NREL photovoltaic program FY 1997 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, R.D.; Hansen, A.; Smoller, S.
1998-06-01
This report summarizes the in-house and subcontracted research and development (R and D) activities under the NREL PV Program from October 1, 1996, through September 30, 1997 (FY 1997). The NREL PV Program is part of the US Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996--2000. The FY 1997 budget authority for carrying out the NREL PV Program was $39.3 million in operating funds and $0.4 million in capital equipment funds. Subcontract activities represent a major part of the NREL PV Program, with $21.8 million (55% of PV funds) goingmore » to some 84 subcontractors. Cost sharing by industry added almost $8.8 million to the subcontract R and D activities with industry.« less
NREL Photovoltaic Program. FY 1994 annual report, October 1, 1993--September 30, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This report summarizes the in-house and subcontracted research and development activities under the National renewable Energy Laboratory (NREL) Photovoltaics (PV) program for fiscal year 1994. Research is organized under the following areas; PV program management; crystalline silicon and advanced devices; thin-film PV technologies; PV manufacturing; PV module and system performance and engineering; and PV applications and markets.
NREL Photovoltaic Program FY 1996 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's andmore » the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.« less
Film Fabrication Technologies at NREL
NASA Technical Reports Server (NTRS)
Mcconnell, Robert D.
1993-01-01
The National Renewable Energy Laboratory (NREL) has extensive capabilities for fabricating a variety of high-technology films. Much of the in-house work in NREL's large photovoltaics (PV) program involves the fabrication of multiple thin-film semiconducting layers constituting a thin-film PV device. NREL's smaller program in superconductivity focuses on the fabrication of superconducting films on long, flexible tape substrates. This paper focuses on four of NREL's in-house research groups and their film fabrication techniques, developed for a variety of elements, alloys, and compounds to be deposited on a variety of substrates. As is the case for many national laboratories, NREL's technology transfer efforts are focusing on Cooperative Research and Development Agreements (CRADA's) between NREL researchers and private industry researchers.
PV Working with Industry, 2nd Quarter, 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, L.; Moon, S.
2000-06-29
NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The Second Quarter, 2000, issue is titled ``Our Shared PV Future''. It contains a review of several important PV-related meetings held in the prior three months: the NCPV Program Review, the 16 European PV Conference, and year-2000 Earth Day activities in Denver, CO. The editorialist is Paul Maycock, Publisher of PV News.
PV Calibration Insights | NREL
PV Calibration Insights PV Calibration Insights The Photovoltaic (PV) Calibration Insights blog will provide updates on the testing done by the NREL PV Device Performance group. This NREL research group measures the performance of any and all technologies and sizes of PV devices from around the world
Graduate Students Gain Hands-On PV Experience from NREL Researchers | News
PV Experience (HOPE) Workshop, learning from top solar scientists at the U.S. Department of Energy's | NREL Graduate Students Gain Hands-On PV Experience from NREL Researchers Graduate Students Gain Hands-On PV Experience from NREL Researchers August 10, 2017 Two students, one standing, one
NREL to Host Ninth Annual PV Reliability Workshop | News | NREL
share research leading to more durable and reliable PV modules, thus reducing the cost of solar to Host Ninth Annual PV Reliability Workshop NREL to Host Ninth Annual PV Reliability Workshop their results during a poster session at the 2017 PV Reliability Workshop. 4 people consult two
Results from Undergraduate PV Projects at Seven Historically Black Colleges and Universities
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, R. D.
1999-03-03
In 1995, the NREL/Department of Energy (DOE) National Photovoltaics Program funded seven Historically Black Colleges and Universities (HBCUs) in its HBCU Photovoltaic Research Associates Program for a period of three years. The program's purpose is to advance HBCU undergraduate knowledge of photovoltaics, primarily as a result of research investigations performed, and to encourage students to pursue careers in photovoltaics. This paper presents results from PV projects ranging from fundamental materials research on PV materials to field projects of PV systems.
NREL Adds Solar Array Field to Help Inform Consumers | NREL
PV modules at NREL's new solar array field. Workers install PV modules just north of the NREL parking be Added Each Year Once completed, the new solar array field will house four rows of PV modules. The the lifetime of a PV system, and that increases the per-kilowatt-hour cost of generating solar
Materials and Chemical Science and Technology | Research | NREL
Applications and Performance Developing high-efficiency crystalline PV, measuring PV cell/module performance Cells and Hydrogen Program Developing, integrating, and demonstrating hydrogen production/delivery /storage through core programs and EFRCs Point of Contact Bill Tumas MCST Research Advisors/Fellows Senior
Indiana | Solar Research | NREL
Incentive Programs Indiana exempts solar PV modules, racking, and inverter from state sales and use taxes . The entire solar generating system is exempt from property taxation. Utility Incentive Programs Utility Incentive Limitations Northern Indiana Public Service Company (Solar PV feed-in-tariff) $0.1564
Results from undergraduate PV projects at Seven Historically Black Colleges and Universities
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, R.D.
1999-03-01
In 1995, the NREL/Department of Energy (DOE) National Photovoltaics Program funded seven Historically Black Colleges and Universities (HBCUs) in its HBCU Photovoltaic Research Associates Program for a period of three years. The program{close_quote}s purpose is to advance HBCU undergraduate knowledge of photovoltaics, primarily as a result of research investigations performed, and to encourage students to pursue careers in photovoltaics. This paper presents results from PV projects ranging from fundamental materials research on PV materials to field projects of PV systems. {copyright} {ital 1999 American Institute of Physics.}
NREL Report Shows Utility-Scale Solar PV System Cost Fell Nearly 30% Last
Year | NREL | News | NREL Report Shows Utility-Scale Solar PV System Cost Fell Nearly 30% Last Year News Release: NREL Report Shows Utility-Scale Solar PV System Cost Fell Nearly 30% Last Year September 12, 2017 Record-low costs enabled by decline in module and inverter prices The installed cost of
of residential solar PV markets. Eric leads the lab's solar data partnerships program. Eric's current green power market research. Research Interests Economic analysis, econometrics, distributed solar PV . Ardani, R. Margolis. 2018. Solar plus: Optimization of distributed solar PV through battery storage and
2014 NREL Photovoltaic Reliability Workshops | Photovoltaic Research | NREL
Curves and Visual Inspection of PV Modules Deployed at TEP Solar Test Yard-Peter McNutt, NREL Data Determining PV System's Degradation Rate and the Impact of Data Filters-Wilson Zexu Zhang, REC Solar Pte. Ltd " Test in Qualifying Solar PV Inverters-Dutch Uselton, Lennox IND System Reliability for Utility PV
Crystal Solar and NREL Team Up to Cut Costs | News | NREL
throughput and half the cost could be a game-changer, creating American jobs and stemming the flow of solar , as a way of making it cost competitive with fossil-fuel-based electricity. Incubator Program at NREL cost of the final PV product." Solar Wafers at 13 Cents per Watt Photo of three men. Enlarge image
conducting films of cadmium stannate: X. Wu, and T. J. Coutts (NREL IR#9545) PV devices comprising cadmium (NREL IR#9535) PV devices comprising zinc stannate buffer layer and method for making: X. Wu, P. Sheldon , and T. J. Coutts (NREL IR#9721) (filed) Publications View all NREL publications for Dr. Coutts. Awards
Market Research Kristen.Ardani@nrel.gov | 303-384-6461 Kristen is a Solar Program Lead focusing on efforts to reduce soft costs and transfer emerging technologies to market. Her areas of expertise include solar market analysis, PV system price-tracking, and non-hardware cost-reduction strategies. Research
physical phenomena, PV package reliability, and outdoor PV performance. At NREL, he performs research in advanced concept PV modules. Dr. Silverman studies the performance and reliability of PV modules, including previously studied the degradation of solder joints in high-concentration PV and the outdoor performance of
NREL Report Shows U.S. Solar Photovoltaic Costs Continuing to Fall in 2016
chart of solar pv costs from q4 2009 to q1 2016 NREL U.S. PV system cost benchmarks, from the fourth (NREL). Driving the cost reductions were lower module and inverter prices, increased competition, lower ;The continuing total cost decline of solar PV systems demonstrates the sustained economic
Analysis of Bright Harvest Remote Analysis for Residential Solar Installations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nangle, John; Simon, Joseph
Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.
2017 NREL Photovoltaic Reliability Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Sarah
NREL's Photovoltaic (PV) Reliability Workshop (PVRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology -- both critical goals for moving PV technologies deeper into the electricity marketplace.
NREL/SCE High Penetration PV Integration Project: FY13 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, B. A.; Shah, S.; Norris, B. L.
2014-06-01
In 2010, the National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed to analyze the impacts of high penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to benefit from the experience that SCE and the project team would gain during the installation of 500 megawatts (MW) of utility-scale PV systems (with 1-5 MW typical ratings) starting in 2010 and completing in 2015 within SCE's service territory through a program approved by the California Public Utility Commissionmore » (CPUC). This report provides the findings of the research completed under the project to date.« less
Organic Photovoltaic Solar Cells | Photovoltaic Research | NREL
Organic Photovoltaic Solar Cells Organic Photovoltaic Solar Cells The National Center for Photovoltaics (NCPV) at NREL has strong complementary research capabilities in organic photovoltaic (OPV) cells pages: High-Efficiency Crystalline PV Polycrystalline Thin-Film PV Perovskite and Organic PV Advanced PV
Photovoltaic Lifetime Project | Photovoltaic Research | NREL
PV & Solar Resource Testing Accelerated Testing & Analysis Systems Engineering Project Sandia National Laboratories' PV Performance Modeling Collaborative website. Jinko Solar. PV systems mounted on the ground. Jinko Solar PV Lifetime installation at NREL. need-alt Light-induced degradation
2016 NREL Photovoltaic Module Reliability Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Sarah
NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology - both critical goals for moving PV technologies deeper into the electricity marketplace.
2015 NREL Photovoltaic Module Reliability Workshops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Sarah
NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.
Photovoltaic System Pricing Trends: Historical, Recent, and Near-Term Projections 2015 Edition
Feldman, David; Barbose, Galen; Margolis, Robert; Bolinger, Mark; Chung, Donald; Fu, Ran; Seel, Joachim; Davidson, Carolyn; Wiser, Ryan
2016-05-13
This is the fourth edition in an annual briefing prepared jointly by LBNL and NREL intended to provide a high-level overview of historical, recent, and projected near-term PV system pricing trends in the United States. The briefing draws on several ongoing research activities at the two labs, including LBNL's annual Tracking the Sun report series, NREL's bottom-up PV cost modeling, and NREL's synthesis of PV market data and projections. The briefing examines progress in PV price reductions to help DOE and other PV stakeholders manage the transition to a market-driven PV industry, and integrates different perspectives and methodologies for characterizing PV system pricing, in order to provide a broader perspective on underlying trends within the industry.
Analysis of Aurora's Performance Simulation Engine for Three Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Janine; Simon, Joseph
2015-07-07
Aurora Solar Inc. is building a cloud-based optimization platform to automate the design, engineering, and permit generation process of solar photovoltaic (PV) installations. They requested that the National Renewable Energy Laboratory (NREL) validate the performance of the PV system performance simulation engine of Aurora Solar’s solar design platform, Aurora. In previous work, NREL performed a validation of multiple other PV modeling tools 1, so this study builds upon that work by examining all of the same fixed-tilt systems with available module datasheets that NREL selected and used in the aforementioned study. Aurora Solar set up these three operating PV systemsmore » in their modeling platform using NREL-provided system specifications and concurrent weather data. NREL then verified the setup of these systems, ran the simulations, and compared the Aurora-predicted performance data to measured performance data for those three systems, as well as to performance data predicted by other PV modeling tools.« less
NREL Photovoltaic Program FY 1995 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-06-01
This report summarizes the in-house and subcontracted R&D activities from Oct. 1994 through Sept. 1995; their objectives are to conduct basic, applied, and engineering research, manage subcontracted R&D projects, perform research complementary to subcontracted work, develop and maintain state-of-the-art measurement and device capabilities, develop PV manufacturing technology and modules, transfer results to industry, and evolve viable partnerships for PV systems and market development. The research activities are grouped into 5 sections: crystalline Si and advanced devices, thin-film PV, PV manufacturing, PV module and system performance and engineering, and PV applications and market development.
NREL Finds Nanotube Semiconductors Well-suited for PV Systems | News | NREL
photoinduced electron transfer for emerging organic semiconductors such as single-walled carbon nanotubes (SWCNT) that can be used in organic PV devices. In organic PV devices, after a photon is absorbed Larson, and Steven Strauss from Colorado State University. Organic PV devices involve an interface
New Solar PV Tool Accurately Calculates Degradation Rates, Saving Money and
Guiding Business Decisions | News | NREL New Solar PV Tool Accurately Calculates Degradation Rates, Saving Money and Guiding Business Decisions News Release: New Solar PV Tool Accurately Calculates ; said Dirk Jordan, engineer and solar PV researcher at NREL. "We spent years building consensus in
Researchers at NREL Find Fewer Failures of PV Panels and Different
10, 2017 Overall failure rates for photovoltaic (PV) solar panels have fallen dramatically when Failures of PV Panels and Different Degradation Modes in Systems Installed after 2000 Researchers at NREL Find Fewer Failures of PV Panels and Different Degradation Modes in Systems Installed after 2000 April
Reliability and Engineering | Photovoltaic Research | NREL
-Time PV and Solar Resource Testing We study long-term performance, reliability, and failures of PV (NCPV) at NREL, we focus on photovoltaic (PV) reliability research and development (R&D) to improve PV technologies. We test modules and systems for long-term performance and stress them in the field
Systems Engineering | Photovoltaic Research | NREL
Research Other Reliability & Engineering pages: Real-Time PV & Solar Resource Testing Accelerated community toward developing comprehensive PV standards. Each year, NREL researchers, along with solar Engineering Systems Engineering We provide engineering testing and evaluation of photovoltaic (PV
Golden Rays - July 2017 | Solar Research | Solar Research | NREL
Operator, First Solar, and NREL tested a 300-MW PV plant to demonstrate that, with proper controls, PV can technique to measure charge-carrier transport in PV materials. Solar Plus: A Holistic Approach to Distribution Solar PV By optimizing how PV interacts with other electricity loads at the household- and grid
Photovoltaic Subcontract Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surek, Thomas; Catalano, Anthony
1993-03-01
This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT)more » project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.« less
next stage of growth for the PV industry. Participated in the demonstration of the GaInP/GaAs solar photovoltaics (PV), concentrator PV, and PV reliability. Kurtz and NREL colleague Jerry Olson championed the early use of multi-junction solar cells by showing that a top cell of gallium indium phosphide (GaInP
Solar Plus: A Holistic Approach to Distributed Solar PV | Solar Research |
NREL Plus: A Holistic Approach to Distributed Solar PV Solar Plus: A Holistic Approach to Distributed Solar PV A new NREL report analyzes "solar plus," an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize
NREL Suite of Tools for PV and Storage Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgqvist, Emma M; Salasovich, James A
Many different factors such as the solar resource, technology costs and incentives, utility cost and consumption, space available, and financial parameters impact the technical and economic potential of a PV project. NREL has developed techno-economic modeling tools that can be used to evaluate PV projects at a site.
NREL Screens Universities for Solar and Battery Storage Potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
In support of the U.S. Department of Energy's SunShot initiative, NREL provided solar photovoltaic (PV) screenings in 2016 for eight universities seeking to go solar. NREL conducted an initial technoeconomic assessment of PV and storage feasibility at the selected universities using the REopt model, an energy planning platform that can be used to evaluate RE options, estimate costs, and suggest a mix of RE technologies to meet defined assumptions and constraints. NREL provided each university with customized results, including the cost-effectiveness of PV and storage, recommended system size, estimated capital cost to implement the technology, and estimated life cycle costmore » savings.« less
The Value of Transparency in Distributed Solar PV Markets | Solar Research
| NREL The Value of Transparency in Distributed Solar PV Markets The Value of Transparency in Distributed Solar PV Markets NREL research analyzes data from a U.S. quote aggregator to study the effects of transparency on distributed solar photovoltaic (PV) markets. The study shows lower prices in more transparent
Photovoltaic Subcontract Program. Annual report, FY 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-03-01
This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project,more » PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.« less
Technical Report: Guide Details Best Practices in Photovoltaic System
Operations and Maintenance | Solar Research | NREL Guide Details Best Practices in Photovoltaic A best-practices report on photovoltaic (PV) operations and maintenance (O&M) released by NREL and the PV O&M Working Group provides valuable insights on improving the performance of PV systems
Global Gathering Addresses PV Role in Energy Prosperity and Climate Change
Mitigation | News | NREL Global Gathering Addresses PV Role in Energy Prosperity and Climate Change Mitigation News Release: Global Gathering Addresses PV Role in Energy Prosperity and Climate Laboratory (NREL), along with their counterparts from solar energy research institutes in Germany and Japan
Massachusetts | Midmarket Solar Policies in the United States | Solar
Research | NREL Massachusetts Massachusetts An arrow graphic shows that Massachusetts's retail rate. State Incentive Programs Program Administrator Incentive Leading By Example Solar PV Canopy Environmental Affairs: Leading by Example Program Other MassSolar: Solar Policies and Resources Massachusetts
South Dakota | Solar Research | NREL
South Dakota. Utilities and developers may offer community solar programs. State Incentive Programs Program Administrator Incentive Renewable Energy System Exemption South Dakota Department of Revenue and more than $2 million. The incentive was designed for wind, but solar PV is also eligible. Utility
NREL Research Team Wins R&D 100 Award | News | NREL
performance PV modules for large-scale solar power plants, commercial and residential buildings, and off-grid Laboratory (NREL) and First Solar have been selected to receive a 2003 R&D 100 award from R&D Magazine for developing a new process for depositing semiconductor layers onto photovoltaic (PV) modules
NREL at 40: It All Started With a Desire to Harness the Sun | News | NREL
(PV) industry. Their job was to ultimately develop new solar technology and to chart a path toward its of reliability for PV modules and systems, helping bolster consumer and investor confidence in solar With a Desire to Harness the Sun July 5, 2017 Photo of PV panels under a bright blue sky. A PV array on
Shining a New Light on Silicon PV Manufacturing - Continuum Magazine |
lines. Photo by Dennis Schroeder, NREL Shining a New Light on Silicon PV Manufacturing Groundbreaking system and can be automatically eliminated. Photo by Dennis Schroeder, NREL Tackling the Serious Issue of
Net Metering | State, Local, and Tribal Governments | NREL
research organizations have explored this question by conducting solar cost-benefit studies. Program Design Sequencing for State Distributed PV Policies: A Quantitative Analysis of Policy Impacts and Interactions
Supply Constraints Analysis | Energy Analysis | NREL
module cost, and future price could be critical to the economic viability of this PV technology. Even constraints on future CdTe PV module deployment and found that: CdTe PV modules can remain cost-competitive and 4070 GW of annual CdTe production by 2030. Cost estimates were based on NREL's manufacturing cost
Golden Rays - November 2016 | Solar Research | NREL
develop PV module materials for reliable, low-cost solar electricity. Photo of three individuals behind quantum dots. Photo of a man inside a room with manufacturing equipment NREL Report Shows U.S. Solar PV sustained economic competitiveness of solar PV for the industry across all three sectors. Must Reads
Cadmium Telluride Solar Cells | Photovoltaic Research | NREL
Cadmium Telluride Solar Cells Cadmium Telluride Solar Cells Photovoltaic (PV) solar cells based on leadership. The United States is the leader in CdTe PV manufacturing, and NREL has been at the forefront of research and development (R&D) in this area. PV Research Other Materials & Devices pages: High
National Center for Photovoltaics at NREL
VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah
2018-06-08
The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.
Module 1: Text Versions | State, Local, and Tribal Governments | NREL
bonus module is on using solar PV for resilience. And, as Jenny and Harrison both mentioned, if you do working definition. To simply resilience and to incorporate solutions like on-site solar PV, NREL has into solar PV projects. Energy resilience can only be achieved by understanding energy needs and
Summary of NREL's FY13-FY15 Photovoltaic Subprogram
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-03-31
In this report, you will find summaries of the completed FY13-FY15 Photovoltaic projects that were funded within NREL. The summaries describe the initial motivation for the project; significant achievements, including publications, intellectual property, and collaborations; and remaining challenges. Among the NREL projects, you will find research of almost every major PV technology - from the next generation of silicon PV to relatively new organic PVs - as well as projects advancing PV module durability and characterization. Each of these projects was designed to support SunShot's goals, putting the United States one step closer to widespread use of low-cost, clean electricity.
