synthesis via the establishment of a migrating D-loop structure. Our results uncover a novel function of Pif1 and provide insights into the mechanism of HR.

  17. Adrenocorticotropin and adenosine 3',5'-monophosphate stimulate de novo synthesis of adrenal phosphatidic acid by a cycloheximide-sensitive, CA++-dependent mechanism

    SciTech Connect

    Farese, R.V.; Sabir, M.A.; Larson, R.E.

    1981-12-01

    We tested further our postulate that enhanced de novo synthesis of phosphatidic acid is responsible for ACTH- and cAMP-induced increases in adrenal phospholipids in the phosphatidate polyphosphoinositide pathway. During incubation of adrenal sections or cells in vitro, ACTH and cAMP increased the concentrations of and incorporation of (3H)glycerol and (14C)palmitate into phosphatidylcholine and phosphatidylethanolamine, two major phospholipids which are derived from phosphatidic acid, but are extrinsic to the inositide pathway. Thus, it is unlikely that ACTH and cAMP increase inositide phospholipids at the expense of other phospholipids. Similar to previously reported effects on phosphatidic acid and inositide phospholipids, cycloheximide blocked the effects of ACTH and cAMP on phosphatidylcholine and phosphatidylethanolamine. In addition, Ca++ was required for these effects, as well as for cAMP-induced increases in phosphatidic acid, inositide phospholipids, and steroidogenesis. Our findings strongly suggest that ACTH, via cAMP, stimulates de novo phosphatidate synthesis by a cycloheximide-sensitive, Ca++-dependent process, and this stimulation causes a rapid generalized increase in adrenal phospholipids. Moreover, the increased incorporation of labeled glycerol and palmitate into phospholipids suggests that ACTH and cAMP may stimulate the glycerol-3'-PO4 acyltransferase reaction. This stimulatory effect may play a central role in the steroidogenic and trophic actions of ACTH and cAMP.

  18. [6]-Gingerol inhibits de novo fatty acid synthesis and carnitine palmitoyltransferase-1 activity which triggers apoptosis in HepG2

    PubMed Central

    Impheng, Hathaichanok; Richert, Lysiane; Pekthong, Dumrongsak; Scholfield, C Norman; Pongcharoen, Sutatip; Pungpetchara, Ittipon; Srisawang, Piyarat

    2015-01-01

    The de novo fatty acid synthesis catalyzed by key lipogenic enzymes, including fatty acid synthase (FASN) has emerged as one of the novel targets of anti-cancer approaches. The present study explored the possible inhibitory efficacy of [6]-gingerol on de novo fatty acid synthesis associated with mitochondrial-dependent apoptotic induction in HepG2 cells. We observed a dissipation of mitochondrial membrane potential accompanied by a reduction of fatty acid levels. [6]-gingerol administration manifested inhibition of FASN expression, indicating FASN is a major target of [6]-gingerol inducing apoptosis in HepG2 cells. Indeed, we found that increased ROS generation could likely be a mediator of the anti-cancer effect of [6]-gingerol. A reduction of fatty acid levels and induction of apoptosis were restored by inhibition of acetyl-CoA carboxylase (ACC) activity, suggesting an accumulation of malonyl-CoA level could be the major cause of apoptotic induction of [6]-gingerol in HepG2 cells. The present study also showed that depletion of fatty acid following [6]-gingerol treatment caused an inhibitory effect on carnitine palmitoyltransferase-1 activity (CPT-1), whereas C75 augmented CPT-1 activity, indicating that [6]-gingerol exhibits the therapeutic benefit on suppression of fatty acid β-oxidation. PMID:26101700

  19. Plasmodium falciparum-infected red blood cells depend on a functional glutathione de novo synthesis attributable to an enhanced loss of glutathione.

    PubMed Central

    Lüersen, K; Walter, R D; Müller, S

    2000-01-01

    During the erythrocytic cycle, Plasmodium falciparum is highly dependent on an adequate thiol status for its survival. Glutathione reductase as well as de novo synthesis of GSH are responsible for the maintenance of the intracellular GSH level. The first and rate-limiting step of the synthetic pathway is catalysed by gamma-glutamylcysteine synthetase (gamma-GCS). Using L-buthionine-(S, R)-sulphoximine (BSO), a specific inhibitor of the gamma-GCS, we show that the infection with P. falciparum causes drastic changes in the GSH metabolism of red blood cells (RBCs). Infected RBCs lose GSH at a rate 40-fold higher than non-infected RBCs. The de novo synthesis of the tripeptide was found to be essential for parasite survival. GSH depletion by BSO inhibits the development of P. falciparum with an IC(50) of 73 microM. The effect of the drug is abolished by supplementation with GSH or GSH monoethyl ester. Our studies demonstrate that the plasmodicidal effect of the inhibitor BSO does not depend on its specificity towards its target enzyme in the parasite, but on the changed physiological needs for the metabolite GSH in the P. falciparum-infected RBCs. Therefore the depletion of GSH is proposed as a chemotherapeutic strategy for malaria, and gamma-GCS is proposed as a potential drug target. PMID:10677377

  20. Arsenic trioxide induces de novo protein synthesis of annexin-1 in neutrophils: association with a heat shock-like response and not apoptosis.

    PubMed

    Binet, François; Chiasson, Sonia; Girard, Denis

    2008-02-01

    We recently demonstrated that arsenic trioxide (ATO) induced apoptosis in human neutrophils and increased de novo protein synthesis. Here, we identified one of these newly synthesized proteins as annexin-1 (AnxA1), a protein recently found to be proapoptotic in neutrophils when added exogenously. AnxA1 was detected at the cell membrane of ATO-induced neutrophils as well as in the supernatants. Using neutrophils harvested from AnxA1 knockout mice, we found that the proapoptotic activity of ATO was similar in neutrophils, regardless of AnxA1 levels. A second protein was identified as heat shock protein (Hsp) 89alpha. Because ATO is known to induce a HS-like response in a variety of cells, we investigated its ability to induce gene expression of Hsp in neutrophils and found that ATO increases HSP90AA1, HSPA1 and HSPB1 mRNA in these cells. We conclude that ATO-induced neutrophil apoptosis by an AnxA1-independent mechanism. Our data provide the first evidence that ATO induces a stress response in human neutrophils and that de novo synthesis of AnxA1 is related to this event rather than to the proapoptotic activity of ATO.

  1. Psoralen plus near-ultraviolet light: a possible new method for measuring DNA repair synthesis

    SciTech Connect

    Heimer, Y.M.; Kol, R.; Shiloh, Y.; Riklis, E.

    1983-09-01

    A new method is proposed to inhibit semiconservative DNA synthesis in cultured cells while DNA repair synthesis is being measured. The cells are treated with the DNA-crosslinking agent Trioxalen (4,5,8-trimethylpsoralen) plus near-ultraviolet light, and consequently 99.5% inhibition of replicative DNA synthesis is achieved. Additional DNA-damaging agents induce thymidine incorporation into the double-stranded regions of the DNA. The new method gave results very similar to those obtained with the benzoylated naphthoylated DEAE (BND) cellulose method using three human fibroblast strains, of which one had deficient capacity for DNA repair synthesis following treatment with ..gamma.. rays and methyl methanesulfonate. The advantages of the new method are simplicity and rapidity, as well as the high extent to which replicative DNA synthesis is inhibited.

  2. Psoralen plus near-ultraviolet light: a possible new method for measuring DNA repair synthesis

    SciTech Connect

    Heimer, Y.M.; Kol, R.; Shiloh, Y.; Riklis, E.

    1983-09-01

    A new method is proposed to inhibit semiconservative DNA synthesis in cultured cells while DNA repair synthesis is being measured. The cells are treated with the DNA-crosslinking agent Trioxalen (4,5,8-trimethylpsoralen) plus near-ultraviolet light, and consequently 99.5% inhibition of replicative DNA synthesis is achieved. Additional DNA-damaging agents induce thymidine incorporation into the double-stranded regions of the DNA. The new method gave results very similar to those obtained with the benzoylated naphthoylated DEAE (BND) cellulose method using three human fibroblast strains, of which one had deficient capacity for DNA repair synthesis following treatment with gamma rays and methyl methanesulfonate. The advantages of the new method are simplicity and rapidity, as well as the high extent to which replicative DNA synthesis is inhibited.

  3. Synchronization of mitochondrial DNA synthesis in Chinese hamster cells (line CHO) deprived of isoleucine.

    PubMed

    Ley, K D; Murphy, M M

    1973-08-01

    Mitochondrial DNA (mit-DNA) synthesis was compared in suspension cultures of Chinese hamster cells (line CHO) whose cell cycle events had been synchronized by isoleucine deprivation or mitotic selection. At hourly intervals during cell cycle progression, synchronized cells were exposed to tritiated thymidine ([(3)H]TdR), homogenized, and nuclei and mitochondria isolated by differential centrifugation. Mit-DNA and nuclear DNA were isolated and incorporation of radioisotope measured as counts per minute ([(3)H]TdR) per microgram DNA. Mit-DNA synthesis in cells synchronized by mitotic selection began after 4 h and continued for approximately 9 h. This time-course pattern resembled that of nuclear DNA synthesis. In contrast, mit-DNA synthesis in cells synchronized by isoleucine deprivation did not begin until 9-12 h after addition of isoleucine and virtually all [(3)H]TdR was incorporated during a 3-h interval. We have concluded from these results that mit-DNA synthesis is inhibited in CHO cells which are arrested in G(1) because of isoleucine deprivation and that addition of isoleucine stimulates synchronous synthesis of mit-DNA. We believe this method of synchronizing mit-DNA synthesis may be of value in studies of factors which regulate synthesis of mit-DNA.

  4. Application of Biocatalysis to on-DNA Carbohydrate Library Synthesis.

    PubMed

    Thomas, Baptiste; Lu, Xiaojie; Birmingham, William R; Huang, Kun; Both, Peter; Reyes Martinez, Juana Elizabeth; Young, Robert J; Davie, Christopher P; Flitsch, Sabine L

    2017-01-26

    DNA-encoded libraries are increasingly used for the discovery of bioactive lead compounds in high-throughput screening programs against specific biological targets. Although a number of libraries are now available, they cover limited chemical space due to bias in ease of synthesis and the lack of chemical reactions that are compatible with DNA tagging. For example, compound libraries rarely contain complex biomolecules such as carbohydrates with high levels of functionality, stereochemistry, and hydrophilicity. By using biocatalysis in combination with chemical methods, we aimed to significantly expand chemical space and generate generic libraries with potentially better biocompatibility. For DNA-encoded libraries, biocatalysis is particularly advantageous, as it is highly selective and can be performed in aqueous environments, which is an essential feature for this split-and-mix library technology. In this work, we demonstrated the application of biocatalysis for the on-DNA synthesis of carbohydrate-based libraries by using enzymatic oxidation and glycosylation in combination with traditional organic chemistry.

  5. Title A de novo synthesis citrate transporter VuMATE confers aluminum resistance in rice bean (vigna umbellata)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Al-activated organic acid anion efflux from roots is an important Al resistance mechanism in plants. We have conducted the homologous cloning and isolation of VuMATE (Vigna umbellata multidrug and toxic compound extrusion), a gene encoding a de novo citrate transporter from rice bean. Al treatment u...

  6. Computational method and system for modeling, analyzing, and optimizing DNA amplification and synthesis

    DOEpatents

    Vandersall, Jennifer A.; Gardner, Shea N.; Clague, David S.

    2010-05-04

    A computational method and computer-based system of modeling DNA synthesis for the design and interpretation of PCR amplification, parallel DNA synthesis, and microarray chip analysis. The method and system include modules that address the bioinformatics, kinetics, and thermodynamics of DNA amplification and synthesis. Specifically, the steps of DNA selection, as well as the kinetics and thermodynamics of DNA hybridization and extensions, are addressed, which enable the optimization of the processing and the prediction of the products as a function of DNA sequence, mixing protocol, time, temperature and concentration of species.

  7. Low-energy laser irradiation enhances de novo protein synthesis via its effects on translation-regulatory proteins in skeletal muscle myoblasts.

    PubMed

    Shefer, Gavriela; Barash, Itamar; Oron, Uri; Halevy, Orna

    2003-02-17

    Low-energy laser irradiation (LELI) drives quiescent skeletal muscle satellite cells into the cell cycle and enhances their proliferation, thereby promoting skeletal muscle regeneration. Ongoing protein synthesis is a prerequisite for these processes. Here, we studied the signaling pathways involved in the LELI regulation of protein synthesis. High levels of labeled [35S]methionine incorporation were detected in LELI cells as early as 20 min after irradiation, suggesting translation of pre-existing mRNAs. Induced levels of protein synthesis were detected up until 8 h after LELI implying a role for LELI in de novo protein synthesis. Elevated levels of cyclin D1, associated with augmented phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and its inhibitory binding protein PHAS-I, suggested the involvement of LELI in the initiation steps of protein translation. In the presence of the MEK inhibitor, PD98059, eIF4E phosphorylation was abolished and levels of cyclin D1 were dramatically reduced. The LELI-induced PHAS-I phosphorylation was abolished after preincubation with the PI3K inhibitor, Wortmannin. Concomitantly, LELI enhanced Akt phosphorylation, which was attenuated in the presence of Wortmannin. Taken together, these results suggest that LELI induces protein translation via the PI3K/Akt and Ras/Raf/ERK pathways.

  8. HGF-induced DNA synthesis in hepatocytes is suppressed by p38.

    PubMed

    Aasrum, Monica; Brusevold, Ingvild J; Christoffersen, Thoralf; Thoresen, G Hege

    2016-12-01

    Previous studies in rat hepatocytes have shown that the MEK/ERK, PI3K/Akt and p38 pathways are all involved in the activation of DNA synthesis by EGF and that sustained activation of MEK/ERK is required. Here, we show that although HGF stimulated DNA synthesis and activated signaling in the same manner as EGF, the contribution of the signaling pathways to the induction of DNA synthesis differed. While HGF-induced DNA synthesis was dependent on MEK/ERK, with no significant contribution from PI3K/Akt, p38 suppressed HGF-induced DNA synthesis. The p38 inhibitor SB203580 increased HGF-induced DNA synthesis and enhanced the phosphorylation of ERK. In contrast, SB203580 decreased EGF-induced ERK phosphorylation. This suggests that p38 has distinct effects on DNA synthesis induced by EGF and HGF. Due to differential regulation of signaling through the MEK/ERK pathway, p38 acts as an enhancer of EGF-induced DNA synthesis and as a suppressor of HGF-induced DNA synthesis.

  9. Enzymatic synthesis of organic-polymer-grafted DNA.

    PubMed

    Baccaro, Anna; Marx, Andreas

    2010-01-04

    To create bioorganic hybrid materials, interdisciplinary work in the fields of chemistry, biology and materials science is conducted. DNA block copolymers are promising hybrid materials due to the combination of properties intrinsic to both the polymer and the nucleic acid blocks. Until now, the coupling of DNA and organic polymers has been exercised post-synthetically in solution or on solid support. Herein, we report the first enzyme-catalysed synthesis of DNA-organic polymer chimeras. For this purpose, four novel 2'-deoxyuridine triphosphates carrying polymer-like moieties linked to the nucleobase were synthesised. Linear polyethylene glycol monomethyl ethers of different sizes (1) and branched polyamido dendrons with varying terminal groups (2) were chosen as building blocks. We investigated the ability of DNA polymerases to accept the copolymers in comparison to the natural substrate and showed, through primer extensions, polymerase chain reactions and rolling circle amplification, that these building blocks could serve as a surrogate for the natural thymidine. By this method, DNA hybrid materials with high molecular weight, modification density, and defined structure are accessible.

  10. Cyclosporin A inhibits DNA synthesis by epidermal Langerhans cells.

    PubMed

    Haftek, M; Urabe, A; Kanitakis, J; Dusserre, N; Thivolet, J

    Cyclosporin A, a potent immunosuppressive drug currently used in organ transplant recipients, has been shown to exert in vitro a direct antiproliferative effect on a number of cell types present in the skin, including keratinocytes, fibroblasts, and endothelial cells. Although in vitro studies suggest that cyclosporin A may interfere with the functional capacities of epidermal Langerhans cells, there is no evidence that the treatment influences the distribution or number of Langerhans cells in vivo. We used a model of normal human skin graft to "nude" mice, which is free of the human systemic control mechanisms, for studies on the DNA synthesis of human Langerhans cells under the influence of cyclosporin A. The grafted animals were given daily subcutaneous (50 mg/kg) or intraperitoneal (5, 12.5, and 25 mg/kg) drug injections during three weeks, which resulted in mean blood levels comparable to those observed in treated patients with organ transplants or psoriasis, respectively. BrdU administered during the last week of the experiment was incorporated by all cells synthesizing DNA, including those passing through S-phase. Langerhans cells were detected on deparaffinized or frozen tissue sections of xenografts with anti-CD1a and anti-HLA DR monoclonal antibodies, and the number of BrdU-positive cells was determined by double labeling. Our results indicate that the Langerhans cell DNA synthesis is impaired by therapeutic levels of cyclosporin A.

  11. Cytogenetic evidence for de novo synthesis of rRNA and involvement of nucleolar material in the organization of cell structures during spermiogenesis of Chariesterus armatus (Heteroptera, Coreidae).

    PubMed

    Arakaki, R L M; Souza, H V; Castanhole, M M U; Bicudo, H E M C; Itoyama, M M

    2010-09-21

    The nucleolar material of Chariesterus armatus was analyzed during spermiogenesis in cell preparations impregnated with silver nitrate. Nucleolar corpuscles were observed in spermatids at the beginning of the process, showing that this organoid is also maintained after meiosis. In addition, nucleoli were seen in the round spermatids connected to the X-chromosome (bearer of the nucleolar organizer in C. armatus), indicating de novo synthesis of nucleolar material. This differs from the reorganization of ribosomal granules, transported from meiotic spermatocytes to round spermatids, where they would support protein synthesis, which is reported for other species. We also observed connections of nucleolar corpuscles to the nuclear membrane regions where the tail and the acrosome will be formed, suggesting close involvement of the nucleolar material in the formation of these structures. In addition to the nucleolar bodies, we detected silver-positive structures, which will require new approaches to clarify their role. One of these structures, observed in the cytoplasm, appears to correspond to the chromatoid body, which has been found in several organisms, but is still poorly understood; another is a complex structure to which the tail appears to be connected. We conclude that C. armatus is an appropriate model for understanding not only the synthesis of rRNA in the spermiogenesis, but also the functional meaning of the close relationship of nucleolar material with other structures during this process.

  12. Selective inhibition of in vitro synthesis of cancer DNA by alkaloids of beta-carboline class.

    PubMed

    Beljanski, M; Beljanski, M S

    1982-01-01

    The high template in vitro activity of native DNA from cancerous mammalian and plant tissues, compared to DNA from healthy tissues, enabled us to select substances which selectively inhibit cancer DNA synthesis. Among them, alstonine, serpentine, sempervirine and flavopereirine, all alkaloids which belong to the Beta-carboline class, distinguish cancer DNA from healthy tissue DNA inhibit DNA in vitro synthesis when native DNA from different cancerous tissues or cells is used as template. They have practically no effect on DNA from healthy tissues. The inhibitory effect of alkaloids is due to their capacity to form an 'alkaloid-cancer DNA' complex which has been characterized by use of the Sephadex column. Evidence is presented showing that these alkaloids inhibit the initiation of DNA synthesis but not chain elongation. The stimulating action caused by carcinogens during cancer DNA in vitro synthesis may be prevented and reversed by alkaloids. Furthermore, the stimulating action of steroids during in vitro synthesis of hormone target tissue DNA might be neutralized by alkaloids. However, at relatively high doses, steroids reversibly compete with alkaloids for binding sites on breast cancer DNA. This is not observed with DNA from nonhormone target tissues.

  13. The antifibrogenic effect of (-)-epigallocatechin gallate results from the induction of de novo synthesis of glutathione in passaged rat hepatic stellate cells.

    PubMed

    Yumei, Fu; Zhou, Yajun; Zheng, Shizhong; Chen, Anping

    2006-07-01

    Hepatic stellate cells (HSC) are the major players during hepatic fibrogenesis. Overproduction of extracellular matrix (ECM) is a characteristic of activated HSC. Transforming growth factor-beta (TGF-beta) is the most potent fibrogenic cytokine while connective tissue growth factor (CTGF) mediates the production of TGF-beta-induced ECM in activated HSC. HSC activation and hepatic fibrogenesis are stimulated by oxidative stress. Glutathione (GSH) is the most important intracellular antioxidant. The aim of this study is to explore the mechanisms of (-)-epigallocatechin-3-gallate (EGCG), the major and most active component in green tea extracts, in the inhibition of ECM gene expression in activated HSC. It is hypothesized that EGCG inhibits ECM gene expression in activated HSC by interrupting TGF-beta signaling through attenuating oxidative stress. It is found that EGCG interrupts TGF-beta signaling in activated HSC by suppressing gene expression of type I and II TGF-beta receptors. EGCG inhibits CTGF gene expression, leading to the reduction in the abundance of ECM, including alphaI(I) procollagen. Exogenous CTGF dose dependently eliminates the antifibrogenic effect. EGCG attenuates oxidative stress in passaged HSC by scavenging reactive oxygen species and reducing lipid peroxidation. De novo synthesis of GSH is a prerequisite for EGCG to interrupt TGF-beta signaling and to reduce the abundance of alphaI(I) procollagen in activated HSC in vitro. Taken together, our results demonstrate that the interruption of TGF-beta signaling by EGCG results in the suppression of gene expression of CTGF and ECM in activated HSC in vitro. In addition, our results, for the first time, demonstrate that the antioxidant property of EGCG derived from de novo synthesis of intracellular GSH plays a critical role in its antifibrogenic effect. These results provide novel insights into the mechanisms of EGCG as an antifibrogenic candidate in the prevention and treatment of liver fibrosis.

  14. CD40 ligand-mediated activation of the de novo RelB NF-kappaB synthesis pathway in transformed B cells promotes rescue from apoptosis.

    PubMed

    Mineva, Nora D; Rothstein, Thomas L; Meyers, John A; Lerner, Adam; Sonenshein, Gail E

    2007-06-15

    CD40, a tumor necrosis factor receptor family member, is expressed on B lymphocytes. Interaction between CD40 and its ligand (CD40L), expressed on activated T lymphocytes, is critical for B cell survival. Here, we demonstrate that CD40 signals B cell survival in part via transcriptional activation of the RelB NF-kappaB subunit. CD40L treatment of chronic lymphocytic leukemia cells induced levels of relB mRNA. Similarly, CD40L-mediated rescue of WEHI 231 B lymphoma cells from apoptosis induced upon B cell receptor (surface IgM) engagement led to increased relB mRNA levels. Recently, we characterized a new de novo synthesis pathway for the RelB NF-kappaB subunit, induced by the cytomegalovirus IE1 protein, in which binding of p50/p65 NF-kappaB and c-Jun/Fra-2 AP-1 complexes to the relB promoter works in synergy to potently activate transcription (Wang, X., and Sonenshein, G. E. (2005) J. Virol. 79, 95-105). CD40L treatment of WEHI 231 cells caused induction of AP-1 family members Fra-2, c-Jun, JunD, and JunB. Cotransfection of Fra-2 with the Jun AP-1 subunits and p50/c-Rel NF-kappaB led to synergistic activation of the relB promoter. Ectopic expression of relB or RelB knockdown using small interfering RNA demonstrated the important role of this subunit in control of WEHI 231 cell survival and implicated activation of the anti-apoptotic factors Survivin and manganese superoxide dismutase. Thus, CD40 engagement of transformed B cells activates relB gene transcription via a process we have termed the de novo RelB synthesis pathway, which protects these cells from apoptosis.

  15. Aphidicolin inhibits DNA synthesis by DNA polymerase alpha and isolated nuclei by a similar mechanism.

    PubMed Central

    Krokan, H; Wist, E; Krokan, R H

    1981-01-01

    Aphidicolin is a selective inhibitor of DNA polymerase alpha. In contrast to earlier reports, the drug was found to inhibit DNA synthesis catalyzed by DNA polymerase alpha and isolated HeLa cell nuclei by a similar mechanism. For both systems aphidicolin primarily competed with dCTP incorporation. However, the apparent Vmax for dCTP incorporation was reduced by 50-60% at relatively low concentrations of aphidicolin, thus the mechanism of inhibition is complex. Furthermore, a 2-5 fold increase in apparent Km for dTTP was observed in the presence of aphidicolin, but the apparent Km values for dATP and dGTP were essentially unaltered. This, together with additional evidence, suggested that the mechanism of action of aphidicolin involves a strong competition with dCMP incorporation, a weaker competition with dTMP incorporation and very little, if any, competition with dGMP and dAMP incorporation. PMID:6795595

  16. FANCJ promotes DNA synthesis through G-quadruplex structures.

    PubMed

    Castillo Bosch, Pau; Segura-Bayona, Sandra; Koole, Wouter; van Heteren, Jane T; Dewar, James M; Tijsterman, Marcel; Knipscheer, Puck

    2014-11-03

    Our genome contains many G-rich sequences, which have the propensity to fold into stable secondary DNA structures called G4 or G-quadruplex structures. These structures have been implicated in cellular processes such as gene regulation and telomere maintenance. However, G4 sequences are prone to mutations particularly upon replication stress or in the absence of specific helicases. To investigate how G-quadruplex structures are resolved during DNA replication, we developed a model system using ssDNA templates and Xenopus egg extracts that recapitulates eukaryotic G4 replication. Here, we show that G-quadruplex structures form a barrier for DNA replication. Nascent strand synthesis is blocked at one or two nucleotides from the G4. After transient stalling, G-quadruplexes are efficiently unwound and replicated. In contrast, depletion of the FANCJ/BRIP1 helicase causes persistent replication stalling at G-quadruplex structures, demonstrating a vital role for this helicase in resolving these structures. FANCJ performs this function independently of the classical Fanconi anemia pathway. These data provide evidence that the G4 sequence instability in FANCJ(-/-) cells and Fancj/dog1 deficient C. elegans is caused by replication stalling at G-quadruplexes.

  17. Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells.

    PubMed

    Xu, H F; Luo, J; Zhao, W S; Yang, Y C; Tian, H B; Shi, H B; Bionaz, M

    2016-01-01

    Sterol regulatory element binding protein 1 (SREBP1; gene name SREBF1) is known to be the master regulator of lipid homeostasis in mammals, including milk fat synthesis. The major role of SREBP1 in controlling milk fat synthesis has been demonstrated in bovine mammary epithelial cells. Except for a demonstrated role in controlling the expression of FASN, a regulatory role of SREBP1 on milk fat synthesis is very likely, but has not yet been demonstrated in goat mammary epithelial cells (GMEC). To explore the regulatory function of SREBP1 on de novo fatty acids and triacylglycerol synthesis in GMEC, we overexpressed the mature form of SREBP1 (active NH2-terminal fragment) in GMEC using a recombinant adenovirus vector (Ad-nSREBP1), with Ad-GFP (recombinant adenovirus of green fluorescent protein) as control, and infected the GMEC for 48 h. In infected cells, we assessed the expression of 20 genes related to milk fat synthesis using real time-quantitative PCR, the protein abundance of SREBP1 and FASN by Western blot, the production of triacylglycerol, and the fatty acid profile. Expression of SREBF1 was modest in mammary compared with the other tissues in dairy goats but its expression increased approximately 30-fold from pregnancy to lactation. The overexpression of the mature form of SREBP1 was confirmed by >200-fold higher expression of SREBF1 in Ad-nSREBP1 compared with Ad-GFP. We observed no changes in amount of the precursor form of SREBP1 protein but a >10-fold increase of the mature form of SREBP1 protein with Ad-nSREBP1. Compared with Ad-GFP cells (control), Ad-nSREBP1 cells had a significant increase in expression of genes related to long-chain fatty acid activation (ACSL1), transport (FABP3), desaturation (SCD1), de novo synthesis of fatty acids (ACSS2, ACLY, IDH1, ACACA, FASN, and ELOVL6), and transcriptional factors (NR1H3 and PPARG). We observed a >10-fold increase in expression of INSIG1 but SCAP was downregulated by Ad-nSREBP1. Among genes related to

  18. De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation.

    PubMed

    Huang, Ya-Yi; Lee, Chueh-Pai; Fu, Jason L; Chang, Bill Chia-Han; Matzke, Antonius J M; Matzke, Marjori

    2014-09-04

    Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. We report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo, 61,152 in endosperm, and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 could be annotated in endosperm, and 26,064 could be annotated in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop.

  19. De Novo Transcriptome Sequence Assembly from Coconut Leaves and Seeds with a Focus on Factors Involved in RNA-Directed DNA Methylation

    PubMed Central

    Huang, Ya-Yi; Lee, Chueh-Pai; Fu, Jason L.; Chang, Bill Chia-Han; Matzke, Antonius J. M.; Matzke, Marjori

    2014-01-01

    Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. We report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo, 61,152 in endosperm, and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 could be annotated in endosperm, and 26,064 could be annotated in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop. PMID:25193496

  20. De Novo Synthesis of Benzenoid Compounds by the Yeast Hanseniaspora vineae Increases the Flavor Diversity of Wines.

    PubMed

    Martin, Valentina; Giorello, Facundo; Fariña, Laura; Minteguiaga, Manuel; Salzman, Valentina; Boido, Eduardo; Aguilar, Pablo S; Gaggero, Carina; Dellacassa, Eduardo; Mas, Albert; Carrau, Francisco

    2016-06-08

    Benzyl alcohol and other benzenoid-derived metabolites of particular importance in plants confer floral and fruity flavors to wines. Among the volatile aroma components in Vitis vinifera grape varieties, benzyl alcohol is present in its free and glycosylated forms. These compounds are considered to originate from grapes only and not from fermentative processes. We have found increased levels of benzyl alcohol in red Tannat wine compared to that in grape juice, suggesting de novo formation of this metabolite during vinification. In this work, we show that benzyl alcohol, benzaldehyde, p-hydroxybenzaldehyde, and p-hydroxybenzyl alcohol are synthesized de novo in the absence of grape-derived precursors by Hanseniaspora vineae. Levels of benzyl alcohol produced by 11 different H. vineae strains were 20-200 times higher than those measured in fermentations with Saccharomyces cerevisiae strains. These results show that H. vineae contributes to flavor diversity by increasing grape variety aroma concentration in a chemically defined medium. Feeding experiments with phenylalanine, tryptophan, tyrosine, p-aminobenzoic acid, and ammonium in an artificial medium were tested to evaluate the effect of these compounds either as precursors or as potential pathway regulators for the formation of benzenoid-derived aromas. Genomic analysis shows that the phenylalanine ammonia-lyase (PAL) and tyrosine ammonia lyase (TAL) pathways, used by plants to generate benzyl alcohols from aromatic amino acids, are absent in the H. vineae genome. Consequently, alternative pathways derived from chorismate with mandelate as an intermediate are discussed.

  1. Potassium channel openers stimulate DNA synthesis in mouse epidermal keratinocyte and whole hair follicle cultures.

    PubMed

    Harmon, C S; Lutz, D; Ducote, J

    1993-01-01

    We have conducted studies using primary mouse epidermal keratinocyte and whole hair follicle cultures to investigate the mechanism of the hypertrichotic activity of potassium channel openers. In a time course study, the extent of stimulation of epidermal keratinocyte DNA synthesis by minoxidil increased as the rate of DNA synthesis in control cultures declined. Minoxidil stimulation of DNA synthesis in 7-day cultures required prolonged (> 1 day) exposure to the agent. Pinacidil and diazoxide also stimulated DNA synthesis in mouse epidermal keratinocyte cultures. In addition, minoxidil, pinacidil, diazoxide, and cromakalim stimulated DNA synthesis in whole-organ cultures of mouse hair follicles. These results suggest that potassium channel openers retard the loss of proliferative activity of differentiating keratinocytes and support the hypothesis that these agents stimulate hair growth through a direct effect on hair follicles.

  2. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.

    PubMed

    Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi

    2016-07-15

    Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria.

  3. Misincorporation during DNA synthesis, analyzed by gel electrophoresis.

    PubMed Central

    Hillebrand, G G; McCluskey, A H; Abbott, K A; Revich, G G; Beattie, K L

    1984-01-01

    A method has been developed for simultaneous comparison of the propensity of a DNA polymerase to misincorporate at different points on a natural template-primer. In this method elongation of a [5'-32P] primer, annealed to a bacteriophage template strand, is carried out in the presence of only three dNTPs (highly purified by HPLC). Under these conditions the rate of primer elongation (monitored by gel electrophoresis/autoradiography) is limited by the rate of misincorporation at template positions complementary to the missing dNTP. Variations in the rate of elongation (revealed by autoradiographic banding patterns) reflect variations in the propensity for misincorporation at different positions along the template. The effect on primer elongation produced by addition of a chemically modified dNTP to 'minus' reactions reveals the mispairing potential of the modified nucleotide during DNA synthesis. By use of this electrophoretic assay of misincorporation we have demonstrated that the fidelity of E. coli DNA polymerase I varies greatly at different positions along a natural template, and that BrdUTP and IodUTP can be incorporated in place of dCTP during chain elongation catalyzed by this enzyme. Images PMID:6326053

  4. Study of stimulators of DNA synthesis in nerve tissue cells

    SciTech Connect

    Vitvitskii, V.N.

    1986-04-10

    Changes in proliferative activity in different regions of the brain during ontogenesis are connected with changes in the composition and properties of regulators of cell proliferation. Extracts of regions of the brain in which active cell division takes place in a given stage of development (cortex of 15- to 17-day-old embryos or cerebellum of 8- to 10-day-old rats) can stimulate the incorporation of labeled precursors into the brain cell DNA of both newborn and adult rats. Salting out at increasing ammonium sulfate concentrations, gel filtration on Sephadex, and isoelectric focusing led to the isolation of three fractions of stimulators of DNA synthesis: in acid, neutral, and alkaline pH regions. A method is described for obtaining purified preparations and for determining some physicochemical properties of the acid activator, which is a low-molecular-weight peptide capable of noticeably stimulating the incorporation of labeled precursors into the DNA of nerve tissue cells when added to an in vitro system in a concentration of the order of 1 ..mu..g/ml.

  5. Recursive construction of perfect DNA molecules and libraries from imperfect oligonucleotides.

    PubMed

    Linshiz, Gregory; Yehezkel, Tuval Ben; Shapiro, Ehud

    2012-01-01

    Making faultless complex objects from potentially faulty building blocks is a fundamental challenge in computer engineering, nanotechnology, and synthetic biology. We developed an error-correcting recursive construction procedure that attempts to address this challenge. Making DNA molecules from synthetic oligonucleotides using the procedure described here surpasses existing methods for de novo DNA synthesis in speed, precision, and amenability to automation. It provides for the first time a unified DNA construction platform for combining synthetic and natural DNA fragments, for constructing designer DNA libraries, and for making the faultless long synthetic DNA building blocks needed for de novo genome construction.

  6. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase [delta

    SciTech Connect

    Swan, Michael K.; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2009-09-25

    DNA polymerase {delta} (Pol {delta}) is a high-fidelity polymerase that has a central role in replication from yeast to humans. We present the crystal structure of the catalytic subunit of yeast Pol {delta} in ternary complex with a template primer and an incoming nucleotide. The structure, determined at 2.0-{angstrom} resolution, catches the enzyme in the act of replication, revealing how the polymerase and exonuclease domains are juxtaposed relative to each other and how a correct nucleotide is selected and incorporated. The structure also reveals the 'sensing' interactions near the primer terminus, which signal a switch from the polymerizing to the editing mode. Taken together, the structure provides a chemical basis for the bulk of DNA synthesis in eukaryotic cells and a framework for understanding the effects of cancer-causing mutations in Pol {delta}.

  7. H(2)O(2) increases de novo synthesis of (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin via GTP cyclohydrolase I and its feedback regulatory protein in vitiligo.

    PubMed

    Chavan, B; Beazley, W; Wood, J M; Rokos, H; Ichinose, H; Schallreuter, K U

    2009-02-01

    Patients with vitiligo accumulate up to 10(-3) mol/L concentrations of H(2)O(2) in their epidermis, which in turn affects many metabolic pathways in this compartment, including the synthesis and recycling of the cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (6BH(4)). De novo synthesis of 6BH(4) is dependent on the rate-limiting enzyme GTP cyclohydrolase I (GTPCHI) together with its feedback regulatory protein (GFRP). This step is controlled by 6BH(4) and the essential amino acid L-phenylalanine. In the study presented here we wanted to investigate whether H(2)O(2) affects the GTPCHI/GFRP cascade in these patients. Our results demonstrated concentration-dependent regulation of rhGTPCHI where 100 micromol/L H(2)O(2) was the optimum concentration for the activation of the enzyme and >300 micromol/L resulted in a decrease in activity. Oxidation of GFRP and GTPCHI does not affect feedback regulation via L-phenylalanine and 6BH(4). In vitiligo a constant upregulation of 6BH(4) de novo synthesis results from epidermal build up of L-phenylalanine that is not controlled by H(2)O(2). Taking the results together, 6BH(4) de novo synthesis is controlled by H(2)O(2) in a concentration-dependent manner, but H(2)O(2)-mediated oxidation does not affect the functionality of the GTPCHI/GFRP complex.

  8. Inhibition of adenovirus DNA synthesis in vitro by sera from patients with systemic lupus erythematosus

    SciTech Connect

    Horwitz, M.S.; Friefeld, B.R.; Keiser, H.D.

    1982-12-01

    Sera containing antinuclear antibodies from patients with systemic lupus erythematosus (SLE) and related disorders were tested for their effect on the synthesis of adenovirus (Ad) DNA in an in vitro replication system. After being heated at 60/sup 0/C for 1 h, some sera from patients with SLE inhibited Ad DNA synthesis by 60 to 100%. Antibodies to double-stranded DNA were present in 15 of the 16 inhibitory sera, and inhibitory activity copurified with anti-double-stranded DNA in the immunoglobulin G fraction. These SLE sera did not inhibit the DNA polymerases ..cap alpha.., BETA, ..gamma.. and had no antibody to the 72,000-dalton DNA-binding protein necessary for Ad DNA synthesis. The presence of antibodies to single-stranded DNA and a variety of saline-extractable antigens (Sm, Ha, nRNP, and rRNP) did not correlate with SLE serum inhibitory activity. Methods previously developed for studying the individual steps in Ad DNA replication were used to determine the site of inhibition by the SLE sera that contained antibody to double-stranded DNA. Concentrations of the SLE inhibitor that decreased the elongation of Ad DNA by greater than 85% had no effect on either the initiation of Ad DNA synthesis or the polymerization of the first 26 deoxyribonucleotides.

  9. A New Direct Single-Molecule Observation Method for DNA Synthesis Reaction Using Fluorescent Replication Protein A

    PubMed Central

    Takahashi, Shunsuke; Kawasaki, Shohei; Miyata, Hidefumi; Kurita, Hirofumi; Mizuno, Takeshi; Matsuura, Shun-ichi; Mizuno, Akira; Oshige, Masahiko; Katsura, Shinji

    2014-01-01

    Using a single-stranded region tracing system, single-molecule DNA synthesis reactions were directly observed in microflow channels. The direct single-molecule observations of DNA synthesis were labeled with a fusion protein consisting of the ssDNA-binding domain of a 70-kDa subunit of replication protein A and enhanced yellow fluorescent protein (RPA-YFP). Our method was suitable for measurement of DNA synthesis reaction rates with control of the ssλDNA form as stretched ssλDNA (+flow) and random coiled ssλDNA (−flow) via buffer flow. Sequentially captured photographs demonstrated that the synthesized region of an ssλDNA molecule monotonously increased with the reaction time. The DNA synthesis reaction rate of random coiled ssλDNA (−flow) was nearly the same as that measured in a previous ensemble molecule experiment (52 vs. 50 bases/s). This suggested that the random coiled form of DNA (−flow) reflected the DNA form in the bulk experiment in the case of DNA synthesis reactions. In addition, the DNA synthesis reaction rate of stretched ssλDNA (+flow) was approximately 75% higher than that of random coiled ssλDNA (−flow) (91 vs. 52 bases/s). The DNA synthesis reaction rate of the Klenow fragment (3′-5′exo–) was promoted by DNA stretching with buffer flow. PMID:24625741

  10. Evaluation of DNA synthesis with carbon-11-labeled 4′-thiothymidine

    PubMed Central

    Toyohara, Jun

    2016-01-01

    In the cancer research field, the preferred method for evaluating the proliferative activity of cancer cells in vivo is to measure DNA synthesis rates. The cellular proliferation rate is one of the most important cancer characteristics, and represents the gold standard of pathological diagnosis. Positron emission tomography (PET) has been used to evaluate in vivo DNA synthetic activity through visualization of enhanced nucleoside metabolism. However, methods for the quantitative measurement of DNA synthesis rates have not been fully clarified. Several groups have been engaged in research on 4′-[methyl-11C]-thiothymidine (11C-4DST) in an effort to develop a PET tracer that allows quantitative measurement of in vivo DNA synthesis rates. This mini-review summarizes the results of recent studies of the in vivo measurement of cancer DNA synthesis rates using 11C-4DST. PMID:27721942

  11. Mg deficiency results in modulation of serum lipids, glutathione, and NO synthase isozyme activation in cardiovascular tissues: relevance to de novo synthesis of ceramide, serum Mg and atherogenesis.

    PubMed

    Shah, Nilank C; Liu, Jian-Ping; Iqbal, Jahangir; Hussain, Mahmood; Jiang, Xian-Cheng; Li, Zhiqiang; Li, Yan; Zheng, Tao; Li, Wenyan; Sica, Anthony C; Perez-Albela, Jose Luis; Altura, Bella T; Altura, Burton M

    2011-01-01

    The present work tested the hypothesis that short-term (S-T) dietary deficiency of magnesium (Mg) (21 days) in rats would: 1) result in reduction in serum(s) sphingomyelin (SM) and changes in several blood lipids, HDL-cholesterol (HDL-C) and phosphatidylcholine (PC) concomitant with elevations in s cholesterol (chol), s LDL+VLDL and trigycerides (TG), as well as reduction in the PC/cholesterol ratio; 2) lead to oxidative stress, characterized by reductions in glutathione (glut) content in the various chambers of the heart and activation of e-NOS and n-NOS in the atria, ventricles and aortic smooth muscle (ASM); 3) produce early cardiac damage characterized by leakage of creatine kinase (CK) and lactic dehydrogenase (LDH); and 4) demonstrate that these pathophysiological changes are a result of profound reductions in s ionized Mg (Mg(2+)) and activation of the SM-ceramide pathway. In addition, we hypothesized that: 1) exposure of primary cultured vascular smooth muscle cells (VSMCs) to low extracellular Mg(2+) would lead to de novo synthesis of ceramide and activation of NO synthase with reduction in glut, both of which would be attenuated by inhibition of sphingomyelinase (SMase) and serine palmitoyl CoA transferase (SPT); and 2) low levels of Mg(2+)added to the drinking water would either prevent or ameliorate these manifestations. Our data indicate that S-T Mg deficiency resulted in reductions in s Mg(2+), SM, PC, HDL-C and the PC/chol ratio concomitant with decreases in tissue levels of glut, leakage of cardiac CK and LDH, as well as activation of e-NOS and n-NOS in all chambers of the heart and ASM. The greater the reduction in s Mg(2+), the greater the effects on all parameters analyzed; very significant correlations to levels of s SM and Mg(2+) were found with all of the serum and tissue biochemical -molecular analytes measured. Our experiments also showed that VSMCs exposed to low Mg(2+)resulted in activation of NO synthase, loss of glut and de novo

  12. Experimental colitis in rats induces de novo synthesis of cytokines at distant intestinal sites: role of capsaicin-sensitive primary afferent fibers.

    PubMed

    Mourad, Fadi H; Hamdi, Tamim; Barada, Kassem A; Saadé, Nayef E

    2016-06-01

    Increased levels of pro- and anti-inflammatory cytokines were observed in various segments of histologically-intact small intestine in animal models of acute and chronic colitis. Whether these cytokines are produced locally or spread from the inflamed colon is not known. In addition, the role of gut innervation in this upregulation is not fully understood. To examine whether cytokines are produced de novo in the small intestine in two rat models of colitis; and to investigate the role of capsaicin-sensitive primary afferents in the synthesis of these inflammatory cytokines. Colitis was induced by rectal instillation of iodoacetamide (IA) or trinitrobenzene sulphonic acid (TNBS) in adult Sprague-Dawley rats. Using reverse transcriptase (RT) and real-time PCR, TNF-α, and IL-10 mRNA expression was measured in mucosal scrapings of the duodenum, jejunum, ileum and colon at different time intervals after induction of colitis. Capsaicin-sensitive primary afferents (CSPA) were ablated using subcutaneous injections of capsaicin at time 0, 8 and 32 h, and the experiment was repeated at specific time intervals to detect any effect on cytokines expression. TNF-α mRNA expression increased by 3-40 times in the different intestinal segments (p<0.05 to p<0.001), 48h after IA-induced colitis. CSPA ablation completely inhibited this upregulation in the small intestine, but not in the colon. Similar results were obtained in TNBS-induced colitis at 24 h. Intestinal IL-10 mRNA expression significantly decreased at 12 h and then increased by 6-43 times (p<0.05 to p<0.001) 48h after IA administration. This increase was abolished in rats subjected to CSPA ablation except in the colon, where IL-10 further increased by twice (p<0.05). In the TNBS group, there was 4-12- and 4-7-fold increases in small intestinal IL-10 mRNA expression at 1 and 21 days after colitis induction, respectively (both p<0.01). This increase was not observed in rats pretreated with capsaicin. Capsaicin-treated and

  13. De novo DNA Methyltransferases Dnmt3a and Dnmt3b regulate the onset of Igκ light chain rearrangement during early B-cell development.

    PubMed

    Manoharan, Anand; Du Roure, Camille; Rolink, Antonius G; Matthias, Patrick

    2015-08-01

    Immunoglobulin genes V(D)J rearrangement during early lymphopoiesis is a critical process involving sequential recombination of the heavy and light chain loci. A number of transcription factors act together with temporally activated recombinases and chromatin accessibility changes to regulate this complex process. Here, we deleted the de novo DNA methyltransferases Dnmt3a and Dnmt3b in early B cells of conditionally targeted mice, and monitored the process of V(D)J recombination. Dnmt3a and Dnmt3b deletion resulted in precocious recombination of the immunoglobulin κ light chain without impairing the differentiation of mature B cells or overall B-cell development. Ex vivo culture of IL-7 restricted early B-cell progenitors lacking Dnmt3a and Dnmt3b showed precocious Vκ-Jκ rearrangements that are limited to the proximal Vκ genes. Furthermore, B-cell progenitors deficient in Dnmt3a and Dnmt3b showed elevated levels of germline transcripts at the proximal Vκ genes, alterations in methylation patterns at Igκ enhancer sites and increased expression of the transcription factor E2A. Our data suggest that Dnmt3a and Dnmt3b are critical to regulate the onset of Igκ light chain rearrangement during early B-cell development.

  14. Method and apparatus for synthesis of arrays of DNA probes

    DOEpatents

    Cerrina, Francesco; Sussman, Michael R.; Blattner, Frederick R.; Singh-Gasson, Sangeet; Green, Roland

    2002-04-23

    The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing an image former that includes a light source that provides light to a micromirror device comprising an array of electronically addressable micromirrors, each of which can be selectively tilted between one of at least two positions. Projection optics receives the light reflected from the micromirrors along an optical axis and precisely images the micromirrors onto the active surface of the substrate, which may be used to activate the surface of the substrate. The first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different pattern of micromirrors, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto. The micromirror array can be controlled in conjunction with a DNA synthesizer supplying appropriate reagents to a flow cell containing the active substrate to control the sequencing of images presented by the micromirror array in coordination of the reagents provided to the substrate.

  15. CyDNA: synthesis and replication of highly Cy-dye substituted DNA by an evolved polymerase.

    PubMed

    Ramsay, Nicola; Jemth, Ann-Sofie; Brown, Anthony; Crampton, Neal; Dear, Paul; Holliger, Philipp

    2010-04-14

    DNA not only transmits genetic information but can also serve as a versatile supramolecular scaffold. Here we describe a strategy for the synthesis and replication of DNA displaying hundreds of substituents using directed evolution of polymerase function by short-patch compartmentalized self-replication (spCSR) and the widely used fluorescent dye labeled deoxinucleotide triphosphates Cy3-dCTP and Cy5-dCTP as substrates. In just two rounds of spCSR selection, we have isolated a polymerase that allows the PCR amplification of double stranded DNA fragments up to 1kb, in which all dC bases are substituted by its fluorescent dye-labeled equivalent Cy3- or Cy5-dC. The resulting "CyDNA" displays hundreds of aromatic heterocycles on the outside of the DNA helix and is brightly colored and highly fluorescent. CyDNA also exhibits significantly altered physicochemical properties compared to standard B-form DNA, including loss of silica and intercalating dye binding, resistance to cleavage by some endonucleases, an up to 40% increased apparent diameter as judged by atomic force microscopy and organic phase partitioning during phenol extraction. CyDNA also displays very bright fluorescence enabling significant signal gains in microarray and microfluidic applications. CyDNA represents a step toward a long-term goal of the encoded synthesis of DNA-based polymers of programmable and evolvable sequence and properties.

