Science.gov

Sample records for nozawa-style black light

  1. Prisons of light : black holes

    NASA Astrophysics Data System (ADS)

    Ferguson, Kitty

    What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  2. Prisons of Light - Black Holes

    NASA Astrophysics Data System (ADS)

    Ferguson, Kitty

    1998-05-01

    In this jargon-free review of one of the most fascinating topics in modern science, acclaimed science writer Kitty Ferguson examines the discovery of black holes, their nature, and what they can teach us about the mysteries of the universe. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light--Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  3. Prisons of Light - Black Holes

    NASA Astrophysics Data System (ADS)

    Ferguson, Kitty

    1998-02-01

    Prologue; 1. A cosmic case of burnout; 2. Matters of gravity: Newton and Einstein; 3. The capture of light; 4. Tripping the theoretical fantastic; 5. Crossing the bar; 6. Contemplating an enormous nothing; 7. Evidence in the case; 8. Hearts of darkness; 9. The search goes on; 10. Passages into the labyrinth; 11. Black hole legends and far out ideas; Epilogue.

  4. Light, Gravity and Black Holes

    ERIC Educational Resources Information Center

    Falla, David

    2012-01-01

    The nature of light and how it is affected by gravity is discussed. Einstein's prediction of the deflection of light as it passes near the Sun was verified by observations made during the solar eclipse of 1919. Another prediction was that of gravitational redshift, which occurs when light emitted by a star loses energy in the gravitational field…

  5. Light-weight black ceramic insulation

    NASA Technical Reports Server (NTRS)

    Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2003-01-01

    Ultra-high temperature, light-weight, black ceramic insulation having a density ranging from about 0.12 g/cc. to 0.6 g/cc. such as ceramic tile is obtained by pyrolyzing siloxane gels derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes also may contain an effective amount of a mono- or trialkoxy silane to obtain the siloxane gels. The siloxane gels are dried at ambient temperatures and pressures to form siloxane ceramic precursors without significant shrinkage. The siloxane ceramic precursors are subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C., and particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.

  6. Light propagation through black-hole lattices

    NASA Astrophysics Data System (ADS)

    Bentivegna, Eloisa; Korzyński, Mikołaj; Hinder, Ian; Gerlicher, Daniel

    2017-03-01

    The apparent properties of distant objects encode information about the way the light they emit propagates to an observer, and therefore about the curvature of the underlying spacetime. Measuring the relationship between the redshift z and the luminosity distance DL of a standard candle, for example, yields information on the Universe's matter content. In practice, however, in order to decode this information the observer needs to make an assumption about the functional form of the DL(z) relation; in other words, a cosmological model needs to be assumed. In this work, we use numerical-relativity simulations, equipped with a new ray-tracing module, to numerically obtain this relation for a few black-hole-lattice cosmologies and compare it to the well-known Friedmann-Lema{ȋtre-Robertson-Walker case, as well as to other relevant cosmologies and to the Empty-Beam Approximation. We find that the latter provides the best estimate of the luminosity distance and formulate a simple argument to account for this agreement. We also find that a Friedmann-Lema{ȋtre-Robertson-Walker model can reproduce this observable exactly, as long as a time-dependent cosmological constant is included in the fit. Finally, the dependence of these results on the lattice mass-to-spacing ratio μ is discussed: we discover that, unlike the expansion rate, the DL(z) relation in a black-hole lattice does not tend to that measured in the corresponding continuum spacetime as 0μ → .

  7. Black Holes Shed Light on Galaxy Formation

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This videotape is comprised of several segments of animations on black holes and galaxy formation, and several segments of an interview with Dr. John Kormendy. The animation segments are: (1) a super massive black hole, (2) Centarus A active black hole found in a collision, (3) galaxy NGC-4261 (active black hole and jet model), (4) galaxy M-32 (orbits of stars are effected by the gravity of the black hole), (5) galaxy M-37 (motion of stars increases as mass of black hole increases), (6) Birth of active galactic nuclei, (7) the collision of two galaxy leads to merger of the black holes, (8) Centarus A and simulation of the collision of 2 galaxies. There are also several segments of an interview with John Kormendy. In these segments he discusses the two most important aspects of his recent black hole work: (1) the correlations between galaxies speed and the mass of the black holes, and (2) the existence of black holes and galactic formation. He also discusses the importance of the Hubble Space Telescope and the Space Telescope Imaging Spectrograph to the study of black holes. He also shows the methodology of processing images from the spectrograph in his office.

  8. On slow light as a black hole analogue

    NASA Astrophysics Data System (ADS)

    Unruh, W. G.; Schützhold, R.

    2003-07-01

    Although slow light (electromagnetically induced transparency) would seem an ideal medium in which to institute a “dumb hole” (black hole analogue), it suffers from a number of problems. We show that the high phase velocity in the slow light regime ensures that the system cannot be used as an analogue displaying Hawking radiation. Even though an appropriately designed slow-light setup may simulate classical features of black holes—such as horizon, mode mixing, “Bogoliubov” coefficients, etc.—it does not reproduce the related quantum effects.

  9. HUBBLE FINDS A BARE BLACK HOLE POURING OUT LIGHT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has provided a never-before-seen view of a warped disk flooded with a torrent of ultraviolet light from hot gas trapped around a suspected massive black hole. [Right] This composite image of the core of the galaxy was constructed by combining a visible light image taken with Hubble's Wide Field Planetary Camera 2 (WFPC2), with a separate image taken in ultraviolet light with the Faint Object Camera (FOC). While the visible light image shows a dark dust disk, the ultraviolet image (color-coded blue) shows a bright feature along one side of the disk. Because Hubble sees ultraviolet light reflected from only one side of the disk, astronomers conclude the disk must be warped like the brim of a hat. The bright white spot at the image's center is light from the vicinity of the black hole which is illuminating the disk. [Left] A ground-based telescopic view of the core of the elliptical galaxy NGC 6251. The inset box shows Hubble Space Telescope's field of view. The galaxy is 300 million light-years away in the constellation Ursa Minor. Photo Credit: Philippe Crane (European Southern Observatory), and NASA

  10. Black hole perturbation theory in a light cone gauge

    NASA Astrophysics Data System (ADS)

    Preston, Brent

    The metric of a Schwarzschild black hole immersed in a uniform magnetic field is studied using black hole perturbation theory in a light crone coordinate system that penetrates the event horizon and possesses a clear geometrical meaning. The magnetic field, which is distorted due to the presence of the black hole, has strength B which is assumed to be small compared to the curvature of the spacetime which allows the perturbed metric to be calculated to order B 2 only. The coordinates allow for an easy identification of the event horizon and the properties of the perturbed black hole are studied. To interpret this perturbed metric, the advanced coordinates are decomposed into irreducible parts which yields the metric of a perturbed black hole in the limit r >> 2 M . Finally we compare our perturbed solution to an exact solution. We show that our perturbed solution is able to match the exact solution but has the freedom to describe a larger class of physically relevant solutions.

  11. Chandra Discovers Light Echo from the Milky Way's Black Hole

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Like cold case investigators, astronomers have used NASA's Chandra X-ray Observatory to uncover evidence of a powerful outburst from the giant black hole at the Milky Way's center. A light echo was produced when X-ray light generated by gas falling into the Milky Way's supermassive black hole, known as Sagittarius A* (pronounced "A-star"), was reflected off gas clouds near the black hole. While the primary X-rays from the outburst would have reached Earth about 50 years ago, the reflected X-rays took a longer path and arrived in time to be recorded by Chandra. Variability in Chandra Images of Light Echo Variability in Chandra Images of Light Echo "This dramatic event happened before we had satellites in space that could detect it," said Michael Muno of the California Institute of Technology in Pasadena. "So, it's remarkable that we can use Chandra to dig into the past and see this monster black hole's capacity for destruction." Previously, scientists have used Chandra to directly detect smaller and more recent outbursts from the black hole. This latest outburst revealed by the X-ray echo was about 1,000 times brighter and lasted well over 1,000 times longer than any of the recent outbursts observed by Chandra. Theory predicts that an outburst from Sagittarius A* would cause X-ray emission from the clouds to vary in both intensity and shape. Muno and his team found these changes for the first time, thus ruling out other interpretations. The latest results corroborate other independent, but indirect, evidence for light echoes generated by the black hole in the more distant past. Illustrations of Light Echo Illustrations of Light Echo Scientists have long known that Sagittarius A*, with a mass of about 3 million suns, lurked at the center for Milky Way. However, the black hole is incredibly faint at all wavelengths, especially in X-rays. "This faintness implies that stars and gas rarely get close enough to the black hole to be in any danger," said co-author Frederick

  12. GHG PSD Permit: Cheyenne Light, Fuel & Power / Black Hills Power, Inc. – Cheyenne Prairie Generating Station

    EPA Pesticide Factsheets

    This page contains the final PSD permit for the Cheyenne Light, Fuel & Power / Black Hills Power, Inc. Cheyenne Prairie Generating Station, located in Laramie, Wyoming, and operated by Black Hills Service Company.

  13. Scattering of circularly polarized light by a rotating black hole

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Shoom, Andrey A.

    2012-07-01

    We study scattering of polarized light by a rotating (Kerr) black hole of mass M and angular momentum J. In order to keep trace of the polarization dependence of photon trajectories one can use the following dimensionless parameter: ɛ=±(ωM)-1, where ω is the photon frequency and the sign + (-) corresponds to the right (left) circular polarization. We assume that |ɛ|≪1 and use the modified geometric optics approximation developed in [Phys. Rev. D 84, 044026 (2011)]; that is, we include the first order in ɛ polarization-dependent terms into the eikonal equation. These corrections modify late-time behavior of photons. We demonstrate that the photon moves along a null curve, which in the limit ɛ=0 becomes a null geodesic. We focus on the scattering problem for polarized light. Namely, we consider the following problems: (i) How does the photon’s bending angle depend on its polarization? (ii) How does the position of the image of a pointlike source depend on its polarization? (iii) How does the arrival time of photons depend on their polarization? We perform the numerical calculations that illustrate these effects for an extremely rotating black hole and discuss their possible applications.

  14. Black carbon and other light-absorbing aerosols in snow

    NASA Astrophysics Data System (ADS)

    Wang, X.; Doherty, S. J.; Warren, S. G.; Fu, Q.

    2011-12-01

    Black carbon (BC), organic carbon (OC), and mineral dust are the most important light-absorbing aerosols (LAA) in snow. The physical, chemical and optical properties of these aerosols differ greatly; the different spectral dependences of their light-absorption can be used to quantify their concentrations in snow. A field campaign was conducted in January and February of 2010 to measure the LAA in snow across northern China. About 400 snow samples were collected at 46 sites in 6 provinces (Huang et al. 2011). Light absorption by mineral dust is due to iron oxides, so iron was determined by chemical analysis of filters and meltwater. To obtain concentrations of the absorbers, BC, OC, and Fe were assumed to have mass absorption cross-sections at 550 nm of 6.3, 0.3, and 0.9 m2/g respectively, and absorption Ångstrom exponents of 1.1, 6, and 3. The lowest values of all LAA are in the remote northeast, at latitude 51°N on the border of Siberia.Median values in surface snow there are 75 ppb BC, 150 ppb OC, and 45 ppb Fe. Farther south, in the industrial northeast, median values are 1000 ppb BC, 4200 ppb OC, and 500 ppb Fe. The grassland of Inner Mongolia is dominated by OC in soil dust of local origin: 560 ppb BC, 8000 ppb OC, 430 ppb Fe. In the Qilian Mountains at the northern boundary of the Tibetan Plateau the surface snow has 70 ppb BC, 2800 ppb OC, and 550 ppb Fe. The fraction of light absorption due to Fe is ~30% in the Qilian Mountains. Elsewhere BC and OC dominate the absorption, so Fe contributes <10% even though the Fe concentrations are as high as the Qilian values.

  15. Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.

    2015-12-01

    The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in

  16. Increasing visible-light absorption for photocatalysis with black BiOCl.

    PubMed

    Ye, Liqun; Deng, Kejian; Xu, Feng; Tian, Lihong; Peng, Tianyou; Zan, Ling

    2012-01-07

    Black BiOCl with oxygen vacancies was prepared by UV light irradiation with Ar blowing. The as-prepared black BiOCl sample showed 20 times higher visible light photocatalytic activity than white BiOCl for RhB degradation. The trapping experiment showed that the superoxide radical (O(2)(•-)) and holes (h(+)) were the main active species in aqueous solution under visible light irradiation.

  17. Strong enhancement in light absorption by black carbon due to aerosol water uptake

    NASA Astrophysics Data System (ADS)

    Fierce, Laura; Mena, Francisco; Riemer, Nicole; Bond, Tami C.; Bauer, Susanne E.

    2015-04-01

    Black carbon exerts a strong, yet highly uncertain, warming effect on the climate. One source of uncertainty in predicting black carbon's radiative effects is the absorption per black carbon mass. Although models suggest that light absorption is strongly enhanced if black carbon is coated with non-absorbing aerosol material, recent ambient observations find only weak absorption enhancement from aerosol coatings. In this study, we use a particle-resolved aerosol model to evaluate how oversimplified representations of particle composition impact modeled light absorption by black carbon. We show that oversimplifying the representation of particle composition leads to overestimation of modeled absorption enhancement. In order to improve global model representations of BC absorption, we performed a nonparametric regression on particle-reolved model data from a series of simulations. Through this nonparametric analysis we derived a relationship for absorption enhancement as a function of variables that global models already track, the population-averaged composition and the environmental relative humidity. Finally, we show how this nonparametric relationship can be exploited for use in global models to improve predictions of absorption by black carbon. In order to quantify the global-scale impact of water uptake on light absorption by black carbon, we applied the relationship for absorption enhancement to output of the climate model GISS-MATRIX. We find weak absorption enhancement in locations with low relative humidity, but light absorption is strongly enhanced in humid regions. This enhancement in light absorption by particles taking up water strongly impacts black carbon's radiative effects at the global scale, enhancing light absorption by black carbon by 20% relative to dry conditions.

  18. Black City Lights: Baldwin's City of the Just.

    ERIC Educational Resources Information Center

    Hughes, James M.

    1987-01-01

    James Baldwin's special sense of his blackness enables him to combine Walt Whitman's awareness of urban wandering and Henry James' self-conscious cosmopolitanism in his books, particularly "Go Tell It on the Mountain." (BJV)

  19. Webinar Presentation: Black Carbon and Other Light-absorbing Particles in Snow in Central North America and North China

    EPA Pesticide Factsheets

    This presentation, Black Carbon and Other Light-absorbing Particles in Snow in Central North America and North China, was given at the STAR Black Carbon 2016 Webinar Series: Accounting for Impact, Emissions, and Uncertainty held on Nov. 7, 2016.

  20. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    PubMed

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  1. Defective black TiOTiO₂ synthesized via anodization for visible-light photocatalysis.

    PubMed

    Dong, Junye; Han, Jie; Liu, Yangsi; Nakajima, Akira; Matsushita, Sachiko; Wei, Shanghai; Gao, Wei

    2014-02-12

    Defective TiO(2-x) was synthesized via a facile anodization technique. Electron paramagnetic resonance spectra confirmed the presence of oxygen vacancy, which extended the photon-absorbance deeply into the visible-light region. By stripping off the nanotubes on top, a hexagonally dimpled layer of black TiO(2-x) was exposed and exhibited remarkable photocatalytic activity.

  2. Roto-Translational Effects on Deflection of Light and Particle by Moving Kerr Black Hole

    NASA Astrophysics Data System (ADS)

    He, G.; Lin, W.

    2014-02-01

    Velocity effects in first-order Schwarzschild deflection of light and particles have been explored in the previous literature. In this paper, we investigate the roto-translational-motion induced deflection by one moving Kerr black hole with an arbitrary, but constant speed. It is shown that the coupling between the effects of the rotation and the translational motion always exists for both light and particles. The contribution of the roto-translational deflection to the total bending angle is discussed in detail. This ratio takes upper limit for light and it decreases monotonically with increasing translational velocity for a massive particle. For a given translational velocity of black hole, this ratio increases with the particle's velocity. In addition, the post-Newtonian dynamics of the photon and particle is also presented.

  3. J-Black: a stray light coating for optical and infrared systems

    NASA Astrophysics Data System (ADS)

    Waddell, Patrick; Black, David S.

    2016-07-01

    A new stray light coating, called J-Black, has been developed for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). The coating is a layered composition of Nextel-Suede 3101 primers and top coats and silicon carbide grit. J-Black has been applied to large areas of the SOFIA airborne telescope and is currently operating within the open cavity environment of the Boeing 747. Over a series of discrete filter bands, from 0.4 to 21 microns, J-Black optical and infrared reflectivity performance is compared with other available coatings. Measured total reflectance values are less than 2% at the longest wavelengths, including at high incidence angles. Detailed surface structure characteristics are also compared via electron and ion microscopy. Environmental tests applicable for aerospace applications are presented, as well as the detailed steps required to apply the coating.

  4. Novel EUV mask black border suppressing EUV and DUV OoB light reflection

    NASA Astrophysics Data System (ADS)

    Ito, Shin; Kodera, Yutaka; Fukugami, Norihito; Komizo, Toru; Maruyama, Shingo; Watanabe, Genta; Yoshida, Itaru; Kotani, Jun; Konishi, Toshio; Haraguchi, Takashi

    2016-05-01

    EUV lithography is the most promising technology for semiconductor device manufacturing of the 10nm node and beyond. The image border is a pattern free dark area around the die on the photomask serving as transition area between the parts of the mask that is shielded from the exposure light by the Reticle Masking (REMA) blades and the die. When printing a die at dense spacing on an EUV scanner, the reflection from the image border overlaps edges of neighboring dies, affecting CD and contrast in this area. This is related to the fact that EUV absorber stack reflects 1-3% of actinic EUV light. To reduce this effect several types of image border with reduced EUV reflectance (<0.05%) have been proposed; such an image border is referred to as a black border. In particular, an etched multilayer type black border was developed; it was demonstrated that CD impact at the edge of a die is strongly reduced with this type of the black border (BB). However, wafer printing result still showed some CD change in the die influenced by the black border reflection. It was proven that the CD shift was caused by DUV Out of Band (OOB) light from the EUV light source. New types of a multilayer etched BB were evaluated and showed a good potential for DUV light suppression. In this study, a novel BB called `Hybrid Black Border' (HBB) has been developed to eliminate EUV and DUV OOB light reflection by applying optical design technique and special micro-fabrication technique. A new test mask with HBB is fabricated without any degradation of mask quality according to the result of CD performance in the main pattern, defectivity and cleaning durability. The imaging performance for N10 imaging structures is demonstrated on NXE:3300B in collaboration with ASML. This result is compared to the imaging results obtained for a mask with the earlier developed BB, and HBB has achieved ~3x improvement; less than 0.2 nm CD changes are observed in the corners of the die. A CD uniformity budget including

  5. Black and yellow anatase titania formed by (H,N)-doping: strong visible-light absorption and enhanced visible-light photocatalysis.

    PubMed

    Wei, Shunhang; Wu, Rong; Jian, Jikang; Chen, Fengjuan; Sun, Yanfei

    2015-01-28

    Black and yellow anatase TiO2 doped with hydrogen and nitrogen elements annealed under a N2/Ar/air atmosphere are produced. More interestingly, one kind of black TiO2 has excellent performance for degradation of methylene blue under visible-light irradiation but photodegradation of the other is quite limited.

  6. Light's bending angle in the equatorial plane of a Kerr black hole

    SciTech Connect

    Iyer, S. V.; Hansen, E. C.

    2009-12-15

    We present here a detailed derivation of an explicit spin-dependent expression for the bending angle of light as it traverses in the equatorial plane of a spinning black hole. We show that the deflection produced in the presence of the black hole angular momentum explicitly depends on whether the motion of the light ray is in the direction, or opposite to the spin. Compared to the zero-spin Schwarzschild case, the bending angle is greater for direct orbits, and smaller for retrograde orbits, confirming our physical intuition about the loss of left-right symmetry from a lensing perspective. In addition, we show that for higher spins, the effect is more pronounced resulting in tighter winding of direct orbits with respect to the axis of rotation, and a higher degree of unwinding of retrograde orbits. A direct consequence of this effect is a shift in image positions in strong gravitational lensing.

  7. LFN, QPO and fractal dimension of X-ray light curves from black hole binaries

    NASA Astrophysics Data System (ADS)

    Prosvetov, Art; Grebenev, Sergey

    The origin of the low frequency noise (LFN) and quasi-periodic oscillations (QPO) observed in X-ray flux of Galactic black hole binaries is still not recognized in spite of multiple studies and attempts to model this phenomenon. There are known correlations between the QPO frequency, X-ray power density, X-ray flux and spectral state of the system, but there is no model that can do these dependences understandable. For the low frequency (~1 Hz) QPO we still have no even an idea capable to explain their production and don't know even what part of an accretion disc is responsible for them. Here we attempted to measure the fractal dimension of X-ray light curves of several black hole X-ray binaries and to study its correlation with the frequency of quasi periodic oscillations observed in their X-ray light-curves. The fractal dimension is a measure of the space-filling capacity of the light curves' profile. To measure the fractal dimension we used R/S method, which is fast enough and has good reputation in financial analytic and materials sciences. We found that if no QPO were observed in X-ray flux from the particular source, the fractal dimension is equal to the unique value which is independent on the source, its luminosity or its spectral state. On the other hand if QPO were detected in the flux, the fractal dimension deviated from its usual value. Also, we found a clear correlation between the QPO frequency and the fractal dimension of the emission. The relationship between these two parameters is solid but nonlinear. We believe that the analysis of X-ray light curves of black hole binaries using the fractal dimension has a good scientific potential and may provide an addition information on the geometry of accretion flow and fundamental physical parameters of the system.

  8. Black-light continuum generation in a silica-core photonic crystal fiber.

    PubMed

    Sylvestre, T; Ragueh, A R; Lee, M W; Stiller, B; Fanjoux, G; Barviau, B; Mussot, A; Kudlinski, A

    2012-01-15

    We report the observation of a broadband continuum spanning from 350 to 470 nm in the black-light region of the electromagnetic spectrum as a result of picosecond pumping a solid-core silica photonic crystal fiber at 355 nm. This was achieved despite strong absorption and a large normal dispersion of silica glass in the UV. Further investigations reveal that the continuum generation results from the interplay of intermodally phase-matched four-wave mixing and cascaded Raman scattering. We also discuss the main limitations in terms of bandwidth and power due to temporal walk-off, fiber absorption, and the photo darkening effect, and we suggest simple solutions.

  9. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    PubMed Central

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-01-01

    Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models. PMID:26419204

  10. An Artificial Light Source Influences Mating and Oviposition of Black Soldier Flies, Hermetia illucens

    PubMed Central

    Zhang, Jibin; Huang, Ling; He, Jin; Tomberlin, Jeffery K.; Li, Jianhong; Lei, Chaoliang; Sun, Ming; Liu, Ziduo; Yu, Ziniu

    2010-01-01

    Current methods for mass-rearing black soldier flies, Hermetia illucens (L.) (Diptera: Stratiomyidae), in the laboratory are dependent on sunlight. Quartz-iodine lamps and rare earth lamps were examined as artificial light sources for stimulating H. illucens to mate and lay eggs. Sunlight was used as the control. Adults in the quartz-iodine lamp treatment had a mating rate of 61% of those in the sunlight control. No mating occurred when the rare earth lamp was used as a substitute. Egg hatch for the quartz-iodine lamp and sunlight treatments occurred in approximately 4 days, and the hatch rate was similar between these two treatments. Larval and pupal development under these treatments required approximately 18 and 15 days at 28°° C, respectively. Development of methods for mass rearing of H. illucens using artificial light will enable production of this fly throughout the year without investing in greenhouse space or requiring sunlight. PMID:21268697

  11. An artificial light source influences mating and oviposition of black soldier flies, Hermetia illucens.

    PubMed

    Zhang, Jibin; Huang, Ling; He, Jin; Tomberlin, Jeffery K; Li, Jianhong; Lei, Chaoliang; Sun, Ming; Liu, Ziduo; Yu, Ziniu

    2010-01-01

    Current methods for mass-rearing black soldier flies, Hermetia illucens (L.) (Diptera: Stratiomyidae), in the laboratory are dependent on sunlight. Quartz-iodine lamps and rare earth lamps were examined as artificial light sources for stimulating H. illucens to mate and lay eggs. Sunlight was used as the control. Adults in the quartz-iodine lamp treatment had a mating rate of 61% of those in the sunlight control. No mating occurred when the rare earth lamp was used as a substitute. Egg hatch for the quartz-iodine lamp and sunlight treatments occurred in approximately 4 days, and the hatch rate was similar between these two treatments. Larval and pupal development under these treatments required approximately 18 and 15 days at 28°C, respectively. Development of methods for mass rearing of H. illucens using artificial light will enable production of this fly throughout the year without investing in greenhouse space or requiring sunlight.

  12. Enhanced light absorption by mixed source black and brown carbon particles in UK winter.

    PubMed

    Liu, Shang; Aiken, Allison C; Gorkowski, Kyle; Dubey, Manvendra K; Cappa, Christopher D; Williams, Leah R; Herndon, Scott C; Massoli, Paola; Fortner, Edward C; Chhabra, Puneet S; Brooks, William A; Onasch, Timothy B; Jayne, John T; Worsnop, Douglas R; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L; Liu, Dantong; Allan, James D; Lee, James D; Fleming, Zoë L; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S H

    2015-09-30

    Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.

  13. LOOKING ALONG A FUNNEL OF LIGHT FROM A HIDDEN BLACK HOLE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In a single Hubble Space Telescope Imaging Spectrograph (STIS) CCD observation, astronomers have measured the velocities of hundreds of gas blobs caught up in a twin-cone beam of radiation emanating from a supermassive black hole at the core of galaxy NGC 4151. Further observations using STIS's Multi-Anode Microchannel Plate Array (MAMA) detectors reveal hot gas from deep within the throat of the beam, near the vicinity of the black hole, as well as unique details of absorbing clouds along our line of sight to it. Besides revealing fast-moving knots of gas in unprecedented detail, down to a resolution of four light-years (0.05 arc seconds), STIS also simultaneously measured the motions of all of blobs through the shift in the color of their light (Doppler effect) due to their motion toward or away from us. In the standard model for such an active galactic nucleus, a black hole devours gas and dust, and some of the material is converted into energy and radiated into space. The rotation of the 'central engine' also focuses radiation along two powerful and oppositely directed beams. The velocities measured by STIS show for the first time the details of its geometry and motions in the twin beam of particles and radiation coming from an active galactic nucleus: they also reveal some unexpected new puzzles at odds with the model. The inner region of compact bright knots fits the twin-cone model for the behavior of material around supermassive black holes. STIS shows that the material in the knots is moving away from the nucleus. The material lies on the inner surface of the cones rather than filling them. This means the beams illuminate the inside of the cone which has been cleared of material, perhaps by the high speed jets seen in ground-based radio pictures. Using STIS, astronomers can trace the shape and orientation of the cones, and find that the illuminated material is moving at several hundred thousand miles per hour. However, the velocities are reversed for more

  14. The Enhanced Light Absorptance and Device Application of Nanostructured Black Silicon Fabricated by Metal-assisted Chemical Etching

    NASA Astrophysics Data System (ADS)

    Zhong, Hao; Guo, Anran; Guo, Guohui; Li, Wei; Jiang, Yadong

    2016-07-01

    We use metal-assisted chemical etching (MCE) method to fabricate nanostructured black silicon on the surface of C-Si. The Si-PIN photoelectronic detector based on this type of black silicon shows excellent device performance with a responsivity of 0.57 A/W at 1060 nm. Silicon nanocone arrays can be created using MCE treatment. These modified surfaces show higher light absorptance in the near-infrared range (800 to 2500 nm) compared to that of C-Si with polished surfaces, and the variations in the absorption spectra of the nanostructured black silicon with different etching processes are obtained. The maximum light absorptance increases significantly up to 95 % in the wavelength range of 400 to 2500 nm. Our recent novel results clearly indicate that nanostructured black silicon made by MCE has potential application in near-infrared photoelectronic detectors.

  15. Real-time black carbon emission factor measurements from light duty vehicles.

    PubMed

    Forestieri, Sara D; Collier, Sonya; Kuwayama, Toshihiro; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D

    2013-11-19

    Eight light-duty gasoline low emission vehicles (LEV I) were tested on a Chassis dynamometer using the California Unified Cycle (UC) at the Haagen-Smit vehicle test facility at the California Air Resources Board in El Monte, CA during September 2011. The UC includes a cold start phase followed by a hot stabilized running phase. In addition, a light-duty gasoline LEV vehicle and ultralow emission vehicle (ULEV), and a light-duty diesel passenger vehicle and gasoline direct injection (GDI) vehicle were tested on a constant velocity driving cycle. A variety of instruments with response times ≥0.1 Hz were used to characterize how the emissions of the major particulate matter components varied for the LEVs during a typical driving cycle. This study focuses primarily on emissions of black carbon (BC). These measurements allowed for the determination of BC emission factors throughout the driving cycle, providing insights into the temporal variability of BC emission factors during different phases of a typical driving cycle.

  16. Real-time black carbon emission factor measurements from light duty vehicles

    NASA Astrophysics Data System (ADS)

    Forestieri, Sara Danielle

    Eight light-duty gasoline low emission vehicles (LEV I) were tested on a Chassis dynamometer using the California Unified Cycle (UC) at the Haagen-Smit vehicle test facility at the California Air Resources Board in El Monte, CA during September 2011. The UC includes a cold start phase followed by a hot stabilized running phase. In addition, a light-duty gasoline LEV vehicle and ultra-low emission vehicle (ULEV), and a light-duty diesel passenger vehicle and gasoline direct injection (GDI) vehicle were tested on a constant velocity driving cycle. A variety of instruments with response times ≥ 0.1 Hz were used to characterize how the emissions of the major PM components varied for the LEVs during a typical driving cycle. This study focuses primarily on emissions of black carbon (BC). These measurements allowed for the determination of BC emission factors throughout the driving cycle, providing insights into the temporal variability of BC emission factors during different phases of a typical driving cycle.

  17. A Near Infrared Light Triggered Hydrogenated Black TiO2 for Cancer Photothermal Therapy.

    PubMed

    Ren, Wenzhi; Yan, Yong; Zeng, Leyong; Shi, Zhenzhi; Gong, An; Schaaf, Peter; Wang, Dong; Zhao, Jinshun; Zou, Baobo; Yu, Hongsheng; Chen, Ge; Brown, Eric Michael Bratsolias; Wu, Aiguo

    2015-07-15

    White TiO2 nanoparticles (NPs) have been widely used for cancer photodynamic therapy based on their ultraviolet light-triggered properties. To date, biomedical applications using white TiO2 NPs have been limited, since ultraviolet light is a well-known mutagen and shallow penetration. This work is the first report about hydrogenated black TiO2 (H-TiO2 ) NPs with near infrared absorption explored as photothermal agent for cancer photothermal therapy to circumvent the obstacle of ultraviolet light excitation. Here, it is shown that photothermal effect of H-TiO2 NPs can be attributed to their dramatically enhanced nonradiative recombination. After polyethylene glycol (PEG) coating, H-TiO2 -PEG NPs exhibit high photothermal conversion efficiency of 40.8%, and stable size distribution in serum solution. The toxicity and cancer therapy effect of H-TiO2 -PEG NPs are relative systemically evaluated in vitro and in vivo. The findings herein demonstrate that infrared-irradiated H-TiO2 -PEG NPs exhibit low toxicity, high efficiency as a photothermal agent for cancer therapy, and are promising for further biomedical applications.

  18. Black carbon and other light-absorbing impurities in the Andes of Northern Chile

    NASA Astrophysics Data System (ADS)

    Rowe, P. M.; Cordero, R.; Warren, S. G.; Pankow, A.; Jorquera, J.; Schrempf, M.; Doherty, S. J.; Cabellero, M.; Carrasco, J. F.; Neshyba, S.

    2015-12-01

    Black carbon (BC) and other light-absorbing impurities in snow absorb solar radiation and thus have the potential to accelerate glacial retreat and snowmelt. In Chile, glaciers and seasonal snow are important sources of water for irrigation and domestic uses. In July 2015 (Austral winter) we sampled snow in the western Andes in a north-south transect of Chile from 18 S to 34 S. Most of the sampled snow had fallen during a single synoptic event, during 11-13 July. The snow was melted and passed through 0.4 micrometer nuclepore filters. Preliminary estimates indicate that (1) the ratio of BC to dust in snow increases going south from Northern to Central Chile, and (2) in snow sampled during the two weeks following the snowstorm, the impurities were concentrated in the upper 5 cm of snow, indicating that the surface layer became polluted over time by dry deposition.

  19. Estimating particulate black carbon concentrations using two offline light absorption methods applied to four types of filter media

    NASA Astrophysics Data System (ADS)

    Davy, Pamela M.; Tremper, Anja H.; Nicolosi, Eleonora M. G.; Quincey, Paul; Fuller, Gary W.

    2017-03-01

    Atmospheric particulate black carbon has been linked to adverse health outcomes. Additional black carbon measurements would aid a better understanding of population exposure in epidemiological studies as well as the success, or otherwise, of relevant abatement technologies and policies. Two light absorption measurement methods of particles collected on filters have been applied to four different types of filters to provide estimations of particulate black carbon concentrations. The ratio of transmittance (lnI0/I) to reflectance (lnR0/R) varied by filter type and ranged from close to 0.5 (as expected from simple theory) to 1.35 between the four filter types tested. The relationship between light absorption and black carbon, measured by the thermal EC(TOT) method, was nonlinear and differed between filter type and measurement method. This is particularly relevant to epidemiological studies that use light absorption as an exposure metric. An extensive archive of filters was used to derive loading factors and mass extinction coefficients for each filter type. Particulate black carbon time series were then calculated at locations where such measurements were not previously available. When applied to two roads in London, black carbon concentrations were found to have increased between 2011 and 2013, by 0.3 (CI: -0.1, 0.5) and 0.4 (CI: 0.1, 0.9) μg m-3 year-1, in contrast to the expectation from exhaust abatement policies. New opportunities using archived or bespoke filter collections for studies on the health effects of black carbon and the efficacy of abatement strategies are created.

  20. Kenneth and Mamie Clark Revisited: Racial Identification and Racial Preference in Dark-Skinned and Light-Skinned Black Children.

    ERIC Educational Resources Information Center

    Farrell, Walter C., Jr.; Olson, James L.

    1983-01-01

    Studies whether there are any differences in the racial identification or the racial preferences (positive and negative) of contemporary dark-skinned and light-skinned Black children, and contrasts findings with the Clarks' racial identification and preference study of the early 1940s. (CMG)

  1. Using peel fluorescence in black light rooms to identify navel oranges with shorter storage life and poor rind quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this project is to minimize postharvest decay losses of fresh citrus fruits. Among the approaches recently examined was peel fluorescence under ultraviolet light. In addition to its usual application to identify fruit with developing decay lesions (“blister” or “clear” rot) in black...

  2. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    SciTech Connect

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.

  3. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    DOE PAGES

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; ...

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less

  4. THE HARD X-RAY SPECTRUM OF NGC 1365: SCATTERED LIGHT, NOT BLACK HOLE SPIN

    SciTech Connect

    Miller, L.; Turner, T. J.

    2013-08-10

    Active galactic nuclei (AGNs) show excess X-ray emission above 10 keV compared with extrapolation of spectra from lower energies. Risaliti et al. have recently attempted to model the hard X-ray excess in the type 1.8 AGN NGC 1365, concluding that the hard excess most likely arises from Compton-scattered reflection of X-rays from an inner accretion disk close to the black hole. Their analysis disfavored a model in which the hard excess arises from a high column density of circumnuclear gas partially covering a primary X-ray source, despite such components being required in the NGC 1365 data below 10 keV. Using a Monte Carlo radiative transfer approach, we demonstrate that this conclusion is invalidated by (1) use of slab absorption models, which have unrealistic transmission spectra for partial covering gas, (2) neglect of the effect of Compton scattering on transmitted spectra, and (3) inadequate modeling of the spectrum of scattered X-rays. The scattered spectrum is geometry-dependent and, for high global covering factors, may dominate above 10 keV. We further show that, in models of circumnuclear gas, the suppression of the observed hard X-ray flux by reprocessing may be no larger than required by the ''light bending'' model invoked for inner disk reflection, and the expected emission line strengths lie within the observed range. We conclude that the time-invariant ''red wing'' in AGN X-ray spectra is probably caused by continuum transmitted through and scattered from circumnuclear gas, not by highly redshifted line emission, and that measurement of black hole spin is not possible.

  5. Light Curves from an MHD Simulation of a Black Hole Accretion Disk

    NASA Astrophysics Data System (ADS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Hawley, John F.

    2006-11-01

    We use a relativistic ray-tracing code to calculate the light curves observed from a global, general relativistic, magnetohydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the ``thermal dominant'' state. The simulated power spectrum is characterized by a power law of index Γ~3 and total rms fractional variance of <~2% above 10 Hz. For each emission model, we find that the variability amplitude should increase with increasing inclination angle. On the basis of a newly developed formalism for quantifying the significance of quasi-periodic oscillations (QPOs) in simulation data, we find that these simulations are able to identify any such features with (rms/mean) amplitudes >~1% near the orbital frequency at the innermost stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2:3 at a 99.9% confidence limit, but they are not generic features, because at any given time they are seen only from certain observer directions. In addition, we present detailed analysis of the azimuthal structure of the accretion disk and the evolution of density perturbations in the inner disk. These ``hot-spot'' structures appear to be roughly self-similar over a range of disk radii, with a single characteristic size δφ=25deg and δr/r=0.3, and typical lifetimes Tl~0.3Torb.

  6. Massive black holes and light-element nucleosynthesis in a baryonic universe

    NASA Technical Reports Server (NTRS)

    Gnedin, Nickolay Y.; Ostriker, Jeremiah P.; Rees, Martin J.

    1995-01-01

    We reexamine the model proposed by Gnedin & Ostriker (1992) in which Jeans mass black holes (M(sub BH) approximately = 10(exp 6) solar mass) form shortly after decoupling. There is no nonbaryonic dark matter in this model, but we examine the possibility that Omega(sub b) is considerably larger than given by normal nucleosynthesis. Here we allow for the fact that much of the high baryon-to-photon ratio material will collapse leaving the universe of remaining material with light-element abundances more in accord with the residual baryonic density (approximately = 10(exp -2)) than with Omega(sub 0) and the initial baryonic density (approximately = 10(exp -1)). We find that no reasonable model can be made with random-phase density fluctuations, if the power on scales smaller than 10(exp 6) solar mass is as large as expected. However, phase-correlated models of the type that might occur in connection with topological singularities can be made with Omega(sub b) h(exp 2) = 0.013 +/- 0.001, 0.15 approximately less than Omega(sub 0) approximately less than 0.4, which are either flat (Omega(sub lambda) = 1 - Omega(sub 0)) or open (Omega(sub lambda) = 0) and which satisfy all the observational constraints which we apply, including the large baryon-to-total mass ratio found in the X-ray clusters. The remnant baryon density is thus close to that obtained in the standard picture (Omega(sub b) h(exp 2) = 0.0125 +/- 0.0025; Walker et al. 1991). The spectral index implied for fluctuations in the baryonic isocurvature scenario, -1 less than m less than 0, is in the range expected by other arguments based on large-scale structure and microwave fluctuation constraints. The dark matter in this picture is in the form of massive black holes. Accretion onto them at early epochs releases high-energy photons which significantly heat and reionize the universe. But photodissociation does not materially change light-element abundances. A typical model gives bar-y approximately = 1 x 10(exp -5

  7. Light absorption enhancement of black carbon from urban haze in Northern China winter.

    PubMed

    Chen, Bing; Bai, Zhe; Cui, Xinjuan; Chen, Jianmin; Andersson, August; Gustafsson, Örjan

    2017-02-01

    Atmospheric black carbon (BC) is an important pollutant for both air quality and Earth's energy balance. Estimates of BC climate forcing remain highly uncertain, e.g., due to the mixing with non-absorbing components. Non-absorbing aerosols create a coating on BC and may thereby act as a lens which may enhance the light absorption. However, this absorption enhancement is poorly constrained. To this end a two-step solvent dissolution protocol was employed to remove both organic and inorganic coatings, and then investigate their effects on BC light absorption. Samples were collected at a severely polluted urban area, Jinan, in the North China Plain (NCP) during February 2014. The BC mass absorption cross-section (MAC) was measured for the aerosol samples before and after the solvent-decoating treatment, and the enhancement of MAC (EMAC) from the coating effect was defined as the ratio. A distinct diurnal pattern for the enhancement was observed, with EMAC 1.3 ± 0.3 (1 S.D.) in the morning, increasing to 2.2 ± 1.0 in the afternoon, after that dropping to 1.5 ± 0.8 in the evening-night. The BC absorption enhancement primarily was associated with urban-scale photochemical production of nitrate and sulfate aerosols. In addition to that, regional-scale haze plume with increasing sulfate levels strengthened the absorption enhancement. These observations offer direct evidence for an increased absorption enhancement of BC due to severe air pollution in China.

  8. Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development

    SciTech Connect

    Jacobson, Arne; Bond, Tami C.; Lam, Nicholoas L.; Hultman, Nathan

    2013-04-15

    Replacing inefficient kerosene lighting with electric lighting or other clean alternatives can rapidly achieve development and energy access goals, save money and reduce climate warming. Many of the 250 million households that lack reliable access to electricity rely on inefficient and dangerous simple wick lamps and other kerosene-fueled light sources, using 4 to 25 billion liters of kerosene annually to meet basic lighting needs. Kerosene costs can be a significant household expense and subsidies are expensive. New information on kerosene lamp emissions reveals that their climate impacts are substantial. Eliminating current annual black carbon emissions would provide a climate benefit equivalent to 5 gigatons of carbon dioxide reductions over the next 20 years. Robust and low-cost technologies for supplanting simple wick and other kerosene-fueled lamps exist and are easily distributed and scalable. Improving household lighting offers a low-cost opportunity to improve development, cool the climate and reduce costs.

  9. The Technical and Performance Characteristics of a Low-Cost, Simply Constructed, Black Light Moth Trap

    PubMed Central

    White, Peter J. T.; Glover, Katharine; Stewart, Joel; Rice, Amanda

    2016-01-01

    The universal mercury vapor black light trap is an effective device used for collecting moth specimens in a wide variety of habitats; yet, they can present challenges for researchers. The mercury vapor trap is often powered by a heavy automotive battery making it difficult to conduct extensive surveys in remote regions. The mercury vapor trap also carries a considerable financial cost per trap unit, making trapping challenging with low research budgets. Here, we describe the development and trapping properties of a lighter, simply constructed, and less expensive trap. The LED funnel trap consists of a funnel, soda bottles with plastic vanes, and is powered by rechargeable 9-V batteries. Two strips of low-wavelength LEDs are used as attractants. We tested the trapping parameters of this trap design compared to a standard mercury vapor trap over 10 trap nights in a suburban woodlot in the summer of 2015. The mercury vapor trap caught significantly more moth individuals than the LED trap (average of 78 vs 40 moths per trap night; P < 0.05), and significantly more species than the LED trap (23 vs 15 per trap night; P < 0.05); the mercury vapor trap caught a total of 104 macromoth species over the duration of the study, compared to a total of 87 by the LED trap. Despite the lower yields, the low cost of the LED trap (<$30 ea.) makes it superior to the mercury vapor trap in cost-acquisition per moth species and per moth individual trapped. The LED trap may be a viable alternative to the standard mercury vapor trap, facilitating insect trapping in more diverse settings. PMID:26936923

  10. The Technical and Performance Characteristics of a Low-Cost, Simply Constructed, Black Light Moth Trap.

    PubMed

    White, Peter J T; Glover, Katharine; Stewart, Joel; Rice, Amanda

    2016-01-01

    The universal mercury vapor black light trap is an effective device used for collecting moth specimens in a wide variety of habitats; yet, they can present challenges for researchers. The mercury vapor trap is often powered by a heavy automotive battery making it difficult to conduct extensive surveys in remote regions. The mercury vapor trap also carries a considerable financial cost per trap unit, making trapping challenging with low research budgets. Here, we describe the development and trapping properties of a lighter, simply constructed, and less expensive trap. The LED funnel trap consists of a funnel, soda bottles with plastic vanes, and is powered by rechargeable 9-V batteries. Two strips of low-wavelength LEDs are used as attractants. We tested the trapping parameters of this trap design compared to a standard mercury vapor trap over 10 trap nights in a suburban woodlot in the summer of 2015. The mercury vapor trap caught significantly more moth individuals than the LED trap (average of 78 vs 40 moths per trap night; P < 0.05), and significantly more species than the LED trap (23 vs 15 per trap night; P < 0.05); the mercury vapor trap caught a total of 104 macromoth species over the duration of the study, compared to a total of 87 by the LED trap. Despite the lower yields, the low cost of the LED trap (<$30 ea.) makes it superior to the mercury vapor trap in cost-acquisition per moth species and per moth individual trapped. The LED trap may be a viable alternative to the standard mercury vapor trap, facilitating insect trapping in more diverse settings.