., Meydbray, J., Donovan, M., and Forrest, J. 2014. Photovoltaic Shading Testbed for Module-Level Power Renewable Energy Laboratory (NREL) in Golden, Colorado, in the photovoltaic (PV) performance and reliability performance and stabilization, mismatch and partial shading in PV systems, and distributed power electronics
Solar Resources for Local Governments | State, Local, and Tribal
integrating photovoltaic systems throughout the city. City and County Solar Photovoltaics Training Program NREL is offering a no-cost PV training program for 50 cities and counties seeking to go solar on their facilities-both buildings and land. For detailed information on the training program, view the City and
the System Advisor Model (SAM) PV engineering PV performance reliability and safety Solar resource Research Photo of a city landscape with a sun in the background. Solar energy research at NREL includes photovoltaics, concentrating solar power, solar grid and systems integration, and market research
A Practical Irradiance Model for Bifacial PV Modules: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marion, Bill; MacAlpine, Sara; Deline, Chris
2017-06-15
A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors (CFs) to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be addedmore » to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using the RADIANCE ray tracing program.« less
An Analysis of Techno-Economic Requirements for MOSAIC CPV Systems to Achieve Cost Competitiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Kelsey A; Cunningham, David W.; Zahler, James
A comprehensive bottom-up cost model has been developed by NREL for ARPAE's MOSAIC micro-concentrator PV program. It will calculate LCOE for MOSAIC technologies and assess their cost competitiveness compared to traditional flat-plate systems.
Midscale Commercial Solar Market | Solar Research | NREL
analysis to expand the midscale solar market. The midscale market for solar photovoltaics (PV), loosely than other PV market segments in recent years. Featured Analysis Midmarket Solar Policies in the United Midscale Commercial Solar Market Midscale Commercial Solar Market NREL experts are providing
Energy Systems Integration News | Energy Systems Integration Facility |
us at the ESIF. NREL Releases High-Pen PV Handbook for Distribution Engineers As solar photovoltaic PV for Ancillary Services NREL, AES, the Puerto Rico Electric Power Authority, First Solar, and the technologies, such as solar, demand response, and smart consumer appliances Advances in grid design and
Commercial applications of new photovoltaic technologies
NASA Technical Reports Server (NTRS)
Mcconnell, R.
1991-01-01
The National Renewable Energy Laboratory (NREL) has directed and managed photovoltaic (PV) research and development (R&D) activities for the Department of Energy for more than 13 years. The NREL budget for these activities is almost $33 million for FY 1991. With the world's increasing concern for the environment and the United States' renewed apprehension over secure and adequate energy supplies, the use of semiconducting materials for the direct conversion of sunlight to electricity - photovoltaics - is an excellent example of government-supported high technology ready for further development by U.S. companies. Some new PV technologies and their research progress, some commercial applications of PV, and NREL's technology transfer activities for helping U.S. industry in its efforts to bring new products or services to the marketplace are described.
Case Studies Comparing System Advisor Model (SAM) Results to Real Performance Data: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, N.; Dobos, A.; Sather, N.
2012-06-01
NREL has completed a series of detailed case studies comparing the simulations of the System Advisor Model (SAM) and measured performance data or published performance expectations. These case studies compare PV measured performance data with simulated performance data using appropriate weather data. The measured data sets were primarily taken from NREL onsite PV systems and weather monitoring stations.
Solar Access: Issues and Policy Options | State, Local, and Tribal
: approximately 2,580 megawatts (MW) of new residential solar photovoltaic (PV) capacity was brought online in home with rooftop solar Figure 1. Example of a residential solar PV system. NREL 00565 The existing Governments | NREL Solar Access: Issues and Policy Options Solar Access: Issues and Policy
Silicon Materials and Devices R&D | Photovoltaic Research | NREL
" and "Si-based Tandem Solar Cells"), Next Generation Photovoltaics (NextGen PV III), and devices, especially for photovoltaic (PV) cell applications. PV Research Other Materials & Devices pages: High-Efficiency Crystalline PV Polycrystalline Thin-Film PV Perovskite and Organic PV Advanced PV
Energy Systems Integration: NREL + HECO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawaiian Electric Companies' (HECO) customers are among the nation's fastest-adopters of solar PV systems. For HECO, the increased daytime PV generation raises feeder voltage profiles. Emerging technologies such as advanced PV inverters, battery storage, electric vehicles, and controllable loads also have an impact on voltage profiles. From the utility's perspective, it is yet unclear how to effectively manage these customer-sited resources. NREL is helping HECO understand its options by validating several voltage regulation strategies, making specific use of advanced inverters with voltage support functions, and their integration with other controllable sources.
NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation
Study | Energy Systems Integration Facility | NREL NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation Study NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation Study When a large solar photovoltaic (PV) system is connected to the electric grid, a utility's
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, E.; Antkowiak, M.; Butt, R.
The Strategic Environmental Research and Developmental Program (SERDP)/Environmental Security Technology Certification Program (ESTCP) is the Department of Defense?s (DOD) environmental science and technology program focusing on issues related to environment and energy for the military services. The SERDP/ESTCP Office requested that the National Renewable Energy Laboratory (NREL) provide technical assistance with strategic planning by evaluating the potential for several types of renewable energy technologies at DOD installations. NREL was tasked to provide technical expertise and strategic advice for the feasibility of geothermal resources, waste-to-energy technology, photovoltaics (PV), wind, microgrids, and building system technologies on military installations. This technical report ismore » the deliverable for these tasks.« less
Golden Rays - June 2017 | Solar Research | NREL
information on NREL's research and development of solar technologies. To receive new issues by email panels. A Pathway to 10 Terawatts of PV A global PV capacity of 5-10 terawatts could be installed by 2030 % renewable power by 2025. Currently, 38% of the continent's electricity comes from renewable resources. The
2015 IECRE: PV System Certification Workshop | Photovoltaic Research | NREL
IECRE: PV System Certification Workshop 2015 IECRE: PV System Certification Workshop Thursday the guidelines for certifying PV systems. This workshop included an introduction of IECRE followed by discussions targeting the most critical or controversial items. This workshop gathered wide input from the PV
PV Module Reliability Workshop | Photovoltaic Research | NREL
-year old PV system in Quebec, Canada-Alex Bradley, Tanya Dhir, Yves Poissant Solar panel design factors PV Module Reliability Workshop PV Module Reliability Workshop Tuesday, February 24, 2015 Chair : Michael Kempe The 2015 PV Module Reliability Workshop (PVMRW) continued in the tradition of this annual
2015 International PV Quality Assurance Task Force (PVQAT) Workshop |
Photovoltaic Research | NREL International PV Quality Assurance Task Force (PVQAT) Workshop 2015 International PV Quality Assurance Task Force (PVQAT) Workshop Wednesday, February 25, 2015 Chairs : Tony Sample and Masaaki Yamamichi The 2015 International PV Quality Assurance Task Force (PVQAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such asmore » DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.« less
Validation of PV-RPM Code in the System Advisor Model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klise, Geoffrey Taylor; Lavrova, Olga; Freeman, Janine
2017-04-01
This paper describes efforts made by Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) to validate the SNL developed PV Reliability Performance Model (PV - RPM) algorithm as implemented in the NREL System Advisor Model (SAM). The PV - RPM model is a library of functions that estimates component failure and repair in a photovoltaic system over a desired simulation period. The failure and repair distributions in this paper are probabilistic representations of component failure and repair based on data collected by SNL for a PV power plant operating in Arizona. The validation effort focuses on whethermore » the failure and repair dist ributions used in the SAM implementation result in estimated failures that match the expected failures developed in the proof - of - concept implementation. Results indicate that the SAM implementation of PV - RPM provides the same results as the proof - of - concep t implementation, indicating the algorithms were reproduced successfully.« less
Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data)
Sengupta, M.; Andreas, A.
2010-03-16
Seventeen measurement stations in the south western region of the island of Oahu collected data at 1-second intervals over the course of a year. The sensors are located in a 1-kilometer grid and the information then can be used to predict what PV outputs might be at 1-second intervals for medium-sized and large PV systems. This DOE-funded study by NREL supports the Hawaii Clean Energy Initiative (HCEI), a multifaceted program to substantially increase the use of renewable energy in Hawaii.
Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),
2017-2030 | Solar Research | NREL Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030 Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030 This report Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying
Integrating PV in Distributed Grids: Solutions and Technologies Workshop |
Energy Systems Integration Facility | NREL Integrating PV in Distributed Grids: Solutions and Technologies Workshop Integrating PV in Distributed Grids: Solutions and Technologies Workshop In October 2015 (PV) onto the grid. The workshop was held at the Energy Systems Integration Facility. Presenters from
Distributed Optimization and Control | Grid Modernization | NREL
developing an innovative, distributed photovoltaic (PV) inverter control architecture that maximizes PV communications systems to support distribution grid operations. The growth of PV capacity has introduced prescribed limits, while fast variations in PV output tend to cause transients that lead to wear-out of
Photovoltaic Module Reliability Workshop 2011: February 16-17, 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, S.
2013-11-01
NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.
Photovoltaic Module Reliability Workshop 2014: February 25-26, 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, S.
2014-02-01
NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.
Photovoltaic Module Reliability Workshop 2013: February 26-27, 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, S.
2013-10-01
NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.
Photovoltaic Module Reliability Workshop 2010: February 18-19, 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, J.
2013-11-01
NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.
Solar Photovoltaic Manufacturing Cost Analysis | Energy Analysis | NREL
Solar Photovoltaic Manufacturing Cost Analysis Solar Photovoltaic Manufacturing Cost Analysis NREL's photovoltaic (PV) manufacturing cost analysis-part of our broader effort supporting manufacturing manufacturing sector, and is that growth sustainable? NREL's manufacturing cost analysis studies show that: U.S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schauder, C.
This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems thatmore » interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.« less
Workshop Targets Graduate Students to Advance Careers in PV | News | NREL
for a select group of U.S. graduate students to spend an immersive week at NREL in a hands-on, small -group research setting. NREL will select 12-14 students to participate in HOPE, held on the NREL campus . Past participants have found this interactive, one-week experience to be packed with information that
Estimating Rooftop Suitability for PV: A Review of Methods, Patents, and Validation Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melius, J.; Margolis, R.; Ong, S.
2013-12-01
A number of methods have been developed using remote sensing data to estimate rooftop area suitable for the installation of photovoltaics (PV) at various geospatial resolutions. This report reviews the literature and patents on methods for estimating rooftop-area appropriate for PV, including constant-value methods, manual selection methods, and GIS-based methods. This report also presents NREL's proposed method for estimating suitable rooftop area for PV using Light Detection and Ranging (LiDAR) data in conjunction with a GIS model to predict areas with appropriate slope, orientation, and sunlight. NREL's method is validated against solar installation data from New Jersey, Colorado, and Californiamore » to compare modeled results to actual on-the-ground measurements.« less
Science Kent.Terwilliger@nrel.gov | 303-384-6254 Research Interests Environmental Testing of PV Modules Maintenance and operation of environmental testing; tracking of module testing. Troubleshooting and repairing
NREL to request proposals for reducing PV costs
Laboratory (NREL) invites the photovoltaics and related industries to join its Photovoltaic Manufacturing photovoltaic products. NREL will issue in the next 90 days an $8 million request for proposals for research and development projects that will advance photovoltaic manufacturing technologies, reduce photovoltaic
2015 PV Solar Resource Workshop | Photovoltaic Research | NREL
PV Solar Resource Workshop 2015 PV Solar Resource Workshop Friday, February 27, 2015 Chairs understand the solar resource available to PV plants and opportunities for the community to improve over the as Adobe Acrobat PDFs. Solar Resource Needs for Prediction and Monitoring of PV Performance
quantify module degradation rates. Statistical analysis of reported degradation rates of PV modules degradation rates," Prog. in PV 24(7), 2016, DOI: 10.1002/pip.2744 Jordan D.C., Silverman T.J PV, 2017, DOI: 10.1002/pip.2866 Jordan D.C., Silverman T.J., Sekulic B., Kurtz S.R., "PV
Photovoltaic Module Reliability Workshop 2012: February 28 - March 1, 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, S.
2013-11-01
NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.
Reflectance Spectroscopy | Photovoltaic Research | NREL
Reflectance Spectroscopy Reflectance Spectroscopy In a fraction of a second, the photovoltaic (PV metallization properties. PV Research Other Measurements pages: Device Performance Analytical Microscopy & directly normal. The reflectance measurement uses a principle of reciprocity Schematic of the PV
Competitive Advantage Market Analysis | Energy Analysis | NREL
Study An NREL market assessment of raw and intermediate materials, equipment, and products for equipment for c-Si PV Abundant raw materials for production of moisture barrier films, glass, aluminum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steen, M.; Lisell, L.; Mosey, G.
The U.S. Environmental Protection Agency (EPA) Region 5, in accordance with the RE-Powering America's Land initiative, selected the Atlas Industrial Park in Duluth, Minnesota, for a feasibility study of renewable energy production. The EPA provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of solar renewable energy generation at the Atlas Industrial Park. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this study is to assess the site for a possible PV installationmore » and estimate the cost, performance, and site impacts of different PV configurations. In addition, the study evaluates financing options that could assist in the implementation of a PV system at the site.« less
NREL, SolarCity Addressing Challenges of High Penetrations of Distributed
Companies NREL, SolarCity Addressing Challenges of High Penetrations of Distributed Photovoltaics NREL is , reliability, and stability challenges of interconnecting high penetrations of distributed photovoltaics (PV country that distributed solar is not a liability for reliability-and can even be an asset. Project Impact
NREL, California Independent System Operator, and First Solar | Energy
Solar NREL, California Independent System Operator, and First Solar Demonstrate Essential Reliability Services with Utility-Scale Solar NREL, the California Independent System Operator (CAISO), and First Solar conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to
Golden Rays - December 2017 | Solar Research | NREL
. Installers place solar panels on the roof of a commercial building. Less Guesswork with New Analysis Tool for PV + Storage Using NREL's new REopt Lite web tool, commercial building owners can evaluate the semiconductors in the future," said Kwangwook Park, one of the NREL researchers. Where Can Commercial
High-Penetration PV Integration Handbook for Distribution Engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seguin, Rich; Woyak, Jeremy; Costyk, David
2016-01-01
This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’smore » service territory through a program approved by the California Public Utility Commission (CPUC).« less
Solar Market Research and Analysis Projects | Solar Research | NREL
increase the effectiveness and reduce the variability and cost of PV operations and maintenance (O&M significantly drive up the cost of electricity for PV systems. To help reduce PV O&M costs and improve PV -Storage: Reducing Barriers Through Cost-Optimization and Market Characterization While falling costs have
Materials and Devices | Photovoltaic Research | NREL
Polycrystalline Thin-Film PV Cadmium telluride (CdTe) solar cells Copper indium gallium diselenide (CIGS) solar cells Perovskite and Organic PV Perovskite solar cells Perovskite Patent Portfolio Organic PV (OPV ) solar cells Advanced Materials, Devices, and Concepts We explore new PV materials using high-throughput
Grid Simulation and Power Hardware-in-the-Loop | Grid Modernization | NREL
used PHIL to investigate the effects of advanced solar PV inverters on Hawaii's grid. A variety of PV Evaluating the Performance of Methods for Coordinated Control of Distributed Residential PV/Energy Storage photovoltaics (PV)-battery energy storage inverter control applied across an electric distribution system
Research | Photovoltaic Research | NREL
-V cells Hybrid tandems Polycrystalline Thin-Film PV CdTe solar cells CIGS solar cells Perovskites and Organic PV Perovskite solar cells Organic PV solar cells Advanced Materials, Devices, and Science Interfacial and Surface Science Reliability and Engineering Real-Time PV and Solar Resource
Perovskite Solar Cells | Photovoltaic Research | NREL
& Devices pages: High-Efficiency Crystalline PV Polycrystalline Thin-Film PV Perovskite and Organic -Defect Hybrid Organic/Inorganic Perovskite Films as PV Absorbers. (FY 2015FY 2016). In collaboration with organic metal halide perovskite (see article). Ultrahigh-Efficiency and Low-Cost Polycrystalline Halide
Accelerated Testing and Analysis | Photovoltaic Research | NREL
& Engineering pages: Real-Time PV & Solar Resource Testing Systems Engineering Systems PV standards. Each year, NCPV researchers, along with solar companies and other national lab Accelerated Testing and Analysis Accelerated Testing and Analysis PV Research Other Reliability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, J.; Smith-Dreier, C.; Mekonnen, G.
2011-09-01
This case study covers the process of successfully integrating photovoltaic (PV) systems into a low-income housing development in northeast Denver, Colorado, focusing specifically on a new financing model and job training. The Northeast Denver Housing Center (NDHC), working in cooperation with Del Norte Neighborhood Development Corporation, Groundwork Denver, and the National Renewable Energy Laboratory (NREL), was able to finance the PV system installations by blending private equity funding with utility rebates, federal tax credits, and public sector funding. A grant provided by the Governor's Energy Office allowed for the creation of the new financing model. In addition, the program incorporatedmore » an innovative low-income job training program and an energy conservation incentive program.« less
National Center for Photovoltaics | Photovoltaic Research | NREL
drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV includes multiple capabilities in PV research, development, deployment, and outreach. To help the U.S. photovoltaic industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Kelsey A; Ding, Fei; Mather, Barry A
This presentation was given at the 2017 NREL Workshop 'Benchmarking Distribution Grid Integration Costs Under High Distributed PV Penetrations.' It provides a brief overview of recent and ongoing NREL work on distribution system grid integration costs, as well as challenges and needs from the community.
NREL/industry interaction: Amorphous silicon alloy research team formation
NASA Astrophysics Data System (ADS)
Luft, Werner
1994-06-01
The low material cost and proven manufacturability of amorphous silicon (a-Si) alloy photovoltaic technology make it ideally suited for large-scale terrestrial applications. The present efficiency of a-Si alloy modules is, however, much lower than the 15% stable efficiency that would lead to significant penetration of the electric utility bulk-power market. The slow progress in achieving high stabilized a-Si alloy module efficiencies may in part be attributed to the fact that only in the last few years did we emphasize stable efficiencies. A mission-focused integrated effort among the a-Si PV industry, universities, and the National Renewable Energy Laboratory (NREL) would help. To foster research integration, NREL has established four research teams with significant industry participation. In the 11 months since the research team formation, a close interaction among the a-Si PV industry, universities, and NREL has been achieved and has resulted in mission-directed research.
NREL/industry interaction: Amorphous silicon alloy research team formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luft, W.
1994-06-30
The low material cost and proven manufacturability of amorphous silicon (a-Si) alloy photovoltaic technology make it ideally suited for large-scale terrestrial applications. The present efficiency of a-Si alloy modules is, however, much lower than the 15% stable efficiency that would lead to [ital significant] penetration of the electric utility bulk-power market. The slow progress in achieving high stabilized a-Si alloy module efficiencies may in part be attributed to the fact that only in the last few years did we emphasize stable efficiencies. A mission-focused integrated effort among the a-Si PV industry, universities, and the National Renewable Energy Laboratory (NREL) wouldmore » help. To foster research integration, NREL has established four research teams with significant industry participation. In the 11 months since the research team formation, a close interaction among the a-Si PV industry, universities, and NREL has been achieved and has resulted in mission-directed research.« less
STAT FAQs Part 2: Lifetime of PV Panels | State, Local, and Tribal
is the productive lifetime and degradation rate of solar PV panels. Question: What is the productive life of solar PV panels, and do they produce the same amount of electricity year-over-year? Answer: The Governments | NREL STAT FAQs Part 2: Lifetime of PV Panels STAT FAQs Part 2: Lifetime of PV
Comparative PV LCOE calculator | Photovoltaic Research | NREL
Use the Comparative Photovoltaic Levelized Cost of Energy Calculator (Comparative PV LCOE Calculator) to calculate levelized cost of energy (LCOE) for photovoltaic (PV) systems based on cost effect on LCOE to determine whether a proposed technology is cost-effective, perform trade-off analysis
photovoltaic (PV) modules, inspections for root cause of module failures in the field, and accelerated lifetime delamination. His research interests are in modeling of degradation processes of PV modules, module integrated analysis of PV degradation data. He also explores accelerated multi-stress and combined stress testing to
Solar Photovoltaic Technology Basics | NREL
For more information about solar photovoltaic energy, visit the following resources: Solar PV Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the
NREL: U.S.-China Renewable Energy Partnership Publications
storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value Partnership (USCREP) activities. 2017 Comparative Analysis and Considerations for PV Interconnection Standards main objectives of this report are to evaluate China's photovoltaic (PV) interconnection standards and
years and has contributed greatly to world-record efficiencies in various photovoltaic technologies is a world-renowned expert in the fields of multijunction PV, concentrator PV, and PV reliability Publications Photo of Mark O'Malley Mark O'Malley SENIOR RESEARCH FELLOW Mark O'Malley is a world authority on
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holley, W.A.