  16. tRNA synthase suppression activates de novo cysteine synthesis to compensate for cystine and glutathione deprivation during ferroptosis.

    PubMed

    Shimada, Kenichi; Stockwell, Brent R

    2016-03-01

    Glutathione is a major endogenous reducing agent in cells, and cysteine is a limiting factor in glutathione synthesis. Cysteine is obtained by uptake or biosynthesis, and mammalian cells often rely on either one or the other pathway. Because of the scarcity of glutathione, blockade of cysteine uptake causes oxidative cell death known as ferroptosis. A new study suggests that tRNA synthetase suppression activates the endogenous biosynthesis of cysteine, compensates such cysteine loss, and thus makes cells resistant to ferroptosis.

  17. One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network.

    PubMed

    Wei, Gang; Zhou, Hualan; Liu, Zhiguo; Song, Yonghai; Wang, Li; Sun, Lanlan; Li, Zhuang

    2005-05-12

    Here, we describe a one-step synthesis of silver nanoparticles, nanorods, and nanowires on DNA network surface in the absence of surfactant. Silver ions were first adsorbed onto the DNA network and then reduced in sodium borohydride solution. Silver nanoparticles, nanorods, and nanowires were formed by controlling the size of pores of the DNA network. The diameter of the silver nanoparticles and the aspect ratio of the silver nanorods and nanowires can be controlled by adjusting the DNA concentration and reduction time.

  18. Heterotrophic bicarbonate assimilation is the main process of de novo organic carbon synthesis in hadal zone of the Hellenic Trench, the deepest part of Mediterranean Sea.

    PubMed

    Yakimov, Michail M; La Cono, Violetta; Smedile, Francesco; Crisafi, Francesca; Arcadi, Erika; Leonardi, Marcella; Decembrini, Franco; Catalfamo, Maurizio; Bargiela, Rafael; Ferrer, Manuel; Golyshin, Peter N; Giuliano, Laura

    2014-12-01

    Ammonium-oxidizing chemoautotrophic members of Thaumarchaea are proposed to be the key players in the assimilation of bicarbonate in the dark (ABD). However, this process may also involve heterotrophic metabolic pathways, such as fixation of carbon dioxide (CO2) via various anaplerotic reactions. We collected samples from the depth of 4900 m at the Matapan-Vavilov Deep (MVD) station (Hellenic Trench, Eastern Mediterranean) and used the multiphasic approach to study the ABD mediators in this deep-sea ecosystem. At this depth, our analysis indicated the occurrence of actively CO2-fixing heterotrophic microbial assemblages dominated by Gammaproteobacteria with virtually no Thaumarchaea present. [14C]-bicarbonate incorporation experiments combined with shotgun [14C]-proteomic analysis identified a series of proteins of gammaproteobacterial origin. More than quarter of them were closely related with Alteromonas macleodii ‘deep ecotype’ AltDE, the predominant organism in the microbial community of MVD. The present study demonstrated that in the aphotic/hadal zone of the Mediterranean Sea, the assimilation of bicarbonate is associated with both chemolithoauto- and heterotrophic ABD. In some deep-sea areas, the latter may predominantly contribute to the de novo synthesis of organic carbon which points at the important and yet underestimated role heterotrophic bacterial populations can play the in global carbon cycle/sink in the ocean interior.

  19. Adipose weight gain during chronic insulin treatment of mice results from changes in lipid storage without affecting de novo synthesis of palmitate.

    PubMed

    Frikke-Schmidt, Henriette; Pedersen, Thomas Åskov; Fledelius, Christian; Olsen, Grith Skytte; Hellerstein, Marc

    2013-01-01

    Insulin treatment is associated with increased adipose mass in both humans and mice. However, the underlying dynamic basis of insulin induced lipid accumulation in adipose tissue remains elusive. To assess this, young female C57BL6/J mice were fed a low fat diet for 3 weeks, treated subsequently with 7 days of constant subcutaneous insulin infusion by osmotic minipumps and compared to mice with only buffer infused. To track changes in lipid deposition during insulin treatment, metabolic labeling was conducted with heavy water for the final 4 days. Blood glucose was significantly lowered within one hour after implantation of insulin loaded mini pumps and remained lower throughout the study. Insulin treated animals gained significantly more weight during treatment and the mean weight of the subcutaneous adipose depots was significantly higher with the highest dose of insulin. Surprisingly, de novo palmitate synthesis within the subcutaneous and the gonadal depots was not affected significantly by insulin treatment. In contrast insulin treatment caused accumulation of triglycerides in both depots due to either deposition of newly synthesised triglycerides (subcutaneous depot) or inhibition of lipolysis (gonadal depot).

  20. Contribution of de novo synthesis of Gαs-proteins to 1-methyladenine production in starfish ovarian follicle cells stimulated by relaxin-like gonad-stimulating substance.

    PubMed

    Mita, Masatoshi; Haraguchi, Shogo; Uzawa, Haruka; Tsutsui, Kazuyoshi

    2013-11-01

    In starfish, the peptide hormone gonad-stimulating substance (GSS) secreted from nervous tissue stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) production by ovarian follicle cells. The hormonal action of GSS on follicle cells involves its receptor, G-proteins and adenylyl cyclase. However, GSS failed to induce 1-MeAde and cAMP production in follicle cells of ovaries during oogenesis. At the maturation stage, follicle cells acquired the potential to respond to GSS by producing 1-MeAde and cAMP. Adenylyl cyclase activity in follicle cells of fully grown stage ovaries was also stimulated by GSS in the presence of GTP. These activations depended on the size of oocytes in ovaries. The α subunit of Gs-proteins was not detected immunologically in follicle cells of oogenesis stage ovaries, although Gαi and Gαq were detectable. Using specific primers for Gαs and Gαi, expression levels of Gαs in follicle cells were found to increase significantly as the size of oocytes in ovaries increased, whereas the mRNA levels of Gαi were almost constant regardless of oocyte size. These findings strongly suggest the potential of follicle cells to respond to GSS by producing 1-MeAde and cAMP is brought by de novo synthesis of Gαs-proteins.

  1. De novo synthesis of ubiquitin carboxyl-terminal hydrolase isozyme l1 in rostral ventrolateral medulla is crucial to survival during mevinphos intoxication.

    PubMed

    Chang, Chi; Chang, Alice Y W; Chan, Samuel H H

    2004-12-01

    Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1) is a deubiquitinating enzyme that is responsible for making ubiquitin, which is required to target proteins for degradation by the ubiquitin-proteasome pathway in neurons, available. We investigated whether UCH-L1 plays a neuroprotective role at the rostral ventrolateral medulla (RVLM), the origin of sympathetic neurogenic vasomotor tone in the medulla oblongata where the organophosphate insecticide mevinphos (Mev) acts to elicit cardiovascular toxicity. In Sprague-Dawley rats maintained under propofol anesthesia, Mev (960 microg/kg, i.v.) induced a parallel and progressive augmentation in UCH-L1 or ubiquitin expression at the ventrolateral medulla during the course of Mev intoxication. The increase in UCH-L1 level was significantly blunted on pretreatment with bilateral microinjection into the RVLM of a transcription inhibitor, actinomycin D (5 nmol), or a translation inhibitor, cycloheximide (20 nmol). Compared with aCSF or sense oligonucleotide (100 pmol) pretreatment, microinjection of an antisense uch-L1 oligonucleotide (100 pmol) bilaterally into the RVLM significantly increased mortality, reduced the duration of the "pro-life" phase, blunted the increase in ubiquitin expression in ventrolateral medulla, and augmented the induced hypotension in rats that received Mev. These findings suggest that de novo synthesis of UCH-L1, leading to an enhanced disassembly of ubiquitin-protein conjugates in the RVLM, is essential to maintenance of the "pro-life" phase of Mev intoxication via prevention of cardiovascular depression, leading to neuroprotection.

  2. An inhibitor of the kinesin spindle protein activates the intrinsic apoptotic pathway independently of p53 and de novo protein synthesis.

    PubMed

    Tao, Weikang; South, Victoria J; Diehl, Ronald E; Davide, Joseph P; Sepp-Lorenzino, Laura; Fraley, Mark E; Arrington, Kenneth L; Lobell, Robert B

    2007-01-01

    The kinesin spindle protein (KSP), a microtubule motor protein, is essential for the formation of bipolar spindles during mitosis. Inhibition of KSP activates the spindle checkpoint and causes apoptosis. It was shown that prolonged inhibition of KSP activates Bax and caspase-3, which requires a competent spindle checkpoint and couples with mitotic slippage. Here we investigated how Bax is activated by KSP inhibition and the roles of Bax and p53 in KSP inhibitor-induced apoptosis. We demonstrate that small interfering RNA-mediated knockdown of Bax greatly attenuates KSP inhibitor-induced apoptosis and that Bax activation is upstream of caspase activation. This indicates that Bax mediates the lethality of KSP inhibitors and that KSP inhibition provokes apoptosis via the intrinsic apoptotic pathway where Bax activation is prior to caspase activation. Although the BH3-only protein Puma is induced after mitotic slippage, suppression of de novo protein synthesis that abrogates Puma induction does not block activation of Bax or caspase-3, indicating that Bax activation is triggered by a posttranslational event. Comparison of KSP inhibitor-induced apoptosis between matched cell lines containing either functional or deficient p53 reveals that inhibition of KSP induces apoptosis independently of p53 and that p53 is dispensable for spindle checkpoint function. Thus, KSP inhibitors should be active in p53-deficient tumors.

  3. DNA and RNA Synthesis in Animal Cells in Culture--Methods for Use in Schools

    ERIC Educational Resources Information Center

    Godsell, P. M.; Balls, M.

    1973-01-01

    Describes the experimental procedures used for detecting DNA and RNA synthesis in xenopus cells by autoradiography. The method described is suitable for senior high school laboratory classes or biology projects, if supervised by a teacher qualified to handle radioisotopes. (JR)

  4. Synthesis of a major mitomycin C DNA adduct via a triaminomitosene.

    PubMed

    Champeil, Elise; Paz, Manuel M; Lukasiewicz, Elaan; Kong, Wan S; Watson, Stephanie; Sapse, Anne-Marie

    2012-12-01

    We report here the synthesis of two amino precursors for the production of mitomycin C and 10-decarbamoylmitomycin C DNA adducts with opposite stereochemistry at C-1. The triamino mitosene precursors were synthesized in 5 steps from mitomycin C. In addition synthesis of the major mitomycin C-DNA adduct has been accomplished via coupling of a triaminomitosene with 2-fluoro-O(6)-(2-p-nitrophenylethyl)deoxyinosine followed by deprotection at the N(2) and O(6) positions.

  5. Nucleotide sequence of a preferred maize chloroplast genome template for in vitro DNA synthesis.

    PubMed Central

    Gold, B; Carrillo, N; Tewari, K K; Bogorad, L

    1987-01-01

    Maize chloroplast DNA sequences representing 94% of the chromosome have been surveyed for their activity as autonomously replicating sequences in yeast and as templates for DNA synthesis in vitro by a partially purified chloroplast DNA polymerase. A maize chloroplast DNA region extending over about 9 kilobase pairs is especially active as a template for the DNA synthesis reaction. Fragments from within this region are much more active than DNA from elsewhere in the chromosome and 50- to 100-fold more active than DNA of the cloning vector pBR322. The smallest of the strongly active subfragments that we have studied, the 1368-base-pair EcoRI fragment x, has been sequenced and found to contain the coding region of chloroplast ribosomal protein L16. EcoRI fragment x shows sequence homology with a portion of the Chlamydomonas reinhardtii chloroplast chromosome that forms a displacement loop [Wang, X.-M., Chang, C.H., Waddell, J. & Wu, M. (1984) Nucleic Acids Res. 12, 3857-3872]. Maize chloroplast DNA fragments that permit autonomous replication of DNA in yeast are not active as templates for DNA synthesis in the in vitro assay. The template active region we have identified may represent one of the origins of replication of maize chloroplast DNA. Images PMID:3025853

  6. Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips.

    PubMed

    Kosuri, Sriram; Eroshenko, Nikolai; Leproust, Emily M; Super, Michael; Way, Jeffrey; Li, Jin Billy; Church, George M

    2010-12-01

    Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.

  7. Inhibition of mouse peritoneal macrophage DNA synthesis by infection with the Arenavirus Pichinde. Interim report

    SciTech Connect

    Friedlander, A.M.; Jahrling, P.B.; Merrill, P.; Tobery, S.

    1983-01-19

    Macrophage DNA synthesis and proliferation occur during the development of cell-mediated immunity and in the early non-specific reaction to infection. Arenaviruses have a predilection for infection of cells of the reticuloendothelial system and in this study we have examined the effect of the arenavirus Pichinde on macrophage DNA synthesis. We have found that infection of mouse peritoneal macrophages with Pichinde caused a profound dose dependent inhibition of the DNA synthesis induced by macrophage growth factor/colony stimulating factor. At a multiplicity of inoculum of five there is a 75-95% inhibition of DNA synthesis. Viable virus is necessary for inhibition since Pichinde inactivated by heat or cobalt irradiation had no effect. Similarly, virus pre-treated with an antiserum to Pichinde was without inhibitory effect. Inhibition was demonstrated by measuring DNA synthesis spectrofluorometrically as well as by 3H-thymidine incorporation. The inhibition of DNA synthesis was not associated with any cytopathology. There was no evidence that the inhibition was due to soluble factors, such as prostaglandins or interferon, released by infected cells. These studies demonstrate, for the first time in vitro, a significant alteration in macrophage function caused by infection with an arenavirus. It is possible that inhibition of macrophage proliferation represents a mechanism by which some microorganisms interfere with host resistance.

  8. RecG Directs DNA Synthesis during Double-Strand Break Repair.

    PubMed

    Azeroglu, Benura; Mawer, Julia S P; Cockram, Charlotte A; White, Martin A; Hasan, A M Mahedi; Filatenkova, Milana; Leach, David R F

    2016-02-01

    Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR) that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may occur with deleterious consequences. The RecG protein of Escherichia coli is a helicase and translocase that can re-model 3-way and 4-way DNA structures such as replication forks and Holliday junctions. However, the primary role of RecG in live cells has remained elusive. Here we show that, in the absence of RecG, attempted DSBR is accompanied by divergent DNA replication at the site of an induced chromosomal DNA double-strand break. Furthermore, DNA double-stand ends are generated in a recG mutant at sites known to block replication forks. These double-strand ends, also trigger DSBR and the divergent DNA replication characteristic of this mutant, which can explain over-replication of the terminus region of the chromosome. The loss of DNA associated with unwinding joint molecules previously observed in the absence of RuvAB and RecG, is suppressed by a helicase deficient PriA mutation (priA300), arguing that the action of RecG ensures that PriA is bound correctly on D-loops to direct DNA replication rather than to unwind joint molecules. This has led us to put forward a revised model of homologous recombination in which the re-modelling of branched intermediates by RecG plays a fundamental role in directing DNA synthesis and thus maintaining genomic stability.

  9. Sugar-oligoamides: synthesis of DNA minor groove binders.

    PubMed

    Badía, Concepción; Souard, Florence; Vicent, Cristina

    2012-12-07

    Sugar-oligoamides have been designed and synthesized as structurally simple carbohydrate-based ligands to study carbohydrate-minor groove DNA interactions. Here we report an efficient solution-phase synthetic strategy to obtain two broad families of sugar-oligoamides. The first type, structure vector A (-Py[Me]-γ-Py-Ind), has a methyl group present as a substituent on the nitrogen of pyrrole B, connected to the C terminal of the oligoamide fragment. The second type, structure vector B (-Py[(CH(2))(11)OH]-γ-Py-Ind), has an alkyl chain present on the nitrogen of pyrrole B connected to the C terminal of the oligoamide fragment and has been designed to access to di- and multivalent sugar-oligoamides. By using sequential DIPC/HOBt coupling reactions, the oligoamide fragment -Py[R]-γ-Py-Ind has been constructed. The last coupling reaction between the anomeric amino sugar and the oligoamide fragment was carried out by activating the acid derivative as a BtO- ester, which has been performed by using TFFH. The isolated esters (BtO-Py[R]-γ-Py-Ind) were coupled with selected amino sugars using DIEA in DMF. The synthesis of two different selective model vectors (vector A (1) and vector B (2)) and two types of water-soluble sugar-oligoamide ligands, with vector A structure (compounds 3-7) and with vector B structure (compound 8), was carried out.

  10. Acyl-chain remodeling of dioctanoyl-phosphatidylcholine in Saccharomyces cerevisiae mutant defective in de novo and salvage phosphatidylcholine synthesis

    SciTech Connect

    Kishino, Hideyuki; Eguchi, Hiroki; Takagi, Keiko; Horiuchi, Hiroyuki; Fukuda, Ryouichi; Ohta, Akinori

    2014-03-07

    Highlights: • Dioctanoyl-PC (diC8PC) supported growth of a yeast mutant defective in PC synthesis. • diC8PC was converted to PC species containing longer acyl residues in the mutant. • Both acyl residues of diC8PC were replaced by longer fatty acids in vitro. • This system will contribute to the elucidation of the acyl chain remodeling of PC. - Abstract: A yeast strain, in which endogenous phosphatidylcholine (PC) synthesis is controllable, was constructed by the replacement of the promoter of PCT1, encoding CTP:phosphocholine cytidylyltransferase, with GAL1 promoter in a double deletion mutant of PEM1 and PEM2, encoding phosphatidylethanolamine methyltransferase and phospholipid methyltransferase, respectively. This mutant did not grow in the glucose-containing medium, but the addition of dioctanoyl-phosphatidylcholine (diC8PC) supported its growth. Analyses of the metabolism of {sup 13}C-labeled diC8PC ((methyl-{sup 13}C){sub 3}-diC8PC) in this strain using electrospray ionization tandem mass spectrometry revealed that it was converted to PC species containing acyl residues of 16 or 18 carbons at both sn-1 and sn-2 positions. In addition, both acyl residues of (methyl-{sup 13}C){sub 3}-diC8PC were replaced with 16:1 acyl chains in the in vitro reaction using the yeast cell extract in the presence of palmitoleoyl-CoA. These results indicate that PC containing short acyl residues was remodeled to those with acyl chains of physiological length in yeast.

  11. Synthesis, integration, and restriction and modification of mycoplasma virus L2 DNA

    SciTech Connect

    Dybvig, K.

    1981-01-01

    Mycoplasma virus L2 is an enveloped, nonlytic virus containing double-stranded, superhelical DNA. The L2 virion contains about 7 to 8 major proteins identified by SDS-polyacrylamide gel electrophoresis, but the virion has no discernible capsid structure. It has been suggested that the L2 virion is a DNA-protein condensation surrounded by a lipid-protein membrane. The host for mycoplasma virus L2 is Acholeplasma laidlawii. A. laidlawii has no cell wall and contains a small genome, 1 x 10/sup 9/ daltons, which is two to three times smaller than that of most bacteria. Infection of A. laidlawii by L2 is nonlytic. The studies in this thesis show that L2 DNA synthesis begins at about 1 hour of infection and lasts throughout the infection. Viral DNA synthesis is inhibited by chloramphenicol, streptomycin, and novobiocin. Packaging of L2 DNA into progeny virus is also inhibited by chloramphenicol and novobiocin. It is concluded that protein synthesis and probably DNA gyrase activity are required for L2 DNA synthesis, and for packaging of L2 DNA into progeny virus. DNA-DNA hybridization studies demonstrate that L2 DNA integrates into the host cell during infection, and subsequent to infection the cells are mycoplasma virus L2 lysogens. The viral site of integration has been roughly mapped. L2 virus is restricted and modified by A. laidlawii strains JA1 and K2. The nature of the modification in strain K2 has been elucidated. Two L2 variants containing insertions in the viral DNA were identified in these studies. Restriction endonuclease cleavage maps of these variants have been determined. DNA from L2 and another isolate of L2, MV-Lg-L 172, are compared in these studies. 74 references, 33 figures, 6 tables. (ACR)

  12. De novo protein synthesis is required for lytic cycle reactivation of Epstein-Barr virus, but not Kaposi's sarcoma-associated herpesvirus, in response to histone deacetylase inhibitors and protein kinase C agonists.

    PubMed

    Ye, Jianjiang; Gradoville, Lyndle; Daigle, Derek; Miller, George

    2007-09-01

    The oncogenic human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), are latent in cultured lymphoma cells. We asked whether reactivation from latency of either virus requires de novo protein synthesis. Using Northern blotting and quantitative reverse transcriptase PCR, we measured the kinetics of expression of the lytic cycle activator genes and determined whether abundance of mRNAs encoding these genes from either virus was reduced by treatment with cycloheximide (CHX), an inhibitor of protein synthesis. CHX blocked expression of mRNAs of EBV BZLF1 and BRLF1, the two EBV lytic cycle activator genes, when HH514-16 Burkitt lymphoma cells were treated with histone deacetylase (HDAC) inhibitors, sodium butyrate or trichostatin A, or a DNA methyltransferase inhibitor, 5-Aza-2'-deoxycytidine. CHX also inhibited EBV lytic cycle activation in B95-8 marmoset lymphoblastoid cells by phorbol ester phorbol-12-myristate-13-acetate (TPA). EBV lytic cycle induction became resistant to CHX between 4 and 6 h after application of the inducing stimulus. KSHV lytic cycle activation, as assessed by ORF50 mRNA expression, was rapidly induced by the HDAC inhibitors, sodium butyrate and trichostatin A, in HH-B2 primary effusion lymphoma cells. In HH-B2 cells, CHX did not inhibit, but enhanced, expression of the KSHV lytic cycle activator gene, ORF50. In BC-1, a primary effusion lymphoma cell line that is dually infected with EBV and KSHV, CHX blocked EBV BRLF1 lytic gene expression induced by TPA and sodium butyrate; KSHV ORF50 mRNA induced simultaneously in the same cells by the same inducing stimuli was resistant to CHX. The experiments show, for the cell lines and inducing agents studied, that the EBV BZLF1 and BRLF1 genes do not behave with "immediate-early" kinetics upon reactivation from latency. KSHV ORF50 is a true "immediate-early" gene. Our results indicate that the mechanism by which HDAC inhibitors and TPA induce lytic cycle

  13. Synthesis of DNA mimics representing HypNA-pPNA hetero-oligomers.

    PubMed

    Efimov, Vladimir A; Chakhmakhcheva, Oksana G

    2005-01-01

    The methods for the synthesis and purification of negatively charged peptide nucleic acid (PNA)-relative deoxyribonucleic acid (DNA) mimics containing alternating residues of phosphono peptide nucleic acid (pPNA) monomers and PNA-like monomers on the base of trans-4-hydroxy-L-proline are described. Examples of the chimeric oligomers hybridization with complementary DNA and ribonucleic acid fragments are demonstrated.

  14. Differential requirements of hippocampal de novo protein and mRNA synthesis in two long-term spatial memory tests: Spontaneous place recognition and delay-interposed radial maze performance in rats

    PubMed Central

    Ozawa, Takaaki; Yamada, Kazuo; Ichitani, Yukio

    2017-01-01

    Hippocampal de novo mRNA and protein synthesis has been suggested to be critical for long-term spatial memory. However, its requirement in each memory process (i.e. encoding, consolidation and retrieval) and the differences in the roles of de novo mRNA and protein synthesis in different situations where spatial memory is tested have not been thoroughly investigated. To address these questions, we examined the effects of hippocampal administration of the protein synthesis inhibitors, anisomycin (ANI) and emetine (EME), as well as that of an mRNA synthesis inhibitor, 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DRB), on rat performance in two long-term spatial memory tests. In a spontaneous place recognition test with a 6 h delay, ANI, administered either before or immediately after the sample phase, but not before the test phase, eliminated the exploratory preference for the object in a novel place. This amnesic effect was replicated by both EME and DRB. In a 6 h delay-interposed radial maze task, however, administering ANI before the first-half and before the second-half, but not immediately or 2 h after the first-half, impaired performance in the second-half. This disruptive effect of ANI was successfully replicated by EME. However, DRB administered before the first-half performance did not impair the second-half performance, while it did impair it if injected before the second-half. None of these drugs caused amnesic effects during the short (5 min)/non-delayed conditions in either tests. These results suggest that 1) hippocampal protein synthesis is required for the consolidation of spatial memory, while mRNA synthesis is not necessarily required, and 2) hippocampal mRNA and protein synthesis requirement for spatial memory retrieval depends on the types of memory tested, probably because their demands are different. PMID:28178292

  15. Differential requirements of hippocampal de novo protein and mRNA synthesis in two long-term spatial memory tests: Spontaneous place recognition and delay-interposed radial maze performance in rats.

    PubMed

    Ozawa, Takaaki; Yamada, Kazuo; Ichitani, Yukio

    2017-01-01

    Hippocampal de novo mRNA and protein synthesis has been suggested to be critical for long-term spatial memory. However, its requirement in each memory process (i.e. encoding, consolidation and retrieval) and the differences in the roles of de novo mRNA and protein synthesis in different situations where spatial memory is tested have not been thoroughly investigated. To address these questions, we examined the effects of hippocampal administration of the protein synthesis inhibitors, anisomycin (ANI) and emetine (EME), as well as that of an mRNA synthesis inhibitor, 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DRB), on rat performance in two long-term spatial memory tests. In a spontaneous place recognition test with a 6 h delay, ANI, administered either before or immediately after the sample phase, but not before the test phase, eliminated the exploratory preference for the object in a novel place. This amnesic effect was replicated by both EME and DRB. In a 6 h delay-interposed radial maze task, however, administering ANI before the first-half and before the second-half, but not immediately or 2 h after the first-half, impaired performance in the second-half. This disruptive effect of ANI was successfully replicated by EME. However, DRB administered before the first-half performance did not impair the second-half performance, while it did impair it if injected before the second-half. None of these drugs caused amnesic effects during the short (5 min)/non-delayed conditions in either tests. These results suggest that 1) hippocampal protein synthesis is required for the consolidation of spatial memory, while mRNA synthesis is not necessarily required, and 2) hippocampal mRNA and protein synthesis requirement for spatial memory retrieval depends on the types of memory tested, probably because their demands are different.

  16. Aphidicolin does not inhibit DNA repair synthesis in ultraviolet-irradiated HeLa cells. A radioautographic study.

    PubMed Central

    Hardt, N; Pedrali-Noy, G; Focher, F; Spadari, S

    1981-01-01

    A radioautographic examination of nuclear DNA synthesis in unirradiated and u.v.-irradiated HeLa cells, in the presence and in the absence of aphidicolin, showed that aphidicolin inhibits nuclear DNA replication and has no detectable effect on DNA repair synthesis. Although the results establish that in u.v.-irradiated HeLa cells most of the DNA repair synthesis is not due to DNA polymerase alpha, they do not preclude a significant role for this enzyme in DNA repair processes. Images PLATE 1 PMID:6803764

  17. Autonomous Multistep Organic Synthesis in a Single Isothermal Solution Mediated by a DNA Walker

    PubMed Central

    He, Yu; Liu, David R.

    2010-01-01

    Multistep synthesis in the laboratory typically requires numerous reaction vessels, each containing a different set of reactants. In contrast, cells are capable of performing highly efficient and selective multistep biosynthesis under mild conditions with all reactants simultaneously present in solution. If the latter approach could be applied in the laboratory, it may improve the ease, speed, and efficiency of multistep reaction sequences. Here we show that a DNA mechanical device— a DNA walker moving along a DNA track— can be used to perform a series of amine acylation reactions in a single solution without any external intervention. The multistep products generated by this primitive ribosome mimetic are programmed by the sequence of the DNA track, are unrelated to the structure of DNA, and are formed with speeds and overall yields significantly greater than those previously achieved by multistep DNA-templated small-molecule synthesis. PMID:20935654

  18. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities.

    PubMed

    Farha, Omar K; Yazaydın, A Özgür; Eryazici, Ibrahim; Malliakas, Christos D; Hauser, Brad G; Kanatzidis, Mercouri G; Nguyen, SonBinh T; Snurr, Randall Q; Hupp, Joseph T

    2010-11-01

    Metal-organic frameworks--a class of porous hybrid materials built from metal ions and organic bridges--have recently shown great promise for a wide variety of applications. The large choice of building blocks means that the structures and pore characteristics of the metal-organic frameworks can be tuned relatively easily. However, despite much research, it remains challenging to prepare frameworks specifically tailored for particular applications. Here, we have used computational modelling to design and predictively characterize a metal-organic framework (NU-100) with a particularly high surface area. Subsequent experimental synthesis yielded a material, matching the calculated structure, with a high BET surface area (6,143 m(2) g(-1)). Furthermore, sorption measurements revealed that the material had high storage capacities for hydrogen (164 mg g(-1)) and carbon dioxide (2,315 mg g(-1))--gases of high importance in the contexts of clean energy and climate alteration, respectively--in excellent agreement with predictions from modelling.

  19. Repair synthesis by human cell extracts in DNA damaged by cis- and trans-diamminedichloroplatinum(II).

    PubMed Central

    Hansson, J; Wood, R D

    1989-01-01

    DNA damage was induced in closed circular plasmid DNA by treatment with cis- or trans-diamminedichloroplatinum(II). These plasmids were used as substrates in reactions to give quantitative measurements of DNA repair synthesis mediated by cell free extracts from human lymphoid cell lines. Adducts induced by both drugs stimulated repair synthesis in a dose dependent manner by an ATP-requiring process. Measurements by an isopycnic gradient sedimentation method gave an upper limit for the average patch sizes in this in vitro system of around 140 nucleotides. It was estimated that up to 3% of the drug adducts induce the synthesis of a repair patch. The repair synthesis is due to repair of a small fraction of frequent drug adducts, rather than extensive repair of a rare subclass of lesions. Nonspecific DNA synthesis in undamaged plasmids, caused by exonucleolytic degradation and resynthesis, was reduced by repeated purification of intact circular forms. An extract made from cells belonging to xeroderma pigmentosum complementation group A was deficient in repair synthesis in response to the presence of cis- or trans-diamminedichloroplatinum(II) adducts in DNA. Images PMID:2554251

  20. De novo synthesis and functional analysis of the phosphatase-encoding gene acI-B of uncultured Actinobacteria from Lake Stechlin (NE Germany).

    PubMed

    Srivastava, Abhishek; McMahon, Katherine D; Stepanauskas, Ramunas; Grossart, Hans-Peter

    2015-12-01

    The National Center for Biotechnology Information [http://www.ncbi.nlm.nih.gov/guide/taxonomy/] database enlists more than 15,500 bacterial species. But this also includes a plethora of uncultured bacterial representations. Owing to their metabolism, they directly influence biogeochemical cycles, which underscores the the important status of bacteria on our planet. To study the function of a gene from an uncultured bacterium, we have undertaken a de novo gene synthesis approach. Actinobacteria of the acI-B subcluster are important but yet uncultured members of the bacterioplankton in temperate lakes of the northern hemisphere such as oligotrophic Lake Stechlin (NE Germany). This lake is relatively poor in phosphate (P) and harbors on average ~1.3 x 10 6 bacterial cells/ml, whereby Actinobacteria of the ac-I lineage can contribute to almost half of the entire bacterial community depending on seasonal variability. Single cell genome analysis of Actinobacterium SCGC AB141-P03, a member of the acI-B tribe in Lake Stechlin has revealed several phosphate-metabolizing genes. The genome of acI-B Actinobacteria indicates potential to degrade polyphosphate compound. To test for this genetic potential, we targeted the exoP-annotated gene potentially encoding polyphosphatase and synthesized it artificially to examine its biochemical role. Heterologous overexpression of the gene in Escherichia coli and protein purification revealed phosphatase activity. Comparative genome analysis suggested that homologs of this gene should be also present in other Actinobacteria of the acI lineages. This strategic retention of specialized genes in their genome provides a metabolic advantage over other members of the aquatic food web in a P-limited ecosystem. [Int Microbiol 2016; 19(1):39-47].

  1. Regulatory interactions between phospholipid synthesis and DNA replication in Caulobacter crescentus.

    PubMed Central

    Loewy, B; Marczynski, G T; Dingwall, A; Shapiro, L

    1990-01-01

    Several Caulobacter crescentus mutants with lesions in phospholipid biosynthesis have DNA replication phenotypes. A C. crescentus mutant deficient in glycerol 3-phosphate dehydrogenase activity (gpsA) blocks phospholipid synthesis, ceases DNA replication, and loses viability in the absence of a glycerol phosphate supplement. To investigate the interaction between membrane synthesis and DNA replication during a single cell cycle, we moved the gpsA mutation into a synchronizable, but otherwise wild-type, strain. The first effect of withholding supplement was the cessation of synthesis of phosphatidylglycerol, a major component of the C. crescentus membrane. In the absence of glycerol 3-phosphate, DNA replication was initiated in the stalked cell at the correct time in the cell cycle and at the correct site on the chromosome. However, after replication proceeded bidirectionally for a short time, DNA synthesis dropped to a low level. The cell cycle blocked at a distinct middivision stalked cell, and this was followed by cell death. The "glycerol-less" death of the gpsA mutant could be prevented if the cells were treated with novobiocin to prevent the initiation of DNA replication. Our observations suggest that the processivity of C. crescentus replication requires concomitant phospholipid synthesis and that cell death results from incomplete replication of the chromosome. Images PMID:2211495

  2. The effects of radioprotectors on DNA polymerase I-directed repair synthesis and DNA strand breaks in toluene-treated and X-irradiated Escherichia coli

    SciTech Connect

    Billen, D.

    1983-07-01

    In Escherichia coli made permeable to nucleotides by toluene treatment, a DNA polymerase I-directed repair synthesis is induced by exposure to X rays. This repair synthesis may be amplified and easily measured through inhibition of DNA ligase action. In an effort to learn more of the relationship between X-ray-induced strand breaks in cellular DNA and the extent of this repair synthesis, experiments designed to compare the influence of radioprotectors on both strand-break production and repair synthesis have been carried out. The results show that cysteamine, sodium formate, and glycerol not only protect against strand breaks but also reduce DNA polymerase I-directed repair synthesis. However, I-, an efficient hydroxyl radical scavenger, is not as effective a protective agent against strand breaks and does not measurably affect repair synthesis in our system.

  3. Effects of radioprotectors on DNA polymerase I-directed repair synthesis and DNA strand breaks in toluene-treated and x-irradiated Escherichia coli

    SciTech Connect

    Billen, D.

    1983-07-01

    In Escherichia coli made permeable to nucleotides by toluene treatment, a DNA polymerase I-directed repair synthesis is induced by exposure to x rays. This repair synthesis may be amplified and easily measured through inhibition of DNA ligase action. In an effort to learn more of the relationship between x-ray-induced strand breaks in cellular DNA and the extent of this repair synthesis, experiments designed to compare the influence of radioprotectors on both strand-break production and repair synthesis have been carried out. The results show that cysteamine, sodium formate, and glycerol not only protect against strand breaks but also reduce DNA polymerase I-directed repair synthesis. However, I/sup -/, an efficient hydroxyl radical scavenger, is not as effective a protective agent against strand breaks and does not measurably affect repair synthesis in our system.

  4. In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate.

    PubMed

    Saaem, Ishtiaq; Ma, Kuo-Sheng; Marchi, Alexandria N; LaBean, Thomas H; Tian, Jingdong

    2010-02-01

    Thermoplastic materials such as cyclic-olefin copolymers (COC) provide a versatile and cost-effective alternative to the traditional glass or silicon substrate for rapid prototyping and industrial scale fabrication of microdevices. To extend the utility of COC as an effective microarray substrate, we developed a new method that enabled for the first time in situ synthesis of DNA oligonucleotide microarrays on the COC substrate. To achieve high-quality DNA synthesis, a SiO(2) thin film array was prepatterned on the inert and hydrophobic COC surface using RF sputtering technique. The subsequent in situ DNA synthesis was confined to the surface of the prepatterned hydrophilic SiO(2) thin film features by precision delivery of the phosphoramidite chemistry using an inkjet DNA synthesizer. The in situ SiO(2)-COC DNA microarray demonstrated superior quality and stability in hybridization assays and thermal cycling reactions. Furthermore, we demonstrate that pools of high-quality mixed-oligos could be cleaved off the SiO(2)-COC microarrays and used directly for construction of DNA origami nanostructures. It is believed that this method will not only enable synthesis of high-quality and low-cost COC DNA microarrays but also provide a basis for further development of integrated microfluidics microarrays for a broad range of bioanalytical and biofabrication applications.

  5. Initiation of simian virus 40 DNA replication in vitro: aphidicolin causes accumulation of early-replicating intermediates and allows determination of the initial direction of DNA synthesis.

    PubMed Central

    Decker, R S; Yamaguchi, M; Possenti, R; DePamphilis, M L

    1986-01-01

    Aphidicolin, a specific inhibitor of DNA polymerase alpha, provided a novel method for distinguishing between initiation of DNA synthesis at the simian virus 40 (SV40) origin of replication (ori) and continuation of replication beyond ori. In the presence of sufficient aphidicolin to inhibit total DNA synthesis by 50%, initiation of DNA replication in SV40 chromosomes or ori-containing plasmids continued in vitro, whereas DNA synthesis in the bulk of SV40 replicative intermediate DNA (RI) that had initiated replication in vivo was rapidly inhibited. This resulted in accumulation of early RI in which most nascent DNA was localized within a 600- to 700-base-pair region centered at ori. Accumulation of early RI was observed only under conditions that permitted initiation of SV40 ori-dependent, T-antigen-dependent DNA replication and only when aphidicolin was added to the in vitro system. Increasing aphidicolin concentrations revealed that DNA synthesis in the ori region was not completely resistant to aphidicolin but simply less sensitive than DNA synthesis at forks that were farther away. Since DNA synthesized in the presence of aphidicolin was concentrated in the 300 base pairs on the early gene side of ori, we conclude that the initial direction of DNA synthesis was the same as that of early mRNA synthesis, consistent with the model proposed by Hay and DePamphilis (Cell 28:767-779, 1982). The data were also consistent with initiation of the first DNA chains in ori by CV-1 cell DNA primase-DNA polymerase alpha. Synthesis of pppA/G(pN)6-8(pdN)21-23 chains on a single-stranded DNA template by a purified preparation of this enzyme was completely resistant to aphidicolin, and further incorporation of deoxynucleotide monophosphates was inhibited. Therefore, in the presence of aphidicolin, this enzyme could initiate RNA-primed DNA synthesis at ori first in the early gene direction and then in the late gene direction, but could not continue DNA synthesis for an extended

  6. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis.

    PubMed

    Levring, Trine B; Kongsbak, Martin; Rode, Anna K O; Woetmann, Anders; Ødum, Niels; Bonefeld, Charlotte Menné; Geisler, Carsten

    2015-09-08

    Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined. The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys2. Vice-versa, the GSH synthesis inhibitor L-buthionine-sulfoximine (BSO) and inhibition of Cys2 uptake with glutamate inhibited GSH and DNA synthesis in parallel. We further found that thioredoxin (Trx) can partly substitute for GSH during DNA synthesis. Finally, we show that GSH or Trx is required for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production of GSH, which in turn is required for optimal RNR-mediated deoxyribonucleotide synthesis and DNA replication.

  7. Iron at the cell surface controls DNA synthesis in CCl 39 cells.

    PubMed

    Alcain, F J; Löw, H; Crane, F L

    1994-08-30

    Treatment of CCl 39 cells with the impermeable iron II chelator bathophenanthroline disulfonate (BPS) inhibits both DNA synthesis and transplasma membrane electron transport. The inhibition persists when the BPS is removed, and the extract from 10(6) cells contains up to 1.28 nmoles iron II chelated to BPS. The BPS iron II chelate itself is not inhibitory. Both DNA synthesis and electron transport are restored by addition of microM iron II or iron III compounds to extracted cells. Other impermeable chelators for iron II give similar inhibition, whereas the iron III-specific Tiron or copper-specific bathocuproine sulfonate do not inhibit. The inhibition differs from the permeable iron III chelator inhibition of ribonucleotide reductase, because inhibition of DNA synthesis by the permeable chelators is reversed when chelator is removed. The response to growth factors also differs, with no impermeable chelator inhibition on 10% fetal calf serum contrasting to inhibition by permeable chelators. DNA synthesis with both activation of tyrosine kinase with EGF plus insulin or by thrombin or ceruloplasmin led to protein kinase C activation as inhibited by the impermeable chelators. It is proposed that an iron available on the cell surface is required for DNA synthesis and plasma membrane electron transport.

  8. Inhibition of DNA synthesis in CCL 39 cells by impermeable iron chelators.

    PubMed

    Alcaín, F J; Löw, H; Crane, F L

    1997-02-01

    The synthesis of DNA in CCl 39 cells is inhibited by the presence of the Fe2+ chelator bathophenanthroline disulfonate (BPS) when growth is stimulated by thrombin EGF plus insulin, but not by fetal calf serum. The presence of transferrin and Fe3+ in fetal calf serum can be the basis for lack of BPS effect with serum. The impermeable Fe3+ chelator Tiron does not, by itself, inhibit growth factor induced DNA synthesis, but it induces together with BPS inhibition on fetal calf serum induced DNA synthesis. The combined effect of BPS and Tiron is similar to inhibition of DNA synthesis by impermeable polyvalent DTPA which can chelate both Fe2+ and Fe3+ but does not inhibit ribonucleotide reductase in intact cells. Ferrous iron that bind BPS can relieve the inhibition at stoichiometric concentration. Ferric iron also prevents the inhibition even though it does not bind BPS. BPS does not inhibit DNA synthesis in HeLa cells. BPS reacts with iron from CCl 39 cells but not from HeLa cells. Data show that iron available for impermeable external chelators is in the ferrous state, and that exogenous iron should be reduced before it reverses the inhibition.

  9. The identification of translesion DNA synthesis regulators: inhibitors in the spotlight

    PubMed Central

    Bertolin, AP; Mansilla, SF; Gottifredi, V

    2015-01-01

    Over the past half-century, we have become increasingly aware of the ubiquity of DNA damage. Under the constant exposure to exogenous and endogenous genomic stress, cells must attempt to replicate damaged DNA. The encounter of replication forks with DNA lesions triggers several cellular responses, including the activation of translesion DNA synthesis (TLS), which largely depends upon specialized DNA polymerases with flexible active sites capable of accommodating bulky DNA lesions. A detrimental aspect of TLS is its intrinsic mutagenic nature, and thus the activity of the TLS polymerases must ideally be restricted to synthesis on damaged DNA templates. Despite their potential clinical importance in chemotherapy, TLS inhibitors have been difficult to identify since a direct assay designed to quantify genomic TLS events is still unavailable. Herein we discuss the methods that have been used to validate TLS inhibitors such as USP1, p21 and Spartan, highlighting research that has revealed their contribution to the control of DNA synthesis on damaged and undamaged templates. PMID:26002196

  10. Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes

    SciTech Connect

    Novicki, D.L.; Rosenberg, M.R.; Michalopoulos, G.

    1985-01-01

    Rat hepatocytes in primary culture can be stimulated to replicate under the influence of rat serum and sparse plating conditions. Higher replication rates are induced by serum from two-thirds partially hepatectomized rats. The effects of carcinogens and noncarcinogens on the ability of hepatocytes to synthesize DNA were examined by measuring the incorporation of (3H)thymidine by liquid scintillation counting and autoradiography. Hepatocyte DNA synthesis was not decreased by ethanol or dimethyl sulfoxide at concentrations less than 0.5%. No effect was observed when 0.1 mM ketamine, Nembutal, hypoxanthine, sucrose, ascorbic acid, or benzo(e)pyrene was added to cultures of replicating hepatocytes. Estrogen, testosterone, tryptophan, and vitamin E inhibited DNA synthesis by approximately 50% at 0.1 mM, a concentration at which toxicity was noticeable. Several carcinogens requiring metabolic activation as well as the direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine interfered with DNA synthesis. Aflatoxin B1 inhibited DNA synthesis by 50% (ID50) at concentrations between 1 X 10(-8) and 1 X 10(-7) M. The ID50 for 2-acetylaminofluorene was between 1 X 10(-7) and 1 X 10(-6) M. Benzo(a)pyrene and 3'-methyl-4-dimethylaminoazobenzene inhibited DNA synthesis 50% between 1 X 10(-5) and 1 X 10(-4) M. Diethylnitrosamine and dimethylnitrosamine (ID50 between 1 X 10(-4) and 5 X 10(-4) M) and 1- and 2-naphthylamine (ID50 between 1 X 10(-5) and 5 X 10(-4) M) caused inhibition of DNA synthesis at concentrations which overlapped with concentrations that caused measurable toxicity.

  11. DNA-Based Synthesis and Assembly of Organized Iron Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Khomutov, Gennady B.

    Organized bio-inorganic and hybrid bio-organic-inorganic nanostructures consisting of iron oxide nanoparticles and DNA complexes have been formed using methods based on biomineralization, interfacial and bulk phase assembly, ligand exchange and substitution, Langmuir-Blodgett technique, DNA templating and scaffolding. Interfacially formed planar DNA complexes with water-insoluble amphiphilic polycation or intercalator Langmuir monolayers were prepared and deposited on solid substrates to form immobilized DNA complexes. Those complexes were then used for the synthesis of organized DNA-based iron oxide nanostructures. Planar net-like and circular nanostructures of magnetic Fe3O4 nanoparticles were obtained via interaction of cationic colloid magnetite nanoparticles with preformed immobilized DNA/amphiphilic polycation complexes of net-like and toroidal morphologies. The processes of the generation of iron oxide nanoparticles in immobilized DNA complexes via redox synthesis with various iron sources of biological (ferritin) and artificial (FeCl3) nature have been studied. Bulk-phase complexes of magnetite nanoparticles with biomolecular ligands (DNA, spermine) were formed and studied. Novel nano-scale organized bio-inorganic nanostructures - free-floating sheet-like spermine/magnetite nanoparticle complexes and DNA/spermine/magnetite nanoparticle complexes were synthesized in bulk aqueous phase and the effect of DNA molecules on the structure of complexes was discovered.

  12. De novo synthesis of a 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose (AAT) building block for the preparation of a Bacteroides fragilis A1 polysaccharide fragment.

    PubMed

    Pragani, Rajan; Stallforth, Pierre; Seeberger, Peter H

    2010-04-02

    Zwitterionic polysaccharides (ZPSs) are potent T-cell activators that naturally occur on the cell surface of bacteria and show potential as immunostimulatory agents. An unusual, yet important component of many ZPSs is 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose (AAT). AAT building block 2 was prepared via a de novo synthesis from N-Cbz-L-threonine 5. Furthermore, building block 2 was used to synthesize disaccharide 15 that constitutes a fragment of zwitterionic polysaccharide A1 (PS A1) found in Bacteroides fragilis.

  13. Liver nuclear DNA synthesis in mice following carbon tetrachloride administration or partial hepatectomy

    SciTech Connect

    Gans, J.H.; Korson, R.

    1984-02-01

    Long-term, continuous (twice per week) administration of CCl/sub 4/ to male mice resulted in a high incidence of liver nodules which appear to be resistant to the necrotizing effects of CCl/sub 4/ but showed no features of malignant neoplasia. Liver nuclear DNA synthesis was compared in mice given CCl/sub 4/ and in mice subjected to partial hepatectomy (PH). Mice were given by gavage corn oil or CCl/sub 4/ in corn oil for periods of 2 to 25 weeks and several mice were subjected to PH after 12 and 25 weeks of corn oil treatment. Mice were given (/sup 3/H)TdR during liver regeneration and newly synthesized liver nuclear DNA was isolated and separated by BND-cellulose chromatography. Greater than 85% of the labeled DNA from PH mice eluted from BND-cellulose columns as double-stranded (ds) DNA with single-stranded (ss) regions or ends and less than 15% as ds DNA. When mice were treated with CCl/sub 4/ for 8 weeks or longer a significantly greater portion of liver nuclear DNA eluted as ds DNA. Administration of HU and 5-FU with (/sup 3/H)TdR decreased (/sup 3/H)TdR incorporation into DNA to low levels incompatible with unscheduled DNA synthesis. Single doses of CCl/sub 4/ given to mice treated with corn oil for 2 to 12 weeks provided newly synthesized DNA which was primarily (>80%) ds DNA with ss regions or ends, but after 25 weeks of corn oil administration, a single dose of CCl/sub 4/ resulted in newly synthesized DNA with a greater proportion of ds DNA. The high labeling of ds DNA in mice treated with CCl/sub 4/ may have resulted from an alternate pathway of DNA synthesis catalyzed by the enzymes or enzyme complexes associated with semiconservative DNA synthesis or from proliferation of nonparenchymal cells with a rapid turn-over rate.

  14. Comparison of dna-copying fidelity during repair and semiconservative synthesis by radioactive precursor distribution analysis

    SciTech Connect

    Nemirovskii, L.E.; Vasil'ev, V.K.