  11. Microlensing of Sub-parsec Massive Binary Black Holes in Lensed QSOs: Light Curves and Size-Wavelength Relation

    NASA Astrophysics Data System (ADS)

    Yan, Chang-Shuo; Lu, Youjun; Yu, Qingjuan; Mao, Shude; Wambsganss, Joachim

    2014-04-01

    Sub-parsec binary massive black holes (BBHs) have long been thought to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circumbinary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circumbinary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii of the emission region at different wavelengths from mock light curves and find that the obtained half-light radius versus wavelength relations of BBH QSO systems can be much flatter than those of single MBH QSO systems at a wavelength range determined by the BBH parameters, such as the total mass, mass ratio, separation, accretion rates, etc. The difference is primarily due to the existence of the gap. Such unique features on the light curves and half-light radius-wavelength relations of BBH QSO systems can be used to select and probe sub-parsec BBHs in a large number of lensed QSOs to be discovered by current and future surveys, including the Panoramic Survey Telescope and Rapid Response System, the Large Synoptic Survey telescope, and Euclid.

  12. Microlensing of sub-parsec massive binary black holes in lensed QSOs: Light curves and size-wavelength relation

    SciTech Connect

    Yan, Chang-Shuo; Lu, Youjun; Mao, Shude; Yu, Qingjuan; Wambsganss, Joachim E-mail: luyj@nao.cas.cn

    2014-04-01

    Sub-parsec binary massive black holes (BBHs) have long been thought to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circumbinary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circumbinary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii of the emission region at different wavelengths from mock light curves and find that the obtained half-light radius versus wavelength relations of BBH QSO systems can be much flatter than those of single MBH QSO systems at a wavelength range determined by the BBH parameters, such as the total mass, mass ratio, separation, accretion rates, etc. The difference is primarily due to the existence of the gap. Such unique features on the light curves and half-light radius-wavelength relations of BBH QSO systems can be used to select and probe sub-parsec BBHs in a large number of lensed QSOs to be discovered by current and future surveys, including the Panoramic Survey Telescope and Rapid Response System, the Large Synoptic Survey telescope, and Euclid.

  13. The influence of light, stream gradient, and iron on Didymosphenia geminata bloom development in the Black Hills, South Dakota

    USGS Publications Warehouse

    James, Daniel A.; Mosel, Kyle; Chipps, Steven R.

    2014-01-01

    The aquatic nuisance species Didymosphenia geminata was first documented in Rapid Creek of South Dakota’s Black Hills during 2002. Since then, blooms have occurred primarily in a 39-km section of Rapid Creek while blooms were rarely observed in other Black Hills streams. In this study, we evaluated factors related to the presence and development of visible colonies of D. geminata in four streams of the Black Hills. At the watershed scale, stream gradient was negatively associated with the occurrence of D. geminata whereas stream width was positively related to D. geminata presence. At the stream scale, D. geminata coverage was inversely related to canopy coverage and iron concentration. At the local scale, shading by bridges virtually eliminated growth of D. geminata colonies under bridges. At all three scales, proxy measures of light such as stream width, canopy coverage, and bridge shading revealed that light availability was an important factor influencing the presence and coverage of D. geminata colonies. In general, streams that had relatively wide stream reaches (mean = 9.9 m), shallow gradients (mean = 0.22%), and little canopy cover (mean = 13%) were associated with D. geminata blooms. In addition, iron concentrations in streams with D. geminata colonies were lower than in streams without blooms.

  14. Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination

    NASA Astrophysics Data System (ADS)

    Zheng, Buxiang; Wang, Wenjun; Jiang, Gedong; Mei, Xuesong

    2016-06-01

    A hybrid method consisting of ultrafast laser-assisted texturing and chemical fluorination treatment was applied for efficiently enhancing the surface broadband antireflection to fabricate black titanium alloy surface with ultra-light-trapping micro-nanostructure. Based on the theoretical analysis of surface antireflective principle of micro-nanostructures and fluoride film, the ultra-light-trapping micro-nanostructures have been processed using a picosecond pulsed ultrafast laser on titanium alloy surfaces. Then fluorination treatment has been performed by using fluoroalkyl silane solution. According to X-ray diffraction phase analysis of the surface compositions and measurement of the surface reflectance using spectrophotometer, the broadband antireflective properties of titanium alloy surface with micro-nano structural characteristics were investigated before and after fluorination treatment. The results show that the surface morphology of micro-nanostructures processed by picosecond laser has significant effects on the antireflection of light waves to reduce the surface reflectance, which can be further reduced using chemical fluorination treatment. The high antireflection of over 98 % in a broad spectral range from ultraviolet to infrared on the surface of metal material has been achieved for the surface structures, and the broadband antireflective black metal surfaces with an extremely low reflectance of ultra-light-trapping structures have been obtained in the wavelength range from ultraviolet-visible to near-infrared, middle-wave infrared. The average reflectance of microgroove groups structured surface reaches as low as 2.43 % over a broad wavelength range from 200 to 2600 nm. It indicates that the hybrid method comprising of picosecond laser texturing and chemical fluorination can effectively induce the broadband antireflective black metal surface. This method has a potential application for fabricating antireflective surface used to improve the

  15. Shining Light on Quantum Gravity with Pulsar–Black hole Binaries

    NASA Astrophysics Data System (ADS)

    Estes, John; Kavic, Michael; Lippert, Matthew; Simonetti, John H.

    2017-03-01

    Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar–black hole (PSR–BH) binaries provide ideal astrophysical systems for detecting the effects of quantum gravity. With the success of aLIGO and the advent of instruments like SKA and eLISA, the prospects for the discovery of such PSR–BH binaries are very promising. We argue that PSR–BH binaries can serve as ready-made testing grounds for proposed resolutions to the black hole information paradox. We propose using timing signals from a pulsar beam passing through the region near a black hole event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a black hole lead to an increase in the measured root mean square deviation of the arrival times of pulsar pulses traveling near the horizon. This allows for a clear observational test of the nonviolent nonlocality proposal for black hole information escape. For a series of pulses traversing the near-horizon region, this model predicts an rms in pulse arrival times of ∼ 30 μ {{s}} for a 3{M}ȯ black hole, ∼ 0.3 {ms} for a 30{M}ȯ black hole, and ∼ 40 {{s}} for Sgr A*. The current precision of pulse time-of-arrival measurements is sufficient to discern these rms fluctuations. This work is intended to motivate observational searches for PSR–BH systems as a means of testing models of quantum gravity.

  16. The Astrophysical Signatures of Black Holes: The Horizon, The ISCO, The Ergosphere and The Light Circle

    NASA Astrophysics Data System (ADS)

    Abramowicz, Marek A.

    Three advanced instruments planned for a near future ( LOFT, GRAVITY, THE EVENT HORIZON TELESCOPE) provide unprecedented angular and time resolutions, which allow to probe regions in the immediate vicinity of black holes. We may soon be able to search for the signatures of the super-strong gravity that is characteristic to black holes: the event horizon, the ergosphere, the innermost stable circular orbit (ISCO), and the photon circle. This review discusses a few fundamental problems concerning these theoretical concepts.

  17. Colours in black and white: the depiction of lightness and brightness in achromatic engravings before the invention of photography.

    PubMed

    Zavagno, Daniele; Massironi, Manfredo

    2006-01-01

    What is it like to see the world in black and white? In the pioneer days of cinema, when movies displayed grey worlds, was it true that no 'colours' were actually seen? Did every object seen in those projections appear grey in the same way? The answer is obviously no--people in those glorious days were seeing a world full of light, shadows, and objects in which colours were expressed in terms of lightness. But the marvels of grey worlds have not always been so richly displayed. Before the invention of photography, the depiction of scenes in black-and-white had to face some technical and perceptual challenges. We have studied the technical and perceptual constraints that XV-XVIII century engravers had to face in order to translate actual colours into shades of grey. An indeterminacy principle is considered, according to which artists had to prefer the representation of some object or scene features over others (for example brightness over lightness). The reasons for this lay between the kind of grey scale technically available and the kind of information used in the construction of 3-D scenes. With the invention of photography, photomechanical reproductions, and new printing solutions, artists had at their disposal a continuous grey scale that greatly reduces the constraints of the indeterminacy principle.

  18. N -body modelling of globular clusters: masses, mass-to-light ratios and intermediate-mass black holes

    NASA Astrophysics Data System (ADS)

    Baumgardt, H.

    2017-01-01

    We have determined the masses and mass-to-light ratios of 50 Galactic globular clusters by comparing their velocity dispersion and surface brightness profiles against a large grid of 900 N-body simulations of star clusters of varying initial concentration, size and central black hole mass fraction. Our models follow the evolution of the clusters under the combined effects of stellar evolution and two-body relaxation allowing us to take the effects of mass segregation and energy equipartition between stars self-consistently into account. For a subset of 16 well-observed clusters, we also derive their kinematic distances. We find an average mass-to-light ratio of Galactic globular clusters of =1.98 ± 0.03, which agrees very well with the expected M/L ratio if the initial mass function (IMF) of the clusters was a standard Kroupa or Chabrier mass function. We do not find evidence for a decrease in the average mass-to-light ratio with metallicity. The surface brightness and velocity dispersion profiles of most globular clusters are incompatible with the presence of intermediate-mass black holes (IMBHs) with more than a few thousand M⊙ in them. The only clear exception is ω Cen, where the velocity dispersion profile provides strong evidence for the presence of a ˜40 000 M⊙ IMBH in the centre of the cluster.

  19. Patterns of monoclonal immunoglobulins and serum free light chains are significantly different in black compared to white monoclonal gammopathy of undetermined significance (MGUS) patients.

    PubMed

    Weiss, Brendan M; Minter, Alex; Abadie, Jude; Howard, Robin; Ascencao, Joao; Schechter, Geraldine P; Kuehl, Michael; Landgren, Ola

    2011-06-01

    Monoclonal gammopathy of undetermined significance (MGUS), the precursor to multiple myeloma, is more common in blacks than whites. The serum free light chain (sFLC) assay is an important prognostic test in MGUS, but no study has evaluated sFLC levels and ratios in black MGUS patients. One-hundred and twenty-five black MGUS patients at two urban centers were compared to the white population of the Mayo Clinic. The median age for blacks was 73 years [41-94] and 75% were male. The M-protein isotype in blacks was 81% IgG, 13% IgA, 2% IgM, and 4% biclonal compared to 70%, 12%, 16%, and 2%, respectively, in whites, (P < 0.0005). The median M-protein concentration for blacks was 0.44 gm/dL (trace-2.33) compared to 1.2 gm/dl in whites. An abnormal sFLC ratio was present in 45% of black compared to 33% of white (P = 0.01) patients. Using the Mayo Clinic risk model, black patients had a significantly lower proportion of higher risk MGUS compared to whites: low 43%, low-intermediate 45%, high-intermediate 10%, and high 2% (P = 0.014). Black patients with MGUS have significantly different laboratory findings compared to whites. The biologic basis for these disparities and their effect on prognostic assessment is unknown. Prognostic models based on these biomarkers should be used cautiously in nonwhite populations.

  20. The light up and early evolution of high redshift Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  1. THE UNBEARABLE BEINGNESS OF LIGHT — Dressingand Undressing Photonsin Black Hole Spacetimes

    NASA Astrophysics Data System (ADS)

    Hollowood, Timothy J.; Shore, Graham M.

    2012-10-01

    Gravitational tidal forces acting on the virtual e+e- cloud surrounding a photon endow spacetime with a nontrivial refractive index. This has remarkable properties unique to gravitational theories including superluminal low-frequency propagation, in apparent violation of causality, and amplification of the renormalized photon field, in apparent violation of unitarity. Using the geometry of null congruences and the Penrose limit, we illustrate these phenomena and their resolution by tracing the history of a photon as it falls into the near-singularity region of a black hole.

  2. Testing the nature of the supermassive black hole candidate in SgrA* with light curves and images of hot spots

    SciTech Connect

    Li, Zilong; Kong, Lingyao; Bambi, Cosimo

    2014-06-01

    General relativity makes clear predictions about the spacetime geometry around black holes. In the near future, new facilities will have the capability to explore the metric around SgrA*, the supermassive black hole candidate at the center of our Galaxy, and to open a new window to test the Kerr black hole hypothesis. In this paper, we compute light curves and images associated with compact emission regions (hot spots) orbiting around Kerr and non-Kerr black holes. We study how the analysis of the properties of the radiation emitted by a hot spot can be used to test the Kerr nature of SgrA*. We find that the sole observation of the hot spot light curve can at most constrain a combination of the black hole spin and of possible deviations from the Kerr solution. This happens because the same orbital frequency around a Kerr black hole can be found for a non-Kerr object with a different spin parameter. Second order corrections in the light curve due to the background geometry are typically too small to be identified. While the observation of the hot spot centroid track can potentially bound possible deviations from the Kerr solution, that is out of reach for the near future for the Very Large Telescope Interferometer instrument GRAVITY. The Kerr black hole hypothesis could really be tested in the case of the discovery of a radio pulsar in a compact orbit around SgrA*. Radio observations of such a pulsar would provide precise estimates of the mass and the spin of SgrA*, and the combination of these measurements (probing the weak field) with the hot spot light curve information (probing the strong field) may constrain/find possible deviations from the Kerr solution with quite good precision.

  3. The secondary maxima in black hole X-ray nova light curves - Clues toward a complete picture

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Livio, Mario; Gehrels, Neil

    1993-01-01

    We study the secondary maxima observed commonly in the X-ray/optical light curves of black hole X-ray novae and show that they can play an important role in our understanding of the X-ray nova phenomenon. We discuss the observational characteristics of the secondary maxima and possible mechanisms to produce them. We propose a complete scenario for black hole X-ray nova events. The main outburst is caused by a disk instability. The second maximum is caused by X-ray evaporation of the matter near the inner Lagrangian (L1) region when the disk becomes optically thin. The third maximum (or the final minioutburst) is due to a mass transfer instability caused by hard X-ray heating of the subphotospheric layers of the secondary during the outburst. We predict that the newly discovered X-ray nova GRO J0422 + 32 may develop a final minioutburst in early 1993 and that its binary orbital period is less than 7 hr.

  4. Black silicon solar thin-film microcells integrating top nanocone structures for broadband and omnidirectional light-trapping

    NASA Astrophysics Data System (ADS)

    Xu, Zhida; Yao, Yuan; Brueckner, Eric P.; Li, Lanfang; Jiang, Jing; Nuzzo, Ralph G.; Logan Liu, Gang

    2014-08-01

    Recently developed classes of monocrystalline silicon solar microcells (μ-cell) can be assembled into modules with characteristics (i.e., mechanically flexible forms, compact concentrator designs, and high-voltage outputs) that would be impossible to achieve using conventional, wafer-based approaches. In this paper, we describe a highly dense, uniform and non-periodic nanocone forest structure of black silicon (bSi) created on optically-thin (30 μm) μ-cells for broadband and omnidirectional light-trapping with a lithography-free and high-throughput plasma texturizing process. With optimized plasma etching conditions and a silicon nitride passivation layer, black silicon μ-cells, when embedded in a polymer waveguiding layer, display dramatic increases of as much as 65.7% in short circuit current, as compared to a bare silicon device. The conversion efficiency increases from 8.1% to 11.5% with a small drop in open circuit voltage and fill factor.

  5. Chemically modified amino porphyrin/TiO2 for the degradation of Acid Black 1 under day light illumination.

    PubMed

    Krishnakumar, Balu; Balakrishna, Avula; Arranja, Cláudia T; Dias, Carlos M F; Sobral, Abilio J F N

    2017-04-05

    In this paper, for the first time, chemically modified 5,10,15,20-meso-tetra-(para-amino)-phenyl-porphyrin/TiO2 (TPAPP/TiO2) was prepared and used for the degradation of an azo dye Acid Black 1 (AB 1) under direct sunlight. Initially, TiO2 was prepared by sol-gel method. Before making a TPAPP/TiO2 composite, the surface modification of TiO2 was carried out with glycidoxypropyltrimethoxy silane (GPTMS) which acts as a coupling agent. This is an epoxy terminated silane and could easily bond to the amino group of TPAPP through epoxy cleavage. The formation of TPAPP/TiO2 was confirmed by different characterization techniques such as FT-IR, XRD, SEM and DRS. The photocatalytic activity of TiO2 was highly influenced by TPAPP. A mechanism was proposed for AB 1 degradation by TPAPP/TiO2 under sun light.

  6. Chemically modified amino porphyrin/TiO2 for the degradation of Acid Black 1 under day light illumination

    NASA Astrophysics Data System (ADS)

    Krishnakumar, Balu; Balakrishna, Avula; Arranja, Cláudia T.; Dias, Carlos M. F.; Sobral, Abilio J. F. N.

    2017-04-01

    In this paper, for the first time, chemically modified 5,10,15,20-meso-tetra-(para-amino)-phenyl-porphyrin/TiO2 (TPAPP/TiO2) was prepared and used for the degradation of an azo dye Acid Black 1 (AB 1) under direct sunlight. Initially, TiO2 was prepared by sol-gel method. Before making a TPAPP/TiO2 composite, the surface modification of TiO2 was carried out with glycidoxypropyltrimethoxy silane (GPTMS) which acts as a coupling agent. This is an epoxy terminated silane and could easily bond to the amino group of TPAPP through epoxy cleavage. The formation of TPAPP/TiO2 was confirmed by different characterization techniques such as FT-IR, XRD, SEM and DRS. The photocatalytic activity of TiO2 was highly influenced by TPAPP. A mechanism was proposed for AB 1 degradation by TPAPP/TiO2 under sun light.

  7. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    NASA Astrophysics Data System (ADS)

    Olson, Michael R.; Victoria Garcia, Mercedes; Robinson, Michael A.; Van Rooy, Paul; Dietenberger, Mark A.; Bergin, Michael; Schauer, James Jay

    2015-07-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings. Filter-based absorption measurements were corrected and compared to photoacoustic absorption results. BC absorption was segregated from the total light extinction to estimate the BrC absorption from individual sources. Results were compared to elemental carbon (EC)/organic carbon (OC) concentrations to determine composition's impact on light absorption. Multiple-wavelength absorption coefficients, Angstrom exponent (6.9 to <1.0), mass absorption cross section (MAC), and Delta C (97 µg m-3 to ~0 µg m-3) were highly variable. Sources such as incense and peat emissions showed ultraviolet wavelength (370 nm) BrC absorption over 175 and 80 times (respectively) the BC absorption but only 21 and 11 times (respectively) at 520 nm wavelength. The bulk EC MACEC, λ (average at 520 nm = 9.0 ± 3.7 m2 g-1; with OC fraction <0.85 = ~7.5 m2 g-1) and the BrC OC mass absorption cross sections (MACBrC,OC,λ) were calculated; at 370 nm ultraviolet wavelengths; the MACBrC,OC,λ ranged from 0.8 m2 g-1 to 2.29 m2 g-1 (lowest peat, highest kerosene), while at 520 nm wavelength MACBrC,OC,λ ranged from 0.07 m2 g-1 to 0.37 m2 g-1 (lowest peat, highest kerosene/incense mixture). These MAC results show that OC content can be an important contributor to light absorption when present in significant quantities (>0.9 OC/TC), source emissions have variable absorption spectra, and nonbiomass combustion sources can be significant contributors to BrC.

  8. Correlative light/electron microscopy for the investigation of microbial mats from Black Sea Cold Seeps.

    PubMed

    Wrede, Christoph; Heller, Christina; Reitner, Joachim; Hoppert, Michael

    2008-05-01

    In several fields of cell biology, correlative microscopy is applied to compare the structure of objects at high resolution under the electron microscope with low resolution light microscopy images of the same sample. It is, however, difficult to prepare samples and marker systems that are applicable for both microscopic techniques for the same specimen at the same time. In our studies, we used microbial mats from Cold Seep communities for a simple and rapid correlative microscopy method. The mats consist of bacterial and archaeal microorganisms, coupling reverse methanogenesis to the reduction of sulfate. The reverse methanogenic pathway also generates carbonates that precipitate inside the mat and may be the main reason for the formation of a microbial reef. The mat shows highly differentiated aggregates of various organisms, tightly interconnected by extracellular polysaccharides. In order to investigate the role of EPS as adhesive mucilage for the biofilm and as a precipitation matrix for carbonate minerals, samples were embedded in a hydrophilic resin (Lowicryl K4 M). Sections were suitable for light as well as electron microscopy in combination with lectins, either labeled with a fluorescent marker or with colloidal gold. This allows lectin mapping at low resolution for light microscopy in direct comparison with a highly resolved electron microscopic image.

  9. Household Light Makes Global Heat: High Black Carbon Emissions From Kerosene Wick Lamps

    PubMed Central

    Lam, Nicholas L.; Chen, Yanju; Weyant, Cheryl; Venkataraman, Chandra; Sadavarte, Pankaj; Johnson, Michael A.; Smith, Kirk R.; Brem, Benjamin T.; Arineitwe, Joseph; Ellis, Justin E.; Bond, Tami C.

    2012-01-01

    Kerosene-fueled wick lamps used in millions of developing-country households are a significant but overlooked source of black carbon (BC) emissions. We present new laboratory and field measurements showing that 7–9% of kerosene consumed by widely used simple wick lamps is converted to carbonaceous particulate matter that is nearly pure BC. These high emission factors increase previous BC emission estimates from kerosene by 20-fold, to 270 Gg/year (90% uncertainty bounds: 110, 590 Gg/year). Aerosol climate forcing on atmosphere and snow from this source is estimated at 22 mW/m2 (8, 48 mW/m2), or 7% of BC forcing by all other energy-related sources. Kerosene lamps have affordable alternatives that pose few clear adoption barriers and would provide immediate benefit to user welfare. The net effect on climate is definitively positive forcing as co-emitted organic carbon is low. No other major BC source has such readily available alternatives, definitive climate forcing effects, and co-benefits. Replacement of kerosene-fueled wick lamps deserves strong consideration for programs that target short-lived climate forcers. PMID:23163320

  10. Shining a light in the black box of orphan drug pricing

    PubMed Central

    2014-01-01

    Background The pricing mechanism of orphan drugs appears arbitrary and has been referred to as a “black box”. Therefore, the aim of this study is to investigate how drug- and disease-specific variables relate to orphan drug prices. Additionally, we aim to explore if certain country-specific pricing and reimbursement policies affect the price level of orphan drugs. Methods Annual treatment costs per indication per patient were calculated for 59 orphan drugs with a publicly available price in Belgium, the Netherlands, Czech Republic, France, Italy and the United Kingdom. A multiple linear regression model was built with 14 drug- and disease-specific variables. A Mann-Whitney U test was used to explore whether there is a correlation between annual treatment costs of orphan drugs across countries with different pricing and reimbursement policies. Results Repurposed orphan drugs, orally administered orphan drugs or orphan drugs for which an alternative treatment is available are associated with lower annual treatment costs. Orphan drugs with multiple orphan indications, for chronic treatments or for which an improvement in overall survival or quality-of-life has been demonstrated, are associated with higher annual treatment costs. No association was found between annual treatments cost of orphan drugs across countries and the different pricing and reimbursement systems. Conclusions This study has shown that prices of orphan drugs are influenced by factors such as the availability of an alternative drug treatment, repurposing, etc. Current debate about the affordability of orphan drugs highlights the need for more transparency in orphan drug price setting. PMID:24767472

  11. Light Absorption of Black Carbon Aerosol and Its Radiative Forcing Effect in an Megacity Atmosphere in South China

    NASA Astrophysics Data System (ADS)

    Lan, Zijuan

    2013-04-01

    The effects of black carbon (BC) aerosol on climate warming have been the study focus in the recent decade, the regional effect of BC light absorption is more significant. The reduction of BC is now expected to have significant near-term climate change mitigation. Mass absorption efficient (MAE) was one of the important optical properties of BC aerosol for evaluating the BC on its radiative forcing effect, while BC mixing state is one main influencing factor for MAE. Models have estimated that BC radiative forcing can be increased by a factor of ~2 for internally versus externally mixed BC. On the other hand, some organic carbon had been found to significantly absorb light at UV or shorter wavelengths in the most recent studies, with strong spectral dependence. But large uncertainties still remain in determining the positive forcing effect of BC on global clime change due to the technical limitations. In this study, advanced instrumentation (a three-wavelength photoacoustic soot spectrometer (PASS-3) and a single particle soot photometer (SP2)) were used to measure black carbon aerosol and analyze its optical properties in a megacity in South China, Shenzhen, during the summer of 2011. It is in the southeast corner of the Pearl River Delta (PRD) region, neighboring Hong Kong to the south. During the campaign, the average BC mass concentration was 4.0±3.1 μg m-3, accounting for about 11% of PM2.5 mass concentration, which mainly came from fossil fuel combustion rather than biomass burning. The MAE of BC ranged from 5.0 to 8.5 m2 g-1, with an average value of 6.5±0.5 m2 g-1. The percentage of internally mixed BC was averagely 24.3±7.9% and positively correlated with the MAE. It is estimated that the internally mixed BC amplified MAE by about 7% during the campaign, suggesting that the BC absorption enhancement due to internal mixing in the real atmosphere is relatively low in comparison with the predictions by theoretical models, which stands in accordance with

  12. Real-time black carbon emission factors of light-duty vehicles tested on a chassis dynamometer

    NASA Astrophysics Data System (ADS)

    Forestieri, S. D.; Cappa, C. D.; Kuwayama, T.; Collier, S.; Zhang, Q.; Kleeman, M. J.

    2012-12-01

    Eight light-duty gasoline vehicles were tested on a Chassis dynamometer using the California Unified Driving Cycle (UDC) at the Haagen-Smit vehicle test facility at the California Air Resources Board (CARB) in El Monte, CA during September 2011. In addition, one light-duty gasoline vehicle, one ultra low-emission vehicle, one diesel passenger vehicle, and one gasoline direct injection vehicle were tested on a constant velocity driving cycle. Vehicle exhaust was diluted through CARB's CVS tunnel and a secondary dilution system in order to examine particulate matter (PM) emissions at atmospherically relevant concentrations (5-30 μg-m3). A variety of real-time instrumentation was used to characterize how the major PM components vary during a typical driving cycle, which includes a cold start phase followed by a hot stabilized running phase. Aerosol absorption coefficients were obtained at 532 nm and 405 nm with a time resolution of 2 seconds from a photo-acoustic spectrometer. These absorption coefficients were then converted to black carbon (BC) concentrations via a mass absorption coefficient. Non-refractory organic and inorganic PM and CO2 concentrations were quantified with a time resolution of 10 seconds using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Real-time BC and CO2 concentrations allowed for the determination of BC emission factors (EFs), providing insights into the variability of BC EFs during different phases of a typical driving cycle and aiding in the modeling BC emissions.

  13. Evaluation of solid particle number and black carbon for very low particulate matter emissions standards in light-duty vehicles.

    PubMed

    Chang, M-C Oliver; Shields, J Erin

    2017-01-03

    To reliably measure at the low particulate matter (PM) levels needed to meet California's Low Emission Vehicle (LEV III) 3- and 1-mg/mile particulate matter (PM) standards, various approaches other than gravimetric measurement have been suggested for testing purposes. In this work, a feasibility study of solid particle number (SPN, d50 = 23 nm) and black carbon (BC) as alternatives to gravimetric PM mass was conducted, based on the relationship of these two metrics to gravimetric PM mass, as well as the variability of each of these metrics. More than 150 Federal Test Procedure (FTP-75) or Supplemental Federal Test Procedure (US06) tests were conducted on 46 light-duty vehicles, including port-fuel-injected and direct-injected gasoline vehicles, as well as several light-duty diesel vehicles equipped with diesel particle filters (LDD/DPF). For FTP tests, emission variability of gravimetric PM mass was found to be slightly less than that of either SPN or BC, whereas the opposite was observed for US06 tests. Emission variability of PM mass for LDD/DPF was higher than that of both SPN and BC, primarily because of higher PM mass measurement uncertainties (background and precision) near or below 0.1 mg/mile. While strong correlations were observed from both SPN and BC to PM mass, the slopes are dependent on engine technologies and driving cycles, and the proportionality between the metrics can vary over the course of the test. Replacement of the LEV III PM mass emission standard with one other measurement metric may imperil the effectiveness of emission reduction, as a correlation-based relationship may evolve over future technologies for meeting stringent greenhouse standards.

  14. Light Absorbing Impurities in Snow in the Western US: Partitioning Radiative Impacts from Mineral Dust and Black Carbon

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.

    2013-12-01

    Melt of annual mountain snow cover dominates water resources in the western United States. Recent studies in the Upper Colorado River Basin have shown that radiative forcing by light absorbing impurities (LAIs) in mountain snow cover has accelerated snowmelt, impacted runoff timing and magnitude, and reduced annual flow. However, these studies have assumed that LAIs are primarily mineral dust, and have not quantified the radiative contribution by carbonaceous particles from bio and fossil fuel (industrial and urban) sources. Here we quantify both dust and black carbon (BC) content and assess the unique BC radiative forcing contribution in this dust dominated impurity regime using a suite of advanced field, lab, and modeling techniques. Daily measurements of surface spectral albedo and optical grain radius were collected with a field spectrometer over the 2013 spring melt season in Senator Beck Basin Study Area in the San Juan Mountains, CO, Southwestern US. Coincident snow samples were collected daily and processed for; (1) dust and BC content (2) impurity particle size, and (3) impurity optical properties. Measured snow and impurity properties were then used to drive the Snow, Ice, and Aerosol Radiation (SNICAR) model. Partitioning the unique radiative contribution from each constituents is achieved through unique model runs for clean snow, dust only, and BC only.

  15. Synthesis of black ultrathin BiOCl nanosheets for efficient photocatalytic H2 production under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Ye, Liqun; Jin, Xiaoli; Leng, Yumin; Su, Yurong; Xie, Haiquan; Liu, Chao

    2015-10-01

    The thickness of 2D BiOCl nanosheets along [001] direction control the internal electric fields intensity. In order to enhance the photocatalytic properties of BiOCl, decreasing the thickness is the best choice. In this paper, black ultrathin BiOCl nanosheet (BU-BiOCl) with expanded spacing of the (001) crystal plane and oxygen vacancy was synthesized in high viscosity and alcohol group concentration glycerol system. It was characterized by X-ray diffraction patterns (XRD), X-ray photoelectron spectroscopy (XPS), X-ray photoelectron scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), electron spin resonance (ESR), UV-vis diffuse reflectance spectra (DRS) and photoluminescence (PL) spectra. The experimental characterization and theoretical calculation results also indicated that expanded facets spacing and oxygen vacancy of as-synthesized BU-BiOCl enhanced separation efficiency of photoinduced carriers and photon absorption efficiency. Therefore, BU-BiOCl showed higher activity than bulk BiOCl for H2 production under visible light irradiation.

  16. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea.

    PubMed

    Marschall, Evelyn; Jogler, Mareike; Hessge, Uta; Overmann, Jörg

    2010-05-01

    The Black Sea chemocline represents the largest extant habitat of anoxygenic phototrophic bacteria and harbours a monospecific population of Chlorobium phylotype BS-1. High-sensitivity measurements of underwater irradiance and sulfide revealed that the optical properties of the overlying water column were similar across the Black Sea basin, whereas the vertical profiles of sulfide varied strongly between sampling sites and caused a dome-shaped three-dimensional distribution of the green sulfur bacteria. In the centres of the western and eastern basins the population of BS-1 reached upward to depths of 80 and 95 m, respectively, but were detected only at 145 m depth close to the shelf. Using highly concentrated chemocline samples from the centres of the western and eastern basins, the cells were found to be capable of anoxygenic photosynthesis under in situ light conditions and exhibited a photosynthesis-irradiance curve similar to low-light-adapted laboratory cultures of Chlorobium BS-1. Application of a highly specific RT-qPCR method which targets the internal transcribed spacer (ITS) region of the rrn operon of BS-1 demonstrated that only cells at the central station are physiologically active in contrast to those at the Black Sea periphery. Based on the detection of ITS-DNA sequences in the flocculent surface layer of deep-sea sediments across the Black Sea, the population of BS-1 has occupied the major part of the basin for the last decade. The continued presence of intact but non-growing BS-1 cells at the periphery of the Black Sea indicates that the cells can survive long-distant transport and exhibit unusually low maintenance energy requirements. According to laboratory measurements, Chlorobium BS-1 has a maintenance energy requirement of approximately 1.6-4.9.10(-15) kJ cell(-1) day(-1) which is the lowest value determined for any bacterial culture so far. Chlorobium BS-1 thus is particularly well adapted to survival under the extreme low-light conditions

  17. A reliable light scattering computing for black carbon-containing particles: Hybrid discrete dipole approximation (h-DDA)

    NASA Astrophysics Data System (ADS)

    Moteki, N.

    2015-12-01

    Black carbon (BC) is a light-absorbing carbonaceous aerosol emitted from combustions of fossil fuels and biomasses and is estimated as the second most important contributor to positive climate forcing after the carbon dioxide. In the atmosphere, the fractal aggregate of BC-spherules may be mixed with non-absorbing (or weakly absorbing) compounds that forms morphologically complex "BC-containing particle". A reliable scattering code for BC-containing particles is necessary for predicting mass absorption efficiency of BC and designing/evaluating optical techniques for estimating microphysical properties (i.e., size distribution, mixing state, shape, refractive index) of BC-containing particles. The computational methods that derived from the volume-integral form of the Maxwell equation, such as discrete dipole approximation (DDA), are method of choice for morphologically complex object like BC-containing particles. In ordinary DDA, the entire particle volume is approximated as a collection of tiny cubical dipoles (with side length d) placed on a 3D cubic lattice. For several model BC-containing particles, the comparisons with numerically exact T-matrix method reveals that the ordinary DDA suffered from persistent positive systematic error (up to +30%) in absorption even under d <<λ. The cause of this DDA error is identified to be the shape error in BC-spherules. To eliminate the shape error in BC-spherules, we propose a new DDA methodology which may be called hybrid DDA (h-DDA): each primary BC sphere is assumed as a spherical dipole, while remaining particle volume of coating material is approximated by a collection of tiny cubical dipoles on a 3D cubic lattice. Positive absorption bias up to +30% in ordinary DDA is suppressed to within 3% in h-DDA. In h-DDA code, an efficient FFT-based algorithm for solving the matrix equation has been implemented, by utilizing the multilevel block-Toeplitz property of the submatrix corresponding to inter-dipole interaction within

  18. Quantum mechanics as a classical theory-application to the interaction of light with an extremely diluted gas: redshifts and black matter in astrophysics.

    NASA Astrophysics Data System (ADS)

    Moret-Bailly, J.

    In the study of experiments of laser spectroscopy, there appears a convergence of the methods of quantum electrodynamics and classical optics: for instance stochastic electrodynamics used for the study of "squeezed states" is common to both theories, and the quantum coherent states are almost classical states. The author shows that this convergence allows to explain the paradoxes of quantum mechanics. The interaction of ultrashort laser pulses with ordinary matter is equivalent to the interaction of incoherent light with extremely dilute gases. Thus, the interaction of light from stars with cosmic gas produces a redshift similar to the Doppler redshift. In a very low pressure gas, the absorption of incoherent light disappears completely, so that the "black matter" could be simply H2 and its products of decomposition by high-frequency radiation.

  19. Light or heavy supermassive black hole seeds: the role of internal rotation in the fate of supermassive stars

    NASA Astrophysics Data System (ADS)

    Fiacconi, Davide; Rossi, Elena M.

    2017-01-01

    Supermassive black holes are a key ingredient of galaxy evolution. However, their origin is still highly debated. In one of the leading formation scenarios, a black hole of ˜100 M⊙ results from the collapse of the inner core of a supermassive star (≳104-5 M⊙), created by the rapid accumulation (≳0.1 M⊙ yr-1) of pristine gas at the centre of newly formed galaxies at z ˜ 15. The subsequent evolution is still speculative: the remaining gas in the supermassive star can either directly plunge into the nascent black hole or part of it can form a central accretion disc, whose luminosity sustains a surrounding, massive, and nearly hydrostatic envelope (a system called a `quasi-star'). To address this point, we consider the effect of rotation on a quasi-star, as angular momentum is inevitably transported towards the galactic nucleus by the accumulating gas. Using a model for the internal redistribution of angular momentum that qualitatively matches results from simulations of rotating convective stellar envelopes, we show that quasi-stars with an envelope mass greater than a few 105 M_{⊙} × (black hole mass/100 M_{⊙})^{0.82} have highly sub-Keplerian gas motion in their core, preventing gas circularization outside the black hole's horizon. Less massive quasi-stars could form but last for only ≲104 yr before the accretion luminosity unbinds the envelope, suppressing the black hole growth. We speculate that this might eventually lead to a dual black hole seed population: (i) massive (>104 M⊙) seeds formed in the most massive (>108 M⊙) and rare haloes; (ii) lighter (˜102 M⊙) seeds to be found in less massive and therefore more common haloes.

  20. Light

    NASA Astrophysics Data System (ADS)

    Vernon, C. G.

    2016-09-01

    Preface; 1. Historical; 2. Waves and wave-motion; 3. The behaviour of ripples; 4. The behaviour of light; 5. Refraction through glass blocks and prisms; 6. The imprinting of curvatures; 7. Simple mathematical treatment; 8. More advanced mathematical treatment; 9. The velocity of light; 10. The spectrum and colour; 11. Geometrical optics; 12. The eye and optical instruments; 13. Sources of light; 14. Interference, diffraction and polarisation; 15. Suggestions for class experiments; Index.

  1. Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance.

    PubMed

    Shen, Liyan; Xing, Zipeng; Zou, Jinlong; Li, Zhenzi; Wu, Xiaoyan; Zhang, Yuchi; Zhu, Qi; Yang, Shilin; Zhou, Wei

    2017-02-06

    Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption, and UV-visible diffuse reflectance spectroscopy, respectively. The results show that special laminated heterojunctions are formed between black TiO2 nanobelts and g-C3N4 nanosheets, which favor the separation of photogenerated electron-hole pairs. Furthermore, the presence of Ti(3+) and g-C3N4 greatly enhance the absorption of visible light. The resultant b-TiO2/g-C3N4 materials exhibit higher photocatalytic activity than that of g-C3N4, TiO2, b-TiO2 and TiO2/g-C3N4 for degradation of methyl orange (95%) and hydrogen evolution (555.8 μmol h(-1 )g(-1)) under visible light irradiation. The apparent reaction rate constant (k) of b-TiO2/g-C3N4 is ~9 times higher than that of pristine TiO2. Therefore, the high-efficient laminated heterojunction composites will have potential applications in fields of environment and energy.

  2. Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance

    PubMed Central

    Shen, Liyan; Xing, Zipeng; Zou, Jinlong; Li, Zhenzi; Wu, Xiaoyan; Zhang, Yuchi; Zhu, Qi; Yang, Shilin; Zhou, Wei

    2017-01-01

    Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption, and UV-visible diffuse reflectance spectroscopy, respectively. The results show that special laminated heterojunctions are formed between black TiO2 nanobelts and g-C3N4 nanosheets, which favor the separation of photogenerated electron-hole pairs. Furthermore, the presence of Ti3+ and g-C3N4 greatly enhance the absorption of visible light. The resultant b-TiO2/g-C3N4 materials exhibit higher photocatalytic activity than that of g-C3N4, TiO2, b-TiO2 and TiO2/g-C3N4 for degradation of methyl orange (95%) and hydrogen evolution (555.8 μmol h−1 g−1) under visible light irradiation. The apparent reaction rate constant (k) of b-TiO2/g-C3N4 is ~9 times higher than that of pristine TiO2. Therefore, the high-efficient laminated heterojunction composites will have potential applications in fields of environment and energy. PMID:28165021

  3. Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance

    NASA Astrophysics Data System (ADS)

    Shen, Liyan; Xing, Zipeng; Zou, Jinlong; Li, Zhenzi; Wu, Xiaoyan; Zhang, Yuchi; Zhu, Qi; Yang, Shilin; Zhou, Wei

    2017-02-01

    Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption, and UV-visible diffuse reflectance spectroscopy, respectively. The results show that special laminated heterojunctions are formed between black TiO2 nanobelts and g-C3N4 nanosheets, which favor the separation of photogenerated electron-hole pairs. Furthermore, the presence of Ti3+ and g-C3N4 greatly enhance the absorption of visible light. The resultant b-TiO2/g-C3N4 materials exhibit higher photocatalytic activity than that of g-C3N4, TiO2, b-TiO2 and TiO2/g-C3N4 for degradation of methyl orange (95%) and hydrogen evolution (555.8 μmol h‑1 g‑1) under visible light irradiation. The apparent reaction rate constant (k) of b-TiO2/g-C3N4 is ~9 times higher than that of pristine TiO2. Therefore, the high-efficient laminated heterojunction composites will have potential applications in fields of environment and energy.

  4. The Discovery of Periodic Modulations in the Optical Spectra of Galaxies, Possibly due to Ultrarapid Light Bursts from Their Massive Central Black Holes

    NASA Astrophysics Data System (ADS)

    Borra, Ermanno F.

    2013-09-01

    A Fourier transform analysis of 2.5 million spectra in the SDSS survey was carried out to detect periodic modulations contained in the intensity versus frequency spectrum. A statistically significant signal was found for 223 galaxies, while the spectra of 0.9 million galaxies were observed. A plot of the periods as a function of redshift clearly shows that the effect is real without any doubt, because the modulations are quantized at two base periods that increase with redshift in two very tight parallel linear relations. We suggest that this result could be caused by light bursts separated by times on the order of 10-13 s, but other causes may be possible. We investigate the hypothesis that the modulation is generated by the Fourier transform of spectral lines, but conclude that this hypothesis is not valid. Although the light burst suggestion implies absurdly high temperatures, it is supported by the fact that the Crab pulsar also has extremely short unresolved pulses (<0.5 ns) that imply similarly high temperatures. Furthermore, the radio spectrum of the Crab pulsar also has spectral bands similar to those that have been detected. Finally, decreasing the signal-to-noise threshold of detection gives results consistent with beamed signals having a small beam divergence, as expected from non-thermal sources that send a jet, like those seen in pulsars. Considering that galaxy centers contain massive black holes, exotic black hole physics may be responsible for the spectral modulation. However, at this stage, this idea is only a hypothesis to be confirmed with further work.

  5. THE DISCOVERY OF PERIODIC MODULATIONS IN THE OPTICAL SPECTRA OF GALAXIES, POSSIBLY DUE TO ULTRARAPID LIGHT BURSTS FROM THEIR MASSIVE CENTRAL BLACK HOLES

    SciTech Connect

    Borra, Ermanno F.

    2013-09-10

    A Fourier transform analysis of 2.5 million spectra in the SDSS survey was carried out to detect periodic modulations contained in the intensity versus frequency spectrum. A statistically significant signal was found for 223 galaxies, while the spectra of 0.9 million galaxies were observed. A plot of the periods as a function of redshift clearly shows that the effect is real without any doubt, because the modulations are quantized at two base periods that increase with redshift in two very tight parallel linear relations. We suggest that this result could be caused by light bursts separated by times on the order of 10{sup -13} s, but other causes may be possible. We investigate the hypothesis that the modulation is generated by the Fourier transform of spectral lines, but conclude that this hypothesis is not valid. Although the light burst suggestion implies absurdly high temperatures, it is supported by the fact that the Crab pulsar also has extremely short unresolved pulses (<0.5 ns) that imply similarly high temperatures. Furthermore, the radio spectrum of the Crab pulsar also has spectral bands similar to those that have been detected. Finally, decreasing the signal-to-noise threshold of detection gives results consistent with beamed signals having a small beam divergence, as expected from non-thermal sources that send a jet, like those seen in pulsars. Considering that galaxy centers contain massive black holes, exotic black hole physics may be responsible for the spectral modulation. However, at this stage, this idea is only a hypothesis to be confirmed with further work.

  6. Theoretical study of stimulated and spontaneous Hawking effects from an acoustic black hole in a hydrodynamically flowing fluid of light

    NASA Astrophysics Data System (ADS)

    Grišins, Pjotrs; Nguyen, Hai Son; Bloch, Jacqueline; Amo, Alberto; Carusotto, Iacopo

    2016-10-01

    We propose an experiment to detect and characterize the analog Hawking radiation in an analog model of gravity consisting of a flowing exciton-polariton condensate. Under a suitably designed coherent pump configuration, the condensate features an acoustic event horizon for sound waves that at the semiclassical level is equivalent to an astrophysical black-hole horizon. We show that a continuous-wave pump-and-probe spectroscopy experiment allows to measure the analog Hawking temperature from the dependence of the stimulated Hawking effect on the pump-probe detuning. We anticipate the appearance of an emergent resonant cavity for sound waves between the pump beam and the horizon, which results in marked oscillations on top of an overall exponential frequency dependence. We finally analyze the spatial correlation function of density fluctuations and identify the hallmark features of the correlated pairs of Bogoliubov excitations created by the spontaneous Hawking process, as well as novel signatures characterizing the emergent cavity.