The goals of the NREL PVMaT program are, among others, to reduce module manufacturing costs and improve the quality, and we might add here the reliability, of manufactured PV products. One component critical to the service life of PV modules is the useful life of the EVA resin-based encapsulant which is employed extensively by module manufacturers on a worldwide basis. This pottant has been in commercial use since 1982, and over that time has proven to be a dependable material from the standpoint of production, module fabrication, and end-use. But despite the widespread acceptance of the EVA resin-based A9918 andmore » similar formulations for PV encapsulation, some module producers, end-users, and investigators have reported a yellowing or browning phenomenon with EVA resin-based encapsulants in the field. Wile the incidence of this discoloration/degradation appeared at comparatively few sites at the time that this present program was conceived, it raised serious concern as to the long term reliability of EVA resin-based encapsulation systems. Consequently, under the NREL PVMaT program, Springborn Laboratories proposed a comprehensive study of the EVA aging and discoloration problem and its possible solution(s). During the first year of this program, accelerated U.V. aging methods were surveyed. On careful review of the various types of accelerated U.V. aging equipment available, an Atlas Ci35A Weather-Ometer Xenon Exposure System was selected as appropriate equipment for this work. The following report summarizes how this accelerated aging technique has been used to develop a family of solutions to the discoloration problem, the most significant of which is a series of EVA-based encapsulants which are resistant to discoloration.« less
How Is Solar PV Performing in Hurricane-struck Locations? | State, Local,
and Tribal Governments | NREL How Is Solar PV Performing in Hurricane-struck Locations? How Is Solar PV Performing in Hurricane-struck Locations? October 24, 2017 by Eliza Hotchkiss The ongoing 2017 the surface about how solar photovoltaic (PV) systems have fared in the various locations. It's been
NREL's Sarah Kurtz Wins Prestigious Cherry Award from IEEE | News | NREL
out, are quite challenging experiments to design. "To win the Cherry Award is a deep honor," Quality Assurance Task Force to develop comparative test standards for PV modules. She is recognized
Distributed PV Adoption in Maine Through 2021
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter; Sigrin, Ben
2015-11-06
NREL has used its dSolar (distributed solar) model to generate low-medium-high estimates of distributed PV adoption in Maine through 2021. This presentation gives a high-level overview of the model and modeling results.
Polycrystalline Thin-Film Photovoltaics | Photovoltaic Research | NREL
(CdTe) We develop processes and a range of materials for CdTe photovoltaic (PV) devices. Our work partners. Our objectives are to improve CdTe PV performance, reduce costs, and advance fundamental processes and materials related to thin-film polycrystalline PV devices, and our measurements and
Outdoor Test Facility and Related Facilities | Photovoltaic Research | NREL
advanced or emerging photovoltaic (PV) technologies under simulated, accelerated indoor and outdoor, and evaluate prototype, pre-commercial, and commercial PV modules. One of the major roles of researchers at the OTF is to work with industry to develop uniform and consensus standards and codes for testing PV
Advanced Grid-Friendly Controls Demonstration for Utility-Scale
PV power plant in CAISO's footprint. NREL, CAISO, and First Solar conducted demonstration tests that vendors, integrators, and utilities to develop and evaluate photovoltaic (PV) power plants with advanced grid-friendly capabilities. Graph of power over time that shows a PV plant varying output to follow an
Solar Newsletter | Solar Research | NREL
, General Electric Optimize Voltage Control for Utility-Scale PV As utilities increasingly add solar power components that may be used to integrate distributed solar PV onto distribution systems. More than 335 data Innovation Award for Grid Reliability PV Demonstration First Solar, the California Independent System
Photovoltaics | Climate Neutral Research Campuses | NREL
Photovoltaics Photovoltaics Solar photovoltaics (PV) is a mature, commercially available technology arrays. Campus Solar Energy Options A PV system requires periodic maintenance, but upkeep averages two to undertaking a solar energy assessment or PV installation. Solar Energy Resources Solar energy production
Facilities | Photovoltaic Research | NREL
Centers (RTCs) The Department of Energy Regional Test Centers for solar technologies serve to validate PV development to provide foundational support for the photovoltaic (PV) industry and PV users. Photo of the Solar Research Energy Facility. Solar Energy Research Facility (SERF) The SERF houses various
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deline, Chris; Dann, Geoff
Recent increases in photovoltaic (PV) systems on Department of the Navy (DON) land and potential siting near airfields prompted Commander, Naval Installations Command to fund the Naval Facilities Engineering Command to evaluate the impact of electromagnetic interference (EMI) from PV systems on airfield electronic equipment. Naval Facilities Engineering and Expeditionary Warfare Center tasked Department of Energy National Renewable Energy laboratory (NREL) to conduct the assessment. PV systems often include high-speed switching semiconductor circuits to convert the voltage produced by the PV arrays to the voltage needed by the end user. Switching circuits inherently produce electromagnetic radiation at harmonics of themore » switching frequency. In this report, existing literature is summarized and tests to measure emissions and mitigation methods are discussed. The literature shows that the emissions from typical PV systems are low strength and unlikely to cause interference to most airfield electronic systems. With diligent procurement and siting of PV systems, including specifications for FCC Part 15 Class A compliant equipment and a 250-foot setback from communication equipment, NREL anticipates little to no EMI impact on nearby communications or telemetry equipment.« less
An Analysis of Techno-Economic Requirements for MOSAIC CPV Systems to Achieve Cost Competitiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Kelsey A; Cunningham, Daniel; Zahler, James
A comprehensive bottom-up cost model has been developed by NREL for ARPAE's MOSAIC micro-concentrator PV program. In this presentation, we use this model to examine the potential competitiveness of MOSAIC systems compared to incumbent technologies in different markets. We also provide an example of how these models can be used by awardees to assess different aspects of their design.
Transitioning the California Energy Commission Eligible Equipment List to a National Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truitt, Sarah; Nobler, Erin; Krasko, Vitaliy
The Energy Commission called on the National Renewable Energy Laboratory's (NREL)'s Solar Technical Assistance Team to explore various pathways for supporting continued evolution of the list. NREL staff utilized the Database of State Incentives for Renewables and Efficiency (DSIRE), California Solar Initiative (CSI) data, and information from in-depth interviews to better understand the impact of a lack of an updated list and suggest potential solutions. A total of 18 people from state energy offices, rebate program administrators, utilities, national testing laboratories, private companies, nonprofit organizations, and the federal government were interviewed between July and September 2013. CSI data were analyzedmore » to illustrate the monetary benefits of the algorithm behind calculating performance of PV modules included on the list. The primary objectives of this study are to: 1) Determine the impact of not maintaining the list, and 2) Explore alternatives to the State of California's maintenance of the list.« less
Solar STAT Blog | State, Local, and Tribal Governments | NREL
energy bills and purchasing other necessities. In some circumstances, solar photovoltaics (PV) can reduce productive lifetime and degradation rate of solar PV panels. Continue reading Focusing the Sun: State seen robust growth through the expansion of rooftop photovoltaic (PV) and community solar projects
NREL: International Activities - U.S.-China Renewable Energy Partnership
Solar PV and TC88 Wind working groups. Renewable Energy Technology These projects enhance policies to Collaboration on innovative business models and financing solutions for solar PV deployment. Micrositing and O development. Current Projects Recommendations for photovoltaic (PV) and wind grid code updates. New energy
cells and modules. His work concerns primarily modeling and measuring moisture ingress into PV modules and studying the effect of moisture on polymer adhesion, device performance, and component corrosion Photovoltaic Modules." Solar Energy Materials and Solar Cells, 90: 2720-2738. View all NREL publications
Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; O'Neill, Barbara
A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Officemore » selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls.« less
efficiency and renewable energy projects. His patent on the Renewable Energy Optimization (REO) method of distribution function for time-series simulation Analytical and numerical optimization Project delivery with System Operations and Maintenance: 2nd Edition, 2016, NREL/Sandia/Sunspec Alliance SuNLaMP PV O&M
Data Transparency | Distributed Generation Interconnection Collaborative |
quality and availability are increasingly vital for reducing the costs of distributed generation completion in certain areas, increasing accountability for utility application processing. As distributed PV NREL, HECO, TSRG Improving Data Transparency for the Distributed PV Interconnection Process: Emergent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Sudipta
Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of the electric power systems. Some of the urgent areas for research, as identified by inverter manufacturers, installers and utilities, are potential for transient overvoltage from PV inverters, multi-inverter anti-islanding, impact of smart inverters on volt-VAR support, impact of bidirectional power flow, and potential for distributed generation curtailment solutions to mitigate grid stability challenges. Under this project, NREL worked with SolarCity to address these challenges through research, testing and analysis at the Energy System Integration Facility (ESIF). Inverters from differentmore » manufacturers were tested at ESIF and NREL's unique power hardware-in-the-loop (PHIL) capability was utilized to evaluate various system-level impacts. Through the modeling, simulation, and testing, this project eliminated critical barriers on high PV penetration and directly supported the Department of Energy's SunShot goal of increasing the solar PV on the electrical grid.« less
PV Reliability Workshop | Photovoltaic Research | NREL
Laboratory. NREL hosts an annual Photovoltaic Reliability Workshop (PVRW) so that solar technology experts Photovoltaic Reliability Workshop (PVRW) will be held Tuesday, February 27, to Thursday, March 1, at the workshop. 2017 Workshop The 2017 Photovoltaic Reliability Workshop (PVRW) was Tuesday, February 28, to
Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL
Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the National Laboratory developed low-cost transparent encapsulation schemes for CIGS cells that reduced power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baggu, Murali
2017-01-01
This project will enable effective utilization of high penetration of photovoltaics (PV) in islanded microgrids, increasing overall system efficiency, decreased fuel costs and resiliency of the overall system to help meet the SunShot goals of enhancing system integration methods to increase penetration of PV. National Renewable Energy Laboratory (NREL) will collaborate with San Diego Gas & Electric (SDG&E) to provide research and testing support to address their needs in energy storage sizing and placement, Integrated Test Facility (ITF) development, Real Time Digital Simulator (RTDS) Modeling and simulation support at ITF, Visualization and Virtual connection to Energy Systems Integration Facility (ESIF),more » and microgrid simulation and testing areas. Specifically in this project a real microgrid scenario with high penetration of PV (existing in SDG&E territory) is tested in the ESIF laboratory. Multiple control cases for firming PV using storage in a microgrid scenario will be investigated and tested in the laboratory setup.« less
Ten Years of Analyzing the Duck Chart: How an NREL Discovery in 2008 Is
examined how to plan for future large-scale integration of solar photovoltaic (PV) generation on the result, PV was deployed more widely, and system operators became increasingly concerned about how solar emerging energy and environmental policy initiatives pushing for higher levels of solar PV deployment. As a
Golden Rays - May 2017 | Solar Research | NREL
, the energy reported by micro-inverters on existing PV systems can be used to back-solve for the solar future PV systems, the results matched those based on solar resource measurements from top-of-the-line the solar resource using data from 100 PV systems in five metropolitan areas. More Than 200 Attend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Daniel; Porro, Gian; Goldberg, Marshall
This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the §1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the §1603 grant program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, D.; Porro, G.; Goldberg, M.
This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the Section 1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the Section 1603 grant program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Daniel; Porro, Gian; Goldberg, Marshall
2012-04-01
This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the §1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the §1603 grant program.
Interconnecting PV on New York City's Secondary Network Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, K; Coddington, M; Burman, K
2009-11-01
The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in themore » five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1PV Deployment Analysis for New York City we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2. A Briefing for Policy Makers on Connecting PV to a Network Grid presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3. Technical Review of Concerns and Solutions to PV Interconnection in New York City summarizes common concerns of utility engineers and network experts about interconnecting PV systems to secondary networks. This section also contains detailed descriptions of nine solutions, including advantages and disadvantages, potential impacts, and road maps for deployment. Section 4. Utility Application Process Reviewlooks at utility interconnection application processes across the country and identifies administrative best practices for efficient PV interconnection.« less
Center at NREL. Otto has been involved in the design, construction, and operation of energy efficient energy use campus and community design. Mr. Van Geet was one of the founding members of the Labs21 and assessment, passive solar building design, use of design tools, photovoltaic (PV) system design
Photovoltaics | Chemistry and Nanoscience Research | NREL
Office of Energy Efficiency and Renewable Energy. Specific areas of active research include: Organic performance and lifetime of organic solar cells. We have had an ongoing focus on developing new contact different duty cycles. Learn more about NREL's research on organic PV. Perovskites We are seeking to make
Distribution Grid Integration Unit Cost Database | Solar Research | NREL
Unit Cost Database Distribution Grid Integration Unit Cost Database NREL's Distribution Grid Integration Unit Cost Database contains unit cost information for different components that may be used to associated with PV. It includes information from the California utility unit cost guides on traditional
Photovoltaic Manufacturing R&D Project | Photovoltaic Research | NREL
Photovoltaic (PV) Manufacturing Research and Development (R&D) Project was a cost-shared partnership between NREL and a number of private-sector solar companies. The primary project goals were to reduce costs for consumers and solar companies by improving products and manufacturing processes and ensure the
NREL Solar Technical Assistance Team to Partner with Illinois, Nevada, and
solar PV deployment can stimulate economic development in Illinois. The STAT Network and Illinois will explore solar policy scenarios and their impact on solar deployment and economic development. This new analysis will employ NREL's Distributed Generation and Market Demand (dGen) and Jobs and Economic
NREL Scientist Brian Gregg Named AAAS Fellow | News | NREL
discovered an entirely new photovoltaic effect. Even when sandwiched between two identical electrodes (i.e ., with zero bandbending) a PV effect is observed in these devices. Such an observation was unprecedented and challenged common assumptions about how solar cells work. This research set off a lifelong passion
Science and Technology Facility | Photovoltaic Research | NREL
- and back-contact schemes for advanced thin-film PV solar cells. Contact materials include metals Science and Technology Facility Science and Technology Facility Solar cell, thin-film, and Development Laboratory Research in thin-film PV is accomplished in this lab with techniques used for
Device Performance | Photovoltaic Research | NREL
Device Performance Device Performance PV Calibrations Blog Check out the latest updates from the PV than 190 person-years. Capabilities Our capabilities for measuring key performance parameters of solar cells and modules include the use of various solar simulators and tools to measure current-voltage and
NREL Technologies Win National Awards
Development Magazine. The annual awards recognize the years 100 most important, unique and useful innovations . The magazine recognized PV Optics as one of the most important technological advances of 1997. PV these innovations reflects the breadth of resources that the labs are using to solve practical problems
DGIC Interconnection Insights | Distributed Generation Interconnection
Center and Energy Analysis Group. NREL researchers examined PV project data from more than 30,000 solar permission to operate. "This report represents the first data-driven evaluation of how PV deployment additional insights on the research effort and report findings, check out STAT Chat (the "Solar
DOE Office of Scientific and Technical Information (OSTI.GOV)
NREL and the Hawaiian Electric Companies are collaborating with the solar and inverter industries to implement advanced inverters, allowing greater solar photovoltaic (PV) penetrations that will support the State of Hawaii's goal to achieve 100% renewable energy by 2045. Advanced inverters will help maintain stable grid operations by riding through grid disturbances when the PV output is needed, operating autonomously to smooth voltage fluctuations, and coordinating the start-up and reconnection of PV systems and other distributed energy resources.
2017-12-04
34High-Concentration III-V Multijunction Solar Cells," 2017, <http://www.nrel.gov/ pv /high-concentration-iii-v-multijunction- solar - cells.html>. O. K...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0174 TR-2017-0174 ELECTRODEPOSITION OF METAL MATRIX COMPOSITES AND MATERIALS CHARACTERIZATION FOR THIN-FILM SOLAR ...0242 Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
Unlocking Solar for Low- and Moderate-Income Residents: A Matrix of
community solar could dramatically expand the distributed PV market. A new NREL report analyzes the most Promising Financing Options | Solar Research | NREL Unlocking Solar for Low- and Moderate -Income Residents: A Matrix of Promising Financing Options Unlocking Solar for Low- and Moderate-Income
Solar Power Data for Integration Studies | Grid Modernization | NREL
Power Data for Integration Studies Solar Power Data for Integration Studies NREL's Solar Power Data for Integration Studies are synthetic solar photovoltaic (PV) power plant data points for the United States representing the year 2006. The data are intended for use by energy professionals-such as
REopt Improves the Operations of Alcatraz's Solar PV-Battery-Diesel Hybrid System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olis, Daniel R; Walker, H. A; Van Geet, Otto D
This poster identifies operations improvement strategies for a photovoltaic (PV)-battery-diesel hybrid system at the National Park Service's Alcatraz Island using NREL's REopt analysis tool. The current 'cycle charging' strategy results in significant curtailing of energy production from the PV array, requiring excessive diesel use, while also incurring high wear on batteries without benefit of improved efficiency. A simple 'load following' strategy results in near optimal operating cost reduction.
Real-Time Photovoltaic and Solar Resource Testing | Photovoltaic Research |
community toward developing comprehensive PV standards. Each year, NCPV researchers, along with solar performance Bill Marion: Solar radiation resource information, and PV module and system performance modeling NREL Real-Time Photovoltaic and Solar Resource Testing Real-Time Photovoltaic and Solar
Distribution Integration | Grid Modernization | NREL
There is Strength: Measuring and Mitigating Solar PV Impacts in Southern California Using Power Factors distributed energy resources, such as PV, began more than a decade ago and has included numerous high-impact partnered with utilities to develop best practices for solar integration, to developing technical screening
Golden Rays - October 2017 | Solar Research | NREL
generation of PV researchers. Boosting Solar in Low-Income Communities Most low-to-moderate income (LMI off-site solar purchasing in the United States. 2017 International PV Soiling Workshop Oct. 23-25 October 2017 Golden Rays - October 2017 The Solar Newsletter is an electronic newsletter that
the cost of solar cells, modules, and systems; and improving the reliability of PV components and Science-funded Center for Next Generation of Materials by Design. Reliability. Real-Time PV and Solar Research Solar panels line the rooftop of the parking garage at the south table mountain campus of
Photovoltaic Module Soiling Map | Photovoltaic Research | NREL
proposed in: M. Deceglie, L. Micheli, and M. Muller, "Quantifying soiling loss directly from PV yield described in: L. Micheli and M. Muller, "An investigation of the key parameters for predicting PV : M. Muller, L. Micheli, and A.A. Martinez-Morales, "A Method to Extract Soiling Loss Data from
Regional Test Centers | Photovoltaic Research | NREL
Regional Test Centers Regional Test Centers Five Regional Test Centers (RTCs), established by the the bankability of new photovoltaic (PV) technologies. Photo of the Regional Test Centers The DOE Regional Test Centers help to validate PV technologies in a range of different climates. Pictured here is
Energy Systems Integration News - November 2016 | Energy Systems
visualization. NREL Study Finds Integrated Utility Control Can Improve Grid Voltage Regulation Beyond Advanced large solar photovoltaic (PV) system is connected to the electric grid, a centralized control system at more PV power is being fed into the line than is being used, leading to voltage control issues and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steen, M.; Lisell, L.; Mosey, G.
2013-01-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vincent Mullins Landfill in Tucson, Arizona, for a feasibility study of renewable energy production. Under the RE-Powering America's Land initiative, the EPA provided funding to the National Renewable Energy Laboratory (NREL) to support the study. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this report is to assess the site for a possible PV installation and estimate the cost and performance ofmore » different PV configurations, as well as to recommend financing options that could assist in the implementation of a PV system. In addition to the Vincent Mullins site, four similar landfills in Tucson are included as part of this study.« less
NASA Astrophysics Data System (ADS)
Laird, Darin W.; Vaidya, Swanand; Li, Sergey; Mathai, Mathew; Woodworth, Brian; Sheina, Elena; Williams, Shawn; Hammond, Troy
2007-09-01
We report NREL-certified efficiencies and initial lifetime data for organic photovoltaic (OPV) cells based on Plexcore PV photoactive layer and Plexcore HTL-OPV hole transport layer technology. Plexcore PV-F3, a photoactive layer OPV ink, was certified in a single-layer OPV cell at the National Renewable Energy Laboratory (NREL) at 5.4%, which represents the highest official mark for a single-layer organic solar cell. We have fabricated and measured P3HT:PCBM solar cells with a peak efficiency of 4.4% and typical efficiencies of 3 - 4% (internal, NREL-calibrated measurement) with P3HT manufactured at Plextronics by the Grignard Metathesis (GRIM) method. Outdoor and accelerated lifetime testing of these devices is reported. Both Plexcore PV-F3 and P3HT:PCBM-based OPV cells exhibit >750 hours of outdoor roof-top, non-accelerated lifetime with less than 8% loss in initial efficiency for both active layer systems when exposed continuously to the climate of Western Pennsylvania. These devices are continuously being tested to date. Accelerated testing using a high-intensity (1000W) metal-halide lamp affords shorter lifetimes; however, the true acceleration factor is still to be determined.