    1986-04-01

    The authors compare the fidelity of DNA copying during semiconservative and reparative synthesis under normal conditions and during cortisol-induced activation of free-radical processes, by examining the distribution of radioactivity among DNA pyrimidine isopliths. Radioactivity of nucleotide material in the isopliths was measured by counting in appropriate zones of the chromatograms in toluene scintillator. The investigation shows that injury to DNA of different organs, both directly and as a result of faulty repair, leads to shortening of the pyrimidine isopliths, i.e., to changes in the primary structure of DNA. These data help to explain the simultaneously cytostatic, carcinostatic, and mutagenic action of irradiation, cortisol and hydroxyurea.

  15. Role of mucosal prostaglandins and DNA synthesis in gastric cytoprotection by luminal epidermal growth factor.

    PubMed Central

    Konturek, S J; Brzozowski, T; Piastucki, I; Dembinski, A; Radecki, T; Dembinska-Kiec, A; Zmuda, A; Gregory, H

    1981-01-01

    This study compares the effect of epidermal growth factor and prostaglandins (PGE2 or PGI2), applied topically to gastric mucosa, on gastric secretion and formation of ASA-induced gastric ulcerations in rats. Epidermal growth factor given topically in non-antisecretory doses prevented dose-dependently the formation of ASA-induced ulcers without affecting prostaglandin generation but with a significant rise in DNA synthesis in the oxyntic mucosa. The anti-ulcer effect of topical prostaglandins was also accompanied by an increase in DNA synthesis. This study indicates that topical epidermal growth factor, like PGE2 or PGI2, is cytoprotective and that this cytoprotection is not mediated by the inhibition of gastric secretion or prostaglandin formation but related to the increase in DNA synthesis in oxyntic mucosa. PMID:7030877

  16. DNA synthesis in mouse brown adipose tissue is under. beta. -adrenergic control

    SciTech Connect

    Rehnmark, S.; Nedergaard, J. )

    1989-02-01

    The rate of DNA synthesis in mouse brown adipose tissue was followed with injections of ({sup 3}H)thymidine. Cold exposure led to a large increase in the rate of ({sup 3}H)thymidine incorporation, reaching a maximum after 8 days, after which the activity abruptly ceased. A series of norepinephrine injections was in itself able to increase ({sup 3}H)thymidine incorporation. When norepinephrine was injected in combination with the {alpha}-adrenergic antagonist phentolamine or with the {beta}-adrenergic antagonist propranolol, the stimulation was fully blocked by propranolol. It is suggested that stimulation of DNA synthesis in brown adipose tissue is a {beta}-adrenergically mediated process and that the tissue is an interesting model for studies of physiological control of DNA synthesis.

  17. Ribonucleotide reductase activity is coupled to DNA synthesis via proliferating cell nuclear antigen.

    PubMed

    Salguero, Israel; Guarino, Estrella; Shepherd, Marianne E A; Deegan, Tom D; Havens, Courtney G; MacNeill, Stuart A; Walter, Johannes C; Kearsey, Stephen E

    2012-04-24

    Synthesis of deoxynucleoside triphosphates (dNTPs) is required for both DNA replication and DNA repair and is catalyzed by ribonucleotide reductases (RNR), which convert ribonucleotides to their deoxy forms [1, 2]. Maintaining the correct levels of dNTPs for DNA synthesis is important for minimizing the mutation rate [3-7], and this is achieved by tight regulation of RNR [2, 8, 9]. In fission yeast, RNR is regulated in part by a small protein inhibitor, Spd1, which is degraded in S phase and after DNA damage to allow upregulation of dNTP supply [10-12]. Spd1 degradation is mediated by the activity of the CRL4(Cdt2) ubiquitin ligase complex [5, 13, 14]. This has been reported to be dependent on modulation of Cdt2 levels, which are cell cycle regulated, peaking in S phase, and which also increase after DNA damage in a checkpoint-dependent manner [7, 13]. We show here that Cdt2 level fluctuations are not sufficient to regulate Spd1 proteolysis and that the key step in this event is the interaction of Spd1 with the polymerase processivity factor proliferating cell nuclear antigen (PCNA), complexed onto DNA. This mechanism thus provides a direct link between DNA synthesis and RNR regulation.

  18. The roles of tryptophans in primer synthesis by the DNA primase of bacteriophage T7.

    PubMed

    Zhang, Huidong; Lee, Seung-Joo; Richardson, Charles C

    2012-07-06

    DNA primases catalyze the synthesis of oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Prokaryotic primases consist of a zinc-binding domain (ZBD) necessary for recognition of a specific template sequence and a catalytic RNA polymerase domain. Interactions of both domains with the DNA template and ribonucleotides are required for primer synthesis. Five tryptophan residues are dispersed in the primase of bacteriophage T7: Trp-42 in the ZBD and Trp-69, -97, -147, and -255 in the RNA polymerase domain. Previous studies showed that replacement of Trp-42 with alanine in the ZBD decreases primer synthesis, whereas substitution of non-aromatic residues for Trp-69 impairs both primer synthesis and delivery. However, the roles of tryptophan at position 97, 147, or 255 remain elusive. To investigate the essential roles of these residues, we replaced each tryptophan with the structurally similar tyrosine and examined the effect of this subtle alteration on primer synthesis. The substitution at position 42, 97, or 147 reduced primer synthesis, whereas substitution at position 69 or 255 did not. The functions of the tryptophans were further examined at each step of primer synthesis. Alteration of residue 42 disturbed the conformation of the ZBD and resulted in partial loss of the zinc ion, impairing binding to the ssDNA template. Replacement of Trp-97 with tyrosine reduced the binding affinity to NTP and the catalysis step. The replacement of Trp-147 with tyrosine also impaired the catalytic step. Therefore, Trp-42 is important in maintaining the conformation of the ZBD for template binding; Trp-97 contributes to NTP binding and the catalysis step; and Trp-147 maintains the catalysis step.

  19. DNA synthesis in periportal and perivenous hepatocytes of intact and hepatectomized young mice.

    PubMed

    Fernández-Blanco, A; Inda, A M; Errecalde, A L

    2015-01-01

    DNA synthesis of hepatocytes in two areas of Intact and Hepatectomized young mice liver along a circadian period was studied. DNA synthesis was significantly different at all analyzed time points in Intact and Hepatectomized animals. Differences between periportal and perivenous hepatocytes were found in hepatectomized animals at 04/42 and 08/46 hr of day/hour post-hepatectomy. DNAs peak in periportal hepatocytes regenerating liver occurs 4 hr earlier than in perivenous hepatocytes, probably reflecting their shorter G1 phase. Besides, daily mean values of regenerating livers were higher than those observed in Intact animals, as a consequence of surgical removal.

  20. Stimulation of adrenal DNA synthesis in cadmium-treated male rats

    SciTech Connect

    Nishiyama, S.; Nakamura, K.

    1984-07-01

    Cadmium chloride (CdCl2) at a dose of 1 mg/kg body wt was injected into male rats of the Wistar strain, weighing 250 g on the average, twice a day (12-hr intervals) for 7 consecutive days. DNA and RNA contents and (/sup 3/H)-thymidine and (/sup 3/H)-uridine incorporation into the acid-insoluble fraction significantly increased in the adrenals of rats treated with Cd for 2 and 7 consecutive days. Adrenal protein content and weight also significantly increased. These results indicate that continued treatment with Cd stimulates DNA and RNA synthesis in the adrenal cortex, which in turn results in the increase of the total protein contents of the adrenal gland and subsequently in the enlargement of the gland. Serum adrenocorticotrophin (ACTH) and insulin levels in Cd-treated rats were not higher than control levels, suggesting that the stimulation of DNA synthesis in the adrenals of Cd-treated rats is due to factor(s) other than serum ACTH and insulin. Treatment with Cd inhibited DNA synthesis in cultured adrenocortical cells at concentrations of 10(-4) to 10(-8) M, suggesting that Cd does not directly stimulate DNA synthesis in the adrenal gland in vivo. Although the adrenal gland became enlarged, the total adrenal corticosterone content decreased significantly. The decrease of total adrenal corticosterone content may be due to the fall in serum ACTH level of Cd-treated rats.

  1. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    SciTech Connect

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated /sup 3/H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of /sup 3/H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture.

  2. EGFR Modulates DNA Synthesis and Repair through Tyr Phosphorylation of Histone H4

    PubMed Central

    Chou, Ruey-Hwang; Wang, Ying-Nai; Hsieh, Yi-Hsien; Li, Long-Yuan; Xia, Weiya; Chang, Wei-Chao; Chang, Ling-Chu; Cheng, Chien-Chia; Lai, Chien-Chen; Hsu, Jennifer L.; Chang, Wei-Jung; Chiang, Shu-Ya; Lee, Hong-Jen; Liao, Hsin-Wei; Chuang, Pei-Huan; Chen, Hui-Yu; Wang, Hung-Ling; Kuo, Sheng-Chu; Chen, Chung-Hsuan; Yu, Yung-Luen; Hung, Mien-Chie

    2014-01-01

    Summary Posttranslational modifications of histones play fundamental roles in many biological functions. Specifically, histone H4-K20 methylation is critical in DNA synthesis and repair. However, little is known about how these functions are regulated by the upstream stimuli. Here, we identify a tyrosine phosphorylation site at Y72 of histone H4, which facilitates recruitment of histone methyltransferases (HMTases), SET8 and SUV4-20H, to enhance its K20 methylation, thereby promoting DNA synthesis and repair. Phosphorylation-defective histone H4 mutant is deficient in K20 methylation, leading to reduced DNA synthesis, delayed cell cycle progression, and decreased DNA repair ability. Disrupting the interaction between epidermal growth factor receptor (EGFR) and histone H4 by Y72 peptide significantly reduced tumor growth. Furthermore, EGFR expression clinically correlates with histone H4-Y72 phosphorylation, H4-K20 mono-methylation, and the Ki-67 proliferation marker. These findings uncover a mechanism by which EGFR transduces signal to chromatin to regulate DNA synthesis and repair. PMID:25073158

  3. Capture of a third Mg²⁺ is essential for catalyzing DNA synthesis.

    PubMed

    Gao, Yang; Yang, Wei

    2016-06-10

    It is generally assumed that an enzyme-substrate (ES) complex contains all components necessary for catalysis and that conversion to products occurs by rearrangement of atoms, protons, and electrons. However, we find that DNA synthesis does not occur in a fully assembled DNA polymerase-DNA-deoxynucleoside triphosphate complex with two canonical metal ions bound. Using time-resolved x-ray crystallography, we show that the phosphoryltransfer reaction takes place only after the ES complex captures a third divalent cation that is not coordinated by the enzyme. Binding of the third cation is incompatible with the basal ES complex and requires thermal activation of the ES for entry. It is likely that the third cation provides the ultimate boost over the energy barrier to catalysis of DNA synthesis.

  4. Quantification of DNA synthesis in multicellular organisms by a combined DAPI and BrdU technique.

    PubMed

    Knobloch, Jürgen; Kunz, Werner; Grevelding, Christoph G

    2002-12-01

    The development of a novel method to detect and quantify mitotic activity in multicellular organisms is reported. The method is based on the combinatorial use of 4',6-diamidino-2-phenylindole (DAPI) as a dye for the specific staining of DNA and the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) as a marker for DNA synthesis. It is shown that on nitrocellulose filters, the amount of DNA can be determined by DAPI as a prerequisite for the subsequent quantification of mitotic activity by BrdU. As a model system to prove the applicability of this technique, the blood fluke Schistosoma mansoni has been used. It is demonstrated that the DNA synthesis rate is higher in adult female schistosomes than in adult males. Furthermore, dimethyl sulfoxide, a widely used solvent for many mitogens and inhibitors of mitosis, has no influence on mitotic activity in adult schistosomes.

  5. Post-synthesis DNA Modifications Using a trans-Cyclooctene Click Handle

    PubMed Central

    Wang, Ke; Wang, Danzhu; Ji, Kaili; Chen, Weixuan; Zheng, Yueqin; Dai, Chaofeng

    2015-01-01

    Post-synthesis DNA modification is a very useful method for DNA functionalization. This is achieved by using a modified NTP, which has a handle for further modifications, replacing the corresponding natural NTP in polymerase-catalyzed DNA synthesis. Subsequently, the handle can be used for further functionalization after PCR, preferably through a very fast reaction. Herein we describe polymerase-mediated incorporation of trans-cyclooctene modified thymidine triphosphate (TCO-TTP). Subsequently, the trans-cyclooctene group was reacted with a tetrazine tethered to other functional groups through a very fast click reaction. The utility of this DNA functionalization method was demonstrated with the incorporation of a boronic acid group and a fluorophore. The same approach was also successfully used in modifying a known aptamer for fluorescent labelling applications. PMID:25407744

  6. Stimulation of DNA and Collagen Synthesis by Autologous Growth Factor in Cultured Fetal Rat Calvaria

    NASA Astrophysics Data System (ADS)

    Canalis, Ernesto; Peck, William A.; Raisz, Lawrence G.

    1980-11-01

    Conditioned medium derived from organ or cell cultures prepared from 19- to 21-day fetal rat calvaria stimulated the incorporation of [3H]proline into collagen and of [3H]thymidine into DNA in organ cultures of the same tissue. Addition of cortisol enhanced the effect on collagen but not on DNA synthesis. These effects appeared to be due to a nondialyzable and heat-stable growth factor.

  7. Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent: effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis.

    PubMed

    Binet, François; Cavalli, Hélène; Moisan, Eliane; Girard, Denis

    2006-02-01

    The anti-cancer drug arsenic trioxide (AT) induces apoptosis in a variety of transformed or proliferating cells. However, little is known regarding its ability to induce apoptosis in terminally differentiated cells, such as neutrophils. Because neutropenia has been reported in some cancer patients after AT treatment, we hypothesised that AT could induce neutrophil apoptosis, an issue that has never been investigated. Herein, we found that AT-induced neutrophil apoptosis and gelsolin degradation via caspases. AT did not increase neutrophil superoxide production and did not induce mitochondrial generation of reactive oxygen species. AT-induced apoptosis in PLB-985 and X-linked chronic granulomatous disease (CGD) cells (PLB-985 cells deficient in gp91(phox) mimicking CGD) at the same potency. Addition of catalase, an inhibitor of H2O2, reversed AT-induced apoptosis and degradation of the cytoskeletal proteins gelsolin, alpha-tubulin and lamin B1. Unexpectedly, AT-induced de novo protein synthesis, which was reversed by catalase. Cycloheximide partially reversed AT-induced apoptosis. We conclude that AT induces neutrophil apoptosis by a caspase-dependent mechanism and via de novo protein synthesis. H2O2 is of major importance in AT-induced neutrophil apoptosis but its production does not originate from nicotinamide adenine dinucleotide phosphate dehydrogenase activation and mitochondria. Cytoskeletal structures other than microtubules can now be considered as novel targets of AT.

  8. Regulation of yeast DNA polymerase δ-mediated strand displacement synthesis by 5'-flaps.

    PubMed

    Koc, Katrina N; Stodola, Joseph L; Burgers, Peter M; Galletto, Roberto

    2015-04-30

    The strand displacement activity of DNA polymerase δ is strongly stimulated by its interaction with proliferating cell nuclear antigen (PCNA). However, inactivation of the 3'-5' exonuclease activity is sufficient to allow the polymerase to carry out strand displacement even in the absence of PCNA. We have examined in vitro the basic biochemical properties that allow Pol δ-exo(-) to carry out strand displacement synthesis and discovered that it is regulated by the 5'-flaps in the DNA strand to be displaced. Under conditions where Pol δ carries out strand displacement synthesis, the presence of long 5'-flaps or addition in trans of ssDNA suppress this activity. This suggests the presence of a secondary DNA binding site on the enzyme that is responsible for modulation of strand displacement activity. The inhibitory effect of a long 5'-flap can be suppressed by its interaction with single-stranded DNA binding proteins. However, this relief of flap-inhibition does not simply originate from binding of Replication Protein A to the flap and sequestering it. Interaction of Pol δ with PCNA eliminates flap-mediated inhibition of strand displacement synthesis by masking the secondary DNA site on the polymerase. These data suggest that in addition to enhancing the processivity of the polymerase PCNA is an allosteric modulator of other Pol δ activities.

  9. Porous silicon microparticles as an alternative support for solid phase DNA synthesis

    NASA Astrophysics Data System (ADS)

    McInnes, Steven; Graney, Sean; Khung, Yit-lung; Voelcker, Nicolas H.

    2006-01-01

    Current methods to produce short DNA strands (oligonucleotides) involve the stepwise coupling of phosphoramidites onto a solid support, typically controlled pore glass. The full-length oligonucleotide is then cleaved from the solid support using a suitable aqueous or organic base and the oligonucleotide is subsequently separated from the spent support. This final step, albeit seemingly easy, invariably leads to increased production costs due to increased synthesis time and reduced yields. This paper describes the preparation of a dissolvable support for DNA synthesis based on porous silicon (pSi). Initially it was thought that the pSi support would undergo dissolution by hydrolysis upon cleavage of the freshly synthesised oligonucleotide strands with ammonium hydroxide. The ability to dissolve the solid support after completion of the synthesis cycle would eliminate the separation step required in current DNA synthesis protocols, leading to simpler and faster synthesis as well as increased yields, however it was found that the functionalisation of the pSi imparted a stability that impeded the dissolution. This strategy may also find applications for drug delivery where the controlled release of carrier-immobilised short antisense DNA is desired. The approach taken involves the fabrication of porous silicon (pSi) microparticles and films. Subsequently, the pSi is oxidised and functionalised with a dimethoxytrityl protected propanediol to facilitate the stepwise solid phase synthesis of DNA oligonucleotides. The functionalisation of the pSi is monitored by diffuse reflectance infrared spectroscopy and the successful trityl labelling of the pSi is detected by UV-Vis spectroscopy after release of the dimethoxytrityl cation in the presence of trichloroacetic acid (TCA). Oligonucleotide yields can be quantified by UV-Vis spectroscopy.

  10. A euryarchaeal histone modulates strand displacement synthesis by replicative DNA polymerases.

    PubMed

    Sun, Fei; Huang, Li

    2016-07-01

    Euryarchaeota and Crenarchaeota, the two main lineages of the domain Archaea, encode different chromatin proteins and differ in the use of replicative DNA polymerases. Crenarchaea possess a single family B DNA polymerase (PolB), which is capable of strand displacement modulated by the chromatin proteins Cren7 and Sul7d. Euryarchaea have two distinct replicative DNA polymerases, PolB and PolD, a family D DNA polymerase. Here we characterized the strand displacement activities of PolB and PolD from the hyperthermophilic euryarchaeon Pyrococcus furiosus and investigated the influence of HPfA1, a homolog of eukaryotic histones from P. furiosus, on these activities. We showed that both PolB and PolD were efficient in strand displacement. HPfA1 inhibited DNA strand displacement by both DNA polymerases but exhibited little effect on the displacement of a RNA strand annealed to single-stranded template DNA. This is consistent with the finding that HPfA1 bound more tightly to double-stranded DNA than to a RNA:DNA hybrid. Our results suggest that, although crenarchaea and euryarchaea differ in chromosomal packaging, they share similar mechanisms in modulating strand displacement by DNA polymerases during lagging strand DNA synthesis.

  11. Synthesis and properties of 4′-ThioDNA: unexpected RNA-like behavior of 4′-ThioDNA

    PubMed Central

    Inoue, Naonori; Minakawa, Noriaki; Matsuda, Akira

    2006-01-01

    The synthesis and properties of fully modified 4′-thioDNAs, oligonucleotides consisting of 2′-deoxy-4′-thionucleosides, were examined. In addition to the known literature properties (preferable hybridization with RNA and resistance to endonuclease hydrolysis), we also observed higher resistance of 4′-thioDNA to 3′-exonuclease cleavage. Furthermore, we found that fully modified 4′-thioDNAs behaved like RNA molecules in their hybridization properties and structural aspect, at least in the case of the 4′-thioDNA duplex. This observation was confirmed by experiments using groove binders, in which a 4′-thioDNA duplex interacts with an RNA major groove binder, lividomycin A, but not with DNA groove binders, to give an increase in its thermal stability. Since a 4′-thioDNA duplex competitively inhibited the hydrolysis of an RNA duplex by RNase V1, it was not only the physical properties but also this biological data suggested that a 4′-thioDNA duplex has an RNA-like structure. PMID:16855286

  12. Molecular Recognition of DNA. Synthesis of Novel Bases for Triple Helix Formation

    DTIC Science & Technology

    1991-01-01

    to the purine strand in the major groove of the Watson - Crick double helical DNA (TAT, C+GC triplets). Purine oligonucleotides bind antiparallel to...R&T Code 4135018 S MAy 05 199411 "Molecular Recognition of DNA . Synthesis of Novel Bases for Triple Helix Formation" Peter B. Dervan cv _California...035 T"IQA""D PART I A) Completed work (1988-91) Triple Helix Formation by Oligonucleotides on DNA Extended to the Physiological pH Range. T. J. Povsic

  13. Stimulation of DNA synthesis in cultured primary human mesothelial cells by specific growth factors

    SciTech Connect

    Gabrielson, E.W.; Gerwin, B.I.; Harris, C.C.; Roberts, A.B.; Sporn, M.B.; Lechner, J.F.

    1988-08-01

    Monolayer cultures of human mesothelial cells made quiescent by serum deprivation are induced to undergo one round of DNA synthesis by platelet-derived growth factor (PDGF), epidermal growth factor (EGF), or transforming growth factor type beta 1 (TGF-beta 1). This one-time stimulation is independent of other serum components. The kinetics for induction of DNA synthesis observed for PDGF, EGF, and TGF-beta 1 are all similar to one another, with a peak of DNA synthesis occurring 24-36 h after the addition of the growth factors. Repetitive rounds of DNA synthesis and cell division do not ensue after addition of PDGF, EGF, or TGF-beta 1 alone or in combination; however, in media supplemented with chemically denatured serum, each of these factors is capable of sustaining continuous replication of mesothelial cells. Stimulation of growth by PDGF and TGF-beta 1 is unusual for an epithelial cell type, and indicates that mesothelial cells have growth regulatory properties similar to connective tissue cells.

  14. Evidence for cell surface control of macronuclear DNA synthesis in Stentor.

    PubMed

    de Terra, N

    1975-11-27

    In cell grafts, Stentor macronuclei associated with separate regions of cell surface can be made asynchronous with regard to morphology and DNA synthesis even though they demonstrably share a common endoplasm. These results suggest a mechanism for nuclear differentiation within a single cytoplasmic compartment, based on cell surface differences.

  15. Design, synthesis, and characterization of nucleosomes containing site-specific DNA damage.

    PubMed

    Taylor, John-Stephen

    2015-12-01

    How DNA damaged is formed, recognized, and repaired in chromatin is an area of intense study. To better understand the structure activity relationships of damaged chromatin, mono and dinucleosomes containing site-specific damage have been prepared and studied. This review will focus on the design, synthesis, and characterization of model systems of damaged chromatin for structural, physical, and enzymatic studies.

  16. De novo asymmetric synthesis and biological analysis of the daumone pheromones in Caenorhabditis elegans and in the soybean cyst nematode Heterodera glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The de novo asymmetric total syntheses of daumone 1, daumone 2 and analogs are described. The key steps of our approach are the diastereoselective palladium catalyzed glycosylation reaction, the Noyori reduction of a acetylfuran and a propargyl ketone, which introduce the absolute stereochemistry of...

  17. Synthesis and characterization of DNA nano-meso-microspheres as drug delivery carriers for intratumoral chemotherapy

    NASA Astrophysics Data System (ADS)

    Enriquez Schumacher, Iris Vanessa

    Conventional cancer chemotherapy results in systemic toxicity which severely limits effectiveness and often adversely affects patient quality of life. There is a need to find new drugs and delivery methods for less toxic therapy. Previous studies concerning DNA complexing with chemotherapy drugs suggest unique opportunities for DNA as a mesosphere drug carrier. The overall objective of this research was devoted to the synthesis and evaluation of novel DNA-drug nano-mesospheres designed for localized chemotherapy via intratumoral injection. My research presents DNA nano-meso-microspheres (DNA-MS) that were prepared using a modified steric stabilization method originally developed in this lab for the preparation of albumin MS. DNA-MS were prepared with glutaraldehyde covalent crosslinking (genipin crosslinking was attempted) through the DNA base pairs. In addition, novel crosslinking of DNA-MS was demonstrated using chromium, gadolinium, or iron cations through the DNA phosphate groups. Covalent and ionic crosslinked DNA-MS syntheses yielded smooth and spherical particle morphologies with multimodal size distributions. Optimized DNA-MS syntheses produced particles with narrow and normal size distributions in the 50nm to 5mum diameter size range. In aqueous dispersions approximately 200% swelling was observed with dispersion stability for more than 48 hours. Typical process conditions included a 1550rpm initial mixing speed and particle filtration through 20mum filters to facilitate preparation. DNA-MS were in situ loaded during synthesis for the first time with mitoxantrone, 5-fluorouracil, and methotrexate. DNA-MS drug incorporation was 12%(w/w) for mitoxantrone, 9%(w/w) for methotrexate, and 5%(w/w) for 5-fluorouracil. In vitro drug release into phosphate buffered saline was observed for over 35 days by minimum sink release testing. The effect of gadolinium crosslink concentration on mitoxantrone release was evaluated at molar equivalences in the range of 20% to

  18. Synthesis of the tellurium-derivatized phosphoramidites and their incorporation into DNA oligonucleotides.

    PubMed

    Jiang, Sibo; Sheng, Jia; Huang, Zhen

    2011-12-01

    In this unit, an efficient method for the synthesis of 2'-tellerium-modified phosphoramidite and its incorporation into oligonucleotide are presented. We choose 5'-O-DMTr-2,2'-anhydro-uridine and -thymidine nucleosides (S.1, S.2) as starting materials due to their easy preparation. The 5'-O-DMTr-2,2'-anhydro-uridine and -thymidine can be converted to the corresponding 2'-tellerium-derivatized nucleosides by treating with the telluride nucleophiles. Subsequently, the 2'-Te-nucleosides can be transformed into 3'-phosphoramidites, which are the building blocks for DNA/RNA synthesis. The DNA synthesis, purification, and applications of oligonucleotides containing 2'-Te-U or 2'-Te-T are described in the protocol.

  19. DNA-directed in vitro synthesis of proteins involved in bacterial transcription and translation.

    PubMed Central

    Zarucki-Schulz, T; Jerez, C; Goldberg, G; Kung, H F; Huang, K H; Brot, N; Weissbach, H

    1979-01-01

    The in vitro synthesis of elongation factor (EF)-Tu (tufB), the beta beta' subunits of RNA polymerase, ribosomal proteins L10 and L12 directed by DNA from the transducing phage lambda rifd 18, EF-Tu (tufA), EF-G, and the alpha subunit of RNA polymerase directed by DNA from the transducing phage lambda fus3 has been investigated in a crude and a partially defined protein-synthesizing system. Proteins L10 and L12 are synthesized in the partially defined system almost as well as in the crude system. However, the synthesis of EF-Tu, EF-G, and the alpha and beta beta' subunits of RNA polymerase is far less efficient in the partially defined system. An active fraction that stimulates the synthesis of these latter proteins has been obtained by fractionation of a high-speed supernatant on DEAE-cellulose. Because previous studies showed that this fraction (1 M DEAE salt eluate) contains a protein, called L factor, that stimulates beta-galactosidase synthesis in vitro, L factor was tested for activity. Although L factor stimulates the synthesis of the beta beta' subunits, it has little or no effect on the in vitro synthesis of the other products studied. In the present experiments, the ratio of L12/L10 and of EF-Tu (tufA)/EF-G formed is 4-6. These values are consistent with in vivo results. Images PMID:160561

  20. Co-opting the Fanconi anemia genomic stability pathway enables herpesvirus DNA synthesis and productive growth.

    PubMed

    Karttunen, Heidi; Savas, Jeffrey N; McKinney, Caleb; Chen, Yu-Hung; Yates, John R; Hukkanen, Veijo; Huang, Tony T; Mohr, Ian

    2014-07-03

    DNA damage associated with viral DNA synthesis can result in double-strand breaks that threaten genome integrity and must be repaired. Here, we establish that the cellular Fanconi anemia (FA) genomic stability pathway is exploited by herpes simplex virus 1 (HSV-1) to promote viral DNA synthesis and enable its productive growth. Potent FA pathway activation in HSV-1-infected cells resulted in monoubiquitination of FA effector proteins FANCI and FANCD2 (FANCI-D2) and required the viral DNA polymerase. FANCD2 relocalized to viral replication compartments, and FANCI-D2 interacted with a multisubunit complex containing the virus-encoded single-stranded DNA-binding protein ICP8. Significantly, whereas HSV-1 productive growth was impaired in monoubiquitination-defective FA cells, this restriction was partially surmounted by antagonizing the DNA-dependent protein kinase (DNA-PK), a critical enzyme required for nonhomologous end-joining (NHEJ). This identifies the FA-pathway as a cellular factor required for herpesvirus productive growth and suggests that FA-mediated suppression of NHEJ is a fundamental step in the viral life cycle.

  1. Co-opting the Fanconi Anemia Genomic Stability Pathway Enables Herpesvirus DNA Synthesis and Productive Growth

    PubMed Central

    Karttunen, Heidi; Savas, Jeffrey N.; McKinney, Caleb; Chen, Yu-Hung; Yates, John R.; Hukkanen, Veijo; Huang, Tony T.; Mohr, Ian

    2015-01-01

    SUMMARY DNA damage associated with viral DNA synthesis can result in double strand breaks that threaten genome integrity and must be repaired. Here, we establish that the cellular Fanconi Anemia (FA) genomic stability pathway is exploited by HSV1 to promote viral DNA synthesis and enable its productive growth. Potent FA pathway activation in HSV1-infected cells resulted in monoubiquitination of FA effector proteins, FANCI and FANCD2 (FANCI-D2) and required the viral DNA polymerase. FANCD2 relocalized to viral replication compartments and FANCI-D2 interacted with a multi-subunit complex containing the virus-encoded single-stranded DNA-binding protein ICP8. Significantly, while HSV1 productive growth was impaired in monoubiquitination-defective FA patient cells, this restriction was partially surmounted by antagonizing the DNA-dependent protein kinase (DNA-PK), a critical enzyme required for non-homologous end-joining (NHEJ). This identifies the FA-pathway as a new cellular factor required for herpesvirus productive growth and suggests that FA-mediated suppression of NHEJ is a fundamental step in the viral lifecycle. PMID:24954902

  2. DNA (deoxyribonucleic acid) synthesis following microinjection of heterologous sperm and somatic cell nuclei into hamster oocytes

    SciTech Connect

    Naish, S.J.; Perreault, S.D.; Zirkin, B.R.

    1987-01-01

    The authors investigated the ability of the hamster oocyte to initiate DNA synthesis in nuclei differing in basic protein content. DNA synthesis was studied by autoradiography in oocytes that had been incubated in /sup 3/H-thymidine after being parthenogenetically activated by sham microinjection, or microinjected with hamster, mouse, rabbit, or fish sperm nuclei, or hamster hepatocyte nuclei. Within 6 hr of sham or nucleus microinjection, nuclei of each type underwent transformation into pronuclei and synthesized DNA. These results demonstrated that the hamster egg can access and utilize its own and each type of template provided, whether homologous or heterologous. However, pronuclei derived from hamster sperm nuclei were more likely to be synthesizing DNA at 6 hr than pronuclei derived from sperm nuclei of other species. The authors conclude that the mechanisms employed by the hamster oocyte to transform hamster sperm nuclei into pronuclei and to effect DNA synthesis in these nuclei are not specific for the hamster sperm nucleus. Nevertheless, these mechanisms apparently operate more efficiently when the hamster sperm nucleus, rather than a heterologous sperm nucleus, is present.

  3. A Scalable Gene Synthesis Platform Using High-Fidelity DNA Microchips

    PubMed Central

    Kosuri, Sriram; Eroshenko, Nikolai; LeProust, Emily; Super, Michael; Way, Jeffrey; Li, Jin Billy; Church, George M.

    2010-01-01

    Development of cheap, high-throughput, and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology1. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis2. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude3,4,5, yet efforts to scale their use have been largely unsuccessful due to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols, and enzymatic error correction to develop a highly parallel gene synthesis platform. We tested our platform by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ~35 kilo-basepairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ~2.5 megabases of DNA, which is at least 50 times larger than previously published attempts. PMID:21113165

  4. Translesion Synthesis of 2′-Deoxyguanosine Lesions by Eukaryotic DNA Polymerases

    PubMed Central

    2016-01-01

    With the discovery of translesion synthesis DNA polymerases, great strides have been made in the last two decades in understanding the mode of replication of various DNA lesions in prokaryotes and eukaryotes. A database search indicated that approximately 2000 articles on this topic have been published in this period. This includes research involving genetic and structural studies as well as in vitro experiments using purified DNA polymerases and accessory proteins. It is a daunting task to comprehend this exciting and rapidly emerging area of research. Even so, as the majority of DNA damage occurs at 2′-deoxyguanosine residues, this perspective attempts to summarize a subset of this field, focusing on the most relevant eukaryotic DNA polymerases responsible for their bypass. PMID:27760288

  5. Synthesis and evaluation of new spacers for use as dsDNA endcaps

    PubMed Central

    Ng, Pei-Sze; Laing, Brian M.; Balasundarum, Ganesan; Pingle, Maneesh; Friedman, Alan; Bergstrom, Donald E.

    2010-01-01

    A series of aliphatic and aromatic spacer molecules designed to cap the ends of DNA duplexes have been synthesized. The spacers were converted into dimethoxytrityl protected phosphoramidites as synthons for oligonucleotides synthesis. The effect of the spacers on the stability of short DNA duplexes was assessed by melting temperature studies. Endcaps containing amide groups were found to be less stabilizing than the hexaethylene glycol spacer. Endcaps containing either a terthiophene or a naphthalene tetracarboxylic acid dimide were found to be significantly more stabilizing. The former showed a preference for stacking above an A•T base pair. Spacers containing only methylene (-CH2-) and amide (-CONH-) groups interact weakly with DNA and consequently may be optimal for applications that require minimal influence on DNA structure but require a way to hold the ends of double-stranded DNA together. PMID:20715857

  6. Synthesis and evaluation of new spacers for use as dsDNA end-caps.

    PubMed

    Ng, Pei-Sze; Laing, Brian M; Balasundarum, Ganesan; Pingle, Maneesh; Friedman, Alan; Bergstrom, Donald E

    2010-08-18

    A series of aliphatic and aromatic spacer molecules designed to cap the ends of DNA duplexes have been synthesized. The spacers were converted into dimethoxytrityl-protected phosphoramidites as synthons for oligonucleotides synthesis. The effect of the spacers on the stability of short DNA duplexes was assessed by melting temperature studies. End-caps containing amide groups were found to be less stabilizing than the hexaethylene glycol spacer. End-caps containing either a terthiophene or a naphthalene tetracarboxylic acid diimide were found to be significantly more stabilizing. The former showed a preference for stacking above an A*T base pair. Spacers containing only methylene (-CH(2)-) and amide (-CONH-) groups interact weakly with DNA and consequently may be optimal for applications that require minimal influence on DNA structure but require a way to hold the ends of double-stranded DNA together.

  7. DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present.

    PubMed

    Chen, Cheng-Yao

    2014-01-01

    Next-generation sequencing (NGS) technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. Escherichia coli DNA polymerase I proteolytic (Klenow) fragment was originally utilized in Sanger's dideoxy chain-terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE) and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ϕ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ϕ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  8. Action of cytochalasin D on DNA synthesis in cells in culture

    SciTech Connect

    Glushankova, N.A.

    1986-10-01

    To solve the problem of the effect of changes in the actin cytoskeleton on DNA replication during the action of cytochalasins, the effect of long-term incubation of normal cells with cytochalasin D (CCD), which selectively destroys the microfilament system but does not affect transport of sugars, was investigated. Incorporation of labeled thymidine into mononuclear and binuclear cells in the presence of CCD and after its removal by rinsing also was studied separately. To investigate DNA synthesis the method of autoradiography with /sup 3/H-thymidine was used. A culture of mouse fibroblasts of the BALB/3T3 line and a secondary culture of fibroblasts obtained by trypsinization of mouse embryos (MEF) were used. On incubation of MEF and 3T3 cells, gradual inhibition of DNA synthesis is observed. The results obtained indicate that structural changes in the active cytoskeleton can abruptly and reversibly disturb passage of the normal cell through the cycle.

  9. Base J glucosyltransferase does not regulate the sequence specificity of J synthesis in trypanosomatid telomeric DNA.

    PubMed

    Bullard, Whitney; Cliffe, Laura; Wang, Pengcheng; Wang, Yinsheng; Sabatini, Robert

    2015-12-01

    Telomeric DNA of trypanosomatids possesses a modified thymine base, called base J, that is synthesized in a two-step process; the base is hydroxylated by a thymidine hydroxylase forming hydroxymethyluracil (hmU) and a glucose moiety is then attached by the J-associated glucosyltransferase (JGT). To examine the importance of JGT in modifiying specific thymine in DNA, we used a Leishmania episome system to demonstrate that the telomeric repeat (GGGTTA) stimulates J synthesis in vivo while mutant telomeric sequences (GGGTTT, GGGATT, and GGGAAA) do not. Utilizing an in vitro GT assay we find that JGT can glycosylate hmU within any sequence with no significant change in Km or kcat, even mutant telomeric sequences that are unable to be J-modified in vivo. The data suggests that JGT possesses no DNA sequence specificity in vitro, lending support to the hypothesis that the specificity of base J synthesis is not at the level of the JGT reaction.

  10. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    SciTech Connect

    Jones, R.A.

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  11. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    DOEpatents

    Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S

    2013-06-25

    A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.

  12. Synthesis of Sindbis virus complementary DNA by avian myeloblastosis virus RNA-directed DNA polymerase.

    PubMed

    Yuferov, V; Grandgenett, D P; Bondurant, M; Riggin, C; Tigges, M

    1978-07-24

    Sindbis virus 42 S RNA was efficiently transcribed into complementary DNA (CDNA) by avian myeloblastosis virus alphabeta DNA polymerase using oligo- (dT) or single-stranded calf thymus DNA as primers. Both of the Sindbis virus cDNA products were able to protect 60% of 125I-labeled Sindbis virus RNA, at near equal weight ratios, from RNAase A and T1 digestion. Using hybridization kinetics, the Crt 1/2 value for hybridization of the calf thymus-primed cDNA product with excess Sindbis RNA was determined to be 1.8 9 10-2 mol . s . 1-1. Thes data demonstrate that the Sindbis virus cDNA products are relatively uniform representations of Sindbis virus RNA sequences.

  13. Homologous Recombination and Translesion DNA Synthesis Play Critical Roles on Tolerating DNA Damage Caused by Trace Levels of Hexavalent Chromium

    PubMed Central

    Chen, Youjun; Zhou, Yi-Hui; Neo, Dayna; Clement, Jean; Takata, Minoru; Takeda, Shunichi; Sale, Julian; Wright, Fred A.; Swenberg, James A.; Nakamura, Jun

    2016-01-01

    Contamination of potentially carcinogenic hexavalent chromium (Cr(VI)) in the drinking water is a major public health concern worldwide. However, little information is available regarding the biological effects of a nanomoler amount of Cr(VI). Here, we investigated the genotoxic effects of Cr(VI) at nanomoler levels and their repair pathways. We found that DNA damage response analyzed based on differential toxicity of isogenic cells deficient in various DNA repair proteins is observed after a three-day incubation with K2CrO4 in REV1-deficient DT40 cells at 19.2 μg/L or higher as well as in TK6 cells deficient in polymerase delta subunit 3 (POLD3) at 9.8 μg/L or higher. The genotoxicity of Cr(VI) decreased ~3000 times when the incubation time was reduced from three days to ten minutes. TK mutation rate also significantly decreased from 6 day to 1 day exposure to Cr(VI). The DNA damage response analysis suggest that DNA repair pathways, including the homologous recombination and REV1- and POLD3-mediated error-prone translesion synthesis pathways, are critical for the cells to tolerate to DNA damage caused by trace amount of Cr(VI). PMID:27907204

  14. Design and Synthesis of Triangulated DNA Origami Trusses.

    PubMed

    Matthies, Michael; Agarwal, Nayan P; Schmidt, Thorsten L

    2016-03-09

    DNA nanotechnology offers unique control over matter on the nanoscale. Here, we extend the DNA origami method to cover a range of wireframe truss structures composed of equilateral triangles, which use less material per volume than standard multiple-helix bundles. From a flat truss design, we folded tetrahedral, octahedral, or irregular dodecahedral trusses by exchanging few connector strands. Other than standard origami designs, the trusses can be folded in low-salt buffers that make them compatible with cell culture buffers. The structures also have defined cavities that may in the future be used to precisely position functional elements such as metallic nanoparticles or enzymes. Our graph routing program and a simple design pipeline will enable other laboratories to make use of this valuable and potent new construction principle for DNA-based nanoengineering.

  15. Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays

    PubMed Central

    2011-01-01

    Background Light-directed in situ synthesis of DNA microarrays using computer-controlled projection from a digital micromirror device--maskless array synthesis (MAS)--has proved to be successful at both commercial and laboratory scales. The chemical synthetic cycle in MAS is quite similar to that of conventional solid-phase synthesis of oligonucleotides, but the complexity of microarrays and unique synthesis kinetics on the glass substrate require a careful tuning of parameters and unique modifications to the synthesis cycle to obtain optimal deprotection and phosphoramidite coupling. In addition, unintended deprotection due to scattering and diffraction introduce insertion errors that contribute significantly to the overall error rate. Results Stepwise phosphoramidite coupling yields have been greatly improved and are now comparable to those obtained in solid phase synthesis of oligonucleotides. Extended chemical exposure in the synthesis of complex, long oligonucleotide arrays result in lower--but still high--final average yields which approach 99%. The new synthesis chemistry includes elimination of the standard oxidation until the final step, and improved coupling and light deprotection. Coupling Insertions due to stray light are the limiting factor in sequence quality for oligonucleotide synthesis for gene assembly. Diffraction and local flare are by far the largest contributors to loss of optical contrast. Conclusions Maskless array synthesis is an efficient and versatile method for synthesizing high density arrays of long oligonucleotides for hybridization- and other molecular binding-based experiments. For applications requiring high sequence purity, such as gene assembly, diffraction and flare remain significant obstacles, but can be significantly reduced with straightforward experimental strategies. PMID:22152062

  16. Single-Molecule Measurements of Synthesis by DNA Polymerase with Base-Pair Resolution

    NASA Astrophysics Data System (ADS)

    Christian, Thomas; Romano, Louis; Rueda, David

    2010-03-01

    The catalytic mechanism of DNA polymerases involves multiple steps that precede and follow the transfer of a nucleotide to the 3'-hydroxyl of the growing DNA chain. Here we report a single-molecule approach to monitor the movement of E. coli DNA polymerase I (Klenow fragment) on a DNA template during DNA synthesis with single base-pair resolution. As each nucleotide is incorporated, the single-molecule F"orster resonance energy transfer intensity drops in discrete steps to values consistent with single nucleotide incorporations. Purines and pyrimidines are incorporated with comparable rates. A mismatched primer-template junction exhibits dynamics consistent with the primer moving into the exonuclease domain, which was used to determine the fraction of primer-termini bound to the exonuclease and polymerase sites. Most interestingly, we observe a structural change following the incorporation of a correctly paired nucleotide, consistent with transient movement of the polymerase past the pre-insertion site or a conformational change in the polymerase. This may represent a previously unobserved step in the mechanism of DNA synthesis that could be part of the proofreading process.

  17. Cell cycle specific distribution of killin: evidence for negative regulation of both DNA and RNA synthesis.

    PubMed

    Qiao, Man; Luo, Dan; Kuang, Yi; Feng, Haiyan; Luo, Guangping; Liang, Peng

    2015-01-01

    p53 tumor-suppressor gene is a master transcription factor which controls cell cycle progression and apoptosis. killin was discovered as one of the p53 target genes implicated in S-phase control coupled to cell death. Due to its extreme proximity to pten tumor-suppressor gene on human chromosome 10, changes in epigenetic modification of killin have also been linked to Cowden syndrome as well as other human cancers. Previous studies revealed that Killin is a high-affinity DNA-binding protein with preference to single-stranded DNA, and it inhibits DNA synthesis in vitro and in vivo. Here, co-localization studies of RFP-Killin with either GFP-PCNA or endogenous single-stranded DNA binding protein RPA during S-phase show that Killin always adopts a mutually exclusive punctuated nuclear expression pattern with the 2 accessory proteins in DNA replication. In contrast, when cells are not in S-phase, RFP-Killin largely congregates in the nucleolus where rRNA transcription normally occurs. Both of these cell cycle specific localization patterns of RFP-Killin are stable under high salt condition, consistent with Killin being tightly associated with nucleic acids within cell nuclei. Together, these cell biological results provide a molecular basis for Killin in competitively inhibiting the formation of DNA replication forks during S-phase, as well as potentially negatively regulate RNA synthesis during other cell cycle phases.

  18. Synthesis of DNA Oligodeoxynucleotides Containing Site-Specific 1,3-Butadiene- Deoxyadenosine Lesions

    PubMed Central

    Wickramaratne, Susith; Seiler, Christopher L.

    2016-01-01

    Post-oligomerization synthesis is a useful technique for preparing site-specifically modified DNA oligomers. This approach involves site-specific incorporation of inherently reactive halogenated nucleobases into DNA strands using standard solid phase synthesis, followed by post-oligomerization nucleophilic aromatic substitution (SNAr) reactions with carcinogen-derived synthons. In these reactions, the inherent reactivities of DNA and carcinogen-derived species are reversed: the modified DNA nucleobase acts as an electrophile, while the carcinogen-derived species acts as a nucleophile. In the present protocol, we describe the use of the post-oligomerization approach to prepare DNA strands containing site- and stereospecific N6-adenine and N1, N6-adenine adducts induced by epoxide metabolites of the known human and animal carcinogen, 1,3-butadiene (BD). The resulting oligomers containing site specific, structurally defined DNA adducts can be used in structural and biological studies to reveal the roles of specific BD adducts in carcinogenesis and mutagenesis. PMID:26344227

  19. The nexus of vitamin homeostasis and DNA synthesis and modification in mammalian brain.

    PubMed

    Spector, Reynold; Johanson, Conrad E

    2014-01-10

    The purpose of this review is to discuss the implications of the 2009 discovery of the sixth deoxyribonucleoside (dN) [5-hydroxymethyldeoxycytidine (hmdC)] in DNA which is the most abundant in neurons. The concurrent discovery of the three ten-eleven translocation enzymes (TET) which not only synthesize but also oxidize hmdC in DNA, prior to glycosylase removal and base excision repair, helps explain many heretofore unexplained phenomena in brain including: 1) the high concentration of ascorbic acid (AA) in neurons since AA is a cofactor for the TET enzymes, 2) the requirement for reduced folates and the dN synthetic enzymes in brain, 3) continued DNA synthesis in non-dividing neurons to repair the dynamic formation/removal of hmdC, and 4) the heretofore unexplained mechanism to remove 5-methyldeoxycytidine, the fifth nucleoside, from DNA. In these processes, we also describe the important role of choroid plexus and CSF in supporting vitamin homeostasis in brain: especially for AA and folates, for hmdC synthesis and removal, and methylated deoxycytidine (mdC) removal from DNA in brain. The nexus linking AA and folates to methylation, hydroxymethylation, and demethylation of DNA is pivotal to understanding not only brain development but also the subsequent function.

  20. The nexus of vitamin homeostasis and DNA synthesis and modification in mammalian brain

    PubMed Central

    2014-01-01

    The purpose of this review is to discuss the implications of the 2009 discovery of the sixth deoxyribonucleoside (dN) [5-hydroxymethyldeoxycytidine (hmdC)] in DNA which is the most abundant in neurons. The concurrent discovery of the three ten-eleven translocation enzymes (TET) which not only synthesize but also oxidize hmdC in DNA, prior to glycosylase removal and base excision repair, helps explain many heretofore unexplained phenomena in brain including: 1) the high concentration of ascorbic acid (AA) in neurons since AA is a cofactor for the TET enzymes, 2) the requirement for reduced folates and the dN synthetic enzymes in brain, 3) continued DNA synthesis in non-dividing neurons to repair the dynamic formation/removal of hmdC, and 4) the heretofore unexplained mechanism to remove 5-methyldeoxycytidine, the fifth nucleoside, from DNA. In these processes, we also describe the important role of choroid plexus and CSF in supporting vitamin homeostasis in brain: especially for AA and folates, for hmdC synthesis and removal, and methylated deoxycytidine (mdC) removal from DNA in brain. The nexus linking AA and folates to methylation, hydroxymethylation, and demethylation of DNA is pivotal to understanding not only brain development but also the subsequent function. PMID:24410751

  1. Structural Basis of High-Fidelity DNA Synthesis by Yeast DNA Polymerase δ

    SciTech Connect

    Swan, M.; Johnson, R; Prakash, L; Prakash, S; Aggarwal, A

    2009-01-01

    DNA polymerase ? (Pol ?) has a crucial role in eukaryotic replication. Now the crystal structure of the yeast DNA Pol ? catalytic subunit in complex with template primer and incoming nucleotide is presented at 2.0-A resolution, providing insight into its high fidelity and a framework to understand the effects of mutations involved in tumorigenesis.