  7. Highly robust light driven ZnO catalyst for the degradation of eriochrome black T at room temperature

    NASA Astrophysics Data System (ADS)

    Kaur, Japinder; Singhal, Sonal

    2015-07-01

    In present work, highly efficient photocatalytic ZnO nanoparticles have been successfully synthesized by a facile method involving thermal decomposition of oxalate precursor. The synthesized nanoparticles were rigorously characterized via analytical techniques such as XRD, HR-TEM, SAED, STEM, EDS, UV-vis spectroscopy and BET analysis. The synthesized nanoparticles were utilized for the eradication of eriochrome black T dye. Complete degradation of dye was observed in 90 min. The most favorable results were observed at catalyst loading 1 g/L in acidic region. The presence of hydroxyl radicals in the photocatalytic reaction mixture was also established. Degradation of effluent from a textile industry was also investigated, and ZnO was found to be a promising candidate for their degradation.

  8. Illuminating black holes

    NASA Astrophysics Data System (ADS)

    Barr, Ian A.; Bull, Anne; O'Brien, Eileen; Drillsma-Milgrom, Katy A.; Milgrom, Lionel R.

    2016-07-01

    Two-dimensional shadows formed by illuminating vortices are shown to be visually analogous to the gravitational action of black holes on light and surrounding matter. They could be useful teaching aids demonstrating some of the consequences of general relativity.

  9. Light-absorbing properties of ambient black carbon and brown carbon from fossil fuel and biomass burning sources

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Wang, J. M.; Jeong, C.-H.; Lee, A. K. Y.; Willis, M. D.; Jaroudi, E.; Zimmerman, N.; Hilker, N.; Murphy, M.; Eckhardt, S.; Stohl, A.; Abbatt, J. P. D.; Wenger, J. C.; Evans, G. J.

    2015-07-01

    The optical properties of ambient black carbon-containing particles and the composition of their associated coatings were investigated at a downtown site in Toronto, Canada, for 2 weeks in June 2013. The objective was to assess the relationship between black carbon (BC) coating composition/thickness and absorption. The site was influenced by emissions from local vehicular traffic, wildfires in Quebec, and transboundary fossil fuel combustion emissions in the United States. Mass concentrations of BC and associated nonrefractory coatings were measured using a soot particle-aerosol mass spectrometer (SP-AMS), while aerosol absorption and scattering were measured using a photoacoustic soot spectrometer (PASS). Absorption enhancement was investigated both by comparing ambient and thermally denuded PASS absorption data and by relating absorption data to BC mass concentrations measured using the SP-AMS. Minimal absorption enhancement attributable to lensing at 781 nm was observed for BC using both approaches. However, brown carbon was detected when the site was influenced by wildfire emissions originating in Quebec. BC coating to core mass ratios were highest during this period (~7), and while direct absorption by brown carbon resulted in an absorption enhancement at 405 nm (>2.0), no enhancement attributable to lensing at 781 nm was observed. The efficiency of BC coating removal in the denuder decreased substantially when wildfire-related organics were present and may represent an obstacle for future similar studies. These findings indicate that BC absorption enhancement due to lensing is minimal for downtown Toronto, and potentially other urban locations, even when impacted by long-range transport events.

  10. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  11. Au/La2 Ti2 O7 Nanostructures Sensitized with Black Phosphorus for Plasmon-Enhanced Photocatalytic Hydrogen Production in Visible and Near-Infrared Light.

    PubMed

    Zhu, Mingshan; Cai, Xiaoyan; Fujitsuka, Mamoru; Zhang, Junying; Majima, Tetsuro

    2017-02-13

    Efficient utilization of solar energy is a high-priority target and the search for suitable materials as photocatalysts that not only can harvest the broad wavelength of solar light, from UV to near-infrared (NIR) region, but also can achieve high and efficient solar-to-hydrogen conversion is one of the most challenging missions. Herein, using Au/La2 Ti2 O7 (BP-Au/LTO) sensitized with black phosphorus (BP), a broadband solar response photocatalyst was designed and used as efficient photocatalyst for H2 production. The optimum H2 production rates of BP-Au/LTO were about 0.74 and 0.30 mmol g(-1)  h(-1) at wavelengths longer than 420 nm and 780 nm, respectively. The broad absorption of BP and plasmonic Au contribute to the enhanced photocatalytic activity in the visible and NIR light regions. Time-resolved diffuse reflectance spectroscopy revealed efficient interfacial electron transfer from excited BP and Au to LTO which is in accordance with the observed high photoactivities.

  12. Saturable and reverse saturable absorption and nonlinear refraction in nanoclustered Amido Black dye-polymer films under low power continuous wave He-Ne laser light excitation

    NASA Astrophysics Data System (ADS)

    Sreekumar, G.; Louie Frobel, P. G.; Muneera, C. I.; Sathiyamoorthy, K.; Vijayan, C.; Mukherjee, Chandrachur

    2009-12-01

    We report an observed transition from a saturable absorption type of behaviour to a reverse saturable absorption one for solid films of a guest-host system constituted by an organic chromophore, Amido Black 10B, embedded in a vinyl polymer, polyvinyl alcohol, and comprising a uniform distribution of aggregated nanoclusters, as studied using the standard Z-scan technique under low intensity continuous wave laser light excitation at 632 nm, while increasing the concentration of the dye content. This is attributed to the presence of higher aggregates of the dye molecules in the sample. Besides this, the samples also displayed complex nonlinear refraction behaviour, yielding a net negative nonlinearity, explained on the basis of a possible, simultaneous occurrence of refractive nonlinearities of different origin, in addition to the obvious effect of absorption. The estimated values of the effective coefficients of nonlinear absorption, nonlinear refraction and third-order nonlinear susceptibility, |χ(3)|, compared to those reported for continuous wave laser light excitation, measure up to the highest among them. These nonlinear effects could be the basis for possible applications of this new reverse saturable absorption material, sensitive even to low power excitation, as an efficient material for use in nonlinear optical devices.

  13. Environmental photochemistry on semiconductor surfaces. Visible light induced degradation of a textile diazo dye, naphthol blue black, on TiO{sub 2} nanoparticles

    SciTech Connect

    Nasr, C.; Hotchandani, S.; Vinodgopal, K.; Fisher, L.; Chattopadhyay, A.K.; Kamat, P.V.

    1996-05-16

    Visible light induced degradation of the textile diazo dye Naphthol Blue Black (NBB) has been carried out on TiO{sub 2} semiconductor nanoparticles. Diffuse reflectance transient absorption and FTIR techniques have been used to elucidate the mechanistic details of the dye degradation. The failure of the dye to degrade on insulator surfaces such as Al{sub 2}O{sub 3} or in the absence of oxygen further highlights the importance of semiconducting properties of support material in controlling the surface photochemical processes. The primary event following visible light excitation is the charge injection from the excited dye molecule into the conduction band of the semiconductor TiO{sub 2}, producing the dye cation radical. This was confirmed by diffuse reflectance laser flash photolysis. The surface-adsorbed oxygen plays an important role in scavenging photogenerated electrons, thus preventing the recombination between the dye cation radical and photoinjected electrons. Diffuse reflectance FTIR study facilitated identification of reaction intermediates and end products of dye degradation. By comparison with the degradation products from other azo dyes such as Chromotrope 2B and Chromotrope 2R we conclude that the NBB is degraded to a colorless naphthaquinone-like end product. 41 refs., 9 figs.

  14. Himalayan black bulbuls (Hypsipetes leucocephalus niggerimus) exhibit sexual dichromatism under ultraviolet light that is invisible to the human eye

    PubMed Central

    Hung, Hsin-Yi; Yeung, Carol K. L.; Omland, Kevin E.; Yao, Cheng-Te; Yao, Chiou-Ju; Li, Shou-Hsien

    2017-01-01

    Sexual dichromatism is a key proxy for the intensity of sexual selection. Studies of dichromatism in birds may, however, have underestimated the intensity and complexity of sexual selection because they used museum specimens alone without taking colour-fading into account or only measured conspicuous visual traits in live animals. We investigated whether the Himalayan black bulbul (Hypsipetes leucocephalus nigerrimus), which is sexually monomorphic to the human eye, exhibits sexual dichromatism distinguishable by a spectrometer. We measured the reflectance (within both the human visual perceptive and the ultraviolet ranges) of two carotenoid-based parts and eight dull and melanin-based parts for each individual live bird or museum skin sampled. According to an avian model of colour discrimination thresholds, we found that males exhibited perceptibly redder beaks, brighter tarsi and darker plumage than did females. This suggests the existence of multiple cryptic sexually dichromatic traits within this species. Moreover, we also observed detectable colour fading in the museum skin specimens compared with the live birds, indicating that sexual dichromatism could be underestimated if analysed using skin specimens alone. PMID:28382942

  15. Black Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Black Sea in eastern Russia is experiencing an ongoing phytoplankton bloom. This image, the most recent in a series that began in early may, shows the waters to be even more colorful than before. part of the increased brightness may be due to the presence of sun glint , especially in the center of the sea. However, more organisms appear to be present as well, their photosynthetic pigments reflecting different wavelengths of light.This Moderate Resolution Imaging Spectroradiometer (MODIS) image was captured on June 15, 2002.

  16. Single-Particle Measurements of Midlatitude Black Carbon and Light-Scattering Aerosols from the Boundary Layer to the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Schwartz, J. P.; Gao, R. S.; Fahey, D. W.; Thomson, D. S.; Watts, L. A.; Wilson, J. C.; Reeves, J. M.; Darbeheshti, M.; Baumgardner, D. G.; Kok, G. L.; Chung, S. H.; Schulz, M.; Hendricks, J.; Lauer, A.; Kaercher, B.; Slowik, J. G.; Rosenlof, K. H.; Thompson, T. L.; Langford, A. O.; Loewenstein, M.; Aikin, K. C.

    2006-01-01

    A single-particle soot photometer (SP2) was flown on a NASA WB-57F high-altitude research aircraft in November 2004 from Houston, Texas. The SP2 uses laser-induced incandescence to detect individual black carbon (BC) particles in an air sample in the mass range of approx.3-300 fg (approx.0.15-0.7 microns volume equivalent diameter). Scattered light is used to size the remaining non-BC aerosols in the range of approx.0.17-0.7 microns diameter. We present profiles of both aerosol types from the boundary layer to the lower stratosphere from two midlatitude flights. Results for total aerosol amounts in the size range detected by the SP2 are in good agreement with typical particle spectrometer measurements in the same region. All ambient incandescing particles were identified as BC because their incandescence properties matched those of laboratory-generated BC aerosol. Approximately 40% of these BC particles showed evidence of internal mixing (e.g., coating). Throughout profiles between 5 and 18.7 km, BC particles were less than a few percent of total aerosol number, and black carbon aerosol (BCA) mass mixing ratio showed a constant gradient with altitude above 5 km. SP2 data was compared to results from the ECHAM4/MADE and LmDzT-INCA global aerosol models. The comparison will help resolve the important systematic differences in model aerosol processes that determine BCA loadings. Further intercomparisons of models and measurements as presented here will improve the accuracy of the radiative forcing contribution from BCA.

  17. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    PubMed

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  18. Singlet Molecular Oxygen Generation by Light-Activated DHN-Melanin of the Fungal Pathogen Mycosphaerella fijiensis in Black Sigatoka Disease of Bananas

    PubMed Central

    Beltrán-García, Miguel J.; Prado, Fernanda M.; Oliveira, Marilene S.; Ortiz-Mendoza, David; Scalfo, Alexsandra C.; Pessoa, Adalberto; Medeiros, Marisa H. G.; White, James F.; Di Mascio, Paolo

    2014-01-01

    In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg). Using analytical tools, including elemental analysis, ultraviolet/infrared absorption spectrophometry and MALDI-TOF mass spectrometry analysis, we characterized both pigment content in mycelia and secreted to the culture media as 1,8-dihydroxynaphthalene (DHN)-melanin type compound. This is sole melanin-type in M. fijiensis. Isolated melanins irradiated with a Nd:YAG laser at 532 nm produced monomol light emission at 1270 nm, confirming generation of O2 (1Δg), a highly reactive oxygen specie (ROS) that causes cellular death by reacting with all cellular macromolecules. Intermediary polyketides accumulated in culture media by using tricyclazole and pyroquilon (two inhibitors of DHN-melanin synthesis) were identified by ESI-HPLC-MS/MS. Additionally, irradiation at 532 nm of that mixture of compounds and whole melanized mycelium also generated O2 (1Δg). A pigmented-strain generated more O2 (1Δg) than a strain with low melanin content. Banana leaves of cultivar Cavendish, naturally infected with different stages of black Sigatoka disease, were collected from field. Direct staining of the naturally infected leaf tissues showed the presence of melanin that was positively correlated to the disease stage. We also found hydrogen peroxide (H2O2) but we cannot distinguish the source. Our results suggest that O2 (1Δg) photogenerated by DHN-melanin may be involved in the destructive effects of Mycosphaerella fijiensis on banana leaf tissues. Further studies are needed to fully evaluate contributions of melanin-mediated ROS to microbial pathogenesis. PMID:24646830

  19. Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas.

    PubMed

    Beltrán-García, Miguel J; Prado, Fernanda M; Oliveira, Marilene S; Ortiz-Mendoza, David; Scalfo, Alexsandra C; Pessoa, Adalberto; Medeiros, Marisa H G; White, James F; Di Mascio, Paolo

    2014-01-01

    In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg). Using analytical tools, including elemental analysis, ultraviolet/infrared absorption spectrophometry and MALDI-TOF mass spectrometry analysis, we characterized both pigment content in mycelia and secreted to the culture media as 1,8-dihydroxynaphthalene (DHN)-melanin type compound. This is sole melanin-type in M. fijiensis. Isolated melanins irradiated with a Nd:YAG laser at 532 nm produced monomol light emission at 1270 nm, confirming generation of O2 (1Δg), a highly reactive oxygen specie (ROS) that causes cellular death by reacting with all cellular macromolecules. Intermediary polyketides accumulated in culture media by using tricyclazole and pyroquilon (two inhibitors of DHN-melanin synthesis) were identified by ESI-HPLC-MS/MS. Additionally, irradiation at 532 nm of that mixture of compounds and whole melanized mycelium also generated O2 (1Δg). A pigmented-strain generated more O2 (1Δg) than a strain with low melanin content. Banana leaves of cultivar Cavendish, naturally infected with different stages of black Sigatoka disease, were collected from field. Direct staining of the naturally infected leaf tissues showed the presence of melanin that was positively correlated to the disease stage. We also found hydrogen peroxide (H2O2) but we cannot distinguish the source. Our results suggest that O2 (1Δg) photogenerated by DHN-melanin may be involved in the destructive effects of Mycosphaerella fijiensis on banana leaf tissues. Further studies are needed to fully evaluate contributions of melanin-mediated ROS to microbial pathogenesis.

  20. A scanning electron microscope study of the pecten oculi of the black kite (Milvus migrans): possible involvement of melanosomes in protecting the pecten against damage by ultraviolet light.

    PubMed Central

    Kiama, S G; Bhattacharjee, J; Maina, J N; Weyrauch, K D

    1994-01-01

    The pecten oculi of the black kite (Milvus migrans), a diurnally active bird of prey, has been examined by scanning electron microscopy. In this species the pecten consists of 12 highly vascularised pleats, held together apically by a heavily pigmented 'bridge' and projects freely into the vitreous body in the ventral part of the eye cup. Ascending and descending blood vessels of varying calibre, together with a profuse network of capillaries, essentially constitute the vascular framework of the pecten. A distinct distribution of melanosomes is discernible on the pecten, the concentration being highest at its apical end, moderate at the crest of the pleats and least at the basal and lateral margins. Overlying and within the vascular network, a close association between blood vessels and melanocytes is evident. It is conjectured that such an association may have evolved to augment the structural reinforcement of this nutritive organ in order to keep it firmly erectile within the gel-like vitreous. Such erectility may be an essential prerequisite for its optimal functioning, as well as in its overt use as a protective shield against the effects of ultraviolet light, which otherwise might lead to damage of the pectineal vessels. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:7649799

  1. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  2. Black holes.

    PubMed

    Brügmann, B; Ghez, A M; Greiner, J

    2001-09-11

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  3. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can

  4. Black phosphorus gas sensors.

    PubMed

    Abbas, Ahmad N; Liu, Bilu; Chen, Liang; Ma, Yuqiang; Cong, Sen; Aroonyadet, Noppadol; Köpf, Marianne; Nilges, Tom; Zhou, Chongwu

    2015-05-26

    The utilization of black phosphorus and its monolayer (phosphorene) and few-layers in field-effect transistors has attracted a lot of attention to this elemental two-dimensional material. Various studies on optimization of black phosphorus field-effect transistors, PN junctions, photodetectors, and other applications have been demonstrated. Although chemical sensing based on black phosphorus devices was theoretically predicted, there is still no experimental verification of such an important study of this material. In this article, we report on chemical sensing of nitrogen dioxide (NO2) using field-effect transistors based on multilayer black phosphorus. Black phosphorus sensors exhibited increased conduction upon NO2 exposure and excellent sensitivity for detection of NO2 down to 5 ppb. Moreover, when the multilayer black phosphorus field-effect transistor was exposed to NO2 concentrations of 5, 10, 20, and 40 ppb, its relative conduction change followed the Langmuir isotherm for molecules adsorbed on a surface. Additionally, on the basis of an exponential conductance change, the rate constants for adsorption and desorption of NO2 on black phosphorus were extracted for different NO2 concentrations, and they were in the range of 130-840 s. These results shed light on important electronic and sensing characteristics of black phosphorus, which can be utilized in future studies and applications.

  5. Menus for Feeding Black Holes

    NASA Astrophysics Data System (ADS)

    Kocsis, Bence; Loeb, Abraham

    2014-09-01

    Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.

  6. Large-area surveys for black carbon and other light-absorbing impurities in snow: Arctic, Antarctic, North America, China (Invited)

    NASA Astrophysics Data System (ADS)

    Warren, S. G.; Doherty, S. J.; Hegg, D.; Dang, C.; Zhang, R.; Grenfell, T. C.; Brandt, R. E.; Clarke, A. D.; Zatko, M.

    2013-12-01

    Absorption of radiation by ice is extremely weak at visible and near-UV wavelengths, so small amounts of light-absorbing impurities (LAI) in snow can dominate the absorption of sunlight at these wavelengths, reducing the albedo relative to that of pure snow and leading to earlier snowmelt. Snow samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean, on tundra, glaciers, ice caps, sea ice, and frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack was accessible for sampling. Snow was also collected at 67 sites in western North America. Expeditions from Lanzhou University obtained black carbon (BC) amounts at 84 sites in northeast and northwest China. BC was measured at 3 locations on the Antarctic Plateau, and at 5 sites on East Antarctic sea ice. The snow is melted and filtered; the filters are analyzed in a spectrophotometer. Median BC mixing ratios in snow range over 4 orders of magnitude from 0.2 ng/g in Antarctica to 1000 ng/g in northeast China. Chemical analyses, input to a receptor model, indicate that the major source of BC in most of the Arctic is biomass burning, but industrial sources dominate in Svalbard and the central Arctic Ocean. Non-BC impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. In northeast China BC is the dominant LAI, but in Inner Mongolia soil dominates. When the snow surface layer melts, much of the BC is left at the top of the snowpack rather than carried away in meltwater, thus causing a positive feedback on snowmelt. This process was quantified through field studies in Greenland, Alaska, and Norway, where we found that only 10-30% of the BC is removed with meltwater. The BC content of the Arctic atmosphere has declined markedly since 1989, according to the continuous measurements of near-surface air in Canada, Alaska, and Svalbard. Correspondingly, our recent BC

  7. Black hole magnetospheres

    SciTech Connect

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-20

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  8. Black Phosphorus Terahertz Photodetectors.

    PubMed

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Knap, Wojciech; Tredicucci, Alessandro; Politano, Antonio; Vitiello, Miriam Serena

    2015-10-07

    The first room-temperature terahertz (THz)-frequency nanodetector exploiting a 10 nm thick flake of exfoliated crystalline black phosphorus as an active channel of a field-effect transistor, is devised. By engineering and embedding planar THz antennas for efficient light harvesting, the first technological demonstration of a phosphorus-based active THz device is described.

  9. Black Students.

    ERIC Educational Resources Information Center

    Edwards, Harry

    The black student revolt did not start with the highly publicized activities of the black students at San Francisco State College. The roots of the revolt lie deeply imbedded within the history and structure of the overall black liberation struggle in America. The beginnings of this revolt can be found in the students of Southern Negro colleges in…

  10. Black Psychology.

    ERIC Educational Resources Information Center

    Jones, Reginald L., Ed.

    The contents of the present volume, designed to bring together in a single place writings by the new black psychologists and other black social and behavioral scientists, are organized in seven parts, as follows: Part I, "Black Psychology: Perspectives," includes articles by Cedric Clark, Wade W. Nobles, Doris P. Mosby, Joseph White, and William…

  11. Ring Around the Black Hole

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Regardless of size, black holes easily acquire accretion disks. Supermassive black holes can feast on the bountiful interstellar gas in galactic nuclei. Small black holes formed from collapsing stars often belong to binary systems in which a bulging companion star can spill some of its gas into the black hole s reach. In the chaotic mess of the accretion disk, atoms collide with one another. Swirling plasma reaches speeds upward of 10% that of light and glows brightly in many wavebands, particularly in X-rays. Gas gets blown back by a wind of radiation from the inner disk. New material enters the disks from different directions.

  12. Derivatives of Black Knight Technology

    NASA Astrophysics Data System (ADS)

    Hill, N.; Wright, D.

    This paper traces the line of descent from Black Knight to Black Arrow, and at the same time looks at various proposed projects, both civil and military, which were to be Black Knight derivatives, but which for one reason or another never saw the light of day. Research in this area is rather akin to anthropological work, tracing fossils from Homo erectus (Black Knight) to Homo sapiens (Black Arrow), knowing that a lot of the fossils found will not be on the direct line of descent, but represent branches that became extinct. This article attempts to cover designs, which, although they never made it to hardware, are none the less interesting technically, or shine light on the evolution of design philosophy.

  13. Pyrolytic carbon coated black silicon

    PubMed Central

    Shah, Ali; Stenberg, Petri; Karvonen, Lasse; Ali, Rizwan; Honkanen, Seppo; Lipsanen, Harri; Peyghambarian, N.; Kuittinen, Markku; Svirko, Yuri; Kaplas, Tommi

    2016-01-01

    Carbon is the most well-known black material in the history of man. Throughout the centuries, carbon has been used as a black material for paintings, camouflage, and optics. Although, the techniques to make other black surfaces have evolved and become more sophisticated with time, carbon still remains one of the best black materials. Another well-known black surface is black silicon, reflecting less than 0.5% of incident light in visible spectral range but becomes a highly reflecting surface in wavelengths above 1000 nm. On the other hand, carbon absorbs at those and longer wavelengths. Thus, it is possible to combine black silicon with carbon to create an artificial material with very low reflectivity over a wide spectral range. Here we report our results on coating conformally black silicon substrate with amorphous pyrolytic carbon. We present a superior black surface with reflectance of light less than 0.5% in the spectral range of 350 nm to 2000 nm. PMID:27174890

  14. Black Hole Grabs Starry Snack

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version

    This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end.

    The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light.

    The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  15. Violent flickering in Black Holes

    NASA Astrophysics Data System (ADS)

    2008-10-01

    Unique observations of the flickering light from the surroundings of two black holes provide new insights into the colossal energy that flows at their hearts. By mapping out how well the variations in visible light match those in X-rays on very short timescales, astronomers have shown that magnetic fields must play a crucial role in the way black holes swallow matter. Flickering black hole ESO PR Photo 36/08 Flickering black hole Like the flame from a candle, light coming from the surroundings of a black hole is not constant -- it flares, sputters and sparkles. "The rapid flickering of light from a black hole is most commonly observed at X-ray wavelengths," says Poshak Gandhi, who led the international team that reports these results. "This new study is one of only a handful to date that also explore the fast variations in visible light, and, most importantly how these fluctuations relate to those in X-rays." The observations tracked the shimmering of the black holes simultaneously using two different instruments, one on the ground and one in space. The X-ray data were taken using NASA's Rossi X-ray Timing Explorer satellite. The visible light was collected with the high speed camera ULTRACAM, a visiting instrument at ESO's Very Large Telescope (VLT), recording up to 20 images a second. ULTRACAM was developed by team members Vik Dhillon and Tom Marsh. "These are among the fastest observations of a black hole ever obtained with a large optical telescope," says Dhillon. To their surprise, astronomers discovered that the brightness fluctuations in the visible light were even more rapid than those seen in X-rays. In addition, the visible-light and X-ray variations were found not to be simultaneous, but to follow a repeated and remarkable pattern: just before an X-ray flare the visible light dims, and then surges to a bright flash for a tiny fraction of a second before rapidly decreasing again. None of this radiation emerges directly from the black hole, but from the

  16. More Hidden Black Hole Dangers

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Black holes such as GRO J1655-40 form from collapsed stars. When stars at least eight times more massive than our Sun exhaust their fuel supply, they no longer have the energy to support their tremendous bulk. These stars explode as supernovae, blasting their outer envelopes into space. If the core is more than three times the mass of the Sun, it will collapse into a singularity, a single point of infinite density.Although light cannot escape black holes, astronomers can see black holes by virtue of the hot, glowing gas often stolen from a neighboring star that orbits these objects. From our vantage point, the light seems to flicker. The Rossi Explorer has recorded this flickering (called quasiperiodic oscillations, or QPOs) around many black holes. QPOs are produced by gas very near the innermost stable orbit the closest orbit a blob of gas can maintain before falling pell-mell into the black hole. As gas whips around the black hole at near light speed, gravity pulls the gas in one direction, then another, adding to the flickering. The QPO is related to the speed and size of this orbit and the mass of the black hole.

  17. Turbulent black holes.

    PubMed

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  18. Bringing Black Holes Home

    NASA Astrophysics Data System (ADS)

    Furmann, John M.

    2003-03-01

    Black holes are difficult to study because they emit no light. To overcome this obstacle, scientists are trying to recreate a black hole in the laboratory. The article gives an overview of the theories of Einstein and Hawking as they pertain to the construction of the Large Hadron Collider (LHC) near Geneva, Switzerland, scheduled for completion in 2006. The LHC will create two beams of protons traveling in opposing directions that will collide and create a plethora of scattered elementary particles. Protons traveling in opposite directions at very high velocities may create particles that come close enough to each other to feel their compacted higher dimensions and create a mega force of gravity that can create tiny laboratory-sized black holes for fractions of a second. The experiments carried out with LHC will be used to test modern string theory and relativity.

  19. Slowly balding black holes

    SciTech Connect

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-10-15

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N{sub B}=e{Phi}{sub {infinity}}/({pi}c({h_bar}/2{pi})), where {Phi}{sub {infinity}}{approx_equal}2{pi}{sup 2}B{sub NS}R{sub NS}{sup 3}/(P{sub NS}c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  20. Black Appalachians.

    ERIC Educational Resources Information Center

    Waage, Fred, Ed.; Cabbell, Ed, Ed.

    1986-01-01

    This issue of "Now and Then" focuses on black Appalachians, their culture, and their history. It contains local histories, articles, and poems and short stories by Appalachian blacks. Articles include: "A Mountain Artist's Landscape," a profile of artist Rita Bradley by Pat Arnow; "A Part and Apart," a profile of…

  1. Few-layer black phosphorus nanoparticles.

    PubMed

    Sofer, Zdenek; Bouša, Daniel; Luxa, Jan; Mazanek, Vlastimil; Pumera, Martin

    2016-01-28

    Herein, black phosphorus quantum dots and nanoparticles of a few layer thickness were prepared and characterized using STEM, AFM, dynamic light scattering, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. Impact electrochemistry of the induvidual black phosphorus nanoparticles allows their size determination. The centrifugation of colloidal black phosphorus nanoparticles allowed separation of quantum dots with sizes up to 15 nm. These black phosphorus nanoparticles exhibit a large band gap and are expected to find a wide range of applications from semiconductors to biomolecule tags. The use of black phosphorus nanoparticles for vapour sensing was successfully demonstrated.

  2. Black Pine Circle Project

    ScienceCinema

    Mytko, Christine

    2016-07-12

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  3. Black Pine Circle Project

    SciTech Connect

    Mytko, Christine

    2014-03-31

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  4. Light touch

    NASA Astrophysics Data System (ADS)

    Baskaran, G.

    2014-09-01

    Light sustains life. It enlightens. Over centuries it has illuminated our path to understanding our physical universe. Efforts to understand black body radiation gave birth to quantum mechanics. Same light revealed the secret of space-time through special theory of relativity. Light is a visible manifestation of quantum mechanics. Laser is a macroscopic quantum state available even at room temperatures. Following a general introduction I discuss quantum coherence, common in macroscopic quantum phenomena such as laser, superfluidity, superconductivity and superradiance. I raise a question, can we transfer macroscopic quantum coherence from a laser to a metal and induce superconductivity at room temperatures?. In certain recent experiments, femtosecond laser light is claimed to create transient superconductivity at room temperatures, in the pseudo gap metallic phase of certain cuprates. This has been discussed in terms of superradiant superconductivity, a new quantum coherence transfer mechanism we have suggested recently.

  5. Retrolensing by a charged black hole

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki; Gong, Yungui

    2017-03-01

    Compact objects with a light sphere such as black holes and wormholes can reflect light rays like a mirror. This gravitational lensing phenomenon is called retrolensing and it is an interesting tool to survey dark and compact objects with a light sphere near the solar system. In this paper, we calculate the deflection angle analytically in the strong deflection limit in the Reissner-Nordström spacetime without Taylor expanding it in the power of the electric charge. Using the obtained deflection angle in the strong deflection limit, we investigate the retrolensing light curves and the separation of double images by the light sphere of Reissner-Nordström black holes.

  6. Multi-clad black display panel

    DOEpatents

    Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin

    2002-01-01

    A multi-clad black display panel, and a method of making a multi-clad black display panel, are disclosed, wherein a plurality of waveguides, each of which includes a light-transmissive core placed between an opposing pair of transparent cladding layers and a black layer disposed between transparent cladding layers, are stacked together and sawed at an angle to produce a wedge-shaped optical panel having an inlet face and an outlet face.

  7. Strong gravitational lensing by Kiselev black hole

    NASA Astrophysics Data System (ADS)

    Younas, Azka; Jamil, Mubasher; Bahamonde, Sebastian; Hussain, Saqib

    2015-10-01

    We investigate the gravitational lensing scenario due to Schwarzschild-like black hole surrounded by quintessence (Kiselev black hole). We work for the special case of Kiselev black hole where we take the state parameter wq=-2/3 . For the detailed derivation and analysis of the bending angle involved in the deflection of light, we discuss three special cases of Kiselev black hole: nonextreme, extreme, and naked singularity. We also calculate the approximate bending angle and compare it with the exact bending angle. We found the relation of bending angles in the decreasing order as: naked singularity, extreme Kiselev black hole, nonextreme Kiselev black hole, and Schwarzschild black hole. In the weak field approximation, we compute the position and total magnification of relativistic images as well.

  8. Low-mass black holes as the remnants of primordial black hole formation.

    PubMed

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  9. Light's Darkness

    ScienceCinema

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2016-07-12

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  10. Emissions of organic aerosol mass, black carbon, particle number, and regulated and unregulated gases from scooters and light and heavy duty vehicles with different fuels

    NASA Astrophysics Data System (ADS)

    Chirico, R.; Clairotte, M.; Adam, T. W.; Giechaskiel, B.; Heringa, M. F.; Elsasser, M.; Martini, G.; Manfredi, U.; Streibel, T.; Sklorz, M.; Zimmermann, R.; DeCarlo, P. F.; Astorga, C.; Baltensperger, U.; Prevot, A. S. H.

    2014-06-01

    A sampling campaign with seven different types of vehicles was conducted in 2009 at the vehicle test facilities of the Joint Research Centre (JRC) in Ispra (Italy). The vehicles chosen were representative of some categories circulating in Europe and were fueled either with standard gasoline or diesel and some with blends of rapeseed methyl ester biodiesel. The aim of this work was to improve the knowledge about the emission factors of gas phase and particle-associated regulated and unregulated species from vehicle exhaust. Unregulated species such as black carbon (BC), primary organic aerosol (OA) content, particle number (PN), monocyclic and polycyclic aromatic hydrocarbons (PAHs) and a~selection of unregulated gaseous compounds, including nitrous acid (N2O), ammonia (NH3), hydrogen cyanide (HCN), formaldehyde (HCHO), acetaldehyde (CH3CHO), sulfur dioxide (SO2), and methane (CH4), were measured in real time with a suite of instruments including a high-resolution aerosol time-of-flight mass spectrometer, a resonance enhanced multi-photon ionization time-of-flight mass spectrometer, and a high resolution Fourier transform infrared spectrometer. Diesel vehicles, without particle filters, featured the highest values for particle number, followed by gasoline vehicles and scooters. The particles from diesel and gasoline vehicles were mostly made of BC with a low fraction of OA, while the particles from the scooters were mainly composed of OA. Scooters were characterized by super high emissions factors for OA, which were orders of magnitude higher than for the other vehicles. The heavy duty diesel vehicle (HDDV) featured the highest nitrogen oxides (NOx) emissions, while the scooters had the highest emissions for total hydrocarbons and aromatic compounds due to the unburned and partially burned gasoline and lubricant oil mixture. Generally, vehicles fuelled with biodiesel blends showed lower emission factors of OA and total aromatics than those from the standard fuels

  11. Synthesis of visible light driven cobalt tailored Ag{sub 2}O/TiON nanophotocatalyst by reverse micelle processing for degradation of Eriochrome Black T

    SciTech Connect

    Hussain, Syed Tajammul; Rashid; Anjum, Dalaver; Badshah, Amin

    2013-02-15

    Graphical abstract: Cobalt tailored Ag{sub 2}O/TiON nanophotocatalyst is synthesized using reverse micelle technique and it showed extraordinary photocatalytic activity. Display Omitted Highlights: ► TiON/Ag{sub 2}O/Co nanophotocatalyst is synthesized using microemulsion technique. ► Low temperature anatase phase and outstanding photocatlytic activity is observed. ► Effect of temperature and inert atmosphere on materials phase is investigated. ► Homogeneous dopants distribution and oxygen vacancies are examined. ► Enhancement in surface area, quantum efficiency and optical properties is observed. -- Abstract: An ultra efficient cobalt tailored silver and nitrogen co-doped titania (TiON/Ag{sub 2}O/Co) visible nanophotocatalyst is successfully synthesized using modified reverse micelle processing. Composition, phase, distribution of dopants, functional group analysis, optical properties and morphology of synthesized materials are investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) based techniques and others. Charge states of titanium (Ti) and silver are explored through core-loss electron energy loss spectroscopy (EELS) analysis and X ray photoelectron spectroscopy (XPS). Our characterization results showed that the synthesized nanophotocatalyst consisted of anatase phased qausispherical nanoparticles that exhibited homogeneous distribution of dopants, large surface area, high quantum efficiency and enhanced optical properties. At lower content of doped Co ions, the TiON/Ag{sub 2}O responded with extraordinary photocatalytic properties. The cobalt tailored nanophotocatalyst showed remarkable activity against Eriochrome Black T (EBT). Moreover, comparative degradation behavior of EBT with TiON, Ag{sub 2}O/TiON and Co/Ag{sub 2}O/TiON is also investigated.

  12. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    SciTech Connect

    Diego Mandelli; Curtis Smith; Thomas Riley; John Schroeder; Cristian Rabiti; Aldrea Alfonsi; Joe Nielsen; Dan Maljovec; Bie Wang; Valerio Pascucci

    2013-09-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  13. Creating Community on the Margins: The Successful Black Female Academician

    ERIC Educational Resources Information Center

    Hinton, Dawn

    2010-01-01

    The experiences of a Black Female academic, working at a Predominately White Institution (PWI), is explored in this work. The author suggests that Black women have been historically marginalized within most PWI's and historically this has been viewed in a negative light. Here it is suggested that Black women in academe view this position as one of…

  14. Singing' the Black and Blues

    ERIC Educational Resources Information Center

    Fisher, Diane

    2004-01-01

    It is so obvious that the sky is blue in the daytime and black at night, but it took the smartest humans thousands of years of observation, thought, discussion, conjecture, and analysis to finally come up with answers that make scientific sense as to why the sky is these colors. This article discusses light and the scientific research…

  15. Counseling Blacks

    ERIC Educational Resources Information Center

    Vontress, Clemmont E.

    1970-01-01

    Blacks have developed unique environmental perceptions, values, and attitudes, making it difficult for counselors to establish and maintain positive rapport. This article examines attitudinal ingredients posited by Carl Rogers for relevance to this problem, and suggests in-service training to help counselors and other professionals relate…

  16. Black English.

    ERIC Educational Resources Information Center

    Bailey, Charles-James N.

    This paper, presented as part of a military lecture series given by the Division of Continuing Education and Community Service Speakers' Bureau of the University of Hawaii to military personnel at Schofield Barracks and Fort Shafter, investigates the origins and present status of Black English. A discussion of early studies in the Gullah dialect…

  17. Black America.

    ERIC Educational Resources Information Center

    San Francisco Unified School District, CA.

    This is a selected bibliography of some good and some outstanding audio-visual educational materials in the library of the Educational Materials Bureau, Audio-Visual Education Section, that may be considered by particular interest in the study of black Americans. The bibliography is arranged alphabetically within these subject areas: I. African…

  18. Black Talk and Black Education

    ERIC Educational Resources Information Center

    Abrahams, Roger D.

    1969-01-01

    Demonstrates the need for cultural relativity in avoiding stereotyped reactions to the language of the lower-class black child. Appears in "The Florida FL Reporter special anthology issue, "Linguistic-Cultural Differences and American Education. The central portion of this essay is part of the opening argument of the author's forthcoming book…

  19. Variations on Black Themes: English, Black Literature.

    ERIC Educational Resources Information Center

    Randolph, Gloria D.

    Variations on Black Themes, an introductory course in the study of black literature, permits students to make cursory examination of representative works of many black writers for the purpose of identifying major writers and recurring themes. The course content includes: introduction to some works of major Black American authors; identification of…

  20. Black optic display

    DOEpatents

    Veligdan, James T.

    1997-01-01

    An optical display includes a plurality of stacked optical waveguides having first and second opposite ends collectively defining an image input face and an image screen, respectively, with the screen being oblique to the input face. Each of the waveguides includes a transparent core bound by a cladding layer having a lower index of refraction for effecting internal reflection of image light transmitted into the input face to project an image on the screen, with each of the cladding layers including a cladding cap integrally joined thereto at the waveguide second ends. Each of the cores is beveled at the waveguide second end so that the cladding cap is viewable through the transparent core. Each of the cladding caps is black for absorbing external ambient light incident upon the screen for improving contrast of the image projected internally on the screen.

  1. Smoking Cessation among Blacks.

    ERIC Educational Resources Information Center

    Stotts, R. Craig; And Others

    1991-01-01

    Lung cancer is a serious health problem among blacks, with a mortality rate of 119 per 100,000 black males, compared to 81 per 100,000 for white males. Smoking cessation efforts are most successful when tailored to the black community, using black community networks and broadcast media for black audiences. (SLD)

  2. Contemporary Black Theatre.

    ERIC Educational Resources Information Center

    Thomas, Pearl

    The distinguishable black theatre in America, mirroring a distinguishable black experience, is an artistic product which demands audience involvement. Both the Afro-American oral tradition and the art of gesture are integral aspects of black theatre. In addition, the tragedy found black theatre is not tragedy in the classic sense, as blacks feel…

  3. Scrambling with matrix black holes

    NASA Astrophysics Data System (ADS)

    Brady, Lucas; Sahakian, Vatche

    2013-08-01

    If black holes are not to be dreaded sinks of information but rather fully described by unitary evolution, they must scramble in-falling data and eventually leak it through Hawking radiation. Sekino and Susskind have conjectured that black holes are fast scramblers; they generate entanglement at a remarkably efficient rate, with the characteristic time scaling logarithmically with the entropy. In this work, we focus on Matrix theory—M-theory in the light-cone frame—and directly probe the conjecture. We develop a concrete test bed for quantum gravity using the fermionic variables of Matrix theory and show that the problem becomes that of chains of qubits with an intricate network of interactions. We demonstrate that the black hole system evolves much like a Brownian quantum circuit, with strong indications that it is indeed a fast scrambler. We also analyze the Berenstein-Maldacena-Nastase model and reach the same tentative conclusion.

  4. Quantum Criticality and Black Holes

    SciTech Connect

    Sachdev, Subir

    2007-08-22

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  5. Quantum Criticality and Black Holes

    ScienceCinema

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2016-07-12

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  6. Black widow spider

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002858.htm Black widow spider To use the sharing features on this page, please enable JavaScript. The black widow spider has a shiny black body with a red ...

  7. NASA's Chandra Finds Black Holes Are "Green"

    NASA Astrophysics Data System (ADS)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  8. Surfing a Black Hole

    NASA Astrophysics Data System (ADS)

    2002-10-01

    Star Orbiting Massive Milky Way Centre Approaches to within 17 Light-Hours [1] Summary An international team of astronomers [2], lead by researchers at the Max-Planck Institute for Extraterrestrial Physics (MPE) , has directly observed an otherwise normal star orbiting the supermassive black hole at the center of the Milky Way Galaxy. Ten years of painstaking measurements have been crowned by a series of unique images obtained by the Adaptive Optics (AO) NAOS-CONICA (NACO) instrument [3] on the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory. It turns out that earlier this year the star approached the central Black Hole to within 17 light-hours - only three times the distance between the Sun and planet Pluto - while travelling at no less than 5000 km/sec . Previous measurements of the velocities of stars near the center of the Milky Way and variable X-ray emission from this area have provided the strongest evidence so far of the existence of a central Black Hole in our home galaxy and, implicitly, that the dark mass concentrations seen in many nuclei of other galaxies probably are also supermassive black holes. However, it has not yet been possible to exclude several alternative configurations. In a break-through paper appearing in the research journal Nature on October 17th, 2002, the present team reports their exciting results, including high-resolution images that allow tracing two-thirds of the orbit of a star designated "S2" . It is currently the closest observable star to the compact radio source and massive black hole candidate "SgrA*" ("Sagittarius A") at the very center of the Milky Way. The orbital period is just over 15 years. The new measurements exclude with high confidence that the central dark mass consists of a cluster of unusual stars or elementary particles, and leave little doubt of the presence of a supermassive black hole at the centre of the galaxy in which we live . PR Photo 23a/02 : NACO image of the central region of the Milky Way

  9. Black Hole Spills Kaleidoscope of Color

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This new false-colored image from NASA's Hubble, Chandra and Spitzer space telescopes shows a giant jet of particles that has been shot out from the vicinity of a type of supermassive black hole called a quasar. The jet is enormous, stretching across more than 100,000 light-years of space -- a size comparable to our own Milky Way galaxy!

    Quasars are among the brightest objects in the universe. They consist of supermassive black holes surrounded by turbulent material, which is being heated up as it is dragged toward the black hole. This hot material glows brilliantly, and some of it gets blown off into space in the form of powerful jets.

    The jet pictured here is streaming out from the first known quasar, called 3C273, discovered in 1963. A kaleidoscope of colors represents the jet's assorted light waves. X-rays, the highest-energy light in the image, are shown at the far left in blue (the black hole itself is well to the left of the image). The X-rays were captured by Chandra. As you move from left to right, the light diminishes in energy, and wavelengths increase in size. Visible light recorded by Hubble is displayed in green, while infrared light caught by Spitzer is red. Areas where visible and infrared light overlap appear yellow.

  10. Why Black-on-Black Homicide?

    ERIC Educational Resources Information Center

    Jeff, Morris F. X., Jr.

    1981-01-01

    The causes of homicides committed against Blacks by Blacks are examined. Major preventive measures are said to be equal opportunity, better jobs, reduction of racial discrimination, elimination of organized crime, removal of drugs from community, and better schools. (JCD)

  11. Grand unification scale primordial black holes: consequences and constraints.

    PubMed

    Anantua, Richard; Easther, Richard; Giblin, John T

    2009-09-11

    A population of very light primordial black holes which evaporate before nucleosynthesis begins is unconstrained unless the decaying black holes leave stable relics. We show that gravitons Hawking radiated from these black holes would source a substantial stochastic background of high frequency gravititational waves (10(12) Hz or more) in the present Universe. These black holes may lead to a transient period of matter-dominated expansion. In this case the primordial Universe could be temporarily dominated by large clusters of "Hawking stars" and the resulting gravitational wave spectrum is independent of the initial number density of primordial black holes.

  12. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  13. Stationary Black Holes: Uniqueness and Beyond.

    PubMed

    Chruściel, Piotr T; Costa, João Lopes; Heusler, Markus

    2012-01-01

    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.

  14. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  15. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  16. Slender Galaxy with Robust Black Hole

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This plot of data from NASA's Spitzer Space Telescope indicates that a flat, spiral galaxy called NGC 3621 has a feeding, supermassive black hole lurking within it -- a surprise considering that astronomers thought this particular class of super-thin galaxies lacked big black holes.