Inverter Ground Fault Overvoltage Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta
This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The National Renewable Energy Laboratory's (NREL) controllable grid interface (CGI) test system at the National Wind Technology Center (NWTC) is one of two user facilities at NREL capable of testing and analyzing the integration of megawatt-scale renewable energy systems. The CGI specializes in testing of multimegawatt-scale wind and photovoltaic (PV) technologies as well as energy storage devices, transformers, control and protection equipment at medium-voltage levels, allowing the determination of the grid impacts of the tested technology.
Comparative PV LCOE Calculator Documentation | Photovoltaic Research | NREL
Comparative Photovoltaic (PV) Levelized Cost of Energy (LCOE) Calculator. Getting started This tool is and watch the LCOE values in the results section change immediately. Example: Cell cost reduction In the proposed section, drag the cell cost slider or type in the cell cost numeric input field to reduce
Unlocking Solar for Low- and Moderate-Income Residents: A Matrix of
(PV) and community solar projects. However, low- and moderate-income (LMI) customers have been under are generally able to adopt either rooftop PV or community solar, while tenants may only be able to Promising Financing Options | State, Local, and Tribal Governments | NREL Unlocking Solar for
Hybrid Tandem Solar Cells | Photovoltaic Research | NREL
Hybrid Tandem Solar Cells Hybrid Tandem Solar Cells To achieve aggressive cost reductions in photovoltaics (PV) beyond the 6¢/kWh SunShot Initiative 2020 goal, module efficiency must be increased beyond on a silicon platform and that aim to provide viable prototypes for commercialization. PV Research
Energy Systems Integration News | Energy Systems Integration Facility |
photovoltaic (PV) energy for its power. PV inverter hardware-in the loop testing was conducted at NREL's Energy -scale power-hardware-in-the-loop testing at the ESIF, which allows researchers and manufacturers to test field. In addition, the CGI provides hardware-in-the-loop capability combined with NWTC dynamometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
NREL developed a free, publicly available web version of the REopt (TM) renewable energy integration and optimization platform called REopt Lite. REopt Lite recommends the optimal size and dispatch strategy for grid-connected photovoltaics (PV) and battery storage at a site. It also allows users to explore how PV and storage can increase a site's resiliency during a grid outage.
Power Hardware-in-the-Loop-Based Anti-Islanding Evaluation and Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoder, Karl; Langston, James; Hauer, John
2015-10-01
The National Renewable Energy Laboratory (NREL) teamed with Southern California Edison (SCE), Clean Power Research (CPR), Quanta Technology (QT), and Electrical Distribution Design (EDD) to conduct a U.S. Department of Energy (DOE) and California Public Utility Commission (CPUC) California Solar Initiative (CSI)-funded research project investigating the impacts of integrating high-penetration levels of photovoltaics (PV) onto the California distribution grid. One topic researched in the context of high-penetration PV integration onto the distribution system is the ability of PV inverters to (1) detect islanding conditions (i.e., when the distribution system to which the PV inverter is connected becomes disconnected from themore » utility power connection) and (2) disconnect from the islanded system within the time specified in the performance specifications outlined in IEEE Standard 1547. This condition may cause damage to other connected equipment due to insufficient power quality (e.g., over-and under-voltages) and may also be a safety hazard to personnel that may be working on feeder sections to restore service. NREL teamed with the Florida State University (FSU) Center for Advanced Power Systems (CAPS) to investigate a new way of testing PV inverters for IEEE Standard 1547 unintentional islanding performance specifications using power hardware-in-loop (PHIL) laboratory testing techniques.« less
NREL Screens Universities for Solar and Battery Storage Potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgqvist, Emma M
In support of the U.S. Department of Energy's SunShot initiative, NREL provided solar photovoltaic (PV) screenings in 2016 and 2017 for universities seeking to go solar. Fifteen universities were selected for screenings based on campus solar and sustainability goals, plans for future solar projects and solar deployment capacity (megawatts), regional diversity, energy costs, and availability of campus energy data for the analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.; Britt, J.; Birkmire, R.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematicmore » development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.« less
A Practical Irradiance Model for Bifacial PV Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marion, Bill; MacAlpine, Sara; Deline, Chris
2017-06-21
A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added tomore » the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using ray tracing software.« less
US DOE Regional Test Centers Program - 2016 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Joshua
The US Department of Energy’s Regional Test Center (RTC) program provides outdoor validation and bankability data for innovative solar technologies at five sites across the US representing a range of climate conditions. Data helps get new technologies to market faster and improves US industry competitiveness. Managed by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), the RTC program partners with US manufacturers of photovoltaic (PV) technologies, including modules, inverters, and balance-of-system equipment. The study is collaborative, with manufacturers (also known as RTC industry partners) and the national labs working together on a system design and validation strategy thatmore » meets a clearly defined set of performance and reliability objectives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., with the assistance of NREL's PV Manufacturing R&D program, have continued the advancement of CIGS production technology through the development of trajectory-oriented predictive/control models, fault-tolerance control, control-platform development, in-situ sensors, and process improvements. Modeling activities to date include the development of physics-based and empirical models for CIGS and sputter-deposition processing, implementation of model-based control, and application of predictive models to the construction of new evaporation sources and for control. Model-based control is enabled through implementation of reduced or empirical models into a control platform. Reliability improvement activities include implementation of preventivemore » maintenance schedules; detection of failed sensors/equipment and reconfiguration to continue processing; and systematic development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which, in turn, have been enabled by control and reliability improvements due to this PV Manufacturing R&D program. This has resulted in substantial improvements of flexible CIGS PV module performance and efficiency.« less
Energy Systems Integration Newsletter - January 2017 | Energy Systems
) project with PV manufacturer First Solar and NREL, First Solar designed an advanced plant-level controller relatively long history of interconnecting solar photovoltaic (PV) systems to its electric grid, with state Photo of a solar array. Tests Show Large Solar Plants Can Balance a Low-Carbon Grid In recent years
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leboeuf, C.; Taylor, R.W.; Corbus, D.
A cooperative renewable energy project is underway between the U.S. Department of Energy (through the National Renewable Energy Laboratory, NREL), and the Federal Republic of Brazil (through the Centro de Pesquisas de Energia Eletrica, CEPEL). The objectives of this joint US/Brazilian program are to establish technical, institutional, and economic confidence in using renewable energy systems to meet the needs of the people of rural Brazil, to build ongoing partnerships beneficial to both countries, and to demonstrate the potential for large-scale rural electrification through the use of renewable energy systems. Phase 1 of this program resulted in the deployment of moremore » than 700 photovoltaic (PV) electric lighting systems in the Brazilian states of Pernambuco and Ceara. Phase 2 of the program extends the pilot project into six additional Brazilian states and demonstrates a wider variety of stand-alone end uses, including the use of wind electric power generation for selected sites and applications. Additionally, Phase 2 also includes the development of two hybrid village power systems, including one comprising PV, wind, battery, and diesel power sources. This paper focuses on this hybrid system, which is located in the Amazon River delta.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltenberg, B.; Konz, C.; Mosey, G.
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Fort Ord Army Base (FOAB) site in Marina, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
Retaining the Value of PV at High Penetration Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Sarah; Bolen, Michael
PV prices have dropped and are now attractive without incentives for peaking applications in some locations. Modeling suggests and, empirically, some regions demonstrate that as PV penetration increases its value decreases, predominantly due to a decrease in energy and capacity value. It is not apparent what technologies and price may be needed for PV to supply tens of percent of electricity in the most economically efficient manner. A 1-day workshop was co-sponsored by EPRI and NREL with support from ASU. A dozen presentations and discussions introduced how the interplay of various technologies impact the value of PV, identified technical challengesmore » and gaps impeding implementation, and discussed future R&D needs and opportunities.« less
Frequently Asked Questions | Photovoltaic Research | NREL
Principles for Terrestrial Photovoltaic (PV) Solar Devices with Reference Spectral Irradiance Data ERDA/NASA TM 73702: Terrestrial Photovoltaic Measurement Procedures, ERDA / NASA / 1022-77 / 16, June 1977. K.A
Evaluation of Installation Time for SMASHmount by SMASHsolar
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Department of Energy SunShot Incubator program provides early-stage assistance to help startup companies cross technological barriers to commercialization while encouraging private sector investment. The SunShot Incubator program aims to shorten the time it takes for a young business or company to develop an innovative product concept and make it commercially available, which includes product prototyping, deployment, and, potentially, manufacturing. SMASHsolar was selected as an Incubator awardee to develop a simple, snap-together, module-integrated photovoltaic (PV) mounting system in attempts to dramatically reduce the time, effort and skill needed to install rooftop solar. In support of this award, the National Renewablemore » Energy Laboratory worked with SMASHsolar to develop a procedure for evaluating the installation time required for the SMASHmount system vs. widely-available rail systems. Amongst several installations, NREL measured the following installation times, subject to the qualifications and conditions described later in this report. NREL found that the SMASHsolar SMASHmount system was installed between 15% and 37% faster than tested competing systems after one or two installations of the system.« less
Inverter Load Rejection Over-Voltage Testing: SolarCity CRADA Task 1a Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A.; Hoke, A.; Chakraborty, S.
Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of electric power systems. One of the urgent areas for additional research - as identified by inverter manufacturers, installers, and utilities - is the potential for transient over-voltage from PV inverters. In one stage of a cooperative tests were repeated a total of seven times. The maximum over-voltage measured in any test did not exceed 200% of nominal, and typical over-voltage levels were significantly lower. The total voltage duration and the maximum continuous time above each threshold are presented here,more » as well as the time to disconnect for each test. Finally, we present a brief investigation into the effect of DC input voltage as well as a series of no-load tests. This report describes testing conducted at NREL to determine the duration and magnitude of transient over-voltages created by several commercial PV inverters during load-rejection conditions. For this work, a test plan that is currently under development by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Through a cooperative research and development agreement, NREL is working with SolarCity to address two specific types of transient overvoltage: load rejection overvoltage (LRO) and ground fault overvoltage (GFO). Additional partners in this effort include the Hawaiian Electric Companies, Northern Plains Power Technologies, and the Electric Power Research Institute.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Janine; Freestate, David; Riley, Cameron
2016-11-01
Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results frommore » both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.« less
Using Measured Plane-of-Array Data Directly in Photovoltaic Modeling: Methodology and Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Janine; Freestate, David; Hobbs, William
2016-11-21
Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results frommore » both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.« less
Using Measured Plane-of-Array Data Directly in Photovoltaic Modeling: Methodology and Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Janine; Freestate, David; Hobbs, William
2016-06-05
Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results frommore » both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.« less
Review of Interconnection Practices and Costs in the Western States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, Lori A; Flores-Espino, Francisco; Volpi, Christina M
The objective of this report is to evaluate the nature of barriers to interconnecting distributed PV, assess costs of interconnection, and compare interconnection practices across various states in the Western Interconnection. The report addresses practices for interconnecting both residential and commercial-scale PV systems to the distribution system. This study is part of a larger, joint project between the Western Interstate Energy Board (WIEB) and the National Renewable Energy Laboratory (NREL), funded by the U.S. Department of Energy, to examine barriers to distributed PV in the 11 states wholly within the Western Interconnection.
Past Seminars and Workshops | Energy Systems Integration Facility | NREL
Distributed Optimization and Control of Sustainable Power Systems Workshop Integrating PV in Distributed Grids Unintentional Islands in Power Systems with Distributed Resources Webinar Smart Grid Educational Series Energy
Solar and Wind Site Screening Decision Trees
EPA and NREL created a decision tree to guide state and local governments and other stakeholders through a process for screening sites for their suitability for future redevelopment with solar photovoltaic (PV) energy and wind energy.
Solar Innovation Infographic | Solar Research | NREL
from the sun for about 200 years. Over the past 40 years, solar energy technologies have made electricity - voltage - which is called the PV effect. 1839 - Edmond Becquerel discovered that the sun can
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, Barry
2015-07-09
The objective of this project is to use field verification to improve DOE’s ability to model and understand the impacts of, as well as develop solutions for, high penetration PV deployments in electrical utility distribution systems. The Participant will work with NREL to assess the existing distribution system at SCE facilities and assess adding additional PV systems into the electric power system.
Smart Home Test Bed: Examining How Smart Homes Interact with the Power Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
This fact sheet highlights the Smart Home Test Bed capability at the Energy Systems Integration Facility. The National Renewable Energy Laboratory (NREL) is working on one of the new frontiers of smart home research: finding ways for smart home technologies and systems to enhance grid operations in the presence of distributed, clean energy technologies such as photovoltaics (PV). To help advance this research, NREL has developed a controllable, flexible, and fully integrated Smart Home Test Bed.
Solar Energy Evolution and Diffusion Studies | Solar Research | NREL
industry-wide studies that use data-driven and evidence-based methods to identify characteristics developed models of U.S. household PV adoption. The project also conducted two market pilots to test methods
Data and Tools - Alphabetical Listing | NREL
Climate Action Planning Tool Community Solar Scenario Tool Comparative PV Levelized Cost of Energy (LCOE Design Response Toolbox WEC-Sim: Wave Energy Converter Simulator West Associates Solar Monitoring Network Design and Engineering Model
Thin-Film Material Science and Processing | Materials Science | NREL
, a prime example of this research is thin-film photovoltaics (PV). Thin films are important because have developed a quantitative high-throughput technique that can measure many barriers in parallel with
Hot Topics: Solar Interconnection Policy | State, Local, and Tribal
Governments | NREL Blog » Hot Topics: Solar Interconnection Policy Hot Topics: Solar Renewable Energy Laboratory, discussing the PV interconnection process as part of our Hot Topics series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowlin, S. C.; Heimiller, D.; Bilello, D.
This analysis explores the technical potential of photovoltaics (PV) or concentrating solar power (CSP) to address energy poverty in Africa through a geographic information system (GIS) screening of solar resource data developed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL).
The Impact of Utility Tariff Evolution on Behind-the-Meter PV Adoption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley J; Gagnon, Pieter J; Frew, Bethany A
This analysis uses a new method to link the NREL Regional Energy Deployment System (ReEDS) capacity expansion model with the NREL distributed generation market demand model (dGen) to explore the impact that the evolution of retail electricity tariffs can have on the adoption of distributed photovoltaics (DPV). The evolution most notably takes the form of decreased mid-day electricity costs, as low-cost PV reduces the marginal cost of electricity during those hours and the changes are subsequently communicated to electricity consumers through tariffs. We find that even under the low PV prices of the new SunShot targets the financial performance ofmore » DPV under evolved tariffs still motivates behind-the-meter adoption, despite significant reduction in the costs of electricity during afternoon periods driven by deployment of cheap utility-scale PV. The amount of DPV in 2050 in these low-cost futures ranged from 206 GW to 263 GW, a 13-fold and 16-fold increase over 2016 adoption levels respectively. From a utility planner's perspective, the representation of tariff evolution has noteworthy impacts on forecasted DPV adoption in scenarios with widespread time-of-use tariffs. Scenarios that projected adoption under a portfolio of time-of-use tariffs, but did not represent the evolution of those tariffs, predicted up to 36 percent more DPV in 2050, compared to scenarios that did not represent that evolution. Lastly, we find that a reduction in DPV deployment resulting from evolved tariffs had a negligible impact on the total generation from PV - both utility-scale and distributed - in the scenarios we examined. Any reduction in DPV generation was replaced with utility-scale PV generation, to arrive at the quantity that makes up the least-cost portfolio.« less
76 FR 56413 - Building Energy Codes Cost Analysis
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
... the by-zone housing starts of Table 2. \\7\\ See http://rredc.nrel.gov/solar/old_data/nsrdb/tmy2... as an alternative investment rate. Thus the present value, (PV) of a cash flow in year Y (CFy) is...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geiger, J.; Lisell, L.; Mosey, G.
2013-07-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Pueblo of Santo Domingo in Sandoval County, New Mexico, for a renewable energy production feasibility study. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess specific areas on the Pueblo for potential installation of photovoltaic (PV) systems and to estimate the cost, performance, and site impacts of different PV options. The report also recommends financing options that could assist in the implementation of these PV systems.
private entities with techno-economic modeling and analysis, field assessments, design, and implementation Force. Research Interests Energy optimization Techno-economic modeling Value of resiliency Solar+storage -Resilient Solar Project: Economic and Resiliency Impact of PV and Storage on New York Critical
Solar Plus: A Holistic Approach to Distributed Solar PV
DOE Office of Scientific and Technical Information (OSTI.GOV)
OShaughnessy, Eric J.; Ardani, Kristen B.; Cutler, Dylan S.
Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less
2015 Inverter Workshop | Photovoltaic Research | NREL
Utility PV Inverters-Ron Vidano, Advanced Energy Module Level Power Electronics-Jack Flicker (Chair ), Sandia National Laboratories Standardization and Reliability Testing of Module-Level Power Electronics Failure Modes in Inverters-Diganta Das, CALCE Corrosion of Electronics-Rob Sorensen, Sandia National
Systems Integration | Photovoltaic Research | NREL
& Engineering pages: Real-Time PV & Solar Resource Testing Accelerated Testing & Analysis integration support, system-level testing, and systems analysis for the Department of Energy's solar issues and develop solutions for high-penetration grid integration of solar technologies into the
. Areas of Expertise Capacity expansion modeling of the U.S. electricity sector Renewable energy models Interaction of rooftop PV deployment with the greater electricity sector Impacts of policies on the evolution of the electricity sector Interactions of the natural gas supply chain with the
Manufacturing Analysis | Energy Analysis | NREL
, state, and community levels. Solar photovoltaic manufacturing cost analysis Examining the regional competitiveness of solar photovoltaic manufacturing points to access to capital as a critical component for scale of rare material-based photovoltaic PV technology deployment may influence the United States
None
2017-12-09
Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%âabout one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%.
Improved photostability of NREL-developed EVA pottant formulations for PV module encapsulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pern, F.J.; Glick, S.H.
1997-12-31
Several new formulations of ethylene vinyl acetate (EVA)-based encapsulant have been developed at NREL and have greatly improved photostability against UV-induced discoloration. The new EVA formulations use stabilizers and a curing agent entirely different from any of those used in existing formulations known to the authors. No discoloration was observed for the laminated and cured samples that were exposed to a {approximately}5-sun UV light (300--400 nm) from a solar simulator at a black panel temperature (BPT) of 44 {+-} 2 C for {approximately}3250 h followed by at 85 C for {approximately}850 h, an equivalent of approximately 9.4 years for anmore » average 6-h daily, 1-sun solar exposure in Golden, Colorado. Under the same conditions, substantial discoloration and premature delamination were observed for two commercial EVA formulations. Encapsulation with the new EVA formulations should extend the long-term stability for PV modules in the field, especially when coupled with UV-filtering, Ce-containing glass superstrates.« less
REopt Lite Web Tool Evaluates Photovoltaics and Battery Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building on the success of the REopt renewable energy integration and optimization platform, NREL has developed a free, publicly available web version of REopt called REopt Lite. REopt Lite evaluates the economics of grid-connected photovoltaics (PV) and battery storage at a site. It allows building owners to identify the system sizes and battery dispatch strategy that minimize their life cycle cost of energy. This web tool also estimates the amount of time a PV and storage system can sustain the site's critical load during a grid outage.
Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Jeffrey J.; Ardani, Kristen B.; Margolis, Robert M.