  2. Synthesis of parvovirus H-1 replicative form from viral DNA by DNA polymerase gamma.

    PubMed Central

    Kollek, R; Goulian, M

    1981-01-01

    The initial event in the replication cycle of parvovirus H-1 is conversion of the single-stranded linear viral DNA to the double-stranded linear replicative form. We describe here detection of an activity in uninfected cell extracts that carries out this reaction. The activity was purified and identified as DNA polymerase gamma. Images PMID:6947222

  3. In vitro DNA dependent synthesis of globin RNA sequences from erythroleukemic cell chromatin.

    PubMed

    Reff, M E; Davidson, R L

    1979-01-01

    Murine erythroleukemic cells in culture accumulate cytoplasmic globin mRNA during differentiation induced by dimethyl sulfoxide (DMSO)1. Chromatin was prepared from DMSO induced erythroleukemic cells that were transcribing globin RNA in order to determine whether in vitro synthesis of globin RNA sequences was possible from chromatin. RNA was synthesized in vitro using 5-mercuriuridine triphosphate and exogenous Escheria coli RNA polymerase. Newly synthesized mercurated RNA was purified from endogenous chromatin associated RNA by affinity chromatography on a sepharose sulfhydryl column, and the globin RNA sequence content of the mercurated RNA was assayed by hybridization to cDNA globin. The synthesis of globin RNA sequences was shown to occur and to be sensitive to actinomycin and rifampicin and insensitive to alpha-amanitin. In contrast, synthesis of globin RNA sequence synthesis was not detected in significant amounts from chromatin prepared from uninduced erythroleukemic cells, nor from uninduced cell chromatin to which globin RNA was added prior to transcription. Isolated RNA:cDNA globin hybrids were shown to contain mercurated RNA by affinity chromatography. These results indicated that synthesis of globin RNA sequences from chromatin can be performed by E. coli RNA polymerase.

  4. Efficient synthesis of supercoiled M13 DNA molecule containing a site specifically placed psoralen adduct and its use as a substrate for DNA replication

    SciTech Connect

    Kodadek, T.; Gamper, H.

    1988-05-03

    The authors report a simple method for the in vitro synthesis of large quantities of site specifically modified DNA. The protocol involves extension of an oligonucleotide primer annealed to M13 single-stranded DNA using part of the T4 DNA polymerase holoenzyme. The resulting nicked double-stranded circles are ligated and supercoiled in the same tube, producing good yields of form I DNA. When the oligonucleotide primer is chemically modified, the resultant product contains a site-specific lesion. In this study, they report the synthesis of an M13 mp19 form I DNA which contains a psoralen monoadduct or cross-link at the KpnI site. They demonstrate the utility of these modified substrates by assessing the ability of the bacteriophage T4 DNA replication complex to bypass the damage and show that the psoralen monoadduct poses a severe block to the holoenzyme when attached to the template strand.

  5. Endotoxin or cytokines attenuate ozone-induced DNA synthesis in rat nasal transitional epithelium

    SciTech Connect

    Hotchkiss, J.A.; Harkema, J.R. )

    1992-06-01

    Pretreatment of rats with endotoxin (E), a potent inducer of tumor necrosis factor alpha (TNF), and interleukin 1 beta (IL 1), or a combination of TNF and IL1, has been shown to increase levels of lung antioxidant enzymes and protect against pulmonary toxicity associated with hyperoxia. Inhalation of ozone (O3) induces cell injury, followed by increased DNA synthesis, cell proliferation, and secretory cell metaplasia in rat nasal transitional epithelium (NTE). This study was designed to test the effects of E, TNF, and IL1 pretreatment on acute O3-induced NTE cell injury as measured by changes in NTE cell DNA synthesis. Rats were exposed to either 0.8 ppm O3 or air for 6 hr in whole-body inhalation chambers. Immediately before exposure, rats in each group were injected intraperitoneally (ip) with either saline alone or saline containing E, TNF, IL1, or both TNF and IL1. Eighteen hours postexposure, rats were injected ip with bromodeoxyuridine to label cells undergoing DNA synthesis and were euthanized 2 hr later. NTE was processed for light microscopy and immunochemically stained to identify cells that had incorporated BrdU into nuclear DNA. The number of BrdU-labeled NTE nuclei per millimeter of basal lamina was quantitated. There were no significant differences in the number of BrdU-labeled NTE nuclei in air-exposed rats that were injected with E, TNF, IL1, or TNF/IL1 compared with those in saline-injected, air-exposed controls. Rats that were injected with saline and exposed to O3 had approximately 10 times the number of BrdU-labeled NTE nuclei than saline-injected, air-exposed control rats. O3 exposure also induced a significant increase in labeled nuclei in rats that were pretreated with TNF alone. In contrast, pretreatment with E, IL1, or TNF/IL1 attenuated the O3-induced increase in NTE DNA synthesis.

  6. Design, synthesis and selection of DNA-encoded small-molecule libraries.

    PubMed

    Clark, Matthew A; Acharya, Raksha A; Arico-Muendel, Christopher C; Belyanskaya, Svetlana L; Benjamin, Dennis R; Carlson, Neil R; Centrella, Paolo A; Chiu, Cynthia H; Creaser, Steffen P; Cuozzo, John W; Davie, Christopher P; Ding, Yun; Franklin, G Joseph; Franzen, Kurt D; Gefter, Malcolm L; Hale, Steven P; Hansen, Nils J V; Israel, David I; Jiang, Jinwei; Kavarana, Malcolm J; Kelley, Michael S; Kollmann, Christopher S; Li, Fan; Lind, Kenneth; Mataruse, Sibongile; Medeiros, Patricia F; Messer, Jeffrey A; Myers, Paul; O'Keefe, Heather; Oliff, Matthew C; Rise, Cecil E; Satz, Alexander L; Skinner, Steven R; Svendsen, Jennifer L; Tang, Lujia; van Vloten, Kurt; Wagner, Richard W; Yao, Gang; Zhao, Baoguang; Morgan, Barry A

    2009-09-01

    Biochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide. The library was assembled by a combination of chemical and enzymatic synthesis, and interrogated by affinity selection. We describe methods for the selection and deconvolution of the chemical display library, and the discovery of inhibitors for two enzymes: Aurora A kinase and p38 MAP kinase.

  7. Switchable Protecting Strategy for Solid Phase Synthesis of DNA and RNA Interacting Nucleopeptides.

    PubMed

    Mercurio, Maria Emilia; Tomassi, Stefano; Gaglione, Maria; Russo, Rosita; Chambery, Angela; Lama, Stefania; Stiuso, Paola; Cosconati, Sandro; Novellino, Ettore; Di Maro, Salvatore; Messere, Anna

    2016-12-02

    Nucleopeptides are promising nucleic acid mimetics in which the peptide backbone bears nucleobases. They can recognize DNA and RNA targets modulating their biological functions. To date, the lack of an effective strategy for the synthesis of nucleopeptides prevents their evaluation for biological and biomedical applications. Herein, we describe an unprecedented approach that enables the synthesis of cationic both homo and heterosequence nucleopeptides wholly on solid support with high yield and purity. Spectroscopic studies indicate advantageous properties of the nucleopeptides in terms of binding, thermodynamic stability and sequence specific recognition. Biostability assay and laser scanning confocal microscopy analyses reveal that the nucleopeptides feature acceptable serum stability and ability to cross the cell membrane.

  8. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    DOEpatents

    Gardner, Shea N [San Leandro, CA; Mariella, Jr., Raymond P.; Christian, Allen T [Tracy, CA; Young, Jennifer A [Berkeley, CA; Clague, David S [Livermore, CA

    2011-01-18

    A method of fabricating a DNA molecule of user-defined sequence. The method comprises the steps of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an even or odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths. In one embodiment starting sequence fragments are of different lengths, n, n+1, n+2, etc.

  9. 5' modification of duplex DNA with a ruthenium electron donor-acceptor pair using solid-phase DNA synthesis

    NASA Technical Reports Server (NTRS)

    Frank, Natia L.; Meade, Thomas J.

    2003-01-01

    Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.

  10. [DNA reduplication cycle during chromosome polytenization in the salivary gland cells of Chironomus thummi larvae. III. The determination of the duration of the DNA synthesis period].

    PubMed

    Gundrina, L I; Sherudilo, A I; Mitina, R L

    1984-08-01

    The duration of DNA synthesis in the salivary gland cells of Chironomus thummi larvae of the IV instar was determined by means of autoradiography and cytophotometry. Cells of different levels of ploidy differ in the duration of their DNA synthesis period. The tS of 2(10)c and 2(11)c cells was equal to 17 and 22 hours, respectively. The doubling of DNA content of the chironomid salivary gland cells leads to a 1.3 time increase in the duration of S-phase.

  11. DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching.

    PubMed

    Powell, John T; Akhuetie-Oni, Benjamin O; Zhang, Zhao; Lin, Chenxiang

    2016-09-12

    Mechanically interlocked supramolecular assemblies are appealing building blocks for creating functional nanodevices. Herein, we describe the multistep assembly of large DNA origami rotaxanes that are capable of programmable structural switching. We validated the topology and structural integrity of these rotaxanes by analyzing the intermediate and final products of various assembly routes by electrophoresis and electron microscopy. We further analyzed two structure-switching behaviors of our rotaxanes, which are both mediated by DNA hybridization. In the first mechanism, the translational motion of the macrocycle can be triggered or halted at either terminus. In the second mechanism, the macrocycle can be elongated after completion of the rotaxane assembly, giving rise to a unique structure that is otherwise difficult to access.

  12. Mechanism of Concerted RNA-DNA Primer Synthesis by the Human Primosome.

    PubMed

    Baranovskiy, Andrey G; Babayeva, Nigar D; Zhang, Yinbo; Gu, Jianyou; Suwa, Yoshiaki; Pavlov, Youri I; Tahirov, Tahir H

    2016-05-06

    The human primosome, a 340-kilodalton complex of primase and DNA polymerase α (Polα), synthesizes chimeric RNA-DNA primers to be extended by replicative DNA polymerases δ and ϵ. The intricate mechanism of concerted primer synthesis by two catalytic centers was an enigma for over three decades. Here we report the crystal structures of two key complexes, the human primosome and the C-terminal domain of the primase large subunit (p58C) with bound DNA/RNA duplex. These structures, along with analysis of primase/polymerase activities, provide a plausible mechanism for all transactions of the primosome including initiation, elongation, accurate counting of RNA primer length, primer transfer to Polα, and concerted autoregulation of alternate activation/inhibition of the catalytic centers. Our findings reveal a central role of p58C in the coordinated actions of two catalytic domains in the primosome and ultimately could impact the design of anticancer drugs.

  13. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    SciTech Connect

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  14. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    SciTech Connect

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailing description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  15. Synthesis and DNA interaction of a mixed proflavine-phenanthroline Tröger base.

    PubMed

    Baldeyrou, Brigitte; Tardy, Christelle; Bailly, Christian; Colson, Pierre; Houssier, Claude; Charmantray, Franck; Demeunynck, Martine

    2002-04-01

    We report the synthesis of an asymmetric Tröger base containing the two well characterised DNA binding chromophores, proflavine and phenanthroline. The mode of interaction of the hybrid molecule was investigated by circular and linear dichroism experiments and a biochemical assay using DNA topoisomerase I. The data are compatible with a model in which the proflavine moiety intercalates between DNA base pairs and the phenanthroline ring occupies the DNA groove. DNase I cleavage experiments were carried out to investigate the sequence preference of the hybrid ligand and a well resolved footprint was detected at a site encompassing two adjacent 5'-GTC.5-GAC triplets. The sequence preference of the asymmetric molecule is compared to that of the symmetric analogues.

  16. DNA Dispose, but Subjects Decide. Learning and the Extended Synthesis.

    PubMed

    Lindholm, Markus

    Adaptation by means of natural selection depends on the ability of populations to maintain variation in heritable traits. According to the Modern Synthesis this variation is sustained by mutations and genetic drift. Epigenetics, evodevo, niche construction and cultural factors have more recently been shown to contribute to heritable variation, however, leading an increasing number of biologists to call for an extended view of speciation and evolution. An additional common feature across the animal kingdom is learning, defined as the ability to change behavior according to novel experiences or skills. Learning constitutes an additional source for phenotypic variation, and change in behavior may induce long lasting shifts in fitness, and hence favor evolutionary novelties. Based on published studies, I demonstrate how learning about food, mate choice and habitats has contributed substantially to speciation in the canonical story of Darwin's finches on the Galapagos Islands. Learning cannot be reduced to genetics, because it demands decisions, which requires a subject. Evolutionary novelties may hence emerge both from shifts in allelic frequencies and from shifts in learned, subject driven behavior. The existence of two principally different sources of variation also prevents the Modern Synthesis from self-referring explanations.

  17. De novo design, synthesis and biological evaluation of 1,4-dihydroquinolin-4-ones and 1,2,3,4-tetrahydroquinazolin-4-ones as potent kinesin spindle protein (KSP) inhibitors.

    PubMed

    Jiang, Cheng; Yang, Lei; Wu, Wu-Tong; Guo, Qing-Long; You, Qi-Dong

    2011-09-15

    Kinesin spindle protein (KSP) inhibitors are a promising class of anticancer agents that cause mitotic arrest in cells from a failure to form functional bipolar mitotic spindles. Here, we report the design, synthesis and biological evaluation of a novel series of 1,4-dihydroquinolin-4-ones and 1,2,3,4-tetrahydroquinazolin-4-ones using de novo design method. The synthesized compound was evaluated and proved to have potent inhibitory activities in the KSP ATPase. Compounds 15j and 15p show potent inhibitory activities in cell proliferation assays. Preferred compound 15j markedly induced G2/M phase cell cycle arrest with characteristic monoastral spindles and subsequent cell death in A549 cells. In vivo evaluation of 15j on the growth of transplantable S180 sarcoma in mice suggested its therapeutic potential for further development.

  18. Synthesis, photochemical properties and DNA binding studies of dna cleaving agents based on chiral dipyridine dihydrodioxins salts

    NASA Astrophysics Data System (ADS)

    Shamaev, Alexei

    activated by UV-light. The mechanism of o-quinone release and intramolecular ET was studied in detail by methods of Ultrafast Transient Absortion Spectroscopy and supported by high-level quantum mechanical calculations. The binding properties of chiral intercalators based on PDHD to various DNA oligonucleotides were studied by various methods and DNA cleavage properties indicating strong binding and cleaving ability of the synthesized PDHDs. Also, a new method for synthesis of cyclohexa[e]pyrenes which possibly capable of intramolecular ET and electron transfer-oxidative stress (ET-OS) DNA cleavage was developed and partially accomplished.

  19. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures.

    PubMed

    Lu, Chun-Hua; Cecconello, Alessandro; Willner, Itamar

    2016-04-27

    Interlocked circular DNA nanostructures, e.g., catenanes or rotaxanes, provide functional materials within the area of DNA nanotechnology. Specifically, the triggered reversible reconfiguration of the catenane or rotaxane structures provides a means to yield new DNA switches and to use them as dynamic scaffolds for controlling chemical functions and positioning functional cargoes. The synthesis of two-ring catenanes and their switchable reconfiguration by pH, metal ions, or fuel/anti-fuel stimuli are presented, and the functions of these systems, as pendulum or rotor devices or as switchable catalysts, are described. Also, the synthesis of three-, five-, and seven-ring catenanes is presented, and their switchable reconfiguration using fuel/anti-fuel strands is addressed. Implementation of the dynamically reconfigured catenane structures for the programmed organization of Au nanoparticle (NP) assemblies, which allows the plasmonic control of the fluorescence properties of Au NP/fluorophore loads associated with the scaffold, and for the operation of logic gates is discussed. Interlocked DNA rotaxanes and their different synthetic approaches are presented, and their switchable reconfiguration by means of fuel/anti-fuel strands or photonic stimuli is described. Specifically, the use of the rotaxane as a scaffold to organize Au NP assemblies, and the control of the fluorescence properties with Au NP/fluorophore hybrids loaded on the rotaxane scaffold, are introduced. The future prospectives and challenges in the field of interlocked DNA nanostructures and the possible applications are discussed.

  20. On-Flow Synthesis of Co-Polymerizable Oligo-Microspheres and Application in ssDNA Amplification

    PubMed Central

    Lee, Se Hee; Lee, Jae Ha; Lee, Ho Won; Kim, Yang-Hoon; Jeong, Ok Chan; Ahn, Ji-Young

    2016-01-01

    We fabricated droplet-based microfluidic platform for copolymerizable microspheres with acrydite modified DNA probe. The copolymerizable 3-D polyacrylamide microspheres were successfully produced from microcontinuous-flow synthesis with on-channel solidification. DNA copolymerization activity, surface presentation and thermostability were assessed by using fluorescent labeled complementary probe. The binding performance was only visible on the surface area of oligo-microspheres. We show that the resulting oligo-microspheres can be directly integrated into a streamlined microsphere-PCR protocol for amplifying ssDNA. Our microspheres could be utilized as a potential material for ssDNA analysis such as DNA microarray and automatic DNA SELEX process. PMID:27447941

  1. Iron chelators hydroxyurea and bathophenanthroline disulfonate inhibit DNA synthesis by different pathways.

    PubMed

    Alcaín, F J; Löw, H; Crane, F L; Navas, P

    1994-09-01

    We previously showed that thrombin-stimulated DNA synthesis in CCL 39 cells was inhibited by hydroxyurea (HU) and bathophenanthroline disulfonate (BPS) (Proc. Natl. Acad. Sci. USA, in press). A clear difference exists between these two inhibitors. Inhibition mediated by HU was immediate and must be present in the culture medium. BPS was equally effective when it was present in the medium or after preincubation, but it required at least 12 h to achieve maximal effect. The permeable form 1,10 phenanthroline had the same inhibitory effect in short-term incubations that BPS. Moreover, 1,10 phenanthroline was cytotoxic in long-term incubations indicating that the site of BPS inhibition was outside the cell. Further, long-term incubations with HU did not affect the ability of the cell to reinitiate DNA synthesis after removal of the chelator.

  2. [Synthesis of biflavones and their interaction with DNA].

    PubMed

    Zhang, Zun-Ting; Gao, Run-Li; Zhuang, Su-Kai

    2009-08-01

    To explore new biflavones, 7-hydroxy-8-hydroxymethyl-4'-methoxyisoflavone (1), (5, 7-dihydroxyflavone-8-yl)-(7'-hydroxy-4"-methoxyisoflavone-8'-yl)methane (2), bis(7-hydroxy-4'-methoxyflavone-8-yl) methane (3), bis(3', 5'-diisopropyl-7, 4'-dihydroxy-isoflavone-8-yl)methane (4), and bis(7-hydroxy-isoflavone-8-yl) methane (5) were designed and synthesized from chrysin, formononetin, 7, 4'-dihydroxy-3', 5'-diisopropyl-isoflavone and 7-hydroxy-isoflavone. Their structures were identified with IR, 1H NMR, 13C NMR and elemental analysis. The binding of 1-5 with DNA was studied with fluorescent spectroscopy. Compounds 2-5 showed higher binding affinity with DNA than 1. According to the Stern-Volmer equation, the binding constants of 2, 3 were determined at 35 degrees C and 25 degrees C respectively, they were Kq2 (25 degrees C) = 1.95 x 10(4) Lx mol(-1) and Kq2 (35 degrees C) = 1.67 x 10(4) L x mol(-1); Kq3 (25 degrees C) = 1.89 x 10(4) L x mol(-1) and Kq3 (35 degrees C) = 1.58 x 10(4) L x mol(-1). The quenching mechanism of 2, 3 was suggested as static quenching.

  3. [Synthesis of chrysin derivatives and their interaction with DNA].

    PubMed

    Zhang, Zun-Ting; Chen, Li-Li

    2007-05-01

    Using chrysin as a leading compound, intermediate 5, 7-dihydroxy-6, 8-bis (hydroxymethyl) flavone (1) was synthesized by hydroxymethylation. The intermediate reacted with different alcohols to afford 5, 7-dihydroxy-6, 8-bis ( methoxymethyl) flavone (2), 6, 8-bis (ethoxymethyl) -5, 7dihydroxyflavone (3), 6, 8-bis-(butoxymethyl)-5, 7-dihydroxyflavone (4), 6, 8-bis (pentyloxymethyl) -5,7-dihydroxy flavone (5) and 6, 8-bis-(ethoxymethyl) -5-hydroxy-7-methoxyflavone (6). These compounds were characterized by IR, 1H NMR, 13C NMR and element analysis. The crystal structure of 6 was determined by X-ray crystal diffraction. The interaction of the derivatives with CT-DNA was studied by fluorescent spectroscopy. According to the Stern-Volmer equation, the quenching constants of the compounds 1 - 4 were measured, separately, they were K(q1) = 9.71 x 10(3) L x mol(-1), K(q2) = 2.25 x 10(4) L x mol(-1), K(q3) = 1.03 x 10(4) L x mol(-1) and K(q4) = 7.96 x 10(3) L x mol(-1). Compounds 1-4 showed higher binding affinity with DNA than chrysin did. The results provided the experimental basis for developing a more effective flavonoid and worthing further thoroughly study.

  4. Identification of polymerase and processivity inhibitors of vaccinia DNA synthesis using a stepwise screening approach

    PubMed Central

    Silverman, Janice Elaine Y.; Ciustea, Mihai; Shudofsky, Abigail M. Druck; Bender, Florent; Shoemaker, Robert H.; Ricciardi, Robert P.

    2008-01-01

    Nearly all DNA polymerases require processivity factors to ensure continuous incorporation of nucleotides. Processivity factors are specific for their cognate DNA polymerases. For this reason, the vaccinia DNA polymerase (E9) and the proteins associated with processivity (A20 and D4) are excellent therapeutic targets. In this study, we show the utility of stepwise rapid plate assays that i) screen for compounds that block vaccinia DNA synthesis, ii) eliminate trivial inhibitors, e.g. DNA intercalators, and iii) distinguish whether inhibitors are specific for blocking DNA polymerase activity or processivity. The sequential plate screening of 2,222 compounds from the NCI Diversity Set library yielded a DNA polymerase inhibitor (NSC 55636) and a processivity inhibitor (NSC 123526) that were capable of reducing vaccinia viral plaques with minimal cellular cytotoxicity. These compounds are predicted to block cellular infection by the smallpox virus, variola, based on the very high sequence identity between A20, D4 and E9 of vaccinia and the corresponding proteins of variola. PMID:18621425

  5. Polyanionic Carboxyethyl Peptide Nucleic Acids (ce-PNAs): Synthesis and DNA Binding

    PubMed Central

    Kirillova, Yuliya; Boyarskaya, Nataliya; Dezhenkov, Andrey; Tankevich, Mariya; Prokhorov, Ivan; Varizhuk, Anna; Eremin, Sergei; Esipov, Dmitry; Smirnov, Igor; Pozmogova, Galina

    2015-01-01

    New polyanionic modifications of polyamide nucleic acid mimics were obtained. Thymine decamers were synthesized from respective chiral α- and γ-monomers, and their enantiomeric purity was assessed. Here, we present the decamer synthesis, purification and characterization by MALDI-TOF mass spectrometry and an investigation of the hybridization properties of the decamers. We show that the modified γ-S-carboxyethyl-T10 PNA forms a stable triplex with polyadenine DNA. PMID:26469337

  6. The Foundry: the DNA synthesis and construction Foundry at Imperial College

    PubMed Central

    Chambers, Stephen; Kitney, Richard; Freemont, Paul

    2016-01-01

    The establishment of a DNA synthesis and construction foundry at Imperial College in London heralds a new chapter in the development of synthetic biology to meet new global challenges. The Foundry employs the latest technology to make the process of engineering biology easier, faster and scalable. The integration of advanced software, automation and analytics allows the rapid design, build and testing of engineered organisms. PMID:27284027

  7. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies.

    PubMed

    Raza, Aun; Xu, Xiuquan; Xia, Li; Xia, Changkun; Tang, Jian; Ouyang, Zhen

    2016-11-01

    Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.

  8. Rutin-Nickel Complex: Synthesis, Characterization, Antioxidant, DNA Binding, and DNA Cleavage Activities.

    PubMed

    Raza, Aun; Bano, Shumaila; Xu, Xiuquan; Zhang, Rong Xian; Khalid, Haider; Iqbal, Furqan Muhammad; Xia, Changkun; Tang, Jian; Ouyang, Zhen

    2016-12-17

    The rutin-nickel (II) complex (RN) was synthesized and characterized by elemental analysis, UV-visible spectroscopy, IR, mass spectrometry, (1)H NMR, TG-DSC, SEM, and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal/ligand) of the complex. An antioxidant study of rutin and its metal complex against DPPH radical showed that the complex has more radical scavenging activity than free rutin. The interaction of complex RN with DNA was determined using fluorescence spectra and agarose gel electrophoresis. The results showed that RN can intercalate moderately with DNA, quench a strong intercalator ethidium bromide (EB), and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form (SC) to nicked circular form (NC), and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was a hydrolytic cleavage pathway. These results revealed the potential nuclease activity of the complex to cleave DNA.

  9. The effects of cell death-inducing DNA fragmentation factor-α-like effector C on milk lipid synthesis in mammary glands of dairy cows.

    PubMed

    Yang, Yang; Lin, Ye; Duan, Xiaoyu; Lv, He; Xing, Weinan; Li, Qingzhang; Gao, Xuejun; Hou, Xiaoming

    2017-03-08

    Adequate lipid synthesis by the mammary gland during lactation is essential for the survival of mammalian offspring. Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) is a lipid droplet-associated protein and functions to promote lipid accumulation and inhibit lipolysis in mice and human adipocytes. However, the function of CIDEC in regulation of milk lipid synthesis in dairy cow mammary gland remains largely unknown. In this study, 6 multiparous Holstein cows (parity = 3) in early lactation were allocated to high-fat milk (milk yield 33.9 ± 2.1 kg/d, milk fat >3.5%, n = 3) and low-fat milk (milk yield 33.7 ± 0.5 kg/d, milk fat <3.5%, n = 3) groups according to their milk fat content. Lactating cows were slaughtered at 90 d in milk and mammary tissues were collected to detect CIDEC localization. Immunofluorescence staining of sections of lactating mammary glands with high- and low-fat milk showed that CIDEC was expressed in the cytoplasm of epithelial cells and localized to lipid droplets. Lipid droplets and CIDEC protein were also detected in isolated lactating mammary epithelial cells of dairy cows. Immunostaining of CIDEC in isolated mammary epithelial cells also confirmed its presence in the nucleus. The knockdown of CIDEC in cultured bovine mammary epithelial cells decreased milk lipid content and reduced expression of genes associated with mammary de novo fatty acid synthesis, short- and long-chain intracellular fatty acid activation, triacylglycerol synthesis, and transcription regulation. These genes included those for acetyl-CoA carboxylase (ACC, -60%), fatty acid synthase (FASN, -65%), acyl-CoA synthetase short-chain family member 2 (ACSS2, -50%), acyl-CoA synthetase long-chain family member 1 (ACSL1, -30%), diacylglycerol acyltransferase 1 (DGAT1, -60%), sterol regulatory element-binding protein 1 (SREBP1, -45%), and SREBP cleavage activating protein (SCAP, -66%). Conversely, in cells overexpressing CIDEC, triacylglycerol content

  10. Gab1 mediates neurite outgrowth, DNA synthesis, and survival in PC12 cells.

    PubMed

    Korhonen, J M; Saïd, F A; Wong, A J; Kaplan, D R

    1999-12-24

    The Gab1-docking protein has been shown to regulate phosphatidylinositol 3-kinase PI3K activity and potentiate nerve growth factor (NGF)-induced survival in PC12 cells. Here, we investigated the potential of Gab1 to induce neurite outgrowth and DNA synthesis, two other important aspects of NGF-induced neuronal differentiation of PC12 cells and NGF-independent survival. We generated a recombinant adenovirus encoding hemagglutinin (HA)-epitope-tagged Gab1 and expressed this protein in PC12 cells. HA-Gab1 was constitutively tyrosine-phosphorylated in PC12 cells and induced the phosphorylation of Akt/protein kinase B and p44/42 mitogen-activated protein kinase. HA-Gab1-stimulated a 10-fold increase in neurite outgrowth in the absence of NGF and a 5-fold increase in NGF-induced neurite outgrowth. HA-Gab1 also stimulated DNA synthesis and caused NGF-independent survival in PC12 cells. Finally, we found that HA-Gab1-induced neuritogenesis was completely suppressed by pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) activity and 50% suppressed by inhibition of PI3K activity. In contrast, HA-Gab1-stimulated cell survival was efficiently suppressed only by inhibition of both PI3K and MEK activities. These results indicate that Gab1 is capable of mediating differentiation, DNA synthesis, and cell survival and uses both PI3K and MEK signaling pathways to achieve its effects.

  11. Iron reverses impermeable chelator inhibition of DNA synthesis in CCl 39 cells.

    PubMed

    Alcain, F J; Löw, H; Crane, F L

    1994-08-16

    Treatment of Chinese hamster lung fibroblasts (CCl 39 cells) with the impermeable iron(II) chelator bathophenanthroline disulfonate (BPS) inhibits DNA synthesis when cell growth is initiated with growth factors including epidermal growth factor plus insulin, thrombin, or ceruloplasmin, but not with 10% fetal calf serum. The BPS treatment inhibits transplasma membrane electron transport. The treatment leads to release of iron from the cells as determined by BPS iron(II) complex formation over 90 min. Growth factor stimulation of DNA synthesis and electron transport are restored by addition of di- or trivalent iron to the cells in the form of ferric ammonium citrate, ferrous ammonium sulfate, or diferric transferrin. The effect with BPS differs from the inhibition of growth by hydroxyurea, which acts on the ribonucleotide reductase, or diethylenetriaminepentaacetic acid, which is another impermeable chelating agent, in that these agents inhibit growth in 10% fetal calf serum. The BPS effect is consistent with removal of iron from a site on the cell surface that controls DNA synthesis.

  12. Iron Reverses Impermeable Chelator Inhibition of DNA Synthesis in CCl39 Cells

    NASA Astrophysics Data System (ADS)

    Alcain, Francisco J.; Low, Hans; Crane, Frederick L.

    1994-08-01

    Treatment of Chinese hamster lung fibro-blasts (CCl 39 cells) with the impermeable iron(II) chelator bathophenanthroline disulfonate (BPS) inhibits DNA synthesis when cell growth is initiated with growth factors including epidermal growth factor plus insulin, thrombin, or ceruloplasmin, but not with 10% fetal calf serum. The BPS treatment inhibits transplasma membrane electron transport. The treatment leads to release of iron from the cells as determined by BPS iron(II) complex formation over 90 min. Growth factor stimulation of DNA synthesis and electron transport are restored by addition of di- or trivalent iron to the cells in the form of ferric ammonium citrate, ferrous ammonium sulfate, or diferric transferrin. The effect with BPS differs from the inhibition of growth by hydroxyurea, which acts on the ribonucleotide reductase, or diethylenetriaminepentaacetic acid, which is another impermeable chelating agent, in that these agents inhibit growth in 10% fetal calf serum. The BPS effect is consistent with removal of iron from a site on the cell surface that controls DNA synthesis.

  13. DNA Assembly Tools and Strategies for the Generation of Plasmids.

    PubMed

    Baek, Chang-Ho; Liss, Michael; Clancy, Kevin; Chesnut, Jonathan; Katzen, Federico

    2014-10-01

    Since the discovery of restriction enzymes and the generation of the first recombinant DNA molecule over 40 years ago, molecular biology has evolved into a multidisciplinary field that has democratized the conversion of a digitized DNA sequence stored in a computer into its biological counterpart, usually as a plasmid, stored in a living cell. In this article, we summarize the most relevant tools that allow the swift assembly of DNA sequences into useful plasmids for biotechnological purposes. We cover the main components and stages in a typical DNA assembly workflow, namely in silico design, de novo gene synthesis, and in vitro and in vivo sequence assembly methodologies.

  14. Roles of the Envelope Proteins in the Amplification of Covalently Closed Circular DNA and Completion of Synthesis of the Plus-Strand DNA in Hepatitis B Virus ▿

    PubMed Central

    Lentz, Thomas B.; Loeb, Daniel D.

    2011-01-01

    Covalently closed circular DNA (cccDNA), the nuclear form of hepatitis B virus (HBV), is synthesized by repair of the relaxed circular (RC) DNA genome. Initially, cccDNA is derived from RC DNA from the infecting virion, but additional copies of cccDNA are derived from newly synthesized RC DNA molecules in a process termed intracellular amplification. It has been shown that the large viral envelope protein limits the intracellular amplification of cccDNA for duck hepatitis B virus. The role of the envelope proteins in regulating the amplification of cccDNA in HBV is not well characterized. The present report demonstrates regulation of synthesis of cccDNA by the envelope proteins of HBV. Ablation of expression of the envelope proteins led to an increase (>6-fold) in the level of cccDNA. Subsequent restoration of envelope protein expression led to a decrease (>50%) in the level of cccDNA, which inversely correlated with the level of the envelope proteins. We found that the expression of L protein alone or in combination with M and/or S proteins led to a decrease in cccDNA levels, indicating that L contributes to the regulation of cccDNA. Coexpression of L and M led to greater regulation than either L alone or L and S. Coexpression of all three envelope proteins was also found to limit completion of plus-strand DNA synthesis, and the degree of this effect correlated with the level of the proteins and virion secretion. PMID:21900164

  15. Synthesis of linear polyethylenimine derivatives for DNA transfection.

    PubMed

    Brissault, Blandine; Kichler, Antoine; Guis, Christine; Leborgne, Christian; Danos, Olivier; Cheradame, Hervé

    2003-01-01

    A series of linear polymers containing varying amounts of ethylenimine or N-propylethylenimine units were synthesized by hydrolysis and/or reduction of polyethyloxazolines. The pK(a)s of the polyamines were determined potentiometrically. Gel mobility shift assay showed that the efficiency of DNA complexation was related to the fraction of amino groups that are protonated at neutral pH. The effects of cationic charge density and molar weight of the polymers on the transfection efficiency were evaluated on HepG2 cells. The results obtained with different copolymers show that the transfection efficiency primarily depends on the fraction of ethylenimine units included in the polymer albeit the molar weight is also of importance. On the basis of the results obtained with poly(N-propylethylenimines), we also demonstrate that the high transfection efficiency of polyethylenimines does not solely rely on their capacity to capture protons which are transferred into the endo-lysosomes during acidification.

  16. Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast.

    PubMed

    Narcross, Lauren; Bourgeois, Leanne; Fossati, Elena; Burton, Euan; Martin, Vincent J J

    2016-12-16

    The ever-increasing quantity of data deposited to GenBank is a valuable resource for mining new enzyme activities. Falling costs of DNA synthesis enables metabolic engineers to take advantage of this resource for identifying superior or novel enzymes for pathway optimization. Previously, we reported synthesis of the benzylisoquinoline alkaloid dihydrosanguinarine in yeast from norlaudanosoline at a molar conversion of 1.5%. Molar conversion could be improved by reduction of the side-product N-methylcheilanthifoline, a key bottleneck in dihydrosanguinarine biosynthesis. Two pathway enzymes, an N-methyltransferase and a cytochrome P450 of the CYP719A subfamily, were implicated in the synthesis of the side-product. Here, we conducted an extensive screen to identify enzyme homologues whose coexpression reduces side-product synthesis. Phylogenetic trees were generated from multiple sources of sequence data to identify a library of candidate enzymes that were purchased codon-optimized and precloned into expression vectors designed to facilitate high-throughput analysis of gene expression as well as activity assay. Simple in vivo assays were sufficient to guide the selection of superior enzyme homologues that ablated the synthesis of the side-product, and improved molar conversion of norlaudanosoline to dihydrosanguinarine to 10%.

  17. Green synthesis of gold nanoparticles for staining human cervical cancer cells and DNA binding assay.

    PubMed

    De, Swati; Kundu, Rikta; Ghorai, Atanu; Mandal, Ranju Prasad; Ghosh, Utpal

    2014-11-01

    Gold nanoparticles have been functionalized by non-ionic surfactants (polysorbates) used in pharmaceutical formulations. This results in the formation of more well-dispersed gold nanoparticles (GNPs) than the GNPs formed in neat water. The synthesized GNPs show good temporal stability. The synthesis conditions are mild and environmentally benign. The GNPs can bind to ct-DNA and displace bound dye molecules. The DNA-binding assay is significant as it preliminarily indicated that DNA-GNP conjugates can be formed. Such conjugates are extremely promising for applications in nanobiotechnology. The GNPs can also stain the human cervical cancer (HeLa) cells over a wide concentration range while remaining non-cytotoxic, thus providing a non invasive cell staining method. This result is very promising as we observe staining of HeLa cells at very low GNP concentrations (1 μM) while the cell viability is retained even at 10-fold higher GNP concentrations.

  18. Synthesis, Characterization, and DNA Binding Profile of a Macrocyclic β-Sheet Analogue of ARC Protein

    PubMed Central

    2015-01-01

    ARC repressor (apoptosis repressor with caspase recruitment domain) is a protein which binds selectively to a specific sequence of DNA. In humans, ARC is primarily expressed in striated muscle tissue, which normally does not undergo rapid cell turnover. This suggests that ARC may play a protective role in the prevention against Duchenne Muscular Dystrophy and several types of tumors. In this Letter we report the synthesis, characterization, and conformational analysis of a β-sheet ARC repressor mimetic, based on the amino acid sequence of the β-sheet domain in the ARC protein. The ability of this β-sheet macrocycle to bind to double-stranded DNA was also evaluated using spectroscopic methods. Our data show that the synthetic peptide has a defined conformation and is able to bind DNA with reasonable affinity. These initial results lay the groundwork for the design of novel β-sheets folded peptides as valuable substitutes of transcription factor proteins in drug therapy. PMID:26713108

  19. Inhibitor of DNA synthesis is present in normal chicken serum

    SciTech Connect

    Franklin, R.A.; Davila, D.R.; Westly, H.J.; Kelley, K.W.

    1986-03-05

    The authors have found that heat-inactivated serum (57/sup 0/C for 1 hour) from normal chickens reduces the proliferation of mitogen-stimulated chicken and murine splenocytes as well as some transformed mammalian lymphoblastoid cell lines. Greater than a 50% reduction in /sup 3/H-thymidine incorporation was observed when concanavalin A (Con A)-activated chicken splenocytes that were cultured in the presence of 10% autologous or heterologous serum were compared to mitogen-stimulated cells cultured in the absence of serum. Normal chicken serum (10%) also caused greater than 95% suppression of /sup 3/H-thymidine incorporation by bovine (EBL-1 and BL-3) and gibbon ape (MLA 144) transformed lymphoblastoid cell lines. The only cell line tested that was not inhibited by chicken serum was an IL-2-dependent, murine cell line. Chicken serum also inhibited both /sup 3/H-thymidine incorporation and IL-2 synthesis by Con A-activated murine splenocytes. Suppression was caused by actions other than cytotoxicity because viability of chicken splenocytes was unaffected by increasing levels of chicken serum. Furthermore, dialyzed serum retained its activity, which suggested that thymidine in the serum was not inhibiting uptake of radiolabeled thymidine. Suppressive activity was not due to adrenal glucocorticoids circulating in plasma because neither physiologic nor pharmacologic doses of corticosterone had inhibitory effects on mitogen-stimulated chicken splenocytes. These data demonstrate that an endogenous factor that is found in normal chicken serum inhibits proliferation of T-cells from chickens and mice as well as some transformed mammalian lymphoblastoid cell lines.

  20. In vitro synthesis of large peptide molecules using glucosylated single-stranded bacteriophage T4D DNA template.

    PubMed Central

    Hulen, C; Legault-Demare, J

    1975-01-01

    Denatured Bacteriophage T4D DNA is able to stimulate aminoacid incorporation into TCA-precipitable material in an in vitro protein synthesis system according to base DNA sequences. Newly synthesized polypeptides remain associated with ribosomes and have a molecular weight in range of 15,000 to 45,000 Daltons. PMID:1052527

  1. Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation

    SciTech Connect

    Lovrinovic, Marina; Niemeyer, Christof M. . E-mail: christof.niemeyer@uni-dortmund.de

    2005-09-30

    We report a rapid method for the covalent modification of commercially available amino-modified DNA oligonucleotides with a cysteine moiety. The resulting DNA-cysteine conjugates are versatile reagents for the efficient preparation of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter of which contain a C-terminal thioester enabling the mild and highly specific reaction with N-terminal cysteine compounds. We prepared a cysteine-modifier reagent in a single-step reaction which allows for the rapid and near quantitative synthesis of cysteine-DNA conjugates. The latter were ligated with the green fluorescent protein mutant EYFP, recombinantly expressed as an intein-fusion protein, allowing for the mild and selective formation of EYFP-DNA conjugates in high yields of about 60%. We anticipate many applications of our approach, ranging from protein microarrays to the arising field of nanobiotechnology.

  2. Stimulation of Endomitotic DNA Synthesis and Cell Elongation by Gibberellic Acid in Epicotyls Grown from Gamma-irradiated Pea Seeds 1

    PubMed Central

    Callebaut, Alfons; Van Oostveldt, Patrick; Van Parijs, Roger

    1980-01-01

    Large doses of γ-irradiation, given to air-dried pea seeds, inhibit the endomitotic DNA synthesis in pea epicotyls during germination in darkness. The cortex cells of the etiolated epicotyls reach only the 4 C DNA level, whereas cortex cells of unirradiated seeds reach the 8 C DNA level. Epicotyl elongation and cell elongation are also reduced. Application of gibberellic acid restores the endomitotic DNA synthesis and the cell elongation in epicotyls of irradiated seeds. The cortex cells reach again the 8 C DNA level in darkness. The results suggest that γ-irradiation blocks endomitotic DNA synthesis and cell elongation by lowering the concentration of endogenous gibberellins. PMID:16661127

  3. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks.

    PubMed

    Mahfouz, Magdy M; Li, Lixin; Shamimuzzaman, Md; Wibowo, Anjar; Fang, Xiaoyun; Zhu, Jian-Kang

    2011-02-08

    Site-specific and rare cutting nucleases are valuable tools for genome engineering. The generation of double-strand DNA breaks (DSBs) promotes homologous recombination in eukaryotes and can facilitate gene targeting, additions, deletions, and inactivation. Zinc finger nucleases have been used to generate DSBs and subsequently, for genome editing but with low efficiency and reproducibility. The transcription activator-like family of type III effectors (TALEs) contains a central domain of tandem repeats that could be engineered to bind specific DNA targets. Here, we report the generation of a Hax3-based hybrid TALE nuclease with a user-selected DNA binding specificity. We show that the engineered TALE nuclease can bind to its target sequence in vitro and that the homodimeric TALE nuclease can cleave double-stranded DNA in vitro if the DNA binding sites have the proper spacing and orientation. Transient expression assays in tobacco leaves suggest that the hybrid nuclease creates DSB in its target sequence, which is subsequently repaired by nonhomologous end-joining repair. Taken together, our data show the feasibility of engineering TALE-based hybrid nucleases capable of generating site-specific DSBs and the great potential for site-specific genome modification in plants and eukaryotes in general.

  4. Involvement of de Novo Protein Synthesis, Protein Kinase, Extracellular Ca2+, and Lipoxygenase in Arachidonic Acid Induction of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Genes and Isoprenoid Accumulation in Potato (Solanum tuberosum L.).

    PubMed Central

    Choi, D.; Bostock, R. M.

    1994-01-01

    A series of inhibitors were tested to determine the participation of de novo protein synthesis, protein kinase activity, extracellular Ca2+, and lipoxygenase activity in arachidonic acid elicitation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene expression and sesquiterpene phytoalexin biosynthesis in potato (Solanum tuberosum L. cv Kennebec). Gene-specific probes were used to discriminate effects on the expression of two HMGR genes (hmg1 and hmg2) that respond differentially in tuber tissue following wounding or elicitor treatment. Inhibition of protein synthesis with cycloheximide completely blocked arachidonate-induced hypersensitive necrosis and browning, including HMGR gene induction and phytoalexin accumulation. This suggests that proteins necessary for coupling arachidonic acid reception to HMGR mRNA accumulation are either rapidly turned over or not present constitutively and are induced following elicitor treatment. Staurosporin, a potent inhibitor of protein kinases, and ethyleneglycol-bis([beta]-aminoethyl ether)-N,N[prime]-tetraacetic acid, a Ca2+ chelator, inhibited arachidonate-induction of hmg2 gene expression and phytoalexin accumulation but did not inhibit the wound-induced expression of hmg1. However, staurosporin inhibited arachidonate's suppression of hmg1 gene expression. Eicosatetraynoic acid, a lipoxygenase inhibitor that suppresses elicitor-induced phytoalexin accumulation, also inhibited arachidonate's suppression of hmg1 and induction of hmg2. The results indicate that arachidonate's suppression of hmg1 and activation of hmg2 depend on a common intermediate or set of intermediates whose generation is sensitive to the inhibitors tested. PMID:12232162

  5. Steric and electrostatic effects in DNA synthesis by the SOS-induced DNA polymerases II and IV of Escherichia coli.

    PubMed

    Silverman, Adam P; Jiang, Qingfei; Goodman, Myron F; Kool, Eric T

    2007-12-04

    The SOS-induced DNA polymerases II and IV (pol II and pol IV, respectively) of Escherichia coli play important roles in processing lesions that occur in genomic DNA. Here we study how electrostatic and steric effects play different roles in influencing the efficiency and fidelity of DNA synthesis by these two enzymes. These effects were probed by the use of nonpolar shape analogues of thymidine, in which substituted toluenes replace the polar thymine base. We compared thymine with nonpolar analogues to evaluate the importance of hydrogen bonding in the polymerase active sites, while we used comparisons among a set of variably sized thymine analogues to measure the role of steric effects in the two enzymes. Steady-state kinetics measurements were carried out to evaluate activities for nucleotide insertion and extension. The results showed that both enzymes inserted nucleotides opposite nonpolar template bases with moderate to low efficiency, suggesting that both polymerases benefit from hydrogen bonding or other electrostatic effects involving the template base. Surprisingly, however, pol II inserted nonpolar nucleotide (dNTP) analogues into a primer strand with high (wild-type) efficiency, while pol IV handled them with an extremely low efficiency. Base pair extension studies showed that both enzymes bypass non-hydrogen-bonding template bases with moderately low efficiency, suggesting a possible beneficial role of minor groove hydrogen bonding interactions at the N-1 position. Measurement of the two polymerases' sensitivity to steric size changes showed that both enzymes were relatively flexible, yielding only small kinetic differences with increases or decreases in nucleotide size. Comparisons are made to recent data for DNA pol I (Klenow fragment), the archaeal polymerase Dpo4, and human pol kappa.

  6. DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus

    PubMed Central

    Qi, Yonghe; Gao, Zhenchao; Peng, Bo; Yan, Huan; Tang, Dingbin; Song, Zilin; He, Wenhui; Sun, Yinyan; Guo, Ju-Tao; Li, Wenhui

    2016-01-01

    Hepatitis B virus (HBV) infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP), followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc) DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc) DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s) that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s) responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK), a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV. PMID:27783675

  7. Structure of a mutant form of proliferating cell nuclear antigen that blocks translesion DNA synthesis

    PubMed Central

    Freudenthal, Bret D.; Ramaswamy, S.; Hingorani, Manju M.; Washington, M. Todd

    2009-01-01

    Proliferating cell nuclear antigen (PCNA) is a homotrimeric protein that functions as a sliding clamp during DNA replication. Several mutant forms of PCNA that block translesion DNA synthesis have been identified in genetic studies in yeast. One such mutant protein (encoded by the rev6-1 allele) is a glycine to serine substitution at residue 178, located at the subunit interface of PCNA. To better understand how this substitution interferes with translesion synthesis, we have determined the X-ray crystal structure of the G178S PCNA mutant protein. This substitution has little effect on the structure of the domain in which the substitution occurs. Instead, significant, local structural changes are observed in the adjacent subunit. The most notable difference between mutant and wild-type structures is in a single, extended loop (comprising amino acid residues 105-110), which we call loop J. In the mutant protein structure, loop J adopts a very different conformation in which the atoms of the protein backbone have moved by as much as 6.5 Å from their positions in the wild-type structure. To better understand the functional consequences of this structural change, we have examined the ability of this mutant protein to stimulate nucleotide incorporation by DNA polymerase eta (pol η). Steady state kinetic studies show that while wild-type PCNA stimulates incorporation by pol η opposite an abasic site, the mutant PCNA protein actually inhibits incorporation opposite this DNA lesion. These results show that the position of loop J in PCNA plays an essential role in facilitating translesion synthesis. PMID:19053247

  8. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis.