    The data were captured by Spitzer's infrared spectrograph, an instrument that cracks infrared light open to reveal the signatures of elements. In this case, the data, or spectrum, for NGC 3621, shows the signature of highly ionized neon -- a sure sign of an active, supermassive black hole. Only a black hole that is actively consuming gas and stars has enough energy to ionize neon to this state. The other features in this plot are polycyclic aromatic hydrocarbons and chlorine, produced in the gas surrounding stars.

    The results challenge current theories, which hold that supermassive black holes require the bulbous central bulges that poke out from many spiral galaxies to form and grow. NGC 3621 is the second disk galaxy without any bulge found to harbor a supermassive black hole; the first, found in 2003, is NGC 4395. Astronomers have also used Spitzer to find six other mega black holes in thin spirals with only minimal bulges. Together, the findings indicate that, for a galaxy, being plump in the middle is not a necessary condition for growing a rotund black hole.

  17. Black Holes Have Simple Feeding Habits

    NASA Astrophysics Data System (ADS)

    2008-06-01

    The biggest black holes may feed just like the smallest ones, according to data from NASA’s Chandra X-ray Observatory and ground-based telescopes. This discovery supports the implication of Einstein's relativity theory that black holes of all sizes have similar properties, and will be useful for predicting the properties of a conjectured new class of black holes. The conclusion comes from a large observing campaign of the spiral galaxy M81, which is about 12 million light years from Earth. In the center of M81 is a black hole that is about 70 million times more massive than the Sun, and generates energy and radiation as it pulls gas in the central region of the galaxy inwards at high speed. In contrast, so-called stellar mass black holes, which have about 10 times more mass than the Sun, have a different source of food. These smaller black holes acquire new material by pulling gas from an orbiting companion star. Because the bigger and smaller black holes are found in different environments with different sources of material to feed from, a question has remained about whether they feed in the same way. Using these new observations and a detailed theoretical model, a research team compared the properties of M81's black hole with those of stellar mass black holes. The results show that either big or little, black holes indeed appear to eat similarly to each other, and produce a similar distribution of X-rays, optical and radio light. AnimationMulti-wavelength Images of M81 One of the implications of Einstein's theory of General Relativity is that black holes are simple objects and only their masses and spins determine their effect on space-time. The latest research indicates that this simplicity manifests itself in spite of complicated environmental effects. "This confirms that the feeding patterns for black holes of different sizes can be very similar," said Sera Markoff of the Astronomical Institute, University of Amsterdam in the Netherlands, who led the study

  18. The Black Black Woman and the Black Middle Class.

    ERIC Educational Resources Information Center

    Jeffers, Trellie

    1981-01-01

    Reprint of a 1973 article that describes the discrimination that particularly dark-skinned Black women suffer, especially at the hands of a color-conscious Black middle class. Calls for dark women to look to the African appearance and working-class roots as sources of pride and strength. (GC)

  19. NASA Observatory Confirms Black Hole Limits

    NASA Astrophysics Data System (ADS)

    2005-02-01

    time, the ones in between have been counted properly. Growth of the Biggest Black Holes Illustrated Growth of the Biggest Black Holes Illustrated "We need to have an accurate head count over time of all growing black holes if we ever hope to understand their habits, so to speak," co-author Richard Mushotzky of NASA's Goddard Space Flight Center in Greenbelt, Md. Supermassive black holes themselves are invisible, but heated gas around them -- some of which will eventually fall into the black hole - produces copious amounts of radiation in the centers of galaxies as the black holes grow. Growth of the Biggest Black Holes Illustrated Growth of Smaller Black Holes Illustrated This study relied on the deepest X-ray images ever obtained, the Chandra Deep Fields North and South, plus a key wider-area survey of an area called the "Lockman Hole". The distances to the X-ray sources were determined by optical spectroscopic follow-up at the Keck 10-meter telescope on Mauna Kea in Hawaii, and show the black holes range from less than a billion to 12 billion light years away. Since X-rays can penetrate the gas and dust that block optical and ultraviolet emission, the very long-exposure X-ray images are crucial to find black holes that otherwise would go unnoticed. Black Hole Animation Black Hole Animation Chandra found that many of the black holes smaller than about 100 million Suns are buried under large amounts of dust and gas, which prevents detection of the optical light from the heated material near the black hole. The X-rays are more energetic and are able to burrow through this dust and gas. However, the largest of the black holes show little sign of obscuration by dust or gas. In a form of weight self-control, powerful winds generated by the black hole's feeding frenzy may have cleared out the remaining dust and gas. Other aspects of black hole growth were uncovered. For example, the typical size of the galaxies undergoing supermassive black hole formation reduces with

  20. A Dancing Black Hole

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  1. Bili lights

    MedlinePlus

    Phototherapy for jaundice; Bilirubin - bili lights; Neonatal care - bili lights; Newborn care - bili lights ... Phototherapy involves shining fluorescent light from the bili lights on bare skin. A specific wavelength of light can break down bilirubin into a form that ...

  2. Electrically conductive black optical paint

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.; Metzler, E. C.; Cleland, E. L.

    1983-01-01

    An electrically conductive flat black paint has been developed for use on the Galileo spacecraft which will orbit Jupiter in the late 1980s. The paint, designed for equipment operating in high-energy radiation fields, has multipurpose functions. Its electrical conductivity keeps differential charging of the spacecraft external surfaces and equipment to a minimum, preventing the buildup of electrostatic fields and arcing. Its flat black aspect minimizes the effects of stray light and unwanted reflectances, when used in optical instruments and on sunshades. Its blackness is suitable, also, for thermal control, when the paint is put on spacecraft surfaces. The paint has good adherence properties, as measured by tape tests, when applied properly to a surface. The electrically conductive paint which was developed has the following characteristics: an electrical resistivity of 5 x 10 to the 7th ohms per square; a visual light total reflectance of approximately 5 percent; an infrared reflectance of 0.13 measured over a spectrum from 10 to the (-5.5) power to 0.001 meter; a solar absorptivity, alpha-s, of 0.93, and a thermal emissivity, epsilon, of 0.87, resulting in an alpha-s/epsilon of 1.07. The formula for making the paint and the process for applying it are described.

  3. Black English--New Role in the Classroom?

    ERIC Educational Resources Information Center

    Ornstein-Galicia, Jacob

    1980-01-01

    In light of U.S. District Court Judge Charles W. Joiner's recent order regarding the treatment of Black English in the Ann Arbor, Michigan schools, the author reviews the development of Black English as a dialect, some of its features, and the debate over its treatment in the classroom. (SJL)

  4. Psychosocial Correlates of Alcohol Consumption among Black College Students.

    ERIC Educational Resources Information Center

    Ford, Denyce S.; Carr, Peggy G.

    1990-01-01

    Examined impact of psychosocial variables on drinking among 505 Black college students. Lack of social support was best predictor of drinking of hard alcoholic beverages among Black college males. Respondents who began drinking at younger age, had parents who approved of drinking, and had friends who drank were more likely to drink light and hard…

  5. Kerr black holes as retro-MACHOs

    NASA Astrophysics Data System (ADS)

    De Paolis, F.; Geralico, A.; Ingrosso, G.; Nucita, A. A.; Qadir, A.

    2004-02-01

    Gravitational lensing is a well known phenomenon predicted by the General Theory of Relativity. It is now a well-developed observational technique in astronomy and is considered to be a fundamental tool for acquiring information about the nature and distribution of dark matter. In particular, gravitational lensing experiments may be used to search for black holes. It has been proposed that a Schwarzschild black hole may act as a retro-lens (Holz & Wheeler \\cite{hw}) which, if illuminated by a powerful light source (e.g. the Sun), deflects light ray paths to large bending angles so that the light may reach the observer. Here, by considering the strong field limit in the deflection angle and confining our analysis to the black hole equatorial plane, we extend the Holz-Wheeler results to slowly spinning Kerr black holes. By considering the Holz-Wheeler geometrical configuration for the lens, source and observer we find that the inclusion of rotation does not substantially change the brightness of the retro-lensing images with respect to the Schwarzschild case. We also discuss the possibility that the next generation space-based telescopes may detect such retro-images and eventually put limits on the rotational parameter of the black hole.

  6. Radio Telescopes Zoom into a Black Hole's Jets

    NASA Video Gallery

    Centaurus A is a giant elliptical active galaxy 12 million light-years away. At its heart lies a black hole with a mass of 55 million suns. Now, the TANAMI project has provided the best-ever image ...

  7. Swift Charts a Star's 'Death Spiral' into Black Hole

    NASA Video Gallery

    This animation illustrates how debris from a tidally disrupted star collides with itself, creating shock waves that emit ultraviolet and optical light far from the black hole. According to Swift ob...

  8. The signature of a black hole transit

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.

    1989-01-01

    This paper considers the possibility of identifying a black hole on the basis of the detection of some unique effect occurring during the transit of a black hole across the stellar disk of a companion star in a binary system. The results of Monte-Carlo calculations show that the amplitude of the photometric and polarimetric light curves in a typical X-ray binary is too small to be observed with present instrumentation, but that a black hole transit might be detectable in a binary having a large separation of the components. No binary system suggested as containing a stellar-mass-sized black hole is a like candidate to exhibit an observable transit signature, with the possible exception of X Persei/4U0352+30 described by White et al. (1976).

  9. Spherical boson stars as black hole mimickers

    SciTech Connect

    Guzman, F. S.; Rueda-Becerril, J. M.

    2009-10-15

    We present spherically symmetric boson stars as black hole mimickers based on the power spectrum of a simple accretion disk model. The free parameters of the boson star are the mass of the boson and the fourth-order self-interaction coefficient in the scalar field potential. We show that even if the mass of the boson is the only free parameter, it is possible to find a configuration that mimics the power spectrum of the disk due to a black hole of the same mass. We also show that for each value of the self-interaction a single boson star configuration can mimic a black hole at very different astrophysical scales in terms of the mass of the object and the accretion rate. In order to show that it is possible to distinguish one of our mimickers from a black hole, we also study the deflection of light.

  10. NASA Now: Black Holes

    NASA Video Gallery

    In this NASA Now episode, Dr. Daniel Patnaude talks about how his team discovered a baby black hole, why this is important and how black holes create tidal forces. Throughout his discussion, Patnau...

  11. Black hole hair removal

    NASA Astrophysics Data System (ADS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-07-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair — degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  12. Black nightshade poisoning

    MedlinePlus

    ... when someone eats pieces of the black nightshade plant. This article is for information only. DO NOT ... Found Poisons are found in the black nightshade plant, especially in the unripened fruit and leaves. Symptoms ...

  13. Black Hole Thermodynamics

    NASA Astrophysics Data System (ADS)

    Israel, Werner

    This chapter reviews the conceptual developments on black hole thermodynamics and the attempts to determine the origin of black hole entropy in terms of their horizon area. The brick wall model and an operational approach are discussed. An attempt to understand at the microlevel how the quantum black hole acquires its thermal properties is included. The chapter concludes with some remarks on the extension of these techniques to describing the dynamical process of black hole evaporation.

  14. Accelerating black diholes and static black dirings

    SciTech Connect

    Teo, Edward

    2006-01-15

    We show how a recently discovered black-ring solution with a rotating 2-sphere can be turned into two new solutions of Einstein-Maxwell-dilaton theory. The first is a four-dimensional solution describing a pair of oppositely charged, extremal black holes--known as a black dihole--undergoing uniform acceleration. The second is a five-dimensional solution describing a pair of concentric, static extremal black rings carrying opposite dipole charges--a so-called black diring. The properties of both solutions, which turn out to be formally very similar, are analyzed in detail. We also present, in an appendix, an accelerating version of the Zipoy-Voorhees solution in four-dimensional Einstein gravity.

  15. Color to black-and-white converter

    NASA Technical Reports Server (NTRS)

    Perry, W. E.

    1977-01-01

    Lanthanum-modified lead zirconate titanate ceramic plate, when sandwiched between pair of conventional light polarizers, forms electrically controlled coverter for television camera. Assembly can be used with camera at remote site to enable camera to transmit color or black and white signal on command.

  16. Black Veterans Return

    ERIC Educational Resources Information Center

    Fendrich, James; Pearson, Michael

    1970-01-01

    This is a survey study of black veterans' attitudes toward white authorities, the "law and order controversy, racial separatism, violence, and black identification. Results of the survey are held to suggest that alienation will move a substantial proportion of these veterans into the black radical movement. (KG)

  17. Black Studies Perspectives

    ERIC Educational Resources Information Center

    Adams, Russell L.

    1977-01-01

    Discusses the proposition that the black studies movement is but a continuing aspect of our general battle for survival and liberation in a fluctuatingly hostile environment, and that a part of what is seen today in the black studies movement is but a fluctuation in a fight and an expression of black collective awareness dating back to the…

  18. The Black Woman.

    ERIC Educational Resources Information Center

    Browne, Juanita M.

    The Black woman has been the transmitter of culture in the black community. Two of the important roles of African women were perpetuated during slavery and continue until today. They are her role in economic endeavor and her close bond with her children. The woman in African society was additionally politically significant. The black woman has…

  19. Asymmetric Black Diholes

    SciTech Connect

    Manko, V. S.; Sanchez-Mondragon, J.; Ruiz, E.

    2009-05-01

    In the present paper we enlarge the list of black dihole spacetimes by introducing the notion of asymmetric black diholes which describe configurations composed of two static charged black holes endowed with unequal masses and equal but opposite charges. The asymmetric dihole solutions are considered both in the Einstein-Maxwell and Einstein-Maxwell-dilaton theories.

  20. Optical charaterization of black appliques

    NASA Astrophysics Data System (ADS)

    Snail, Keith A.; Brown, Dennis P.; Costantino, Joseph P.; Shemano, Wendy C.; Schmidt, Carl W.; Lynn, William F.; Seaman, Christopher L.; Knowles, Timothy R.

    1996-11-01

    For some stray light applications, it may be advantageous to use a black applique rather than a conventional black coating. Appliques consist of a free-standing sheet of black material and an adhesive or other means for attaching the applique to a substrate. In this paper the optical scatter in the visible and infrared of black appliques from Battelle, Dupont, Edmund Scientific, Energy Science Laboratory, Inc. (ESLI), Rippey and Rodel is reported and compared to Martin Black. The Rippey and Rodel appliques are sold as polishing cloths for the semiconductor industry, whereas the ESLI applique was originally developed as a low sputter yield coating. The Battelle applique consists of a carbon loaded polyurethane film with a surface which is heat molded into a micro-grooved pattern. The ESLI applique consists of high aspect ratio fibers mounted in an adhesive base and was the blackest applique of all those investigated. For an incidence angle of 10 degrees, a scattering angle of 45 degrees and a wavelength of 632.8 nm, the BRDF of the best ESLI applique was 3 multiplied by 10-4, compared to 1 multiplied by 10-3 for the best Battelle applique, 1.5 multiplied by 10-3 for a representative Martin Black sample and 1.8 multiplied by 10-3 for the Edmund applique. The Battelle applique is quasi-diffuse due to its surface microstructure, with a higher BRDF (2-5 multiplied by 10-3) at scatter angles less than 15 degrees For a wavelength of 10.6 micrometer, an incidence angle of 7.5 degrees and a scatter angle of 45 degrees, the BRDF of the ESLI coating (1 multiplied by 10-3) was slightly higher than Martin Black (8 multiplied by 10 -4), with the Battelle applique exhibiting strong dependences on scatter angle and groove orientation. In the 2 - 14 micrometer spectral range, the directional hemispherical reflectance of the ESLI coating at a 20 degree incidence angle is below 0.45% and only weakly dependent on incidence angle to 60 degrees. In- plane and cross-plane BRDF

  1. Destruction and recreation of black holes

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Even though the existence of the gravitationally collapsed concentrations of matter in space known as ‘black holes’ is accepted at all educational levels in our society, the basis for the black hole concept is really only the result of approximate calculations done over 40 years ago. The concept of the black hole is an esoteric subject, and recently the mathematical and physical frailties of the concept have come to light in an interesting round of theoretical shuffling. The recent activity in theorizing about black holes began about 10 years ago, when Cambridge University mathematican Stephen Hawking calculated that black holes could become unstable by losing mass and thus ‘evaporate.’ Hawking's results were surprisingly well received, considering the lack of theoretical understanding of the relations between quantum mechanics and relativity. (There is no quantized theory of gravitation, even today.) Nonetheless, his semiclassical calculations implied that the rate of ‘evaporation’ of a black hole would be slower than the rate of degradation of the universe. In fact, based on these and other calculations, the British regard Hawking as ‘the nearest thing we have to a new Einstein’ [New Scientist, Oct. 9, 1980]. Within the last few months, Frank Tipler, provocative mathematical physicist at the University of Texas, has reexamined Hawking's calculations [Physical Review Letters, 45, 941, 1980], concluding, in simple terms, (1) that because of possible vital difficulties in the assumptions, the very concept of black holes could be wrong; (2) that Hawkings' evaporation hypothesis is so efficient that a black hole once created must disappear in less than a second; or (3) that he, Tipler, may be wrong. The latter possibility has been the conclusion of physicist James Bardeen of the University of Washington, who calculated that black hole masses do evaporate but they do so according to Hawking's predicted rate and that Tipler's findings cause only a second

  2. Black Hole Battery

    NASA Astrophysics Data System (ADS)

    Levin, Janna; D'Orazio, Daniel

    2016-03-01

    Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.

  3. Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus.

    PubMed

    Liu, Zizhuo; Aydin, Koray

    2016-06-08

    Plasmonic materials provide electric-field localization and light confinement at subwavelength scales due to strong light-matter interaction around resonance frequencies. Graphene has been recently studied as an atomically thin plasmonic material for infrared and terahertz wavelengths. Here, we theoretically investigate localized surface plasmon resonances (LSPR) in a monolayer, nanostructured black phosphorus (BP). Using finite-difference time-domain simulations, we demonstrate LSPRs at mid-infrared and far-infrared wavelength regime in BP nanoribbon and nanopatch arrays. Because of strong anisotropic in-plane properties of black phosphorus emerging from its puckered crystal structure, black phosphorus nanostructures provide polarization dependent, anisotropic plasmonic response. Electromagnetic simulations reveal that monolayer black phosphorus nanostructures can strongly confine infrared radiation in an atomically thin material. Black phosphorus can find use as a highly anisotropic plasmonic devices.

  4. IMAGES OF BLACK AMERICANS

    PubMed Central

    Fiske, Susan T.; Bergsieker, Hilary B.; Russell, Ann Marie; Williams, Lyle

    2013-01-01

    Images of Black Americans are becoming remarkably diverse, enabling Barack Obama to defy simple-minded stereotypes and succeed. Understood through the Stereotype Content Model’s demonstrably fundamental trait dimensions of perceived warmth and competence, images of Black Americans show three relevant patterns. Stereotyping by omission allows non-Blacks to accentuate the positive, excluding any lingering negativity but implying it by its absence; specifically, describing Black Americans as gregarious and passionate suggests warmth but ignores competence and implies its lack. Obama’s credentials prevented him from being cast as incompetent, though the experience debate continued. His legendary calm and passionate charisma saved him on the warmth dimension. Social class subtypes for Black Americans differentiate dramatically between low-income Blacks and Black professionals, among both non-Black and Black samples. Obama clearly fit the moderately warm, highly competent Black-professional subtype. Finally, the campaign’s events (and nonevents) allowed voter habituation to overcome non-Blacks’ automatic emotional vigilance to Black Americans. PMID:24235974

  5. Lighting: Green Light.

    ERIC Educational Resources Information Center

    Maniccia, Dorine

    2003-01-01

    Explains that by using sustainable (green) building practices, schools and universities can make their lighting systems more efficient, noting that embracing green design principles can help schools attract students. Discusses lighting-control technologies (occupancy sensing technology, daylighting technology, and scheduling based technologies),…

  6. Revisiting Black Holes as Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    /Jason Cowan (Astronomy Technology Center)]A team of scientists led by Evencio Mediavilla (Institute of Astrophysics of the Canaries, University of La Laguna) has now used our observations of quasar microlensing to place constraints on the amount of dark matter that could be made up of intermediate-mass primordial black holes.Poor Outlook for Primordial Black HolesMediavilla and collaborators used simulations to estimate the effects of a distribution of masses on light from distant quasars, and they then compared their results to microlensing magnification measurements from 24 gravitationally lensed quasars. In this way, they were able to determine both the abundance and masses of possible objects causing the quasar microlensing effects we see.The authors find that the observations constrain the mass of the possible microlensing objects to be between 0.05 and 0.45 solar masses not at all the intermediate-mass black holes postulated. Whats more, they find that the lensing objects make up 20% of the total matter, which is barely more than expected for normal stellar matter. This suggests that normal stars are doing the majority of the quasar microlensing, not a large population of intermediate-mass black holes.What does this mean for primordial black holes as dark matter? Black holes in the range of 10200 stellar masses are unlikely to account for much (if any) dark matter, Mediavilla and collaborators conclude which means that LIGOs detection of gravitational waves likely came from two black holes collapsed from stars, not primordial black holes.CitationE. Mediavilla et al 2017 ApJL 836 L18. doi:10.3847/2041-8213/aa5dab

  7. Finding Free-Floating Black Holes using Astrometric Microlensing

    NASA Astrophysics Data System (ADS)

    Lu, Jessica R.; Ofek, Eran Oded; Sinukoff, Evan; Udalski, Andrzej; Kozlowski, Szymon

    2017-01-01

    Our Galaxy most likely hosts 10-100 million stellar mass black holes. The exact number and mass function of these black holes contains important information regarding our Galaxy's star formation history, stellar mass function, and the fate of very massive stars. However, isolated stellar black holes have yet to be detected. To date, stellar mass black holes have only been definitively detected in binary systems with accreting companions or merging to produce gravitational waves. In principle, the presence of isolated black holes can be inferred from astrometric and photometric signatures produced when they lens light from a background star. We attempt to detect the astrometric lensing signatures of several photometrically identified microlensing events, toward the Galactic Bulge. Long-duration events (t_Einstein > 100 days) were selected as the most likely black hole candidates and were observed using several years of laser-guided adaptive optics observations from the W. M. Keck telescopes. We present results from this search.

  8. Black Holes (With 16 figures)

    NASA Astrophysics Data System (ADS)

    Novikov, Igor

    Astrophysics of Black Holes Introduction The Origin of Stellar Black Holes A Nonrotating Black Hole Introduction Schwarzschild Gravitational Field Motion of Photons Along the Radial Direction Radial Motion of Nonrelativistic Particles The Puzzle of the Gravitational Radius R and T Regions Two Types of T-Regions Gravitational Collapse and White Holes Eternal Black Hole? Black Hole Celestial Mechanics Circular Motion Around a Black Hole Gravitational Capture of Particles by a Black Hole Corrections for Gravitational Radiation A Rotating Black Hole Introduction Gravitational Field of a Rotating Black Hole Specific Reference Frames General Properties of the Spacetime of a Rotating Black Hole; - Spacetime Inside the Horizon Celestial Mechanics of a Rotating Black Hole Motion of Particle in the Equatorial Plane Motion of Particles off the Equatorial Plane Peculiarities of the Gravitational Capture of Bodies by a Rotating - Black Hole Electromagnetic Fields Near a Black Hole Introduction Maxwell's Equations in the Neighborhood of a Rotating Black Hole Stationary Electrodynamics Boundary Conditions at the Event Horizon Electromagnetic Fields in Vacuum Magnetosphere of a Black Hole Some Aspects of Physics of Black Holes, Wormholes, and Time Machines Observational Appearence of the Black Holes in the Universe Black Holes in the Interstellar Medium Disk Accretion Black Holes in Stellar Binary Systems Black Holes in Galactic Centers Dynamical Evidence for Black Holes in Galaxy Nuclei Primordial Black Holes Acknowledgements References

  9. Black Hole Boldly Goes Where No Black Hole Has Gone Before

    NASA Astrophysics Data System (ADS)

    2007-01-01

    contains millions of these black holes. Black holes are, by definition, invisible. But the region around them can flare up periodically when the black hole feeds. As gas falls into a black hole, it will heat to high temperatures and radiate brightly, particularly in X-rays. Maccarone's team found one such stellar-mass black hole by chance feeding in a globular cluster in a galaxy named NGC 4472, about fifty million light-years away in the Virgo Cluster. XMM-Newton is extremely sensitive to variable X-ray sources and can efficiently search across large patches of the sky. The team also used NASA's Chandra X-ray Observatory, which has superb angular resolution to pinpoint the X-ray source's location. This allowed them to match up the position of the X-ray source with optical images to prove that the black hole was indeed in a globular cluster. Globular clusters are some of the oldest structures in the universe, containing stars over 12 thousand million years old. Black holes in a cluster would likely have formed many thousand millions of years ago, which is why astronomers have assumed they would have been kicked out a long time ago. Details in the X-ray light detected by XMM-Newton leave little doubt that this is a black hole - the object is too bright, and varies by too much to be anything else. In fact, the source is 'extra bright', - an Ultraluminous X-ray object, or ULX. ULXs are brighter than the 'Eddington limit' for stellar mass black holes, the brightness level at which the outward force from X-rays is expected balance the powerful gravitational forces from the black hole. Thus it is often suggested that the ULXs might be intermediate mass black holes - black holes of thousands of solar masses, heavier than the 10-solar-mass stellar black holes, and lighter than the million to thousand million solar mass black holes in quasars. These black holes might then be the missing links between the black holes formed in the death throes of massive stars and the ones in the

  10. Light on curved backgrounds

    NASA Astrophysics Data System (ADS)

    Batic, D.; Nelson, S.; Nowakowski, M.

    2015-05-01

    We consider the motion of light on different spacetime manifolds by calculating the deflection angle, lensing properties and by probing into the possibility of bound states. The metrics in which we examine the light motion include, among other items, a general relativistic dark matter metric, a dirty black hole, and a worm hole metric, the last two inspired by noncommutative geometry. The lensing in a holographic screen metric is discussed in detail. We study also the bending of light around naked singularities like, e.g., the Janis-Newman-Winicour metric and include other cases. A generic property of light behavior in these exotic metrics is pointed out. For the standard metric like the Schwarzschild and Schwarzschild-de Sitter cases, we improve the accuracy of the lensing results for the weak and strong regimes.

  11. Effect of Black Rice Powder on the Quality Properties of Pork Patties

    PubMed Central

    2017-01-01

    Physicochemical properties of pork patties formulated with black rice powder were investigated. Moisture contents of samples containing black rice powder were significantly higher than that of the control (p<0.05). Protein, fat, and ash contents increased with increasing black rice powder content. Uncooked and cooked pH values of samples increased with increasing black rice powder content. Lightness and yellowness of samples decreased with increasing concentration of black rice powder. Redness of cooked samples containing black rice powder was significantly lower than that of the control (p<0.05). Water holding capacity and cooking yield of samples increased with increasing black rice powder concentration. Diameter and thickness reduction ratio of samples decreased with increasing black rice powder content. Sensory evaluation of samples showed no significant difference between samples. Thus, black rice powder improved the quality of pork patties. PMID:28316473

  12. Foundations of Black Hole Accretion Disk Theory.

    PubMed

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  13. Black holes in full quantum gravity

    NASA Astrophysics Data System (ADS)

    Krasnov, Kirill; Rovelli, Carlo

    2009-12-01

    Quantum black holes have been studied extensively in quantum gravity and string theory, using various semiclassical or background-dependent approaches. We explore the possibility of studying black holes in the full non-perturbative quantum theory, without recurring to semiclassical considerations, and in the context of loop quantum gravity. We propose a definition of a quantum black hole as the collection of the quantum degrees of freedom that do not influence observables at infinity. From this definition, it follows that for an observer at infinity a black hole is described by an SU(2) intertwining operator. The dimension of the Hilbert space of such intertwiners grows exponentially with the horizon area. These considerations shed some light on the physical nature of the microstates contributing to the black hole entropy. In particular, it can be seen that the microstates being counted for the entropy have the interpretation of describing different horizon shapes. The space of black hole microstates described here is related to the one arrived at recently by Engle et al (2009, arXiv:0905.3168) and sometime ago by Smolin (1995, J. Math. Phys. 36 6417), but obtained here directly within the full quantum theory.

  14. Light curves of light rays passing through a wormhole

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki; Harada, Tomohiro

    2017-01-01

    Gravitational lensing is a good probe into the topological structure of dark gravitating celestial objects. In this paper, we investigate the light curve of a light ray that passes through the throat of an Ellis wormhole, the simplest example of traversable wormholes. The method developed here is also applicable to other traversable wormholes. To study whether the light curve of a light ray that passes through a wormhole throat is distinguishable from that which does not, we also calculate light curves without the passage of a throat for an Ellis wormhole, a Schwarzschild black hole, and an ultrastatic wormhole with the spatial geometry identical to that of the Schwarzschild black hole in the following two cases: (i) "microlensing," where the source, lens, and observer are almost aligned in this order and the light ray starts at the source, refracts in the weak gravitational field of the lens with a small deflection angle, and reaches the observer; and (ii) "retrolensing," where the source, observer, and lens are almost aligned in this order, and the light ray starts at the source, refracts in the vicinity of the light sphere of the lens with a deflection angle very close to π , and reaches the observer. We find that the light curve of the light ray that passes through the throat of the Ellis wormhole is clearly distinguishable from that by the microlensing but not from that by the retrolensing. This is because the light curve of a light ray that passes by a light sphere of a lens with a large deflection angle has common characters, irrespective of the details of the lens object. This implies that the light curves of the light rays that pass through the throat of more general traversable wormholes are qualitatively the same as that of the Ellis wormhole.

  15. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns.

  16. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  17. Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Loeb, Abraham

    2007-04-01

    Recent data indicates that almost all galaxies possess a supermassive black hole at their center. When gas accretes onto the black hole it heats-up and shines, resulting in the appearance of a bright quasar. The earliest quasars are found to exist only a billion years after the big-bang. I will describe recent observations of both the nearest and the most distant supermassive black holes in the universe. The formation and evolution of the black hole population can be described in the context of popular models for galaxy formation. I will describe the key questions that drive current research on supermassive black holes and present theoretical work on the radiative and hydrodynamic effects that quasars have on their cosmic habitat. Within the coming decade it would be possible to test general relativity by monitoring over time, and possibly even imaging, the polarized emission from hot spots around the black hole in the center of our Galaxy (SgrA*).

  18. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Garcia, M.

    2003-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitates this study by funding related travel, computer equipment, and partial salary for a post-doc.

  19. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, M.; Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitate this study by funding related travel, computer equipment, and partial salary for a post-doc.

  20. What Black Educators are Saying.

    ERIC Educational Resources Information Center

    Wright, Nathan, Jr., Ed.

    Contents of this book are comprised of five groups of articles: Part I. The Black Educator: "Education for black humanism; a way of approaching it," Preston Wilcox; "The new black dimension in our society," Olivia Pearl Stokes; "The black teacher and black Power," Leslie Campbell; and, "The difference," Leslie Campbell. Part II. The White…

  1. Asymptotic black holes

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming

    2017-04-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  2. Evidence for black holes.

    PubMed

    Begelman, Mitchell C

    2003-06-20

    Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity.

  3. Black bone disease in a healing fracture.

    PubMed

    Thiam, Desmond; Teo, Tse Yean; Malhotra, Rishi; Tan, Kong Bing; Chee, Yu Han

    2016-01-28

    Black bone disease refers to the hyperpigmentation of bone secondary to prolonged usage of minocycline. We present a report of a 34-year-old man who underwent femoral shaft fracture fixation complicated by deep infection requiring debridement. The implants were removed 10 months later after long-term treatment with minocycline and fracture union. A refracture of the femoral shaft occurred 2 days after implant removal and repeat fixation was required. Intraoperatively, abundant heavily pigmented and dark brown bone callus was noted over the old fracture site. There was no evidence of other bony pathology and the appearance was consistent with minocycline-associated pigmentation. As far as we are aware, this is the first case of black bone disease affecting callus within the interval period of bone healing. We also discuss the relevant literature on black bone disease to bring light on this rare entity that is an unwelcomed surprise to operating orthopaedic surgeons.

  4. Accretion Disk Emission Around Kerr Black Holes

    NASA Astrophysics Data System (ADS)

    Campitiello, Samuele; Sbarrato, T.; Ghisellini, G.

    2016-10-01

    Measuring the spin of supermassive Black holes in Active Galactic Nuclei is a further step towards a better understanding of the evolution of their physics. We proposed a new method to estimate the Black hole spin, based on data-fitting. We consider a numerical model called KERRBB, including all relativistic effects (i.e. light-bending, gravitational redshift and Doppler beaming). We found that the same spectrum can be produced by different masses, accretion rates and spins, but that these three quantities are related. In other words, having a robust indipendent estimate on one of these three quantities fixes the other two. By using the Black hole mass, estimated by the virial method, we can pinpoint a narrow range of possible spins and accretion rates for the 32 blazars we have studied. For these objects, we found a lower limit of the spin, that must be a/M > 0.6-0.7

  5. Effect of Black Rice Powder Levels on Quality Properties of Emulsion-type Sausage

    PubMed Central

    2016-01-01

    The effects of black rice powder on the quality of sausage were investigated. Samples were prepared with 0% (control), 1%, 3%, and 5% black rice powder. With increasing black rice powder content, the moisture and ash content of sausage increased, while protein content was significantly less than that observed for the control (p<0.05). The fat content in samples containing 5% black rice powder was significantly less than that observed for other samples (p<0.05). With increasing black rice powder content, the pH of uncooked and cooked samples increased. In addition, lightness, redness, and yellowness decreased. With increasing content of black rice powder, emulsion stability decreased. On the other hand, with increasing black rice powder content, cooking yield increased. As compared to the other samples, those containing high content of black rice powder exhibited higher viscosity. With increasing black rice powder content, the hardness of samples decreased, while the gumminess and chewiness of samples containing black rice powder were less than those observed for the control (p<0.05). Moreover, with increasing black rice powder content, the flavor, juiciness, and overall acceptability of samples increased. In addition, the tenderness of samples containing 3% and 5% black rice powder was significantly greater than that observed for the control and sample containing 1% black rice powder (p<0.05). In addition to the economic benefits, black rice powder can be used to improve quality characteristics. PMID:28115884

  6. And All the Rest (Primordial, Intermediate, and Orphan Black Holes)

    NASA Astrophysics Data System (ADS)

    Miller, Cole

    2004-05-01

    Black holes, though exotic and mathematically beautiful, are notoriously difficult to detect because they emit no light of their own and hence can be seen only by their influence on nearby stars and gas. It is therefore probable that the observed stellar-mass and supermassive black holes are only the tip of the iceberg. In addition to the expected undetectable population of solitary black holes, there may be new classes of black holes yet to be discovered. For example, there is growing evidence for an intermediate-mass category of black holes that are too massive to form from solitary stars in the current universe, yet are less massive than the black holes in the centers of galaxies and are not located in environments where growth from gas accretion is significant. An even more intriguing prospect is that in the very early universe a population of primordial black holes could have formed. Although there are currently only limits to such a population, if they formed prior to big bang nucleosynthesis then there is a slim but nonzero chance that primordial black holes are the primary components of dark matter, which would imply that black holes are the dominant form of matter in the universe. We will discuss these scenarios in the context of structure formation and stellar dynamics, and consider future electromagnetic and gravitational wave observations that could yield further insight.

  7. Chaos in matrix models and black hole evaporation

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan

    2016-12-01

    Is the evaporation of a black hole described by a unitary theory? In order to shed light on this question—especially aspects of this question such as a black hole's negative specific heat—we consider the real-time dynamics of a solitonic object in matrix quantum mechanics, which can be interpreted as a black hole (black zero-brane) via holography. We point out that the chaotic nature of the system combined with the flat directions of its potential naturally leads to the emission of D0-branes from the black brane, which is suppressed in the large N limit. Simple arguments show that the black zero-brane, like the Schwarzschild black hole, has negative specific heat, in the sense that the temperature goes up when it evaporates by emitting D0-branes. While the largest Lyapunov exponent grows during the evaporation, the Kolmogorov-Sinai entropy decreases. These are consequences of the generic properties of matrix models and gauge theory. Based on these results, we give a possible geometric interpretation of the eigenvalue distribution of matrices in terms of gravity. Applying the same argument in the M-theory parameter region, we provide a scenario to derive the Hawking radiation of massless particles from the Schwarzschild black hole. Finally, we suggest that by adding a fraction of the quantum effects to the classical theory, we can obtain a matrix model whose classical time evolution mimics the entire life of the black brane, from its formation to the evaporation.

  8. Why Black Officers Still Fail

    DTIC Science & Technology

    2010-03-01

    White youth is smaller than it once was. They all pointed to the fact that today’s youth, both white and black, tend to be attracted to rap music and...papers touching on the experiences of black officers as they relate to representation, promotions, influence , and culture. They can best be...they relate to Black officer representation in the Army, Black officer promotion rates, Black officer influence on policy and decision making, black

  9. NASA's Chandra Finds Youngest Nearby Black Hole

    NASA Astrophysics Data System (ADS)

    2010-11-01

    Astronomers using NASA's Chandra X-ray Observatory have found evidence of the youngest black hole known to exist in our cosmic neighborhood. The 30-year-old black hole provides a unique opportunity to watch this type of object develop from infancy. The black hole could help scientists better understand how massive stars explode, which ones leave behind black holes or neutron stars, and the number of black holes in our galaxy and others. The 30-year-old object is a remnant of SN 1979C, a supernova in the galaxy M100 approximately 50 million light-years from Earth. Data from Chandra, NASA's Swift satellite, the European Space Agency's XMM-Newton and the German ROSAT observatory revealed a bright source of X-rays that has remained steady during observation from 1995 to 2007. This suggests the object is a black hole being fed either by material falling into it from the supernova or a binary companion. "If our interpretation is correct, this is the nearest example where the birth of a black hole has been observed," said Daniel Patnaude of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. who led the study. The scientists think SN 1979C, first discovered by an amateur astronomer in 1979, formed when a star about 20 times more massive than the Sun collapsed. Many new black holes in the distant universe previously have been detected in the form of gamma-ray bursts (GRBs). However, SN 1979C is different because it is much closer and belongs to a class of supernovas unlikely to be associated with a GRB. Theory predicts most black holes in the universe should form when the core of a star collapses and a GRB is not produced. "This may be the first time the common way of making a black hole has been observed," said co-author Abraham Loeb, also of the Harvard-Smithsonian Center for Astrophysics. "However, it is very difficult to detect this type of black hole birth because decades of X-ray observations are needed to make the case." The idea of a black hole with

  10. Recruiting Blacks into Journalism.

    ERIC Educational Resources Information Center

    Tipton, Leonard; And Others

    Despite significant progress in the recruitment of black journalists, adequate representation of blacks in newsrooms remains an acute concern. The results of (1) statistical monitoring by organizations such as the Newspaper Fund, (2) searching of trade press and academic journal articles for insights into the problem, (3) an open-ended…

  11. Cultural Vignette: Black Americans.

    ERIC Educational Resources Information Center

    Bell, Ida; And Others

    Developed as part of a multicultural research project conducted in the San Diego Community College District, this booklet presents the findings of an eight-member research team about various elements of Black American culture and history. The booklet begins with a brief history of Black Americans from the time of the arrival of the first slaves to…

  12. Black Craftsmen Through History.

    ERIC Educational Resources Information Center

    Myers, Robin

    This report traces the evolution of the black craftsmen from ancient Egypt to the present. Special attention is given to the restricted use of black craftsmen under slavery, and the added problems they faced after being freed. Business and union discimination is described, along with recent government and private efforts to achieve equal…

  13. Black Studies Year One.

    ERIC Educational Resources Information Center

    Long, Richard A.

    Though Dubois tried to begin a series of scientific studies on the Negro problem in America more than 70 years ago, only recently have attempts been made to present a true history of the Black man in institutions of higher learning. Until that time, the experience of the Black man was defined in Euro-American terms, or in most cases was completely…

  14. Lexicon of Black English.

    ERIC Educational Resources Information Center

    Dillard, J. L.

    The purpose of this volume is to demonstrate that the fields of linguistics, dialectology, language education, and early reading would be well served by a word book of the Black English vernacular. Chapters are devoted to discussion of the social significance of a lexicon of Black English vernacular, the terminology of sex and lovemaking, religion…

  15. Black Families. Interdisciplinary Perspectives.

    ERIC Educational Resources Information Center

    Cheatham, Harold E., Ed.; Stewart, James B., Ed.

    Since the early 1960s, the black family has been characterized as pathological. This six-part collection of 18 research studies presents alternative approaches to understanding the special characteristics of black families. Part I, "Theoretical and Methodological Perspectives," comprises a comparison of the pioneering work of W. E. B. Du…

  16. Neoliberalism and Black Education.

    ERIC Educational Resources Information Center

    Rich, John Martin

    1986-01-01

    In contrast to traditional liberals, neoliberals share a commitment to greater economic risk-taking, support for entrepreneurism, a new industrial policy, and a different Federal Role. While New Deal and Great Society liberalism may have been more favorable to blacks, perhaps more balanced and equitable policies for blacks could be developed if…

  17. Protecting Black Girls

    ERIC Educational Resources Information Center

    Morris, Monique W.

    2016-01-01

    Statistics show that black girls in U.S. K-12 public schools are overrepresented among students who face disciplinary approaches (such as suspensions) that exclude or even criminalize them. Morris explains how black girls face conditions that make them vulnerable to a phenomenon she calls "school to confinement pathways"--conditions like…

  18. Fifty shades of black

    NASA Astrophysics Data System (ADS)

    Cartwright, Jon

    2015-11-01

    Creating dark materials that prevent reflections has become hot competition recently, with Guinness World Records having to keep revising the darkest substance yet created. But depending on who's asking, the best black may not be the blackest black, as Jon Cartwright discovers.

  19. The Black College Mystique

    ERIC Educational Resources Information Center

    Willie, Charles V.; Reddick, Richard J.; Brown, Ronald

    2005-01-01

    This study compares the culture of black colleges and universities a generation ago with those that exist today, and makes projections into the future, based on a comprehensive review of professional literature and an analysis of the management skills of contemporary black college leaders. The book considers the assets and liabilities of…

  20. The Black Woman's Burden

    ERIC Educational Resources Information Center

    Hayes, Dianne

    2012-01-01

    Not even the first lady of the most powerful nation in the world is immune to stereotypes that have plagued Black women since first setting foot on American soil. Stereotypes of being the "angry Black woman" and curiosity about differences in appearance still persist from the academy to 1600 Pennsylvania Ave. As African-American women rise in…

  1. Black Males Left Behind

    ERIC Educational Resources Information Center

    Mincy, Ronald B., Ed.

    2006-01-01

    Despite the overall economic gains in the 1990s, many young black men continue to have the poorest life chances of anyone in our society. Joblessness and low earnings among these less-educated young adults are contributing to reductions in marriage, increases in nonmarital childbearing, and a host of other social problems. In "Black Males…

  2. Observing Black Hole Spin

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher S.

    2015-08-01

    Black hole spin is important in both the fundamental physics and astrophysics realms. In fundamental terms, many extensions and alternatives to General Relativity (GR) reveal themselves through effects related to (or at least of the same order as) spin. Astrophysically, spin is a fossil record of how black holes have grown and may, in addition, be an important source of energy (e.g., powering relativistic jets from black hole systems). I shall review recent progress on observational studies of black hole spin, especially those made in the X-ray waveband. We now have multiple techniques that can be applied in our search for black hole spin; I shall discuss the concordance (or, sometimes, lack thereof) between these techniques. Finally, I shall discuss what we can expect in the next few years with the launch of new X-ray instrumentation as well as the deployment of the Event Horizon Telescope.

  3. Black holes and beyond

    SciTech Connect

    Mathur, Samir D.

    2012-11-15

    The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome 'remnants'. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a 'fuzzball' structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole. - Highlights: Black-Right-Pointing-Pointer The information paradox is a serious problem. Black-Right-Pointing-Pointer To solve it we need to find 'hair' on black holes. Black-Right-Pointing-Pointer In string theory we find 'hair' by the fuzzball construction. Black-Right-Pointing-Pointer Fuzzballs help to resolve many other issues in gravity.

  4. A black hole in a globular cluster.

    PubMed

    Maccarone, Thomas J; Kundu, Arunav; Zepf, Stephen E; Rhode, Katherine L

    2007-01-11

    Globular star clusters contain thousands to millions of old stars packed within a region only tens of light years across. Their high stellar densities make it very probable that their member stars will interact or collide. There has accordingly been considerable debate about whether black holes should exist in these star clusters. Some theoretical work suggests that dynamical processes in the densest inner regions of globular clusters may lead to the formation of black holes of approximately 1,000 solar masses. Other numerical simulations instead predict that stellar interactions will eject most or all of the black holes that form in globular clusters. Here we report the X-ray signature of an accreting black hole in a globular cluster associated with the giant elliptical galaxy NGC 4472 (in the Virgo cluster). This object has an X-ray luminosity of about 4 x 10(39) erg s(-1), which rules out any object other than a black hole in such an old stellar population. The X-ray luminosity varies by a factor of seven in a few hours, which excludes the possibility that the object is several neutron stars superposed.