The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving themore » SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these installed-system costs into LCOE, we find that the less-aggressive pathways achieve significant cost reductions, but may not achieve the 2030 LCOE target. On the other hand, both visionary pathways could get very close to (for roof replacement) or achieve (for new construction) the 2030 target. Our analysis has two key implications. First, because installed-system soft cost reductions account for about 65 percent of the LCOE reductions in 2030 for both visionary pathways, residential PV stakeholders may need to emphasize these soft cost reductions to achieve the 2030 target. Second, capturing these savings will likely require considerable innovation in the technologies and business practices employed by the PV industry.« less
Publications | Energy Systems Integration Facility | NREL
100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable timeline. Feeder Voltage Regulation with High-Penetration PV Using Advanced Inverters and a Distribution Integrating High Levels of Variable Renewable Energy into Electric Power Systems, Journal of Modern Power
High-Concentration III-V Multijunction Solar Cells | Photovoltaic Research
| NREL High-Concentration III-V Multijunction Solar Cells High-Concentration III-V transfer to the high-efficiency cell industry, and the invention and development of the inverted metamorphic multijunction (IMM) cell technology. PV Research Other Materials & Devices pages: High
Streamlining the Bankability Process using International Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Sarah; Repins, Ingrid L; Kelly, George
NREL has supported the international efforts to create a streamlined process for documenting bankability and/or completion of each step of a PV project plan. IECRE was created for this purpose in 2014. This poster describes the goals, current status of this effort, and how individuals and companies can become involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Shaughnessy, Eric; Ardani, Kristen; Cutler, Dylan
Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domesticmore » water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones-Albertus, Rebecca; Feldman, David; Fu, Ran
2016-04-20
To quantify the potential value of technological advances to the photovoltaics (PV) sector, this paper examines the impact of changes to key PV module and system parameters on the levelized cost of energy (LCOE). The parameters selected include module manufacturing cost, efficiency, degradation rate, and service lifetime. NREL's System Advisor Model (SAM) is used to calculate the lifecycle cost per kilowatt-hour (kWh) for residential, commercial, and utility scale PV systems within the contiguous United States, with a focus on utility scale. Different technological pathways are illustrated that may achieve the Department of Energy's SunShot goal of PV electricity that ismore » at grid price parity with conventional electricity sources. In addition, the impacts on the 2015 baseline LCOE due to changes to each parameter are shown. These results may be used to identify research directions with the greatest potential to impact the cost of PV electricity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giraldez Miner, Julieta I.; Nagarajan, Adarsh; Gotseff, Peter
The Hawaiian Electric Companies achieved a consolidated Renewable Portfolio Standard (RPS) of approximately 26% at the end of 2016. This significant RPS performance was achieved using various renewable energy sources - biomass, geothermal, solar photovoltaic (PV) systems, hydro, wind, and biofuels - and customer-sited, grid-connected technologies (primarily private rooftop solar PV systems). The Hawaiian Electric Companies are preparing grid-modernization plans for the island grids. The plans outline specific near-term actions to accelerate the achievement of Hawai'i's 100% RPS by 2045. A key element of the Companies' grid-modernization strategy is to utilize new technologies - including storage and PV systems withmore » grid-supportive inverters - that will help to more than triple the amount of private rooftop solar PV systems. The Hawaiian Electric Companies collaborated with the Smart Inverter Technical Working Group Hawai'i (SITWG) to partner with the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to research the implementation of advanced inverter grid support functions (GSF). Together with the technical guidance from the Companies's planning engineers and stakeholder input from the SITWG members, NREL proposed a scope of work that explored different modes of voltage-regulation GSF to better understand the trade-offs of the grid benefits and curtailment impacts from the activation of selected advanced inverter grid support functions. The simulation results presented in this report examine the effectiveness in regulating voltage as well as the impact to the utility and the customers of various inverter-based grid support functions on two Hawaiian Electric distribution substations.« less
Visualization of the Eastern Renewable Generation Integration Study: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruchalla, Kenny; Novacheck, Joshua; Bloom, Aaron
The Eastern Renewable Generation Integration Study (ERGIS), explores the operational impacts of the wide spread adoption of wind and solar photovoltaics (PV) resources in the U.S. Eastern Interconnection and Quebec Interconnection (collectively, EI). In order to understand some of the economic and reliability challenges of managing hundreds of gigawatts of wind and PV generation, we developed state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NREL's high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated withmore » evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions. state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NRELs high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.
Advanced Energy Industries, Inc., will partner with DOE's National Renewable Energy Laboratory (NREL) to conduct research and development to demonstrate technologies that will increase the penetration of photovoltaic (PV) technologies for commercial and utility applications. Standard PV power control systems use simple control techniques that only provide real power to the grid. A focus of this partnership is to demonstrate how state of the art control and power electronic technologies can be combined to create a utility interactive control platform.
Energy Systems Integration News | Energy Systems Integration Facility |
share and use information. NREL received the award for work it conducted with EPRI to demonstrate the data for residents, appraisers, and investors. Recognizing this, Denver developer iUnit is working with the use of distributed energy resources such as PV rooftop systems. Such advancements in
NREL + SolarCity: Maximizing Solar Power on Electrical Grids Video Text
Electrical Grids video. RYAN HANLEY: The growth of distributed energy resources is becoming real and tangible . BRYAN HANNEGAN: Solar technologies, particularly those distributed, rooftop, PV solar technologies, add Hawaiian Electric Company was concerned about as far as installing distributed energy resources on their
Complex Systems Analysis | Energy Analysis | NREL
Generators, Transmission Infrastructure. A Power Plant drawing is above the text boxes. Solar Arrays drawing Flexibility and Storage. An Industry plant drawing and a house with the label Monitor Energy Use is connected to Transmission Infrastructure. A Geothermal Power Plant drawing and a Rooftop PV drawing is connect
Awards for Photovoltaic Manufacturing R&D | Photovoltaic Research | NREL
Awards for Photovoltaic Manufacturing R&D Awards for Photovoltaic Manufacturing R&D The following research efforts within the PV Manufacturing R&D Project were honored with prestigious industry awards. 1995-AstroPower (now GE Energy): Received an R&D 100 Award for its Silicon-Film
NREL to Lead New Consortium to Improve Reliability and Performance of Solar
for photovoltaics (PV) and lower the cost of electricity generated by solar power. The Durable Module the cost of electricity from photovoltaics." The Energy Department's Office of Energy Efficiency , DuraMat will address the substantial opportunities that exist for durable, high-performance, low-cost
DGIC Interconnection Insights | Distributed Generation Interconnection
Collaborative | NREL disseminate analysis findings to inform decision making and planning. Cost (SEPA) What is the need for cost certainty? As the distributed solar photovoltaic (PV) industry has , equitably and at a reasonable cost. This dynamic is now playing out in the cost certainty proposals being
Solar and Wind Forecasting | Grid Modernization | NREL
and Wind Forecasting Solar and Wind Forecasting As solar and wind power become more common system operators. An aerial photo of the National Wind Technology Center's PV arrays. Capabilities value of accurate forecasting Wind power visualization to direct questions and feedback during industry
NREL Provides PV Holiday Lights for Christmas Tree
annual holiday event that began in 1913. The solar array generates electricity during the day by converting sunlight directly into electricity. The electricity is fed directly to the local electrical small part of the electricity used by the Pageant each night, but it's an excellent public demonstration
BLAST for Behind-the-Meter Applications Lite Tool | Transportation Research
provided by NREL's PV Watts calculator. A generic utility rate structure framework makes it possible to the BLAST documentation for proper CSV formatting. Rate structure values Define demand charges and energy costs to best represent your utility rate structure of interest. Demand charges and energy costs
Data Products | Energy Analysis | NREL
Project Finance Provides information on the Solar Access to Public Capital working group, Market Insights in the NSRDB Viewer. Open EI (Open Energy Information) OpenEI is a knowledge sharing online community efficiency. The Open PV Project A collaborative effort between government, industry, and the public to
NREL Taps Young to Oversee Geothermal Energy Program | News | NREL
Taps Young to Oversee Geothermal Energy Program News Release: NREL Taps Young to Oversee Geothermal (NREL) promoted Katherine Young to laboratory program manager for geothermal energy. Young has been with NREL since 2008, working as a senior geothermal analyst and engineer in the Strategic Energy Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiatreungwattana, K.; Geiger, J.; Healey, V.
2013-03-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tronox Facility site in Savannah, Georgia, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salasovich, J.; Geiger, J.; Healey, V.
2013-04-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Brisbane Baylands site in Brisbane, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olis, D.; Salasovich, J.; Mosey, G.
2013-04-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Snohomish County Cathcart Landfill Site in Snohomish County, Washington, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, J.; Mosey, G.
2013-01-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Sky Park Landfill site in Eau Claire, Wisconsin, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salasovich, J.; Geiger, J.; Mosey, G.
2013-06-01
The U.S. Environmental Protection Agency (EPA), Region 5, in accordance with the RE-Powering America's Land initiative, selected the Kolthoff Landfill site in Cleveland, Ohio, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, J.; Mosey, G.
2013-01-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Kerr McGee site in Columbus, Mississippi, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiatreungwattana, K.; Geiger, J.; Healey, V.
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Chino Mine site in Silver City, New Mexico, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geiger, J.; Lisell, L.; Mosey, G.
2013-10-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative through the Region 6 contract, selected Ft. Hood Army Base in Killeen, Texas, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this study is to assess the site for possible photovoltaic (PV) system installations and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
Quantifying Interannual Variability for Photovoltaic Systems in PVWatts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryberg, David Severin; Freeman, Janine; Blair, Nate
2015-10-01
The National Renewable Energy Laboratory's (NREL's) PVWatts is a relatively simple tool used by industry and individuals alike to easily estimate the amount of energy a photovoltaic (PV) system will produce throughout the course of a typical year. PVWatts Version 5 has previously been shown to be able to reasonably represent an operating system's output when provided with concurrent weather data, however this type of data is not available when estimating system output during future time frames. For this purpose PVWatts uses weather data from typical meteorological year (TMY) datasets which are available on the NREL website. The TMY filesmore » represent a statistically 'typical' year which by definition excludes anomalous weather patterns and as a result may not provide sufficient quantification of project risk to the financial community. It was therefore desired to quantify the interannual variability associated with TMY files in order to improve the understanding of risk associated with these projects. To begin to understand the interannual variability of a PV project, we simulated two archetypal PV system designs, which are common in the PV industry, in PVWatts using the NSRDB's 1961-1990 historical dataset. This dataset contains measured hourly weather data and spans the thirty years from 1961-1990 for 239 locations in the United States. To note, this historical dataset was used to compose the TMY2 dataset. Using the results of these simulations we computed several statistical metrics which may be of interest to the financial community and normalized the results with respect to the TMY energy prediction at each location, so that these results could be easily translated to similar systems. This report briefly describes the simulation process used and the statistical methodology employed for this project, but otherwise focuses mainly on a sample of our results. A short discussion of these results is also provided. It is our hope that this quantification of the interannual variability of PV systems will provide a starting point for variability considerations in future PV system designs and investigations. however this type of data is not available when estimating system output during future time frames.« less
Demonstration of Active Power Controls by Utility-Scale PV Power Plant in an Island Grid: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; O'Neill, Barbara
The National Renewable Energy Laboratory (NREL), AES, and the Puerto Rico Electric Power Authority conducted a demonstration project on a utility-scale photovoltaic (PV) plant to test the viability of providing important ancillary services from this facility. As solar generation increases globally, there is a need for innovation and increased operational flexibility. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, it may mitigate the impact of its variability on the grid and contribute to important system requirements more like traditional generators. In 2015,more » testing was completed on a 20-MW AES plant in Puerto Rico, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls. This data showed how active power controls can leverage PV's value from being simply an intermittent energy resource to providing additional ancillary services for an isolated island grid. Specifically, the tests conducted included PV plant participation in automatic generation control, provision of droop response, and fast frequency response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marion, B.
2012-06-01
Although variation in photovoltaic (PV) performance is predominantly influenced by clouds, performance variations also exist for days with clear skies with different amounts of atmospheric constituents that absorb and reflect different amounts of radiation as it passes through the earth's atmosphere. The extent of the attenuation is determined by the mass of air and the amounts of water vapor, aerosols, and ozone that constitute the atmosphere for a particular day and location. Because these constituents selectively absorb radiation of particular wavelengths, their impact on PV performance is sensitive to the spectral response of the PV device. The impact may bemore » assessed by calculating the spectral mismatch correction. This approach was validated using PV module performance data at the National Renewable Energy Laboratory (NREL) for summer, fall, and winter days with clear skies. The standard deviation of daily efficiencies for single-crystal Si, a-Si/a-Si/a-Si:Ge, CdTe, and CIGS PV modules were reduced to 0.4% to 1.0% (relative) by correcting for spectral mismatch, temperature, and angle-of-incidence effects.« less
New Partnerships Help Utilities Break Down Solar Barriers | News | NREL
local customers. Due to the small size of many member organizations and customer bases, some members face a challenge in accommodating customer requests to interconnect customer-sited solar photovoltaic supported the growth of customer-sited solar PV installations in recent years. In response to customer
Kansas | Solar Research | NREL
1.1 MW. Kansas allows up to 100 kW of solar PV projects to be net metered. Midmarket customer Kansas's RPS. The utility and the customer-generator may sell any associated Renewable Energy Certificates aggregation: Not addressed As an alternative to net metering, customer-generators of systems up to 200 kW may
New Report Shines Light on Installed Costs and Deployment Barriers for
Laboratory (NREL) are making available the most detailed component and system-level cost breakdowns to date previously unknown soft costs for the first time. The report, titled "Installed Cost Benchmarks and interest in pairing distributed PV with storage, but there's a lack of publicly available cost data and
Device Performance Capabilities | Photovoltaic Research | NREL
multijunction cells and modules. We use I-V measurement systems to assess the main performance parameters for PV cells and modules. I-V measurement systems determine the output performance of devices, including: open the device (η). Some I-V systems may also be used to perform dark I-V measurements to determine diode
Advanced Grid Support Functionality Testing for Florida Power and Light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Martin, Gregory; Hurtt, James
This report describes the results of laboratory testing of advanced photovoltaic (PV) inverter testing undertaken by the National Renewable Energy Laboratory (NREL) on behalf of the Florida Power and Light Company (FPL). FPL recently commissioned a 1.1 MW-AC PV installation on a solar carport at the Daytona International Speedway in Daytona Beach, Florida. In addition to providing a source of clean energy production, the site serves as a live test bed with 36 different PV inverters from eight different manufacturers. Each inverter type has varied support for advanced grid support functions (GSFs) that are becoming increasingly commonplace, and are beingmore » required through revised interconnection standards such as UL1741, IEEE1547, and California (CA) Rule 21. FPL is interested in evaluating the trade-offs between different GSFs, their compliance to emerging standards, and their effects on efficiency and reliability. NREL has provided a controlled laboratory environment to undertake such a study. This work covered nine different classes of tests to compare inverter capabilities and performance for four different inverters that were selected by FPL. The test inverters were all three-phase models rated between 24-36 kW, and containing multiple PV input power point trackers. Advanced grid support functions were tested for functional behavior, and included fixed power factor operation, voltage-ride through, frequency ride-through, volt-var control, and frequency-Watt control. Response to abnormal grid conditions with GSFs enabled was studied through anti-islanding, fault, and load rejection overvoltage tests. Finally, efficiency was evaluated across a range of operating conditions that included power factor, output power, and input voltage variations. Test procedures were derived from requirements of a draft revision of UL741, CA Rule 21, and/or previous studies at NREL. This reports summarizes the results of each test case, providing a comparative performance analysis between the four test inverters. Inverters were mostly able to meet the requirements of their stated GSF capabilities, with deviations from expected results discussed throughout the report. There were mixed results across the range of abnormal tests, and results were often dependent on the capability of each test inverter to deploy the GSFs of interest. Detailed test data has been provided to FPL to support future decision making with respect to inverter selection and GSF deployment in the field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiatreungwattana, K.; Geiger, J.; Healey, V.
2013-04-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Peru Mill Industrial Park site in the City of Deming, New Mexico, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, J.; Mosey, G.
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vermont Asbestos Group (VAG) Mine site in Eden, Vermont, and Lowell, Vermont, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, B.; Shirazi, M.; Coddington, M.
2013-02-01
This poster describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1TM. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through themore » use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less
Building-integrated photovoltaics: A case study
NASA Astrophysics Data System (ADS)
Kiss, G.; Kinkead, J.; Raman, M.
1995-03-01
In 1992, Kiss Cathcart Anders Architects performed a study for NREL on Building-Integrated Photovoltaics (BIPV) issues as seen from the perspective of the building community. In general, the purpose of the study was to list major issues and potential applications; by it's nature it asked more questions than it answered. This second phase study was to produce quantitative data on the performance of specific BIPV systems. Only roof systems are evaluated. The energy performance, construction cost and simple payback for five different BIPV roof options are evaluated in six different locations: Oakland, New York, Miami, Phoenix, Chicago, and Cincinnati. The roof options evaluated include the following: single-glazed PV roof using glass-substrate PVs; double-glazed PV roof with insulating PV modules; ballasted roof-mounted system; sawtooth light monitor roof with indirect north daylighting; sawtooth roof with north light and active heat recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salasovich, James; Geiger, Jesse W.; Mosey, Gail
2014-01-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the TechCity East Campus site in Kingston, New York, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this study is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salasovich, J.; Geiger, J.; Mosey, G.
2013-04-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Bethlehem Steel Plant site in Lackawanna, New York, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltenberg, B.; Konz, C.; Mosey, G.
2013-03-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Crazy Horse Landfill site in Salinas, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, operation and maintenance requirements, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salasovich, J.; Geiger, J.; Mosey, G.
2013-06-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Standard Chlorine of Delaware site in Delaware City, Delaware, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
Integration, Validation, and Application of a PV Snow Coverage Model in SAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, Janine M.; Ryberg, David Severin
2017-08-01
Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a variety of system designs and locations. Many independent snow coverage models have been developed over the last 15 years; however, there has been very little effort verifying these models beyond the system designs and locations on which they were based. Moreover, major PV modeling software products have not yet incorporated any of these models into their workflows. In response to this deficiency, we have integrated the methodologymore » of the snow model developed in the paper by Marion et al. (2013) into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work, we describe how the snow model is implemented in SAM and we discuss our demonstration of the model's effectiveness at reducing error in annual estimations for three PV arrays. Next, we use this new functionality in conjunction with a long term historical data set to estimate average snow losses across the United States for two typical PV system designs. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nationwide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.« less
Midmarket Solar Policies in the United States | Solar Research | NREL
non-residential and non-utility segments. To help prospective solar customers understand and use the installations by sector for three sectors: residential, non-residential, and utility. The non-residential curve year on the chart, the non-residential curve shows the lowest annual rate of PV installations. U.S
Solar Market Research and Analysis Publications | Solar Research | NREL
lifespan, and saving costs. The report is an expanded edition of an interim report published in 2015. Cost achieving the SETO 2030 residential PV cost target of $0.05 /kWh by identifying and quantifying cost reduction opportunities. Distribution Grid Integration Unit Cost Database: This database contains unit cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, Blake
Google is encouraging development of advanced photovoltaic inverters with high power density by holding a public competition and offering a prize for the best performing high power developed. NREL will perform the performance and validation for all inverters entered into the competition and provide results to Google.
PV Module Reliability Experts Gather for DuraMAT Workshop | News | NREL
DuraMAT Workshop June 20, 2017 On May 22 and 23, 2017, the Bay Area Photovoltaic Consortium (BAPVC) and with the photovoltaic and supply-chain industries to discover, develop, de-risk, and enable the commercialization of new materials and designs for photovoltaic modules-with the potential for a levelized cost of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hambrick, J.
2012-01-01
Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation,more » etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.« less
NREL to Work with 14 Additional Small Businesses as Part of the DOE Small
Business Vouchers Program | NREL | News | NREL to Work with 14 Additional Small Businesses as Part of the DOE Small Business Vouchers Program News Release: NREL to Work with 14 Additional Small Businesses as Part of the DOE Small Business Vouchers Program May 2, 2017 The U.S. Department of Energy's
Rural Energy Options Analysis Training Development and Implementation at NREL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, P.
2005-01-01
NREL has developed a rural energy options analysis training program for rural energy decision makers that provides knowledge, skills and tools for the evaluation of technologies, including renewables, for rural energy applications. Through the Department of Energy (DOE) Solar Energy Technologies Program (SETP), NREL has refined materials for the program and developed a module that offers hands-on training in the preparation of data for options analysis using HOMER, NREL's micropower optimization model. NREL has used the materials for training in Brazil, the Maldives, Mexico, and Sri Lanka.
Government International, Research, and Nonprofit Organizations R&D Programs NREL is the only federal laboratory dedicated to the research, development, commercialization, and deployment of renewable energy and Program supports NREL research and development that focuses on biomass characterization, thermochemical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, B.; Shirazi, M.; Coddington, M.
2013-01-01
This paper, presented at the IEEE Green Technologies Conference 2013, describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1 (TM). The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to testmore » the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, B.; Shirazi, M.; Coddington, M.
2013-01-01
This paper describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through themore » use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salasovich, J.; Geiger, J.; Healey, V.
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Chicago, Milwaukee & St. Paul Rail Yard Company site in Perry, Iowa, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study didmore » not assess environmental conditions at the site.« less
Building-integrated photovoltaics: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, G.; Kinkead, J.; Raman, M.
1995-03-01
In 1992, Kiss Cathcart Anders Architects performed a study for NREL on Building-Integrated Photovoltaics (BIPV) issues as seen from the perspective of the building community. In general, the purpose of the study was to list major issues and potential applications; by it`s nature it asked more questions than it answered. This second phase study was to produce quantitative data on the performance of specific BIPV systems. Only roof systems are evaluated. The energy performance, construction cost and simple payback for five different BIPV roof options are evaluated in six different locations: Oakland, New York, Miami, Phoenix, Chicago, and Cincinnati. Themore » roof options evaluated include the following: single-glazed PV roof using glass-substrate PVs; double-glazed PV roof with insulating PV modules; ballasted roof-mounted system; sawtooth light monitor roof with indirect north daylighting; sawtooth roof with north light and active heat recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Geet, O.; Mosey, G.
2013-03-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tower Road site in Aurora, Colorado, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at themore » site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salasovich, J.; Geiger, J.; Mosey, G.