    PubMed

    Kim, Jinsook; Song, Insil; Jo, Ara; Shin, Joo-Ho; Cho, Hana; Eoff, Robert L; Guengerich, F Peter; Choi, Jeong-Yun

    2014-10-20

    DNA polymerase (pol) ι is the most error-prone among the Y-family polymerases that participate in translesion synthesis (TLS). Pol ι can bypass various DNA lesions, e.g., N(2)-ethyl(Et)G, O(6)-methyl(Me)G, 8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently with low fidelity. We assessed the biochemical effects of six reported genetic variations of human pol ι on its TLS properties, using the recombinant pol ι (residues 1-445) proteins and DNA templates containing a G, N(2)-EtG, O(6)-MeG, 8-oxoG, or abasic site. The Δ1-25 variant, which is the N-terminal truncation of 25 residues resulting from an initiation codon variant (c.3G > A) and also is the formerly misassigned wild-type, exhibited considerably higher polymerase activity than wild-type with Mg(2+) (but not with Mn(2+)), coinciding with its steady-state kinetic data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation opposite templates (only with Mg(2+)). The R96G variant, which lacks a R96 residue known to interact with the incoming nucleotide, lost much of its polymerase activity, consistent with the kinetic data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation opposite templates either with Mg(2+) or Mn(2+), except for that opposite N(2)-EtG with Mn(2+) (showing a 9-fold increase for dCTP incorporation). The Δ1-25 variant bound DNA 20- to 29-fold more tightly than wild-type (with Mg(2+)), but the R96G variant bound DNA 2-fold less tightly than wild-type. The DNA-binding affinity of wild-type, but not of the Δ1-25 variant, was ∼7-fold stronger with 0.15 mM Mn(2+) than with Mg(2+). The results indicate that the R96G variation severely impairs most of the Mg(2+)- and Mn(2+)-dependent TLS abilities of pol ι, whereas the Δ1-25 variation selectively and substantially enhances the Mg(2+)-dependent TLS capability of pol ι, emphasizing the potential translational importance of these pol ι genetic variations, e.g., individual differences

  9. DNA Binding and Recognition of a CC Mismatch in a DNA Duplex by Water-Soluble Peptidocalix[4]arenes: Synthesis and Applications.

    PubMed

    Alavijeh, Nahid S; Zadmard, Reza; Balalaie, Saeed; Alavijeh, Mohammad S; Soltani, Nima

    2016-10-07

    Water-soluble peptidocalix[4]arenes were synthesized by the introduction of arginine-rich narrow groove-binding residues at lower rims through solid-phase synthesis. The study of binding of these water-soluble bidentate ligands to well-matched and mismatched DNA duplexes by fluorescent titrations, ethidium bromide (EB) displacement assays, DNA-melting experiments, and circular dichroism (CD) analysis revealed a sequence-dependent groove-binding mechanism.

  10. Photoaugmentation in the hairless mouse: a study using ornithine decarboxylase activity and alteration of DNA synthesis as markers of epidermal response

    SciTech Connect

    Gange, R.W.; Mendelson, I.R.

    1981-01-01

    Photoaugmentation is the potentiation of UVB-induced cutaneous erythema by UV irradiation. We have examined other cutaneous responses to UVB irradiation-the 4 hr depression of DNA synthesis, the 48 hr stimulation of DNA synthesis, and the induction of ornithine decarboxylase (ODC), to determine whether these were also susceptible to augmentation by UVA, which does not cause these responses when administered alone. No photoaugmentation of DNA synthesis, stimulation or ODC induction occurred. The early depression of DNA synthesis was slightly augmented for this did not consistently reach significance.

  11. Toward a designed genetic system with biochemical function: polymerase synthesis of single and multiple size-expanded DNA base pairs.

    PubMed

    Lu, Haige; Krueger, Andrew T; Gao, Jianmin; Liu, Haibo; Kool, Eric T

    2010-06-21

    The development of alternative architectures for genetic information-encoding systems offers the possibility of new biotechnological tools as well as basic insights into the function of the natural system. In order to examine the potential of benzo-expanded DNA (xDNA) to encode and transfer biochemical information, we carried out a study of the processing of single xDNA pairs by DNA Polymerase I Klenow fragment (Kf, an A-family sterically rigid enzyme) and by the Sulfolobus solfataricus polymerase Dpo4 (a flexible Y-family polymerase). Steady-state kinetics were measured and compared for enzymatic synthesis of the four correct xDNA pairs and twelve mismatched pairs, by incorporation of dNTPs opposite single xDNA bases. Results showed that, like Kf, Dpo4 in most cases selected the correctly paired partner for each xDNA base, but with efficiency lowered by the enlarged pair size. We also evaluated kinetics for extension by these polymerases beyond xDNA pairs and mismatches, and for exonuclease editing by the Klenow exo+ polymerase. Interestingly, the two enzymes were markedly different: Dpo4 extended pairs with relatively high efficiencies (within 18-200-fold of natural DNA), whereas Kf essentially failed at extension. The favorable extension by Dpo4 was tested further by stepwise synthesis of up to four successive xDNA pairs on an xDNA template.

  12. Temporal and topographic changes in DNA synthesis after induced follicular atresia

    SciTech Connect

    Greenwald, G.S. )

    1989-07-01

    Hamsters were hypophysectomized on the morning of estrus (Day 1) and injected immediately with 30 IU pregnant mare's serum (PMS). This was followed on Day 4 by the injection of an antiserum to PMS (PMS-AS) that initiated follicular atresia (Time zero). From 0 to 72 h after PMS-AS, the animals were injected with (3H)thymidine and killed 4 h later. One ovary was saved for autoradiography and histology; from the other ovary, 5-10 large antral follicles were dissected and pooled, and incorporation into DNA was determined by scintillation counting. DNA synthesis dropped sharply between 12 and 18 h, coinciding with a fall in labeling index of the cumulus oophorus and thecal endothelial cells and a sharp fall in thecal vascularity. In contrast, for the mural granulosa cells bordering on the antral cavity, labeling index dropped sharply between 8 and 12 h when thecal vascularity was still high. The earliest sign of atresia was evident by 4 h in cumulus cells when, paradoxically, DNA synthesis was still high. It took 3 days for atresia of the antral follicles to progress to advanced stages, as evidenced by pseudo-pronuclei in the free floating ovum, further erosion of the mural granulosa, and minimal DNA/follicle. However, the theca still retained its histological integrity and contained no pyknotic cells. Although by 48 h the granulosal compartment was in disarray (DNA/follicle significantly different from earlier values), the egg was still viable, as judged by maximal fluorescence after the addition of fluoroscein diacetate.

  13. Excision of translesion synthesis errors orchestrates responses to helix-distorting DNA lesions

    PubMed Central

    Tsaalbi-Shtylik, Anastasia; Ferrás, Cristina; Pauw, Bea; Hendriks, Giel; Temviriyanukul, Piya; Carlée, Leone; Calléja, Fabienne; van Hees, Sandrine; Akagi, Jun-Ichi; Iwai, Shigenori; Hanaoka, Fumio; Jansen, Jacob G.

    2015-01-01

    In addition to correcting mispaired nucleotides, DNA mismatch repair (MMR) proteins have been implicated in mutagenic, cell cycle, and apoptotic responses to agents that induce structurally aberrant nucleotide lesions. Here, we investigated the mechanistic basis for these responses by exposing cell lines with single or combined genetic defects in nucleotide excision repair (NER), postreplicative translesion synthesis (TLS), and MMR to low-dose ultraviolet light during S phase. Our data reveal that the MMR heterodimer Msh2/Msh6 mediates the excision of incorrect nucleotides that are incorporated by TLS opposite helix-distorting, noninstructive DNA photolesions. The resulting single-stranded DNA patches induce canonical Rpa–Atr–Chk1-mediated checkpoints and, in the next cell cycle, collapse to double-stranded DNA breaks that trigger apoptosis. In conclusion, a novel MMR-related DNA excision repair pathway controls TLS a posteriori, while initiating cellular responses to environmentally relevant densities of genotoxic lesions. These results may provide a rationale for the colorectal cancer tropism in Lynch syndrome, which is caused by inherited MMR gene defects. PMID:25869665

  14. Nucleotides with altered hydrogen bonding capacities impede human DNA polymerase η by reducing synthesis in the presence of the major cisplatin DNA adduct.

    PubMed

    Nilforoushan, Arman; Furrer, Antonia; Wyss, Laura A; van Loon, Barbara; Sturla, Shana J

    2015-04-15

    Human DNA polymerase η (hPol η) contributes to anticancer drug resistance by catalyzing the replicative bypass of DNA adducts formed by the widely used chemotherapeutic agent cis-diamminedichloroplatinum (cisplatin). A chemical basis for overcoming bypass-associated resistance requires greater knowledge of how small molecules influence the hPol η-catalyzed bypass of DNA adducts. In this study, we demonstrated how synthetic nucleoside triphosphates act as hPol η substrates and characterized their influence on hPol η-mediated DNA synthesis over unmodified and platinated DNA. The single nucleotide incorporation efficiency of the altered nucleotides varied by more than 10-fold and the higher incorporation rates appeared to be attributable to the presence of an additional hydrogen bond between incoming dNTP and templating base. Finally, full-length DNA synthesis in the presence of increasing concentrations of synthetic nucleotides reduced the amount of DNA product independent of the template, representing the first example of hPol η inhibition in the presence of a platinated DNA template.

  15. Synthesis of biodegradable polymer-mesoporous silica composite microspheres for DNA prime-protein boost vaccination.

    PubMed

    Ho, Jenny; Huang, Yi; Danquah, Michael K; Wang, Huanting; Forde, Gareth M

    2010-03-18

    DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(D,L-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 microm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.

  16. Enhanced unscheduled DNA synthesis in UV-irradiated human skin explants treated with T4N5 liposomes

    SciTech Connect

    Yarosh, D.B.; Kibitel, J.T.; Green, L.A.; Spinowitz, A. )

    1991-07-01

    Epidermal keratinocytes cultured from explants of skin cancer patients, including biopsies from xeroderma pigmentosum patients, were ultraviolet light-irradiated and DNA repair synthesis was measured. Repair capacity was much lower in xeroderma pigmentosum patients than in normal patients. The extent of DNA repair replication did not decline with the age of the normal patient. Treatment with T4N5 liposomes containing a DNA repair enzyme enhanced repair synthesis in both normal and xeroderma pigmentosum keratinocytes in an irradiation- and liposome-dose dependent manner. These results provide no evidence that aging people or skin cancer patients are predisposed to cutaneous malignancy by a DNA repair deficiency, but do demonstrate that T4N5 liposomes enhance DNA repair in the keratinocytes of the susceptible xeroderma pigmentosum and skin cancer population.

  17. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    SciTech Connect

    Weinberger, Florian Mehrkens, Dennis Starbatty, Jutta Nicol, Philipp Eschenhagen, Thomas

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  18. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    SciTech Connect

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J. )

    1991-05-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase were concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of ({sup 3}H)proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of ({sup 3}H)hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of ({sup 3}H)thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone.

  19. Nucleotide-sequence-specific de novo methylation in a somatic murine cell line.

    PubMed Central

    Szyf, M; Schimmer, B P; Seidman, J G

    1989-01-01

    DNA fragments encoding the mouse steroid 21-hydroxylase (C21 or Cyp21A1) gene are de novo methylated when introduced into the mouse adrenocortical tumor cell line Y1 by DNA-mediated gene transfer. Although CCGG sequences within the C21 gene are de novo methylated, CCGG sites within flanking vector sequences, other mammalian gene sequences driven by the C21 promoter, and the neomycin-resistance gene, which was cotransfected with the C21 gene, do not become methylated. At least two separate signals for de novo methylation are encoded within the gene since three fragments derived from the C21 gene were methylated de novo. Specific de novo methylation of C21-derived sequences does not occur in L cells or Y1 kin8 cells; this suggests that the cellular factors needed for de novo methylation of the C21 gene are not ubiquitous. Most DNA sequences are not de novo methylated when introduced into somatic cells and DNA sequences other than the C21 gene are not de novo methylated when introduced into Y1 cells. Several groups have suggested that de novo methylation occurs in early embryonic cells and that somatic cells strictly maintain their methylation pattern by a semiconservative methyltransferase. Our results suggest that de novo methylation of specific nucleotide sequences can occur in some mammalian somatic cells. Images PMID:2789380

  20. Synthesis and antiproliferative activity of some new DNA-targeted alkylating pyrroloquinolines.

    PubMed

    Ferlin, M G; Dalla Via, L; Gia, O M

    2004-02-15

    Two novel DNA-direct alkylating agents, consisting of aniline mustard linked to an angular 3H-pyrrolo[3,2-f]quinoline nucleus, were synthetized and assayed for their in vitro antiproliferative activity. Simple convergent synthesis, consisting of separate preparation of 9-chloro-3H-pyrrolo[3,2-f]quinoline and p-amino-aniline derivatives, and following their linkage by substitution reactions 8a, b and 10, yielded the corresponding diol derivatives 7b and 9. Biological properties were evaluated with respect to cell growth inhibition, ability to form cross-links with DNA, and capacity to give rise to a molecular complex with the macromolecule for 7b, 8b, 9 and 10.

  1. A chemical method for fast and sensitive detection of DNA synthesis in vivo.

    PubMed

    Salic, Adrian; Mitchison, Timothy J

    2008-02-19

    We have developed a method to detect DNA synthesis in proliferating cells, based on the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) and its subsequent detection by a fluorescent azide through a Cu(I)-catalyzed [3 + 2] cycloaddition reaction ("click" chemistry). Detection of the EdU label is highly sensitive and can be accomplished in minutes. The small size of the fluorescent azides used for detection results in a high degree of specimen penetration, allowing the staining of whole-mount preparations of large tissue and organ explants. In contrast to BrdU, the method does not require sample fixation or DNA denaturation and permits good structural preservation. We demonstrate the use of the method in cultured cells and in the intestine and brain of whole animals.

  2. Novel designed enediynes: molecular design, chemical synthesis, mode of cycloaromatization and guanine-specific DNA cleavage.

    PubMed

    Toshima, K; Ohta, K; Kano, T; Nakamura, T; Nakata, M; Kinoshita, M; Matsumura, S

    1996-01-01

    The molecular design and chemical synthesis of novel enediyne molecules related to the neocarzinostatin chromophore (1), and their chemical and DNA cleaving properties are described. The 10-membered enediyne triols 16-18 were effectively synthesized from xylitol (10) in a short step, and found to be quite stable when handled at room temperature. The representative and acylated enediyne 16 was cycloaromatized by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in cyclohexa-1,4-diene-benzene to give the benzenoid product 21 through a radical pathway. On the other hand, the enediyne 16 was cycloaromatized by diethylamine in dimethyl sulfoxide-Tris-HCl, pH 8.5 buffer to afford another benzenoid product 22 as a diethylamine adduct through a polar pathway. Furthermore, the enediynes 16-18 were found to exhibit guanine-specific DNA cleavage under weakly basic conditions with no additive.

  3. Fabrication of polyurethane molecular stamps for the synthesis of DNA microarray

    NASA Astrophysics Data System (ADS)

    Liu, Zhengchun; He, Quanguo; Xiao, Pengfeng; He, Nongyao; Lu, Zuhong; Bo, Liang

    2001-10-01

    Polyurethane based on polypropylene glycol (PPG) and Toluene diisocyanate (TDI) using 3,3'-dichloride-4,4'- methylenedianiline (MOCA) as the crosslinker is presented for the first time to fabricate molecular stamps (PU stamps) for the synthesis of DNA microarray with contact procedure. The predictability of the process is achieved by utilizing commercially available starting materials. SEM analysis of the morphology of PU stamps and master showed that PU elastometer could replicate subtly the motherboard's patterns with high fidelity. It was proved from the contact angle measurement that PU stamps surface has good affinity with acetonitrile, which guarantee the well-distribution of DNA monomers on patterned stamps. Laser confocal fluorescence microscopy images of oligonucleotide arrays confirmed polyurethane is an excellent material for molecular stamps.

  4. In planta Identification of Putative Pathogenicity Factors from the Chickpea Pathogen Ascochyta rabiei by De novo Transcriptome Sequencing Using RNA-Seq and Massive Analysis of cDNA Ends

    PubMed Central

    Fondevilla, Sara; Krezdorn, Nicolas; Rotter, Björn; Kahl, Guenter; Winter, Peter

    2015-01-01

    The most important foliar diseases in legumes worldwide are ascochyta blights. Up to now, in the Ascochyta-legume pathosystem most studies focused on the identification of resistance genes in the host, while very little is known about the pathogenicity factors of the fungal pathogen. Moreover, available data were often obtained from fungi growing under artificial conditions. Therefore, in this study we aimed at the identification of the pathogenicity factors of Ascochyta rabiei, causing ascochyta blight in chickpea. To identify potential fungal pathogenicity factors, we employed RNA-seq and Massive Analysis of cDNA Ends (MACE) to produce comprehensive expression profiles of A. rabiei genes isolated either from the fungus growing in absence of its host or from fungi infecting chickpea leaves. We further provide a comprehensive de novo assembly of the A. rabiei transcriptome comprising 22,725 contigs with an average length of 1178 bp. Since pathogenicity factors are usually secreted, we predicted the A. rabiei secretome, yielding 550 putatively secreted proteins. MACE identified 596 transcripts that were up-regulated during infection. An analysis of these genes identified a collection of candidate pathogenicity factors and unraveled the pathogen's strategy for infecting its host. PMID:26648917

  5. Effects of sulfur dioxide, hydrogen peroxide and sulfuric acid on the de novo synthesis of PCDD/F and PCB under model laboratory conditions.

    PubMed

    Pekárek, V; Puncochár, M; Bures, M; Grabic, R; Fiserová, E

    2007-01-01

    In a laboratory model system consisting of fly ash from municipal waste incinerator, CuCl2 x 2H2O, NaCl and activated carbon in N2 + 10% O2 atmosphere, the de novo synthetic reactions of formation of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) were studied under laboratory conditions in the presence of sulfur dioxide, hydrogen peroxide, and sulfuric acid. It has been found that the formation of PCDD is suppressed by sulfur dioxide more efficiently than the formation of PCDF. A similar effect has also been observed in the presence of hydrogen peroxide. The formation of PCDF is strongly suppressed in the presence of sulfuric acid. On the basis of the experimental results and thermodynamic calculations, the following mechanisms are proposed and discussed: oxidative destruction of PCDD and PCDF oxygen rings, conversion of cupric chloride and possibly also cupric oxide into the non-reactive sulfate, and the Deacon oxychlorination processes catalyzed by cupric chloride.

  6. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis.

    PubMed

    Taggart, David J; Dayeh, Daniel M; Fredrickson, Saul W; Suo, Zucai

    2014-10-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5'-2-deoxyribose-5-phosphate lyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or an 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated -1 or -2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of -2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of -1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase within the non

  7. Acrylamide exposure induces a delayed unscheduled DNA synthesis in germ cells of male mice that is correlated with the temporal pattern of adduct formation in testis DNA

    SciTech Connect

    Sega, G.A.; Generoso, E.E.; Brimer, P.A. )

    1990-01-01

    A study of meiotic and postmeiotic germ-cell-stage sensitivity of male mice to induction of unscheduled DNA synthesis (UDS) by acrylamide showed that DNA repair could be detected in early spermatocytes (after the last scheduled DNA synthesis) through about mid-spermatid stages. No DNA repair could be detected in later stages. The maximum UDS response was observed 6 hr after i.p. exposure and was about 5 times greater than the response measured immediately after treatment. This is the longest delay between chemical treatment and maximum UDS response yet observed in mouse germ cells. There was a linear relationship between the UDS response and acrylamide exposure from 7.8 to 125 mg/kg. By using 14C-labeled acrylamide it was determined that the temporal pattern of adduct formation in testes DNA paralleled that of the UDS response, with maximum binding occurring 4 to 6 hr after exposure. In contrast, the temporal pattern of adduct formation in liver DNA showed maximum binding within 1 to 2 hr after exposure and was an order of magnitude greater than that found for the testis DNA.

  8. Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis.

    PubMed

    Hedglin, Mark; Pandey, Binod; Benkovic, Stephen J

    2016-03-29

    In eukaryotes, DNA polymerase δ (pol δ) is responsible for replicating the lagging strand template and anchors to the proliferating cell nuclear antigen (PCNA) sliding clamp to form a holoenzyme. The stability of this complex is integral to every aspect of lagging strand replication. Most of our understanding comes from Saccharomyces cerevisae where the extreme stability of the pol δ holoenzyme ensures that every nucleobase within an Okazaki fragment is faithfully duplicated before dissociation but also necessitates an active displacement mechanism for polymerase recycling and exchange. However, the stability of the human pol δ holoenzyme is unknown. We designed unique kinetic assays to analyze the processivity and stability of the pol δ holoenzyme. Surprisingly, the results indicate that human pol δ maintains a loose association with PCNA while replicating DNA. Such behavior has profound implications on Okazaki fragment synthesis in humans as it limits the processivity of pol δ on undamaged DNA and promotes the rapid dissociation of pol δ from PCNA on stalling at a DNA lesion.

  9. Synthesis, characterization, and photoactivated DNA cleavage by copper (II)/cobalt (II) mediated macrocyclic complexes.

    PubMed

    Naik, H R Prakash; Naik, H S Bhojya; Aravinda, T; Lamani, D S

    2010-01-01

    We report the synthesis of new photonuclease consisting of two Co(II)/Cu(II) complexes of macrocyclic fused quinoline. Metal complexes are [MLX(2)], type where M = Co(II) (5), Cu(II) (6), and X = Cl, and are well characterized by elemental analysis, Fourier transform infrared spectroscopy, (1)H-NMR and electronic spectra. We have shown that photocleavage of plasmid DNA is markedly enhanced when this ligand is irradiated in the presence of Cu(II), and more so than that of cobalt. The chemistry of ternary and binary Co(II) complexes showing efficient light induced (360 nm) DNA cleavage activity is summarized. The role of the metal in photoinduced DNA cleavage reactions is explored by designing complex molecules having macrocyclic structure. The mechanistic pathways are found to be concentration dependent on Co(II)/Cu(II) complexes and the photoexcitation energy photoredox chemistry. Highly effective DNA cleavage ability of 6 is attributed to the effective cooperation of the metal moiety.

  10. Design and synthesis of fluorescent substrates for human tyrosyl-DNA phosphodiesterase I

    PubMed Central

    Rideout, Marc C.; Raymond, Amy C.; Burgin, Alex B.

    2004-01-01

    Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that acts upon protein–DNA covalent complexes. Tdp1 hydrolyzes 3′-phosphotyrosyl bonds to generate 3′-phosphate DNA and free tyrosine in vitro. Mutations in Tdp1 have been linked to patients with spinocerebellar ataxia, and over-expression of Tdp1 results in resistance to known anti-cancer compounds. Tdp1 has been shown to be involved in double-strand break repair in yeast, and Tdp1 has also been implicated in single-strand break repair in mammalian cells. Despite the biological importance of this enzyme and the possibility that Tdp1 may be a molecular target for new anti-cancer drugs, there are very few assays available for screening inhibitor libraries or for characterizing Tdp1 function, especially under pre-steady-state conditions. Here, we report the design and synthesis of a fluorescence-based assay using oligonucleotide and nucleotide substrates containing 3′-(4-methylumbelliferone)-phosphate. These substrates are efficiently cleaved by Tdp1, generating the fluorescent 4-methylumbelliferone reporter molecule. The kinetic characteristics determined for Tdp1 using this assay are in agreement with the previously published values, and this fluorescence-based assay is validated using the standard gel-based methods. This sensitive assay is ideal for kinetic analysis of Tdp1 function and for high-throughput screening of Tdp1 inhibitory molecules. PMID:15333697

  11. Requirement of Rad5 for DNA Polymerase ζ-Dependent Translesion Synthesis in Saccharomyces cerevisiae

    PubMed Central

    Pagès, Vincent; Bresson, Anne; Acharya, Narottam; Prakash, Satya; Fuchs, Robert P.; Prakash, Louise

    2008-01-01

    In yeast, Rad6–Rad18-dependent lesion bypass involves translesion synthesis (TLS) by DNA polymerases η or ζ or Rad5-dependent postreplication repair (PRR) in which error-free replication through the DNA lesion occurs by template switching. Rad5 functions in PRR via its two distinct activities—a ubiquitin ligase that promotes Mms2–Ubc13-mediated K63-linked polyubiquitination of PCNA at its lysine 164 residue and a DNA helicase that is specialized for replication fork regression. Both these activities are important for Rad5's ability to function in PRR. Here we provide evidence for the requirement of Rad5 in TLS mediated by Polζ. Using duplex plasmids carrying different site-specific DNA lesions—an abasic site, a cis–syn TT dimer, a (6-4) TT photoproduct, or a G-AAF adduct—we show that Rad5 is needed for Polζ-dependent TLS. Rad5 action in this role is likely to be structural, since neither the inactivation of its ubiquitin ligase activity nor the inactivation of its helicase activity impairs its role in TLS. PMID:18757916

  12. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives

    NASA Astrophysics Data System (ADS)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-01

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.

  13. Total Synthesis of the Antitumor Antibiotic (±)-Streptonigrin: First- and Second-Generation Routes for de Novo Pyridine Formation Using Ring-Closing Metathesis

    PubMed Central

    2013-01-01

    The total synthesis of (±)-streptonigrin, a potent tetracyclic aminoquinoline-5,8-dione antitumor antibiotic that reached phase II clinical trials in the 1970s, is described. Two routes to construct a key pentasubstituted pyridine fragment are depicted, both relying on ring-closing metathesis but differing in the substitution and complexity of the precursor to cyclization. Both routes are short and high yielding, with the second-generation approach ultimately furnishing (±)-streptonigrin in 14 linear steps and 11% overall yield from inexpensive ethyl glyoxalate. This synthesis will allow for the design and creation of druglike late-stage natural product analogues to address pharmacological limitations. Furthermore, assessment of a number of chiral ligands in a challenging asymmetric Suzuki–Miyaura cross-coupling reaction has enabled enantioenriched (up to 42% ee) synthetic streptonigrin intermediates to be prepared for the first time. PMID:24328139

  14. DNA synthesis in mouse epidermis: S phase cells that remain unlabeled after pulse labeling with DNA precursors progress slowly through S

    SciTech Connect

    Clausen, O.P.; Elgjo, K.; Kirkhus, B.; Pedersen, S.; Bolund, L.

    1983-12-01

    Epidermal basal cells from hairless mice were isolated after pulse labeling with tritiated DNA precursors and subjected to DNA flow cytometry combined with cell sorting. Cells were sorted from a window in the middle of the S phase, collected on glass slides, and subjected to autoradiography. Unlabeled cells in the middle of the S phase were found in normal mouse epidermis after optimal pulse labeling with tritiated thymidine ((/sup 3/H)dThd), in accordance with previous results. The proportion of unlabeled S phase cells was considerably increased among basal cells from mice treated with growth-inhibitory epidermal extracts. Reanalysis and re-sorting of cells previously sorted from mid S showed that unlabeled cells could not be accounted for by G1 contamination. Furthermore, labeling with precursors incorporated into DNA by ''de novo'' metabolic pathway ((/sup 3/H)Urd) did not reduce the proportion of unlabeled S phase cells, either when given alone or when given in combination with the precursor for DNA incorporated by the ''salvage'' pathway ((/sup 3/H)dThd). This strongly indicates that the unlabeled S phase cells do not synthesize DNA continuously, or are synthesizing DNA at a rate below the level of detection. A reduced proportion of unlabeled S phase cells was found in regenerating epidermis. This may be explained by a dilution effect caused by the 3-fold increase in the total number of cells within S phase at this condition. The observation that essentially all cells in mid S phase were labeled during 4 days of continuous labeling with (/sup 3/H)dThd, indicates that cells in S phase that remain unlabeled after optimal pulse labeling are cycling, albeit slowly. Two-parameter sorting based on DNA and light scatter indicated that slowly cycling cells are larger than the average. These cells may represent a subpopulation of basal cells going through their last division cycle before differentiation.

  15. Depletion of Kupffer cells modulates ethanol-induced hepatocyte DNA synthesis in C57Bl/6 mice.

    PubMed

    Owumi, Solomon E; Corthals, Stacy M; Uwaifo, Anthony O; Kamendulis, Lisa M; Klaunig, James E

    2014-08-01

    Kupffer cells (KCs) are important in hepatic homeostasis and responses to xenobiotics. KCs are activated on interaction with endotoxin, releasing cytokines, and reactive oxygen species normally associated with increased gene expression, cellular growth, or hepatic injury. Ethanol-induced endotoxemia is one means of KC activation. We propose that KC depletion attenuates the effect of EtOH-induced endotoxemia to impact the hepatic growth response. Hepatic DNA synthesis was examined in KC competent (KC+) or KC-depleted (KC-) C57BL/6 mice fed EtOH-containing diet in the presence or absence of polyphenol-60 antioxidant. KC depletion was assessed by F4/80 antigen, and DNA synthesis was assessed by 5-bromo-2'-deoxyuridine incorporation. Tumor necrosis factor alpha (TNF-α) messenger RNA released was quantified by RT-PCR/electrophoresis. ERK1/2 phosphorylation was evaluated by Western blotting, and Nrf2 and CYP2E1protein were also assayed. Apoptosis and hepatic injury were examined by the Tunnel assay and hepatic transaminases in serum, respectively. Hepatic transaminases in serum (AST and ALT) were within normal range. Over 90% of KC was depleted by clodronate treatment. KC depletion decreased TNF-α mRNA release, ERK1/2 phosphorylation, and hepatocyte DNA synthesis. KC depletion is associated with increased numbers of apoptotic cells bodies in KC- mice. Antioxidant treatment decreased DNA synthesis, Nrf2, and CYP2E1 protein expression in EtOH-consuming mice. Our data indicate that upon ethanol exposure, KC participates in hepatic DNA synthesis and growth responses. Collectively, these observations suggest that KC depletion attenuates the downstream effect of ethanol-induced endotoxemia by reduced cytokine and reactive oxygen species production with its concomitant effect on MAPK-signaling pathway on hepatocyte DNA synthesis.

  16. The last enzyme of the de novo purine synthesis pathway 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) plays a central role in insulin signaling and the Golgi/endosomes protein network.

    PubMed

    Boutchueng-Djidjou, Martial; Collard-Simard, Gabriel; Fortier, Suzanne; Hébert, Sébastien S; Kelly, Isabelle; Landry, Christian R; Faure, Robert L

    2015-04-01

    Insulin is internalized with its cognate receptor into the endosomal apparatus rapidly after binding to hepatocytes. We performed a bioinformatic screen of Golgi/endosome hepatic protein fractions and found that ATIC, which is a rate-limiting enzyme in the de novo purine biosynthesis pathway, and PTPLAD1 are associated with insulin receptor (IR) internalization. The IR interactome (IRGEN) connects ATIC to AMPK within the Golgi/endosome protein network (GEN). Forty-five percent of the IR Golgi/endosome protein network have common heritable variants associated with type 2 diabetes, including ATIC and AMPK. We show that PTPLAD1 and AMPK are rapidly compartmentalized within the plasma membrane (PM) and Golgi/endosome fractions after insulin stimulation and that ATIC later accumulates in the Golgi/endosome fraction. Using an in vitro reconstitution system and siRNA-mediated partial knockdown of ATIC and PTPLAD1 in HEK293 cells, we show that both ATIC and PTPLAD1 affect IR tyrosine phosphorylation and endocytosis. We further show that insulin stimulation and ATIC knockdown readily increase the level of AMPK-Thr172 phosphorylation in IR complexes. We observed that IR internalization was markedly decreased after AMPKα2 knockdown, and treatment with the ATIC substrate AICAR, which is an allosteric activator of AMPK, increased IR endocytosis in cultured cells and in the liver. These results suggest the presence of a signaling mechanism that senses adenylate synthesis, ATP levels, and IR activation states and that acts in regulating IR autophosphorylation and endocytosis.

  17. Adaptation and validation of DNA synthesis detection by fluorescent dye derivatization for high-throughput screening.

    PubMed

    Ranall, Max V; Gabrielli, Brian G; Gonda, Thomas J

    2010-05-01

    Cellular proliferation is fundamental to organism development, tissue renewal, and diverse disease states such as cancer. In vitro measurement of proliferation by high-throughput screening allows rapid characterization of the effects of small-molecule or genetic treatments on primary and established cell lines. Current assays that directly measure the cell cycle are not amenable to high-throughput processing and analysis. Here we report the adaptation of the chemical method for detecting DNA synthesis by 5-ethynyl-2'-deoxyuridine (EdU) incorporation into both high-throughput liquid handling and high-content imaging analysis. We demonstrate that chemical detection of EdU incorporation is effective for high-resolution analysis and quantitation of DNA synthesis by high-content imaging. To validate this assay platform we used treatments of MCF10A cells with media supplements and pharmacological inhibitors that are known to affect cell proliferation. Treatments with specific kinase inhibitors indicate that EGF and serum stimulation employs both the mitogen extracellular kinase (MEK)/extracellular-regulated kinase (ERK) and phosphoinositol-3 kinase (PI3K)/AKT signaling networks. As described here, this method is fast, reliable, and inexpensive and yields robust data that can be easily interpreted.

  18. In vivo evidence for translesion synthesis by the replicative DNA polymerase δ

    PubMed Central

    Hirota, Kouji; Tsuda, Masataka; Mohiuddin; Tsurimoto, Toshiki; Cohen, Isadora S.; Livneh, Zvi; Kobayashi, Kaori; Narita, Takeo; Nishihara, Kana; Murai, Junko; Iwai, Shigenori; Guilbaud, Guillaume; Sale, Julian E.; Takeda, Shunichi

    2016-01-01

    The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro. These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass. PMID:27185888

  19. Protein, RNA, and DNA synthesis in cultures of skin fibroblasts from healthy subjects and patients with rheumatic diseases

    SciTech Connect

    Abakumova, O.Y.; Kutsenko, N.G.; Panasyuk, A.F.

    1985-07-01

    To study the mechanism of the lasting disturbance of fibroblast function, protein, RNA and DNA synthesis was investigated in skin fibroblasts from patients with rheumatoid arthritis (RA) and systemic scleroderma (SS). The labeled precursors used to analyze synthesis of protein, RNA, and DNA were /sup 14/C-protein hydrolysate, (/sup 14/C)uridine, and (/sup 14/C) thymidine. Stimulation was determined by measuring incorporation of (/sup 14/C)proline into fibroblast proteins. During analysis of stability of fast-labeled RNA tests were carried out to discover whether all measurable radioactivity belonged to RNA molecules.

  20. DNA Methyltransferase protein synthesis is reduced in CXXC finger protein 1-deficient embryonic stem cells.

    PubMed

    Butler, Jill S; Palam, Lakshmi R; Tate, Courtney M; Sanford, Jeremy R; Wek, Ronald C; Skalnik, David G

    2009-05-01

    CXXC finger protein 1 (CFP1) binds to unmethylated CpG dinucleotides and is required for embryogenesis. CFP1 is also a component of the Setd1A and Setd1B histone H3K4 methyltransferase complexes. Murine embryonic stem (ES) cells lacking CFP1 fail to differentiate, and exhibit a 70% reduction in global genomic cytosine methylation and a 50% reduction in DNA methyltransferase (DNMT1) protein and activity. This study investigated the underlying mechanism for reduced DNMT1 expression in CFP1-deficient ES cells. DNMT1 transcript levels were significantly elevated in ES cells lacking CFP1, despite the observed reduction in DNMT1 protein levels. To address the posttranscriptional mechanisms by which CFP1 regulates DNMT1 protein activity, pulse/chase analyses were carried out, demonstrating a modest reduction in DNMT1 protein half-life in CFP1-deficient ES cells. Additionally, global protein synthesis was decreased in ES cells lacking CFP1, contributing to a reduction in the synthesis of DNMT1 protein. ES cells lacking CFP1 were found to contain elevated levels of phosphorylated eIF2alpha, and an accompanying reduction in translation initiation as revealed by a lower level of polyribosomes. These results reveal a novel role for CFP1 in the regulation of translation initiation, and indicate that loss of CFP1 function leads to decreased DNMT1 protein synthesis and half-life.

  1. An integrative model links multiple inputs and signaling pathways to the onset of DNA synthesis in hepatocytes

    PubMed Central

    Huard, Jérémy; Mueller, Stephanie; Gilles, Ernst D; Klingmüller, Ursula; Klamt, Steffen

    2012-01-01

    During liver regeneration, quiescent hepatocytes re-enter the cell cycle to proliferate and compensate for lost tissue. Multiple signals including hepatocyte growth factor, epidermal growth factor, tumor necrosis factor α, interleukin-6, insulin and transforming growth factor β orchestrate these responses and are integrated during the G1 phase of the cell cycle. To investigate how these inputs influence DNA synthesis as a measure for proliferation, we established a large-scale integrated logical model connecting multiple signaling pathways and the cell cycle. We constructed our model based upon established literature knowledge, and successively improved and validated its structure using hepatocyte-specific literature as well as experimental DNA synthesis data. Model analyses showed that activation of the mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways was sufficient and necessary for triggering DNA synthesis. In addition, we identified key species in these pathways that mediate DNA replication. Our model predicted oncogenic mutations that were compared with the COSMIC database, and proposed intervention targets to block hepatocyte growth factor-induced DNA synthesis, which we validated experimentally. Our integrative approach demonstrates that, despite the complexity and size of the underlying interlaced network, logical modeling enables an integrative understanding of signaling-controlled proliferation at the cellular level, and thus can provide intervention strategies for distinct perturbation scenarios at various regulatory levels. PMID:22443451

  2. Induction of unscheduled DNA synthesis in suspensions of rat hepatocytes by an environmental toxicant, 3,3'4,4'-tetrachloroazobenzene.

    PubMed

    Hsia, M T; Kreamer, B L

    1979-04-01

    Unscheduled DNA synthesis was induced by 3,3'4,4'-tetrachloroazobenzene (TCAB)) in freshly isolated suspensions of rat hepatocytes. A dose-dependent response was demonstrated. Hepatocellular DNA was obtained after the chloroform-isoamyl alchohol-phenol extraction of the isolated nuclei. The induction of unscheduled DNA synthesis was measured by the incorporation of [3H]-thymidine in the presence of hydroxyurea as determined by the scintillation counting assay. DNA repair data obtained in this study on benzo[a]pyrene and methyl methanesulfonate are comparable to a previous report using primary cultures of hepatocytes and cesium chloride gradients. Hence, the present method offers promise as a rapid and sensitive screen for chemical carcinogens.

  3. Biallelic mutations in CAD, impair de novo pyrimidine biosynthesis and decrease glycosylation precursors

    PubMed Central

    Ng, Bobby G.; Wolfe, Lynne A.; Ichikawa, Mie; Markello, Thomas; He, Miao; Tifft, Cynthia J.; Gahl, William A.; Freeze, Hudson H.

    2015-01-01

    In mitochondria, carbamoyl-phosphate synthetase 1 activity produces carbamoyl phosphate for urea synthesis, and deficiency results in hyperammonemia. Cytoplasmic carbamoyl-phosphate synthetase 2, however, is part of a tri-functional enzyme encoded by CAD; no human disease has been attributed to this gene. The tri-functional enzyme contains carbamoyl-phosphate synthetase 2 (CPS2), aspartate transcarbamylase (ATCase) and dihydroorotase (DHOase) activities, which comprise the first three of six reactions required for de novo pyrimidine biosynthesis. Here we characterize an individual who is compound heterozygous for mutations in different domains of CAD. One mutation, c.1843-1G>A, results in an in-frame deletion of exon 13. The other, c.6071G>A, causes a missense mutation (p.Arg2024Gln) in a highly conserved residue that is essential for carbamoyl-phosphate binding. Metabolic flux studies showed impaired aspartate incorporation into RNA and DNA through the de novo synthesis pathway. In addition, CTP, UTP and nearly all UDP-activated sugars that serve as donors for glycosylation were decreased. Uridine supplementation rescued these abnormalities, suggesting a potential therapy for this new glycosylation disorder. PMID:25678555

  4. PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells.

    PubMed

    Das, Partha Pratim; Hendrix, David A; Apostolou, Effie; Buchner, Alice H; Canver, Matthew C; Beyaz, Semir; Ljuboja, Damir; Kuintzle, Rachael; Kim, Woojin; Karnik, Rahul; Shao, Zhen; Xie, Huafeng; Xu, Jian; De Los Angeles, Alejandro; Zhang, Yingying; Choe, Junho; Jun, Don Leong Jia; Shen, Xiaohua; Gregory, Richard I; Daley, George Q; Meissner, Alexander; Kellis, Manolis; Hochedlinger, Konrad; Kim, Jonghwan; Orkin, Stuart H

    2015-09-01

    Polycomb Repressive Complex 2 (PRC2) function and DNA methylation (DNAme) are typically correlated with gene repression. Here, we show that PRC2 is required to maintain expression of maternal microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) from the Gtl2-Rian-Mirg locus, which is essential for full pluripotency of iPSCs. In the absence of PRC2, the entire locus becomes transcriptionally repressed due to gain of DNAme at the intergenic differentially methylated regions (IG-DMRs). Furthermore, we demonstrate that the IG-DMR serves as an enhancer of the maternal Gtl2-Rian-Mirg locus. Further analysis reveals that PRC2 interacts physically with Dnmt3 methyltransferases and reduces recruitment to and subsequent DNAme at the IG-DMR, thereby allowing for proper expression of the maternal Gtl2-Rian-Mirg locus. Our observations are consistent with a mechanism through which PRC2 counteracts the action of Dnmt3 methyltransferases at an imprinted locus required for full pluripotency.

  5. Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis.

    PubMed

    Gilbert, M Thomas P; Binladen, Jonas; Miller, Webb; Wiuf, Carsten; Willerslev, Eske; Poinar, Hendrik; Carlson, John E; Leebens-Mack, James H; Schuster, Stephan C

    2007-01-01

    Although ancient DNA (aDNA) miscoding lesions have been studied since the earliest days of the field, their nature remains a source of debate. A variety of conflicting hypotheses exist about which miscoding lesions constitute true aDNA damage as opposed to PCR polymerase amplification error. Furthermore, considerable disagreement and speculation exists on which specific damage events underlie observed miscoding lesions. The root of the problem is that it has previously been difficult to assemble sufficient data to test the hypotheses, and near-impossible to accurately determine the specific strand of origin of observed damage events. With the advent of emulsion-based clonal amplification (emPCR) and the sequencing-by-synthesis technology this has changed. In this paper we demonstrate how data produced on the Roche GS20 genome sequencer can determine miscoding lesion strands of origin, and subsequently be interpreted to enable characterization of the aDNA damage behind the observed phenotypes. Through comparative analyses on 390,965 bp of modern chloroplast and 131,474 bp of ancient woolly mammoth GS20 sequence data we conclusively demonstrate that in this sample at least, a permafrost preserved specimen, Type 2 (cytosine-->thymine/guanine-->adenine) miscoding lesions represent the overwhelming majority of damage-derived miscoding lesions. Additionally, we show that an as yet unidentified guanine-->adenine analogue modification, not the conventionally argued cytosine-->uracil deamination, underpins a significant proportion of Type 2 damage. How widespread these implications are for aDNA will become apparent as future studies analyse data recovered from a wider range of substrates.

  6. Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis.

    PubMed

    Smith, Kevin D; Fu, Michael A; Brown, Eric J

    2009-10-05

    The Tim (Timeless)-Tipin complex has been proposed to maintain genome stability by facilitating ATR-mediated Chk1 activation. However, as a replisome component, Tim-Tipin has also been suggested to couple DNA unwinding to synthesis, an activity expected to suppress single-stranded DNA (ssDNA) accumulation and limit ATR-Chk1 pathway engagement. We now demonstrate that Tim-Tipin depletion is sufficient to increase ssDNA accumulation at replication forks and stimulate ATR activity during otherwise unperturbed DNA replication. Notably, suppression of the ATR-Chk1 pathway in Tim-Tipin-deficient cells completely abrogates nucleotide incorporation in S phase, indicating that the ATR-dependent response to Tim-Tipin depletion is indispensible for continued DNA synthesis. Replication failure in ATR/Tim-deficient cells is strongly associated with synergistic increases in H2AX phosphorylation and DNA double-strand breaks, suggesting that ATR pathway activation preserves fork stability in instances of Tim-Tipin dysfunction. Together, these experiments indicate that the Tim-Tipin complex stabilizes replication forks both by preventing the accumulation of ssDNA upstream of ATR-Chk1 function and by facilitating phosphorylation of Chk1 by ATR.

  7. Nuclear DNA synthesis in vitro is mediated via stable replication forks assembled in a temporally specific fashion in vivo

    SciTech Connect

    Heintz, N.H.; Stillman, B.W.

    1988-05-01

    A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three- to eightfold by cytoplasmic factors from S-phase cells was used to examine the temporal specificity of chromosomal DNA synthesis in vitro. Temporal specificity of DNA synthesis in isolated nuclei was assessed directly by examining the replication of restriction fragments derived from the amplified 200-kilobase dihydrofolate reductase domain of methotrexate-resistant CHOC 400 cells as a function of the cell cycle. In nuclei prepared from cells collected at the G1/S boundary of the cell cycle, synthesis of amplified sequences commenced within the immediate dihydrofolate reductase origin region and elongation continued for 60 to 80 min. The order of synthesis of amplified restriction fragments in nuclei from early S-phase cells in vitro appeared to be indistinguishable from that in vivo. Nuclei prepared from CHOC 400 cells poised at later times in the S phase synthesized characteristic subsets of other amplified fragments. The specificity of fragment labeling patterns was stable to short-term storage at 4/sup 0/C. The occurrence of stimulatory factors in cytosol extracts was cell cycle dependent in that minimal stimulation was observed with early G1-phase extracts, whereas maximal stimulation was observed with cytosol extracts from S-phase cells. Chromosomal synthesis was not observed in nuclei from G1 cells, nor did cytosol extracts from S-phase cells induce chromosomal replication in G1 nuclei. In contrast to chromosomal DNA synthesis, mitochondrial DNA replication in vitro was not stimulated by cytoplasmic factors and occurred at equivalent rates throughout the G1 and S phases.

  8. De novo mutations in PLXND1 and REV3L cause Möbius syndrome

    PubMed Central

    Tomas-Roca, Laura; Tsaalbi-Shtylik, Anastasia; Jansen, Jacob G.; Singh, Manvendra K.; Epstein, Jonathan A.; Altunoglu, Umut; Verzijl, Harriette; Soria, Laura; van Beusekom, Ellen; Roscioli, Tony; Iqbal, Zafar; Gilissen, Christian; Hoischen, Alexander; de Brouwer, Arjan P. M.; Erasmus, Corrie; Schubert, Dirk; Brunner, Han; Pérez Aytés, Antonio; Marin, Faustino; Aroca, Pilar; Kayserili, Hülya; Carta, Arturo; de Wind, Niels; Padberg, George W.; van Bokhoven, Hans

    2015-01-01

    Möbius syndrome (MBS) is a neurological disorder that is characterized by paralysis of the facial nerves and variable other congenital anomalies. The aetiology of this syndrome has been enigmatic since the initial descriptions by von Graefe in 1880 and by Möbius in 1888, and it has been debated for decades whether MBS has a genetic or a non-genetic aetiology. Here, we report de novo mutations affecting two genes, PLXND1 and REV3L in MBS patients. PLXND1 and REV3L represent totally unrelated pathways involved in hindbrain development: neural migration and DNA translesion synthesis, essential for the replication of endogenously damaged DNA, respectively. Interestingly, analysis of Plxnd1 and Rev3l mutant mice shows that disruption of these separate pathways converge at the facial branchiomotor nucleus, affecting either motoneuron migration or proliferation. The finding that PLXND1 and REV3L mutations are responsible for a proportion of MBS patients suggests that de novo mutations in other genes might account for other MBS patients. PMID:26068067

  9. [Autoradiographic investigations on the effect of city smog extract on DNA synthesis and cell cycle of mammalian cells in vitro. I. Effect of city smog extract on DNA synthesis of kidney- and embryonic cells of the golden hamster in vitro (author's transl)].

    PubMed

    Krampitz, G; Seemayer, N

    1979-05-01

    We analysed the effect of city smog extract from Düsseldorf on DNA synthesis of mammalian cells in vitro. Airborne dust was extracted with aceton and thereafter transferred to dimethylsulfoxide. Dosage was calculated according to the benzo(a)pyrene content. We used logarithmically growing cultures of hamster kidney and embryonic cells. DNA synthesis was determined autoradiographically by incorporation of 3H-Thymidine. We found that city smog extract exerted a dose-dependent cytotoxic effect leading to a decrease of DNA synthesizing cells. High concentrations of city smog extract induced cell necrosis and suppressed DNA synthesis completely. Moderate doses of extract caused a dose-dependent, but temporary cessation of DNA synthesis. Cells resumed DNA synthesis after a certain delay. Low concentrations of city smog extract induced no detectable effects. Inhibition of DNA synthesis was evident already one hour after addition of extract. Therefore a direct effect on DNA metabolism could be supposed. Furthermore, exposed cultures demonstrated a delay in entrance of new cells into the DNA synthesis. Alterations in DNA synthesis could be of great importance for carcinogenesis, especially if we take in consideration the content of carcinogens in city smog extract.