  5. Source attribution of black carbon in Arctic snow.

    PubMed

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.

  6. Phytoplankton bloom in the Black Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Brightly colored waters in the Black Sea give evidence of the growth of tiny marine plants called phytoplankton, which contain chlorophyll and other pigments that reflect light different ways, producing the colorful displays. The very bright blue waters could be an organism called a coccolithophores, which has a highly reflective calcium carbonate coating that appears bright blue (or sometimes white) in true-color (visible) imagery. However, other organisms, such as cyanobacteria can also appear that color, and so often scientists will compare the ratios of reflectance at one wavelength of light to another to decide what organisms might be present. This series of images shows a bloom occurring in the Black Sea from May 11, 2002, to May 18.

  7. Black hole portal into hidden valleys

    NASA Astrophysics Data System (ADS)

    Dubovsky, Sergei; Gorbenko, Victor

    2011-05-01

    Superradiant instability turns rotating astrophysical black holes into unique probes of light axions. We consider what happens when a light axion is coupled to a strongly coupled hidden gauge sector. In this case superradiance results in an adiabatic increase of a hidden sector CP-violating θ parameter in a near horizon region. This may trigger a first order phase transition in the gauge sector. As a result a significant fraction of a black hole mass is released as a cloud of hidden mesons and can be later converted into electromagnetic radiation. This results in a violent electromagnetic burst. The characteristic frequency of such bursts may range from ˜100eV to ˜100MeV.

  8. STIS RECORDS A BLACK HOLE'S SIGNATURE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The colorful 'zigzag' on the right is not the work of a flamboyant artist, but the signature of a supermassive black hole in the center of galaxy M84, discovered by Hubble Space Telescope's Space Telescope Imaging Spectrograph (STIS). The image on the left, taken with Hubble's Wide Field Planetary and Camera 2 shows the core of the galaxy where the suspected black hole dwells. Astronomers mapped the motions of gas in the grip of the black hole's powerful gravitational pull by aligning the STIS's spectroscopic slit across the nucleus in a single exposure. The STIS data on the right shows the rotational motion of stars and gas along the slit. The change in wavelength records whether an object is moving toward or away from the observer. The larger the excursion from the centerline -- as seen as a green and yellow picture element (pixels) along the center strip, the greater the rotational velocity. If no black hole were present, the line would be nearly vertical across the scan. Instead, STIS's detector found the S-shape at the center of this scan, indicating a rapidly swirling disk of trapped material encircling the black hole. Along the S-shape from top to bottom, velocities skyrocket as seen in the rapid, dramatic swing to the left (blueshifted or approaching gas), then the region in the center simultaneously records the enormous speeds of the gas both approaching and receding for orbits in the immediate vicinity of the black hole, and then an equivalent swing from the right, back to the center line. STIS measures a velocity of 880,000 miles per hour (400 kilometers per second) within 26 light-years of the galaxy's center, where the black hole dwells. This motion allowed astronomers to calculate that the black hole contains at least 300 million solar masses. (Just as the mass of our Sun can be calculated from the orbital radii and speeds of the planets.) This observation demonstrates a direct connection between a supermassive black hole and activity (such as radio

  9. Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Alsaffar, Fadhel; Alodan, Sarah; Alrasheed, Abdul; Alhussain, Abdulrahman; Alrubaiq, Noura; Abbas, Ahmad; Amer, Moh. R.

    2017-03-01

    Layered black phosphorus has drawn much attention due to the existence of a band gap compared to the widely known graphene. However, environmental stability of black phosphorus is still a major issue, which hinders the realization of practical device applications. Here, we spatially Raman map exfoliated black phosphorus using confocal fast-scanning technique at different time intervals. We observe a Raman intensity modulation for , B2g, and modes. This Raman modulation is found to be caused by optical interference, which gives insights into the oxidation mechanism. Finally, we examine the fabrication compatible PMMA coating as a viable passivation layer. Our measurements indicate that PMMA passivated black phosphorus thin film flakes can stay pristine for a period of 19 days when left in a dark environment, allowing sufficient time for further nanofabrication processing. Our results shed light on black phosphorus degradation which can aid future passivation methods.

  10. Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus

    PubMed Central

    Alsaffar, Fadhel; Alodan, Sarah; Alrasheed, Abdul; Alhussain, Abdulrahman; Alrubaiq, Noura; Abbas, Ahmad; Amer, Moh. R.

    2017-01-01

    Layered black phosphorus has drawn much attention due to the existence of a band gap compared to the widely known graphene. However, environmental stability of black phosphorus is still a major issue, which hinders the realization of practical device applications. Here, we spatially Raman map exfoliated black phosphorus using confocal fast-scanning technique at different time intervals. We observe a Raman intensity modulation for , B2g, and modes. This Raman modulation is found to be caused by optical interference, which gives insights into the oxidation mechanism. Finally, we examine the fabrication compatible PMMA coating as a viable passivation layer. Our measurements indicate that PMMA passivated black phosphorus thin film flakes can stay pristine for a period of 19 days when left in a dark environment, allowing sufficient time for further nanofabrication processing. Our results shed light on black phosphorus degradation which can aid future passivation methods. PMID:28317834

  11. Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus.

    PubMed

    Alsaffar, Fadhel; Alodan, Sarah; Alrasheed, Abdul; Alhussain, Abdulrahman; Alrubaiq, Noura; Abbas, Ahmad; Amer, Moh R

    2017-03-20

    Layered black phosphorus has drawn much attention due to the existence of a band gap compared to the widely known graphene. However, environmental stability of black phosphorus is still a major issue, which hinders the realization of practical device applications. Here, we spatially Raman map exfoliated black phosphorus using confocal fast-scanning technique at different time intervals. We observe a Raman intensity modulation for , B2g, and modes. This Raman modulation is found to be caused by optical interference, which gives insights into the oxidation mechanism. Finally, we examine the fabrication compatible PMMA coating as a viable passivation layer. Our measurements indicate that PMMA passivated black phosphorus thin film flakes can stay pristine for a period of 19 days when left in a dark environment, allowing sufficient time for further nanofabrication processing. Our results shed light on black phosphorus degradation which can aid future passivation methods.

  12. Cuticular microstructures turn specular black into matt black in a stick insect.

    PubMed

    Maurer, Doris L; Kohl, Tobias; Gebhardt, Michael J

    2017-03-01

    The stick insect Peruphasma schultei stands out from other insects by its deep matt black cuticle. We tested whether the appearance of P. schultei is due to microstructures of the cuticle, a phenomenon that has recently been described for the velvet black scales of the Gaboon viper. The shiny black stick insect Anisomorpha paromalus served as a control. We found that the P. schultei cuticle is characterised by two different types of microstructures, tall elevations with a maximum size of 18 μm and small structures with a height of 4 μm. Other than in the snake, P. schultei microstructures do not bear nanostructures. The microstructures scatter light independently of the viewing angle. This causes the matt appearance of the cuticle, whereas pigments are responsible for the black colouration, resulting in a maximum reflectance of 2.8% percent. The microstructures also cause the hydrophobic properties of the cuticle with contact angles near 130°. Resin replicas and bleaching of the cuticle strongly support these results. Moreover, the matt black cuticle has a higher heat absorption compared to the control. We discuss the selective benefit of the matt black appearance of P. schultei in the context of behaviour, ecology and phylogeny.

  13. FEASTING BLACK HOLE BLOWS BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  14. Measuring Black and White Perceptions of Racial Dynamics in Management.

    DTIC Science & Technology

    1980-08-01

    Sumner, William Graham Folkways. New York: Ginn, 1906. Tajfel , H. Experiments in intergroup discrimination , Scientific American, 1970, 223, 96-102...organizational re- searchers (Purcell and Cavanagh, 1972; Fernandez, 1975). In light of the long history of racial discrimination - in the United...Promotion Discrimination Item Scored 1 + Blacks have to work harder than Whites to prove themselves. 2 + Blacks are almost never evaluated fairly by

  15. Microlensing Signature of Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  16. The next Black America: Obstacles amidst opportunities for Black families.

    PubMed

    Armah, Tichianaa

    2015-09-01

    In this article, the author offers personal accounts on how she feels about the current Black America and obstacles that people face reaching for opportunities for Black families. Focus relies on the current state of Black America, poverty, schools, academic achievement, raising children in the next Black America and much more. (PsycINFO Database Record

  17. Black Studies and Black People in the Future

    ERIC Educational Resources Information Center

    Stewart, James B.

    1976-01-01

    Suggests that the demise of Black Studies would foreshadow the future deterioration of the material conditions of black people, a situation which all elements of the black community want to preclude as a possible future for black people. (Author/AM)

  18. On the Charter Question: Black Marxism and Black Nationalism

    ERIC Educational Resources Information Center

    Stern, Mark; Hussain, Khuram

    2015-01-01

    This article brings two black intellectual traditions to bear on the question of charter schools: black Marxism and black nationalism. The authors examine the theoretical and rhetorical devices used to talk about charters schools by focusing on how notions of "black liberation" are deployed by the charter movement, and to what end. The…

  19. Untapped Resources: "Styling" in Black Students' Writing for Black Audiences.

    ERIC Educational Resources Information Center

    Redd, Teresa M.

    Two studies compared the impact of black and white audiences on black students' writing style. In the first study, eight students in an all-black intermediate composition class completed one argumentative draft addressed to black opponents and one addressed to white opponents on two different topics. The essays were examined for stylistic features…

  20. Light Duty.

    ERIC Educational Resources Information Center

    Rogers, Jeff

    1996-01-01

    Discusses multipurpose athletic-field lighting specifications to enhance lighting quality and reduce costs. Topics discussed include lamp choice, lighting spillover and glare prevention, luminary assemblies and poles, and the electrical dimming and switching systems. (GR)

  1. Light Pollution

    ERIC Educational Resources Information Center

    Riegel, Kurt W.

    1973-01-01

    Outdoor lighting is light pollution which handicaps certain astronomical programs. Protective measures must be adopted by the government to aid observational astronomy without sacrificing legitimate outdoor lighting needs. (PS)

  2. ULTRAMASSIVE BLACK HOLE COALESCENCE

    SciTech Connect

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter E-mail: k.holley@vanderbilt.edu

    2015-01-10

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production.

  3. Color Gamut of Blackness in a Liquid Crystal Display

    NASA Astrophysics Data System (ADS)

    Shimomura, Teruo; Kobayashi, Shunsuke

    1985-02-01

    A guest-host mode liquid crystal display of a transmission type is investigated. Color gamut of blackness is established from an estimation experiment of color matching and is shown by the CIE 1931 chromaticity diagram and color solid. Color gamut of blackness under the influence of a light source and ambient illumination is discussed. A Munsell color ship, N-1 is used as a matching black color sample and fifty hues of liquid crystal cells are used as test sample colors. Six observers participate in the estimation experiment and measurement is done from ascending- and descending-series in the method of adjustment.

  4. Measuring Black Hole Spin

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    1999-09-01

    WE PROPOSE TO CARRY OUT A SYSTEMATIC STUDY OF EMISSION AND ABSORPTION SPECTRAL FEATURES THAT ARE OFTEN SEEN IN X-RAY SPECTRA OF BLACK HOLE BINARIES. THE EXCELLENT SENSITIVITY AND ENERGY RESOLUTION OF THE ACIS/HETG COMBINATION WILL NOT ONLY HELP RESOLVE AMBIGUITIES IN INTERPRETING THESE FEATURES, BUT MAY ALLOW MODELLING OF THE EMISSION LINE PROFILES IN DETAIL. THE PROFILES MAY CONTAIN INFORMATION ON SUCH FUNDAMENTAL PROPERTIES AS THE SPIN OF BLACK HOLES. THEREFORE, THIS STUDY COULD LEAD TO A MEASUREMENT OF BLACK HOLE SPIN FOR SELECTED SOURCES. THE RESULT CAN THEN BE DIRECTLY COMPARED WITH THOSE FROM PREVIOUS STUDIES BASED ON INDEPENDENT METHODS.

  5. Black branes in flux compactifications

    SciTech Connect

    Torroba, Gonzalo; Wang, Huajia

    2013-10-01

    We construct charged black branes in type IIA flux compactifications that are dual to (2 + 1)-dimensional field theories at finite density. The internal space is a general Calabi-Yau manifold with fluxes, with internal dimensions much smaller than the AdS radius. Gauge fields descend from the 3-form RR potential evaluated on harmonic forms of the Calabi-Yau, and Kaluza-Klein modes decouple. Black branes are described by a four-dimensional effective field theory that includes only a few light fields and is valid over a parametrically large range of scales. This effective theory determines the low energy dynamics, stability and thermodynamic properties. Tools from flux compactifications are also used to construct holographic CFTs with no relevant scalar operators, that can lead to symmetric phases of condensed matter systems stable to very low temperatures. The general formalism is illustrated with simple examples such as toroidal compactifications and manifolds with a single size modulus. We initiate the classification of holographic phases of matter described by flux compactifications, which include generalized Reissner-Nordstrom branes, nonsupersymmetric AdS2×R2 and hyperscaling violating solutions.

  6. The Price of "Black Dominance."

    ERIC Educational Resources Information Center

    Hoberman, John

    2000-01-01

    Discusses the harmful effects of stereotyping black males as athletes, noting that over-identification with athletes and the world of physical performance limits black children's development by discouraging academic achievement. Examines the negative influence of mass media focus on black athletes, rappers, and stylized ghetto blackness. Discusses…

  7. Black Writers' Views of America.

    ERIC Educational Resources Information Center

    Davis, Angela

    1979-01-01

    Contrary to their portrayal in "Black Macho and the Myth of the Superwoman," Black women were not passive in the Black liberation movement of the 1960s. Wallace does not acknowledge the organizing efforts of both Black men and women to challenge racism and sexism within the larger capitalist system. (Author/EB)

  8. Guide to the Black Novel.

    ERIC Educational Resources Information Center

    Lederer, Richard

    1969-01-01

    The nature of black literature raises questions about a black aesthetic and the universality of black expression. Central in the writings of Richard Wright and Ralph Ellison are the black man's confusion of identity, stemming from his invisibility in a white America, and the crimes of ignorance and blindness perpetrated on him by whites and by…

  9. Black Poverty: Past and Future.

    ERIC Educational Resources Information Center

    Smith, James P.

    The current debate over cutbacks in social programs for the black poor tends to overlook two fundamental realities. First, there has been a significant, long-term reduction in the number of black poor. Although black poverty remains at unacceptably high levels, a majority of blacks are now members of the middle class. Several factors have…

  10. Feminism and Black Women's Studies.

    ERIC Educational Resources Information Center

    Hooks, Bell

    1989-01-01

    Women's studies programs have largely ignored Black women. Until Black women's studies courses are developed, feminist scholarship on Black women will not advance, and the contributions of Black women to women's rights movements and African American literature and scholarship may be neglected. (DM)

  11. Constructing Black Titania with Unique Nanocage Structure for Solar Desalination.

    PubMed

    Zhu, Guilian; Xu, Jijian; Zhao, Wenli; Huang, Fuqiang

    2016-11-23

    Solar desalination driven by solar radiation as heat source is freely available, however, hindered by low efficiency. Herein, we first design and synthesize black titania with a unique nanocage structure simultaneously with light trapping effect to enhance light harvesting, well-crystallized interconnected nanograins to accelerate the heat transfer from titania to water and with opening mesopores (4-10 nm) to facilitate the permeation of water vapor. Furthermore, the coated self-floating black titania nanocages film localizes the temperature increase at the water-air interface rather than uniformly heating the bulk of the water, which ultimately results in a solar-thermal conversion efficiency as high as 70.9% under a simulated solar light with an intensity of 1 kW m(-2) (1 sun). This finding should inspire new black materials with rationally designed structure for superior solar desalination performance.

  12. Introducing the Black Hole

    ERIC Educational Resources Information Center

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  13. Black Hole Simulation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This graphic shows the computer simulation of a black hole from start to finish. Plasma is falling slowly toward the black hole in a (at the upper left). The plasma has a magnetic field, shown by the white lines. It picks up speed as it falls toward the hole in b (at the upper right), c (lower left) and d (lower right). However, the rotating black hole twists up space itself (and the magnetic field lines) and ejects electromagnetic power along the north and south poles above the black hole. The red and white color shows the immense electromagnetic power output, which eventually will pick up particles and form squirting jets. This simulation was conducted using supercomputers at Japan's National Institute for Fusion Science.

  14. Janus black holes

    NASA Astrophysics Data System (ADS)

    Bak, Dongsu; Gutperle, Michael; Janik, Romuald A.

    2011-10-01

    In this paper Janus black holes in A dS 3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ blackhole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.

  15. Blacks in Appalachia

    ERIC Educational Resources Information Center

    Allen, Fayetta A.

    1974-01-01

    More than 1.3 million blacks live in Appalachian region reaching from Mississippi to New York State. Their existence and plight are ignored; they are colonized, exploited, and have few or no outlets for redress. (Author)

  16. Strong field gravitational lensing by a charged Galileon black hole

    NASA Astrophysics Data System (ADS)

    Zhao, Shan-Shan; Xie, Yi

    2016-07-01

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.

  17. BLACK HOLES: ONE SIZE DOESN'T FIT ALL

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This comparison of the hearts of four elliptical galaxies shows that the more massive a galaxy's central bulge of stars, the heftier its black hole. The galaxies are part of a census of 30 galaxies conducted by astronomers using NASA's Hubble Space Telescope. Black holes are dense, compact objects possessing such strong gravitational forces that not even light can escape them. The column of black-and-white pictures at left, taken by ground-based telescopes, shows the galaxies. The inset boxes define the central regions of stars. Close-up images of these regions, as seen by Hubble's Wide Field and Planetary Camera 2, are in the middle column. The column at right lists the masses of the black holes and illustrates the respective diameters of the event horizons. An event horizon defines a black hole's boundary. Any material that crosses that boundary becomes ensnared in a black hole's grasp and cannot escape. The event horizons cannot be seen in the Hubble images because they are 25 million times smaller than the scale of the pictures. Astronomers determined the mass of each black hole by measuring the motion of stars swirling around it: the closer the stars approach the black hole, the faster their velocity. Only through observations with Hubble's superior vision could astronomers probe to the core of the galaxy where these effects are easily measured. They discovered a remarkable new correlation between a black hole's mass and the average speed of the stars in a galaxy's central bulge. The faster the stars are moving, the more massive the black hole. This information suggests that the galaxy and the black hole grew simultaneously. Credit: NASA and Karl Gebhardt (Lick Observatory)

  18. Low-energy electromagnetic radiation as an indirect probe of black-hole evaporation

    NASA Astrophysics Data System (ADS)

    Emelyanov, Slava

    2016-12-01

    We study the influence of black-hole evaporation on light propagation. The framework employed is based on the non-linear QED effective action at one-loop level. We show that the light-cone condition is modified for low-energy radiation due to black-hole evaporation. We discuss conditions under which the phase velocity of this low-energy radiation is greater than c. We also compute the modified light-deflection angle, which turns out to be significantly different from the standard GR value for black-hole masses in the range MPl ≪ M ≲1019MPl.

  19. Black Hole Hunters Set New Distance Record

    NASA Astrophysics Data System (ADS)

    2010-01-01

    Astronomers using ESO's Very Large Telescope have detected, in another galaxy, a stellar-mass black hole much farther away than any other previously known. With a mass above fifteen times that of the Sun, this is also the second most massive stellar-mass black hole ever found. It is entwined with a star that will soon become a black hole itself. The stellar-mass black holes [1] found in the Milky Way weigh up to ten times the mass of the Sun and are certainly not be taken lightly, but, outside our own galaxy, they may just be minor-league players, since astronomers have found another black hole with a mass over fifteen times the mass of the Sun. This is one of only three such objects found so far. The newly announced black hole lies in a spiral galaxy called NGC 300, six million light-years from Earth. "This is the most distant stellar-mass black hole ever weighed, and it's the first one we've seen outside our own galactic neighbourhood, the Local Group," says Paul Crowther, Professor of Astrophysics at the University of Sheffield and lead author of the paper reporting the study. The black hole's curious partner is a Wolf-Rayet star, which also has a mass of about twenty times as much as the Sun. Wolf-Rayet stars are near the end of their lives and expel most of their outer layers into their surroundings before exploding as supernovae, with their cores imploding to form black holes. In 2007, an X-ray instrument aboard NASA's Swift observatory scrutinised the surroundings of the brightest X-ray source in NGC 300 discovered earlier with the European Space Agency's XMM-Newton X-ray observatory. "We recorded periodic, extremely intense X-ray emission, a clue that a black hole might be lurking in the area," explains team member Stefania Carpano from ESA. Thanks to new observations performed with the FORS2 instrument mounted on ESO's Very Large Telescope, astronomers have confirmed their earlier hunch. The new data show that the black hole and the Wolf-Rayet star dance

  20. Lighting Conservation

    ERIC Educational Resources Information Center

    Arnold, Frank D.

    1975-01-01

    With the energy crisis has come an awareness of wasteful consumption practices. One area where research is being done is in lighting conservation. Information in this article is concerned with finding more effective and efficient lighting designs which include daylight utilization, task-oriented lighting, and lighting controls. (MA)

  1. Charged Galileon black holes

    SciTech Connect

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar E-mail: christos.charmousis@th.u-psud.fr

    2015-05-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.

  2. Searching for Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, M.

    1998-01-01

    Our UV/VIS work concentrates on black hole X-ray nova. These objects consist of two stars in close orbit, one of which we believe is a black hole - our goal is to SHOW that one is a black hole. In order to reach this goal we carry out observations in the Optical, UV, IR and X-ray bands, and compare the observations to theoretical models. In the past year, our UV/VIS grant has provided partial support (mainly travel funds and page charges) for work we have done on X-ray nova containing black holes and neutron stars. We have been very successful in obtaining telescope time to support our project - we have completed approximately a dozen separate observing runs averaging 3 days each, using the MMT (5M), Lick 3M, KPNO 2.1M, CTIO 4M, CTIO 1.5M, and the SAO/WO 1.2M telescopes. These observations have allowed the identification of one new black hole (Nova Oph 1977), and allowed the mass of another to be measured (GS2000+25). Perhaps our most exciting new result is the evidence we have gathered for the existence of 'event horizons' in black hole X-ray nova.

  3. Can Blacks Be Racists? Black-on-Black Principal Abuse in an Urban School Setting

    ERIC Educational Resources Information Center

    Khalifa, Muhammad

    2015-01-01

    This study examines Black student and parental perceptions of exclusionary practices of Black school principals. I ask why students and parents viewed two Black principals as contributing to abusive and exclusionary school environments that marginalized Black students. After a two-year ethnographic study, it was revealed that exclusionary…

  4. Time, Light Speed and Space Energy

    NASA Astrophysics Data System (ADS)

    Yang, Penglin

    2008-10-01

    This paper presents a formula that describe the relation with time and the space energy which resolves the key of Lorentz transformation how the time changes in different frames of reference. As the result, it is natural that the light speed is not constant. However, from the formula, in the same space--same space energy, the light speeds in different frames of reference are same. From this, it is easy to explain some facts, for example, light defraction; black holes attract light (it is not attracting, it is defraction); light curving nearby the sun; the temperature of sun surface is higher than inside, etc.)

  5. Black Sea Becomes Turquoise

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image shows bright, turquoise-colored swirls across the surface of the Black Sea, signifying the presence of a large phytoplankton bloom. Scientists have observed similar blooms recurring annually, roughly this same time of year. The Sea of Azov, which is the smaller body of water located just north of the Black Sea in this image, also shows a high level of color variance. The brownish pixels in the Azov are probably due to sediments carried in from high waters and snowmelt from upstream. This scene was acquired by the Moderate Resolution Imaging Spectroradiometer, flying aboard NASA's Terra satellite, on May 14, 2002. According to the Black Sea Environment Programme's Marine Hydrophysical Institute, the Black Sea is ?one of the marine areas of the world most damaged by human activities.? The coastal zone around these Eastern European inland water bodies is densely populated'supporting a permanent population of roughly 16 million people and another 4 million tourists each year. Six countries border with the Black Sea, including Ukraine to the north, Russia and Georgia to the east, Turkey to the south, and Bulgaria and Romania to the west. Because it is isolated from the world's oceans, and because there is an extensive drainage network of rivers that empty into it, the Black Sea has a unique and delicate water balance which is very important for supporting its marine ecosystem. Of particular concern to scientists is the salinity, water level, and nutrient levels of the Black Sea's waters, all of which are, unfortunately, being impacted by human activities. Within the last three decades the combination of increased nutrient loads from human sources together with pollution and over-harvesting of fisheries has resulted in a sharp decline in water quality. Scientists from each of the Black Sea's bordering nations are currently working together to study the issues and formulate a joint, international strategy for saving this unique marine ecosystem

  6. Black Sea in Bloom

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image shows bright, turquoise-colored swirls across the surface of the Black Sea, signifying the presence of a large phytoplankton bloom. Scientists have observed similar blooms recurring annually, roughly this same time of year. The Sea of Azov, which is the smaller body of water located just north of the Black Sea in this image, also shows a high level of biological activity currently ongoing. The brownish pixels in the Azov are probably sediments carried in from high waters upstream. This scene was acquired by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on May 4, 2002. According to the Black Sea Environment Programme's Marine Hydrophysical Institute, the Black Sea is 'one of the marine areas of the world most damaged by human activities.' The coastal zone around these Eastern European inland water bodies is densely populated-supporting a permanent population of roughly 16 million people and another 4 million tourists each year. Six countries border with the Black Sea, including Ukraine to the north, Russia and Georgia to the east, Turkey to the south, and Bulgaria and Romania to the west. Because it is isolated from the world's oceans, and because there is an extensive drainage network of rivers that empty into it, the Black Sea has a unique and delicate water balance which is very important for supporting its marine ecosystem. Of particular concern to scientists is the salinity, water level, and nutrient levels of the Black Sea's waters, all of which are, unfortunately, being impacted by human activities. Within the last three decades the combination of increased nutrient loads from human sources together with pollution and over-harvesting of fisheries has resulted in a sharp decline in water quality. Scientists from each of the Black Sea's bordering nations are currently working together to study the issues and formulate a joint, international strategy for saving this unique marine ecosystem

  7. Light in Thermal Environments (LITE) Workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Light emitted from high temperature black smokers (350 C) at mid-ocean ridge spreading centers has been documented, but the source of this light and its photochemical and biological consequences have yet to be investigated. Preliminary studies indicate that thermal radiation alone might account for the 'glow' and that a novel photoreceptor in shrimp colonizing black smoker chimneys may detect this 'glow.' A more controversial question is whether there may be sufficient photon flux of appropriate wavelengths to support geothermally-driven photosynthesis (GDP) by microorganisms. Although only a very low level of visible and near infrared light may be emitted from any single hydrothermal vent, several aspects of the light make it of more than enigmatic interest. First, the light is clearly linked to geophysical (and perhaps geochemical) processes; its attributes may serve as powerful index parameters for monitoring change in these processes. Second, while the glow at a vent orifice is a very local phenomenon, more expansive subsurface environments may be illuminated, thereby increasing the spatial scale at which biological consequences of this light might be considered. Third, in contrast to intermittent bioluminescent light sources in the deep sea, the light emitted at vents almost certainly glows or flickers continuously over the life of the individual black smokers (years to decades); collectively, light emitted from black smokers along the ocean's spreading centers superimposed on background Cerenkov radiation negates the concept of the deep sea as an environment devoid of abiotic light. Finally, the history of hydrothermal activity predates the origin of life; light in the deep sea has been a continuous phenomenon on a geological time scale and may have served either as a seed or refugium for the evolution of biological photochemical reactions or adaptations.

  8. Humidity Sensing and Photodetection Behavior of Electrochemically Exfoliated Atomically Thin-Layered Black Phosphorus Nanosheets.

    PubMed

    Erande, Manisha B; Pawar, Mahendra S; Late, Dattatray J

    2016-05-11

    Recent investigations on two-dimensional black phosphorus material mainly highlight work on few atomic layers and multilayers. It is still unknown if the black phosphorus atomically thin sheet is an ideal structure for the enhanced gas-solid interactions due to its large surface area. To further investigate this concern, we have synthesized few atomic layer thick nanosheets of black phosphorus using an electrochemical exfoliation method. The surface morphology and thickness of the nanosheet were identified using AFM, TEM, and Raman spectroscopy. The black phosphorus nanosheet thick film device was used for the gas sensing application with exposure to different humidites. Further, the few layer black phosphorus nanosheet based transistor shows good mobility and on/off ratio. The UV light irradiation on the black phosphorus nanosheet shows good response time. The overall results show that the few layer thick film of black phosphorus nanosheets sample exhibits creditable sensitivity and better recovery time to be used in humidity sensor and photodetector applications.

  9. Black rings at large D

    NASA Astrophysics Data System (ADS)

    Tanabe, Kentaro

    2016-02-01

    We study the effective theory of slowly rotating black holes at the infinite limit of the spacetime dimension D. This large D effective theory is obtained by integrating the Einstein equation with respect to the radial direction. The effective theory gives equations for non-linear dynamical deformations of a slowly rotating black hole by effective equations. The effective equations contain the slowly rotating Myers-Perry black hole, slowly boosted black string, non-uniform black string and black ring as stationary solutions. We obtain the analytic solution of the black ring by solving effective equations. Furthermore, by perturbation analysis of effective equations, we find a quasinormal mode condition of the black ring in analytic way. As a result we confirm that thin black ring is unstable against non-axisymmetric perturbations. We also include 1 /D corrections to the effective equations and discuss the effects by 1 /D corrections.

  10. Black Holes and the Centers of Galaxies

    NASA Astrophysics Data System (ADS)

    Richstone, Douglas

    1997-07-01

    We propose to continue our survey of centers of nearby galaxies. The major goal for Cycle 7 is to survey an unbiased set of galaxies with a potentially wide range of black hole masses. The results will constrain the prevalence and formation of massive black holes and their relationship to AGN's. Over the last several years, we have used HST to characterize the scaling laws for galaxy centers, to identify an apparent dichotomy in galaxy types based on their central light profiles, and to identify new black hole candidates and confirm ground-based results on known candidates. In the STIS epoch, we wish to capitalize on the presence of a genuine slit spectrograph to study the central stellar dynamics of a large set of systematically selected elliptical and S0 galaxies. The sample for this cycle has been carefully chosen to optimize our leverage on the character of a proposed correlation of black hole mass with galaxy mass. In addition, high-S/N observations of line profiles should permit us to distinguish between BHs and anisotropic stellar orbits, a critical degeneracy that has long plagued this subject.

  11. A Response to "Ultraviolet Light: Some Considerations for Vision Stimulation."

    ERIC Educational Resources Information Center

    Wright, Suzette

    1987-01-01

    As there is uncertainty surrounding black light safety, caution should be exercised in using it as a vision training tool with visually handicapped students--particularly aphakic and albino students, young students, and those taking photosensitizing drugs. The use of ultraviolet-blocking filters or lenses is recommended during black light…

  12. Make a Mystery Circuit with a Bar Light Fixture

    ERIC Educational Resources Information Center

    Lietz, Martha

    2007-01-01

    Teachers have been building mystery circuits or so-called "black box circuits" to use as a demonstration with their students for years. This paper presents an easy way to make simple mystery circuits using inexpensive light fixtures (see Fig. 1) available at almost any home improvement store. In a black box circuit, only the lightbulbs are visible…

  13. Light Visor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Seasonal Affective Disorder is a form of depression brought on by reduced light. For some people, this can lead to clinical depression. NASA has conducted research in light therapy and employs it to help astronauts adjust internal rhythms during orbital flight. Dr. George Brainard, a medical researcher and NASA consultant, has developed a portable light therapy device, which is commercially available. The Light Visor allows continuous light therapy and can be powered by either batteries or electricity. Dr. Brainard continues to research various aspects of light therapy.

  14. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, John

    2009-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  15. Merging Black Holes

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2009-05-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  16. JET POWER AND BLACK HOLE SPIN: TESTING AN EMPIRICAL RELATIONSHIP AND USING IT TO PREDICT THE SPINS OF SIX BLACK HOLES

    SciTech Connect

    Steiner, James F.; McClintock, Jeffrey E.; Narayan, Ramesh

    2013-01-10

    Using 5 GHz radio luminosity at light-curve maximum as a proxy for jet power and black hole spin measurements obtained via the continuum-fitting method, Narayan and McClintock presented the first direct evidence for a relationship between jet power and black hole spin for four transient black hole binaries. We test and confirm their empirical relationship using a fifth source, H1743-322, whose spin was recently measured. We show that this relationship is consistent with Fe-line spin measurements provided that the black hole spin axis is assumed to be aligned with the binary angular momentum axis. We also show that, during a major outburst of a black hole transient, the system reasonably approximates an X-ray standard candle. We further show, using the standard synchrotron bubble model, that the radio luminosity at light-curve maximum is a good proxy for jet kinetic energy. Thus, the observed tight correlation between radio power and black hole spin indicates a strong underlying link between mechanical jet power and black hole spin. Using the fitted correlation between radio power and spin for the above five calibration sources, we predict the spins of six other black holes in X-ray/radio transient systems with low-mass companions. Remarkably, these predicted spins are all relatively low, especially when compared to the high measured spins of black holes in persistent, wind-fed systems with massive companions.

  17. Jet Power and Black Hole Spin: Testing an Empirical Relationship and Using it to Predict the Spins of Six Black Holes

    NASA Astrophysics Data System (ADS)

    Steiner, James F.; McClintock, Jeffrey E.; Narayan, Ramesh

    2013-01-01

    Using 5 GHz radio luminosity at light-curve maximum as a proxy for jet power and black hole spin measurements obtained via the continuum-fitting method, Narayan & McClintock presented the first direct evidence for a relationship between jet power and black hole spin for four transient black hole binaries. We test and confirm their empirical relationship using a fifth source, H1743-322, whose spin was recently measured. We show that this relationship is consistent with Fe-line spin measurements provided that the black hole spin axis is assumed to be aligned with the binary angular momentum axis. We also show that, during a major outburst of a black hole transient, the system reasonably approximates an X-ray standard candle. We further show, using the standard synchrotron bubble model, that the radio luminosity at light-curve maximum is a good proxy for jet kinetic energy. Thus, the observed tight correlation between radio power and black hole spin indicates a strong underlying link between mechanical jet power and black hole spin. Using the fitted correlation between radio power and spin for the above five calibration sources, we predict the spins of six other black holes in X-ray/radio transient systems with low-mass companions. Remarkably, these predicted spins are all relatively low, especially when compared to the high measured spins of black holes in persistent, wind-fed systems with massive companions.

  18. Education in the Black Diaspora: Perspectives, Challenges, and Prospects. Routledge Research in Education

    ERIC Educational Resources Information Center

    Freeman, Kassie, Ed.; Johnson, Ethan, Ed.

    2011-01-01

    This volume gathers scholars from around the world in a comparative approach to the various educational struggles of people of African descent, advancing the search for solutions and bringing to light new facets of the experiences of black people in the era of globalization. This book begins with "Black Populations in the Diaspora:…

  19. The Evolving Challenges of Black College Students: New Insights for Policy, Practice, and Research

    ERIC Educational Resources Information Center

    Strayhorn, Terrell L., Ed.; Terrell, Melvin Cleveland, Ed.

    2010-01-01

    Presenting new empirical evidence and employing fresh theoretical perspectives, this book sheds new light on the challenges that Black Students face from the time they apply to college through their lives on campus. The contributors make the case that the new generation of Black students differ in attitudes and backgrounds from earlier…

  20. Explanatory Factors of the Black Achievement Gap in Montreal's Public and Private Schools: A Multivariate Analysis

    ERIC Educational Resources Information Center

    Caldas, Stephen J.; Bernier, Sylvain; Marceau, Richard

    2009-01-01

    This exploratory analysis uses multiple regression modeling to help shed light on the correlates of the Black achievement gap in Montreal's public and private secondary schools. Using school-level testing data from Quebec's Ministry of Education, the authors show that there is a Black achievement gap, and that this gap is highly associated with…

  1. Detecting and Segregating Black Tip-Damaged Wheat Kernels Using Visible and Near Infrared Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection of individual wheat kernels with black tip symptom (BTS) and black tip damage (BTD) was demonstrated using near infrared reflectance spectroscopy (NIRS) and silicon light-emitting-diode (LED) based instruments. The two instruments tested, a single kernel near-infrared spectroscopy instrume...

  2. Light bending in radiation background

    SciTech Connect

    Kim, Jin Young; Lee, Taekoon E-mail: tlee@kunsan.ac.kr

    2014-01-01

    We consider the velocity shift of light in presence of radiation emitted by a black body. Within geometric optics formalism we calculate the bending angle of a light ray when there is a gradient in the energy density. We model the bending for two simplified cases. The bending angle is proportional to the inverse square power of the impact parameter (∝1/b{sup 2}) when the dilution of energy density is spherically symmetric. The bending angle is inversely proportional to the impact parameter (∝1/b) when the energy density dilutes cylindrically. Assuming that a neutron star is an isothermal black body, we estimate the order of magnitude for such bending angle and compare it with the bending angle by magnetic field.

  3. Black-carbon absorption enhancement in the atmosphere determined by particle mixing state

    NASA Astrophysics Data System (ADS)

    Liu, Dantong; Whitehead, James; Alfarra, M. Rami; Reyes-Villegas, Ernesto; Spracklen, Dominick V.; Reddington, Carly L.; Kong, Shaofei; Williams, Paul I.; Ting, Yu-Chieh; Haslett, Sophie; Taylor, Jonathan W.; Flynn, Michael J.; Morgan, William T.; McFiggans, Gordon; Coe, Hugh; Allan, James D.

    2017-02-01

    Atmospheric black carbon makes an important but poorly quantified contribution to the warming of the global atmosphere. Laboratory and modelling studies have shown that the addition of non-black-carbon materials to black-carbon particles may enhance the particles’ light absorption by 50 to 60% by refracting and reflecting light. Real-world experimental evidence for this `lensing’ effect is scant and conflicting, showing that absorption enhancements can be less than 5% or as large as 140%. Here we present simultaneous quantifications of the composition and optical properties of individual atmospheric black-carbon particles. We show that particles with a mass ratio of non-black carbon to black carbon of less than 1.5, which is typical of fresh traffic sources, are best represented as having no absorption enhancement. In contrast, black-carbon particles with a ratio greater than 3, which is typical of biomass-burning emissions, are best described assuming optical lensing leading to an absorption enhancement. We introduce a generalized hybrid model approach for estimating scattering and absorption enhancements based on laboratory and atmospheric observations. We conclude that the occurrence of the absorption enhancement of black-carbon particles is determined by the particles’ mass ratio of non-black carbon to black carbon.

  4. Do Small Canopy Gaps Created by Japanese Black Bears Facilitate Fruiting of Fleshy-Fruited Plants?

    PubMed

    Takahashi, Kazuaki; Takahashi, Kaori; Washitani, Izumi

    2015-01-01

    Japanese black bears often break branches when climbing trees and feeding on fruit in canopies, thereby creating small canopy gaps. However, the role of black bear-created canopy gaps has not been evaluated in the context of multiple forest dynamics. Our hypothesis was that small canopy gaps created by black bears improve light conditions, which facilitates fruiting of adult fleshy-fruited plants located beneath the gaps, and also that this chain interaction depends on interactions among the size of gaps, improved light conditions, forest layers, and life form of plants. The rPPFD, size of black bear-created canopy gaps, and fruiting/non-fruiting of fleshy-fruited plants were investigated in five forest layers beneath black-bear-created canopy gaps and closed canopies of Mongolian oak (Quercus crispula). We found that light conditions improved beneath black bear-disturbed trees with canopy gaps of large size, and the effect of improvement of light conditions was reduced with descending forest layers. Fruiting of fleshy-fruited plants, especially woody lianas and trees, was facilitated by the improvement of light conditions accompanied by an increase in the size of black-bear-created gaps. Data from this study revealed that canopy disturbance by black bears was key for improving light conditions and accelerating fruiting of fleshy-fruited trees and woody lianas in the canopy layers in particular. Therefore, our hypothesis was mostly supported. Our results provide evidence that Japanese black bears have high potential as ecosystem engineers that increase the availability of resources (light and fruit in this study) to other species by causing physical state changes in biotic materials (branches of Q. crispula in this study).

  5. Do Small Canopy Gaps Created by Japanese Black Bears Facilitate Fruiting of Fleshy-Fruited Plants?

    PubMed Central

    Takahashi, Kazuaki; Takahashi, Kaori; Washitani, Izumi

    2015-01-01

    Japanese black bears often break branches when climbing trees and feeding on fruit in canopies, thereby creating small canopy gaps. However, the role of black bear-created canopy gaps has not been evaluated in the context of multiple forest dynamics. Our hypothesis was that small canopy gaps created by black bears improve light conditions, which facilitates fruiting of adult fleshy-fruited plants located beneath the gaps, and also that this chain interaction depends on interactions among the size of gaps, improved light conditions, forest layers, and life form of plants. The rPPFD, size of black bear-created canopy gaps, and fruiting/non-fruiting of fleshy-fruited plants were investigated in five forest layers beneath black-bear-created canopy gaps and closed canopies of Mongolian oak (Quercus crispula). We found that light conditions improved beneath black bear-disturbed trees with canopy gaps of large size, and the effect of improvement of light conditions was reduced with descending forest layers. Fruiting of fleshy-fruited plants, especially woody lianas and trees, was facilitated by the improvement of light conditions accompanied by an increase in the size of black-bear-created gaps. Data from this study revealed that canopy disturbance by black bears was key for improving light conditions and accelerating fruiting of fleshy-fruited trees and woody lianas in the canopy layers in particular. Therefore, our hypothesis was mostly supported. Our results provide evidence that Japanese black bears have high potential as ecosystem engineers that increase the availability of resources (light and fruit in this study) to other species by causing physical state changes in biotic materials (branches of Q. crispula in this study). PMID:26207908

  6. Light Motives.

    ERIC Educational Resources Information Center

    Filler, Martin

    1979-01-01

    The new energy consciousness has led to a thorough reevaluation of how artificial lighting can be used wisely, while other researchers have explored the potential of daylighting as an alternative interior light source. (Author/MLF)

  7. Massive Black Hole Implicated in Stellar Destruction

    NASA Astrophysics Data System (ADS)

    2010-01-01

    of Alabama who led the study. Irwin and his colleagues obtained optical spectra of the object using the Magellan I and II telescopes in Las Campanas, Chile. These data reveal emission from gas rich in oxygen and nitrogen but no hydrogen, a rare set of signals from globular clusters. The physical conditions deduced from the spectra suggest that the gas is orbiting a black hole of at least 1,000 solar masses. The abundant amount of oxygen and absence of hydrogen indicate that the destroyed star was a white dwarf, the end phase of a solar-type star that has burned its hydrogen leaving a high concentration of oxygen. The nitrogen seen in the optical spectrum remains an enigma. "We think these unusual signatures can be explained by a white dwarf that strayed too close to a black hole and was torn apart by the extreme tidal forces," said coauthor Joel Bregman of the University of Michigan. Theoretical work suggests that the tidal disruption-induced X-ray emission could stay bright for more than a century, but it should fade with time. So far, the team has observed there has been a 35% decline in X-ray emission from 2000 to 2008. The ULX in this study is located in NGC 1399, an elliptical galaxy about 65 million light years from Earth. Irwin presented these results at the 215th meeting of the American Astronomical Society in Washington, DC. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  8. The Enigma--The Persistent Failure of Black Children in Learning to Read.

    ERIC Educational Resources Information Center

    Dummett, Leonie

    1984-01-01

    Reexamines the persistent reading failure of black students in light of current research in an effort to encourage new efforts to discover the real cause or causes of the problem and to provide solutions. (FL)

  9. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  10. Noncommutative black hole thermodynamics

    SciTech Connect

    Banerjee, Rabin; Majhi, Bibhas Ranjan; Samanta, Saurav

    2008-06-15

    We give a general derivation, for any static spherically symmetric metric, of the relation T{sub h}=(K/2{pi}) connecting the black hole temperature (T{sub h}) with the surface gravity (K), following the tunneling interpretation of Hawking radiation. This derivation is valid even beyond the semi-classical regime, i.e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space-time. The effects of backreaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and backreaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one.

  11. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2010-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wove detection, testing general relativity, and astrophysics.

  12. Black ring deconstruction

    SciTech Connect

    Gimon, Eric; Gimon, Eric G.; Levi, Thomas S.

    2007-06-22

    We present a sample microstate for a black ring in four and five dimensional language. The microstate consists of a black string microstate with an additional D6-brane. We show that with an appropriate choice of parameters the piece involving the black string microstate falls down a long AdS throat, whose M-theory lift is AdS_3 x S2. We wrap a spinning dipole M2-brane on the S2 in the probe approximation. In IIA, this corresponds to a dielectric D2-brane carrying only D0-charge. We conjecture this is the firstapproximation to a cloud of D0-branes blowing up due to their non-abelian degrees of freedom and the Myers effect.