2013-05-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Price Landfill site in Pleasantville, New Jersey, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions atmore » the site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Brian; Huque, Aminul; Rogers, Lindsey
In 2011, EPRI began a four-year effort under the Department of Energy (DOE) SunShot Initiative Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) to demonstrate smart grid ready inverters with utility communication. The objective of the project was to successfully implement and demonstrate effective utilization of inverters with grid support functionality to capture the full value of distributed photovoltaic (PV). The project leveraged ongoing investments and expanded PV inverter capabilities, to enable grid operators to better utilize these grid assets. Developing and implementing key elements of PV inverter grid support capabilities will increase the distribution system’s capacity for highermore » penetration levels of PV, while reducing the cost. The project team included EPRI, Yaskawa-Solectria Solar, Spirae, BPL Global, DTE Energy, National Grid, Pepco, EDD, NPPT and NREL. The project was divided into three phases: development, deployment, and demonstration. Within each phase, the key areas included: head-end communications for Distributed Energy Resources (DER) at the utility operations center; methods for coordinating DER with existing distribution equipment; back-end PV plant master controller; and inverters with smart-grid functionality. Four demonstration sites were chosen in three regions of the United States with different types of utility operating systems and implementations of utility-scale PV inverters. This report summarizes the project and findings from field demonstration at three utility sites.« less
Integration, Validation, and Application of a PV Snow Coverage Model in SAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryberg, David; Freeman, Janine
2015-09-01
Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a wide variety of system designs and locations. A scattering of independent snow coverage models have been developed over the last 15 years; however, there has been very little effort spent on verifying these models beyond the system design and location on which they were based. Moreover, none of the major PV modeling software products have incorporated any of these models into their workflow. In response to thismore » deficiency, we have integrated the methodology of the snow model developed in the paper by Marion et al. [1] into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work we describe how the snow model is implemented in SAM and discuss our demonstration of the model's effectiveness at reducing error in annual estimations for two PV arrays. Following this, we use this new functionality in conjunction with a long term historical dataset to estimate average snow losses across the United States for a typical PV system design. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nation-wide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.« less
Module 4: Text Versions | State, Local, and Tribal Governments | NREL
own or finance a system. We'll help you understand the different financing types available to local often specific to a particular segment of the market with different amounts of incentives, different system size caps, and different total funds or aggregate capacity. The customer can identify if solar PV
Scanning Defect Mapping | Photovoltaic Research | NREL
SDMS moves the treated wafer across a stationary laser beam and maps the defects for each location on the wafer. The amount of light reflected from an area is proportional to the dislocation density for that area and provides a direct statistical count of the number of dislocations. PV Research Other
Office of Legacy Management Decision Tree for Solar Photovoltaic Projects - 13317
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmer, John; Butherus, Michael; Barr, Deborah L.
2013-07-01
To support consideration of renewable energy power development as a land reuse option, the DOE Office of Legacy Management (LM) and the National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of wind and solar renewable energy resources on LM lands. From a solar capacity perspective, the larger sites in the western United States present opportunities for constructing solar photovoltaic (PV) projects. A detailed analysis and preliminary plan was developed for three large sites in New Mexico, assessing the costs, the conceptual layout of a PV system, and the electric utility interconnection process. As a result ofmore » the study, a 1,214-hectare (3,000-acre) site near Grants, New Mexico, was chosen for further study. The state incentives, utility connection process, and transmission line capacity were key factors in assessing the feasibility of the project. LM's Durango, Colorado, Disposal Site was also chosen for consideration because the uranium mill tailings disposal cell is on a hillside facing south, transmission lines cross the property, and the community was very supportive of the project. LM worked with the regulators to demonstrate that the disposal cell's long-term performance would not be impacted by the installation of a PV solar system. A number of LM-unique issues were resolved in making the site available for a private party to lease a portion of the site for a solar PV project. A lease was awarded in September 2012. Using a solar decision tree that was developed and launched by the EPA and NREL, LM has modified and expanded the decision tree structure to address the unique aspects and challenges faced by LM on its multiple sites. The LM solar decision tree covers factors such as land ownership, usable acreage, financial viability of the project, stakeholder involvement, and transmission line capacity. As additional sites are transferred to LM in the future, the decision tree will assist in determining whether a solar PV project is feasible on the new sites. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Karaghouli, Ali; Kazmerski, L.L.
2010-04-15
This paper addresses the need for electricity of rural areas in southern Iraq and proposes a photovoltaic (PV) solar system to power a health clinic in that region. The total daily health clinic load is 31.6 kW h and detailed loads are listed. The National Renewable Energy Laboratory (NREL) optimization computer model for distributed power, ''HOMER,'' is used to estimate the system size and its life-cycle cost. The analysis shows that the optimal system's initial cost, net present cost, and electricity cost is US$ 50,700, US$ 60,375, and US$ 0.238/kW h, respectively. These values for the PV system are comparedmore » with those of a generator alone used to supply the load. We found that the initial cost, net present cost of the generator system, and electricity cost are US$ 4500, US$ 352,303, and US$ 1.332/kW h, respectively. We conclude that using the PV system is justified on humanitarian, technical, and economic grounds. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisz, J. F.
2012-11-01
The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basicmore » PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodhouse, M.; Goodrich, A.; Redlinger, M.
2013-09-01
For those PV technologies that rely upon Te, In, and Ga, first-order observations and calculations hint that there may be resource constraints that could inhibit their successful deployment at a SunShot level. These are only first-order approximations, however, and the possibility for an expansion in global Te, In, and Ga supplies needs to be considered in the event that there are upward revisions in their demand and prices.In this study, we examine the current, mid-term, and long-term prospects of Tellurium (Te) for use in PV. We find that the current global supply base of Te would support <10 GW ofmore » annual traditional CdTe PV manufacturing production. But as for the possibility that the supply base for Te might be expanded, after compiling several preliminary cumulative availability curves we find that there may be significant upside potential in the supply base for this element - principally vis a vis increasing demand and higher prices. Primarily by reducing the Tellurium intensity in manufacturing and by increasing the recovery efficiency of Te in Cu refining processes, we calculate that it may prove affordable to PV manufacturers to expand the supply base for Te such that 100 GW, or greater, of annual CdTe PV production is possible in the 2030 - 2050 timeframe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, A.; Andreas, A.; Ottoson, L.
2014-11-01
Indoor and outdoor testing of photovoltaic (PV) device performance requires the use of solar simulators and natural solar radiation, respectively. This performance characterization requires accurate knowledge of spectral irradiance distribution that is incident on the devices. Spectroradiometers are used to measure the spectral distribution of solar simulators and solar radiation. On September 17, 2013, a global spectral irradiance intercomparison using spectroradiometers was organized by the Solar Radiation Research Laboratory (SRRL) at the National Renewable Energy Laboratory (NREL). This paper presents highlights of the results of this first intercomparison, which will help to decrease systematic inter-laboratory differences in the measurements ofmore » the outputs or efficiencies of PV devices and harmonize laboratory experimental procedures.« less
Apply here Contact: nrel.education@nrel.gov Benefits and Opportunities at a Glance NREL Undergraduate NREL's sponsored internships. Learn more Benefits Option to enroll in medical benefits (if working 30 undergraduate education and research program. Learn more SULI Benefits Salary - $625 per week Regional
NREL Advances Wells Fargo Innovation Incubator Projects | Energy Systems
Integration Facility | NREL NREL Advances Wells Fargo Innovation Incubator Projects NREL Advances Wells Fargo Innovation Incubator Projects NREL has provided technical support and validation testing at the ESIF to help advance Wells Fargo Innovation Incubator (IN2) projects. The IN2 program helps
Walter.Musial@nrel.gov | 303-384-6956 Walt is a principal engineer and the manager of Offshore Wind at NREL , where he has worked since 1988. In 2003, he initiated the offshore wind energy research program at NREL
The Community College Internship Program at NREL | NREL
lower. Drug Screening and Background Check NREL coordinates a one-time background investigation and drug the drug screening, they have 72 hours to complete the required urine test. Work Hours NREL encourages
Exploring Demand Charge Savings from Commercial Solar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darghouth, Naim; Barbose, Galen; Mills, Andrew
Commercial retail electricity rates commonly include a demand charge component, based on some measure of the customer’s peak demand. Customer-sited solar PV can potentially reduce demand charges, but the magnitude of these savings can be difficult to predict, given variations in demand charge designs, customer loads, and PV generation profiles. Moreover, depending on the circumstances, demand charges from solar may or may not align well with associated utility cost savings. Lawrence Berkeley National Laboratory (Berkeley Lab) and the National Renewable Energy Laboratory (NREL) are collaborating in a series of studies to understand how solar PV can reduce demand charge levelsmore » for a variety of customer types and demand charges designs. Previous work focused on residential customs with solar. This study, instead, focuses on commercial customers and seeks to understand the extent and conditions under which rooftop can solar reduce commercial demand charges. To answer these questions, we simulate demand charge savings for a broad range of commercial customer types, demand charge designs, locations, and PV system characteristics. This particular analysis does not include storage, but a subsequent analysis in this series will evaluate demand charge savings for commercial customers with solar and storage.« less
NREL Provides a Foundation for Home Energy Performance - Continuum
, Colorado home. Photo by Dennis Schroeder, NREL NREL Provides a Foundation for Home Energy Performance NREL effectively and safely. Photo by Dennis Schroeder, NREL DOE's weatherization program, 35 years old in 2014 checklists to his crews as they perform upgrades like drilling a hole to add insulation. Photo by Dennis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Geet, Otto D.; Fu, Ran; Horowitz, Kelsey A.
NREL studied a new type of photovoltaic (PV) module configuration wherein multiple narrow, tilted slats are mounted in a single frame. Each slat of the PV slat module contains a single row of cells and is made using ordinary crystalline silicon PV module materials and processes, including a glass front sheet and weatherproof polymer encapsulation. Compared to a conventional ballasted system, a system using slat modules offer higher energy production and lower weight at lower LCOE. The key benefits of slat modules are reduced wind loading, improved capacity factor and reduced installation cost. First, the individual slats allow air tomore » flow through, which reduce wind loading. Using PV performance modeling software, we compared the performance of an optimized installation of slats modules to a typical installation of conventional modules in a ballasted rack mounting system. Based on the results of the performance modeling two different row tilt and spacing were tested in a wind tunnel. Scaled models of the PV Slat modules were wind tunnel tested to quantify the wind loading of a slat module system on a commercial rooftop, comparing the results to conventional ballasted rack mounted PV modules. Some commercial roofs do not have sufficient reserve dead load capacity to accommodate a ballasted system. A reduced ballast system design could make PV system installation on these roofs feasible for the first time without accepting the disadvantages of penetrating mounts. Finally, technoeconomic analysis was conducted to enable an economic comparison between a conventional commercial rooftop system and a reduced-ballast slat module installation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emery, Keith
The measurement of photovoltaic (PV) performance with respect to reference conditions requires measuring current versus voltage for a given tabular reference spectrum, junction temperature, and total irradiance. This report presents the procedures implemented by the PV Cell and Module Performance Characterization Group at the National Renewable Energy Laboratory (NREL) to achieve the lowest practical uncertainty. A rigorous uncertainty analysis of these procedures is presented, which follows the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement. This uncertainty analysis is required for the team’s laboratory accreditation under ISO standard 17025, “General Requirements for the Competence ofmore » Testing and Calibration Laboratories.” The report also discusses additional areas where the uncertainty can be reduced.« less
Photovoltaic energy program overview, fiscal year 1991
NASA Astrophysics Data System (ADS)
1992-02-01
The Photovoltaics Program Plan, FY 1991 to FY 1995 builds on the accomplishments of the past 5 years and broadens the scope of program activities for the future. The previous plan emphasized materials and PV cell research. Under the balanced new plan, the PV Program continues its commitment to strategic research and development (R&D) into PV materials and processes, while also beginning work on PV systems and helping the PV industry encourage new markets for photovoltaics. A major challenge for the program is to assist the US PV industry in laying the foundation for at least 1000 MW of installed PV capacity in the United States and 500 MW internationally by 2000. As part of the new plan, the program expanded the scope of its activities in 1991. The PV Program is now addressing many new aspects of developing and commercializing photovoltaics. It is expanding activities with the US PV industry through the PV Manufacturing Technology (PVMaT) project, designed to address US manufacturers' immediate problems; providing technical assistance to potential end users such as electric utilities; and the program is turning its attention to encouraging new markets for PV. In 1991, for example, the PV Program initiated a new project with the PV industry to encourage a domestic market for PV applications in buildings and began cooperative ventures to support other countries such as Mexico to use PV in their rural electrification programs. This report reviews some of the development, fabrication and manufacturing advances in photovoltaics this year.
Science Undergraduate Laboratory Internship Program at NREL | NREL
domestic travel to and from NREL. By Car Travel by car and you'll be reimbursed up to $250, one way. Drug Screening and Background Check Drug Screening NREL coordinates a one-time background investigation and drug appointment for the drug screening, they have 72 hours to complete the required urine test. Work Hours NREL
Federal Sector Renewable Energy Project Implementation: ’What’s Working and Why’
2011-01-13
River Site biomass CHP (240,000 pph, 20 MW) 9 Oak Ridge National Laboratory biomass gasification • Hill AFB Landfill Gas to Energy Electrical...Photovoltaics (PV) � Concentrating Solar Power (CSP) (with storage) � Wind � Biomass power (waste-to-energy (WTE), wood feed stock combustion, etc...Projects examples ( biomass combustion) 9 NREL Renewable Fuel Heating Plant (6-8mmBtu/hr hot water boiler-displaces natural gas use) 9 Savannah
Lantz Photo of Eric Lantz Eric Lantz Manager II-Program Management Research Eric.Lantz@nrel.gov acceptance of renewable energy infrastructure. Eric was a contributing author to the IEA Wind Task 26, The published in 2013. Prior to joining NREL full-time, Eric was a graduate research partner to NREL and a
NREL: News - Director of National Bioenergy Center Named
coordinating NREL's activities with bioenergy research at Oak Ridge National Laboratory (ORNL) and other organizations. Pacheco will represent the NBC, NREL, ORNL, DOE, and the interests of bioenergy programs to
Energy Education Energy Education Learn how NREL's Workforce Development and Education Programs lectures at NREL's Education Center. Energy Education for Students 4th-12th Grades Energy Education
NASA Astrophysics Data System (ADS)
Duran, P.; Holloway, T.; Brinkman, G.; Denholm, P.; Littlefield, C. M.
2011-12-01
Solar photovoltaics (PV) are an attractive technology because they can be locally deployed and tend to yield high production during periods of peak electric demand. These characteristics can reduce the need for conventional large-scale electricity generation, thereby reducing emissions of criteria air pollutants (CAPs) and improving ambient air quality with regard to such pollutants as nitrogen oxides, sulfur oxides and fine particulates. Such effects depend on the local climate, time-of-day emissions, available solar resources, the structure of the electric grid, and existing electricity production among other factors. This study examines the air quality impacts of distributed PV across the United States Eastern Interconnection. In order to accurately model the air quality impact of distributed PV in space and time, we used the National Renewable Energy Lab's (NREL) Regional Energy Deployment System (ReEDS) model to form three unique PV penetration scenarios in which new PV construction is distributed spatially based upon economic drivers and natural solar resources. Those scenarios are 2006 Eastern Interconnection business as usual, 10% PV penetration, and 20% PV penetration. With the GridView (ABB, Inc) dispatch model, we used historical load data from 2006 to model electricity production and distribution for each of the three scenarios. Solar PV electric output was estimated using historical weather data from 2006. To bridge the gap between dispatch and air quality modeling, we will create emission profiles for electricity generating units (EGUs) in the Eastern Interconnection from historical Continuous Emissions Monitoring System (CEMS) data. Via those emissions profiles, we will create hourly emission data for EGUs in the Eastern Interconnect for each scenario during 2006. Those data will be incorporated in the Community Multi-scale Air Quality (CMAQ) model using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Initial results indicate that PV penetration significantly reduces conventional peak electricity production and that, due to reduced emissions during periods of extremely active photochemistry, air quality could see benefits.
Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |
NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation
NREL Efforts Push Hydrogen Vehicles Further Along | News | NREL
. Photo by Ellen Jaskol The inaugural National Hydrogen and Fuel Cell Day, held in October, was too new after a decade of waiting for this to happen," said Keith Wipke, manager of NREL's Fuel Cell and Hydrogen Technologies program. At NREL since 1993, Wipke has been passionate about having fuel cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jeff; Rylander, Matthew; Boemer, Jens
The fourth solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utilities Commission (CPUC) supported the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with data provided from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E) conducted research to determine optimal default settings for distributed energy resource advanced inverter controls. The inverter functions studied are aligned with those developed by the California Smart Inverter Working Group (SIWG) and those being considered by the IEEE 1547more » Working Group. The advanced inverter controls examined to improve the distribution system response included power factor, volt-var, and volt-watt. The advanced inverter controls examined to improve the transmission system response included frequency and voltage ride-through as well as Dynamic Voltage Support. This CSI RD&D project accomplished the task of developing methods to derive distribution focused advanced inverter control settings, selecting a diverse set of feeders to evaluate the methods through detailed analysis, and evaluating the effectiveness of each method developed. Inverter settings focused on the transmission system performance were also evaluated and verified. Based on the findings of this work, the suggested advanced inverter settings and methods to determine settings can be used to improve the accommodation of distributed energy resources (PV specifically). The voltage impact from PV can be mitigated using power factor, volt-var, or volt-watt control, while the bulk system impact can be improved with frequency/voltage ride-through.« less
NREL. Steve has an extensive background in facilities engineering, facilities management, and Energy Manager, and a Project Management Professional. Prior to joining NREL, Steve was the Facilities manufacturing engineering, business application programming, and business process management positions
NREL's Education Center Programs | NREL
size is 30 students to three chaperones; the minimum group size is 15 students to one chaperone , community group tours, and power lunch lectures. Visit NREL in the community for the latest news for NREL regularly at 9:30 - 11 a.m. and 12 noon - to 1:30. Please contact us for more information. The maximum group
Renewable Energy for Rural Health Clinics (Energia Removable para Centros de Salud Rurales)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, A. C.; Olson, K.
This guide provides a broad understanding of the technical, social, and organizational aspects of health clinic electrification, especially through the use of renewable energy sources. It is intended to be used primarily by decision makers within governments or private agencies to accurately assess their health clinic's needs, select appropriate and cost-effective technologies to meet those needs, and to put into place effective infrastructure to install and maintain the hardware. This is the first in a series of rural applications guidebooks that the National Renewable Energy Laboratory (NREL) Village Power Program is commissioning to couple commercial renewable systems with rural applications.more » The guidebooks are complemented by NREL's Village Power Program's development activities, international pilot projects, and visiting professionals program. For more information on the NREL Village Power Program, visit the Renewables for Sustainable Village Power web site at http://www.rsvp.nrel .gov/rsvp/.« less
How [NOT] to Measure a Solar Cell to Get the Highest Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emery, Keith
The multibillion-dollar photovoltaic (PV) industry sells products by the watt; the calibration labs measure this parameter at the cell and module level with the lowest possible uncertainty of 1-2 percent. The methods and procedures to achieve a measured 50 percent efficiency on a thin-film solar cell are discussed. This talk will describe methods that ignore procedures that increase the uncertainty. Your questions will be answered concerning 'Everything you Always Wanted to Know about Efficiency Enhancements But Were Afraid to Ask.' The talk will cover a step-by-step procedure using examples found in literature or encountered in customer samples by the Nationalmore » Renewable Energy Laboratory's (NREL's) PV Performance Characterization Group on how to artificially enhance the efficiency. The procedures will describe methods that have been used to enhance the current voltage and fill factor.« less
Financing Solar PV at Government Sites with PPAs and Public Debt (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-11-01
Historically, state and local governmental agencies have employed one of two models to deploy solar photovoltaic (PV) projects: (1) self-ownership (financed through a variety of means) or (2) third-party ownership through a power purchase agreement (PPA). Morris County, New Jersey, administrators recently pioneered a way to combine many of the benefits of self-ownership and third-party PPAs through a bond-PPA hybrid, frequently referred to as the Morris Model. At the request of the Department of Energy's Solar Market Transformation group, NREL examined the hybrid model. This fact sheet describes how the hybrid model works, assesses the model's relative advantages and challengesmore » as compared to self-ownership and the third-party PPA model, provides a quick guide to project implementation, and assesses the replicability of the model in other jurisdictions across the United States.« less
Financing Solar PV at Government Sites with PPAs and Public Debt (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-12-01
Historically, state and local governmental agencies have employed one of two models to deploy solar photovoltaic (PV) projects: (1) self-ownership (financed through a variety of means) or (2) third-party ownership through a power purchase agreement (PPA). Morris County, New Jersey, administrators recently pioneered a way to combine many of the benefits of self-ownership and third-party PPAs through a bond-PPA hybrid, frequently referred to as the Morris Model. At the request of the Department of Energy?s Solar Market Transformation group, NREL examined the hybrid model. This fact sheet describes how the hybrid model works, assesses the model?s relative advantages and challengesmore » as compared to self-ownership and the third-party PPA model, provides a quick guide to project implementation, and assesses the replicability of the model in other jurisdictions across the United States.« less
Research Staff | Buildings | NREL
Research Staff Research Staff Photo of Roderick Jackson Roderick Jackson Laboratory Program Manager -related research at NREL. He works closely with senior laboratory management to set the strategic agenda for NREL's buildings portfolio, including all research, development, and market implementation
The Profitability of an Investment in Photovoltaics in South Carolina
NASA Astrophysics Data System (ADS)
Welsh, Thomas McClain
As renewable energy becomes more prevalent across the United States and the world, solar energy investment has also grown. There have been many studies done on photovoltaic (PV) systems in terms of energy payback and efficiency, but little research done to understand a PV system as a financial investment specific to South Carolina. This study aims to understand the return on investment that a PV system can achieve. More specifically whether PV systems in areas of South Carolina that uses Duke Energy achieve a favorable return on investment and what affects the profitability. This study uses the PVwatts calculator provided by NREL as well as an investment simulation to calculate the Internal Rate of Return (IRR) and Net Present Value on 1024 simulated 5kW PV arrays and evaluates their profitability. It then uses this information to apply it to real case studies for houses in South Carolina. This study found that shade has a significant impact on profitability of investment. At 30% shading, profitability drops near 0% IRR or below. Orientation impacts profitability significantly as well. Panels that are facing south, southeast, and southwest yielded the best return. While north, northeast and northwest orientations yielded very low or negative IRR. East and west facing panels can yield positive financial return, but this return is lower than panels orientated to the south. PV systems oriented towards the east or west must have optimal conditions to remain efficient. This study found that tilt had minimal impact on financially return. Incentives also significantly impacted profitability of investment. For a PV system to be profitable, federal, state, and Duke Energy incentives needed to be applied to the investment. When homes with PV systems are sold also has a great impact on profitability. Research has shown that there is a housing premium for homes with PV systems (Adomatis, 2015). This premium is highest when first installed and declines as the PV systems age. People also associate premiums with houses with PV systems even if the system is not adding much value to the home. This study has also found that the price of the PV system impacts investment. Premium grade panels had significantly less return compared to standard grade panels because prices per watt were higher.