  10. Transcription of mitochondrial DNA.

    PubMed

    Tabak, H F; Grivell, L A; Borst, P

    1983-01-01

    While mitochondrial DNA (mtDNA) is the simplest DNA in nature, coding for rRNAs and tRNAs, results of DNA sequence, and transcript analysis have demonstrated that both the synthesis and processing of mitochondrial RNAs involve remarkably intricate events. At one extreme, genes in animal mtDNAs are tightly packed, both DNA strands are completely transcribed (symmetric transcription), and the appearance of specific mRNAs is entirely dependent on processing at sites signalled by the sequences of the tRNAs, which abut virtually every gene. At the other extreme, gene organization in yeast (Saccharomyces) is anything but compact, with long stretches of AT-rich DNA interspaced between coding sequences and no obvious logic to the order of genes. Transcription is asymmetric and several RNAs are initiated de novo. Nevertheless, extensive RNA processing occurs due largely to the presence of split genes. RNA splicing is complex, is controlled by both mitochondrial and nuclear genes, and in some cases is accompanied by the formation of RNAs that behave as covalently closed circles. The present article reviews current knowledge of mitochondrial transcription and RNA processing in relation to possible mechanisms for the regulation of mitochondrial gene expression.

  11. Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Politis, P. K.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.; Bada, J. L. (Principal Investigator); Dolan, M. (Principal Investigator)

    1999-01-01

    Hexitol nucleic acid (HNA) is an analogue of DNA containing the standard nucleoside bases, but with a phosphorylated 1,5-anhydrohexitol backbone. HNA oligomers form duplexes having the nucleic acid A structure with complementary DNA or RNA oligomers. The HNA decacytidylate oligomer is an efficient template for the oligomerization of the 5'-phosphoroimidazolides of guanosine or deoxyguanosine. Comparison of the oligomerization efficiencies on HNA, RNA, and DNA decacytidylate templates under various conditions suggests strongly that only nucleic acid double helices with the A structure support efficient template-directed synthesis when 5'-phosphoroimidazolides of nucleosides are used as substrates.

  12. SYNTHESIS, IN VITRO METABOLISM, MUTAGENICITY, AND DNA-ADDUCTION OF NAPHTHO[1,2-E]PYRENE

    EPA Science Inventory

    SYNTHESIS, IN V1TRO METABOLISM, MUTAGENICITY , AND DNA-ADDUCnON OF NAPHTHO[l ,2-e ]PYRENE

    Literature data, although limited, underscore the contribution of C24HI4 polycyclic aromatic hydrocarbons to the biological activity of the extracts of complex environmental samples....

  13. UAP56 is a novel interacting partner of Bcr in regulating vascular smooth muscle cell DNA synthesis

    SciTech Connect

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey D.

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer UAP56 is an important regulator of DNA synthesis in vascular smooth muscle cells. Black-Right-Pointing-Pointer UAP56 binds to Bcr. Black-Right-Pointing-Pointer Interaction between Bcr and UAP56 is critical for Bcr induced DNA synthesis. -- Abstract: Bcr is a serine/threonine kinase that is a critical regulator of vascular smooth muscle cell inflammation and proliferation. We have previously demonstrated that Bcr acts in part via phosphorylation and inhibition of PPAR{gamma}. We have identified the RNA helicase UAP56 as another substrate of Bcr. In this report we demonstrate that knockdown of UAP56 blocks Bcr induced DNA synthesis in vascular smooth muscle cells (VSMC). We also found that over expression of Bcr increased the expression of cyclin E and decreased the expression of p27. Knockdown of UAP56 reversed the effect of Bcr on cyclin E and p27 expression. Furthermore, we found that Bcr binds to UAP56 and demonstrate that binding of UAP56 to Bcr is critical for Bcr induced DNA synthesis in VSMC. Our data identify UAP56 as an important binding partner of Bcr and a novel target for inhibiting vascular smooth muscle cell proliferation.

  14. The structure-based design, synthesis and biological evaluation of DNA-binding bisintercalating bisanthrapyrazole anticancer compounds

    PubMed Central

    Hasinoff, Brian B.; Liang, Hong; Wu, Xing; Guziec, Lynn J.; Guziec, Frank S.; Marshall, Kyle; Yalowich, Jack C.

    2008-01-01

    Anticancer drugs that bind to DNA and inhibit DNA-processing enzymes represent an important class of anticancer drugs. In order to find stronger DNA binding and more potent cytotoxic compounds, a series of ester-coupled bisanthrapyrazole derivatives of 7-chloro-2-[2-[(2-hydroxyethyl)methylamino]ethyl]anthra[1,9-cd]pyrazol-6(2H)-one (AP9) were designed and evaluated by molecular docking techniques. Because the anthrapyrazoles are unable to be reductively activated like doxorubicin and other anthracyclines, they should not be cardiotoxic like the anthracyclines. Based on the docking scores of a series of bisanthrapyrazoles with different numbers of methylene linkers (n) that were docked into an X-ray structure of double-stranded DNA, five bisanthrapyrazoles (n = 1 to 5) were selected for synthesis and physical and biological evaluation. The synthesized compounds were evaluated for DNA binding and bisintercalation by measuring the DNA melting temperature increase, for growth inhibitory effects on the human erythroleukemic K562 cell line, and for DNA topoisomerase IIα-mediated cleavage of DNA and inhibition of DNA topoisomerase IIα decatenation activities. The results suggest that the bisanthrapyrazoles with n = 2 to 5 formed bisintercalation complexes with DNA. In conclusion, a novel group of bisintercalating anthrapyrazole compounds have been designed, synthesized and biologically evaluated as possible anticancer agents. PMID:18258442

  15. Quantification of histoautoradiographic evidence of DNA repair synthesis in the liver.

    PubMed

    Hochmann, J; Stambergová, H

    1988-01-01

    Histoautoradiography was used to detect dimethylnitrosamine-induced 3H-thymidine incorporation in vivo into G phase hepatocytes. A description of the standard procedure for counting the grains as well as the mode of mathematical evaluation is presented. The results exhibited higher sensitivity than those in the investigation of the DNA repair synthesis by means of a scintillation counter using the method of detection of hydroxyurea-resistant incorporation of 3H-thymidine. Thus it was possible to simplify the investigation by lowering the number of evaluated cells. A suitable compromise between precision and laboriousness will probably be achieved by counting 20 hepatocytes per animal. In case that there are striking differences between the experimental and the control group, a qualitative conclusion may be drawn even without counting the grains.

  16. A role for PCNA2 in translesion synthesis by Arabidopsis thaliana DNA polymerase eta.

    PubMed

    Kunz, Bernard A

    2008-10-01

    Eukaryotic DNA polymerase eta (Poleta) confers ultraviolet (UV) resistance by catalyzing translesion synthesis (TLS) past UV photoproducts. Poleta has been studied extensively in budding yeast and mammalian cells, where its interaction with monoubiquitylated proliferating cell nuclear antigen (PCNA) is necessary for its biological activity. Recently, in collaboration with other investigators, our laboratory demonstrated that Arabidopsis thaliana Poleta is required for UV resistance in plants. Furthermore, the purified enzyme can perform TLS opposite a cyclobutane pyrimidine dimer and interacts with PCNA. Intriguingly, the biological activity of Poleta in a heterologous yeast assay depends on co-expression with Arabidopsis PCNA2 and Poleta sequences implicated in binding PCNA or ubiquitin. We suggest that interaction of Arabidopsis Poleta with ubiquitylated PCNA2 is required for TLS past UV photoproducts by Poleta.

  17. The RNA accordion model for template positioning by telomerase RNA during telomeric DNA synthesis

    PubMed Central

    Berman, Andrea J.; Akiyama, Benjamin M.; Stone, Michael D.; Cech, Thomas R.

    2011-01-01

    Telomerase is a ribonucleoprotein (RNP) enzyme that maintains the ends of linear eukaryotic chromosomes and whose activation is a hallmark of 90% of all cancers. This RNP minimally contains a reverse transcriptase protein subunit (TERT) that catalyzes telomeric DNA synthesis and an RNA subunit (TER) that has templating, architectural and protein-scaffolding roles. Telomerase is unique among polymerases in that it synthesizes multiple copies of the template on the 3′ end of a primer following a single binding event, a process known as repeat addition processivity (RAP). Using biochemical assays and single-molecule Förster resonance energy transfer (smFRET) experiments on Tetrahymena thermophila telomerase, we now directly demonstrate that TER contributes to template positioning within the active site and to the template translocation required for RAP. We propose that the single-stranded RNA elements flanking the template act as a molecular accordion, undergoing reciprocal extension and compaction during telomerase translocation. PMID:22101935

  18. Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression.

    PubMed Central

    Kim, S Y; Byrn, R; Groopman, J; Baltimore, D

    1989-01-01

    The kinetics of retroviral DNA and RNA synthesis are parameters vital to understanding viral growth, especially for human immunodeficiency virus (HIV), which encodes several of its own regulatory genes. We have established a single-cycle growth condition for HIV in H9 cells, a human CD4+ lymphocyte line. The full-length viral linear DNA is first detectable by 4 h postinfection. During a one-step growth of HIV, amounts of viral DNA gradually increase until 8 to 12 h postinfection and then decrease. The copy number of unintegrated viral DNA is not extraordinarily high even at its peak. Most strikingly, there is a temporal program of RNA accumulation: the earliest RNA is greatly enriched in the 2-kilobase subgenomic mRNA species, while the level of 9.2-kilobase RNA which is both genomic RNA and mRNA remains low until after 24 h of infection. Virus production begins at about 24 h postinfection. Thus, viral DNA synthesis is as rapid as for other retroviruses, but viral RNA synthesis involves temporal alteration in the species that accumulate, presumably as a consequence of viral regulatory genes. Images PMID:2760980

  19. Bisindolylmaleimide protein-kinase-C inhibitors delay the decline in DNA synthesis in mouse hair follicle organ cultures.

    PubMed

    Harmon, C S; Nevins, T D; Ducote, J; Lutz, D

    1997-01-01

    We have used a series of bisindolylmaleimide selective protein-kinase C (PKC) inhibitors to investigate the role of this enzyme in the regulation of cell proliferation in mouse hair follicle organ cultures. Mouse whisker follicles were isolated by microdissection, and rates of DNA synthesis during culture were determined from 3H-thymidine incorporation. The bisindolylmaleimides Ro 31-7549, Ro 31-8161, Ro 31-8425 and Ro 31-8830 inhibit isolated brain PKC with IC50 values of 8-80 nM, are > 60-fold less potent against protein kinase A, and inhibit PKC-mediated protein phosphorylation in platelets with IC50 values in the range 0.25-4.4 microM. These PKC inhibitors were found to increase levels of mouse hair follicle DNA synthesis, with EC50 values in the range 1-4 microM and maximal levels in the range 151-197% of control. Ro 31-7549 had an IC50 value 50-fold lower than that of minoxidil, while the maximal level of DNA synthesis for the PKC inhibitor was 86% higher. Incubation of mouse hair follicles with Ro 31-7549 resulted in a delay of approximately 24 h in the onset of decline in follicular DNA synthesis rates. Ro 31-6045 and Ro 31-7208, bisindolylmaleimides without activity in the platelet PKC assay, did not affect mouse hair follicle DNA synthesis rates. Taken together, these findings show that PKC mediates, at least in part, the rapid loss of proliferative activity that occurs in mouse whisker follicles in culture, and provide further evidence that PKC plays a role as a negative proliferative signal in hair follicles.

  20. An Integrated System for DNA Sequencing by Synthesis Using Novel Nucleotide Analogues

    PubMed Central

    Guo, Jia; Yu, Lin; Turro, Nicholas J.; Ju, Jingyue

    2010-01-01

    Conspectus The Human Genome Project has concluded, but its successful completion has increased, rather than decreased, the need for high-throughput DNA sequencing technologies. The possibility of clinically screening a full genome for an individual's mutations offers tremendous benefits, both for pursuing personalized medicine as well as uncovering the genomic contributions to diseases. The Sanger sequencing method—although enormously productive for more than 30 years—requires an electrophoretic separation step that, unfortunately, remains a key technical obstacle for achieving economically acceptable full-genome results. Alternative sequencing approaches thus focus on innovations that can reduce costs. The DNA sequencing by synthesis (SBS) approach has shown great promise as a new sequencing platform, with particular progress reported recently. The general fluorescent SBS approach involves (i) incorporation of nucleotide analogs bearing fluorescent reporters, (ii) identification of the incorporated nucleotide by its fluorescent emissions, and (iii) cleavage of the fluorophore, along with the reinitiation of the polymerase reaction for continuing sequence determination. In this Account, we review the construction of a DNA-immobilized chip and the development of novel nucleotide reporters for the SBS sequencing platform. Click chemistry, with its high selectivity and coupling efficiency, was explored for surface immobilization of DNA. The first generation (G-1) modified nucleotides for SBS feature a small chemical moiety capping the 3′-OH and a fluorophore tethered to the base through a chemically cleavable linker; the design ensures that the nucleotide reporters are good substrates for the polymerase. The 3′-capping moiety and the fluorophore on the DNA extension products, generated by the incorporation of the G-1 modified nucleotides, are cleaved simultaneously to reinitiate the polymerase reaction. The sequence of a DNA template immobilized on a surface

  1. Synthesis and Crystal Structure Study of 2’-Se-Adenosine-Derivatized DNA

    SciTech Connect

    Sheng, J.; Salon, J; Gan, J; Huang, Z

    2010-01-01

    The selenium derivatization of nucleic acids is a novel and promising strategy for 3D structure determination of nucleic acids. Selenium can serve as an excellent anomalous scattering center to solve the phase problem, which is one of the two major bottlenecks in macromolecule X-ray crystallography. The other major bottleneck is crystallization. It has been demonstrated that the incorporated selenium functionality at the 2'-positions of the nucleosides and nucleotides is stable and does not cause significant structure perturbation. Furthermore, it was observed that the 2'-Se-derivatization could facilitate crystallization of oligonucleotides with fast crystal growth and high diffraction quality. Herein, we describe a convenient synthesis of the 2'-Se-adenosine phosphoramidite, and report the first synthesis and X-ray crystal structure determination of the DNA containing the 2'-Se-A derivatization. The 3D structure of 2'-Se-A-DNA decamer [5'-GTACGCGT(2'-Se-A)C-3']{sub 2} was determined at 1.75 {angstrom} resolution, the 2'-Se-functionality points to the minor groove, and the Se-modified and native structures are virtually identical. Moreover, we have observed that the 2'-Se-A modification can greatly facilitate the crystal growth with high diffraction quality. In conjunction with the crystallization facilitation by the 2'-Se-U and 2'-Se-T, this novel observation on the 2'-Se-A functionality suggests that the 2'-Se moiety is sole responsible for the crystallization facilitation and the identity of nucleobases does not influence the crystal growth significantly.

  2. Repeated allergen exposure of sensitized Brown-Norway rats induces airway cell DNA synthesis and remodelling.

    PubMed

    Salmon, M; Walsh, D A; Koto, H; Barnes, P J; Chung, K F

    1999-09-01

    Chronic inflammation in asthmatic airways can lead to characteristic airway smooth muscle (ASM) thickening and pathological changes within the airway wall. This study assessed the effect of repeated allergen exposure on ASM and epithelial cell deoxyribonucleic acid (DNA) synthesis, cell recruitment and airway wall pathology. Brown-Norway rats were sensitized and then exposed to ovalbumin or saline aerosol every 3 days on six occasions. After the final exposure, rats were administered twice daily for 7 days with the DNA S-phase marker bromodeoxyuridine (BrdU). Using a triple immunohistochemical staining technique, BrdU incorporation into ASM and epithelium was quantified employing computer-assisted image analysis. There were >3-fold mean increases in BrdU incorporation into ASM from 1.3% of cells (95% confidence interval (CI) 1.0-1.6) in saline controls to 4.7% (95% CI 2.6-6.7) after allergen exposure (p<0.001), and in airway epithelium, from 1.3 (95% CI 0.6-2.0) BrdU-positive cells x mm basement membrane(-1) in saline controls to 4.9 (95% CI 3.0-6.7) after allergen exposure (p<0.001). There was increased subepithelial collagen deposition and mucus secretion along with a significant eosinophil and lymphocyte recruitment to the airways. Increased rates of deoxyribonucleic acid synthesis in both airway smooth muscle and epithelial cells along with changes to the airway wall pathology may precede the establishment of smooth muscle thickening and airway remodelling after repeated allergen exposure in rats. This model seems to be appropriate for studying structural changes within the airways as observed in asthma.

  3. Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae.

    PubMed

    Kochenova, O V; Soshkina, J V; Stepchenkova, E I; Inge-Vechtomov, S G; Shcherbakova, P V

    2011-01-01

    We employed a genetic assay based on illegitimate hybridization of heterothallic Saccharomyces cerevisiae strains (the α-test) to analyze the consequences for genome stability of inactivating translesion synthesis (TLS) DNA polymerases. The α-test is the only assay that measures the frequency of different types of mutational changes (point mutations, recombination, chromosome or chromosome arm loss) and temporary changes in genetic material simultaneously. All these events are manifested as illegitimate hybridization and can be distinguished by genetic analysis of the hybrids and cytoductants. We studied the effect of Polζ, Polη, and Rev1 deficiency on the genome stability in the absence of genotoxic treatment and in UV-irradiated cells. We show that, in spite of the increased percent of accurately repaired primary lesions, chromosome fragility, rearrangements, and loss occur in the absence of Polζ and Polη. Our findings contribute to further refinement of the current models of translesion synthesis and the organization of eukaryotic replication fork.

  4. 3-Phosphono-L-alanine as pyrophosphate mimic for DNA synthesis using HIV-1 reverse transcriptase.

    PubMed

    Yang, Shiqiong; Froeyen, Mathy; Lescrinier, Eveline; Marlière, Philippe; Herdewijn, Piet

    2011-01-07

    A series of sulf(on)ate and phosph(on)ate amino acid phosphoramidate analogues of deoxynucleotides were synthesized as potential substrates for HIV-1 reverse transcriptase. Taurine, L-cysteic acid, 3-phosphono-L-alanine, O-sulfonato-L-serine, and O-phospho-L-serine were investigated as leaving groups in an enzyme catalyzed DNA synthesis protocol. Among these analogues, the phosphonate congener performed best and 3-phosphono-L-alanine can be considered as an excellent mimic of the pyrophosphate (PPi) moiety of deoxyadenosine triphosphate, to be used in enzymatic synthesis of nucleic acids. During a single nucleotide incorporation assay the use of 3-phosphono-L-Ala-dAMP as substrate resulted in 95% conversion to a P + 1 strand in 60 min at 50 μM (a concentration 10 times less than found for L-Asp-dAMP) and with improved incorporation kinetics and less stalling. For the sequences investigated, the efficiency of the incorporation is base dependent and decreases in the order (A ≥ T = G > C). In all cases, the incorporation follows Watson-Crick rules.

  5. Inhibition of semiconservative DNA synthesis in ICR 2A frog cells exposed to monochromatic uv wavelengths (252-313 nm) and photoreactivating light

    SciTech Connect

    Rosenstein, B.S.

    1982-06-01

    Exposure of ICR 2A frog cells to monochromatic uv wavelengths in the range 252-313 nm caused an inhibition of semiconservative DNA synthesis which was partially relieved in cells receiving a post irradiation treatment with photoreactivating light (>350 nm). Hence pyrimidine dimers acted as lesions blocking DNA synthesis in uv-irradiated cells based upon the specificity of photoreactivating enzyme for the light-dependent monomerization of dimers in DNA. Compared with the shorter wavelengths tested, however, this recovery of DNA synthesis was not as great in cells exposed to 302-nm radiation and was nearly absent in 313-nm-irradiated cells up to 12 hr after treatment. These results suggest that nondimer photoproducts also play an important role in causing DNA synthesis inhibition in cells exposed to wavelengths greater than 300 nm.

  6. Uncoupling of mitochondrial oxidative phosphorylation by DNA gyrase inhibitors

    SciTech Connect

    Gallagher, M.; Weinberg, R.; Simpson, M.V.

    1986-05-01

    Supercoiled mtDNA and the swivel requirement for its replication suggest the existence of a mtDNA gyrase. The authors published studies on isolated mitochondria showing that novobiocin, coumermycin, nalidixic acid, and oxolinic acid promote relaxed DNA formation at the expense of supercoiled DNA are in accord with this view. However, their inability to directly detect the enzyme led them to ask whether these drugs act elsewhere. Their results with isolated rat liver mitochondria show that novo, nal, but not oxo, stimulate O/sub 2/ uptake as much as does 2.4-dinitrophenol (DNP). This possible uncoupling effect was confirmed by a standard (/sup 32/P) assay showing the following inhibitions of ATP synthesis: 0.2 mM novo, 95% (0.4 mM, 100%) 0.4 mM nal, 37%; oxo to at least 1.9 mM, 0%; (0.5 mM 2,4-DNP, 100%). Thus, oxo remains a useful tool for intact mitochondrial studies. Because these three drugs, especially novo, are being used to study the role of DNA superhelicity on pro- and eucaryotic (and mitochondrial) gene expression, the authors studied their effect on oxidative phosphorylation in such cells. In these cases the drugs did not affect DNP-sensitive (/sup 14/C)glutamine transport into E. coli cells (an established measure of ATP level), nor, in an S. cerevisiae mutant permeable to novo, did novo affect the steady state ATP level. Studies on cultured mammalian cells are in progress.

  7. Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis.

    PubMed

    Kint, Cyrielle; Verstraeten, Natalie; Hofkens, Johan; Fauvart, Maarten; Michiels, Jan

    2014-08-01

    Obg proteins (also known as ObgE, YhbZ and CgtA) are conserved P-loop GTPases, essential for growth in bacteria. Like other GTPases, Obg proteins cycle between a GTP-bound ON and a GDP-bound OFF state, thereby controlling cellular processes. Interestingly, the in vitro biochemical properties of Obg proteins suggest that they act as sensors for the cellular GDP/GTP pools and adjust their activity according to the cellular energy status. Obg proteins have been attributed a host of cellular functions, including roles in essential cellular processes (DNA replication, ribosome maturation) and roles in different stress adaptation pathways (stringent response, sporulation, general stress response). This review summarizes the current knowledge on Obg activity and function. Furthermore, we present a model that integrates the different functions of Obg by assigning it a fundamental role in cellular physiology, at the hub of protein and DNA synthesis. In particular, we believe that Obg proteins might provide a connection between different global pathways in order to fine-tune cellular processes in response to a given energy status.

  8. Thermodynamics of translesion synthesis across a major DNA adduct of antitumor oxaliplatin: differential scanning calorimetric study.

    PubMed

    Florian, Jakub; Brabec, Viktor

    2012-02-06

    Differential scanning calorimetry (DSC) was used to measure the thermodynamic changes associated with translesion synthesis across major lesion induced in DNA by antitumor oxaliplatin [1,2-d(GG) intrastrand cross-link]. Insertion of matched nucleotides dC at the primer terminus (across unique 3'- or 5'-dG in the unplatinated template) and subsequent extensions resulted in an incremental increase in thermodynamic parameters. In contrast, incorporation of dC opposite either platinated dG in the intrastrand cross-link formed in the template strand and subsequent extensions by one nucleotide resulted only in little changes in thermodynamics. A similar thermodynamic delay was observed for a control template primer containing a dG:dT mismatch across 3'- or 5'-dG in the template and subsequent Watson-Crick primer extensions. The thermodynamic scarcity generated by either the lesion or mismatches was not localized but extended to the 5'-downstream sites, which may be connected with the phenomenon termed "short-term memory" of replication errors retained by some DNA polymerases responding to DNA damages or mismatches. Interestingly, formation of the 1,2-d(GG) intrastrand cross-link of oxaliplatin altered the overall DSC profiles of the dG:dT mismatch template/primers only in a very small extent. While addition of matched nucleotide dC across either dG in the template strand was thermodynamically favored over the presence of a mismatched dT (ΔΔG(0)(310) was 7.6 or 6.8 kJ mol(-1), ΔΔH was 14 or 49 kJ mol(-1)), no such thermodynamic advantage was observed with the 1,2-d(GG) intrastrand cross-link of oxaliplatin at these positions (ΔΔG(0)(310) was 2.8 or -0.3 kJ mol(-1), ΔΔH was 4 or 9 kJ mol(-1)). The equilibrium thermodynamic data also provide insight into the processes associated with misincorporation of incorrect nucleotides during replication bypass across major cross-links of antitumor oxaliplatin. On the other hand, besides thermodynamic effects also kinetic

  9. REV1 restrains DNA polymerase zeta to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo.

    PubMed

    Szüts, Dávid; Marcus, Adam P; Himoto, Masayuki; Iwai, Shigenori; Sale, Julian E

    2008-12-01

    Exposure to ultraviolet light induces a number of forms of damage in DNA, of which (6-4) photoproducts present the most formidable challenge to DNA replication. No single DNA polymerase has been shown to bypass these lesions efficiently in vitro suggesting that the coordinate use of a number of different enzymes is required in vivo. To further understand the mechanisms and control of lesion bypass in vivo, we have devised a plasmid-based system to study the replication of site-specific T-T(6-4) photoproducts in chicken DT40 cells. We show that DNA polymerase zeta is absolutely required for translesion synthesis (TLS) of this lesion, while loss of DNA polymerase eta has no detectable effect. We also show that either the polymerase-binding domain of REV1 or ubiquitinated PCNA is required for the recruitment of Polzeta as the catalytic TLS polymerase. Finally, we demonstrate a previously unappreciated role for REV1 in ensuring bypass synthesis remains in frame with the template. Our data therefore suggest that REV1 not only helps to coordinate the delivery of DNA polymerase zeta to a stalled primer terminus but also restrains its activity to ensure that nucleotides are incorporated in register with the template strand.

  10. Synthesis and characterization of DNA-quantum dot conjugates for the fluorescence ratiometric detection of unlabelled DNA.

    PubMed

    Page, Leah Elizabeth; Zhang, Xi; Tyrakowski, Christina Marie; Ho, Chiun-Teh; Snee, Preston Todd

    2016-11-21

    A quantum dot-based ratiometrically responsive fluorescent sensor for unlabeled single-stranded DNA (ssDNA) is reported. Several technical issues concerning the development of high yield ssDNA-QD conjugation chemistry were addressed. The DNA sensor was synthesized by conjugating methacrylic phosphoramidite-functional oligonucleotides to water-soluble cadmium zinc sulfide core/zinc sulfide shell quantum dots (CdZnS/ZnS QDs). Duplex DNA was formed when the QD-bound ssDNA was incubated with its complement. Next, titration with PicoGreen resulted in FRET energy transfer from the dot to the dsDNA intercalating dye. The resulting ratio of the dye to QD integrated emissions is a calibratable metric for label-free DNA detection with a LOD of 3.8 nmol.

  11. Synthesis, Acetylation, and Phosphorylation of Histone IV and Its Binding to DNA During Spermatogenesis in Trout*

    PubMed Central

    Louie, Andrew J.; Dixon, Gordon H.

    1972-01-01

    During spermatogenesis in trout testis, histone IV is extensively modified by acetylation and phosphorylation. To examine the relationship of synthesis of histone IV to its modification, histone IV labeled with [3H]aminoacids and inorganic [32P]phosphate was prepared from testis cells by acid extraction and column chromatography. Purified histone IV was resolved by starch gel electrophoresis into 10 bands, of which nine are modified by acetylation and/or phosphorylation. In the first 4 hr of labeling, the diacetyl-histone IV band showed the highest proportion of [3H]aminoacid label. After 12 hr of incorporation, more label was found in the triacetyl and tetraacetyl bands. A significant amount of amino-acid label in the two major bands (the unsubstituted and monoacetyl bands) of histone IV was not seen until 16 hr of incubation. From 1 to 12 days, the proportion of label in the unsubstituted and monoacetylated bands increased, while that in the tetra-, tri-, and monoacetyl bands decreased. Very little [3H]aminoacid was found in the phosphorylated bands of histone IV in the first 12 hr. However, after 16 hr about 20% of the total 3H was found in the phosphorylated bands. The proportion increased to 33% and remained at this level between 1 and 8 days, but, by 16 days, had decreased to 12% of the total. These data suggest that an “obligatory” acetylation of recently synthesized histone IV is involved in the correct binding of newly synthesized histone IV to DNA. We propose that ε-amino acetylation of lysyl residues 5, 8, 12, and 16 neutralizes their positive charges and allows the NH2-terminal region of histone IV to assume the correct conformation (in this case, an α-helix), and fit into the major groove of DNA. Deacetylation then “locks” histone IV to DNA by ionic linkages. The biological significance of phosphorylation of histone IV is not known. Images PMID:4505675

  12. Glucocorticoid suppression of human lymphocyte DNA synthesis. Influence of phytohemagglutinin concentration

    SciTech Connect

    Segel, G.B.; Lukacher, A.; Gordon, B.R.; Lichtman, M.A.

    1980-04-01

    Glucocorticoids have been shown to suppress lectin-stimulated lymphocyte DNA synthesis in some studies, whereas in other studies, the hormones have had little effect. We have found that the position on the PHA dose-response curve that is studied is the most important determinant of whether cortisol inhibits /sup 3/H-thymidine incorporation into lymphocyte DNA. The proportion of monocytes in culture also influenced the cortisol effect, but it was quantitatively less important than PHA concentration. Cortisol (5 nM to 100 ..mu..M) had little effect on blastogenesis or thymidine incorporation into DNA in cultures that contained both a high concentration (14% +- 2 (S.E.)) of monocytes and a concentration of PHA (0.6 to 1.2 ..mu..g/ml) that produced maximal stimulation of mitogenesis. When monocytes were reduced from 14 to 1.4%, cortisol (5 ..mu..M) caused a 30% reduction in thymidine incorporation in cultures stimulated by 0.6 to 1.2 ..mu..g/ml PHA. Much greater cortisol suppression of thymidine incorporation occurred if the concentration of PHA was reduced. For example, reduction of the PHA concentration from 1.2 to 0.075 ..mu..g/ml resulted in an increase in suppression by 5 ..mu..M cortisol from 5 to 90% even in the presence of 14% monocytes. These data indicate that the suppressive effects of glucocorticoids on blastogenesis and thymidine incorporation in vitro depend principally on the concentration of PHA used to stimulate blastogenesis and secondarily on the proportion of monocytes in the culture system.

  13. DNA polymerase delta, RFC and PCNA are required for repair synthesis of large looped heteroduplexes in Saccharomyces cerevisiae.

    PubMed

    Corrette-Bennett, Stephanie E; Borgeson, Claudia; Sommer, Debbie; Burgers, Peter M J; Lahue, Robert S

    2004-01-01

    Small looped mispairs are corrected by DNA mismatch repair (MMR). In addition, a distinct process called large loop repair (LLR) corrects loops up to several hundred nucleotides in extracts of bacteria, yeast or human cells. Although LLR activity can be readily demonstrated, there has been little progress in identifying its protein components. This study identified some of the yeast proteins responsible for DNA repair synthesis during LLR. Polyclonal antisera to either Pol31 or Pol32 subunits of polymerase delta efficiently inhibited LLR in extracts by blocking repair just prior to gap filling. Gap filling was inhibited regardless of whether the loop was retained or removed. These experiments suggest polymerase delta is uniquely required in yeast extracts for LLR-associated synthesis. Similar results were obtained with antisera to the clamp loader proteins Rfc3 and Rfc4, and to PCNA, i.e. LLR was inhibited just prior to gap filling for both loop removal and loop retention. Thus PCNA and RFC seem to act in LLR only during repair synthesis, in contrast to their roles at both pre- and post-excision steps of MMR. These biochemical experiments support the idea that yeast polymerase delta, RFC and PCNA are required for large loop DNA repair synthesis.

  14. Inhibition of semiconservative DNA synthesis in ICR 2A frog cells by pyrimidine dimers and nondimer photoproducts induced by ultraviolet radiation

    SciTech Connect

    Rosenstein, B.S.

    1984-11-01

    DNA synthesis was examined in ultraviolet (uv)-irradiated ICR 2A frog cells in which either pyrimidine dimers or nondimer photoproducts represented the major class of DNA lesions. In addition, cells were exposed to /sup 60/Co ..gamma.. rays. The cultures were pulse-labeled and the size distribution of the DNA synthesized was estimated using both sucrose gradient sedimentation and alkaline step elution. Using either of these techniques, it was found that the presence of dimers resulted in a reduction principally in the synthesis of high molecular weight (MW) DNA. In contrast, nondimer photoproducts caused a strong inhibition in the synthesis of low MW DNA, as was also observed in ..gamma..-irradiated cells. Hence the induction of pyrimidine dimers in DNA mainly affected the elongation of replicons, whereas nondimer lesions primarily caused an inhibition of replicon initiation.

  15. Synthesis and DNA-binding properties of novel DNA cyclo-intercalators containing purine-glucuronic acid hybrids.

    PubMed

    Zhang, Renshuai; Chen, Shaopeng; Wang, Xueting; Yu, Rilei; Li, Mingjing; Ren, Sumei; Jiang, Tao

    2016-06-24

    Novel DNA cyclo-intercalators, which incorporated two intercalator subunits linked by two bridges, were synthesized. Binding of the compounds to calf-thymus DNA was studied by fluorescence spectroscopy, and docking simulations were used to predict the binding modes of these cyclic compounds. The spectral data demonstrated that all of these compounds can interact with CT-DNA. The sugar moiety played an important role in the process of binding between the intercalators containing glucuronic acid and DNA. The length and flexibility of the connecting bridges affected the binding affinity of the resultant cyclo-intercalators. Docking simulations showed that compounds 7 and 8 interact with DNA as mono-intercalators.

  16. M-phase-specific protein kinase from mitotic sea urchin eggs: cyclic activation depends on protein synthesis and phosphorylation but does not require DNA or RNA synthesis.

    PubMed

    Arion, D; Meijer, L

    1989-08-01

    Histone H1 kinase (H1K) undergoes a transient activation at each early M phase of both meiotic and mitotic cell cycles. The mechanisms underlying the transient activation of this protein kinase were investigated in mitotic sea urchin eggs. Translocation of active H1K from particulate to soluble fraction does not seem to be responsible for this activation. H1K activation cannot be accounted for by the transient disappearance of a putative H1K inhibitor present in soluble fractions of homogenates. Aphidicolin, an inhibitor of DNA synthesis, and actinomycin D, an inhibitor of RNA synthesis, do not impede the transient appearance of H1K activity. H1K activation therefore does not require DNA or RNA synthesis. Fertilization triggers a rise in intracellular pH responsible for the increase of protein synthesis. H1K activation is highly dependent on the intracellular pH. Ammonia triggers an increase of intracellular pH and stimulates protein synthesis and H1K activation. Acetate lowers the intracellular pH, decreases protein synthesis, and blocks H1K activation. Protein synthesis is an absolute requirement for H1K activation as demonstrated by their identical sensitivities to emetine concentration and to time of emetine addition. About 60 min after fertilization, H1K activation and cleavage become independent of protein synthesis. The concentration of p34, a homolog of the yeast cdc2 gene product which has been recently shown to be a subunit of H1K, does not vary during the cell cycle and remains constant in emetine-treated cells. H1K activation thus requires the synthesis of either a p34 postranslational modifying enzyme or another subunit. Finally, phosphatase inhibitors and ATP slow down in the in vitro inactivation rate of H1K. These results suggest that a subunit or an activator of H1K is stored as an mRNA in the egg before mitosis and that full activation of H1K requires a phosphorylation.

  17. Direct Visualization of De novo Lipogenesis in Single Living Cells

    NASA Astrophysics Data System (ADS)

    Li, Junjie; Cheng, Ji-Xin

    2014-10-01

    Increased de novo lipogenesis is being increasingly recognized as a hallmark of cancer. Despite recent advances in fluorescence microscopy, autoradiography and mass spectrometry, direct observation of de novo lipogenesis in living systems remains to be challenging. Here, by coupling stimulated Raman scattering (SRS) microscopy with isotope labeled glucose, we were able to trace the dynamic metabolism of glucose in single living cells with high spatial-temporal resolution. As the first direct visualization, we observed that glucose was largely utilized for lipid synthesis in pancreatic cancer cells, which occurs at a much lower rate in immortalized normal pancreatic epithelial cells. By inhibition of glycolysis and fatty acid synthase (FAS), the key enzyme for fatty acid synthesis, we confirmed the deuterium labeled lipids in cancer cells were from de novo lipid synthesis. Interestingly, we also found that prostate cancer cells exhibit relatively lower level of de novo lipogenesis, but higher fatty acid uptake compared to pancreatic cancer cells. Together, our results demonstrate a valuable tool to study dynamic lipid metabolism in cancer and other disorders.

  18. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers

    PubMed Central

    Briggs, Adrian W.; Rios, Xavier; Chari, Raj; Yang, Luhan; Zhang, Feng; Mali, Prashant; Church, George M.

    2012-01-01

    DNA built from modular repeats presents a challenge for gene synthesis. We present a solid surface-based sequential ligation approach, which we refer to as iterative capped assembly (ICA), that adds DNA repeat monomers individually to a growing chain while using hairpin ‘capping’ oligonucleotides to block incompletely extended chains, greatly increasing the frequency of full-length final products. Applying ICA to a model problem, construction of custom transcription activator-like effector nucleases (TALENs) for genome engineering, we demonstrate efficient synthesis of TALE DNA-binding domains up to 21 monomers long and their ligation into a nuclease-carrying backbone vector all within 3 h. We used ICA to synthesize 20 TALENs of varying DNA target site length and tested their ability to stimulate gene editing by a donor oligonucleotide in human cells. All the TALENS show activity, with the ones >15 monomers long tending to work best. Since ICA builds full-length constructs from individual monomers rather than large exhaustive libraries of pre-fabricated oligomers, it will be trivial to incorporate future modified TALE monomers with improved or expanded function or to synthesize other types of repeat-modular DNA where the diversity of possible monomers makes exhaustive oligomer libraries impractical. PMID:22740649

  19. Effects of methylmercury on primary cultured rat hepatocytes: Cell injury and inhibition of growth factor stimulated DNA synthesis

    SciTech Connect

    Tanno, Keiichi; Fukazawa, Toshiyuki; Tajima, Shizuko; Fujiki, Motoo )

    1992-08-01

    Many more studies deal with the toxicity of methylmercury on nervous tissue than on its toxicity to the liver. Methylmercury accumulates in the liver in higher concentrations than brain and the liver has the primary function of detoxifying methylmercury. According to recent studies, hepatocyte mitochondrial membranes are destroyed by methylmercury and DNA synthesis is inhibited by methylmercury during hepatocyte regeneration. Methylmercury alters the membrane ion permeability of isolate skate hepatocytes, and inhibits the metal-sensitive alcohol dehydrogenase and glutathione reductase of primary cultured rat hepatocytes. However, little is known about the effect of methylmercury on hepatocyte proliferation in primary cultured rat hepatocytes. We therefore used the primary cultured rat hepatocytes to investigate the effects of methylmercury on cell injury and growth factor stimulate DNA synthesis. The primary effect of methylmercury is to inhibit hepatocyte proliferation rather than to cause direct cell injury. 16 refs., 4 figs.

  20. Involvement of cysteinyl leukotrienes in airway smooth muscle cell DNA synthesis after repeated allergen exposure in sensitized Brown Norway rats

    PubMed Central

    Salmon, Michael; Walsh, David A; Huang, Tung-Jung; Barnes, Peter J; Leonard, Thomas B; Hay, Douglas W P; Chung, K Fan

    1999-01-01

    Airway smooth muscle thickening is a characteristic feature of airway wall remodelling in chronic asthma. We have investigated the role of the leukotrienes in airway smooth muscle (ASM) and epithelial cell DNA synthesis and ASM thickening following repeated allergen exposure in Brown Norway rats sensitized to ovalbumin. There was a 3 fold increase in ASM cell DNA synthesis, as measured by percentage bromodeoxyuridine (BrdU) incorporation, in repeatedly ovalbumin-exposed (4.1%, 3.6–4.6; mean, 95% c.i.) compared to chronically saline-exposed rats (1.3%, 0.6–2.1; P<0.001). Treatment with a 5-lipoxygenase enzyme inhibitor (SB 210661, 10 mg kg−1, p.o.) and a specific cysteinyl leukotriene (CysLT1) receptor antagonist, pranlukast (SB 205312, 30 mg kg−1, p.o.), both attenuated ASM cell DNA synthesis. Treatment with a specific leukotriene B4 (BLT) receptor antagonist (SB 201146, 15 mg kg−1, p.o.) had no effect. There was also a significant, 2 fold increase in the number of epithelial cells incorporating BrdU per unit length of basement membrane after repeated allergen exposure. This response was not inhibited by treatment with SB 210661, pranlukast or SB 201146. A significant increase in ASM thickness was identified following repeated allergen exposure and this response was attenuated significantly by SB 210661, pranlukast and SB 201146. Rats exposed to chronic allergen exhibited bronchial hyperresponsiveness to acetylcholine and had significant eosinophil recruitment into the lungs. Treatment with SB 210661, pranlukast or SB 201146 significantly attenuated eosinophil recruitment into the lungs, whilst having no significant effect on airway hyperresponsiveness. These data indicate that the cysteinyl leukotrienes are important mediators in allergen-induced ASM cell DNA synthesis in rats, while both LTB4 and cysteinyl leukotrienes contribute to ASM thickening and eosinophil recruitment following repeated allergen exposure. PMID:10455261

  1. Installing hydrolytic activity into a completely de novo protein framework

    NASA Astrophysics Data System (ADS)

    Burton, Antony J.; Thomson, Andrew R.; Dawson, William M.; Brady, R. Leo; Woolfson, Derek N.

    2016-09-01

    The design of enzyme-like catalysts tests our understanding of sequence-to-structure/function relationships in proteins. Here we install hydrolytic activity predictably into a completely de novo and thermostable α-helical barrel, which comprises seven helices arranged around an accessible channel. We show that the lumen of the barrel accepts 21 mutations to functional polar residues. The resulting variant, which has cysteine-histidine-glutamic acid triads on each helix, hydrolyses p-nitrophenyl acetate with catalytic efficiencies that match the most-efficient redesigned hydrolases based on natural protein scaffolds. This is the first report of a functional catalytic triad engineered into a de novo protein framework. The flexibility of our system also allows the facile incorporation of unnatural side chains to improve activity and probe the catalytic mechanism. Such a predictable and robust construction of truly de novo biocatalysts holds promise for applications in chemical and biochemical synthesis.

  2. Interacting RNA polymerase motors on a DNA track: Effects of traffic congestion and intrinsic noise on RNA synthesis

    NASA Astrophysics Data System (ADS)

    Tripathi, Tripti; Chowdhury, Debashish

    2008-01-01

    RNA polymerase (RNAP) is an enzyme that synthesizes a messenger RNA (mRNA) strand which is complementary to a single-stranded DNA template. From the perspective of physicists, an RNAP is a molecular motor that utilizes chemical energy input to move along the track formed by DNA. In many circumstances, which are described in this paper, a large number of RNAPs move simultaneously along the same track; we refer to such collective movements of the RNAPs as RNAP traffic. Here we develop a theoretical model for RNAP traffic by incorporating the steric interactions between RNAPs as well as the mechanochemical cycle of individual RNAPs during the elongation of the mRNA. By a combination of analytical and numerical techniques, we calculate the rates of mRNA synthesis and the average density profile of the RNAPs on the DNA track. We also introduce, and compute, two different measures of fluctuations in the synthesis of RNA. Analyzing these fluctuations, we show how the level of intrinsic noise in mRNA synthesis depends on the concentrations of the RNAPs as well as on those of some of the reactants and the products of the enzymatic reactions catalyzed by RNAP. We suggest appropriate experimental systems and techniques for testing our theoretical predictions.

  3. Interacting RNA polymerase motors on a DNA track: effects of traffic congestion and intrinsic noise on RNA synthesis.

    PubMed

    Tripathi, Tripti; Chowdhury, Debashish

    2008-01-01

    RNA polymerase (RNAP) is an enzyme that synthesizes a messenger RNA (mRNA) strand which is complementary to a single-stranded DNA template. From the perspective of physicists, an RNAP is a molecular motor that utilizes chemical energy input to move along the track formed by DNA. In many circumstances, which are described in this paper, a large number of RNAPs move simultaneously along the same track; we refer to such collective movements of the RNAPs as RNAP traffic. Here we develop a theoretical model for RNAP traffic by incorporating the steric interactions between RNAPs as well as the mechanochemical cycle of individual RNAPs during the elongation of the mRNA. By a combination of analytical and numerical techniques, we calculate the rates of mRNA synthesis and the average density profile of the RNAPs on the DNA track. We also introduce, and compute, two different measures of fluctuations in the synthesis of RNA. Analyzing these fluctuations, we show how the level of intrinsic noise in mRNA synthesis depends on the concentrations of the RNAPs as well as on those of some of the reactants and the products of the enzymatic reactions catalyzed by RNAP. We suggest appropriate experimental systems and techniques for testing our theoretical predictions.

  4. Regulation of translesion DNA synthesis: Posttranslational modification of lysine residues in key proteins.

    PubMed

    McIntyre, Justyna; Woodgate, Roger

    2015-05-01

    Posttranslational modification of proteins often controls various aspects of their cellular function. Indeed, over the past decade or so, it has been discovered that posttranslational modification of lysine residues plays a major role in regulating translesion DNA synthesis (TLS) and perhaps the most appreciated lysine modification is that of ubiquitination. Much of the recent interest in ubiquitination stems from the fact that proliferating cell nuclear antigen (PCNA) was previously shown to be specifically ubiquitinated at K164 and that such ubiquitination plays a key role in regulating TLS. In addition, TLS polymerases themselves are now known to be ubiquitinated. In the case of human polymerase η, ubiquitination at four lysine residues in its C-terminus appears to regulate its ability to interact with PCNA and modulate TLS. Within the past few years, advances in global proteomic research have revealed that many proteins involved in TLS are, in fact, subject to a previously underappreciated number of lysine modifications. In this review, we will summarize the known lysine modifications of several key proteins involved in TLS; PCNA and Y-family polymerases η, ι, κ and Rev1 and we will discuss the potential regulatory effects of such modification in controlling TLS in vivo.

  5. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA.

    PubMed

    Robinson, Ian; Tung, Le D; Maenosono, Shinya; Wälti, Christoph; Thanh, Nguyen T K

    2010-12-01

    Core-shell magnetic nanoparticles have received significant attention recently and are actively investigated owing to their large potential for a variety of applications. Here, the synthesis and characterization of bimetallic nanoparticles containing a magnetic core and a gold shell are discussed. The gold shell facilitates, for example, the conjugation of thiolated biological molecules to the surface of the nanoparticles. The composite nanoparticles were produced by the reduction of a gold salt on the surface of pre-formed cobalt or magnetite nanoparticles. The synthesized nanoparticles were characterized using ultraviolet-visible absorption spectroscopy, transmission electron microscopy, energy dispersion X-ray spectroscopy, X-ray diffraction and super-conducting quantum interference device magnetometry. The spectrographic data revealed the simultaneous presence of cobalt and gold in 5.6±0.8 nm alloy nanoparticles, and demonstrated the presence of distinct magnetite and gold phases in 9.2±1.3 nm core-shell magnetic nanoparticles. The cobalt-gold nanoparticles were of similar size to the cobalt seed, while the magnetite-gold nanoparticles were significantly larger than the magnetic seeds, indicating that different processes are responsible for the addition of the gold shell. The effect on the magnetic properties by adding a layer of gold to the cobalt and magnetite nanoparticles was studied. The functionalization of the magnetic nanoparticles is demonstrated through the conjugation of thiolated DNA to the gold shell.

  6. Stimulation of DNA synthesis by ascorbate in cultures of articular chondrocytes

    SciTech Connect

    Krystal, G.; Morris, G.M.; Sokoloff, L.

    1982-03-01

    The addition of 0.2 mM Na L-ascorbate increased the incorporation of 3H-thymidine by rabbit articular chondrocytes in cell and organ culture. The stimulatory response of explants to ascorbate was potentiated by pretreatment of the cartilage with 0.2% clostridial collagenase (type 1) or trypsin for 15-30 minutes. In explants there was a latent period of 3 to 4 days before increased labeling of the nuclei could be detected. The effect was transient and declined after 8 days of culture. It was more evident in organ cultures of immature (3-month-old) than 2- to 3-year-old rabbits. Age differences were not detected in cell cultures. Explants of adult human articular cartilage were stimulated by ascorbate when the medium was supplemented with 10% fresh human serum but not by fetal bovine serum. The findings indicated that synthesis of DNA by articular chondrocytes in situ is regulated by responsiveness of the cells proper to compounds such as vitamin C, by properties of the extracellular matrix, and by factors in the serum. Ascorbate was cytotoxic at concentrations greater than 0.2 mM in the presence of certain batches of serum.

  7. Stimulators and inhibitors of lymphocyte DNA synthesis in supernatants from human lymphoid cell lines.

    PubMed

    Vesole, D H; Goust, J M; Fett, J W; Fudenberg, H H

    1979-09-01

    Some T and B lymphoid cell lines (LCL) were found to secrete into their supernatants a substance able to stimulate lymphocyte proliferation. This substance produced an increase in [3H]thymidine uptake by mononuclear cells when added to unstimulated cultures (mitogenic effect) or when added to cultures stimulated with phytohemagglutinin (PHA) or pokeweed mitogen (PWM) (potentiating effect). When complete supernatants were used, the potentiating effect was sometimes masked by an inhibitor of DNA synthesis. Fractionation on Sephadex G-100 separated these two activities. The stimulatory substance eluted at a m.w. range of 15,000 to 30,000, and the inhibitor eluted with the albumin peak. B cells with or without monocytes were the most sensitive to the mitogenic effect, whereas T cells were unaffected. Responses to PHA and PWM were potentiated when T cells were present, but the maximum effect was observed when the proportion of T cells was less than 50%. The stimulatory material may be similar to lymphocyte mitogenic factor and may function as a T cell-replacing factor in B cell stimulation.