  13. Polluting Black space.

    PubMed

    Bonam, Courtney M; Bergsieker, Hilary B; Eberhardt, Jennifer L

    2016-11-01

    Social psychologists have long demonstrated that people are stereotyped on the basis of race. Researchers have conducted extensive experimental studies on the negative stereotypes associated with Black Americans in particular. Across 4 studies, we demonstrate that the physical spaces associated with Black Americans are also subject to negative racial stereotypes. Such spaces, for example, are perceived as impoverished, crime-ridden, and dirty (Study 1). Moreover, these space-focused stereotypes can powerfully influence how connected people feel to a space (Studies 2a, 2b, and 3), how they evaluate that space (Studies 2a and 2b), and how they protect that space from harm (Study 3). Indeed, processes related to space-focused stereotypes may contribute to social problems across a range of domains-from racial disparities in wealth to the overexposure of Blacks to environmental pollution. Together, the present studies broaden the scope of traditional stereotyping research and highlight promising new directions. (PsycINFO Database Record

  14. Black Hole Paradoxes

    NASA Astrophysics Data System (ADS)

    Joshi, Pankaj S.; Narayan, Ramesh

    2016-10-01

    We propose here that the well-known black hole paradoxes such as the information loss and teleological nature of the event horizon are restricted to a particular idealized case, which is the homogeneous dust collapse model. In this case, the event horizon, which defines the boundary of the black hole, forms initially, and the singularity in the interior of the black hole at a later time. We show that, in contrast, gravitational collapse from physically more realistic initial conditions typically leads to the scenario in which the event horizon and space-time singularity form simultaneously. We point out that this apparently simple modification can mitigate the causality and teleological paradoxes, and also lends support to two recently suggested solutions to the information paradox, namely, the ‘firewall’ and ‘classical chaos’ proposals.

  15. Light Reflector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Ultra Sales, Inc.'s fluorescent lighting fixture gets a boost in reflectivity through installation of Lightdriver, a thin tough thermoplastic film plated with aluminum, capable of reflecting 95 percent of visible light striking it. Lightdriver increases brightness without adding bulbs, and allows energy savings by removing some bulbs because the mirrorlike surface cuts light loss generally occasioned by conventional low reflectivity white painted surface above the bulbs in many fluorescent fixtures. Forty-five percent reduction in lighting electricity is attainable.

  16. Mobilizing Black America: Solutions to Black Health Problems

    DTIC Science & Technology

    1993-04-01

    coronary heart disease, hypertension, stroke, some cancers, diabetes, and obesity is to eat foods that are low in saturated-fat and sodium. Blacks consume...the most obese ethnic group in America. Too many black children are overweight because black adults feed them a steady diet of fatty and salty foods ...strikes, they receive less than adequate or no medical treatment. Black unhealthy life-styles and heavy "soul" food diet are also major causes of health

  17. SCHOOL LIGHTING

    ERIC Educational Resources Information Center

    1965

    SEVERAL ARTICLES ON SCHOOL LIGHTING ARE CONTAINED IN THIS JOURNAL. THE TITLES AND AUTHORS INCLUDED ARE AS FOLLOWS--(1) "TODAY'S CONCEPTS IN SCHOOL LIGHTING" BY CHARLES D. GIBSON, (2) "CHALLENGE OF TOMMORROW'S LIGHTING" BY S.K. GUTH AND E.H. WITTE, (3) "PEEK PREVIEW OF THE WINDOWLESS SCHOOL" BY JAMES J. MORISSEAU, (4) "MAINTENANCE BEGINS BEFORE…

  18. Hypertension in black patients: special issues and considerations.

    PubMed

    Nesbitt, Shawna D

    2005-08-01

    The excess risk for hypertension in black Americans continues to be a major health concern. Although there is considerable information regarding these disease trends, many of the major underpinnings of the etiology of hypertension remain unclear. The excess mortality in blacks due to heart disease, renal failure, and stroke is clearly directly related to the excess burden of hypertension. Amid the recent findings about the pathophysiology of hypertension, some clear differences in the effects of overweight, salt sensitivity, and vascular biology emerge along ethnic lines. These differences may shed some light on the development of more effective treatment strategies. Based on our current knowledge, aggressive management of hypertension in blacks is critical. This review highlights what is known about various factors affecting hypertension and its treatment in black Americans.

  19. WARPED DISK AROUND A BRIGHT BLACK HOLE (ARTWORK)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This diagram shows the geometry of a warped disk of dust surrounding a suspected black hole in the active galaxy NGC 6251. The diagram is based on NASA Hubble Space Telescope images of the disk which reveal that only one side reflects light emitted from a suspected black hole, hence the disk is warped. Such a warp could be due to gravitational perturbations in the galaxy's nucleus that keep the disk from being perfectly flat, or from precession of the rotation axis of the black hole relative to the rotation axis of the galaxy. Perpendicular to the disk is a jet of high-energy particles blasted into space along the black hole's spin axis. Illustration: James Gitlin (Space Telescope Science Institute)

  20. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t \\simeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  1. Probing the Galactic Binary Black Hole Spin with Photon Timing

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t\\slmeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  2. From Rindler horizon to mini black holes at LHC

    NASA Astrophysics Data System (ADS)

    Ghaffary, Tooraj

    2017-02-01

    Recently researchers (A. Sepehri et al., Astrophys. Space Sci. 344, 79 (2013)) have considered the signature of superstring balls near mini black holes at LHC and calculate the information loss for these types of strings. Motivated by their work, we consider the evolution of events in high energy experiments from lower energies for which the Rindler horizon is formed to higher energies in which mini black holes and string balls are emerged. Extending the Gottesman and Preskill method to string theory, we find the information loss for excited strings "string balls" in mini black holes at LHC and calculate the information transformation from the collapsing matter to the state of outgoing Hawking radiation for strings. We come to the conclusion that information transformation for high energy strings is complete. Then the thermal distribution of excited strings near mini black holes at LHC is calculated. In order to obtain the total string cross section near black holes produced in proton-proton collision, we multiply the black hole production cross section by the thermal distribution of strings. It is observed that many high energy excited strings are produced near the event horizon of TeV black holes. These excited strings evaporate to standard model particles like Higgs boson and top quark at Hagedorn temperature. We derive the production cross section for these particles due to string ball decay at LHC and consider their decay to light particles like bottom quarks and gluons.

  3. Superfluid Black Holes

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; Mann, Robert B.; Tjoa, Erickson

    2017-01-01

    We present what we believe is the first example of a "λ -line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid 4He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  4. Superfluid Black Holes.

    PubMed

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  5. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Black-hole mergers take place in regions of very strong and dynamical gravitational fields, and are among the strongest sources of gravitational radiation. Probing these mergers requires solving the full set of Einstein's equations of general relativity numerically. For more than 40 years, progress towards this goal has been very slow, as numerical relativists encountered a host of difficult problems. Recently, several breakthroughs have led to dramatic progress, enabling stable and accurate calculations of black-hole mergers. This article presents an overview of this field, including impacts on astrophysics and applications in gravitational wave data analysis.

  6. Characterizing Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  7. Euclidean black hole vortices

    NASA Technical Reports Server (NTRS)

    Dowker, Fay; Gregory, Ruth; Traschen, Jennie

    1991-01-01

    We argue the existence of solutions of the Euclidean Einstein equations that correspond to a vortex sitting at the horizon of a black hole. We find the asymptotic behaviors, at the horizon and at infinity, of vortex solutions for the gauge and scalar fields in an abelian Higgs model on a Euclidean Schwarzschild background and interpolate between them by integrating the equations numerically. Calculating the backreaction shows that the effect of the vortex is to cut a slice out of the Schwarzschild geometry. Consequences of these solutions for black hole thermodynamics are discussed.

  8. Schwarzschild Black Holes from Matrix Theory

    SciTech Connect

    Banks, T.; Fischler, W.; Klebanov, I.R.; Susskind, L.

    1998-01-01

    We consider matrix theory compactified on T{sup 3} and show that it correctly describes the properties of Schwarzschild black holes in 7+1 dimensions, including the mass-entropy relation, the Hawking temperature, and the physical size, up to numerical factors of order unity. The most economical description involves setting the cutoff N in the discretized light-cone quantization to be of order the black hole entropy. A crucial ingredient necessary for our work is the recently proposed equation of state for 3+1 dimensional supersymmetric Yang-Mills theory with 16supercharges. We give detailed arguments for the range of validity of this equation following the methods of Horowitz and Polchinski. {copyright} {ital 1998} {ital The American Physical Society}

  9. Black Television: Avenue of Power

    ERIC Educational Resources Information Center

    Douglas, Pamela

    1973-01-01

    Analyzes a few of the prominent issues in black television, examining public television, commercial television, black ownership of stations, cable television, and some projections for the future. (Author/JM)

  10. Aspects of hairy black holes

    SciTech Connect

    Anabalón, Andrés; Astefanesei, Dumitru

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  11. Conquering the Black Girl Blues.

    PubMed

    Jones, Lani Valencia; Guy-Sheftall, Beverly

    2015-10-01

    An examination of the literature on epidemiology, etiology, and use of services for this population reveals an insufficient application of culturally congruent approaches to intervening with black women. An exploration of the social work practice literature and other relevant fields indicate that black feminist perspectives offer the opportunity to gain a clearer understanding of the intersection and influence of oppression among black women struggling with psychiatric issues and provide a useful framework for mental health practice with this population. This article discusses the evolving black feminist thought and summarizes the scholarship on black women's mental health services needs and utilization issues. The article includes a discussion of black feminisms as an emerging mental health perspective, arguing that black feminist perspectives in therapy provide an ideal framework for services that are responsive to the values and health needs of black women. The article concludes with a case vignette that illustrates some of its points.

  12. Wind and Reflections From Black Hole in Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Chandra X-Ray Observatory provided this composite X-ray (blue and green) and optical (red) image of the active galaxy NGC 1068 showing gas blowing away in a high-speed wind from the vicinity of a central supermassive black hole. Regions of intense star formation in the irner spiral arms of the galaxy are highlighted by both optical and x-ray emissions. A doughnut shaped cloud of cool gas and dust surrounding the black hole, known as the torus, appears as the elongated white spot . It has has a mass of about 5 million suns and is estimated to extend from within a few light years of the black hole out to about 300 light years.

  13. Light Source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Research on food growth for long duration spacecraft has resulted in a light source for growing plants indoors known as Qbeam, a solid state light source consisting of a control unit and lamp. The light source, manufactured by Quantum Devices, Inc., is not very hot, although it generates high intensity radiation. When Ron Ignatius, an industrial partner of WCSAR, realized that terrestrial plant research lighting was not energy efficient enough for space use, he and WCSAR began to experiment with light emitting diodes. A line of LED products was developed, and QDI was formed to market the technology. An LED-based cancer treatment device is currently under development.

  14. Incubational domain characterization in lightly doped ceria

    SciTech Connect

    Li Zhipeng; Mori, Toshiyuki; John Auchterlonie, Graeme; Zou Jin; Drennan, John

    2012-08-15

    Microstructures of both Gd- and Y-doped ceria with different doping level (i.e., 10 at% and 25 at%) have been comprehensively characterized by means of high resolution transmission electron microscopy and selected area electron diffraction. Coherent nano-sized domains can be widely observed in heavily doped ceria. Nevertheless, it was found that a large amount of dislocations actually exist in lightly doped ceria instead of heavily doped ones. Furthermore, incubational domains can be detected in lightly doped ceria, with dislocations located at the interfaces. The interactions between such linear dislocations and dopant defects have been simulated accordingly. As a consequence, the formation mechanism of incubational domains is rationalized in terms of the interaction between intrinsic dislocations of doped ceria and dopant defects. This study offers the insights into the initial state and related mechanism of the formation of nano-sized domains, which have been widely observed in heavily rare-earth-doped ceria in recent years. - Graphical abstract: Interactions between dislocations and dopants lead to incubational domain formation in lightly doped ceria. Highlights: Black-Right-Pointing-Pointer Microstructures were characterized in both heavily and light Gd-/Y-doped ceria. Black-Right-Pointing-Pointer Dislocations are existed in lightly doped ceria rather than heavily doped one. Black-Right-Pointing-Pointer Interactions between dislocations and dopant defects were simulated. Black-Right-Pointing-Pointer Formation of dislocation associated incubational domain is rationalized.

  15. Dance of Two Monster Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    This past December, researchers all over the world watched an outburst from the enormous black hole in OJ 287 an outburst that had been predicted years ago using the general theory of relativity.Outbursts from Black-Hole OrbitsOJ 287 is one of the largest supermassive black holes known, weighing in at 18 billion solar masses. Located about 3.5 billion light-years away, this monster quasar is bright enough that it was first observed as early as the 1890s. What makes OJ 287 especially interesting, however, is that its light curve exhibits prominent outbursts roughly every 12 years.Diagram illustrating the orbit of the secondary black hole (shown in blue) in OJ 287 from 2000 to 2023. We see outbursts (the yellow bubbles) every time the secondary black hole crosses the accretion disk (shown in red, ina side view) surrounding the primary (the black circle). [Valtonen et al. 2016]What causes the outbursts? Astronomers think that there is a second supermassive black hole, ~100 times smaller, inspiraling as it orbits the central monster and set to merge within the next 10,000 years. In this model, the primary black hole of OJ 287 is surrounded by a hot accretion disk. As the secondary black hole orbits the primary, it regularly punches through this accretion disk, heating the material and causing the release of expanding bubbles of hot gas pulled from the disk. This gas then radiates thermally, causing the outbursts we see.Attempts to model this scenario using Newtonian orbits all fail; the timing of the secondary black holes crossings through the accretion disk (as measured by when we see the outbursts) can only be explained by a model incorporating general-relativistic effects on the orbit. Careful observations and precise timing of these outbursts therefore provide an excellent test of general relativity.Watching a Predicted CrossingThe model of OJ 287 predicted another disk crossing in December 2015, so professional and amateur astronomers around the world readied more

  16. Carbon black nanoparticles and other problematic constituents of black ink and their potential to harm tattooed humans.

    PubMed

    Jacobsen, Nicklas Raun; Clausen, Per Axel

    2015-01-01

    Black is the most common tattoo color, but only a few studies have shed light on the multitude of functional and contaminating chemicals present in black inks. These studies have generally shown that black inks are a diverse group, containing anything from 5 to 50+ organic components. Little is known about the possible effects on humans of internalizing these chemicals. Analysis has shown that the production of the main component, carbon black, can lead to the formation of pigments with polycyclic aromatic hydrocarbon (PAH) contents that range from very high to almost completely absent. Similar variations in PAH concentrations are observed in black inks. PAHs are known carcinogens and thus, low recommended levels have been suggested by the Council of Europe. Reactive oxygen species (ROS) have recently been a topic in scientific literature related to tattoo ink. Again, it has been shown that some inks produce deleterious ROS (e.g. singlet oxygen or peroxyl radicals), presumably via either adhered organic compounds or particle surface defects. It has been shown that black tattoo inks may contain a multitude of chemicals, including carcinogens and allergens, and some have unknown toxicologies. However, it has additionally been demonstrated that some black inks already on the market do not produce ROS and also contain PAHs at levels that are below those recommended by the Council of Europe and very few additional contaminants.

  17. Towards noncommutative quantum black holes

    SciTech Connect

    Lopez-Dominguez, J. C.; Obregon, O.; Sabido, M.; Ramirez, C.

    2006-10-15

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole.

  18. Change in Smoking, Diet, and Walking for Exercise in Blacks

    ERIC Educational Resources Information Center

    Berg, Carla J.; Thomas, Janet L.; An, Lawrence C.; Guo, Hongfei; Collins, Tracie; Okuyemi, Kolawole S.; Ahluwalia, Jasjit S.

    2012-01-01

    Positive changes in one health behavior may be accompanied by other constructive health behavior changes. Thus, the authors investigated the association of smoking reduction and cessation to changes in fruit and vegetable (FV) intake and engaging in walking for exercise. This study included 539 Black light smokers ([less than or equal to]10…

  19. Black Students in White Skins

    ERIC Educational Resources Information Center

    Snell, Joel C.

    2008-01-01

    Of the 281 million Americans, "Scientific American" estimates that White Africans (21% of White Caucasians) have Black heritage. This article discusses the present state of black elite and the transformation of black students in the United States. Some strategies to become a "white" student are also discussed.

  20. Africanizing Our Historically Black Institutions

    ERIC Educational Resources Information Center

    Hill, Pamela Safisha Nzingha

    2004-01-01

    "The Blacker the College the Sweeter the Knowledge," is a common saying heard among students who attend Black institutions, as well as many proud alumni. These institutions have, from their inception, served a unique mission in educating the masses of Black folk, thus creating the Black middle class. They have done much with little and have…

  1. Black Responses to Environmental Constraints

    ERIC Educational Resources Information Center

    Paris, Peter

    1978-01-01

    There is general agreement that various types of environmental forces have resulted in the victimization of Black Americans. Victimization implies a condition of passivity. This article challenges that perspective by demonstrating the distinctive role of the Black churches in helping Blacks maintain self-respect and act on their environment.…

  2. Reading Black Literature With Understanding.

    ERIC Educational Resources Information Center

    Alexander, Jean A.

    This paper is a broad study of the field of black American Literature which outlines the important movements, stereotypes, and trends that have had significant influence upon the literature. The changing stereotypes and archetypes of blacks depicted in American literature from the early concept of blacks as "chattels" to the contemporary concept…

  3. Uncovering Black Womanhood in Engineering

    ERIC Educational Resources Information Center

    Gibson, Sheree L.; Espino, Michelle M.

    2016-01-01

    Despite the growing research that outlines the experiences of Blacks and women undergraduates in engineering, little is known about Black women in this field. The purpose of this qualitative study was to uncover how eight Black undergraduate women in engineering understood their race and gender identities in a culture that can be oppressive to…

  4. Health Issues Facing Black Women.

    ERIC Educational Resources Information Center

    Reid, Inez Smith

    Black women in the United States experience a high incidence of serious health problems and, as a group, receive insufficient and inadequate medical care. The death rate for black women suffering from breast cancer has increased substantially since 1950. Also of great concern is the high incidence of cervical cancer in low income black women…

  5. Black Athletes at the Millennium.

    ERIC Educational Resources Information Center

    Harrison, C. Keith

    2000-01-01

    Analyzes Harry Edwards' theories and solutions regarding black male athletes, discussing the single-minded pursuit of sports glory by black males to the exclusion of cultural, educational, and social needs. Examines the systemic channeling of black males by American institutions, noting that though this system promotes opportunity for all,…

  6. African Psychology and Black Personality Testing.

    ERIC Educational Resources Information Center

    Baldwin, Joseph A.

    1987-01-01

    The following instruments for measuring Black personality use the world view and cultural orientations of Africa have been developed and are described: (1) the Black Personality Questionnaire; (2) the Black Preference Inventory; (3) the Black Opinion Scale; (4) the Themes of Black Awareness Test; (5) the Themes Concerning Blacks Test; and (6) the…

  7. Newborn Black Holes

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  8. Gasification of black liquor

    DOEpatents

    Kohl, Arthur L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

  9. Gasification of black liquor

    DOEpatents

    Kohl, A.L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  10. Survival: Black/White.

    ERIC Educational Resources Information Center

    Halpern, Florence

    This book was written to communicate to others how the author became involved in the lives of the southeastern black people and how her perception and understanding of them changed as the result of that involvement. The plan of this book is as follows: the first and, by far the longer, part is devoted to descriptions and examples of the way in…

  11. Black History Speech

    ERIC Educational Resources Information Center

    Noldon, Carl

    2007-01-01

    The author argues in this speech that one cannot expect students in the school system to know and understand the genius of Black history if the curriculum is Eurocentric, which is a residue of racism. He states that his comments are designed for the enlightenment of those who suffer from a school system that "hypocritically manipulates Black…

  12. When Black Holes Collide

    NASA Technical Reports Server (NTRS)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  13. Rotating black hole hair

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth; Kubizňák, David; Wills, Danielle

    2013-06-01

    A Kerr black hole sporting cosmic string hair is studied in the context of the abelian Higgs model vortex. It is shown that such a system displays much richer phenomenology than its static Schwarzschild or Reissner-Nordstrom cousins, for example, the rotation generates a near horizon `electric' field. In the case of an extremal rotating black hole, two phases of the Higgs hair are possible: large black holes exhibit standard hair, with the vortex piercing the event horizon. Small black holes on the other hand, exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon. This solution however is extremely sensitive to confirm numerically, and we conjecture that it is unstable due to a supperradiant mechanism similar to the Kerr-adS instability. Finally, we compute the gravitational back reaction of the vortex, which turns out to be far more nuanced than a simple conical deficit. While the string produces a conical effect, it is conical with respect to a local co-rotating frame, not with respect to the static frame at infinity.

  14. TV Versus Black Survival

    ERIC Educational Resources Information Center

    Bright, Hazel V.

    1973-01-01

    Argues that black media persons must adopt a plan of action involving commitment to using the cultural aspect of the medium as a swaddling cloth for economic and political considerations; they must embark on a program of consciously and conscientiously incorporating these aspects into every presentation they broadcast. (Author/RJ)

  15. Black Literature? Of Course!

    ERIC Educational Resources Information Center

    Geyer, Donna

    1969-01-01

    The inclusion of Afro-American literature in high schools either as an elective course or as a unit within an American literature course provides opportunities for Black students to gain, from members of their own race, pride in themselves and belief in the possibility of personal achievement. Title selection should depend upon class make-up. For…

  16. Black History Month.

    ERIC Educational Resources Information Center

    Web Feet K-8, 2000

    2000-01-01

    This annotated subject guide to Web sites and additional resources focuses on Black History month. Specifies age levels for resources that include Web sites, CD-ROMs and software, videos, books, audios, magazines; includes professional resources; and presents a relevant class activity. (LRW)

  17. Keeping Black Poetry Alive

    ERIC Educational Resources Information Center

    Mehta, Diane

    2006-01-01

    Thomas Sayers Ellis, assistant professor of creative writing at New York's Sarah Lawrence College, is one of many scholars fighting for the soul of Black poetry, a struggle that takes place largely off-campus. Unless one is accepted into a top-level graduate poetry program, such as Boston University's program or the Iowa Writing Workshop, a poet's…

  18. Octonionic black holes

    NASA Astrophysics Data System (ADS)

    Bossard, Guillaume

    2012-05-01

    Using algebraic tools inspired by the study of nilpotent orbits in simple Lie algebras, we obtain a large class of solutions describing interacting non-BPS black holes in {N} = 8 supergravity, which depend on 44 harmonic functions. For this purpose, we consider a truncation {E_{{{6}({6})}}}/S{p_{{c}}}( {8,{R}} ) subset {E_{{{8}({8})}}}/{{Spin}}_{{c}}^{ * }( {16} ) of the non-linear sigma model describing stationary solutions of the theory, which permits a reduction of algebraic computations to the multiplication of 27 by 27 matrices. The lift to {N} = 8 supergravity is then carried out without loss of information by using a pertinent representation of the moduli parametrizing E7(7)/SUc (8) in terms of complex valued Hermitian matrices over the split octonions, which generalise the projective coordinates of exceptional special K¨ahler manifolds. We extract the electromagnetic charges, mass and angular momenta of the solutions, and exhibit the duality invariance of the black holes distance separations. We discuss in particular a new type of interaction which appears when interacting non-BPS black holes are not aligned. Finally we will explain the possible generalisations toward the description of the most general stationary black hole solutions of {N} = 8 supergravity.

  19. Black Families. Third Edition.

    ERIC Educational Resources Information Center

    McAdoo, Harriette Pipes, Ed.

    The chapters of this collection explore the experiences of black families in the United States and Africa, today and in the past. They are: (1) "African American Families: A Historical Note" (John Hope Franklin); (2) "African American Families and Family Values" (Niara Sudarkasa); (3) "Old-Time Religion: Benches Can't Say…

  20. Dictionary of Black Culture.

    ERIC Educational Resources Information Center

    Baskin, Wade; Runes, Richard N.

    This dictionary is an encyclopedic survey of the cultural background and development of the black American, covering the basic issues, events, contributions and biographies germane to the subject. The author-compiler is Chairman of Classical Languages Department at Southeastern State College, Durant, Oklahoma. Richard Runes is practicing law as a…

  1. [Thematic Issue: Black Theatre.

    ERIC Educational Resources Information Center

    Morrison, Carl F., Jr., Ed.

    "Nummo" refers to "the word" or "word force." The aim of this publication is to provide a common forum for the utilization of the word force in exploring the opinions and creations of black community, educational, and professional theatre artists and scholars. This issue includes a play called "The Twilight Dinner" by Lennox Brown; a review of…

  2. Teaching the Black Experience.

    ERIC Educational Resources Information Center

    Kirschenbaum, Howard

    1968-01-01

    Instructional materials and teaching approaches can be used to get students to seriously and constructively confront problems in race relations which they will eventually have to solve. For example, Richard Wright's "Black Boy," an anthology of Negro poetry or a collection of poems on race relations, and such films as "Where is Prejudice?" can…

  3. Black and White Slides.

    ERIC Educational Resources Information Center

    Tanner, Jackie

    1979-01-01

    Outlines procedures for using some photographic techniques to start a black and white slide collection. Instructions are given for: (1) necessary equipment and materials; (2) photographing images such as photos, charts or drawings; (3) developing the film; and (4) setting up the filing system. Photographs and drawings illustrate the process. (AMH)

  4. Empowering Young Black Males

    ERIC Educational Resources Information Center

    Kafele, Baruti K.

    2012-01-01

    Of all the challenges we face in education today, the author can think of none greater than the challenge of motivating, educating, and empowering black male learners. The fact that this group of students is in crisis is evident on multiple levels, starting with graduation rates. According to the Schott Foundation (2008), the U.S. high school…

  5. Black Hole Mass Determination Using X-ray Data

    NASA Astrophysics Data System (ADS)

    Jang, Insuk

    Supermassive black holes are located at the center of basically every galaxy and their mass appears to be tightly correlated with several galaxy properties, suggesting that black hole and galaxy growths are linked together. Determining the mass of black holes provides crucial information on the galaxy evolution and indeed significant progress has been achieved thanks to optically-based methods. However, since these methods are limited by several factors including absorption and galaxy contamination, it is important to develop and test alternative methods that use different energy bands to constrain the black hole mass. In a recent work we demonstrated that a novel X-ray scaling method, originally introduced for stellar mass black holes, can be reliably extended to estimate the mass of highly-accreting supermassive black holes. Here we investigate the limits of applicability of this method to low-accreting black holes, using a control sample of low-luminosity active galactic nuclei with good-quality X-ray data and with dynamically measured black hole masses. We find the threshold value of the accretion rate for which the X-ray scaling method can still be used. Below this threshold, we provide a simple recipe to constrain the black hole mass based on the inverse correlation between X-ray spectral properties and accretion rate, which was found in several low-accreting black holes and confirmed by our sample. Then, we extend the X-ray scaling method to ultraluminous X-ray sources (ULXs), which are off-nuclear, point-like X-ray sources, whose nature is still debated. Their high X-ray brightness can be equally well explained by stellar mass black holes accreting at extreme rates or by intermediate mass black holes accreting at regular rates, therefore, constraining their mass may shed light on one of the outstanding questions of high energy astrophysics. Currently, no direct optically-based methods can dynamically determine the mass of ULXs, making X-ray methods the only

  6. Dancing around the Black Hole

    NASA Astrophysics Data System (ADS)

    2001-08-01

    ISAAC Finds "Cool" Young Stellar Systems at the Centres of Active Galaxies Summary Supermassive Black Holes are present at the centres of many galaxies, some weighing hundreds of millions times more than the Sun. These extremely dense objects cannot be observed directly, but violently moving gas clouds and stars in their strong gravitational fields are responsible for the emission of energetic radiation from such "active galaxy nuclei" (AGN) . A heavy Black Hole feeds agressively on its surroundings . When the neighbouring gas and stars finally spiral into the Black Hole, a substantial fraction of the infalling mass is transformed into pure energy. However, it is not yet well understood how, long before this dramatic event takes place, all that material is moved from the outer regions of the galaxy towards the central region. So how is the food for the central Black Hole delivered to the table in the first place? To cast more light on this central question, a team of French and Swiss astronomers [1] has carried out a series of trailblazing observations with the VLT Infrared Spectrometer And Array Camera (ISAAC) on the VLT 8.2-m ANTU telescope at the ESO Paranal Observatory. The ISAAC instrument is particularly well suited to this type of observations. Visible light cannot penetrate the thick clouds of dust and gas in the innermost regions of active galaxies, but by recording the infrared light from the stars close to the Black Hole , their motions can be studied. By charting those motions in the central regions of three active galaxies (NGC 1097, NGC 1808 and NGC 5728), the astronomers were able to confirm the presence of "nuclear bars" in all three. These are dynamical structures that "open a road" for the flow of material towards the innermost region. Moreover, the team was surprised to discover signs of a young stellar population near the centres of these galaxies - stars that have apparently formed quite recently in a central gas disk. Such a system is unstable

  7. Precocious Supermassive Black Holes Challenge Theories

    NASA Astrophysics Data System (ADS)

    2004-11-01

    NASA's Chandra X-ray Observatory has obtained definitive evidence that a distant quasar formed less than a billion years after the Big Bang contains a fully-grown supermassive black hole generating energy at the rate of twenty trillion Suns. The existence of such massive black holes at this early epoch of the Universe challenges theories of the formation of galaxies and supermassive black holes. Astronomers Daniel Schwartz and Shanil Virani of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA observed the quasar, known as SDSSp J1306, which is 12.7 billion light years away. Since the Universe is estimated to be 13.7 billion years old, we see the quasar as it was a billion years after the Big Bang. They found that the distribution of X-rays with energy, or X-ray spectrum, is indistinguishable from that of nearby, older quasars. Likewise, the relative brightness at optical and X-ray wavelengths of SDSSp J1306 was similar to that of the nearby group of quasars. Optical observations suggest that the mass of the black hole is about a billion solar masses. Illustration of Quasar SDSSp J1306 Illustration of Quasar SDSSp J1306 Evidence of another early-epoch supermassive black hole was published previously by a team of scientists from the California Institute of Technology and the United Kingdom using the XMM-Newton X-ray satellite. They observed the quasar SDSSp J1030 at a distance of 12.8 billion light years and found essentially the same result for the X-ray spectrum as the Smithsonian scientists found for SDSSp J1306. Chandra's precise location and spectrum for SDSSp J1306 with nearly the same properties eliminate any lingering uncertainty that precocious supermassive black holes exist. "These two results seem to indicate that the way supermassive black holes produce X-rays has remained essentially the same from a very early date in the Universe," said Schwartz. "This implies that the central black hole engine in a massive galaxy was formed very soon

  8. Hawking radiation from black rings

    SciTech Connect

    Miyamoto, Umpei; Murata, Keiju

    2008-01-15

    We calculate the quantum radiation from the 5-dimensional charged rotating black rings by demanding the radiation eliminate the possible anomalies on the horizons. It is shown that the temperature, energy flux, and angular-momentum flux exactly coincide with those of the Hawking radiation. The black rings considered in this paper contain the Myers-Perry black hole as a limit, and the quantum radiation for this black hole, obtained in the literature, is recovered in the limit. The results support the picture that the Hawking radiation can be regarded as the anomaly eliminator on horizons and suggest its general applicability to the higher-dimensional black holes discovered recently.

  9. Black Holes in String Theory

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; El-Showk, Sheer; Vercnocke, Bert

    These lectures notes provide a fast-track introduction to modern developments in black hole physics within string theory, including microscopic computations of the black hole entropy as well as construction and quantization of microstates using supergravity. These notes are largely self-contained and should be accessible to students at an early PhD or Masters level. Topics covered include the black holes in supergravity, D-branes, Strominger-Vafa's computation of the black hole entropy via D-branes, AdS-CFT and its applications to black hole phyisics, multicenter solutions, and the geometric quantization of the latter.

  10. Analysis for Mar Vel Black and acetylene soot low reflectivity surfaces for star tracker sunshade applications

    NASA Technical Reports Server (NTRS)

    Yung, E.

    1974-01-01

    Mar Vel Black is a revolutionary new extremely low reflectivity anodized coating developed by Martin Marietta of Denver. It is of great interest in optics in general, and in star trackers specifically because it can reduce extraneous light reflections. A sample of Mar Vel Black was evaluated. Mar Vel Black looks much like a super black surface with many small peaks and very steep sides so that any light incident upon the surface will tend to reflect many times before exiting that surface. Even a high reflectivity surface would thus appear to have a very low reflectivity under such conditions. Conversely, acetylene soot does not have the magnified surface appearance of a super black surface. Its performance is, however, predictable from the surface structure, considering the known configuration of virtually pure carbon.

  11. Snake velvet black: Hierarchical micro- and nanostructure enhances dark colouration in Bitis rhinoceros

    PubMed Central

    Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N.; Westhoff, Guido

    2013-01-01

    The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV – near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time. PMID:23677278

  12. Snake velvet black: Hierarchical micro- and nanostructure enhances dark colouration in Bitis rhinoceros

    NASA Astrophysics Data System (ADS)

    Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N.; Westhoff, Guido

    2013-05-01

    The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV - near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.

  13. Model for coeval growth of bulges and their seed black holes in presence of radiative feedback

    NASA Astrophysics Data System (ADS)

    Park, KwangHo; Bogdanovic, Tamara; Wise, John

    2017-01-01

    The discovery of billion solar mass accreting black holes at high redshift poses a great challenge for the modeling of the seed black hole (BH) formation and growth. Radiation-hydrodynamic simulations represent a crucial test of plausible scenarios by providing estimated growth rates for the seeds in the intermediate-mass black hole range. Previous works show that radiative feedback from black holes suppresses the cold gas accretion rate dramatically, making it difficult to explain the rapid growth of seed black holes. We however find that the fueling rate of black holes embedded in bulges can increase with the bulge-to-BH mass ratio when the bulge mass is greater than the critical value of ˜106 M⊙. The critical bulge mass is independent of the central black hole mass, thus the growth rate of light seeds (< 102 M⊙) and heavy seed black holes (> 105 M⊙) exhibits distinct dependencies on the bulge-to-BH mass ratio. Our results imply that heavy seeds, that may form via direct collapse, can grow efficiently and coevally with the host galaxies despite radiative feedback whereas the growth of light seeds is stunted. We present the results of an extended semi-analytic model based on the radiation-hydrodynamic simulations, which follows the coeval growth of black holes and their bulges.

  14. Plasmonic black metals in resonant nanocavities

    NASA Astrophysics Data System (ADS)

    Bora, Mihail; Behymer, Elaine M.; Dehlinger, Dietrich A.; Britten, Jerald A.; Larson, Cindy C.; Chang, Allan S. P.; Munechika, Keiko; Nguyen, Hoang T.; Bond, Tiziana C.

    2013-06-01

    We investigate a plasmonic resonant structure tunable from ultra-violet to near infrared wavelengths with maximum absorbance strength over 95% due to a highly efficient coupling with incident light. Additional harmonics are excited at higher frequencies extending the absorbance range to multiple wavelengths. We propose the concept of a plasmonic black metal nanoresonator that exhibits broadband absorbance characteristics by spacing the modes closer through increasing the resonator length and by employing adiabatic plasmonic nano-focusing on the tapered end of the cavity.

  15. WOW: light print, light propel, light point

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper; Bañas, Andrew; Aabo, Thomas; Palima, Darwin

    2012-10-01

    We are presenting so-called Wave-guided Optical Waveguides (WOWs) fabricated by two-photon polymerization and capable of being optically manipulated into any arbitrary orientation. By integrating optical waveguides into the structures we have created freestanding waveguides which can be positioned anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation. In a broader context, this research shows that optically trapped micro-fabricated structures can potentially help bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the sub-wavelength domain.

  16. Emergency Lighting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A lighting system originally developed for NASA's Apollo and Skylab manned spacecraft resulted in a industrial spinoff and creation of a whole new company to produce and market the product line. The company is UDEC Corp., Waltham, Mass. UDEC's "Multi-Mode" electronic lighting systems are designed for plant emergency and supplemental use, such as night lighting, "always-on" stairwell lights and illuminated exit signs. Their advantages stem from the qualities demanded for spacecraft installation: extremely high fight output with very low energy drain, compactness, light weight, and high reliability. The Multi-Mode system includes long-life fluorescent lamps operated by electronic circuitry, a sealed battery that needs no maintenance for 10 years, and a solid-state battery charger. A typical emergency installation consists of a master module with battery and an eight watt lamp, together with four remote "Satellight" modules powered by the master's battery. As a night lighting system for maintenance or I security, UDEC fixtures can bypass the battery and 1 operate on normal current at a fraction of the energy 1 demand of conventional night lighting. Industrial customers have realized savings of better than ninety percent with UDEC night lights. UDEC started as a basement industry in 1972 but the company has already sold more than 1,000 lighting systems to building operators.

  17. Black Holes in Higher Dimensions

    NASA Astrophysics Data System (ADS)

    Horowitz, Gary T.

    2012-04-01

    List of contributors; Preface; Part I. Introduction: 1. Black holes in four dimensions Gary Horowitz; Part II. Five Dimensional Kaluza-Klein Theory: 2. The Gregory-Laflamme instability Ruth Gregory; 3. Final state of Gregory-Laflamme instability Luis Lehner and Frans Pretorius; 4. General black holes in Kaluza-Klein theory Gary Horowitz and Toby Wiseman; Part III. Higher Dimensional Solutions: 5. Myers-Perry black holes Rob Myers; 6. Black rings Roberto Emparan and Harvey Reall; Part IV. General Properties: 7. Constraints on the topology of higher dimensional black holes Greg Galloway; 8. Blackfolds Roberto Emparan; 9. Algebraically special solutions in higher dimensions Harvey Reall; 10. Numerical construction of static and stationary black holes Toby Wiseman; Part V. Advanced Topics: 11. Black holes and branes in supergravity Don Marolf; 12. The gauge/gravity duality Juan Maldacena; 13. The fluid/gravity correspondence Veronika Hubeny, Mukund Rangamani and Shiraz Minwalla; 14. Horizons, holography and condensed matter Sean Hartnoll; Index.

  18. Why can we see visible light?

    NASA Astrophysics Data System (ADS)

    Bochnícek, Zdenek

    2007-01-01

    Visible light constitutes only a very narrow part of the wide electromagnetic spectrum. This article outlines several reasons why the human eye can see only within this limited range. Solar emissions and low absorption in the atmosphere are determining causes, but not the only ones. The energy of chemical bonds, the optical properties of matter, black body emissions and the wave character of light cause further limitations, all of which have a remarkable congruence.

  19. Giant Black Hole Rips Apart Star

    NASA Astrophysics Data System (ADS)

    2004-02-01

    was equivalent to a supernova. "Now, with all the data in hand, we have the smoking gun proof that this spectacular event has occurred," said coauthor Günther Hasinger, also of MPE. The black hole in the center of RX J1242-11 is estimated to have a mass of about 100 million times Earth's Sun. By contrast, the destroyed star probably had a mass about equal to the Sun, making it a lopsided battle of gravity. "This is the ultimate David versus Goliath battle, but here David loses," said Hasinger. The astronomers estimated about one percent of the star's mass was ultimately consumed, or accreted, by the black hole. This small amount is consistent with predictions that the momentum and energy of the accretion process will cause most of the destroyed star's gas to be flung away from the black hole. XMM-Newton Spectrum &Illustration of RX J1242-11 XMM-Newton Spectrum & Illustration of RX J1242-11 The force that disrupted the star in RX J1242-11 is an extreme example of the tidal force caused by differences in gravity acting on the front and back of an object. The tidal force from the Moon causes tides in Earth's oceans. A tidal force from Jupiter pulled Comet Shoemaker-Levy apart, before it plunged into the giant planet. The odds stellar tidal disruption will happen in a typical galaxy are low, about one in 10,000 annually. If it happened at the center of the Milky Way Galaxy, 26,000 light-years from Earth, the resulting X-ray outburst would be about 50,000 times brighter than the brightest X-ray source in our galaxy, beside the Sun, but it would not pose a threat to Earth. Other dramatic flares have been seen from galaxies, but this is the first studied with the high-spatial resolution of Chandra and the high-spectral resolution of XMM-Newton. Both instruments made a critical advance. Chandra showed the RX J1242-11 event occurred in the center of a galaxy, where the black hole lurks. The XMM-Newton spectrum revealed the fingerprints expected for the surroundings of a black

  20. Radio Detections During Two State Transitions of the Intermediate-Mass Black Hole HLX-1

    NASA Technical Reports Server (NTRS)

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-01-01

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (approx. 3 to 20 solar masses) as well as supermassive black holes (approx.. 10(exp 6) to 10(exp 9) Solar Mass) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (approx. 10(exp 2) to 10(exp 5) Solar Mass), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between approx. 9 × 10(exp 3) Solar Mass and approx. 9 × 10(exp 4) Solar Mass.

  1. Radio detections during two state transitions of the intermediate-mass black hole HLX-1.

    PubMed

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-08-03

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (~3 to 20 solar masses, M(⊙)) as well as supermassive black holes (~10(6) to 10(9) M(⊙)) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (~10(2) to 10(5) M(⊙)), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between ~9 × 10(3) M(⊙) and ~9 × 10(4) M(⊙).

  2. Seeds to monsters: tracing the growth of black holes in the universe

    NASA Astrophysics Data System (ADS)

    Natarajan, Priyamvada

    2014-05-01

    An overview of our current knowledge of black seed formation models following their growth history over cosmic time is presented. Both light seed formation channels remnants of the first stars and the more massive direct collapse seed formation scenarios are outlined. In particular, the focus is on the implications of these various scenarios and what these initial conditions imply for the highest redshift black holes, the local black hole population, the highest mass black holes at each epoch and the low mass end of the black hole mass function all of which are currently observed. The goal is to present a broad and comprehensive picture of the current status; the open questions and challenges faced by black hole growth models in matching current observational data and the prospects for future observations that will help discriminate between competing models.

  3. Artificial black opal fabricated from nanoporous carbon spheres.

    PubMed

    Yamada, Yuri; Ishii, Masahiko; Nakamura, Tadashi; Yano, Kazuhisa

    2010-06-15

    A nanocasting method via chemical vapor deposition of acetonitrile was successfully employed to fabricate porous carbon colloidal crystal using colloidal crystal from monodispersed mesoporous silica spheres (MMSS) as a sacrificial scaffold. The mesostructure as well as periodic arrays within (111) plane of MMSS were replicated for the carbon colloidal crystal (black opal) with the length scale in the centimeter range. Brilliant iridescent colors were clearly observed for the first time on the black carbon colloidal crystal fabricated from porous carbon spheres, and they changed dramatically in accordance with the observation angle, like natural black opals. Reflection spectra measurements based on 2D surface diffraction and Bragg diffraction in the mirror mode were conducted for the fabricated carbon periodic arrays. The periodicity in the (111) plane as well as in the direction perpendicular to the (111) plane of the colloidal crystal was evaluated by comparing the results obtained from these two measurements. It was found that the periodicity in the direction perpendicular to the (111) surface is not high for the obtained black carbon opal. On the other hand, the relationship between the incident angles and the peak wavelengths of the reflection spectra, collected in the condition where the incident light and the reflected light pass through in the same direction, is governed by an approximation based on 2D surface diffraction. The results imply that the origin of the iridescent colors on the fabricated black carbon opal is derived from the periodicity not in the direction perpendicular to the (111) plane but within the (111) plane.

  4. Conquering the Pumpkin Effect: A Lighting Alternative.

    ERIC Educational Resources Information Center

    Stanley, Gary B.

    1993-01-01

    Turning off all the interior and exterior lighting when school buildings are closed saves money. In a small Illinois school district, nearly $14,000 were saved in electrical expenditures for six buildings. Another Illinois district currently has 19 of its 32 buildings blacked out at night and saves over $150,000 annually. Vandalism and loitering…

  5. Black Hills hydrology study

    USGS Publications Warehouse

    Driscoll, D.G.

    1994-01-01

    The Black Hills area of western South Dakota is a valuable resource center. The area has attracted numerous residents and industries because of the availability of mineral, timber, agricultural, recreational, and water resources. The water resources of the area have been stressed locally by increasing population, periodic drought, and development of other resources. In response to residents' concerns about these stresses on the water resources, the Black Hills Hydrology Study was initiated in 1990 as a cooperative effort among the U.S. Geological Survey, the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District. West Dakota represents the various local and county cooperators. This report describes the purpose, scope, approach, and status of the study and presents highlights from the first project data report produced for the study.

  6. Black-hole astrophysics

    SciTech Connect

    Bender, P.; Bloom, E.; Cominsky, L.

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  7. Black Holes and Firewalls

    NASA Astrophysics Data System (ADS)

    Polchinski, Joseph

    2015-04-01

    Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.

  8. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This discussion examines these gravitational patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. The focus is on recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by the space-based gravitational wave detector LISA.