Portfolio Analysis of Renewable Energy Opportunities: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, Allison; Deprizio, Jodi; Anderson, Kate
Time Warner Cable (TWC), now Charter Communications (CC), partnered with the National Renewable Energy Laboratory (NREL) to assess the technical and economic potential for solar photovoltaic (PV), wind, and ground-source heat-pump systems at 696 TWC facilities. NREL identified 306 sites where adding a renewable energy system would provide cost savings over the project life-cycle. In general, the top sites have some combination of high electricity rates ($0.16-$0.29/kWh), significant state incentives, and favorable net-metering policies. If all projects were implemented via third-party power purchase agreements, TWC/CC would save $37 million over 25 years and meet 10.5% of their energy consumption withmore » renewable energy. This paper describes the portfolio screening methodology used to identify and prioritize renewable energy opportunities across the TWC sites, as well as a summary of the potential cost savings that may be realized by implementing these projects. This may provide a template for other companies interested in identifying and prioritizing renewable energy opportunities across a large number of geographically dispersed sites. Following this initial portfolio analysis, NREL will be conducting in-depth analysis of project development opportunities at ten sites and evaluating off-grid solutions that may enable carbon emission reduction and grid independence at select facilities.« less
DOE/NREL Next Generation Natural Gas Vehicle Program : an overview
DOT National Transportation Integrated Search
2001-05-14
This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energys (DOEs) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of...
Albert LiVecchi Photo of Al Livecchi Albert LiVecchi Laboratory Program Manager- Water Power Al.Livecchi@nrel.gov | 303-384-7138 Al has been part of the Wind and Water Power Program Management Team at focuses on marine and hydrokinetic technologies. As Water Power Laboratory Program Manager, Al is
Agreement Moves Nevada Solar Plant Step Closer to Reality
Secretary Christine Ervin, CSTRR President Rose McKinney-James and NREL Director Dr. Charles Gay today new partnership, NREL will make available its facilities to test renewable energy technologies, help other renewable technologies. NREL will support the efforts of DOE's Federal Energy Management Program
Heavy-Duty Vehicle Thermal Management | Transportation Research | NREL
Heavy-Duty Vehicle Thermal Management Heavy-Duty Vehicle Thermal Management Infrared image of a and meet more stringent idling regulations. NREL's HDV thermal management program, CoolCab, focuses on thermal management technologies undergo assessment at NREL's Vehicle Testing and Integration Facility test
Colgan Photo Chris Colgan Chris Colgan Business Support II-Administrative Associate Chris.Colgan @nrel.gov | 303-384-7440 Chris joined NREL in January 2017. She provides support for the group manager , engineers, and researchers in the Residential Buildings Research Group and Building America Program. Chris
Mehos Photo of Mark Mehos Mark Mehos Group Manager, Thermal Systems R&D Mark.Mehos@nrel.gov Thermal Systems R&D group at NREL, which includes the Concentrating Solar Power (CSP) Program. Since SolarPACES "Solar Thermal Electric Power Systems" task, which focuses on the development of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen; Wiser, Ryan; Bolinger, Mark
In the U.S., the increasing financial support for customer-sited photovoltaic (PV) systems provided through publicly-funded incentive programs has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in addressing PV system performance. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouragingmore » PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address factors that affect performance, and describe key implementation details. Based on this review, we then offer recommendations for how PV incentive programs can be effectively designed to mitigate potential performance issues.« less
Solar + Storage Synergies for Managing Commercial-Customer Demand Charges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, P.; Govindarajan, A.; Bird, L.
Demand charges, which are based on a customer’s maximum demand in kilowatts (kW), are a common element of electricity rate structures for commercial customers. Customer-sited solar photovoltaic (PV) systems can potentially reduce demand charges, but the level of savings is difficult to predict, given variations in demand charge designs, customer loads, and PV generation profiles. Lawrence Berkeley National Laboratory (Berkeley Lab) and the National Renewable Energy Laboratory (NREL) are collaborating on a series of studies to understand how solar PV can impact demand charges. Prior studies in the series examined demand charge reductions from solar on a stand-alone basis formore » residential and commercial customers. Those earlier analyses found that solar, alone, has limited ability to reduce demand charges depending on the specific design of the demand charge and on the shape of the customer’s load profile. This latest analysis estimates demand charge savings from solar in commercial buildings when co-deployed with behind-the-meter storage, highlighting the complementary roles of the two technologies. The analysis is based on simulated loads, solar generation, and storage dispatch across a wide variety of building types, locations, system configurations, and demand charge designs.« less
Remote Power Systems for Sensors on the Northern Border
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Lin J; Kandt, Alicen J
The National Renewable Energy Laboratory (NREL) is working with the Department of Homeland Security (DHS) [1] to field sensors that accurately track different types of transportation across the northern border of the U.S.. To do this, the sensors require remote power so that they can be placed in the most advantageous geographical locations, often where no grid power is available. This enables the sensors to detect and track aircraft/vehicles despite natural features (e.g., mountains, ridges, valleys, trees) that often prevent standard methods (e.g., monostatic radar or visual observers) from detecting them. Without grid power, portable power systems were used tomore » provide between 80 and 300 W continuously, even in bitter cold and when buried under feet of snow/ice. NREL provides details about the design, installation, and lessons learned from long-term deployment of a second-generation of novel power systems that used adjustable-angle photovoltaics (PV), lithium ion batteries, and fuel cells that provide power to achieve 100% up-time.« less
IN2 Program Validates Data Center Cooling Solution | News | NREL
IN2 Program Validates Data Center Cooling Solution February 21, 2018 IN2 Program Validates Data Center Cooling Solution NREL researchers and LiquidCool Solutions representatives stand along-side centers on average consuming an estimated 70 billion kWh per year, a disruptive energy-saving solution is
participants may invite up to two students (one of which may be a graduate student) to participate in hands-on touring the world class facilities at NREL. Program Requirements Participate in the one week summer program. Implement one lesson in the fall or spring. Local teachers receive a stipend of $250 for the one
NREL's Impact Grows Through the Clean Energy Solutions Center and the New
Clean Energy Design Studio - Continuum Magazine | NREL NREL's Impact Grows Through the Clean Energy Solutions Center and the New Clean Energy Design Studio The Clean Energy Solutions Center (Solutions Center) helps governments design and adopt policies and programs that support the deployment of
. Education M.S. Civil, Environmental, and Architectural Engineering, Building Systems Program, University of Colorado at Boulder B.S. Civil Engineering, University of Texas at Austin B.A. Sociology/Spanish, Rice Engineering Kristin.Field-Macumber@nrel.gov | 303-384-7376 Kristin joined NREL in January 2009. Her expertise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen; Wiser, Ryan; Bolinger, Mark
Increasing levels of financial support for customer-sited photovoltaic (PV) systems, provided through publicly-funded incentive programs, has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in ensuring that PV systems receiving incentives perform well. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approachesmore » to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address performance issues, and highlight important differences in the implementation of these strategies among programs.« less
NREL: International Activities - Bilateral Partnerships
development and use of renewable energy and energy efficiency technologies: Algeria Angola Argentina Australia sufficiently accurate information for national-level strategic energy planning. China NREL manages renewable energy cooperation with China under the U.S.-China Renewable Energy Partnership program. This program was
NREL: International Activities - Country Programs
for use of mini-grid quality assurance and design standards and advising on mini-grid business models communities of practice and technical collaboration across countries on mini-grid development, modeling and interconnection standards and procedures, and with strengthening mini-grids and energy access programs. NREL is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netter, Judy
2015-07-28
Interest in High Concentration Photovoltaics (HCPV) for terrestrial applications has significantly grown in recent years. A major driver behind this growth trend is the availability of high efficiency multi-junction (MJ) cells that promise reliable operation under high concentrations (500 to 1000 suns). The primary impact of HCPV on the solar electricity cost is the dramatic reduction in cell cost. For terrestrial HCPV systems, operating at concentrations ≥ 500 suns, the expensive MJ cells are marginally affordable. Most recently, triple-junction test cells have achieved a conversion efficiency of over 40% under concentrated sunlight. Photovoltaic Cavity Converter (PVCC) is a multi-bandgap, highmore » concentration PV device developed by United Innovations, Inc., under subcontract to NREL. The lateral- (2- dimensional) structure of PVCC, as opposed to vertical multi-junction (MJ) structure, helps to circumvent most of the developmental challenges MJ technology has yet to overcome. This CRADA will allow the continued development of this technology by United Innovations. This project was funded by the California Energy Commission and is the second phase of a twopart demonstration program. The key advantage of the design was the use of a PVCC as the receiver. PVCCs efficiently process highly concentrated solar radiation into electricity by recycling photons that are reflected from the surface of the cells. Conventional flat, twodimensional receivers cannot recycle photons and the reflected photons are lost to the conversion process.« less
Sustainable NREL Biennial Report, FY 2012 - 2013 (Management Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slovensky, Michelle
2014-03-01
NREL's Sustainability Program plays a vital role bridging research and operations - integrating energy efficiency, water and material resource conservation and cultural change - adding depth in the fulfillment of NREL's mission. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called "The Voice of NREL" gives an inside perspective of how to become more sustainable while at the same time addressing climate change.
NREL Employees Lauded by Industry Peers | News | NREL
Employees Lauded by Industry Peers News Release: NREL Employees Lauded by Industry Peers April 8 ) were recently recognized by industry peers for their work in grid integration, industry advancement and , and professional development programs. The award honors the late Forest R. McFarland who was himself
electric power professionals. Prior to that, Alex spent 15 years with Crain Communications' RCR Wireless @nrel.gov | 303-384-7018 As the Wind and Water Power Program Communications Team Lead, Alex serves as the primary interface to the Wind and Water Power Program management team to develop communication strategies
-performance building simulation. Dane supports technical efforts for the Building America Program and conducts finite element modeling for building energy simulation. Prior to joining NREL, Dane worked at Atec, Inc
SAM International Case Studies: DPV Analysis in Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCall, James D
Presentation demonstrates the use of the System Advisor Model (SAM) in international analyses, specifically Mexico. Two analyses are discussed with relation to SAM modelling efforts: 1) Customer impacts from changes to net metering and billing agreements and 2) Potential benefits of PV for Mexican solar customers, the Mexican Treasury, and the environment. Along with the SAM analyses, integration of the International Utility Rate Database (I-URDB) with SAM and future international SAM work are discussed. Presentation was created for the International Solar Energy Society's (ISES) webinar titled 'International use of the NREL System Advisor Model (SAM) with case studies'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen; Wiser, Ryan; Bolinger, Mark
Some stakeholders continue to voice concerns about the performance of customer-sited photovoltaic (PV) systems, particularly because these systems typically receive financial support through ratepayer- or publicly-funded programs. Although much remains to be understood about the extent and specific causes of poor PV system performance, several studies of the larger programs and markets have shed some light on the issue. An evaluation of the California Energy Commission (CEC)'s Emerging Renewables Program, for example, found that 7% of systems, in a sample of 95, had lower-than-expected power output due to shading or soiling (KEMA 2005). About 3% of a larger sample ofmore » 140 systems were not operating at all or were operating well below expected output, due to failed equipment, faulty installation workmanship, and/or a lack of basic maintenance. In a recent evaluation of the other statewide PV incentive program in California, the Self-Generation Incentive Program, 9 of 52 projects sampled were found to have annual capacity factors less than 14.5%, although reasons for these low capacity factors generally were not identified (Itron 2005). Studies of PV systems in Germany and Japan, the two largest PV markets worldwide, have also revealed some performance problems associated with issues such as shading, equipment and installation defects, inverter failure, and deviations from module manufacturers' specifications (Otani et al. 2004, Jahn & Nasse 2004). Although owners of PV systems have an inherent incentive to ensure that their systems perform well, many homeowners and building operators may lack the necessary information and expertise to carry out this task effectively. Given this barrier, and the responsibility of PV incentive programs to ensure that public funds are prudently spent, these programs should (and often do) play a critical role in promoting PV system performance. Performance-based incentives (PBIs), which are based on actual energy production rather than the rated capacity of the modules or system, are often suggested as one possible strategy. Somewhat less recognized are the many other program design options also available, each with its particular advantages and disadvantages. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance - including, but not limited to, PBIs - used by 32 prominent PV incentive programs in the U.S. (see Table 1).1 We focus specifically on programs that offer an explicit subsidy payment for customer-sited PV installations. PV support programs that offer other forms of financial support or that function primarily as a mechanism for purchasing renewable energy credits (RECs) through energy production-based payments are outside the scope of our review.2 The information presented herein is derived primarily from publicly available sources, including program websites and guidebooks, programs evaluations, and conference papers, as well as from a limited number of personal communications with program staff. The remainder of this report is organized as follows. The next section presents a simple conceptual framework for understanding the issues that affect PV system performance and provides an overview of the eight general strategies to encourage performance used among the programs reviewed in this report. The subsequent eight sections discuss in greater detail each of these program design strategies and describe how they have been implemented among the programs surveyed. Based on this review, we then offer a series of recommendations for how PV incentive programs can effectively promote PV system performance.« less
Distribution System Upgrade Unit Cost Database
Horowitz, Kelsey
2017-11-30
This database contains unit cost information for different components that may be used to integrate distributed photovotaic (D-PV) systems onto distribution systems. Some of these upgrades and costs may also apply to integration of other distributed energy resources (DER). Which components are required, and how many of each, is system-specific and should be determined by analyzing the effects of distributed PV at a given penetration level on the circuit of interest in combination with engineering assessments on the efficacy of different solutions to increase the ability of the circuit to host additional PV as desired. The current state of the distribution system should always be considered in these types of analysis. The data in this database was collected from a variety of utilities, PV developers, technology vendors, and published research reports. Where possible, we have included information on the source of each data point and relevant notes. In some cases where data provided is sensitive or proprietary, we were not able to specify the source, but provide other information that may be useful to the user (e.g. year, location where equipment was installed). NREL has carefully reviewed these sources prior to inclusion in this database. Additional information about the database, data sources, and assumptions is included in the "Unit_cost_database_guide.doc" file included in this submission. This guide provides important information on what costs are included in each entry. Please refer to this guide before using the unit cost database for any purpose.
The reliability and stability of multijunction amorphous silicon PV modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, D.E.
1995-11-01
Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies aremore » about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.« less
Tetreault Photo of Tim Tetreault Tim Tetreault Senior Project Leader - DOD Programs Tim.Tetreault @nrel.gov | 303-384-7524 Tim is a senior project lead in the Integrated Applications Center and is currently
Process Development Unit. NREL's Thermal and Catalytic Process Development Unit can process 1/2 ton per biomass to fuels and chemicals Affiliated Research Programs Thermochemical Process Integration, Scale-Up
also leads the Sustainable Energy for Remote Indonesian Grids program, with the aim to increase deployment of clean energy in small, remote grids across Indonesia. Prior to joining NREL, Tim worked as a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sopori, B.
The 11th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and non-photovoltaic fields. Discussions will include the various aspects of impurities and defects in silicon--their properties, the dynamics during device processing, and their application for developing low-cost processes for manufacturing high-efficiency silicon solar cells. Sessions and panel discussions will review impurities and defects in crystalline-silicon PV, advanced cell structures, new processes and process characterization techniques, and future manufacturing demands. The workshop will emphasize some of the promising new technologies in Si solar cell fabrication that can lower PVmore » energy costs and meet the throughput demands of the future. The three-day workshop will consist of presentations by invited speakers, followed by discussion sessions. Topics to be discussed are: Si Mechanical properties and Wafer Handling, Advanced Topics in PV Fundamentals, Gettering and Passivation, Impurities and Defects, Advanced Emitters, Crystalline Silicon Growth, and Solar Cell Processing. The workshop will also include presentations by NREL subcontractors who will review the highlights of their research during the current subcontract period. In addition, there will be two poster sessions presenting the latest research and development results. Some presentations will address recent technologies in the microelectronics field that may have a direct bearing on PV.« less
NREL's Sustainable Campus Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rukavina, Frank; Pless, Shanti
2015-04-06
The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.
NREL Announces New Technology Development and Innovation Project Selections
support of the TD&I program, NREL and DOE plan to host an open house in summer 2018 to provide an in about potential partnership opportunities with NREL. The open house will focus on current needs and gaps from the 2017 open house, or for information on the upcoming open house (when available), please visit
NASA Astrophysics Data System (ADS)
Liu, X.
2014-12-01
Solar photovoltaic (PV) systems are being aggressively deployed at residential, commercial, and utility scales to complement power generation from conventional sources. This is motivated both by the desire to reduce carbon footprints and by policy-driven financial incentives. Although several life cycle analyses (LCA) have investigated environmental impacts and energy payback times of solar PV systems, most results are based on hypothetical systems rather than actual, deployed systems that can provide measured performance data. Over the past five years, Desert Research Institute (DRI) in Nevada has installed eight solar PV systems of scales from 3 to 1000 kW, the sum of which supply approximately 40% of the total power use at DRI's Reno and Las Vegas campuses. The goal of this work is to explore greenhouse gas (GHG) impacts and examine the economic performance of DRI's PV systems by developing and applying a comprehensive LCA and techno-economic (TEA) model. This model is built using data appropriate for each type of panel used in the DRI systems. Power output is modeled using the National Renewable Energy Laboratory (NREL) model PVWatts. The performance of PVWatts is verified by the actual measurements from DRI's PV systems. Several environmental and economic metrics are quantified for the DRI systems, including life cycle GHG emissions and energy return. GHG results are compared with Nevada grid-based electricity. Initial results indicate that DRI's solar-derived electricity offers clear GHG benefits compared to conventional grid electricity. DRI's eight systems have GHG intensity values of 29-56 gCO2e/kWh, as compared to the GHG intensity of 212 gCO2e/kWh of national average grid power. The major source of impacts (82-92% of the total) is the upstream life cycle burden of manufacturing PV panels, which are made of either mono-crystalline or multi-crystalline silicon. Given the same type of PV panel, GHG intensity decreases as the scale of the system increases. Energy payback times of DRI's solar PV systems range from 0.5 to 1.5 years. The cost payback time for the DRI PV systems and the cost per ton of CO2 avoided by replacing Nevada-specific electrical power will be determined. The sensitivity of these environmental and economic impacts with respect to specific model parameters is being investigated.
Technical Highlight: NREL Improves Building Energy Simulation Programs Through Diagnostic Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polly, B.
2012-01-09
This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market.