  8. Dihydrochelerythrine and its derivatives: Synthesis and their application as potential G-quadruplex DNA stabilizing agents.

    PubMed

    Malhotra, Rajesh; Rarhi, Chhanda; Diveshkumar, K V; Barik, Rajib; D'cunha, Ruhee; Dhar, Pranab; Kundu, Mrinalkanti; Chattopadhyay, Subrata; Roy, Subho; Basu, Sourav; Pradeepkumar, P I; Hajra, Saumen

    2016-07-01

    A convenient route was envisaged toward the synthesis of dihydrochelerythrine (DHCHL), 4 by intramolecular Suzuki coupling of 2-bromo-N-(2-bromobenzyl)-naphthalen-1-amine derivative 5 via in situ generated arylborane. This compound was converted to (±)-6-acetonyldihydrochelerythrine (ADC), 3 which was then resolved by chiral prep-HPLC. Efficiency of DHCHL for the stabilization of promoter quadruplex DNA structures and a comparison study with the parent natural alkaloid chelerythrine (CHL), 1 was performed. A thorough investigation was carried out to assess the quadruplex binding affinity by using various biophysical and biochemical studies and the binding mode was explained by using molecular modeling and dynamics studies. Results clearly indicate that DHCHL is a strong G-quadruplex stabilizer with affinity similar to that of the parent alkaloid CHL. Compounds ADC and DHCHL were also screened against different human cancer cell lines. Among the cancer cells, (±)-ADC and its enantiomers showed varied (15-48%) inhibition against human colorectal cell line HCT116 and breast cancer cell line MDA-MB-231 albeit low enantio-specificity in the inhibitory effect; whereas DHCHL showed 30% inhibition against A431 cell line only, suggesting the compounds are indeed cancer tissue specific.

  9. Synthesis and investigation of the specific activity of the DNA-doxorubicin conjugates

    NASA Astrophysics Data System (ADS)

    Kokorev, A. V.; Zaborovskiy, A. V.; Kotlyarov, A. A.; Balykova, L. A.; Malkina, M. A.; Kargina, I. V.; Gromova, E. V.; Medvezhonkov, V. Yu; Gurevich, K. G.; Shchukin, S. A.; Pyataev, N. A.

    2017-01-01

    In the present work, the method of obtaining the conjugate of the anticancer chemotherapeutic agent doxorubicin to the exogenous double-stranded DNA of the sturgeons is proposed (the source: commercial drug “Derinat”). The optimal conditions for synthesis of conjugate (pH, temperature and the mass ratio of the components), ensuring the highest degree of binding the chemotherapeutic agent to a carrier, were picked out. Clearing the conjugate from the non-encapsulated chemotherapeutic agent was being made by ultrafiltration method. The investigation of the toxicity and specific antineoplastic activity of the synthesized complex was conducted. The performance of the drug toxicity were established on the intact mice in compliance with the accepted standards. The antineoplastic activity was evaluated upon the Tumor Growth Inhibition Index and Metastasis Inhibition Index on mice with the transplanted Lewis lung carcinoma (LLC). It was demonstrated that the conjugate toxicity is approximately lower that the one of the unconjugated doxorubicin (LD 50 was equal 14.6 mg/kg and 9.9 mg/kg for the conjugate and doxorubicin, respectively). The specific antineoplastic activity was investigated in equitoxic doses of the drug. It was established that the conjugate being administered in equitoxic doses possesses a stronger antineoplastic activity, than the water-soluble drug (maximum 35% more as to the tumor volume and 51% more as to the Tumor Growth Inhibition index).

  10. EGF stimulates rat spermatogonial DNA synthesis in seminiferous tubule segments in vitro.

    PubMed

    Wahab-Wahlgren, Aida; Martinelle, Nina; Holst, Mikael; Jahnukainen, Kirsi; Parvinen, Martti; Söder, Olle

    2003-03-28

    Epidermal growth factor (EGF) superfamily of peptide growth factors (EGF-GFs) plays a role in male germ cell development, but the precise function is yet to be defined. The present study shows that EGF-GFs stimulate spermatogonial proliferation in vitro. The EGF-GF ligands, EGF, transforming growth factor-alpha and betacellulin all stimulated DNA synthesis in microdissected stage I segments of rat testis seminiferous tubules in vitro, as revealed by 3H-thymidine incorporation and 5-bromo-2'-deoxyuridine (BrdU) labeling. A fourfold increase over control of BrdU labeled cells, identified as spermatogonia, was seen after treatment with EGF. RT-PCR analysis revealed that the EGF receptors erbB1, erbB2, erbB3 and erbB4 were expressed at all stages of the spermatogenic wave, whereas differential expression was found in isolated Leydig, Sertoli and peritubular cells. The results show that EGF-GFs is spermatogonial growth factor(s) in vitro, although we have not discriminated between a direct action and an indirect effect via somatic cells. We suggest that EGF-GFs is involved in the paracrine control of spermatogenesis in vivo.

  11. Replication of phage phi 29 DNA with purified terminal protein and DNA polymerase: synthesis of full-length phi 29 DNA.

    PubMed Central

    Blanco, L; Salas, M

    1985-01-01

    A system that replicates bacteriophage phi 29 DNA with protein p3 covalently attached to the two 5' ends, using as the only proteins the phi 29 DNA polymerase and the terminal protein, is described. Restriction analysis of the 32P-labeled DNA synthesized in vitro showed that all phi 29 DNA fragments were labeled. Analysis by alkaline sucrose gradient centrifugation of the DNA labeled during a 10-min pulse showed that, after a 20-min chase, about half of the DNA molecules had reached apparently full-length phi 29 DNA (approximately equal to 18,000 nucleotides). Ammonium ions strongly stimulated phi 29 DNA-protein p3 replication, the effect being due to stimulation of the initiation reaction. ATP was not required for phi 29 DNA-protein p3 replication, either in the initiation or elongation steps. The results show that the phi 29 DNA polymerase functions, not only in the formation of the p3-dAMP covalent initiation complex but also in the elongation of the latter, as the only DNA polymerase to produce full-length phi 29 DNA. Images PMID:3863101

  12. The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis.

    PubMed

    Burkovics, Peter; Dome, Lili; Juhasz, Szilvia; Altmannova, Veronika; Sebesta, Marek; Pacesa, Martin; Fugger, Kasper; Sorensen, Claus Storgaard; Lee, Marietta Y W T; Haracska, Lajos; Krejci, Lumir

    2016-04-20

    Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits the extent of HR and represents a new potential target for anticancer therapy.

  13. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Raman, Natarajan

    2016-07-01

    A few novel Schiff base transition metal complexes of general formula [MLCl] (where, L = Schiff base, obtained by the condensation reaction of Knoevenagel condensate of curcumin, L-tryptophan and M = Cu(II), Ni(II), Co(II), and Zn(II)), were prepared by stencil synthesis. They were typified using UV-vis, IR, EPR spectral techniques, micro analytical techniques, magnetic susceptibility and molar conductivity. Geometry of the metal complexes was examined and recognized as square planar. DNA binding and viscosity studies revealed that the metal(II) complexes powerfully bound via an intercalation mechanism with the calf thymus DNA. Gel-electrophoresis technique was used to investigate the DNA cleavage competence of the complexes and they establish to approve the cleavage of pBR322 DNA in presence of oxidant H2O2. This outcome inferred that the synthesized complexes showed better nuclease activity. Moreover, the complexes were monitored for antimicrobial activities. The results exposed that the synthesized compounds were forceful against all the microbes under exploration.

  14. Bloodstream form-specific up-regulation of silent vsg expression sites and procyclin in Trypanosoma brucei after inhibition of DNA synthesis or DNA damage.

    PubMed

    Sheader, Karen; te Vruchte, Daniëlle; Rudenko, Gloria

    2004-04-02

    The African trypanosome Trypanosoma brucei transcribes the active variant surface glycoprotein (VSG) gene from one of about 20 VSG expression sites (ESs). In order to study ES control, we made reporter lines with a green fluorescent protein gene inserted behind the promoter of different ESs. We attempted to disrupt the silencing machinery, and we used fluorescence-activated cell sorter analysis for the rapid and sensitive detection of ES up-regulation. We find that a range of treatments that either block nuclear DNA synthesis, like aphidicolin, or modify DNA-like cisplatin and 1-methyl-3-nitro-1-nitrosoguanidine results in up-regulation of silent ESs. Aphidicolin treatment was the most effective, with almost 80% of the cells expressing green fluorescent protein from a silent ES. All of these treatments blocked the cells in S phase. In contrast, a range of toxic chemicals had little or no effect on expression. These included berenil and pentamidine, which selectively cleave the mitochondrial kinetoplast DNA, the metabolic inhibitors suramin and difluoromethylornithine, and the mitotic inhibitor rhizoxin. Up-regulation also affected other RNA polymerase I (pol I) transcription units, as procyclin genes were also up-regulated after cells were treated with either aphidicolin or DNA-modifying agents. Strikingly, this up-regulation of silent pol I transcription units was bloodstream form-specific and was not observed in insect form T. brucei. We postulate that the redistribution of a limiting bloodstream form-specific factor involved in both silencing and DNA repair results in the derepression of normally silenced pol I transcription units after DNA damage.

  15. Clickable Cγ-azido(methylene/butylene) peptide nucleic acids and their clicked fluorescent derivatives: synthesis, DNA hybridization properties, and cell penetration studies.

    PubMed

    Jain, Deepak R; Ganesh, Krishna N

    2014-07-18

    Synthesis, characterization, and DNA complementation studies of clickable C(γ)-substituted methylene (azm)/butylene (azb) azido PNAs show that these analogues enhance the stability of the derived PNA:DNA duplexes. The fluorescent PNA oligomers synthesized by their click reaction with propyne carboxyfluorescein are seen to accumulate around the nuclear membrane in 3T3 cells.

  16. Boron Clusters as a Platform for New Materials: Synthesis of Functionalized o-Carborane (C2 B10 H12 ) Derivatives Incorporating DNA Fragments.

    PubMed

    Janczak, Slawomir; Olejniczak, Agnieszka; Balabańska, Sandra; Chmielewski, Marcin K; Lupu, Marius; Viñas, Clara; Lesnikowski, Zbigniew J

    2015-10-19

    A synthetic strategy for functionalization of the three vertices of o-carborane and the attachment of the obtained triped to the solid support was developed. Further functionalization of the triped with short DNA sequences by automated DNA synthesis was achieved. The proposed methodology is a first example of boron cluster chemistry on a solid support opening new perspectives in boron cluster functionalization.

  17. Genetic variation and the de novo assembly of human genomes

    PubMed Central

    Chaisson, Mark J. P.; Wilson, Richard K.; Eichler, Evan E.

    2016-01-01

    The discovery of genetic variation and the assembly of genome sequences are both inextricably linked to advances in DNA-sequencing technology. Short-read massively parallel sequencing has revolutionized our ability to discover genetic variation but is insufficient to generate high-quality genome assemblies or resolve most structural variation. Full resolution of variation is only guaranteed by complete de novo assembly of a genome. Here, we review approaches to genome assembly, the nature of gaps or missing sequences, and biases in the assembly process. We describe the challenges of generating a complete de novo genome assembly using current technologies and the impact that being able to perfectly sequence the genome would have on understanding human disease and evolution. Finally, we summarize recent technological advances that improve both contiguity and accuracy and emphasize the importance of complete de novo assembly as opposed to read mapping as the primary means to understanding the full range of human genetic variation. PMID:26442640

  18. Effects of 8-halo-7-deaza-2'-deoxyguanosine triphosphate on DNA synthesis by DNA polymerases and cell proliferation.

    PubMed

    Yin, Yizhen; Sasaki, Shigeki; Taniguchi, Yosuke

    2016-08-15

    8-OxodG (8-oxo-2'-deoxyguanosine) is representative of nucleoside damage and shows a genotoxicity. To significantly reveal the contributions of 7-NH and C8-oxygen to the mutagenic effect of 8-oxodG by DNA polymerases, we evaluated the effects of the 8-halo-7-deaza-dG (8-halogenated 7-deaza-2'-deoxyguanosine) derivatives by DNA polymerases. 8-Halo-7-deaza-dGTPs were poorly incorporated by both KF(exo(-)) and human DNA polymerase β opposite dC or dA into the template DNA. Furthermore, it was found that KF(exo(-)) was very sensitive to the introduction of the C8-halogen, while polymerase β can accommodate the C8-halogen resulting in an efficient dCTP insertion opposite the 8-halo-7-deaza-dG in the template DNA. These results indicate that strong hydrogen bonding between 7-NH in the 8-oxo-G nucleobase and 1-N in the adenine at the active site of the DNA polymerase is required for the mutagenic effects. Whereas, I-deaza-dGTP shows an antiproliferative effect for the HeLa cells, suggesting that it could become a candidate as a new antitumor agent.

  19. Nerve growth factor inhibits the synthesis of a single-stranded DNA binding protein in pheochromocytoma cells (clone PC12).

    PubMed Central

    Biocca, S; Cattaneo, A; Calissano, P

    1984-01-01

    Arrest of mitosis and neurite outgrowth induced by nerve growth factor (NGF) in rat pheochromocytoma cells (clone PC12) is accompanied by a progressive inhibition of the synthesis of a protein that binds to single-stranded but not to double-stranded DNA. Time course experiments show that this inhibition is already apparent after a 2-day incubation with NGF and is maximum (85-95%) upon achievement of complete PC12 cell differentiation. Inhibition of the synthesis of this single-stranded DNA binding protein after 48 hr of incubation with NGF is potentiated by concomitant treatment of PC12 cells with antimitotic drugs acting at different levels of DNA replication. Purification on a preparative scale of this protein and analysis of its major physicochemical properties show that: (i) it constitutes 0.5% of total soluble proteins of naive PC12 cells; (ii) its molecular weight measured by NaDodSO4/PAGE is Mr 34,000 (sucrose gradient centrifugation under nondenaturing conditions yields a sedimentation coefficient s20,w of 8.1 S, indicating that the native protein is an oligomer); (iii) amino acid analysis demonstrates a preponderance of acidic over basic residues, while electrofocusing experiments show that it has an isoelectric point around 8.0; (iv) approximately 15% of the protein is phosphorylated in vivo. It is postulated that control of the synthesis of this protein is connected with activation of a differentiative program triggered by NGF in the PC12 neoplastic cell line at some step(s) of DNA activity. Images PMID:6585787

  20. DNA synthesis in pulmonary alveolar macrophages and type II cells: effects of ozone exposure and treatment with alpha-difluoromethylornithine

    SciTech Connect

    Wright, E.S.; White, D.M.; Brady, A.N.; Li, L.C.; D'Arcy, J.B.; Smiler, K.L.

    1987-01-01

    An increase in the number of pulmonary alveolar macrophages (AM) can be induced by a number of toxic insults to the lung, including ozone, an important photochemical oxidant air pollutant. This increase could arise from an influx of monocytes from the vascular or interstitial compartments, or from proliferation of AM in situ. While proliferation of alveolar type II cells after oxidant exposure has been well documented, it is not clear whether AM are also capable of this response. Rats were exposed to air or to 0.12, 0.25, or 0.50 ppm ozone for 1, 2, 3, 7, or 14 d, 20 h/d. The labeling index in both AM and type II cells increased about 10-fold after 2 d of exposure to 0.25 and 0.50 ppm of ozone, but returned to control levels by the end of 1 wk of exposure. These changes closely paralleled the temporal and dose-response characteristics of changes in total lung DNA synthesis. alpha-Difluoromethylornithine (DFMO) administered to rats during a 2-d exposure to 0.50 ppm ozone did not inhibit the ozone-induced increase in labeling index in AM or type II cells, although evidence of inhibition of lung ornithine decarboxylase activity was obtained, and the ozone-induced increase in total lung DNA synthesis was inhibited by 23%. These results suggest that, like type II cells, AM are capable of entering the cell cycle and synthesizing new DNA in situ in response to short-term exposure to environmentally relevant doses of ozone, and that the ozone-induced stimulation of DNA synthesis in these cell types was refractory to inhibition by DFMO.

  1. De novo sequencing of unique sequence tags for discovery of post-translational modifications of proteins

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Hixson, Kim K.; Purvine, Samuel O.; Anderson, Gordon A.; Smith, Richard D.

    2008-10-15

    De novo sequencing has a promise to discover the protein post-translation modifications; however, such approach is still in their infancy and not widely applied for proteomics practices due to its limited reliability. In this work, we describe a de novo sequencing approach for discovery of protein modifications through identification of the UStags (Anal. Chem. 2008, 80, 1871-1882). The de novo information was obtained from Fourier-transform tandem mass spectrometry for peptides and polypeptides in a yeast lysate, and the de novo sequences obtained were filtered to define a more limited set of UStags. The DNA-predicted database protein sequences were then compared to the UStags, and the differences observed across or in the UStags (i.e., the UStags’ prefix and suffix sequences and the UStags themselves) were used to infer the possible sequence modifications. With this de novo-UStag approach, we uncovered some unexpected variances of yeast protein sequences due to amino acid mutations and/or multiple modifications to the predicted protein sequences. Random matching of the de novo sequences to the predicted sequences were examined with use of two random (false) databases, and ~3% false discovery rates were estimated for the de novo-UStag approach. The factors affecting the reliability (e.g., existence of de novo sequencing noise residues and redundant sequences) and the sensitivity are described. The de novo-UStag complements the UStag method previously reported by enabling discovery of new protein modifications.

  2. Unscheduled DNA synthesis in rat pleural mesothelial cells treated with mineral fibres.

    PubMed

    Renier, A; Lévy, F; Pillière, F; Jaurand, M C

    1990-08-01

    Unscheduled DNA synthesis (UDS) was studied in confluent rat pleural mesothelial cells (RPMCs) arrested in G0/G1 with hydroxyurea (HU) and treated with various fibre types, i.e., chrysotile, crocidolite or attapulgite. In addition, the effects of UV light and of benzo[a]pyrene were determined as references. Using autoradiography after [3H]thymidine incorporation ([3H]dThd), RPMCs treated with 4 micrograms/cm2 of chrysotile fibres exhibited a low but significant enhancement of net grains compared to untreated cells. Treatment with higher doses of chrysotile was not possible because of the impairment of microscopic observation due to the presence of the fibres. Using liquid scintillation counting, RPMCs treated with chrysotile or crocidolite showed a significant dose-dependent increase in [3H]dThd incorporation compared to untreated cells. In contrast, attapulgite did not enhance [3H]dThd incorporation compared to untreated cells. Treatment of RPMCs with 1, 2 or 4 micrograms/ml of benzo[a]pyrene resulted in a significant increase in [3H]dThd incorporation. In order to discount a possible role of S cells in the augmentation of [3H]dThd incorporation, despite the presence of 5 mM HU, S cells were counted by autoradiography. Results indicated that the percentage of S cells was similar in asbestos-treated and untreated cultures. Stimulation of the S phase also seems unlikely because treatment of RPMCs with asbestos fibres in the absence of HU resulted in a reduction of [3H]dThd incorporation attributed to an impairment of the S phase by the fibres. 1-4 micrograms/ml benzo[a]pyrene or 10-50 J/m2 UV light resulted in an approximate doubling of [3H]dThd incorporation. The effects of inhibitors of DNA repair were determined in chrysotile-treated RPMCs. [3H]dThd incorporation was inhibited by cytosine arabinoside and nalidixic acid. These results show that asbestos produces UDS in RPMCs.

  3. Characterization of the defects in bacteriophage T7 DNA synthesis during growth in the Escherichia coli mutant tsnB.

    PubMed Central

    DeWyngaert, M A; Hinkle, D C

    1980-01-01

    The Escherichia coli mutant tsnB (M. Chamberlin, J. Virol. 14:509-516, 1974) is unable to support the growth of bacteriophage T7, although all classes of phage proteins are produced and the host is killed by the infection. During growth in this mutant host, the rate of phage DNA synthesis is reduced and the DNA is not packaged into stable, phagelike particles. The replicating DNA forms concatemers but the very large replicative intermediates (approximately 440S) identified by Paetkau et al. (J. Virol. 22:130-141, 1977) are not detected in T7+-infected tsnB cells. These large structures are formed in tsnB cells infected with a T7 gene 3 (endonuclease) mutant, where normal processing of the large intermediates into shorter concatemers is blocked. At later times during infection of tsnB cells, the replicating DNA accumulates in molecules about 30% shorter than unit length. Analysis of this DNA with a restriction endonuclease indicates that it is missing sequences from the ends (particularly the left end) of the genome. The loss of these specific sequences does not occur during infections with T7 gene 10 (head protein) or gene 19 (maturation protein) mutants. This suggests that the processing of concatemers into unit-length DNA molecules may occur normally in T7 -infected tsnB cells and that the shortened DNA arises from exonucleolytic degradation of the mature DNA molecules. These results are discussed in relation to our recent observation (M. A. DeWyngaert and D. C. Hinkle, J. Biol. Chem. 254:11247-11253, 1979) that E. coli tsnB produces an altered RNA polymerase which is resistance to inhibition by the T7 gene 2 protein. Images PMID:6997508

  4. Characterization of the defects in bacteriophage T7 DNA synthesis during growth in the Escherichia coli mutant tsnB.

    PubMed

    DeWyngaert, M A; Hinkle, D C

    1980-02-01

    The Escherichia coli mutant tsnB (M. Chamberlin, J. Virol. 14:509-516, 1974) is unable to support the growth of bacteriophage T7, although all classes of phage proteins are produced and the host is killed by the infection. During growth in this mutant host, the rate of phage DNA synthesis is reduced and the DNA is not packaged into stable, phagelike particles. The replicating DNA forms concatemers but the very large replicative intermediates (approximately 440S) identified by Paetkau et al. (J. Virol. 22:130-141, 1977) are not detected in T7+-infected tsnB cells. These large structures are formed in tsnB cells infected with a T7 gene 3 (endonuclease) mutant, where normal processing of the large intermediates into shorter concatemers is blocked. At later times during infection of tsnB cells, the replicating DNA accumulates in molecules about 30% shorter than unit length. Analysis of this DNA with a restriction endonuclease indicates that it is missing sequences from the ends (particularly the left end) of the genome. The loss of these specific sequences does not occur during infections with T7 gene 10 (head protein) or gene 19 (maturation protein) mutants. This suggests that the processing of concatemers into unit-length DNA molecules may occur normally in T7 -infected tsnB cells and that the shortened DNA arises from exonucleolytic degradation of the mature DNA molecules. These results are discussed in relation to our recent observation (M. A. DeWyngaert and D. C. Hinkle, J. Biol. Chem. 254:11247-11253, 1979) that E. coli tsnB produces an altered RNA polymerase which is resistance to inhibition by the T7 gene 2 protein.

  5. Optimizing stem-loop qPCR assays through multiplexed cDNA synthesis of U6 and miRNAs

    PubMed Central

    Turner, Marie; Adhikari, Sajag; Subramanian, Senthil

    2013-01-01

    We recently reported that hairpin (or stem-loop) priming is better-suited than polyA tailing to generate cDNA for plant microRNA qPCR. One major limitation of this method is the need to perform individual cDNA synthesis reactions for the reference gene and test miRNAs. Here, we report a novel fusion primer that allows multiplexed hairpin cDNA synthesis of the most-commonly used reference gene, nucleolar small RNA U6, together with test miRNAs. We also propose the use of miR1515 as a house keeping control for tropical legumes. We show that multiplexed cDNA synthesis does not result in loss of sensitivity and reduces the amount of RNA required for miRNA gene expression assays. PMID:23673353

  6. Induction of Duplication Reversion in Human Fibroblasts, by Wild-Type and Mutated Sv40 T Antigen, Covaries with the Ability to Induce Host DNA Synthesis

    PubMed Central

    Shammas, M. A.; Xia, S. J.; Reis, RJS.

    1997-01-01

    Intrachromosomal homologous recombination, manifest as reversion of a 14-kbp duplication in the hypoxanthine phosphoribosyl transferase (HPRT) gene, is elevated in human cells either stably transformed or transiently transfected by the SV40 (simian virus 40) large T antigen gene. Following introduction of wild-type SV40, or any of several T-antigen point mutations in a constant SV40 background, we observed a strong correlation between the stimulation of chromosomal recombination and induction of host-cell DNA synthesis. Moreover, inhibitors of DNA replication (aphidicolin and hydroxyurea) suppress SV40-induced homologous recombination to the extent that they suppress DNA synthesis. Stable integration of plasmids encoding T antigen also augments homologous recombination, which is suppressed by aphidicolin. We infer that the mechanism by which T antigen stimulates homologous recombination in human fibroblasts involves DNA replicative synthesis. PMID:9258684

  7. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  8. Viral DNA Synthesis Defects in Assembly-Competent Rous Sarcoma Virus CA Mutants

    PubMed Central

    Cairns, Tina M.; Craven, Rebecca C.

    2001-01-01

    The major structural protein of the retroviral core (CA) contains a conserved sequence motif shared with the CA-like proteins of distantly related transposable elements. The function of this major region of homology (MHR) has not been defined, in part due to the baffling array of phenotypes in mutants of several viruses and the yeast TY3. This report describes new mutations in the CA protein of Rous sarcoma virus (RSV) that were designed to test whether these different phenotypes might indicate distinct functional subdomains in the MHR. A comparison of 25 substitutions at 10 positions in the RSV conserved motif argues against this possibility. Most of the replacements destroyed virus infectivity, although either of two lethal phenotypes was obtained depending on the residue introduced. At most of the positions, one or more replacements (generally the more conservative substitutions) caused a severe replication defect without having any obvious effects on virus assembly, budding, Gag-Pol and genome incorporation, or protein processing. The mutant particles exhibited a defect in endogenous viral DNA synthesis and showed increased sensitivity of the core proteins to detergent, indicating that the mutations interfere with the formation and/or activity of the virion core. The distribution of these mutations across the MHR, with no evidence of clustering, suggests that the entire region is important for a critical postbudding function. In contrast, a second class of lethal substitutions (those that destroyed virus assembly and release) consists of alterations that are expected to cause severe effects on protein structure by disruption either of the hydrophobic core of the CA carboxyl-terminal domain or of the hydrogen bond network that stabilizes the domain. We suggest that this duality of phenotypes is consistent with a role for the MHR in the maturation process that links the two parts of the life cycle. PMID:11119594

  9. In vivo effects of endotoxin on DNA synthesis in rat nasal epithelium

    SciTech Connect

    Harkema, J.R.; Hotchkiss, J.A. )

    1993-12-01

    Airway inflammation in bacterial infections is characterized by the presence of neutrophils and often epithelial injury and repair. Release of endotoxin from bacteria may contribute to these processes. The purpose of this study was to determine the in vivo effects of repeated endotoxin exposure on DNA synthesis in rat nasal epithelium in the presence and absence of neutrophilic influx. Rats were intranasally instilled, once a day for 3 days, with endotoxin or saline (controls). Before the first and third instillations, half of the saline and endotoxin-instilled animals were depleted of circulating blood neutrophils by administering a rabbit anti-rat neutrophil antiserum. Rats were sacrificed 6 or 24 h after the last instillation. Two hours prior to sacrifice, rats were intraperitoneally injected with bromodeoxyuridine (BrdU), an analog of thymidine that is incorporated in the nucleus of cells in the S-phase of the cell cycle. Nasal tissues were processed for light microscopy and immunohistochemical detection of BrdU in nasal epithelial cells. The numbers of nasal epithelial cells, BrdU-labeled epithelial nuclei, and neutrophils per millimeter of basal lamina in the epithelium lining the nasal turbinates in the proximal nasal passages were determined by morphometric analysis. The authors did not observe a neutrophilic influx in the nasal tissues of neutrophil-depleted rats at 6 or 24 h after the last endotoxin instillation; however, the numbers of nasal epithelial cells and the BrdU-labeling index were significantly increased compared to saline-instilled controls. In contrast, non-neutrophil-depleted rats instilled with endotoxin had a marked neutrophilic influx, but no significant differences in the number of nasal epithelial cells at 6 or 24 h, compared to controls. In addition, the BrdU-labeling index in neutrophil-sufficient rats was increased only 6 h after the last instillation, compared to controls.

  10. Mediation of growth factor induced DNA synthesis and calcium mobilization by Gq and Gi2

    PubMed Central

    1993-01-01

    A newly identified subclass of the heterotrimeric GTP binding regulatory protein family, Gq, has been found to be expressed in a diverse range of cell types. We investigated the potential role of this protein in growth factor signal transduction pathways and its potential relationship to the function of other G alpha subclasses. Recent biochemical studies have suggested that Gq regulates the beta 1 isozyme of phospholipase C (PLC beta 1), an effector for some growth factors. By microinjection of inhibitory antibodies specific to distinct G alpha subunits into living cells, we have determined that G alpha q transduces bradykinin- and thrombin-stimulated intracellular calcium transients which are likely to be mediated by PLC beta 1. Moreover, we found that G alpha q function is required for the mitogenic action of both of these growth factors. These results indicate that both thrombin and bradykinin utilize Gq to couple to increases in intracellular calcium, and that Gq is a necessary component of the mitogenic action of these factors. While microinjection of antibodies against G alpha i2 did not abolish calcium transients stimulated by either of these factors, such microinjection prevented DNA synthesis in response to thrombin but not to bradykinin. These data suggest that thrombin- induced mitogenesis requires both Gq and Gi2, whereas bradykinin needs only the former. Thus, different growth factors operating upon the same cell type use overlapping yet distinct sets of G alpha subtypes in mitogenic signal transduction pathways. The direct identification of the coupling of both a pertussis toxin sensitive and insensitive G protein subtype in the mitogenic pathways utilized by thrombin offers an in vivo biochemical clarification of previous results obtained by pharmacologic studies. PMID:8458876

  11. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons.

    PubMed

    Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel

    2014-05-01

    Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.

  12. Base-modified thymidines capable of terminating DNA synthesis are novel bioactive compounds with activity in cancer cells

    PubMed Central

    Borland, Kayla M.; AbdulSalam, Safnas F.; Solivio, Morwena J.; Burke, Matthew P.; Wolfkiel, Patrick R.; Lawson, Sean M.; Stockman, Courtney A.; Andersen, Joel M.; Smith, Skyler; Tolstolutskaya, Julia N.; Gurjar, Purujit N.; Bercz, Aron P.; Merino, Edward J.; Litosh, Vladislav A.

    2015-01-01

    Current FDA-approved chemotherapeutic antimetabolites elicit severe side effects that warrant their improvement; therefore, we designed compounds with mechanisms of action focusing on inhibiting DNA replication rather than targeting multiple pathways. We previously discovered that 5-(α-substituted-2-nitrobenzyloxy)methyluridine-5′-triphosphates were exquisite DNA synthesis terminators; therefore, we synthesized a library of 35 thymidine analogs and evaluated their activity using an MTT cell viability assay of MCF7 breast cancer cells chosen for their vulnerability to these nucleoside derivatives. Compound 3a, having an α-tert-butyl-2-nitro-4-(phenyl)alkynylbenzyloxy group, showed an IC50 of 9 ± 1 μM. The compound is more selective for cancer cells than for fibroblast cells compared with 5-fluorouracil. Treatment of MCF7 cells with 3a elicits the DNA damage response as indicated by phosphorylation of γ-H2A. A primer extension assay of the 5′-triphosphate of 3a revealed that 3aTP is more likely to inhibit DNA polymerase than to lead to termination events upon incorporation into the DNA replication fork. PMID:25778768

  13. Excision of ultraviolet damage and the effect of irradiation on DNA synthesis in a strain of Bloom's syndrome fibroblasts

    SciTech Connect

    Henson, P.; Selsky, C.A.; Little, J.B.

    1981-03-01

    Researchers have studied repair of ultraviolet light-induced damage in a strain of Bloom's syndrome cells which we have shown to be defective in host cell reactivation of uv-irradiated herpes simplex virus. Excision repair was monitored by following loss of sensitivity of DNA in permeabilized cells to digestion by the Micrococcus luteus uv endonuclease preparation. The Bloom's syndrome fibroblasts apparently removed endonuclease-sensitive sites from the DNA slightly less efficiently than did normal strains. After 24 h, 38% of the sites remained in the Bloom's syndrome cells in comparison with 16% in normal fibroblasts. DNA newly synthesized in uv-irradiated Bloom's syndrome cells sedimented less far into alkaline sucrose gradients than did DNA from similarly treated normal cells. In other respects, including the effect of caffeine exposure, DNA synthesis in Bloom's syndrome cells was indistinguishable from that in normal cells. We were therefore able to detect only minor defects in the repair of uv-induced damage in Bloom's syndrome fibroblasts. This is consistent with the normal survival exhibited by these cells. The defect in excision repair may, however, be sufficient to allow the cellular repair capacity to become saturated at high infecting multiplicities of uv-irradiated herpes simplex virus.

  14. Triazole-linked DNA as a primer surrogate in the synthesis of first-strand cDNA.

    PubMed

    Fujino, Tomoko; Yasumoto, Ken-ichi; Yamazaki, Naomi; Hasome, Ai; Sogawa, Kazuhiro; Isobe, Hiroyuki

    2011-11-04

    A phosphate-eliminated nonnatural oligonucleotide serves as a primer surrogate in reverse transcription reaction of mRNA. Despite of the nonnatural triazole linkages in the surrogate, the reverse transcriptase effectively elongated cDNA sequences on the 3'-downstream of the primer by transcription of the complementary sequence of mRNA. A structure-activity comparison with the reference natural oligonucleotides shows the superior priming activity of the surrogate containing triazole-linkages. The nonnatural linkages also protect the transcribed cDNA from digestion reactions with 5'-exonuclease and enable us to remove noise transcripts of unknown origins.

  15. Different manner of DNA synthesis in polyploidizations of meth-A and B16F10 cell lines.

    PubMed

    Fujikawa-Yamamoto, K; Zong, Z; Murakami, M; Odashima, S

    1997-10-01

    Polyploidization of Meth-A and B16-F10 cells by demecolcine was examined using flow cytometry (FCM). In the presence of demecolcine, both cell lines were polyploidized to more than 16c DNA content. A marked difference was observed in the durations of S phase of polyploidy. The S-phase duration of Meth-A cells was doubly increased with ploidy, but that of B16F10 cells remained constant. When the rate of DNA synthesis in the polyploidizing cells was examined through the BrdU-uptake experiments, it was confirmed that the level of DNA-synthesis rate was constant in Meth-A cells but increased in B16F10 cells. The cellular content of c-Myc protein in polyploidized cells was also examined using anti-c-Myc monoclonal antibody. The c-Myc level of Meth-A cells was constant regardless of the ploidy but that of B16F10 cells increased with ploidy. Thus, the c-Myc content seems to be related to the duration of S phase in polyploidy.

  16. Measurement of unscheduled DNA synthesis and S-phase synthesis in rodent hepatocytes following in vivo treatment: Testing of 24 compounds

    SciTech Connect

    Mirsalis, J.C.; Tyson, C.K.; Steinmetz, K.L.; Loh, E.K.; Hamilton, C.M.; Bakke, J.P. ); Spalding, J.W. )

    1989-01-01

    The in vivo-in vitro hepatocyte DNA repair assay has been shown to be useful for studying genotoxic hepatocarcinogens. In addition, measurement of S-phase synthesis (SPS) provides an indirect indicator of hepatocellular proliferation, which may be an important mechanism in rodent carcinogenesis. This assay was used to examine 24 chemicals for their ability to induce unscheduled DNA synthesis (UDS) or SPS in Fischer-344 rats or B6C3F1 mice following in vivo treatment. Hepatocytes were isolated by liver perfusion and incubated with {sup 3}H-thymidine following in vivo treatment by gavage. Chemicals chosen for testing were from the National Toxicology Program (NTP) genetic toxicology testing program and most were also evaluated in long-term animal studies conducted by the NTP. Dinitrotoluene and Michler's Ketone induced positive UDS response in rat, while N-nitrosodiethanolamine and selenium sulfide induced equivocal UDS results in mouse and rat, respectively. BCMEE, bromoform, chloroform, PBB, 1,1,2-trichloroethane, and trichloroethylene were all potent inducers of SPS in mouse liver, while C.I. Solvent Yellow 14, and 1,1,2,2-tetrachloroethane yielded equivocal SPS results in rat and mouse, respectively. These results indicate that most of the test compounds do not induced UDS in the liver; however, the significant S-phase response induced by many of these compounds, especially the halogenated solvents, may be an important mechanism in their hepatocarinogenicity.

  17. Human Cytomegalovirus Can Procure Deoxyribonucleotides for Viral DNA Replication in the Absence of Retinoblastoma Protein Phosphorylation

    PubMed Central

    Kuny, Chad V.

    2016-01-01

    ABSTRACT Viral DNA replication requires deoxyribonucleotide triphosphates (dNTPs). These molecules, which are found at low levels in noncycling cells, are generated either by salvage pathways or through de novo synthesis. Nucleotide synthesis utilizes the activity of a series of nucleotide-biosynthetic enzymes (NBEs) whose expression is repressed in noncycling cells by complexes between the E2F transcription factors and the retinoblastoma (Rb) tumor suppressor. Rb-E2F complexes are dissociated and NBE expression is activated during cell cycle transit by cyclin-dependent kinase (Cdk)-mediated Rb phosphorylation. The DNA virus human cytomegalovirus (HCMV) encodes a viral Cdk (v-Cdk) (the UL97 protein) that phosphorylates Rb, induces the expression of cellular NBEs, and is required for efficient viral DNA synthesis. A long-held hypothesis proposed that viral proteins with Rb-inactivating activities functionally similar to those of UL97 facilitated viral DNA replication in part by inducing the de novo production of dNTPs. However, we found that dNTPs were limiting even in cells infected with wild-type HCMV in which UL97 is expressed and Rb is phosphorylated. Furthermore, we revealed that both de novo and salvage pathway enzymes contribute to viral DNA replication during HCMV infection and that Rb phosphorylation by cellular Cdks does not correct the viral DNA replication defect observed in cells infected with a UL97-deficient virus. We conclude that HCMV can obtain dNTPs in the absence of Rb phosphorylation and that UL97 can contribute to the efficiency of DNA replication in an Rb phosphorylation-independent manner. IMPORTANCE Transforming viral oncoproteins, such as adenovirus E1A and papillomavirus E7, inactivate Rb. The standard hypothesis for how Rb inactivation facilitates infection with these viruses is that it is through an increase in the enzymes required for DNA synthesis, which include nucleotide-biosynthetic enzymes. However, HCMV UL97, which functionally

  18. DNA-directed alkylating agents. 6. Synthesis and antitumor activity of DNA minor groove-targeted aniline mustard analogues of pibenzimol (Hoechst 33258)

    PubMed

    Gravatt, G L; Baguley, B C; Wilson, W R; Denny, W A

    1994-12-09

    A series of nitrogen mustard analogues of the DNA minor groove binding fluorophore pibenzimol (Hoechst 33258) have been synthesized and evaluated for antitumor activity. Conventional construction of the bisbenzimidazole ring system from the piperazinyl terminus, via two consecutive Pinner-type reactions, gave low yields of products contaminated with the 2-methyl analogue which proved difficult to separate. An alternative synthesis was developed, involving construction of the bisbenzimidazole from the mustard terminus, via Cu(2+)-promoted oxidative coupling of the mustard aldehydes with 3,4-diaminobenzonitrile to form the monobenzimidazoles, followed by a Pinner-type reaction and condensation with 4-(1-methyl-4-piperazinyl)-o-phenylenediamine. This process gives higher yields and pure products. The mustard analogues showed high hypersensitivity factors (IC50AA8/IC50 UV4), typical of DNA alkylating agents. There was a large increase in cytotoxicity (85-fold) across the homologous series which cannot be explained entirely by changes in mustard reactivity and may be related to altering orientation of the mustard with respect to the DNA resulting in different patterns of alkylation. Pibenzimol itself (which has been evaluated clinically as an anticancer drug) was inactive against P388 in vivo using a single-dose protocol, but the short-chain mustard homologues were highly effective, eliciting a proportion of long-term survivors.

  19. In Vitro Synthesis of Rous Sarcoma Virus-Specific RNA is Catalyzed by a DNA-Dependent RNA Polymerase

    PubMed Central

    Rymo, L.; Parsons, J. T.; Coffin, J. M.; Weissmann, C.

    1974-01-01

    Synthesis of Rous sarcoma virus RNA was examined in vitro with a new assay for radioactive virus-specific RNA. Nuclei from infected and uninfected cells were incubated with ribonucleoside [α-32P]triphosphates, Mn++, Mg++ and (NH4)2SO4. Incorporation into total and viral RNA proceeded with similar kinetics for up to 25 min at 37°. About 0.5% of the RNA synthesized by the infected system was scored as virus-specific, compared to 0.03% of the RNA from the uninfected system and 0.005% of the RNA synthesized by monkey kidney cell nuclei. Preincubation with DNase or actinomycin D completely suppressed total and virus-specific RNA synthesis. α-Amanitin, a specific inhibitor of eukaryotic RNA polymerase II, completely inhibited virus-specific RNA synthesis, while reducing total RNA synthesis by only 50%. We conclude that tumor virus-specific RNA is synthesized on a DNA template, most probably by the host's RNA polymerase II. PMID:4368801

  20. De Novo Assembly of Highly Substituted Morpholines and Piperazines

    PubMed Central

    2017-01-01

    The morpholine and piperazine with their remarkable physical and biochemical properties are popular heterocycles in organic and medicinal chemistry used in rational property design. However, in the majority of cases these rings are added to an existing molecule in a building block approach thus limiting their substitution pattern and diversity. Here we introduce a versatile de novo synthesis of the morpholine and piperazine rings using multicomponent reaction chemistry. The large scale amenable building blocks can be further substituted at up to four positions, making this a very versatile scaffold synthesis strategy. Our methods thus fulfill the increasing demand for novel building block design and nontraditional scaffolds which previously were not accessible PMID:28102692

  1. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array

    PubMed Central

    Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue

    2016-01-01

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  2. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array.

    PubMed

    Fuller, Carl W; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J; Kasianowicz, John J; Davis, Randy; Roever, Stefan; Church, George M; Ju, Jingyue

    2016-05-10

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.

  3. Comparative analysis of de novo transcriptome assembly.

    PubMed

    Clarke, Kaitlin; Yang, Yi; Marsh, Ronald; Xie, Linglin; Zhang, Ke K

    2013-02-01

    The fast development of next-generation sequencing technology presents a major computational challenge for data processing and analysis. A fast algorithm, de Bruijn graph has been successfully used for genome DNA de novo assembly; nevertheless, its performance for transcriptome assembly is unclear. In this study, we used both simulated and real RNA-Seq data, from either artificial RNA templates or human transcripts, to evaluate five de novo assemblers, ABySS, Mira, Trinity, Velvet and Oases. Of these assemblers, ABySS, Trinity, Velvet and Oases are all based on de Bruijn graph, and Mira uses an overlap graph algorithm. Various numbers of RNA short reads were selected from the External RNA Control Consortium (ERCC) data and human chromosome 22. A number of statistics were then calculated for the resulting contigs from each assembler. Each experiment was repeated multiple times to obtain the mean statistics and standard error estimate. Trinity had relative good performance for both ERCC and human data, but it may not consistently generate full length transcripts. ABySS was the fastest method but its assembly quality was low. Mira gave a good rate for mapping its contigs onto human chromosome 22, but its computational speed is not satisfactory. Our results suggest that transcript assembly remains a challenge problem for bioinformatics society. Therefore, a novel assembler is in need for assembling transcriptome data generated by next generation sequencing technique.

  4. Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells

    PubMed Central

    2011-01-01

    Background In mechanically ventilated preterm infants with respiratory distress syndrome (RDS), exogenous surfactant application has been demonstrated both to decrease DNA-synthesis but also and paradoxically to increase epithelial cell proliferation. However, the effect of exogenous surfactant has not been studied directly on alveolar type II cells (ATII cells), a key cell type responsible for alveolar function and repair. Objective The aim of this study was to investigate the effects of two commercially available surfactant preparations on ATII cell viability and DNA synthesis. Methods Curosurf® and Alveofact® were applied to two ATII cell lines (human A549 and mouse iMATII cells) and to primary rat ATII cells for periods of up to 24 h. Cell viability was measured using the redox indicator resazurin and DNA synthesis was measured using BrdU incorporation. Results Curosurf® resulted in slightly decreased cell viability in all cell culture models. However, DNA synthesis was increased in A549 and rat ATII cells but decreased in iMATII cells. Alveofact® exhibited the opposite effects on A549 cells and had very mild effects on the other two cell models. Conclusion This study showed that commercially available exogenous surfactants used to treat preterm infants with RDS can have profound effects on cell viability and DNA synthesis. PMID:21324208

  5. Replication initiation and genome instability: a crossroads for DNA and RNA synthesis.

    PubMed

    Barlow, Jacqueline H; Nussenzweig, André

    2014-12-01

    Nuclear DNA replication requires the concerted action of hundreds of proteins to efficiently unwind and duplicate the entire genome while also retaining epigenetic regulatory information. Initiation of DNA replication is tightly regulated, rapidly firing thousands of origins once the conditions to promote rapid and faithful replication are in place, and defects in replication initiation lead to proliferation defects, genome instability, and a range of developmental abnormalities. Interestingly, DNA replication in metazoans initiates in actively transcribed DNA, meaning that replication initiation occurs in DNA that is co-occupied with tens of thousands of poised and active RNA polymerase complexes. Active transcription can induce genome instability, particularly during DNA replication, as RNA polymerases can induce torsional stress, formation of secondary structures, and act as a physical barrier to other enzymes involved in DNA metabolism. Here we discuss the challenges facing mammalian DNA replication, their impact on genome instability, and the development of cancer.

  6. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling.

    PubMed

    Rescifina, Antonio; Zagni, Chiara; Varrica, Maria Giulia; Pistarà, Venerando; Corsaro, Antonino

    2014-03-03

    The interaction of small molecules with DNA plays an essential role in many biological processes. As DNA is often the target for majority of anticancer and antibiotic drugs, study about the interaction of drug and DNA has a key role in pharmacology. Moreover, understanding the interactions of small molecules with DNA is of prime significance in the rational design of more powerful and selective anticancer agents. Two of the most important and promising targets in cancer chemotherapy include DNA alkylating agents and DNA intercalators. For these last the DNA recognition is a critical step in their anti-tumor action and the intercalation is not only one kind of the interactions in DNA recognition but also a pivotal step of several clinically used anti-tumor drugs such as anthracyclines, acridines and anthraquinones. To push clinical cancer therapy, the discovery of new DNA intercalators has been considered a practical approach and a number of intercalators have been recently reported. The intercalative binding properties of such molecules can also be harnessed as diagnostic probes for DNA structure in addition to DNA-directed therapeutics. Moreover, the problem of intercalation site formation in the undistorted B-DNA of different length and sequence is matter of tremendous importance in molecular modeling studies and, nowadays, three models of DNA intercalation targets have been proposed that account for the binding features of intercalators. Finally, despite DNA being an important target for several drugs, most of the docking programs are validated only for proteins and their ligands. Therefore, a default protocol to identify DNA binding modes which uses a modified canonical DNA as receptor is needed.

  7. Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents Against Lung Cancer

    DTIC Science & Technology

    2014-10-01

    effectively and accurately replicate crosslinked DNA lesions such as thymine dimers and cisplatinated DNA (19-21). A third group of DNA polymerases...lines correlates with resistance to chemotherapeutic agents such as cisplatin which damage DNA (38). Furthermore, pol  overexpression is a poor... cisplatinated GG adduct (33). In this model, dCTP is properly paired with the first templating nucleobase via conventional hydrogen bonds. In general, our

  8. Hypersensitivity and reduced inhibition of DNA synthesis in ataxia telangiectasia lymphoblasts treated with low levels of neocarzinostatin.

    PubMed

    Babilon, R W; Soprano, K J; Henderson, E E

    1985-07-01

    The effects of neocarzinostatin (NCS) on lymphoblastoid cell lines (LCLs) established from ataxia telangiectasia (A-T) were determined. A-T lymphoblasts were found to be hypersensitive to low levels of NCS as measured by cell growth and cell survival. On the other hand, A-T lymphoblasts failed to postpone DNA synthesis to the same degree as normal lymphoblasts following treatment with NCS. LCLs established from Nijmegen breakage syndrome (NBS) could be distinguished from ataxia and normal cell lines by their intermediate level of survival following exposure to NCS.

  9. Semi-automatic synthesis, antiproliferative activity and DNA-binding properties of new netropsin and bis-netropsin analogues.