  9. GOODS Missing Black Hole Report: Hundreds Found!

    NASA Astrophysics Data System (ADS)

    2007-10-01

    Astronomers have unmasked hundreds of black holes hiding deep inside dusty galaxies billions of light-years away Normal Galaxies Normal Galaxies The massive, growing black holes, discovered by NASA's Spitzer and Chandra space telescopes, represent a large fraction of a long-sought missing population. Their discovery implies there are hundreds of millions of additional black holes growing in our young universe, more than doubling the total amount known at that distance. "Active, supermassive black holes are everywhere in the early universe," said Mark Dickinson of the National Optical Astronomy Observatory in Tucson, Ariz. "We had seen the tip of the iceberg before in our search for these objects. Now, we can see the iceberg itself." Dickinson is a co-author of two new papers appearing in the Nov. 10 issue of the Astrophysical Journal. Emanuele Daddi of the Commissariat a l'Energie Atomique in France led the research. The findings are also the first direct evidence that most, if not all, massive galaxies in the distant universe spend their youths building monstrous black holes at their cores. For decades, large populations of active black holes have been considered missing. These highly energetic structures, also called quasars, consist of a dusty, doughnut-shaped cloud that surrounds and feeds a growing supermassive black hole. They give off a lot of X-rays that can be detected as a general glow in space, but sometimes the quasars themselves can't be seen because dust and gas blocks their X-rays from our point of view. "We knew from other studies from about 30 years ago that there must be more quasars in the universe, but we didn't know where to find them until now," said Daddi. Daddi and his team initially set out to study 1,000 dusty, massive galaxies that are busy making stars, and were thought to lack quasars. The galaxies are about the same mass as our own spiral Milky Way galaxy, but irregular in shape. At 9 to 11 billion light-years away, they exist at a

  10. Life Inside Black Holes

    NASA Astrophysics Data System (ADS)

    Dokuchaev, Vyacheslav

    2013-11-01

    It is considered the test planet and photon orbits of the third kind inside the black hole (BH), which are stable, periodic and neither come out the BH nor terminate at the central singularity. Interiors of the supermassive BHs may be inhabited by advanced civilizations living on the planets with the third kind orbits. In principle, one can get information from the interiors of BHs by observing their white hole counterparts.

  11. Mobilizing Black America

    DTIC Science & Technology

    1993-04-01

    birth weight . Low birth weight today is a major contributor to the high infant death rate. Low birth weight is considered as weighing less than 2,500...syndrome o Disorders relating to short gestations unspecified low birth weight o Respiratory distress syndrome The above causes of death accounted for...syndrome. Different causes of death were found in the black community; unspecified low birth weight and disorders relating to short gestation followed

  12. France in Black Africa,

    DTIC Science & Technology

    1989-01-01

    disease and the lack of support from the metropole (mother 4 France Acquires and Adninisters an Empire country), French rule over the small...as socially 9 France in Black Africa undesirable in an officer corps still dominated by the aristocracy; they were apt to be republicans, anticler- ics ...the interior. Endemic tropical diseases like yellow fever and malaria claimed a high proportion of Europeans who attempted to live in this region up to

  13. Configurational entropy of anti-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Braga, Nelson R. F.; da Rocha, Roldão

    2017-04-01

    Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking-Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.

  14. Nonlinear harmonic generation in finite amplitude black hole oscillations

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Philippos

    2002-04-01

    The nonlinear generation of harmonics in gravitational perturbations of black holes is explored using numerical relativity based on an ingoing light-cone framework. Localized, finite, perturbations of an isolated black hole are parametrized by amplitude and angular harmonic form. The response of the black hole spacetime is monitored and its harmonic content analyzed to identify the strength of the nonlinear generation of harmonics as a function of the initial data amplitude. It is found that overwhelmingly the black hole responds at the harmonic mode perturbed, even for spacetimes with 10% of the black hole mass radiated. The coefficients for down and up scattering in harmonic space are computed for a range of couplings. Down scattering, leading to smoothing out of angular structure, is found to be equally as or more efficient than the up scatterings that would lead to increased rippling. The details of this nonlinear balance may form the quantitative mechanism by which black holes avoid fission even for arbitrary strong distortions.

  15. The Superstrong Black Mother

    PubMed Central

    Elliott, Sinikka; Reid, Megan

    2016-01-01

    Baltimore mother Toya Graham became a viral video sensation after being filmed yelling at and hitting her teen son. Graham, who is Black, was trying to stop her son from joining the protests following Freddie Gray’s death in police custody in Baltimore in April 2015. Dubbed “mother of the year,” news outlets applauded Graham for her fierce determination to keep her son out of harm’s way by any means necessary. The media and ensuing public response to the video are illuminating for what they say about cultural notions of Black motherhood: the good Black mom should be superstrong to protect her children, but she is also responsible for controlling her children and preventing them from getting into trouble. In celebrating Graham, the media was implicitly condemning all the other mothers whose children participated in the protests—that is, the mothers who did not prevent their children from “senseless” rioting against institutional racism in policing. PMID:27134576

  16. Perspectives: Black Holes

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    When asked to discuss Cyg XR-1, E. E. Salpeter once concluded, 'A black hole in Cyg X(R)-1 is the most conservative hypothesis.' Recent observations now make it likely that a black hole in Cyg XR-1 is the only hypothesis tenable. Chandrasekhar first showed that compact stars - those with the inward force of gravity on their outer layers balanced by the pressure generated by the Pauli exclusion principle acting on its electrons (in white dwarfs) or nucleons (in neutron stars) - have a maximum mass. Equilibrium is achieved at a minimum of the total energy of the star, which is the sum of the positive Fermi energy and the negative gravitational energy. The maximum mass attainable in equilibrium is found by setting E = 0: M(max) = 1.5 M(Sun). If the mass of the star is larger than this, then E can be decreased without bound by decreasing the star's radius and increasing its (negative) gravitational energy. No equilibrium value of the radius exist, and general relativity predicts that gravitational collapse to a point occurs. This point singularity is a black hole.

  17. Quantum correlations across the black hole horizon

    SciTech Connect

    Schuetzhold, Ralf; Unruh, William G.

    2010-06-15

    Inspired by the condensed-matter analogues of black holes, we study the quantum correlations across the event horizon reflecting the entanglement between the outgoing particles of the Hawking radiation and their in-falling partners. For a perfectly covariant theory, the total correlation is conserved in time and piles up arbitrary close to the horizon in the past, where it merges into the singularity of the vacuum two-point function at the light cone. After modifying the dispersion relation (i.e., breaking Lorentz invariance) for large k, on the other hand, the light cone is smeared out and the entanglement is not conserved but actually created in a given rate per unit time.

  18. The Black Community Perspective: Recruiting Blacks into Combat Arms

    DTIC Science & Technology

    2013-03-01

    order to help the Army find talented Black youths, it begins with the Black community. This study seeks to understand the attitudes of the African ...of ten African -American leaders in Louisville, Kentucky. The interviews were designed to obtain information about how the Army is viewed in Black...racial imbalance in Combat Arms branches. It also summarizes a qualitative research study involving interviews of ten African -American leaders in

  19. Stimulated emission in black holes and in analogue gravity

    NASA Astrophysics Data System (ADS)

    Belgiorno, F.; Cacciatori, S. L.

    2016-11-01

    Stimulated emission by black holes is discussed in light of the analogue gravity program. We first consider initial quantum states containing a definite number of particles, and then we take into account the case where the initial state is a coherent state. The latter case is particularly significant in the case where Hawking radiation is studied in dielectric black holes, and the emission is stimulated by a laser probe. We are particularly interested in the case of the electromagnetic field, for which examples of stimulated radiation are considered.

  20. Binary black holes and their echoes in the Universe

    NASA Astrophysics Data System (ADS)

    Laguna, Pablo

    2007-04-01

    A new window in astronomy will open once gravitational-wave interferometers detect ``first light.'' These detectors will give us a revolutionary view of the Universe, complementary to the electromagnetic perspective. The detection and characterization of gravitational waves is a formidable undertaking, requiring innovative engineering, powerful data analysis tools as well as careful theoretical and numerical modeling. Binary black holes are expected to be one of the primary sources of gravitational radiation. I will discuss aspects of numerical simulations of binary black holes in connection with spins, gravitational recoil and eccentricities that have been recently obtained and have direct relevance to gravitational wave data analysis and astrophysics.

  1. EDITORIAL: Slow light Slow light

    NASA Astrophysics Data System (ADS)

    Boyd, Robert; Hess, Ortwin; Denz, Cornelia; Paspalakis, Emmanuel

    2010-10-01

    Research into slow light began theoretically in 1880 with the paper [1] of H A Lorentz, who is best known for his work on relativity and the speed of light. Experimental work started some 60 years later with the work of S L McCall and E L Hahn [2] who explored non-linear self-induced transparency in ruby. This field of research has burgeoned in the last 10 years, starting with the work of L Vestergaard Hau and coworkers on slow light via electromagnetically induced transparency in a Bose-Einstein condensate [3]. Many groups are now able to slow light down to a few metres per second or even stop the motion of light entirely [4]. Today, slow light - or more often `slow and fast light' - has become its own vibrant field with a strongly increasing number of publications. In broad scope, slow light research can be categorized in terms of the sort of physical mechanism used to slow down the light. One sort of slow light makes use of material dispersion. This dispersion can be the natural dispersion of the ordinary refractive index or can be the frequency dependence of some nonlinear optical process, such as electromagnetically induced transparency, coherent population oscillations, stimulated light scattering, or four-wave mixing processes. The second sort of slow light makes use of the wavelength dependence of artificially structured materials, such as photonic crystals, optical waveguides, and collections of microresonators. Material systems in which slow light has been observed include metal vapours, rare-earth-doped materials, Raman and Brillioun gain media, photonic crystals, microresonators and, more recently, metamaterials. A common feature of all of these schemes is the presence of a sharp single resonance or multiple resonances produced by an atomic transition, a resonance in a photonic structure, or in a nonlinear optical process. Current applications of slow light include a series of attractive topics in optical information processing, such as optical data

  2. Black Swan Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Emanuel, K.; Lin, N.

    2012-12-01

    Virtually all assessments of tropical cyclone risk are based on historical records, which are limited to a few hundred years at most. Yet stronger TCs may occur in the future and at places that have not been affected historically. Such events lie outside the realm of historically based expectations and may have extreme impacts. Their occurrences are also often made explainable after the fact (e.g., Hurricane Katrina). We nickname such potential future TCs, characterized by rarity, extreme impact, and retrospective predictability, "black swans" (Nassim Nicholas Taleb, 2007). As, by definition, black swan TCs have yet to happen, statistical methods that solely rely on historical track data cannot predict their occurrence. Global climate models lack the capability to predict intense storms, even with a resolution as high as 14 km (Emanuel et al. 2010). Also, most dynamic downscaling methods (e.g., Bender et al. 2010) are still limited in horizontal resolution and are too expensive to implement to generate enough events to include rare ones. In this study, we apply a simpler statistical/deterministic hurricane model (Emanuel et al. 2006) to simulate large numbers of synthetic storms under a given (observed or projected) climate condition. The method has been shown to generate realistic extremes in various basins (Emanuel et al. 2008 and 2010). We also apply a hydrodynamic model (ADCIRC; Luettich et al. 1992) to simulate the storm surges generated by these storms. We then search for black swan TCs, in terms of the joint wind and surge damage potential, in the generated large databases. Heavy rainfall is another important TC hazard and will be considered in a future study. We focus on three areas: Tampa Bay in the U.S., the Persian Gulf, and Darwin in Australia. Tampa Bay is highly vulnerable to storm surge as it is surrounded by shallow water and low-lying lands, much of which may be inundated by a storm tide of 6 m. High surges are generated by storms with a broad

  3. On the trail of Black Scoters

    USGS Publications Warehouse

    McAloney, K.; Perry, M.

    2003-01-01

    The black scoter is of special concern among the seaducks, because it is both the least common of the three scoter species and the least studied. The Continental Technical Team of the North American Waterfowl Management Plan's Sea Duck Joint Venture recommended that research on this species be conducted to learn more about black scoter movements and to delineate its breeding and molting areas. The team received funding to implant satellite transmitters on this species in Baie des Chaleurs and Restigouche River in New Brunswick, Canada, with the purpose of delineating populations and identifying habitat affinities for staging, breeding, and molting. A variety of capture techniques were tested in the Restigouche River during April 2002, including the use of net guns, mist netting, and night lighting. Only the latter technique was the successful in catching the scoters. For two consecutive nights on the river in early May, researchers captured 13 black scoters: 11 males and 2 females. Scoters, numbering close to 100,000, were at the capture sites courting and feeding and were not too concerned about the lights or the boats. The weather conditions were ideal for catching the birds: a high percentage of cloud cover and light precipitation. Scientists transported all captured birds to a veterinary hospital where a U.S. Geological Survey veterinarian implanted a 39-gram Platform Transmitting Terminal transmitter into the abdominal cavity of each duck. The transmitter's external antenna was passed through the back of the duck using a surgical catheter. Following surgeries, ducks were monitored for 1 day before being released at the site of capture on the Restigouche River. Tracking data posted daily on the Internet showed the scoters moving from the Restigouche River for a lengthy stop on the St. Lawrence River. The birds appeared to use the central parts of northern Quebec's boreal forest as breeding areas. Ten of the 11 male scoters eventually went to James Bay for the

  4. Depleted galaxy cores and dynamical black hole masses

    SciTech Connect

    Rusli, S. P.; Erwin, P.; Saglia, R. P.; Thomas, J.; Fabricius, M.; Bender, R.; Nowak, N.

    2013-12-01

    Shallow cores in bright, massive galaxies are commonly thought to be the result of scouring of stars by mergers of binary supermassive black holes. Past investigations have suggested correlations between the central black hole mass and the stellar light or mass deficit in the core, using proxy measurements of M {sub BH} or stellar mass-to-light ratios (Y). Drawing on a wealth of dynamical models which provide both M {sub BH} and Y, we identify cores in 23 galaxies, of which 20 have direct, reliable measurements of M {sub BH} and dynamical stellar mass-to-light ratios (Y{sub *,dyn}). These cores are identified and measured using Core-Sérsic model fits to surface brightness profiles which extend out to large radii (typically more than the effective radius of the galaxy); for approximately one-fourth of the galaxies, the best fit includes an outer (Sérsic) envelope component. We find that the core radius is most strongly correlated with the black hole mass and that it correlates better with total galaxy luminosity than it does with velocity dispersion. The strong core-size-M {sub BH} correlation enables estimation of black hole masses (in core galaxies) with an accuracy comparable to the M {sub BH}-σ relation (rms scatter of 0.30 dex in log M {sub BH}), without the need for spectroscopy. The light and mass deficits correlate more strongly with galaxy velocity dispersion than they do with black hole mass. Stellar mass deficits span a range of 0.2-39 M {sub BH}, with almost all (87%) being <10 M {sub BH}; the median value is 2.2 M {sub BH}.

  5. Bursting with Stars and Black Holes

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A growing black hole, called a quasar, can be seen at the center of a faraway galaxy in this artist's concept. Astronomers using NASA's Spitzer and Chandra space telescopes discovered swarms of similar quasars hiding in dusty galaxies in the distant universe.

    The quasar is the orange object at the center of the large, irregular-shaped galaxy. It consists of a dusty, doughnut-shaped cloud of gas and dust that feeds a central supermassive black hole. As the black hole feeds, the gas and dust heat up and spray out X-rays, as illustrated by the white rays. Beyond the quasar, stars can be seen forming in clumps throughout the galaxy. Other similar galaxies hosting quasars are visible in the background.

    The newfound quasars belong to a long-lost population that had been theorized to be buried inside dusty, distant galaxies, but were never actually seen. While some quasars are easy to detect because they are oriented in such a way that their X-rays point toward Earth, others are oriented with their surrounding doughnut-clouds blocking the X-rays from our point of view. In addition, dust and gas in the galaxy itself can block the X-rays.

    Astronomers had observed the most energetic of this dusty, or obscured, bunch before, but the 'masses,' or more typical members of the population, remained missing. Using data from Spitzer and Chandra, the scientists uncovered many of these lost quasars in the bellies of massive galaxies between 9 and 11 billion light-years away. Because the galaxies were also busy making stars, the scientists now believe most massive galaxies spent their adolescence building up their stars and black holes simultaneously.

    The Spitzer observations were made as part of the Great Observatories Origins Deep Survey program, which aims to image the faintest distant galaxies using a variety of wavelengths.

  6. The Effects of Blue Light on Ocular Health.

    ERIC Educational Resources Information Center

    Kitchel, Elaine

    2000-01-01

    This review of the literature examines the effects of blue light (or near UV - ultraviolet), especially that given off by black-light tubes, often used with children with visual impairments. It finds a long-term danger of retinal and lens damage and offers six practical suggestions which emphasize using proper filters and limiting exposure to…

  7. Supermassive Black Hole Mimics Smaller Cousins

    NASA Astrophysics Data System (ADS)

    2002-06-01

    Scientists have caught a supermassive black hole in a distant galaxy in the act of spurting energy into a jet of electrons and magnetic fields four distinct times in the past three years, a celestial take on a Yellowstone geyser. This quasar-like "active" galaxy is essentially a scaled-up model of the so-called microquasars within our Milky Way Galaxy, which are smaller black holes with as much as ten times the mass of the sun. This means that scientists can now use their close-up view of microquasars to develop working models of the most massive and powerful black holes in the universe. Artist's Conception of 3C 120. Scene from an animation of 3C 120. CREDIT: Cosmovision These results -- published in the June 6 issue of Nature -- are the fruit of a three-year monitoring campaign with the National Science Foundation's Very Long Baseline Array (VLBA), a continent-wide radio-telescope system, and NASA's Rossi X-ray Timing Explorer. "This is the first direct, observational evidence of what we had suspected: The jets in active galaxies are powered by disks of hot gas orbiting around supermassive black holes," said Alan Marscher of the Institute for Astrophysical Research at Boston University, who led this international team of astronomers. Active galaxies are distant celestial objects with exceedingly bright cores, often radiating with the brilliance of thousands of ordinary galaxies, fueled by the gravity of a central million- to billion-solar-mass black hole pulling in copious amounts of interstellar gas. Marscher and his colleagues have established the first direct observational link between a supermassive black hole and its jet. The source is an active galaxy named 3C120 about 450 million light-years from Earth. This link has been observed in microquasars, several of which are scattered across the Milky Way Galaxy, but never before in active galaxies, because the scale (distance and time) is so much greater. The jets in galaxy 3C120 are streams of particles

  8. The Gifted Black Child: Problems and Promise.

    ERIC Educational Resources Information Center

    Howard, John R.

    In this paper, it is noted that there are three reasons for studying the black gifted child. First, black destiny has in part been shaped by talented blacks--for example, Malcolm X and Martin Luther King. Second, the black gifted are a minority within a minority. The gifted black female, subject to sexism, is even more of a minority. Third,…

  9. Light Learning.

    ERIC Educational Resources Information Center

    Cutshall, Sandy

    2002-01-01

    Describes a career and technical education program on photonics, the study, research, and development of equipment and concepts used in the transmission of information through light, including fiber optics and experimental laser technologies. (JOW)

  10. The functional significance of black-pigmented leaves: photosynthesis, photoprotection and productivity in Ophiopogon planiscapus 'Nigrescens'.

    PubMed

    Hatier, Jean-Hugues B; Clearwater, Michael J; Gould, Kevin S

    2013-01-01

    Black pigmented leaves are common among horticultural cultivars, yet are extremely rare across natural plant populations. We hypothesised that black pigmentation would disadvantage a plant by reducing photosynthesis and therefore shoot productivity, but that this trait might also confer protective benefits by shielding chloroplasts against photo-oxidative stress. CO2 assimilation, chlorophyll a fluorescence, shoot biomass, and pigment concentrations were compared for near isogenic green- and black-leafed Ophiopogonplaniscapus 'Nigrescens'. The black leaves had lower maximum CO2 assimilation rates, higher light saturation points and higher quantum efficiencies of photosystem II (PSII) than green leaves. Under saturating light, PSII photochemistry was inactivated less and recovered more completely in the black leaves. In full sunlight, green plants branched more abundantly and accumulated shoot biomass quicker than the black plants; in the shade, productivities of the two morphs were comparable. The data indicate a light-screening, photoprotective role of foliar anthocyanins. However, limitations to photosynthetic carbon assimilation are relatively small, insufficient to explain the natural scarcity of black-leafed plants.

  11. Thermodynamics of Accelerating Black Holes.

    PubMed

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  12. Black holes and the multiverse

    SciTech Connect

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun E-mail: vilenkin@cosmos.phy.tufts.edu

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  13. Thermodynamics of Accelerating Black Holes

    NASA Astrophysics Data System (ADS)

    Appels, Michael; Gregory, Ruth; KubizÅák, David

    2016-09-01

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon—even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  14. How black holes saved relativity

    NASA Astrophysics Data System (ADS)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  15. EUV mask black border evolution

    NASA Astrophysics Data System (ADS)

    Turley, Christina; Bonam, Ravi; Gallagher, Emily; Grohs, Jonathan; Kagawa, Masayuki; Kindt, Louis; Narita, Eisuke; Nash, Steven; Sakamoto, Yoshifumi

    2014-10-01

    The black border is a frame created by removing all the multilayers on the EUV mask in the region around the chip. It is created to prevent exposure of adjacent fields when printing an EUV mask on a wafer. Papers have documented its effectiveness. As the technology transitions into manufacturing, the black border must be optimized from the initial mask making process through its life. In this work, the black border is evaluated in three stages: the black border during fabrication, the final sidewall profile, and extended lifetime studies. This work evaluates the black border through simulations and physical experiments. The simulations address concerns for defects and sidewall profiles. The physical experiments test the current black border process. Three masks are used: one mask to test how black border affects the image placement of features on mask and two masks to test how the multilayers change through extended cleans. Data incorporated in this study includes: registration, reflectivity, multilayer structure images and simulated wafer effects. By evaluating the black border from both a mask making perspective and a lifetime perspective, we are able to characterize how the structure evolves. The mask data and simulations together predict the performance of the black border and its ability to maintain critical dimensions on wafer. In this paper we explore what mask changes occur and how they will affect mask use.

  16. Light's twist

    PubMed Central

    Padgett, Miles

    2014-01-01

    That light travels in straight lines is a statement of the obvious. However, the energy and momentum flow within light beams can twist to form vortices such as eddies in a stream. These twists carry angular momentum, which can make microscopic objects spin, be used to encode extra information in communication systems, enable the design of novel imaging systems and allow new tests of quantum mechanics. PMID:25484612

  17. The First Black Holes

    NASA Astrophysics Data System (ADS)

    Abel, T.

    star. Within this wide range of possible initial masses the death of these star will lead very different remnants (Heger and Woosley 2001). In the case of stars with masses larger than 260 solar mass no metals may be released in black holes are the natural outcome. This may be an interesting possibility to form intermediate mass black holes which are attractive seeds to be nurtured to the super-massive black holes observed in the centers of nearby galaxies. However, no metals would be released and it would prove difficult to understand the transition to the formation of low mass metal enriched population II stars. Stars with masses below 140 solar masses would enrich the intergalactic medium as well as form massive black holes. The coincidence of the Kelvin Helmholtz time with our computed accretion times at about 120 solar masses may argue in favor of such smaller masses. These first black holes may well leave the halos in which they formed for even rather modest kick velocities >~ 10 km/s. Nevertheless, up to about one hundred thousand of these first black holes may remain in the Milky Way. The realization that structure formation began within one hundred million years after big bang makes it difficult to study observationally these first crucial steps. Future observatories have hence to focus on larger collecting areas and wavelengths for which the universe is transparent up to redshifts of 30. XEUS offers the chance to open a new window to these so far dark ages. The limiting masses quoted here rely on stellar models of primordial stars that do not include rotation, magnetic fields or mass loss and hence are somewhat uncertain.

  18. Ultraviolet safety assessments of insect light traps.

    PubMed

    Sliney, David H; Gilbert, David W; Lyon, Terry

    2016-01-01

    Near-ultraviolet (UV-A: 315-400 nm), "black-light," electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV "Black-light" ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products.

  19. Black monazite from Taiwan

    USGS Publications Warehouse

    Matzko, J.J.; Overstreet, W.C.

    1977-01-01

    Two forms of detrital monazite are known in offshore bars in southwestern Taiwan: a yellow-green to colorless form and an unusual but abundant pelletlike form, generally black but also colored gray or brown. These black pellets, which are about 160 by 200 microns in size, are composed of fine-grained monazite crystals from 2 to 20 microns in size. The pellets are associated with highly variable amounts of discrete grains of detrital quartz, rutile, amphibole, tourmaline, and other minerals. Intergrown with the monazite are quartz, a cerium oxide mineral, chlorite, sulfides, and other minerals. Opaqueness of the pelletlike monazite is due principally to the cryptocrystalline nature of part of the monazite; only a small part of the opaqueness can be attributed to opaque inclusions. The black pelletlike monazite lacks thorium and has a high content of europium. In this respect, as in color, shape, size, and inclusions, the pelletlike monazite differs from the yellow-green detrital monazite. Despite the fact that they occur together in the littoral placers, they appear to have had different origins. The yellow-green monazite originated as an accessory mineral in plutonic rocks and has accumulated at the coast through erosion and transport. The origin of the pelletlike monazite is as yet unknown, but it is here inferred that it originated in unconsolidated coastal plain sediments through migration of cerium from the detrital monazite during weathering, and of the intermediate weight mobile rare earths from clay minerals during diagenesis. Possibly these pelletlike grains are detrital particles formed through erosion and transport from originally larger aggregates cemented by diagenetic monazite.

  20. Black and White Self-Esteem: The Urban School Child. The Arnold and Caroline Rose Monograph Series in Sociology.

    ERIC Educational Resources Information Center

    Rosenberg, Morris; Simmons, Roberta G.

    Much of the evidence behind the assumption of low black self-esteem has come from studies showing that black children prefer light-skinned dolls, pictures, or puppets to those with brown skin, or that they show problems of self-esteem in psycho-therapeutic sessions. While many of these studies are of a high order of excellence, they…

  1. The Power of the Rap: The Black Idiom and the New Black Poetry.

    ERIC Educational Resources Information Center

    Smitherman, Geneva

    Black Arts Literature--of which the New Black Poetry is the most important manifestation--emerged during the past decade as the appropriate artistic counterthrust to Black Power. Rhetoric and shouting aside, this new thrust was, on a very basic level, simply a call to black folks to redefine Blackness and re-evaluate the Black Experience. For the…

  2. HUBBLE UNCOVERS DUST DISK AROUND A MASSIVE BLACK HOLE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Resembling a gigantic hubcap in space, a 3,700 light-year-diameter dust disk encircles a 300 million solar-mass black hole in the center of the elliptical galaxy NGC 7052. The disk, possibly a remnant of an ancient galaxy collision, will be swallowed up by the black hole in several billion years. Because the front end of the disk eclipses more stars than the back, it appears darker. Also, because dust absorbs blue light more effectively than red light, the disk is redder than the rest of the galaxy (this same phenomenon causes the Sun to appear red when it sets in a smoggy afternoon). This NASA Hubble Space Telescope image was taken with the Wide Field and Planetary Camera 2, in visible light. Details as small as 50 light-years across can be seen. Hubble's Faint Object Spectrograph (replaced by the STIS spectrograph in 1997) was used to observe hydrogen and nitrogen emission lines from gas in the disk. Hubble measurements show that the disk rotates like an enormous carousel, 341,000 miles per hour (155 kilometers per second) at 186 light-years from the center. The rotation velocity provides a direct measure of the gravitational force acting on the gas by the black hole. Though 300 million times the mass of our Sun, the black hole is still only 0.05 per cent of the total mass of the NGC 7052 galaxy. Despite its size, the disk is 100 times less massive than the black hole. Still, it contains enough raw material to make three million sun-like stars. The bright spot in the center of the disk is the combined light of stars that have crowded around the black hole due to its strong gravitational pull. This stellar concentration matches theoretical models linking stellar density to a central black hole's mass. NGC 7052 is a strong source of radio emission and has two oppositely directed `jets' emanating from the nucleus. (The jets are streams of energetic electrons moving in a strong magnetic field and unleashing radio energy). Because the jets in NGC 7052 are not

  3. Magnonic Black Holes.

    PubMed

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  4. Magnonic Black Holes

    NASA Astrophysics Data System (ADS)

    Roldán-Molina, A.; Nunez, Alvaro S.; Duine, R. A.

    2017-02-01

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons—the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  5. Supermassive Black Hole Through a Magnifying Glass

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    What happens when light from a distant quasar powered by a supermassive black hole is bent not only by a foreground galaxy, but also by individual stars within that galaxys nucleus? The neighborhood of the central black hole can be magnified, and we get a close look at the inner regions of its accretion disk!What is Microlensing?Our view of Q2237+0305 is heavily affected by a process called gravitational lensing. As evidenced by the four copies of the quasar in the image above, Q2237+0305 undergoes macrolensing, wherein the gravity of a massive foreground galaxy pulls on the light of a background object, distorting the image into arcs or multiple copies.But Q2237+0305 also undergoes an effect called microlensing. Due to the fortuitous alignment of Q2237+0305 with the nucleus of the foreground galaxy lensing it, stars within the foreground galaxy pass in front of the quasar images. As a star passes, its own gravitational pull also affects the light of the image, causing the image to brighten and/or magnify.How can we tell the difference between intrinsic brightening of Q2237+0305 and brightening due to microlensing? Brightening that occurs in all four images of the quasar is intrinsic. But if the brightening occurs in only one image, it must be caused by microlensing of that image. The timescale of this effect, which depends on how quickly the foreground galaxy moves relative to the background quasar, is on the order of a few hundred days for Q2237+0305.Resolving StructureThe light curve of a microlensed image can reveal information about the structure of the distant object. For this reason, a team of scientists led by Evencio Mediavilla (Institute of Astrophysics of the Canaries, University of La Laguna) has studied the light curves of three independent microlensing events of Q2237+0305 images.Average light curve of the three microlensing events near the peak brightness. The double-peaked structure may be due to light from the innermost region of the quasars

  6. Black Sheep, Points of Light, and Angewandte Chemie.

    PubMed

    Gölitz, Peter

    2016-01-04

    From deception to plagiarism, the range of unethical behavior in the publishing practices of scientists is broad. However, scientists should not all be tarred with the same brush. This theme is at the heart of the Editorial that also illuminates some happier events, such as the nomination of new members of the Editorial and International Advisory Boards.

  7. Hyaluronic acid: Hope of light to black triangles

    PubMed Central

    Tanwar, Jyotsana; Hungund, Shital A.

    2016-01-01

    Interdental papilla construction, especially in the esthetic area, is one of the most challenging tasks. Interdental papilla loss might occur due to several reasons as a consequence of periodontal surgery or trauma. The purpose of this study is to report the reconstruction of lost interdental papilla using hyaluronic acid gel. Hyaluronic acid is a glycosaminoglycan molecule with anti-inflammatory, anti-edematous properties on periodontal tissues invaded by submicrobial flora. It enhances wound healing and accelerates periodontal repair and regeneration. In addition to the field of dentistry, it has been used in other fields such as orthopedics, ophthalmology, and dermatology. It shows growth factor interaction, regulates osmotic pressure, and enhances tissue lubrication, which helps in maintaining the structural and homeostatic integrity of tissues, hence resulting in beneficial effect on lost interdental papilla. This study was aimed to reconstruct the lost interdental papilla by injecting 0.2% hyaluronic acid via nonsurgical approach. It is a noninvasive approach which reduces patient's postoperative discomfort with marked variations in the volume of interdental papilla before and after the procedure. As sufficient information is not available regarding the effectiveness of hyaluronic acid in interdental papilla construction, this study was conducted. PMID:27891319

  8. How Black Colleges Empower Black Students: Lessons for Higher Education

    ERIC Educational Resources Information Center

    Hale, Frank W., Jr., Ed.

    2006-01-01

    To their disadvantage, few Americans--and few in higher education--know much about the successes of historically Black colleges and universities. How is it that historically Black colleges graduate so many low-income and academically poorly prepared students? How do they manage to do so well with students "as they are", even when…

  9. Black Graduate Education at Historically Black Colleges and Universities

    ERIC Educational Resources Information Center

    Palmer, Robert T., Ed.; Hilton, Adriel A., Ed.; Fountaine, Tiffany Patrice, Ed.

    2012-01-01

    This book provides context about the experiences of Black graduate and professional students attending HBCUs. Indeed, such research is important, particularly since HBCUs play a significant role in the number of Blacks who receive doctorates and professional degrees (i.e. M.D., D.D.S., J.D. etc.), especially in science and engineering. In fact,…

  10. Growing Up Black: A Black Literature Unit For Schools

    ERIC Educational Resources Information Center

    Massenburg, Doris O.; Applebury, Bruce C.

    1971-01-01

    This literature-based unit is intended to examine the prevalent black moods, conflicts, alienations and disillusionments which accompany the present era. Literature selections include works by both black and white writers. At the end of the unit, the student will be able to realize the man, from what literature has stamped as substantial accounts…

  11. Black Interpretation, Black American Literature, and Grey Audiences.

    ERIC Educational Resources Information Center

    Washington, Earl M.

    1981-01-01

    Defines and illustrates language techniques used by Black authors writing to and for Blacks in the 1960s and 1970s. Suggests how language and theme barriers of such literature might be overcome in a contemporary integrated oral interpretation classroom. (PD)

  12. Improved Constraints to the Local Supermassive Black Hole Occupation Fraction

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Gallo, Elena; Miller, Brendan P.

    2017-01-01

    The occupation fraction of supermassive black holes (SMBHs) in local dwarf galaxies is thought to be related to the formation mechanism of the first black holes in the early Universe. Light black hole seeds, such as Pop III star remnants, are likely to result in a significantly higher occupation fraction compared to heavy seeds (~104 solar mass) arising from the global collapse of massive gas clouds. Chandra observations of nearby dwarf galaxies can push the detection threshold for SMBH activity down to the lowest observable Eddington ratios. This, folded with analytical prescriptions for the intrinsic occupation fraction across the mass spectrum, yields an observational constraints to the SMBH occupation fraction in the dwarf galaxy regime. Building on previous work by Miller et al. (2015), here we analyze a sample of ~240 early-type galaxies (D < 30 Mpc) with archival Chandra coverage, and report on our improved constraints to the local SMBH occupation fraction.

  13. Unusual satellite data: A black hole?. [International Ultraviolet Explorer observations

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Data obtained by the NASA-launched European Space Agency's International Ultraviolet Explorer satellite suggests the possibility of a massive black hole at the center of some globular clusters (star groups) in our galaxy. Six of these clusters, three of them X-ray sources, were closely examined. Onboard short wavelength UV instrumentation penetrated the background denseness of the clusters 15,000 light years away where radiation, probably from a group of 10 to 20 bright blue stars orbiting the core, was observed. The stars may well be orbiting a massive black hole the size of 1,000 solar systems. The existence of the black hole is uncertain. The dynamics of the stars must be studied first to determine how they rotate in relation to the center of the million-star cluster. This may better indicate what provides the necessary gravitational pull that holds them in orbit.

  14. Energy extraction from Kerr black holes by rigidly rotating strings

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shunichiro; Igata, Takahisa; Tanabe, Kentaro

    2016-12-01

    In this paper, we show that a rigidly rotating string can extract the rotational energy from a rotating black hole. We consider Nambu-Goto strings stationary with respect to a corotating Killing vector with an uniform angular velocity ω in the Kerr spacetime. We show that a necessary condition of the energy-extraction process is that an effective horizon on the string world sheet, which corresponds to the inner light surface, is inside the ergosphere of the Kerr black hole and the angular velocity ω is less than that of the black hole Ωh . Furthermore, we discuss global configurations of such strings in both of a slow-rotation limit and the extremal Kerr case.

  15. Factorial Based Response Surface Modeling with Confidence Intervals for Optimizing Thermal Optical Transmission Analysis of Atmospheric Black Carbon

    EPA Science Inventory

    We demonstrate how thermal-optical transmission analysis (TOT) for refractory light-absorbing carbon in atmospheric particulate matter was optimized with empirical response surface modeling. TOT employs pyrolysis to distinguish the mass of black carbon (BC) from organic carbon (...

  16. Giant black hole rips star apart

    NASA Astrophysics Data System (ADS)

    2004-02-01

    amount is consistent with predictions that the momentum and energy of the accretion process will cause most of the destroyed star's gas to be flung away from the black hole. The force that disrupted the star in RXJ1242-11 is an extreme example of the tidal force caused by differences in gravity acting on the front and back of an object. The tidal force from the Moon causes tides in the oceans on Earth, and tidal force from Jupiter pulled Comet Shoemaker-Levy apart before it plunged into the giant planet. The odds that stellar tidal disruption will happen in a typical galaxy are long, about one in ten thousand. If it happened at the centre of the Milky Way, the resulting X-ray source would be about 50 000 times more powerful than the strongest X-ray source in our galaxy. However, such an event would not pose a threat to Earth because of the intervening distance of 25 000 light years. Other dramatic flares have been seen from galaxies, but this is the first to have been studied with the high spectral resolution of XMM-Newton and the high spatial resolution of Chandra. Both instruments have made a critical advance. Chandra showed that the RXJ1242-11 event occurred in the centre of a galaxy, where the black hole lurks. The XMM-Newton spectrum revealed the fingerprints expected for the surroundings of a black hole, and allowed other possible astronomical explanations to be ruled out. Evidence already exists for super-massive black holes in many galaxies, but looking for tidal disruptions represents a completely independent way to search for black holes. Observations like these are urgently needed to determine how quickly black holes can grow by swallowing neighbouring stars. Notes to editors This discovery was announced today at a press conference at NASA Headquarters in Washington DC, USA. A paper describing these results, by Stefanie Komossa and others, will be published in The Astrophysical Journal. ESA’s XMM-Newton can detect more X-ray sources than any previous

  17. Port and harbor patrol car loaded Xenon search light

    NASA Astrophysics Data System (ADS)

    Amoh, Hiroshi; Takenami, Takashi

    2005-05-01

    The container ship yard is brighten by the lighting, but after Sunset of the sea side is dark during a crescent. On the sea side lighting, we propose to use to patrol car loaded Xenon search light. Generally, the Pacific Ocean of a surface of the sea swimming fishes such as Samma (Mackerel pike) likes strong visible light as a Xenon search light beam. In the feeling of the human eyes and brains with a strong visible light beam such as Xenon search light, the reaction is divided two kind of types, to avoid reaction's humans have a feeling that bad conscience, and no reaction's humans tend to have a feeling of good mind. For the black painted unmanned objects of visible watching is needed as possible as strong visible light beam of the Xenon search light. The optical system of the Xenon search light consists of a Xenon lamp, a parabolic mirror and the filters.

  18. Black-Hole Feedback in Quasars

    NASA Video Gallery

    This animation illustrates how black-hole feedback works in quasars. Dense gas and dust in the center simultaneously fuels the black hole and shrouds it from view. The black-hole wind propels large...

  19. Time and Place for Teaching Black Pride

    ERIC Educational Resources Information Center

    Nesbitt, George B.

    1972-01-01

    Argues that the traditional black church appears latently able and well-placed to complement the effort of the black family to prepare its young children to be black and proud in a white-dominated society. (Author/JM)

  20. Black hairy tongue syndrome

    PubMed Central

    Gurvits, Grigoriy E; Tan, Amy

    2014-01-01

    Black hairy tongue (BHT) is a benign medical condition characterized by elongated filiform lingual papillae with typical carpet-like appearance of the dorsum of the tongue. Its prevalence varies geographically, typically ranging from 0.6% to 11.3%. Known predisposing factors include smoking, excessive coffee/black tea consumption, poor oral hygiene, trigeminal neuralgia, general debilitation, xerostomia, and medication use. Clinical presentation varies but is typically asymptomatic, although aesthetic concerns are common. Differential diagnosis includes pseudo-BHT, acanthosis nigricans, oral hairy leukoplakia, pigmented fungiform papillae of the tongue, and congenital melanocytic/melanotic nevi/macules. Clinical diagnosis relies on visual observation, detailed history taking, and occasionally microscopic evaluation. Treatment involves identification and discontinuation of the offending agent, modifications of chronic predisposing factors, patient’s re-assurance to the benign nature of the condition, and maintenance of adequate oral hygiene with gentle debridement to promote desquamation. Complications of BHT (burning mouth syndrome, halitosis, nausea, gagging, dysgeusia) typically respond to therapy. Prognosis is excellent with treatment of underlying medical conditions. BHT remains an important medical condition which may result in additional burden on the patient and health care system and requires appropriate prevention, recognition and treatment. PMID:25152586

  1. Synchrotron light

    SciTech Connect

    Craievich, A. )

    1990-01-01

    Several developed countries such as the USA, URSS, England, France, Italy, Sweden and Japan have one or more of these synchrotron light facilities operating or under construction. Some developing countries have constructed (China) or are building (Taiwan, India, Korea, Brazil) synchrotron light facilities. The construction of the Brazilian synchrotron source began in June, 1987. After two years of activities, the injector linac for the electron storage ring is in its final stage of construction. These Proceedings contain the Invited Lectures presented at the Workshop by specialists working on synchrotron light applications and related instrumentation and by members of LNLS regarding technical details of the Brazilian project. The II Workshop Synchrotron Light: Applications and Related Instrumentation was dedicated to oral presentations about applications of synchrotron light, most of which were not covered during the I Workshop, organized by LNLS in 1988, and the Proceedings of which were published by World Scientific. The II Workshop included discussions on the application possibilities for the newly designed LNLS 1.15 GeV storage ring, and on the modifications which would eventually be necessary for the work-station and instrumentation projects currently in progress at LNLS and at various external user laboratories.

  2. Effect of the Purple carbon black on the properties of NR/BR blend

    NASA Astrophysics Data System (ADS)

    Yanfang, Zhao; Dan, Liu; Shengbo, Lin; Binjian; Yinmei, Zhao; Shuangquan, Liao

    2014-08-01

    Purple black is light colored mineral filler mining in recent years in Hainan. The effect of the dosage of the purple carbon black and purple carbon black modificated by Si69 on the vulcanization characteristics, mechanical properties, thermal stability, the damping performance of NR/BR blend rubber were studied, and the blending adhesive tensile sections were analyzed by SEM. Research showed that, with the increasing dosage of the purple carbon black, vulcanization characteristics of NR/BR blend had a little change. Adding the purple carbon black into blending had a reinforcing effect. when the dosage of the purple carbon black was 20, the mechanical properties of blending adhesive was good; Coupling agent Si69 had a modification effect on the purple carbon black. With increasing dosage of Si69, performance of the rubber was improved initially and then decreased; when the mass fraction of Si69 was 8% of the dosage of the purple carbon black, rubber performance was optimal. Purple carbon black had no obvious effect on thermal stability of the rubber, but it improved the damping rubber temperature and damping factor.

  3. Predatory Crime and Black Youth.

    ERIC Educational Resources Information Center

    Woodson, Robert L.

    1978-01-01

    While it is generally recognized that Blacks and other minorities are overrepresented as both crime victims and as those arrested for the commission of crimes, Blacks are underrepresented in framing the issues that address a solution to this problem. The input of minority researchers and policymakers is essential. (Author/RLV)

  4. An Interview with Jim Black

    ERIC Educational Resources Information Center

    Burch, Brad

    2006-01-01

    Jim Black is president of SEM WORKS, one of the leading higher education consulting firms in the area of enrollment management. Dr. Black has delivered keynote addresses and conducted training workshops for business leaders and educators worldwide. His areas of expertise include leadership, organizational change, customer service, strategic…

  5. Role Conflict and Black Underachievement

    ERIC Educational Resources Information Center

    Mocombe, Paul C.

    2011-01-01

    Examining the social attitudes and practical consciousness of young black American youth through an analysis of the 1999 rap song, "Bling bling," by the Hot Boyz, in this work, I review the oppositional culture hypothesis as it pertains to the black/white achievement gap, describe the current debate, and reinterpret the hypothesis within a…

  6. Black Adolescents and the News.

    ERIC Educational Resources Information Center

    Weber, Larry J.; Fleming, Dan B.

    1984-01-01

    Compared Black and White students' news acquisition habits and knowledge of current events on the State, national, and international levels. Among 8th graders, Blacks ranked lower than Whites in knowledge, but no significant differences between groups were found among 11th graders. All students were deficient in their knowledge of State news. (GC)

  7. Educating Black Males with Dyslexia

    ERIC Educational Resources Information Center

    Robinson, Shawn Anthony

    2013-01-01

    Much of the scholarship on Black males in the educational literature focuses on the achievement gap; their underrepresentation in gifted and advanced placement programs; their overrepresentation in special education programs and their high rates of school suspensions and expulsions. Although overrepresented in special education, Black males with…

  8. The Isolated Appalachian Black Community.

    ERIC Educational Resources Information Center

    French, Laurence

    This paper investigates the isolation of the local black community within the social/cultural perspective. A profile of the community is given in terms of data collected from personal and family interviews. Personal interviews assessed how the Appalachian black viewed his group. Among the 13 variables studied are: trustworthiness, religion, work…

  9. The Controversy around Black History.

    ERIC Educational Resources Information Center

    Pitre, Abul; Ray, Ruth

    2002-01-01

    Controversy over black history began in 1926, when Carter G. Woodson introduced Negro history week, and has continued into the 21st century. Proponents of black history believe it promotes diversity, develops self-esteem, and corrects myths and stereotypes. Opponents argue it is dishonest, divisive, and lacks academic credibility and rigor.…

  10. A Call for "Black Studies"

    ERIC Educational Resources Information Center

    Halliburton, R., Jr.