    PubMed

    Szerszenowicz, Jakub; Drozdowska, Danuta

    2014-07-31

    A general route for the semi-automatic synthesis of some new potential minor groove binders was established. Six four-numbered sub-libraries of new netropsin and bis-netropsin analogues have been synthesized using a Syncore Reactor. The structures of the all new substances prepared in this investigation were fully characterized by NMR ((1)H, (13)C), HPLC and LC-MS. The antiproliferative activity of the obtained compounds was tested on MCF-7 breast cancer cells. The ethidium displacement assay using pBR322 confirmed the DNA-binding properties of the new analogues of netropsin and bis-netropsin.

  10. Induction of maturation of human B-cell lymphomas in vitro. Morphologic changes in relation to immunoglobulin and DNA synthesis.

    PubMed Central

    Beiske, K.; Ruud, E.; Drack, A.; Marton, P. F.; Godal, T.

    1984-01-01

    In vitro stimulation of cells from 8 non-Hodgkin's lymphomas comprising several histologic types with a tumor promotor (TPA) and with or without anti-immunoglobulins directed against the surface immunoglobulin of the tumor cells is reported. Morphologic transformation to immunoblastic and plasmablastic cells, but not to plasma cells, and induction of Ig and DNA synthesis were observed. A comparative analysis, including flow cytofluorometry, light microscopy combined with immunocytochemistry, and electron microscopy, suggests that the three events may not always be associated phenomena at the single-cell level even in monoclonal cell populations. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:6375389

  11. Synthesis, DNA binding, photo-induced DNA cleavage, cytotoxicity studies of a family of heavy rare earth complexes.

    PubMed

    Chen, Gong-Jun; Wang, Zhi-Gang; Qiao, Xin; Xu, Jing-Yuan; Tian, Jin-Lei; Yan, Shi-Ping

    2013-10-01

    As a continuing investigation of our previous studies about the influence of the different rare earth metal ions on the bioactivity, a family of heavy rare earth metal complexes, [RE(acac)3(dpq)] (RE=Tb (1), Dy (2), Ho (3), Er (4), Tm (5), Yb (6), Lu (7)) and [RE(acac)3(dppz)]·CH3OH (RE=Tb (8), Dy (9), Ho (10), Er (11), Tm (12), Yb (13), Lu (14) viz. acetylacetonate (acac), dipyrido[3,2-d:20,30-f]quinoxaline (dpq), dipyrido[3,2-a:20,30-c] phenazine (dppz)), has been synthesized and their biological activities were also investigated. On the irradiation with UV-A light of 365nm or ambient light, all complexes exhibit efficient DNA cleavage activity via the mechanistic pathway involving the formation of singlet oxygen and hydroxyl radical as the reactive species. In addition, the in vitro cytotoxicity of these complexes on HeLa cells has been examined by MTT assay, which indicate that these compounds have the potential to act as effective anticancer drugs. The results of the above biological experiments also reveal that the choice of different rare earth metal ions has little influence on the DNA binding, DNA cleavage and cytotoxicity.

  12. Photoinduced interactions of supramolecular ruthenium(II) complexes with plasmid DNA: synthesis and spectroscopic, electrochemical, and DNA photocleavage studies.

    PubMed

    Swavey, Shawn; DeBeer, Madeleine; Li, Kaiyu

    2015-04-06

    Two new bridging ligands have been synthesized by combining substituted benzaldehydes with phenanthrolinopyrrole (php), resulting in new polyazine bridging ligands. The ligands have been characterized by (1)H NMR, mass spectroscopy, and elemental analysis. These new ligands display π-π* transitions above 500 nm with modest molar absorptivities. Upon excitation at the ligand-centered charge-transfer transition, weak emission with a maximum wavelength of 612 nm is observed. When coordinated to two ruthenium(II) bis(bipyridyl) groups, the new bimetallic complexes generated give an overall 4+ charge. The electronic transitions of the bimetallic ruthenium(II) complexes display traditional π-π* transitions at 287 nm and metal-to-ligand charge-transfer transitions at 452 nm with molar absorptivities greater than 30000 M(-1) cm(-1). Oxidation of the ruthenium(II) metal centers to ruthenium(III) occurs at potentials above 1.4 V versus the Ag/AgCl reference electrode. Spectroscopic and electrochemical measurements indicate that the ruthenium(II) moieties behave independently. Both complexes are water-soluble and show the ability to photonick plasmid DNA when irradiated with low-energy light above 550 nm. In addition, one of the complexes, [Ru(bpy)2php]2Van(4+), shows the ability to linearize plasmid DNA and gives evidence, by gel electrophoresis, of photoinduced binding to plasmid DNA.

  13. Real-time single-molecule studies of the motions of DNA polymerase fingers illuminate DNA synthesis mechanisms.

    PubMed

    Evans, Geraint W; Hohlbein, Johannes; Craggs, Timothy; Aigrain, Louise; Kapanidis, Achillefs N

    2015-07-13

    DNA polymerases maintain genomic integrity by copying DNA with high fidelity. A conformational change important for fidelity is the motion of the polymerase fingers subdomain from an open to a closed conformation upon binding of a complementary nucleotide. We previously employed intra-protein single-molecule FRET on diffusing molecules to observe fingers conformations in polymerase-DNA complexes. Here, we used the same FRET ruler on surface-immobilized complexes to observe fingers-opening and closing of individual polymerase molecules in real time. Our results revealed the presence of intrinsic dynamics in the binary complex, characterized by slow fingers-closing and fast fingers-opening. When binary complexes were incubated with increasing concentrations of complementary nucleotide, the fingers-closing rate increased, strongly supporting an induced-fit model for nucleotide recognition. Meanwhile, the opening rate in ternary complexes with complementary nucleotide was 6 s(-1), much slower than either fingers closing or the rate-limiting step in the forward direction; this rate balance ensures that, after nucleotide binding and fingers-closing, nucleotide incorporation is overwhelmingly likely to occur. Our results for ternary complexes with a non-complementary dNTP confirmed the presence of a state corresponding to partially closed fingers and suggested a radically different rate balance regarding fingers transitions, which allows polymerase to achieve high fidelity.

  14. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes.

    PubMed

    Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R

    2016-03-15

    Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles.

  15. SYNTHESIS OF THE FULLY PROTECTED PHOSPHORAMIDITE OF THE BENZENE-DNA ADDUCT, N2- (4-HYDROXYPHENYL)-2'-DEOXYGUANOSINE AND INCORPORATION OF THE LATER INTO DNA OLIGOMERS

    SciTech Connect

    Chenna, Ahmed; Gupta, Ramesh C.; Bonala, Radha R.; Johnson, Francis; Huang, Bo

    2008-06-09

    N2-(4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N2-(4-hydroxyphenyl)-2'-dG (N2-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N2-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N2-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.

  16. Synthesis of amino-rich silica-coated magnetic nanoparticles for the efficient capture of DNA for PCR.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Zhou, Min; Zhang, Lida; Shi, Xianming

    2016-09-01

    Magnetic separation has great advantages over traditional bio-separation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor for efficient capture of the target analytes. In this paper, we report the synthesis of amino-rich silica-coated magnetic nanoparticles using a one-pot method. This type of magnetic nanoparticle has a rough surface and a higher density of amino groups than the nanoparticles prepared by a post-modification method. Furthermore, the results of hydrochloric acid treatment indicated that the magnetic nanoparticles were stably coated. The developed amino-rich silica-coated magnetic nanoparticles were used to directly adsorb DNA. After magnetic separation and blocking, the magnetic nanoparticles and DNA complexes were used directly for the polymerase chain reaction (PCR), without onerous and time-consuming purification and elution steps. The results of real-time quantitative PCR showed that the nanoparticles with higher amino group density resulted in improved DNA capture efficiency. The results suggest that amino-rich silica-coated magnetic nanoparticles are of great potential for efficient bio-separation of DNA prior to detection by PCR.

  17. Inhibition of thyrotropin-stimulated DNA synthesis by microinjection of inhibitors of cellular Ras and cyclic AMP-dependent protein kinase.

    PubMed

    Kupperman, E; Wen, W; Meinkoth, J L

    1993-08-01

    Microinjection of a dominant interfering mutant of Ras (N17 Ras) caused a significant reduction in thyrotropin (thyroid-stimulating hormone [TSH])-stimulated DNA synthesis in rat thyroid cells. A similar reduction was observed following injection of the heat-stable protein kinase inhibitor of the cyclic AMP-dependent protein kinase. Coinjection of both inhibitors almost completely abolished TSH-induced DNA synthesis. In contrast to TSH, overexpression of cellular Ras protein did not stimulate the expression of a cyclic AMP response element-regulated reporter gene. Similarly, injection of N17 Ras had no effect on TSH-stimulated reporter gene expression. Moreover, overexpression of cellular Ras protein stimulated similar levels of DNA synthesis in the presence or absence of the heat-stable protein kinase inhibitor. Together, these results suggest that in Wistar rat thyroid cells, a full mitogenic response to TSH requires both Ras and cyclic APK-dependent protein kinase.

  18. Induction of pyrimidine dimers and unscheduled DNA synthesis in cultured mouse epithelial cells exposed to 254-nm- and u. v. -B radiation

    SciTech Connect

    Yotti, L.P.; Ley, R.D.

    1983-01-01

    The induction and fate of pyrimidine dimers and unscheduled DNA synthesis were measured in u.v.-irradiated primary, newborn SENCAR mouse epithelial cells. Unscheduled DNA synthesis was induced in a dose responsive manner by two u.v. sources, a germicidal lamp (254 nm) and an FS40 sunlamp (280--400 nm). Using the endonuclease-sensitive site assay to detect pyrimidine dimer production and excision, we examined the response of the newborn mouse cells to both u.v. sources. We were unable to detect the removal of pyrimidine dimers with either of the two sources of u.v. The speculation is made that primary, newborn mouse epidermal cells excise u.v.-induced pyrimidine dimers to an extent below the level of detection of the endonuclease-sensitive site assay but to an extent sufficient to induce unscheduled DNA synthesis.

  19. Inhibition of thyrotropin-stimulated DNA synthesis by microinjection of inhibitors of cellular Ras and cyclic AMP-dependent protein kinase.

    PubMed Central

    Kupperman, E; Wen, W; Meinkoth, J L

    1993-01-01

    Microinjection of a dominant interfering mutant of Ras (N17 Ras) caused a significant reduction in thyrotropin (thyroid-stimulating hormone [TSH])-stimulated DNA synthesis in rat thyroid cells. A similar reduction was observed following injection of the heat-stable protein kinase inhibitor of the cyclic AMP-dependent protein kinase. Coinjection of both inhibitors almost completely abolished TSH-induced DNA synthesis. In contrast to TSH, overexpression of cellular Ras protein did not stimulate the expression of a cyclic AMP response element-regulated reporter gene. Similarly, injection of N17 Ras had no effect on TSH-stimulated reporter gene expression. Moreover, overexpression of cellular Ras protein stimulated similar levels of DNA synthesis in the presence or absence of the heat-stable protein kinase inhibitor. Together, these results suggest that in Wistar rat thyroid cells, a full mitogenic response to TSH requires both Ras and cyclic APK-dependent protein kinase. Images PMID:8336696

  20. Influence of Nrf2 activators on subcellular skeletal muscle protein and DNA synthesis rates after 6 weeks of milk protein feeding in older adults.

    PubMed

    Konopka, Adam R; Laurin, Jaime L; Musci, Robert V; Wolff, Christopher A; Reid, Justin J; Biela, Laurie M; Zhang, Qian; Peelor, Fredrick F; Melby, Christopher L; Hamilton, Karyn L; Miller, Benjamin F

    2017-03-10

    In older adults, chronic oxidative and inflammatory stresses are associated with an impaired increase in skeletal muscle protein synthesis after acute anabolic stimuli. Conjugated linoleic acid (CLA) and Protandim have been shown to activate nuclear factor erythroid-derived 2-like 2 (Nrf2), a transcription factor for the antioxidant response element and anti-inflammatory pathways. This study tested the hypothesis that compared to a placebo control (CON), CLA and Protandim would increase skeletal muscle subcellular protein (myofibrillar, mitochondrial, cytoplasmic) and DNA synthesis in older adults after 6 weeks of milk protein feeding. CLA decreased oxidative stress and skeletal muscle oxidative damage with a trend to increase messenger RNA (mRNA) expression of a Nrf2 target, NAD(P)H dehydrogenase quinone 1 (NQO1). However, CLA did not influence other Nrf2 targets (heme oxygenase-1 (HO-1), glutathione peroxidase 1 (Gpx1)) or protein or DNA synthesis. Conversely, Protandim increased HO-1 protein content but not the mRNA expression of downstream Nrf2 targets, oxidative stress, or skeletal muscle oxidative damage. Rates of myofibrillar protein synthesis were maintained despite lower mitochondrial and cytoplasmic protein syntheses after Protandim versus CON. Similarly, DNA synthesis was non-significantly lower after Protandim compared to CON. After Protandim, the ratio of protein to DNA synthesis tended to be greater in the myofibrillar fraction and maintained in the mitochondrial and cytoplasmic fractions, emphasizing the importance of measuring both protein and DNA synthesis to gain insight into proteostasis. Overall, these data suggest that Protandim may enhance proteostatic mechanisms of skeletal muscle contractile proteins after 6 weeks of milk protein feeding in older adults.

  1. DNA synthesis and microtubule assembly-related events in fertilized Paracentrotus lividus eggs: reversible inhibition by 10 mM procaine.

    PubMed

    Raymond, M N; Foucault, G; Coffe, G; Pudles, J

    1986-04-01

    This report describes the effects of 10 mM procaine on microtubule assembly and on DNA synthesis, as followed by [3H]colchicine binding assays and [3H]thymidine incorporation respectively, in fertilized Paracentrotus lividus eggs. In the absence of microtubule assembly inhibitors, about 25% of the total egg tubulin is submitted to two cycles of polymerization prior to the first cell division, this polymerization process precedes DNA synthesis. If the zygotes are treated with 10 mM procaine in the course of the cell cycle, tubulin polymerization is inhibited or microtubules are disassembled. DNA synthesis is inhibited when procaine treatment is performed 10 min, before the initiation of the S-period. However, when the drug is applied in the course of this synthetic period, the process is normally accomplished, but the next S-period becomes inhibited. Moreover, procaine treatment increases the cytoplasmic pH of the fertilized eggs by about 0.6 to 0.8 pH units. This pH increase precedes microtubule disassembly and inhibition of DNA synthesis. Washing out the drug induces a decrease of the intracellular pH which returns to about the same value as that of the fertilized egg controls. This pH change is then followed by the reinitiation of microtubule assembly, DNA synthesis and cell division. Our results show that the inhibition of both tubulin polymerization and DNA synthesis in fertilized eggs treated with 10 mM procaine, appears to be related to the drug-induced increase in cytoplasmic pH.

  2. Mitochondrial transcription terminator family members mTTF and mTerf5 have opposing roles in coordination of mtDNA synthesis.

    PubMed

    Jõers, Priit; Lewis, Samantha C; Fukuoh, Atsushi; Parhiala, Mikael; Ellilä, Simo; Holt, Ian J; Jacobs, Howard T

    2013-01-01

    All genomes require a system for avoidance or handling of collisions between the machineries of DNA replication and transcription. We have investigated the roles in this process of the mTERF (mitochondrial transcription termination factor) family members mTTF and mTerf5 in Drosophila melanogaster. The two mTTF binding sites in Drosophila mtDNA, which also bind mTerf5, were found to coincide with major sites of replication pausing. RNAi-mediated knockdown of either factor resulted in mtDNA depletion and developmental arrest. mTTF knockdown decreased site-specific replication pausing, but led to an increase in replication stalling and fork regression in broad zones around each mTTF binding site. Lagging-strand DNA synthesis was impaired, with extended RNA/DNA hybrid segments seen in replication intermediates. This was accompanied by the accumulation of recombination intermediates and nicked/broken mtDNA species. Conversely, mTerf5 knockdown led to enhanced replication pausing at mTTF binding sites, a decrease in fragile replication intermediates containing single-stranded segments, and the disappearance of species containing segments of RNA/DNA hybrid. These findings indicate an essential and previously undescribed role for proteins of the mTERF family in the integration of transcription and DNA replication, preventing unregulated collisions and facilitating productive interactions between the two machineries that are inferred to be essential for completion of lagging-strand DNA synthesis.

  3. Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia

    PubMed Central

    Pearce, Kaycey; Cai, Diancai; Roberts, Adam C; Glanzman, David L

    2017-01-01

    Previously, we reported that long-term memory (LTM) in Aplysia can be reinstated by truncated (partial) training following its disruption by reconsolidation blockade and inhibition of PKM (Chen et al., 2014). Here, we report that LTM can be induced by partial training after disruption of original consolidation by protein synthesis inhibition (PSI) begun shortly after training. But when PSI occurs during training, partial training cannot subsequently establish LTM. Furthermore, we find that inhibition of DNA methyltransferase (DNMT), whether during training or shortly afterwards, blocks consolidation of LTM and prevents its subsequent induction by truncated training; moreover, later inhibition of DNMT eliminates consolidated LTM. Thus, the consolidation of LTM depends on two functionally distinct phases of protein synthesis: an early phase that appears to prime LTM; and a later phase whose successful completion is necessary for the normal expression of LTM. Both the consolidation and maintenance of LTM depend on DNA methylation. DOI: http://dx.doi.org/10.7554/eLife.18299.001 PMID:28067617

  4. Regulatory substances produced by lymphocytes. VI. Cell cycle specificity of inhibitor of DNA synthesis action in L cells.

    PubMed

    Wagshal, A B; Jegasothy, B V; Waksman, B H

    1978-01-01

    IDS inhibits DNA synthesis and mitosis of L cells only when present during the late G1 phase of the cell cycle, as shown with L cells synchronized by a variety of methods. This corresponds well with earlier findings that IDS inhibits DNA synthesis in mitogen-stimulated lymphocytes when present between 16 and 24 h after adding mitogen. In both cell types, the inhibition produced by IDS appears to be totally the result of elevation of cAMP level. Thus, inhibitors of cAMP phosphodiesterase work synergistically with IDS, and activators of cAMP phosphodiesterase overcome the inhibition by IDS. This paper shows that IDS raises cAMP levels in L cells only within a narrow interval of the cell cycle, around 6-8 h after mitosis. This cell cycle specificity, which may be related to appearance of receptors for IDS only at discrete times, may be important in limiting IDS action to suppression, as elevated cAMP levels have a variety of other effects during other phases of the cell cycle.

  5. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  6. Mechanism of error-free DNA synthesis across N1-methyl-deoxyadenosine by human DNA polymerase-ι

    PubMed Central

    Jain, Rinku; Choudhury, Jayati Roy; Buku, Angeliki; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2017-01-01

    N1-methyl-deoxyadenosine (1-MeA) is formed by methylation of deoxyadenosine at the N1 atom. 1-MeA presents a block to replicative DNA polymerases due to its inability to participate in Watson-Crick (W-C) base pairing. Here we determine how human DNA polymerase-ι (Polι) promotes error-free replication across 1-MeA. Steady state kinetic analyses indicate that Polι is ~100 fold more efficient in incorporating the correct nucleotide T versus the incorrect nucleotide C opposite 1-MeA. To understand the basis of this selectivity, we determined ternary structures of Polι bound to template 1-MeA and incoming dTTP or dCTP. In both structures, template 1-MeA rotates to the syn conformation but pairs differently with dTTP versus dCTP. Thus, whereas dTTP partakes in stable Hoogsteen base pairing with 1-MeA, dCTP fails to gain a “foothold” and is largely disordered. Together, our kinetic and structural studies show how Polι maintains discrimination between correct and incorrect incoming nucleotide opposite 1-MeA in preserving genome integrity. PMID:28272441

  7. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives

    PubMed Central

    de Almeida, Sinara Mônica Vitalino; Lafayette, Elizabeth Almeida; Gomes da Silva, Lúcia Patrícia Bezerra; Amorim, Cézar Augusto da Cruz; de Oliveira, Tiago Bento; Gois Ruiz, Ana Lucia Tasca; de Carvalho, João Ernesto; de Moura, Ricardo Olímpio; Beltrão, Eduardo Isidoro Carneiro; de Lima, Maria do Carmo Alves; de Carvalho Júnior, Luiz Bezerra

    2015-01-01

    In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide derivatives (3a–h) were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 104 to 1.0 × 106 M−1 and quenching constants from −0.2 × 104 to 2.18 × 104 M−1 indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z)-2-(acridin-9-ylmethylene)-N-(4-chlorophenyl) hydrazinecarbothioamide (3f), while the most active compound in antiproliferative assay was (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (3a). There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties. PMID:26068233

  8. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives.

    PubMed

    de Almeida, Sinara Mônica Vitalino; Lafayette, Elizabeth Almeida; da Silva, Lúcia Patrícia Bezerra Gomes; Amorim, Cézar Augusto da Cruz; de Oliveira, Tiago Bento; Ruiz, Ana Lucia Tasca Gois; de Carvalho, João Ernesto; de Moura, Ricardo Olímpio; Beltrão, Eduardo Isidoro Carneiro; de Lima, Maria do Carmo Alves; de Carvalho Júnior, Luiz Bezerra

    2015-06-09

    In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide derivatives (3a-h) were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 10(4) to 1.0 × 10(6) M(-1) and quenching constants from -0.2 × 10(4) to 2.18 × 10(4) M(-1) indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z)-2-(acridin-9-ylmethylene)-N- (4-chlorophenyl) hydrazinecarbothioamide (3f), while the most active compound in antiproliferative assay was (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (3a). There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties.

  9. Photolithographic Synthesis of High-Density DNA and RNA Arrays on Flexible, Transparent, and Easily Subdivided Plastic Substrates.

    PubMed

    Holden, Matthew T; Carter, Matthew C D; Wu, Cheng-Hsien; Wolfer, Jamison; Codner, Eric; Sussman, Michael R; Lynn, David M; Smith, Lloyd M

    2015-11-17

    The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.

  10. Dissociation of tumor promoter-stimulated ornithine decarboxylase activity and DNA synthesis in mouse epidermis in vivo and in vitro by fluocinolone acetonide, a tumor-promotion inhibitor.

    PubMed Central

    Lichti, U; Slaga, T J; Ben, T; Patterson, E; Hennings, H; Yuspa, S H

    1977-01-01

    12-O-Tetradecanoyl phorbol-13-acetate (TPA), a tumor promoter, stimulates DNA synthesis in mouse epidermal cells in vivo and in vitro. This response appears to be mediated through polyamine metabolism because ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17)activity is markedly increased shortly after promoter exposure and this induction varies in magnitude according to dose and promoter potency of a series of phorbol esters. In vitro, exogenous putrescine (0.01-10 mM) results in a dose-related increase and prolongation of promoter-stimulated DNA DNA synthesis, a phenomenon noted in other systems of polyamine-mediated growth stimulation. The anti-inflammatory steroid fluocinolone acetonide (FA), an inhibitor of tumor promotion, prevents TPA stimulation of epidermal proliferation in vivo and in vitro. In vitro, FA most effectively prevents stimulation of DNA synthesis when applied is not required. Paradoxially, FA potentiates the increase in ornithine decarboxylase activity after TPA administeration both in vivo and in vitro. Furthermore, the inhibition of TPA-stimulated DNA synthesis by FA in vitro can be reversed by exogenous putrescine. These results suggestthat FA exerts its antipromotion effect by reducing the sensitivity of the cell to polyamines or by reducing intracellular polyamine levels. PMID:269443

  11. A large fragment approach to DNA synthesis: total synthesis of a gene for the protease inhibitor eglin c from the leech Hirudo medicinalis and its expression in E. coli.

    PubMed Central

    Rink, H; Liersch, M; Sieber, P; Meyer, F

    1984-01-01

    A DNA containing the coding sequence for the proteinase inhibitor protein, eglin c, from the leech Hirudo medicinalis has been obtained by enzymatic assembly of chemically synthesized DNA fragments. The synthetic gene consists of a 232 base-pair fragment containing initiation and termination codon signals with restriction enzyme recognition sites conveniently placed for cloning into a plasmid vector. Only six oligonucleotides from 34 to 61 bases in length, sharing pairwise stretches of complementary regions at their 3'-termini, were prepared by phosphotriester solid-phase synthesis. The oligomers were annealed pairwise and converted into double stranded DNA fragments by DNA polymerase I mediated repair synthesis. The fragments were assembled by ligation, and the synthetic gene was expressed in high yield in E. coli under the transcriptional control of the E. coli tryptophan promoter. The expression product was purified to homogeneity and was shown to have similar physicochemical and identical biological properties as the authentic protein isolated from the leech. Images PMID:6382168

  12. DNA minor groove targeted alkylating agents based on bisbenzimidazole carriers: synthesis, cytotoxicity and sequence-specificity of DNA alkylation.

    PubMed

    Smaill, J B; Fan, J Y; Denny, W A

    1998-12-01

    A series of bisbenzimidazoles bearing a variety of alkylating agents [ortho- and meta-mustards, imidazolebis(hydroxymethyl), imidazolebis(methylcarbamate) and pyrrolebis(hydroxymethyl)], appended by a propyl linker chain, were prepared and investigated for sequence-specificity of DNA alkylation and their cytotoxicity. Previous work has shown that, for para-aniline mustards, a propyl linker is optimal for cytotoxicity. Alkaline cleavage assays using a variety of different labelled oligonucleotides showed that the preferred sequences for adenine alkylation were 5'-TTTANANAANN and 5'-ATTANANAANN (underlined bases show the drug alkylation sites), with AT-rich sequences required on both the 5' and 3' sides of the alkylated adenine. The different aniline mustards showed little variation in alkylation pattern and similar efficiencies of DNA cross-link formation despite the changes in orientation and positioning of the mustard, suggesting that the propyl linker has some flexibility. The imidazole- and pyrrolebis(hydroxymethyl) alkylators showed no DNA strand cleavage following base treatment, indicating that no guanine or adenine N3 or N7 adducts were formed. Using the PCR-based polymerase stop assay, these alkylators showed PCR blocks at 5'-C*G sites (the * nucleotide indicates the blocked site), particularly at 5'-TAC*GA 5'-AGC*GGA, and 5'-AGCC*GGT sequences, caused by guanine 2-NH2 lesions on the opposite strand. Only the (more reactive) imidazolebis(methylcarbamoyl) and pyrrolebis(hydroxymethyl) alkylators demonstrated interstrand cross-linking ability. All of the bifunctional mustards showed large (approximately 100-fold) increases in cytotoxicity over chlorambucil, with the corresponding monofunctional mustards being 20- to 60-fold less cytotoxic. These results suggest that in the mustards the propyl linker provides sufficient flexibility to achieve delivery of the alkylator to favoured (adenine N3) sites in the minor groove, regardless of its exact geometry with

  13. A High Performance Platform Based on cDNA Display for Efficient Synthesis of Protein Fusions and Accelerated Directed Evolution.

    PubMed

    Naimuddin, Mohammed; Kubo, Tai

    2016-02-08

    We describe a high performance platform based on cDNA display technology by developing a new modified puromycin linker-oligonucleotide. The linker consists of four major characteristics: a "ligation site" for hybridization and ligation of mRNA by T4 RNA ligase, a "puromycin arm" for covalent linkage of the protein, a "polyadenosine site" for a longer puromycin arm and purification of protein fusions (optional) using oligo-dT matrices, and a "reverse transcription site" for the formation of stable cDNA protein fusions whose cDNA is covalently linked to its encoded protein. The linker was synthesized by a novel branching strategy and provided >8-fold higher yield than previous linkers. This linker enables rapid and highly efficient ligation of mRNA (>90%) and synthesis of protein fusions (∼ 50-95%) in various cell-free expression systems. Overall, this new cDNA display method provides 10-200 fold higher end-usage fusions than previous methods and benefits higher diversity libraries crucial for directed protein/peptide evolution. With the increased efficiency, this system was able to reduce the time for one selection cycle to <8 h and is potentially amenable to high-throughput systems. We demonstrate the efficiency of this system for higher throughput selections of various biomolecular interactions and achieved 30-40-fold enrichment per selection cycle. Furthermore, a 4-fold higher enrichment of Flag-tag was obtained from a doped mixture compared with that of the previous cDNA display method. A three-finger protein library was evolved to isolate superior nanomolar range binding candidates for vascular endothelial growth factor. This method is expected to provide a beneficial impact to accelerated drug discovery and proteome analysis.

  14. Effect of irradiation on DNA synthesis, NBN gene expression and chromosomal stability in cells with NBN mutations

    PubMed Central

    Nowak, Jerzy; Świątek-Kościelna, Bogna; Kałużna, Ewelina M.; Rembowska, Jolanta; Dzikiewicz-Krawczyk, Agnieszka; Zawada, Mariola

    2017-01-01

    Introduction The NBN gene product is part of the MRE11/RAD50/NBN complex, which plays an essential role in genomic stability. In the study we try to answer the question what is the effect of irradiation on DNA synthesis, NBN gene expression and chromosomal stability in cells with homozygous c.657-661del, and heterozygous c.657-661del, p.I171V and p.R215W NBN gene mutations. Material and methods Immortalized B-lymphocytes with NBN gene mutations were X-ray irradiated at doses of 1, 2, 5 and 8 Gy/min. Radioresistant DNA synthesis rate and the percentage of cells in phase S was analyzed by 3H thymidine and BrdU incorporation assays. NBN gene expression was quantified by real-time PCR with TaqMan fluorescent probe. Results Increasing the irradiation dose resulted in gradual decrease of 3H thymidine incorporation in all cells, but significantly only in homo- and heterozygous c.657-661del cells (p-values < 0.0001). After irradiation the relative expression of NBN was significantly higher in homozygous c.657-661del and heterozygous p.R215W cells as compared to heterozygous c.657-661del, p.I171V and control cells (p < 0.01). All cells with NBN gene mutations showed significantly higher total number of chromosomal aberrations per metaphase as compared to control cells, with the highest number of aberrations in homozygous c.657-661del cells (p < 0.001). Conclusions The results obtained indicate that homozygous c.657-661del mutation affects cell sensitivity to irradiation. Moreover, homozygous variant is associated with disturbance in the activation of cell cycle checkpoints and with defects in DNA repair. In turn, heterozygous c.657-661del, p.R215W and p.I171V mutations do not substantially alter the radiosensitivity. PMID:28261280

  15. Next Generation Gene Synthesis by targeted retrieval of bead-immobilized, sequence verified DNA clones from a high throughput pyrosequencing device

    PubMed Central

    Matzas, Mark; Stähler, Peer F.; Kefer, Nathalie; Siebelt, Nicole; Boisguérin, Valesca; Leonard, Jack T.; Keller, Andreas; Stähler, Cord F.; Häberle, Pamela; Gharizadeh, Baback; Babrzadeh, Farbod; Church, George

    2012-01-01

    The setup of synthetic biological systems involving millions of bases is still limited by the required high quality of synthetic DNA. Important drivers to further open up the field are the accuracy and scale of chemical DNA synthesis and the downstream processing of longer DNA assembled from short fragments. We developed a new, highly parallel and miniaturized method for the preparation of high quality DNA termed “Megacloning” by using Next Generation Sequencing (NGS) technology in a preparative way. We demonstrate our method by processing both conventional and microarray-derived DNA oligonucleotides in combination with a bead-based high throughput pyrosequencing platform, gaining a 500-fold error reduction for microarray oligonucleotides in a first embodiment. We also show the assembly of synthetic genes as part of the Megacloning process. In principle, up to millions of DNA fragments can be sequenced, characterized and sorted in a single Megacloner run, enabling many new applications. PMID:21113166

  16. Synthesis of trimethoprim metal complexes: Spectral, electrochemical, thermal, DNA-binding and surface morphology studies.

    PubMed

    Demirezen, Nihat; Tarınç, Derya; Polat, Duygu; Ceşme, Mustafa; Gölcü, Ayşegül; Tümer, Mehmet

    2012-08-01

    Complexes of trimethoprim (TMP), with Cu(II), Zn(II), Pt(II), Ru(III) and Fe(III) have been synthesized. Then, these complexes have been characterized by spectroscopic techniques involving UV-vis, IR, mass and (1)H NMR. CHN elemental analysis, electrochemical and thermal behavior of complexes have also been investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV spectroscopy and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and four Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with the reference drug TMP. Almost all types of complexes show excellent activity against all type of bacteria and fungi. The morphology of the CT DNA, TMP, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with CT DNA has been studied by means of differential pulse voltammetry (DPV) at CT DNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism.

  17. Synthesis of trimethoprim metal complexes: Spectral, electrochemical, thermal, DNA-binding and surface morphology studies

    NASA Astrophysics Data System (ADS)

    Demirezen, Nihat; Tarınç, Derya; Polat, Duygu; Çeşme, Mustafa; Gölcü, Ayşegül; Tümer, Mehmet

    Complexes of trimethoprim (TMP), with Cu(II), Zn(II), Pt(II), Ru(III) and Fe(III) have been synthesized. Then, these complexes have been characterized by spectroscopic techniques involving UV-vis, IR, mass and 1H NMR. CHN elemental analysis, electrochemical and thermal behavior of complexes have also been investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV spectroscopy and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and four Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with the reference drug TMP. Almost all types of complexes show excellent activity against all type of bacteria and fungi. The morphology of the CT DNA, TMP, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with CT DNA has been studied by means of differential pulse voltammetry (DPV) at CT DNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism.

  18. Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array

    PubMed Central

    Stranges, P. Benjamin; Palla, Mirkó; Kalachikov, Sergey; Nivala, Jeff; Dorwart, Michael; Trans, Andrew; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Tao, Chuanjuan; Morozova, Irina; Li, Zengmin; Shi, Shundi; Aberra, Aman; Arnold, Cleoma; Yang, Alexander; Aguirre, Anne; Harada, Eric T.; Korenblum, Daniel; Pollard, James; Bhat, Ashwini; Gremyachinskiy, Dmitriy; Bibillo, Arek; Chen, Roger; Davis, Randy; Russo, James J.; Fuller, Carl W.; Roever, Stefan; Ju, Jingyue; Church, George M.

    2016-01-01

    Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin–polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform. PMID:27729524

  19. Identification of the Novel Lincosamide Resistance Gene lnu(E) Truncated by ISEnfa5-cfr-ISEnfa5 Insertion in Streptococcus suis: De Novo Synthesis and Confirmation of Functional Activity in Staphylococcus aureus

    PubMed Central

    Zhao, Qin; Wendlandt, Sarah; Li, Hui; Li, Jun; Wu, Congming; Shen, Jianzhong

    2014-01-01

    The novel lincosamide resistance gene lnu(E), truncated by insertion of an ISEnfa5-cfr-ISEnfa5 segment, was identified in Streptococcus suis. The gene lnu(E) encodes a 173-amino-acid protein with ≤69.4% identity to other lincosamide nucleotidyltransferases. The lnu(E) gene and its promoter region were de novo synthesized, and Staphylococcus aureus RN4220 carrying a shuttle vector with the cloned lnu(E) gene showed a 16-fold increase in the lincomycin MIC. Mass spectrometry experiments demonstrated that Lnu(E) catalyzed the nucleotidylation of lincomycin. PMID:24366733

  20. Mutations that affect phosphorylation of the adenovirus DNA-binding protein alter its ability to enhance its own synthesis.

    PubMed Central

    Morin, N; Delsert, C; Klessig, D F

    1989-01-01

    The multifunctional adenovirus single-strand DNA-binding protein (DBP) is highly phosphorylated. Its phosphorylation sites are located in the amino-terminal domain of the protein, and its DNA- and RNA-binding activity resides in the carboxy-terminal half of the polypeptide. We have substituted cysteine or alanine for up to 10 of these potential phosphorylation sites by using oligonucleotide-directed mutagenesis. Alteration of one or a few of these sites had little effect on the viability of virus containing the mutated DBP. However, when eight or more sites were altered, viral growth decreased significantly. This suggests that the overall phosphorylation state of the protein was more important than whether any particular site was modified. The reduction in growth correlated with both depressed DNA replication and expression of late genes. This reduction was probably the result of lower DBP accumulation in mutant-infected cells. Interestingly, although the stability of the mutated DBP was not affected, DBP synthesis and the level of its mRNA were depressed 5- to 10-fold for the underphosphorylated protein. These results suggest that DBP enhances its own expression and imply that phosphorylation of the DBP may be important for this function. Similarities to several eucaryotic transcriptional activators, which are composed of negatively charged activating domains and separate binding domains, are discussed. Images PMID:2585602

  1. Hibiscus latent Fort Pierce virus in Brazil and synthesis of its biologically active full-length cDNA clone.

    PubMed

    Gao, Ruimin; Niu, Shengniao; Dai, Weifang; Kitajima, Elliot; Wong, Sek-Man

    2016-10-01

    A Brazilian isolate of Hibiscus latent Fort Pierce virus (HLFPV-BR) was firstly found in a hibiscus plant in Limeira, SP, Brazil. RACE PCR was carried out to obtain the full-length sequences of HLFPV-BR which is 6453 nucleotides and has more than 99.15 % of complete genomic RNA nucleotide sequence identity with that of HLFPV Japanese isolate. The genomic structure of HLFPV-BR is similar to other tobamoviruses. It includes a 5' untranslated region (UTR), followed by open reading frames encoding for a 128-kDa protein and a 188-kDa readthrough protein, a 38-kDa movement protein, 18-kDa coat protein, and a 3' UTR. Interestingly, the unique feature of poly(A) tract is also found within its 3'-UTR. Furthermore, from the total RNA extracted from the local lesions of HLFPV-BR-infected Chenopodium quinoa leaves, a biologically active, full-length cDNA clone encompassing the genome of HLFPV-BR was amplified and placed adjacent to a T7 RNA polymerase promoter. The capped in vitro transcripts from the cloned cDNA were infectious when mechanically inoculated into C. quinoa and Nicotiana benthamiana plants. This is the first report of the presence of an isolate of HLFPV in Brazil and the successful synthesis of a biologically active HLFPV-BR full-length cDNA clone.

  2. Gas-phase synthesis of solid state DNA nanoparticles stabilized by l-leucine.

    PubMed

    Raula, Janne; Hanzlíková, Martina; Rahikkala, Antti; Hautala, Juho; Kauppinen, Esko I; Urtti, Arto; Yliperttula, Marjo

    2013-02-28

    Aerosol flow reactor is used to generate solid-state nanoparticles in a one-step process that is based on drying of aerosol droplets in continuous flow. We investigated the applicability of aerosol flow reactor method to prepare solid state DNA nanoparticles. Precursor solutions of plasmid DNA with or without complexing agent (polyethylenimine), coating material (l-leucine) and mannitol (bulking material) were dispersed to nanosized droplets and instantly dried in laminar heat flow. Particle morphology, integrity and stability were studied by scanning electron microscopy. The stability of DNA was studied by gel electrophoresis. Plasmid DNA as such degraded in the aerosol flow process. Complexing agent protected DNA from degradation and coating material enabled production of dispersed, non-aggregated, nanoparticles. The resulting nanoparticles were spherical and their mean diameter ranged from 65 to 125nm. The nanoparticles were structurally stable at room temperature and their DNA content was about 10%. We present herein the proof of principle for the production of dispersed solid state nanoparticles with relevant size and intact plasmid DNA.

  3. DNA-targeting pyrroloquinoline-linked butenone and chalcones: synthesis and biological evaluation.

    PubMed

    Dalla Via, Lisa; Gia, Ornella; Chiarelotto, Gianfranco; Ferlin, Maria Grazia

    2009-07-01

    A series of conjugates of alpha,beta-unsaturated ketone systems, phenyl-butenone and diaryl-propenones (chalcones), with the tricyclic planar pyrroloquinoline nucleus were synthesised and evaluated for their anticancer properties. The aim was to target DNA by butenone and chalcones, and determine the occurrence of interactions with the macromolecule or related functional enzymes. The ability to inhibit cell growth was assayed on three human tumor cell lines, and the capacity to form molecular complexes with DNA was studied by linear flow dichroism (LD). The effect on the activity of the nuclear enzyme DNA topoisomerase II was also investigated. A noticeable cytotoxic effect was observed for all pyrroloquinoline-conjugated compounds 5 and 7a-c, particularly against human melanoma cell line JR8 (IC(50) 1.2-3.3 microM); the unconjugated chalcones (8a-c) and butenone had a lower or no effect at the tested concentrations. LD experiments confirmed the pyrroloquinoline nucleus as an efficacious carrier for intercalative complexation with DNA. The ability of pyrroloquinoline derivatives to intercalate between base pairs appears to inhibit the relaxation of supercoiled DNA by topoisomerase II, while they induce no significant DNA cleavage. Since the concentrations inhibiting the enzyme appear relatively high with respect to cytotoxicity, the effective intercalation could affect the activity of more DNA processing enzymes and these overall nuclear effects may induce cell death.

  4. Synthesis and characterization of azo-guanidine based alcoholic media naked eye DNA sensor

    PubMed Central

    Hashmat, Uzma; Yousaf, Muhammad; Lal, Bhajan; Ullah, Shafiq; Holder, Alvin A.; Badshah, Amin

    2016-01-01

    DNA sensing always has an open meadow of curiosity for biotechnologists and other researchers. Recently, in this field, we have introduced an emerging class of molecules containing azo and guanidine functionalities. In this study, we have synthesized three new compounds (UA1, UA6 and UA7) for potential application in DNA sensing in alcoholic medium. The synthesized materials were characterized by elemental analysis, FTIR, UV-visible, 1H NMR and 13C NMR spectroscopies. Their DNA sensing potential were investigated by UV-visible spectroscopy. The insight of interaction with DNA was further investigated by electrochemical (cyclic voltammetry) and hydrodynamic (viscosity) studies. The results showed that compounds have moderate DNA binding properties, with the binding constants range being 7.2 × 103, 2.4 × 103 and 0.2 × 103 M−1, for UA1, UA6 and UA7, respectively. Upon binding with DNA, there was a change in colour (a blue shift in the λmax value) which was observable with a naked eye. These results indicated the potential of synthesized compounds as DNA sensors with detection limit 1.8, 5.8 and 4.0 ng µl−1 for UA1, UA6 and UA7, respectively. PMID:28018613

  5. Mononuclear metal complexes with ciprofloxacin: Synthesis, characterization and DNA-binding properties.

    PubMed

    Psomas, George

    2008-09-01

    Five novel metal complexes of the quinolone antibacterial agent ciprofloxacin with Mn(2+), Fe(3+), Co(2+), Ni(2+) and MoO(2)(2+) have been prepared and characterized with physicochemical, spectroscopic and electrochemical techniques. In all these complexes, ciprofloxacin acts as a bidentate deprotonated ligand bound to the metal through the pyridone oxygen and one carboxylate oxygen. The central metal in each complex is six-coordinate and a slightly distorted octahedral geometry is proposed. The lowest energy model structures of the Mn(2+), Fe(3+) and MoO(2)(2+) complexes have been determined with molecular modeling calculations. The cyclic voltammograms of the complexes have been recorded in dmso solution and in 1/2 dmso/buffer (containing 150mM NaCl and 15mM trisodium citrate at pH 7.0) solution and the corresponding redox potentials have been estimated. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV and fluorescence spectroscopies and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. Competitive studies with ethidium bromide (EB) have shown that the complexes exhibit the ability to displace the DNA-bound EB indicating that the complexes bind to DNA probably via intercalation in strong competition with EB for the intercalative binding site.

  6. Mouse polyoma virus and adenovirus replication in mouse cells temperature-sensitive in DNA synthesis.

    PubMed

    Sheinin, R; Fabbro, J; Dubsky, M

    1985-01-01

    Mouse adenovirus multiplies, apparently without impediment, in temperature-inactivated ts A1S9, tsC1 and ts2 mouse fibroblasts. Thus, the DNA of mouse adenovirus can replicate in the absence of functional DNA topoisomerase II, a DNA-chain-elongation factor, and a protein required for traverse of the G1/S interface, respectively, encoded in the ts A1S9, tsC1 and ts2 genetic loci. These results are compared with those obtained with polyoma virus.

  7. Synthesis of copper nanoparticles by electrolysis of DNA utilizing copper as sacrificial anode.

    PubMed

    Singh, Dinesh Pratap; Srivastava, Onkar Nath

    2007-06-01

    Copper nanoparticles have been synthesized by anodic oxidation through a simple electrolysis process employing de-oxy ribonucleic acid (DNA) as electrolyte. Platinum was taken as cathode and copper as anode. The applied voltage was 4 V and the electrolysis was performed for duration of 1 h. The copper nanoparticles were prepared in situ from the electron beam irradiation on residues of electrolyte consisting of DNA and copper particles: DNA (Cu) complexes. The size of the nanoparticles ranges between 5-50 nm. A tentative explanation has been given for the formation of copper nanoparticles.

  8. Inhibition of RNA and DNA synthesis in UV-irradiated normal human fibroblasts is correlated with pyrimidine (6-4) pyrimidone photoproduct formation.

    PubMed

    Petit Frère, C; Clingen, P H; Arlett, C F; Green, M H

    1996-07-05

    UV-irradiation of living cells results in an inhibition of RNA and DNA synthesis. The purpose of this study was to determine whether specific photoproducts or the total combined yield of lesions were responsible for these effects. Asynchronously dividing human fibroblasts from normal donors were irradiated with UVC (254 nm), broad spectrum UVB (290-320 + nm, Westinghouse FS20 lamp) or narrow spectrum UVB (310-315 nm, Philips TL01 lamp) at fluences which induce known yields of cyclobutane pyrimidine dimers, pyrimidine (6-4) pyrimidone photoproducts or Dewar isomers. DNA synthesis was approximately 3-4 times more sensitive to both UVC and UVB irradiation than RNA synthesis. The immediate inhibition of RNA and DNA synthesis was correlated with (6-4) rather than overall photoproduct formation suggesting that the (6-4) photoproduct is the mediator of these inhibitory effects. In support of this suggestion we found that photoreactivation of cells cultured from the marsupial, mouse Sminthopsis crassicaudata, resulted in removal of 70% of pyrimidine dimers from the overall genome, but had only a slight effect on the recovery of RNA synthesis.

  9. DNA synthesis during endomitosis is stimulated by insulin via the PI3K/Akt and TOR signaling pathways in the silk gland cells of Bombyx mori.

    PubMed

    Li, Yaofeng; Chen, Xiangyun; Tang, Xiaofang; Zhang, Chundong; Wang, La; Chen, Peng; Pan, Minhui; Lu, Cheng

    2015-03-18

    Silk gland cells undergo multiple endomitotic cell cycles during silkworm larval ontogeny. Our previous study demonstrated that feeding is required for continued endomitosis in the silk gland cells of silkworm larvae. Furthermore, the insulin signaling pathway is closely related to nutritional signals. To investigate whether the insulin signaling pathway is involved in endomitosis in silk gland cells, in this study, we initially analyzed the effects of bovine insulin on DNA synthesis in endomitotic silk gland cells using 5-bromo-2'-deoxyuridine (BrdU) labeling technology, and found that bovine insulin can stimulate DNA synthesis. Insulin signal transduction is mainly mediated via phosphoinositide 3-kinase (PI3K)/Akt, the target of rapamycin (TOR) and the extracellular signal-regulated kinase (ERK) pathways in vertebrates. We ascertained that these three pathways are involved in DNA synthesis in endomitotic silk gland cells using specific inhibitors against each pathway. Moreover, we investigated whether these three pathways are involved in insulin-stimulated DNA synthesis in endomitotic silk gland cells, and found that the PI3K/Akt and TOR pathways, but not the ERK pathway, are involved in this process. These results provide an important theoretical foundation for the further investigations of the mechanism underlying efficient endomitosis in silk gland cells.

  10. Synthesis of dihydromyricetin-manganese (II) complex and interaction with DNA

    NASA Astrophysics Data System (ADS)

    Guo, Qingquan; Yuan, Juan; Zeng, Jinhua; He, Xiangzhu; Li, Daguang

    2012-11-01

    Dihydromyricetin has many physiological functions and its metal complex could have better effects. DNA is very important in biological body, but little attention has been devoted to the relationship between dihydromyricetin-metal complex and the DNA. In this paper, dihydromyricetin-Mn (II) complex has been prepared and characterized using UV-vis absorption spectrophotometry, IR spectroscopy, elemental analysis, and thermal gravimetric analysis (TG-DTA Analysis). The interaction of dihydromyricetin-Mn (II) complex with DNA was investigated using UV-vis spectra, fluorescence measurements and viscosity measurements. The results indicate that the dihydromyricetin-manganese (II) complex can intercalate into the stacked base pairs of DNA with binding constant Kb = 5.64 × 104 M and compete with the strong intercalator ethidium bromide for the intercalative binding sites with Stern-Volmer quenching constant, Ksq = 1.16.

  11. Design, synthesis and biological activity of novel molecules designed to target PARP and DNA.

    PubMed

    Goodfellow, Elliot; Senhaji Mouhri, Zhor; Williams, Christopher; Jean-Claude, Bertrand J

    2017-02-01

    In order to enhance the cytotoxic potential of poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1 or 2 deficient tumours, we designed a series of molecules containing a 1,2,3-triazene moiety tethered to a PARP targeting scaffold. A cell-based selectivity assay involving a BRCA2-deficient Chinese hamster cell line and its corresponding BRCA2 wild type transfect