    1973-01-01

    The traditional social studiescurriculum must properly prepare minority and majority students to live in a racially pluralistic society. When non-black youths become fully apprised of the many black contributions to our country, they may be less likely to develop or retain racist sentiments. (Author)

  11. Personality Characteristics of Black Adolescents.

    ERIC Educational Resources Information Center

    Brown, Nina W.

    Four hundred and forty-six poor black urban and rural adolescents ages 15-18 enrolled in a summer poverty-work program are administered Gough's Adjective Checklist (ACL) and Holland's Vocatonal Preference Inventory (VPI) to determine their personality profile, to ascertain differences between this gorup and blacks attending colleges, and to study…

  12. Personality Characteristics of Black Adolescents

    ERIC Educational Resources Information Center

    Brown, Nina W.

    1977-01-01

    This research attempted to determine 1) the personality profiles of disadvantaged Black adolescents on Holland's Vocational Preference Inventory (VPI) and Gough's Adjective Checklist (ACL), 2) if this group differed significantly on the VPI from Blacks attending college, and 3) what implications for programming and planning could be determined…

  13. Support Services and Aged Blacks.

    ERIC Educational Resources Information Center

    Anderson, Peggye D.

    This exploratory study assesses the sources from which elderly blacks draw support for needed services. A total of 208 elderly blacks were questioned concerning whom they would turn to for companionship, when feeling depressed, when in need of necessities like food or medicine, and in emergency situations. For each area, respondents indicated…

  14. Work Attachment Among Black Men

    ERIC Educational Resources Information Center

    Tausky, Curt; Wilson, William J.

    1971-01-01

    Supplements the available scarce data on the attitudes of black males toward work. Finding were that: (1) black workers support the work norms of society; (2) jobs with occupational status are desired; and, (3) poor work habits may be due to adjustment problems and fear of dead-end jobs rather than alienation to work norms. (DM)

  15. Black Youths and Illegal Drugs.

    ERIC Educational Resources Information Center

    Joseph, Janice; Pearson, Patricia G.

    2002-01-01

    Examines the effect of drugs on black youths, discussing different types of drug involvement, reasons for drug involvement, extent and nature of involvement, drugs and crime, drugs and health issues, drug control strategies, and prevention. Policy implications include prioritizing drug prevention among black youths, providing alternatives to drug…

  16. School Desegregation and Black Achievement.

    ERIC Educational Resources Information Center

    Cook, Thomas; And Others

    Seven papers commissioned by the National Institute of Education in order to clarify the state of recent knowledge about the effects of school desegregation on the academic achievement of black students are contained in this report. The papers, which analyze 19 "core" empirical studies on this topic, include: (1) "What Have Black Children Gained…

  17. Black raspberry: Korean vs. American

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This fact sheet shows Korean black raspberry (Rubus coreanus) fruit, flower, and leaf features that distinguish them from their Rubus relatives, black raspberry (R. occidentalis) native to America. Common names with fruit characteristics, including berry size and pigment fingerprints, are summarized...

  18. Marital Happiness of Black Women.

    ERIC Educational Resources Information Center

    Rutledge, Essie M.

    According to a study of 256 black married women between the ages of 26 and 60 living with their spouses, marital happiness is more common among black women than marital unhappiness. This finding is based on the secondary analysis of a sample of data collected in Detroit in 1968-1969. Variables statistically significant to the marital happiness of…

  19. Whites' Beliefs about Blacks' Opportunity.

    ERIC Educational Resources Information Center

    Kluegel, James R.; Smith, Eliot R.

    1982-01-01

    Cites data which show that Whites tend to perceive widespread reverse discrimination, to see Blacks' opportunities as having greatly improved in recent years, and to deny structural limits to Black opportunity. Posits that these perceptions are related to (1) prevailing public beliefs about stratification and (2) peoples' own social positions and…

  20. Family Life in Black America.

    ERIC Educational Resources Information Center

    Taylor, Robert Joseph, Ed.; Jackson, James S., Ed.; Chatters, Linda M., Ed.

    This volume draws on data from the National Survey of Black Americans (NSBA) to explore the condition of the black family in America. The first chapter provides a general introduction, and each of the other chapters presents additional information about the NSBA as it pertains to specific subsamples of NSBA respondents. The following chapters are…

  1. Black Agenda for Career Education.

    ERIC Educational Resources Information Center

    Johnson, Roosevelt

    This 12-chapter book contains contributions from selected authors concentrating on a comprehensive analysis of career education for the black American. The treatise takes career education to task for its "white foundations of educational data." Chapter titles and authors are: Black Agenda for Career Education, by Roosevelt Johnson; Career…

  2. New Perspectives on Black Studies.

    ERIC Educational Resources Information Center

    Blassingame, John W., Ed.

    The essays in this collection have been compiled in an effort to answer some of the complex questions posed by Black Studies. Nathan Hare, Roger Rischer, June Jordan, Michelle Russell, and DeVere E. Pentony explain the rationale for Black Studies. They contend that such programs would help the Negro to form a clearer sense of his own worth and…

  3. Health Policies and Black Americans.

    ERIC Educational Resources Information Center

    Willis, David P., Ed.

    This collection of essays focuses on the impact of health policy on black Americans by examining the relation between public policy and the distribution of health needs and effects. The book includes an introduction by David P. Willis and is divided into seven sections. Section I, "Who Are Black Americans?" includes the following…

  4. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    PubMed

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution.

  5. Lighting installations

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    Model computations that give the lay-out of a lighting installation have to be implemented in the real world. There, deviations from the ideal performance of just about every element of the installation will be felt. A list of possible sources of non-ideal behavior, based on practical experience, are: lamps, ballasts, reflectors, mounting position, sagging of lamps, and soiling. It is clear that with all possible deviations from the ideal the homogeneity of a real lighting installation can never be as good as the one computed. The only way to make sure it is nearly as good is by measurement of the actual light distribution. Then, an occasional adjustment or replacement may often yield a satisfactory result. This measurement should really be part of the installation contract.

  6. Psoralen-plus-light damage and repair in transforming DNA of Bacillus subtilis

    SciTech Connect

    Hadden, C.T.

    1981-01-01

    The relative contributions of excision and recombination in the repair of damage by 8-methoxypsoralen (8-MOP) plus black light to Bacillus subtilis were studied. The results indicate that the pyrimidine dimer excision system and a recombination pathway are probably both involved in repair of lethal damage to cells exposed in vivo to 8-MOP plus black light, but repair is not very efficient. Transforming DNA exposed in vitro to 8-MOP plus black light was inactivated mainly by crosslinks rather than by monoadducts, and was repaired predominantly by an incision-dependent process. There was very little demonstrable damage-induced recombination in transforming DNA.

  7. Artificial light and nocturnal activity in gammarids

    PubMed Central

    Hölker, Franz; Heller, Stefan; Berghahn, Rüdiger

    2014-01-01

    Artificial light is gaining attention as a potential stressor to aquatic ecosystems. Artificial lights located near streams increase light levels experienced by stream invertebrates and we hypothesized light would depress night drift rates. We also hypothesized that the effect of light on drift rates would decrease over time as the invertebrates acclimated to the new light level over the course of one month’s exposure. These hypotheses were tested by placing Gammarus spp. in eight, 75 m × 1 m artificial flumes. One flume was exposed to strong (416 lx) artificial light at night. This strong light created a gradient between 4.19 and 0.04 lx over the neighboring six artificial flumes, while a control flume was completely covered with black plastic at night. Night-time light measurements taken in the Berlin area confirm that half the flumes were at light levels experienced by urban aquatic invertebrates. Surprisingly, no light treatment affected gammarid drift rates. In contrast, physical activity measurements of in situ individually caged G. roeseli showed they increased short-term activity levels in nights of complete darkness and decreased activity levels in brightly lit flumes. Both nocturnal and diurnal drift increased, and day drift rates were unexpectadly higher than nocturnal drift. PMID:24688857

  8. Artificial light and nocturnal activity in gammarids.

    PubMed

    Perkin, Elizabeth K; Hölker, Franz; Heller, Stefan; Berghahn, Rüdiger

    2014-01-01

    Artificial light is gaining attention as a potential stressor to aquatic ecosystems. Artificial lights located near streams increase light levels experienced by stream invertebrates and we hypothesized light would depress night drift rates. We also hypothesized that the effect of light on drift rates would decrease over time as the invertebrates acclimated to the new light level over the course of one month's exposure. These hypotheses were tested by placing Gammarus spp. in eight, 75 m × 1 m artificial flumes. One flume was exposed to strong (416 lx) artificial light at night. This strong light created a gradient between 4.19 and 0.04 lx over the neighboring six artificial flumes, while a control flume was completely covered with black plastic at night. Night-time light measurements taken in the Berlin area confirm that half the flumes were at light levels experienced by urban aquatic invertebrates. Surprisingly, no light treatment affected gammarid drift rates. In contrast, physical activity measurements of in situ individually caged G. roeseli showed they increased short-term activity levels in nights of complete darkness and decreased activity levels in brightly lit flumes. Both nocturnal and diurnal drift increased, and day drift rates were unexpectadly higher than nocturnal drift.

  9. Numerical Simulation of Black Holes

    NASA Astrophysics Data System (ADS)

    Teukolsky, Saul

    2003-04-01

    Einstein's equations of general relativity are prime candidates for numerical solution on supercomputers. There is some urgency in being able to carry out such simulations: Large-scale gravitational wave detectors are now coming on line, and the most important expected signals cannot be predicted except numerically. Problems involving black holes are perhaps the most interesting, yet also particularly challenging computationally. One difficulty is that inside a black hole there is a physical singularity that cannot be part of the computational domain. A second difficulty is the disparity in length scales between the size of the black hole and the wavelength of the gravitational radiation emitted. A third difficulty is that all existing methods of evolving black holes in three spatial dimensions are plagued by instabilities that prohibit long-term evolution. I will describe the ideas that are being introduced in numerical relativity to deal with these problems, and discuss the results of recent calculations of black hole collisions.

  10. String-Corrected Black Holes

    SciTech Connect

    Hubeny, Veronika; Maloney, Alexander; Rangamani, Mukund

    2005-02-07

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect -- the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive! The magnitude of this effect is related to the size of the compactification manifold.

  11. When Charged Black Holes Merge

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge

  12. Black hole final state conspiracies

    NASA Astrophysics Data System (ADS)

    McInnes, Brett

    2009-01-01

    The principle that unitarity must be preserved in all processes, no matter how exotic, has led to deep insights into boundary conditions in cosmology and black hole theory. In the case of black hole evaporation, Horowitz and Maldacena were led to propose that unitarity preservation can be understood in terms of a restriction imposed on the wave function at the singularity. Gottesman and Preskill showed that this natural idea only works if one postulates the presence of “conspiracies” between systems just inside the event horizon and states at much later times, near the singularity. We argue that some AdS black holes have unusual internal thermodynamics, and that this may permit the required “conspiracies” if real black holes are described by some kind of sum over all AdS black holes having the same entropy.

  13. Hidden Structures of Black Holes

    NASA Astrophysics Data System (ADS)

    Vercnocke, Bert

    2010-11-01

    This thesis investigates two main topics concerning black holes in extensions of general relativity inspired by string theory. First, the structure of the equations of motion underlying black hole solutions is considered, in theories of D-dimensional gravity coupled to scalars and vectors. For solutions preserving supersymmetry, the equations of motion have a dramatic simplification: they become first-order instead of the second-order equations one would expect. Recently, it was found that this is a feature some non-supersymmetric black hole solutions exhibit as well. We investigate if this holds more generally, by examining what the conditions are to have first-order equations for the scalar fields of non-supersymmetric black holes, that mimic the form of their supersymmetric counterparts. This is illustrated in examples. Second, the structure of black holes themselves is investigated. String theory has been successful in explaining the Bekenstein-Hawking entropy for (mainly supersymmetric) black holes from a microscopic perspective. However, it is not fully established what the interpretation of the corresponding 'microstates' should be in the gravitational description where the black hole picture is valid. There have been recent advances to understand the nature of black hole microstates in the gravity regime, such as the fuzzball proposal. A related idea says that black hole configurations with multiple centers are related to microstates of single-centered black holes. We report on work relating both pictures. As an aside, a relation between violations of causality for certain spacetimes (presence of closed timelike curves in the geometry) and a breakdown of unitarity in the dual conformal field theory is given.

  14. Probing topologically charged black holes on brane worlds in f({R}) bulk

    NASA Astrophysics Data System (ADS)

    Kuerten, André M.; da Rocha, Roldão

    2016-07-01

    The perihelion precession, the deflection of light and the radar echo delay are classical tests of General Relativity here used to probe brane-world topologically charged black holes in a f(R) bulk. Moreover, such tests are used to constrain the parameter that arises from the Shiromizu-Maeda-Sasaki procedure applied to a f(R) bulk. Observational data constrain the possible values of the tidal charge parameter and the effective cosmological constant in this context. We show that the observational/experimental data for both perihelion precession and radar echo delay make the black hole parameters to be more strict than the ones for the DMPR black hole. Moreover, the deflection of light constrains the tidal charge parameter similarly as the DMPR black holes, due to a peculiarity in the equation of motion.

  15. Dramatic Outburst Reveals Nearest Black Hole

    NASA Astrophysics Data System (ADS)

    2000-01-01

    Scientists have discovered the closest black hole yet, a mere 1,600 light years from Earth. Its discovery was heralded by four of the most dramatic rapid X-ray intensity changes ever seen from one star. Astronomers from the Massachusetts Institute of Technology (MIT) and the National Science Foundation's National Radio Astronomy Observatory (NRAO) announced their findings at the American Astronomical Society's meeting in Atlanta. The black hole in the constellation Sagittarius, along with a normal star dubbed V4641 Sgr, form a violent system that briefly flooded part of our Milky Way Galaxy with X-rays and ejected subatomic particles moving at nearly the speed of light one day last September. At the peak of its X-ray output, V4641 Sgr was the brightest X-ray emitter in the sky. Astronomers call this type of system an X-ray nova because it suddenly becomes a bright source of X-rays, but this object shows characteristics never seen in an X-ray nova. "V4641 Sgr turns on and off so fast that it seems to represent a new subclass of X-ray novae," said Donald A. Smith, postdoctoral associate in MIT's Center for Space Research. Smith worked on data from this object with MIT principal research scientist Ronald Remillard and NRAO astronomer Robert Hjellming. "In X-rays, the intensity rose by a factor of more than 1,000 in seven hours, then dropped by a factor of 100 in two hours," Remillard said. The radio emission was seen as an image of an expanding "jet" of particles shooting out from the binary system. After reaching a maximum, the radio intensity dropped by a factor of nearly 40 within two days. "Radio telescopes give us a quick glimpse of something moving at a fantastically high velocity," Hjellming said. Black holes harbor enormous gravitational force that can literally rip the gas away from a nearby star. This transfer of gas is visible in many forms of radiation. Both orbiting X-ray telescopes and ground-based radio and optical telescopes saw the outburst of V4641

  16. Ghost Remains After Black Hole Eruption

    NASA Astrophysics Data System (ADS)

    2009-05-01

    NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence of a huge eruption produced by the black hole. This discovery presents astronomers with a valuable opportunity to observe phenomena that occurred when the Universe was very young. The X-ray ghost, so-called because a diffuse X-ray source has remained after other radiation from the outburst has died away, is in the Chandra Deep Field-North, one of the deepest X-ray images ever taken. The source, a.k.a. HDF 130, is over 10 billion light years away and existed at a time 3 billion years after the Big Bang, when galaxies and black holes were forming at a high rate. "We'd seen this fuzzy object a few years ago, but didn't realize until now that we were seeing a ghost", said Andy Fabian of the Cambridge University in the United Kingdom. "It's not out there to haunt us, rather it's telling us something - in this case what was happening in this galaxy billions of year ago." Fabian and colleagues think the X-ray glow from HDF 130 is evidence for a powerful outburst from its central black hole in the form of jets of energetic particles traveling at almost the speed of light. When the eruption was ongoing, it produced prodigious amounts of radio and X-radiation, but after several million years, the radio signal faded from view as the electrons radiated away their energy. HDF 130 Chandra X-ray Image of HDF 130 However, less energetic electrons can still produce X-rays by interacting with the pervasive sea of photons remaining from the Big Bang - the cosmic background radiation. Collisions between these electrons and the background photons can impart enough energy to the photons to boost them into the X-ray energy band. This process produces an extended X-ray source that lasts for another 30 million years or so. "This ghost tells us about the black hole's eruption long after

  17. One-Step Solvothermal Synthesis of Black TiO2 Films for Enhanced Visible Absorption.

    PubMed

    Chen, Shanlong; Tao, Jie; Tao, Haijun; Wang, Chen; Shen, Yizhou; Jiang, Jiajia; Zhu, Lumin; Zeng, Xiaofei; Wang, Tao

    2016-03-01

    An economic and facile solvothermal method was reported to prepare black TiO2 films on Ti foils that possessed the property of optical absorption in the visible region. The UV-vis spectra showed that the black TiO2 samples exhibited highly enhanced visible-light absorption from 400-600 nm. The black TiO2 films were compact and uniform, composed of nanoparticles and nanosheets. Moreover, a mixed structure of anatase and rutile was present in black TiO2 films. The electron paramagnetic resonance (EPR) spectra confirmed the presence of Ti3+ in samples, which accounted for longer wavelength optical absorption. The results showed that the TiO2 films had retained their black color upon storage in ambient atmosphere for more than one month. Therefore, it was supposed that the ethylene glycol in solvothermal reaction was the key factor for the extension of the absorption spectrum.

  18. Complicated Contradictions Amid Black Feminism and Millennial Black Women Teachers Creating Curriculum for Black Girls

    ERIC Educational Resources Information Center

    Nyachae, Tiffany M.

    2016-01-01

    Millennial Black women teachers wrestle with two simultaneous burdens: disrupting the racist and sexist status quo of schooling through curriculum, and employing tactics to survive school politics among their majority White women colleagues. This article describes how the "Sisters of Promise" (SOP) curriculum aligned with Black feminism…

  19. Black Hole Caught Zapping Galaxy into Existence?

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Which come first, the supermassive black holes that frantically devour matter or the enormous galaxies where they reside? A brand new scenario has emerged from a recent set of outstanding observations of a black hole without a home: black holes may be "building" their own host galaxy. This could be the long-sought missing link to understanding why the masses of black holes are larger in galaxies that contain more stars. "The 'chicken and egg' question of whether a galaxy or its black hole comes first is one of the most debated subjects in astrophysics today," says lead author David Elbaz. "Our study suggests that supermassive black holes can trigger the formation of stars, thus 'building' their own host galaxies. This link could also explain why galaxies hosting larger black holes have more stars." To reach such an extraordinary conclusion, the team of astronomers conducted extensive observations of a peculiar object, the nearby quasar HE0450-2958 (see eso0523 for a previous study of this object), which is the only one for which a host galaxy has not yet been detected [1]. HE0450-2958 is located some 5 billion light-years away. Until now, it was speculated that the quasar's host galaxy was hidden behind large amounts of dust, and so the astronomers used a mid-infrared instrument on ESO's Very Large Telescope for the observations [2]. At such wavelengths, dust clouds shine very brightly, and are readily detected. "Observing at these wavelengths would allow us to trace dust that might hide the host galaxy," says Knud Jahnke, who led the observations performed at the VLT. "However, we did not find any. Instead we discovered that an apparently unrelated galaxy in the quasar's immediate neighbourhood is producing stars at a frantic rate." These observations have provided a surprising new take on the system. While no trace of stars is revealed around the black hole, its companion galaxy is extremely rich in bright and very young stars. It is forming stars at a rate

  20. School Lighting.

    ERIC Educational Resources Information Center

    Rennhackkamp, W. M. H.

    Research gathered by the Functional Efficiency Division of the National Building Research Institute, South Africa, is aimed at providing lighting conditions under which the school child can produce his maximum effort with the least strain and fatigue. These favorable conditions are outlined along with specific examples of their realization in…

  1. Taking the Pulse of a Black Hole System

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Using two NASA X-ray satellites, astronomers have discovered what drives the "heartbeats" seen in the light from an unusual black hole system. These results give new insight into the ways that black holes can regulate their intake and severely curtail their growth. This study examined GRS 1915+105 (GRS 1915 for short), a binary system in the Milky Way galaxy containing a black hole about 14 times more massive than the Sun that is feeding off material from a companion star. As this material falls towards the black hole, it forms a swirling disk that emits X-rays. The black hole in GRS 1915 has been estimated to rotate at the maximum possible rate, allowing material in the inner disk to orbit very close to the black hole, at a radius only 20% larger than the event horizon, where the material travels at 50% the speed of light. Using the Chandra X-ray Observatory and the Rossi X-ray Timing Explorer (RXTE), researchers monitored this black hole system over a period of eight hours. As they watched, GRS 1915 gave off a short, bright pulse of X-ray light approximately every 50 seconds, varying in brightness by a factor of about three. This type of rhythmic cycle closely resembles an electrocardiogram of a human heart -- though at a slower pace. "Trying to understand the physics of this 'heartbeat state' is a little like trying to understand how a person's heart beats by watching changes in the blood flow through their veins," said Joey Neilsen, a graduate student at Harvard University, who presented these results from his dissertation at the American Astronomical Society (AAS) meeting in Seattle, Wash. It was previously known that GRS 1915 can develop such heartbeats when its mass consumption rate is very high. After monitoring it with the special combination of Chandra and RXTE, Neilsen and his collaborators realized that they could use the pulses to figure out what controls how much material the black hole consumes. "With each beat, the black hole pumps an enormous

  2. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  3. Regular phantom black holes.

    PubMed

    Bronnikov, K A; Fabris, J C

    2006-06-30

    We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials (favored by cosmological observations) and single out 16 classes of possible regular configurations with flat, de Sitter, and anti-de Sitter asymptotics. Among them are traversable wormholes, bouncing Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include k-essence type scalar fields (with a potential) and scalar-tensor gravity.

  4. Black Holes Are The Rhythm at The Heart of Galaxies

    NASA Astrophysics Data System (ADS)

    2008-11-01

    The powerful black holes at the center of massive galaxies and galaxy clusters act as hearts to the systems, pumping energy out at regular intervals to regulate the growth of the black holes themselves, as well as star formation, according to new data from NASA's Chandra X-Ray Observatory. People Who Read This Also Read... Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago A New Way To Weigh Giant Black Holes Discovery of Most Recent Supernova in Our Galaxy NASA Unveils Cosmic Images Book in Braille for Blind Readers Scientists from the University of Michigan, the Max-Planck Institute for Extraterrestrial Physics in Germany, the University of Maryland, Baltimore County (UMBC), the Harvard-Smithsonian Center for Astrophysics and Jacobs University in Germany contributed to the results. The gravitational pull of black holes is so strong that not even light can escape from them. Supermassive black holes with masses of more than a billion suns have been detected at the center of large galaxies. The material falling on the black holes causes sporadic or isolated bursts of energy, by which black holes are capable of influencing the fate of their host galaxies. The insight gained by this new research shows that black holes can pump energy in a gentler and rhythmic fashion, rather then violently. The scientists observed and simulated how the black hole at the center of elliptical galaxy M84 dependably sends bubbles of hot plasma into space, heating up interstellar space. This heat is believed to slow both the formation of new stars and the growth of the black hole itself, helping the galaxy remain stable. Interstellar gases only coalesce into new stars when the gas is cool enough. The heating is more efficient at the sites where it is most needed, the scientists say. Alexis Finoguenov, of UMBC and the Max-Planck Institute for Extraterrestrial Physics in Germany, compares the central black hole to a heart muscle. "Just like our hearts periodically pump our

  5. Hawking Radiation from an Acoustic Black Hole on an Ion Ring

    SciTech Connect

    Horstmann, B.; Cirac, J. I.; Reznik, B.; Fagnocchi, S.

    2010-06-25

    In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it.

  6. Fabrication of black-gold coatings by glancing angle deposition with sputtering

    PubMed Central

    Vitrey, Alan; Alvarez, Rafael; Palmero, Alberto; González, María Ujué

    2017-01-01

    The fabrication of black-gold coatings using sputtering is reported here. Glancing angle deposition with a rotating substrate is needed to obtain vertical nanostructures. Enhanced light absorption is obtained in the samples prepared in the ballistic regime with high tilt angles. Under these conditions the diameter distribution of the nanostructures is centered at about 60 nm and the standard deviation is large enough to obtain black-metal behavior in the visible range. PMID:28326233

  7. SETI among galaxies by virtue of black holes

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2012-09-01

    In two recent papers (Refs. Maccone (2011, 2009) [1,2]) this author proved that the radio communications among any pair of stars within our Galaxy are feasible with modest transmitted powers if the gravitational lenses of both stars are exploited. In the present paper we extend those innovative results to the case of radio communications among nearby galaxies. We show that the radio communications among galaxies may become feasible if the supermassive black holes, usually located at the center of galaxies, are exploited as gravitational lenses. In other words, a massive black hole may be regarded as a huge focusing device for radio waves being transmitted out of that galaxy and/or being received from another galaxy. This happens because a black hole is such a highly massive and compact object that all electromagnetic waves flying by its surface are highly deflected by its gravitational field and made to focus at a comparatively short distance from the black hole itself.Next we consider the possibility of building radio bridges between our own Galaxy (the Milky Way) and other nearby galaxies. This possibility is serious because, since 1974, astronomers have come to known that a supermassive black hole called Sagittarius A* does exist at the center of our Galaxy. In 2002 its mass was estimated to be of the order of 2.6 million solar masses, and in 2008 this estimate was increased to 4.31 million solar masses. Furthermore, in 2004 a team of astronomers reported the discovery of a potential intermediate-class black hole called GCIRS 13E orbiting around SgrA* at about three light-years and having an estimated mass of 1,300 solar masses. These two big black holes could be our Galaxy's “antennae” for communications with alien civilizations harboring in other nearby galaxies.We mathematically show that the following radio bridges may be created between SgrA* and the supermassive black hole located at the center of the nearby galaxies:The SgrA*-Andromeda's (M31) P2

  8. The renaissance of black phosphorus

    NASA Astrophysics Data System (ADS)

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S.

    2015-04-01

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field.

  9. The renaissance of black phosphorus

    PubMed Central

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S.

    2015-01-01

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field. PMID:25820173

  10. 77 FR 70423 - Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... Energy Regulatory Commission Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC; Notice of Application for Partial Transfer of Licenses, and Soliciting Comments and Motions To Intervene On October 25, 2012, Black Bear Hydro Partners, LLC, sole licensee (transferor)...

  11. Black phosphorus-based one-dimensional photonic crystals and microcavities

    NASA Astrophysics Data System (ADS)

    Kriegel, Ilka; Toffanin, Stefano; Scotognella, Francesco

    2016-11-01

    The latest achievements in the fabrication of black phosphorus thin layers, towards the technological breakthrough of a phosphorene atomically thin layer, are paving the way for a their employment in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e. photonic crystals and microcavities, in which few-layer black phosphorus is one of the components. The insertion of the 5 nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity interesting for light manipulation and emission enhancement.

  12. Active galactic nucleus black hole mass estimates in the era of time domain astronomy

    SciTech Connect

    Kelly, Brandon C.; Treu, Tommaso; Pancoast, Anna; Malkan, Matthew; Woo, Jong-Hak

    2013-12-20

    We investigate the dependence of the normalization of the high-frequency part of the X-ray and optical power spectral densities (PSDs) on black hole mass for a sample of 39 active galactic nuclei (AGNs) with black hole masses estimated from reverberation mapping or dynamical modeling. We obtained new Swift observations of PG 1426+015, which has the largest estimated black hole mass of the AGNs in our sample. We develop a novel statistical method to estimate the PSD from a light curve of photon counts with arbitrary sampling, eliminating the need to bin a light curve to achieve Gaussian statistics, and we use this technique to estimate the X-ray variability parameters for the faint AGNs in our sample. We find that the normalization of the high-frequency X-ray PSD is inversely proportional to black hole mass. We discuss how to use this scaling relationship to obtain black hole mass estimates from the short timescale X-ray variability amplitude with precision ∼0.38 dex. The amplitude of optical variability on timescales of days is also anticorrelated with black hole mass, but with larger scatter. Instead, the optical variability amplitude exhibits the strongest anticorrelation with luminosity. We conclude with a discussion of the implications of our results for estimating black hole mass from the amplitude of AGN variability.

  13. Nondestructive and rapid detection of potato black heart based on machine vision technology

    NASA Astrophysics Data System (ADS)

    Tian, Fang; Peng, Yankun; Wei, Wensong

    2016-05-01

    Potatoes are one of the major food crops in the world. Potato black heart is a kind of defect that the surface is intact while the tissues in skin become black. This kind of potato has lost the edibleness, but it's difficult to be detected with conventional methods. A nondestructive detection system based on the machine vision technology was proposed in this study to distinguish the normal and black heart of potatoes according to the different transmittance of them. The detection system was equipped with a monochrome CCD camera, LED light sources for transmitted illumination and a computer. Firstly, the transmission images of normal and black heart potatoes were taken by the detection system. Then the images were processed by algorithm written with VC++. As the transmitted light intensity was influenced by the radial dimension of the potato samples, the relationship between the grayscale value and the potato radial dimension was acquired by analyzing the grayscale value changing rule of the transmission image. Then proper judging condition was confirmed to distinguish the normal and black heart of potatoes after image preprocessing. The results showed that the nondestructive system built coupled with the processing methods was accessible for the detection of potato black heart at a considerable accuracy rate. The transmission detection technique based on machine vision is nondestructive and feasible to realize the detection of potato black heart.

  14. 81. THREE ADDITIONAL BLACK AND WHITE VIDEO MONITORS LOCATED IMMEDIATELY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. THREE ADDITIONAL BLACK AND WHITE VIDEO MONITORS LOCATED IMMEDIATELY WEST OF THOSE IN CA-133-1-A-80. COMPLEX SAFETY WARNING LIGHTS FOR SLC-3E (PAD 2) AND BLDG. 763 (LOB) LOCATED ABOVE MONITOR 3; GREEN LIGHTS ON BOTTOM OF EACH STACK ILLUMINATED. LEFT TO RIGHT BELOW MONITORS: ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. Relativistic boost as the cause of periodicity in a massive black-hole binary candidate.

    PubMed

    D'Orazio, Daniel J; Haiman, Zoltán; Schiminovich, David

    2015-09-17

    Because most large galaxies contain a central black hole, and galaxies often merge, black-hole binaries are expected to be common in galactic nuclei. Although they cannot be imaged, periodicities in the light curves of quasars have been interpreted as evidence for binaries, most recently in PG 1302-102, which has a short rest-frame optical period of four years (ref. 6). If the orbital period of the black-hole binary matches this value, then for the range of estimated black-hole masses, the components would be separated by 0.007-0.017 parsecs, implying relativistic orbital speeds. There has been much debate over whether black-hole orbits could be smaller than one parsec (ref. 7). Here we report that the amplitude and the sinusoid-like shape of the variability of the light curve of PG 1302-102 can be fitted by relativistic Doppler boosting of emission from a compact, steadily accreting, unequal-mass binary. We predict that brightness variations in the ultraviolet light curve track those in the optical, but with a two to three times larger amplitude. This prediction is relatively insensitive to the details of the emission process, and is consistent with archival ultraviolet data. Follow-up ultraviolet and optical observations in the next few years can further test this prediction and confirm the existence of a binary black hole in the relativistic regime.

  16. Radio Telescopes Provide Key Clue on Black Hole Growth

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Astronomers have discovered the strongest evidence yet found indicating that matter is being ejected by a medium-sized black hole, providing valuable insight on a process that may have been key to the development of larger black holes in the early Universe. The scientists combined the power of all the operational telescopes of the National Science Foundation's National Radio Astronomy Observatory (NRAO) to peer deep into the heart of the galaxy NGC 4395, 14 million light-years from Earth in the direction of the constellation Canes Venatici. NGC 4395 Core VLBI image of extended radio emission from core of NGC 4395, indicating suspected outflow powered by black hole CREDIT: Wrobel & Ho, NRAO/AUI/NSF Click on image for larger file Optical (visible light) image of NGC 4395 See here for detail and credit information for optical image. "We are seeing in this relatively nearby galaxy a process that may have been responsible for building intermediate-mass black holes into supermassive ones in the early Universe," said Joan Wrobel, an NRAO scientist in Socorro, NM. Wrobel and Luis Ho of the Observatories of the Carnegie Institution of Washington in Pasadena, CA, presented their findings to the American Astronomical Society's meeting in Seattle, WA. Black holes are concentrations of matter so dense that not even light can escape their powerful gravitational pull. The black hole in NGC 4395 is about 400,000 times more massive than the Sun. This puts it in a rarely-seen intermediate range between the supermassive black holes at the cores of many galaxies, which have masses millions to billions of times that of the Sun, and stellar-mass black holes only a few times more massive than the Sun. Energetic outflows of matter are common to both the supermassive and the stellar-mass black holes, but the new radio observations of NGC 4395 provided the first direct image of such a suspected outflow from an intermediate-mass black hole. The outflows presumably are generated by little

  17. No-Light Light Bulbs

    ERIC Educational Resources Information Center

    Modern Schools, 1976

    1976-01-01

    A thumbnail sketch of some of the light bulbs manufactured for a purpose other than seeing. These "dark" lamps perform varied tasks including keeping food fresh, detecting and preventing disease, spurring plant growth, heating, and copying printed material. (Author/MLF)

  18. Black holes and Higgs stability

    SciTech Connect

    Tetradis, Nikolaos

    2016-09-20

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  19. Orbital resonances around black holes.

    PubMed

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  20. Quantum mechanics of black holes.

    PubMed

    Witten, Edward

    2012-08-03

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  1. Gravitational polarizability of black holes

    SciTech Connect

    Damour, Thibault; Lecian, Orchidea Maria

    2009-08-15

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h{sub l} of a black hole are defined and computed. They are then compared to their electromagnetic analogs h{sub l}{sup EM}. The Love numbers h{sub l} give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  2. On regular rotating black holes

    NASA Astrophysics Data System (ADS)

    Torres, R.; Fayos, F.

    2017-01-01

    Different proposals for regular rotating black hole spacetimes have appeared recently in the literature. However, a rigorous analysis and proof of the regularity of this kind of spacetimes is still lacking. In this note we analyze rotating Kerr-like black hole spacetimes and find the necessary and sufficient conditions for the regularity of all their second order scalar invariants polynomial in the Riemann tensor. We also show that the regularity is linked to a violation of the weak energy conditions around the core of the rotating black hole.

  3. Orbital Resonances Around Black Holes

    NASA Astrophysics Data System (ADS)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-01

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  4. Rotating regular black hole solution

    NASA Astrophysics Data System (ADS)

    Abdujabbarov, Ahmadjon

    2016-07-01

    Based on the Newman-Janis algorithm, the Ayón-Beato-García spacetime metric [Phys. Rev. Lett. 80, 5056 (1998)] of the regular spherically symmetric, static, and charged black hole has been converted into rotational form. It is shown that the derived solution for rotating a regular black hole is regular and the critical value of the electric charge for which two horizons merge into one sufficiently decreases in the presence of the nonvanishing rotation parameter a of the black hole.

  5. Light Sources and Lighting Circuits

    NASA Astrophysics Data System (ADS)

    Honda, Hisashi; Suwa, Takumi; Yasuda, Takeo; Ohtani, Yoshihiko; Maehara, Akiyoshi; Okada, Atsunori; Komatsu, Naoki; Mannami, Tomoaki

    According to the Machinery Statistics of the Ministry of Economy, Trade and Industry, the production of incandescent lamps in Japan in 2007 was 990 million units (90.0% of the previous year's total), in which the production of incandescent lamps for general lighting was 110 million units (90.0% of the previous year's total) and of tungsten-halogen lamps was 44 million units (96.6% of the previous year's total). The production of fluorescent lamps was 927 million units (93.9% of the previous year's total), in which general fluorescent lamps, excluding those for LCD back lighting, was 320 million units (87.2% of the previous year's total). Also, the production of HID lamps was 10 million units (101.5% of the previous year's total). On the other hand, when the numbers of sales are compared with the sales of the previous year, incandescent lamps for general use was 99.8%, tungsten-halogen lamps was 96.9%, fluorescent lamps was 95.9%, and HID lamps was 98.9%. Self-ballasted fluorescent lamps alone showed an increase in sales as strong as 29 million units, or 121.7% of the previous year's sales. It is considered that the switchover of incandescent lamps to HID lamps was promoted for energy conservation and carbon dioxide reduction with the problem of global warming in the background. In regard to exhibitions, Lighting Fair 2007 was held in Tokyo in March, and LIGHTFAIR INTERNATIONAL 2007 was held in New York in May. Regarding academic conferences, LS:11 (the 11th International Symposium on the Science & Technology of Light Sources) was held in Shanghai in May, and the First International Conference on White LEDs and Solid State Lighting was held in Tokyo in November. Both conferences suggested that there are strong needs and concerns now about energy conservation, saving natural resources, and restrictions of hazardous materials. In regard to incandescent lamps, the development of products aiming at higher efficacy, electric power savings, and longer life was advanced by

  6. Chandra Finds Evidence for Swarm of Black Holes Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    2005-01-01

    A swarm of 10,000 or more black holes may be orbiting the Milky Way's supermassive black hole, according to new results from NASA's Chandra X-ray Observatory. This would represent the highest concentration of black holes anywhere in the Galaxy. These relatively small, stellar-mass black holes, along with neutron stars, appear to have migrated into the Galactic Center over the course of several billion years. Such a dense stellar graveyard has been predicted for years, and this represents the best evidence to date of its existence. The Chandra data may also help astronomers better understand how the supermassive black hole at the center of the Milky Way grows. The discovery was made as part of Chandra's ongoing program of monitoring the region around Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way. It was announced today by Michael Muno of the University of California, Los Angeles (UCLA) at a meeting of the American Astronomical Society in San Diego, CA. Animation: Sequence Showing Evidence of Black Hole Swarm in Context Animation: Sequence Showing Evidence of Black Hole Swarm in Context Among the thousands of X-ray sources detected within 70 light years of Sgr A*, Muno and his colleagues searched for those most likely to be active black holes and neutron stars by selecting only the brightest sources that also exhibited large variations in their X-ray output. These characteristics identify black holes and neutron stars that are in binary star systems and are pulling matter from nearby companion stars. Of the seven sources that met these criteria, four are within three light years of Sgr A*. "Although the region around Sgr A* is crowded with stars, we expected that there was only a 20 percent chance that we would find even one X-ray binary within a three-light-year radius," said Muno. "The observed high concentration of these sources implies that a huge number of black holes and neutron stars have gathered in the center of the

  7. Intra-binary Shock Heating of Black Widow Companions

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.; Sanchez, Nicolas

    2016-09-01

    The low-mass companions of evaporating binary pulsars (black widows and similar) are strongly heated on the side facing the pulsar. However, in high-quality photometric and spectroscopic data, the heating pattern does not match that expected for direct pulsar illumination. Here we explore a model where the pulsar power is intercepted by an intra-binary shock (IBS) before heating the low-mass companion. We develop a simple analytic model and implement it in the popular “ICARUS” light curve code. The model is parameterized by the wind momentum ratio β and the companion wind speed {f}v{v}{{orb}}, and assumes that the reprocessed pulsar wind emits prompt particles or radiation to heat the companion surface. We illustrate an interesting range of light curve asymmetries controlled by these parameters. The code also computes the IBS synchrotron emission pattern, and thus can model black widow X-ray light curves. As a test, we apply the results to the high-quality asymmetric optical light curves of PSR J2215+5135; the resulting fit gives a substantial improvement upon direct heating models and produces an X-ray light curve consistent with that seen. The IBS model parameters imply that at the present loss rate, the companion evaporation has a characteristic timescale of {τ }{{evap}}≈ 150 Myr. Still, the model is not fully satisfactory, indicating that there are additional unmodeled physical effects.

  8. From the first stars to the first black holes

    NASA Astrophysics Data System (ADS)

    Valiante, Rosa; Schneider, Raffaella; Volonteri, Marta; Omukai, Kazuyuki

    2016-04-01

    The growth of the first supermassive black holes (SMBHs) at z > 6 is still a major challenge for theoretical models. If it starts from black hole (BH) remnants of Population III stars (light seeds with mass ˜100 M⊙), it requires super-Eddington accretion. An alternative route is to start from heavy seeds formed by the direct collapse of gas on to an ˜105 M⊙ BH. Here we investigate the relative role of light and heavy seeds as BH progenitors of the first SMBHs. We use the cosmological, data constrained semi-analytic model GAMETE/QSODUST to simulate several independent merger histories of z > 6 quasars. Using physically motivated prescriptions to form light and heavy seeds in the progenitor galaxies, we find that the formation of a few heavy seeds (between 3 and 30 in our reference model) enables the Eddington-limited growth of SMBHs at z > 6. This conclusion depends sensitively on the interplay between chemical, radiative and mechanical feedback effects, which easily erase the conditions that allow the suppression of gas cooling in the low-metallicity gas (Z < Zcr and JLW > Jcr). We find that heavy seeds cannot form if dust cooling triggers gas fragmentation above a critical dust-to-gas mass ratio (D ≥ D_cr). In addition, the relative importance of light and heavy seeds depends on the adopted mass range for light seeds, as this dramatically affects the history of cold gas along the merger tree, by both SN- and AGN-driven winds.

  9. Glareless light-emitting diode lighting tube

    NASA Astrophysics Data System (ADS)

    Chang, Rong-Seng; Li, Tung-Yen; Jwo, Ko-Wen; Wang, Sha-Wei; Tsai, Jang-Zern

    2012-03-01

    We develop a novel light bar waveguide design to produce a glareless light-emitting diode (LED) lighting tube. We design optimal parameters, such as the gap y between the tube and the reflective surface, the relative distance x between the lens and the LED, and so on. Using these parameters, we fabricate an illumination system consisting of LED light bulb installed at both ends of lighting tube. The lighting tube is shaped the same as a traditional fluorescent lighting tube in order to replace traditional lighting tubes without the modification of the lighting stand. The LED lighting tube is glareless to the observer from the side view.

  10. Survival of postfledging female American black ducks

    USGS Publications Warehouse

    Longcore, J.R.; McAuley, D.G.; Frazer, C.

    1991-01-01

    We equipped 106 hatching-year (HY), female, black ducks (Anas rubripes) with transmitters during 1985-87 and monitored survival from late August to mid-December on a lightly hunted area on the Maine-New Brunswick border. The 1985-87 estimate of survival (hunting losses included) was 0.593, and when losses from hunting were censored it was 0.694. Survival in August-September was 0.987; by 31 October survival declined to 0.885, and by 30 November it was 0.718. Most nonhunting mortality was caused by predators (21/41, 53.2%); there were 14 deaths (34.1%) from mammals or unknown predators and 7 (17.1%) from raptors. Hunting caused 13 (31. 7%) deaths. Ducks with lowest mass had the lowest survival. The estimate of survival for postfledging female black ducks, when multiplied with interval survival rates for hunting, winter, and breeding periods, produced an annual survival estimate of 0.262, about 12% lower than that (0.38) based on analysis of banding data.

  11. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Black powder. 56.6901 Section 56.6901 Mineral....6901 Black powder. (a) Black powder shall be used for blasting only when a desired result cannot be...) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed cargo space while...

  12. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Black powder. 56.6901 Section 56.6901 Mineral....6901 Black powder. (a) Black powder shall be used for blasting only when a desired result cannot be...) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed cargo space while...

  13. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Black powder. 57.6901 Section 57.6901 Mineral...-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a... dimension stone. (b) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally...

  14. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Black powder. 56.6901 Section 56.6901 Mineral....6901 Black powder. (a) Black powder shall be used for blasting only when a desired result cannot be...) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed cargo space while...

  15. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Black powder. 57.6901 Section 57.6901 Mineral...-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a... dimension stone. (b) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally...

  16. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Black powder. 57.6901 Section 57.6901 Mineral...-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a... dimension stone. (b) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally...

  17. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Black powder. 56.6901 Section 56.6901 Mineral....6901 Black powder. (a) Black powder shall be used for blasting only when a desired result cannot be...) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed cargo space while...

  18. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Black powder. 57.6901 Section 57.6901 Mineral...-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a... dimension stone. (b) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally...

  19. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Black powder. 57.6901 Section 57.6901 Mineral...-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a... dimension stone. (b) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally...

  20. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Black powder. 56.6901 Section 56.6901 Mineral....6901 Black powder. (a) Black powder shall be used for blasting only when a desired result cannot be...) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed cargo space while...