Smith Photo of Brian Smith Brian Smith Laboratory Program Manager II - Mechanical Engineering Brian.Smith@nrel.gov | 303-384-6911 Brian Smith is Partnership Manager for the NWTC and focuses on portfolio
Distributed Generation Market Demand Model (dGen): Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigrin, Benjamin; Gleason, Michael; Preus, Robert
The Distributed Generation Market Demand model (dGen) is a geospatially rich, bottom-up, market-penetration model that simulates the potential adoption of distributed energy resources (DERs) for residential, commercial, and industrial entities in the continental United States through 2050. The National Renewable Energy Laboratory (NREL) developed dGen to analyze the key factors that will affect future market demand for distributed solar, wind, storage, and other DER technologies in the United States. The new model builds off, extends, and replaces NREL's SolarDS model (Denholm et al. 2009a), which simulates the market penetration of distributed PV only. Unlike the SolarDS model, dGen can modelmore » various DER technologies under one platform--it currently can simulate the adoption of distributed solar (the dSolar module) and distributed wind (the dWind module) and link with the ReEDS capacity expansion model (Appendix C). The underlying algorithms and datasets in dGen, which improve the representation of customer decision making as well as the spatial resolution of analyses (Figure ES-1), also are improvements over SolarDS.« less
Power Hardware-in-the-Loop Testing of a Smart Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza Carrillo, Ismael; Breaden, Craig; Medley, Paige
This paper presents the results of the third and final phase of the National Renewable Energy Lab (NREL) INTEGRATE demonstration: Smart Distribution. For this demonstration, high penetrations of solar PV and wind energy systems were simulated in a power hardware-in-the-loop set-up using a smart distribution test feeder. Simulated and real DERs were controlled by a real-time control platform, which manages grid constraints under high clean energy deployment levels. The power HIL testing, conducted at NREL's ESIF smart power lab, demonstrated how dynamically managing DER increases the grid's hosting capacity by leveraging active network management's (ANM) safe and reliable control framework.more » Results are presented for how ANM's real-time monitoring, automation, and control can be used to manage multiple DERs and multiple constraints associated with high penetrations of DER on a distribution grid. The project also successfully demonstrated the importance of escalating control actions given how ANM enables operation of grid equipment closer to their actual physical limit in the presence of very high levels of intermittent DER.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emery, Keith
2015-08-04
The project under this CRADA will analyze field data of various flat-plate and concentrator module technologies and cell measurements at the laboratory level. The field data will consist of current versus voltage data collected over many years on a latitude tilt test bed for Si, CdTe, amorphous silicon, and CIGS technologies. The concentrator data will be for mirror- and lens-based module designs using multijunction cells. The laboratory data will come from new measurements of cell performance with systematic variation of irradiance, temperature and spectral composition. These measurements will be labor-intensive and the aim will be to cover the widest possiblemore » parameter space for as many different PV samples as possible. The data analysis will require software tools to be developed. These tools will be customized for use with the specific NREL datasets and will be unsuitable for commercial release. The tools will be used to evaluate different translation equations against NREL outdoor datasets.« less
NREL's Sustainable Campus Overview
Rukavina, Frank; Pless, Shanti
2018-05-11
The high-performance buildings across the Energy Department's National Renewable Energy Laboratory's (NREL) South Table Mountain campus incorporate a number of state-of-the art energy efficiency and renewable energy technologies, making them models for sustainability. Each building, designed to meet the Gold or Platinum standards of the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) program, brings NREL closer to developing the campus of the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broderick, Robert Joseph; Quiroz, Jimmy Edward; Reno, Matthew J.
2015-11-01
The third solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utility Commission (CPUC) is supporting the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with collaboration from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E), in research to improve the Utility Application Review and Approval process for interconnecting distributed energy resources to the distribution system. Currently this process is the most time - consuming of any step on the path to generating power onmore » the distribution system. This CSI RD&D solicitation three project has completed the tasks of collecting data from the three utilities, clustering feeder characteristic data to attain representative feeders, detailed modeling of 16 representative feeders, analysis of PV impacts to those feeders, refinement of current screening processes, and validation of those suggested refinements. In this report each task is summarized to produce a final summary of all components of the overall project.« less
The development and performance of smud grid-connected photovoltaic projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, D.E.; Collier, D.E.
1995-11-01
The utility grid-connected market has been identified as a key market to be developed to accelerate the commercialization of photovoltaics. The Sacramento Municipal Utility District (SMUD) has completed the first two years of a continuing commercialization effort based on two years of a continuing commercialization effort based on the sustained, orderly development of the grid-connected, utility PV market. This program is aimed at developing the experience needed to successfully integrate PV as distributed generation into the utility system and to stimulate the collaborative processes needed to accelerate the cost reductions necessary for PV to be cost-effective in these applications bymore » the year 2000. In the first two years, SMUD has installed over 240 residential and commercial building, grid-connected, rooftop, {open_quotes}PV Pioneer{close_quotes} systems totaling over 1MW of capacity and four substation sited, grid-support PV systems totaling 600 kW bringing the SMUD distributed PV power systems to over 3.7 MW. The 1995 SMUD PV Program will add another approximately 800 kW of PV systems to the District`s distributed PV power system. SMUD also established a partnership with its customers through the PV Pioneer {open_quotes}green pricing{close_quotes} program to advance PV commercialization.« less
Using Cryogenics to Improve the Efficiency of Photovoltaic Solar Cells
NASA Astrophysics Data System (ADS)
Somers, Hunter; Martinez, Estefano; Ganley, Grace; Rivera, Daniel; Hopp, Aric; Jakachira, Takunda; West, Andrea; Sapp, Whitley; Watson, Casey R.; Paulin, Pete
Improving the reliability and profitability of green energy sources plays a crucial part in transitioning away from fossil fuels as an energy source. As a possible means of making solar energy production more efficient, we consider the effects of cryogenically treating photovoltaic (PV) solar panels at 300 Below, Inc. We report on the pre- and post-cryo performance of two different types of solar panels, when they are exposed to the same, artificial light source. Then, using NREL data, we project the financial benefits of adopting cryogenically treated solar panels throughout the United States over the next five years. 300 Below Inc.
Reducing Energy Burden with Solar: Colorado's Strategy and a Roadmap for
purchasing other necessities. In some circumstances, solar photovoltaics (PV) can reduce this energy burden -income community solar demonstration projects Incorporating PV into its weatherization program Promoting utility investment in low-income PV programs. In 2015, CEO launched its low-income community solar program
Opportunities and Challenges for Solar Minigrid Development in Rural India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thirumurthy, N.; Harrington, L.; Martin, D.
2012-09-01
The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data suppliedmore » by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.« less
NREL Quickens its Tech Transfer Efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammers, H.
2012-02-01
Innovations and 'aha' movements in renewable energy and energy efficiency, while exciting in the lab, only truly live up to their promise once they find a place in homes or business. Late last year President Obama issued a directive to all federal agencies to increase their efforts to transfer technologies to the private sector in order to achieve greater societal and economic impacts of federal research investments. The president's call to action includes efforts to establish technology transfer goals and to measure progress, to engage in efforts to increase the speed of technology transfer and to enhance local and regionalmore » innovation partnerships. But, even before the White House began its initiative to restructure the commercialization process, the National Renewable Energy Laboratory had a major effort underway designed to increase the speed and impact of technology transfer activities and had already made sure its innovations had a streamlined path to the private sector. For the last three years, NREL has been actively setting commercialization goals and tracking progress against those goals. For example, NREL sought to triple the number of innovations over a five-year period that began in 2009. Through best practices associated with inventor engagement, education and collaboration, NREL quadrupled the number of innovations in just three years. Similar progress has been made in patenting, licensing transactions, income generation and rewards to inventors. 'NREL is known nationally for our cutting-edge research and companies know to call us when they are ready to collaborate,' William Farris, vice president for commercialization and technology transfer, said. 'Once a team is ready to dive in, they don't want be mired in paperwork. We've worked to make our process for licensing NREL technology faster; it now takes less than 60 days for us to come to an agreement and start work with a company interested in our research.' While NREL maintains a robust patent portfolio, often companies are looking to do more than just license a technology. These relationships are invaluable in successfully moving technologies from NREL to the marketplace. 'We may generate new and potentially valuable innovations, but our commercialization partners do the heavy work of building a successful business around our technology,' Farris said. Tools such as CRADAs (Cooperative Research and Development Agreements) allow NREL to continue working with companies to refine and develop technologies. And, working with businesses is an area where NREL excels. NREL is responsible for one quarter of the CRADAs in the DOE system. 'When you look at the results of our CRADA program, you can demonstrate that we are actively engaged with companies in collaborating on research and moving technologies to market,' Farris said. NREL is first among DOE labs with 186 active CRADAs. And last year, NREL also was first with the number of new CRADAs signed. 'Part of the success in our working with industry goes back to NREL's mission to grow and support new industries,' Farris added. 'NREL has basic research capabilities, but we are never going to be the ultimate producer of a commercial product. That is the role of the private sector.' Farris also credits the advocacy and support that the Office of Energy Efficiency and Renewable Energy at DOE provides for these technology transfer activities. 'EERE's support is critical to our success,' Farris said. To assist the private sector in moving a technology from the lab to the manufacturing line, NREL has a number of programs in place to give that first, or even final, nudge toward commercialization. For instance, the Commercialization Assistance Program helps startups overcome technical barriers by granting free access to 40 hours of work at the lab. Through the Innovation and Entrepreneurship Center, NREL also helps clean energy businesses develop strong links with the financial community, as well as other key stakeholders in the commercialization process. In March, NREL formally opened the Colorado Center for Renewable Energy and Economic Development a cooperative program with the state of Colorado designed to bring together stakeholders and service providers that support the growth of cleantech companies. CREED currently is working with more than 25 stakeholders - governmental partners, universities, industry associations, venture capital organizations and small businesses - to improve the access these groups have to technologies developed at NREL and to provide services such as classes and workshops for entrepreneurs. When it comes to bringing together cleantech stakeholders, NREL's Industry Growth Forum is the marquee event. At the forum, clean energy entrepreneurs have the opportunity to present their business cases to an expert panel of investors and energy executives. Companies that have presented have raised $3.4 billion in funding to date.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deason, Jeff; Murphy, Sean
A new study by Berkeley Lab found that residential Property Assessed Clean Energy (R-PACE) programs increased deployment of residential solar photovoltaic (PV) systems in California, raising it by about 7-12% in cities that adopt these programs. R-PACE is a financing mechanism that uses a voluntary property tax assessment, paid off over time, to facilitate energy improvements and, in some jurisdictions, water and resilience measures. While previous studies demonstrated that early, regional R-PACE programs increased solar PV deployment, this new analysis is the first to demonstrate these impacts from the large, statewide R-PACE programs dominating the California market today, which usemore » private capital to fund the upfront costs of the improvements. Berkeley Lab estimated the impacts using econometric techniques on two samples: -Large cities only, allowing annual demographic and economic data as control variables -All California cities, without these annual data Analysis of both samples controls for several factors other than R-PACE that would be expected to drive solar PV deployment. We infer that on average, cities with R-PACE programs were associated with greater solar PV deployment in our study period (2010-2015). In the large cities sample, solar PV deployment in jurisdictions with R-PACE programs was higher by 1.1 watts per owner-occupied household per month, or 12%. Across all cities, solar PV deployment in jurisdictions with R-PACE programs was higher by 0.6 watts per owner-occupied household per month, or 7%. The large cities results are statistically significant at conventional levels; the all-cities results are not. The estimates imply that the majority of solar PV deployment financed by R-PACE programs would likely not have occurred in their absence. Results suggest that R-PACE programs have increased PV deployment in California even in relatively recent years, as R-PACE programs have grown in market share and as alternate approaches for financing solar PV have developed. The U.S. Department of Energy’s Building Technologies Office supported this research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doris, Elizabeth; Stout, Sherry; Peterson, Kimberly
This technical report discusses the effectiveness of the Jamaica Public Service Company Limited Net-Billing Pilot Program. The National Renewable Energy Laboratory (NREL) collected and analyzed data from a wide range of stakeholders, conducted in-country research, and compared program elements to common interconnection practices to form programmatic recommendations for the Jamaica context. NREL finds that the net-billing pilot program has successfully contributed to the support of the emerging solar market in Jamaica with the interconnection of 80 systems under the program for a total of 1.38 megawatts (MW) at the time of original analysis.
Annual Sustainability Report FY 2014. Incorporates NREL Site Sustainability Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rukavina, Frank
NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'Sustaining NREL'smore » Future Through Integration' provides insight into how NREL is successfully expanding the adoption of renewable energy technologies through integration.« less
City and County Solar PV Training Program, Module 2: Screening and Identifying PV Projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgqvist, Emma M
When screening and identifying PV projects, cities and counties should understand the different factors that impact the technical and economic potential of a PV project, the steps of the PV screening process, and how to use REopt Lite to screen a site for PV and storage project potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, Megan H; Lisell, Lars J
This is the third of five training modules recorded for the City and County Solar PV Training Program. The program is focused on training local government staff in the PV procurement process. This module focuses on siting and permitting for both rooftop and larger, ground-mounted systems rand includes a link to a video.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutsch, Todd; Sverdrup, George; Ghirardi, Maria
The research and development taking place today at the National Renewable Energy Laboratory (NREL) is paving the way for nature's most plentiful element—hydrogen—to power the next generation. NREL researchers are working to unlock the potential of hydrogen and to advance the fuel cell technologies that will power the automobiles, equipment, and buildings of tomorrow. Hydrogen and fuel cells are a fundamental part of the broader portfolio of renewable technologies that are moving our nation toward its goals of energy independence and sustainability.
-275-4303 Kevin Regimbal oversees NREL's High Performance Computing (HPC) Systems & Operations , engineering, and operations. Kevin is interested in data center design and computing as well as data center integration and optimization. Professional Experience HPC oversight: program manager, project manager, center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark; Holt, Edward
High up-front costs and a lack of financing options have historically been the primary barriers to the adoption of photovoltaics (PV) in the residential sector. State clean energy funds, which emerged in a number of states from the restructuring of the electricity industry in the mid-to-late 1990s, have for many years attempted to overcome these barriers through PV rebate and, in some cases, loan programs. While these programs (rebate programs in particular) have been popular, the residential PV market in the United States only started to achieve significant scale in the last five years – driven in large part bymore » an initial wave of financial innovation that led to the rise of third-party ownership.« less
Poliovirus Studies during the Endgame of the Polio Eradication Program.
Arita, Minetaro
2017-01-24
Since the beginning of Global Polio Eradication Initiative in 1988, poliomyelitis cases caused by wild poliovirus (PV) have been drastically reduced, with only 74 cases reported in 2 endemic countries in 2015. The current limited PV transmission suggests that we are in the endgame of the polio eradication program. However, specific challenges have emerged in the endgame, including tight budget, switching of the vaccines, and changes in biorisk management of PV. To overcome these challenges, several PV studies have been implemented in the eradication program. Some of the responses to the emerging challenges in the polio endgame might be valuable in other infectious diseases eradication programs. Here, I will review challenges that confront the polio eradication program and current research to address these challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Ran; Feldman, David; Margolis, Robert
NREL has been modeling U.S. photovoltaic (PV) system costs since 2009. This year, our report benchmarks costs of U.S. solar PV for residential, commercial, and utility-scale systems built in the first quarter of 2017 (Q1 2017). Costs are represented from the perspective of the developer/installer, thus all hardware costs represent the price at which components are purchased by the developer/installer, not accounting for preexisting supply agreements or other contracts. Importantly, the benchmark this year (2017) also represents the sales price paid to the installer; therefore, it includes profit in the cost of the hardware, along with the profit the installer/developermore » receives, as a separate cost category. However, it does not include any additional net profit, such as a developer fee or price gross-up, which are common in the marketplace. We adopt this approach owing to the wide variation in developer profits in all three sectors, where project pricing is highly dependent on region and project specifics such as local retail electricity rate structures, local rebate and incentive structures, competitive environment, and overall project or deal structures.« less
Experimental Evaluation of Load Rejection Over-Voltage from Grid-Tied Solar Inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Hoke, Andy, Chakraborty, Sudipta; Ropp, Michael
This paper investigates the impact of load rejection over-voltage (LRO) from commercially available grid-tied photovoltaic (PV) solar inverters. LRO can occur when a local feeder or breaker opens and the power output from a distributed energy resource exceeds the load power. Simplified models of current controlled inverters can over-predict over-voltage magnitudes, thus it is useful to quantify testing. The load rejection event was replicated using a hardware testbed at the National Renewable Energy Laboratory (NREL), and a set of commercially available PV inverters was tested to quantify the impact of LRO for a range of generation-to-load ratios. The magnitude andmore » duration of the over-voltage events are reported in this paper along with a discussion of characteristic inverter output behavior. The results for the inverters under test showed that maximum over-voltage magnitudes were less than 200 percent of nominal voltage, and much lower in many test cases. These research results are important because utilities that interconnect inverter-based DER need to understand their characteristics under abnormal grid conditions.« less
U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Ran; Feldman, David J.; Margolis, Robert M.
NREL has been modeling U.S. photovoltaic (PV) system costs since 2009. This year, our report benchmarks costs of U.S. solar PV for residential, commercial, and utility-scale systems built in the first quarter of 2017 (Q1 2017). Costs are represented from the perspective of the developer/installer, thus all hardware costs represent the price at which components are purchased by the developer/installer, not accounting for preexisting supply agreements or other contracts. Importantly, the benchmark this year (2017) also represents the sales price paid to the installer; therefore, it includes profit in the cost of the hardware, along with the profit the installer/developermore » receives, as a separate cost category. However, it does not include any additional net profit, such as a developer fee or price gross-up, which are common in the marketplace. We adopt this approach owing to the wide variation in developer profits in all three sectors, where project pricing is highly dependent on region and project specifics such as local retail electricity rate structures, local rebate and incentive structures, competitive environment, and overall project or deal structures.« less
Photo of Neil Snyder Neil Snyder Manager III-Program Management Research Neil.Snyder@nrel.gov management. He has chiefly focused on developing complex systems and his specific expertise is leadership. As has acquired familiarity level expertise in many technical fields including environmental management
results, and working closely with industry and DOE serving as a Project Leader and a Principal Investigator Management of reporting requirements to DOE for financial forecasts, milestone reports, and annual operating plans Management of communications projects for the NREL Biomass program and Bioenergy
Guide for certifying pressure vessels and systems
NASA Technical Reports Server (NTRS)
Lundy, Floyd; Krusa, Paul W.
1992-01-01
This guide is intended to provide methodology and describe the intent of the Pressure Vessel and System (PV/S) Certification program. It is not meant to be a mandated document, but is intended to transmit a basic understanding of the PV/S program, and include examples. After the reader has familiarized himself with this publication, he should have a basic understanding of how to go about developing a PV/S certification program.
Daniel.Carpenter@nrel.gov | 303-384-6709 Orcid ID http://orcid.org/0000-0001-7625-9308 Research Interests Impact of ), especially related to blending low-cost, sustainable feedstocks into the biofuels supply chain Design thermochemical and catalytic experimental reactor systems Affiliated Research Programs Feedstocks (PI) Biomass
Transportation Deployment Support | Transportation Research | NREL
initiative complements the NPS Climate Friendly Parks program. Commercial Fleets Through the National Clean clearinghouse of medium- and heavy-duty commercial fleet vehicle operating data for optimizing vehicle improvement. Commercial Vehicle Technology Evaluations NREL conducts real-world evaluations of commercial
Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul
The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integrationmore » of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be controlled to contribute to system-wide reliability. It was shown that the First Solar plant can provide essential reliability services related to different forms of active and reactive power controls, including plant participation in AGC, primary frequency control, ramp rate control, and voltage regulation. For AGC participation in particular, by comparing the PV plant testing results to the typical performance of individual conventional technologies, we showed that regulation accuracy by the PV plant is 24-30 points better than fast gas turbine technologies. The plant's ability to provide volt-ampere reactive control during periods of extremely low power generation was demonstrated as well. The project team developed a pioneering demonstration concept and test plan to show how various types of active and reactive power controls can leverage PV generation's value from being a simple variable energy resource to a resource that provides a wide range of ancillary services. With this project's approach to a holistic demonstration on an actual, large, utility-scale, operational PV power plant and dissemination of the obtained results, the team sought to close some gaps in perspectives that exist among various stakeholders in California and nationwide by providing real test data.« less
Renewable Energy Optimization Report for Naval Station Newport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robichaud, R.; Mosey, G.; Olis, D.
2012-02-01
In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used atmore » NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowe, N.
2014-05-01
This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scalemore » the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.« less
LDRD Program Gives NREL Researchers Path Toward Innovation | News | NREL
projects over the years. Photo by Dennis Schroeder The Energy Department's National Renewable Energy handful of LDRD projects. Photo by Dennis Schroeder Money Funds Brainstorming Work While most of the LDRD , renewable electricity generation, and sustainable transportation. Photo by Dennis Schroeder Different Groups
Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris
2015-06-10
This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunbar, Ricky B.; Duck, Benjamin C.; Moriarty, Tom E.
Perovskite materials have generated significant interest from academia and industry as a potential component in next-generation, high-efficiency, low-cost, photovoltaic (PV) devices. The record efficiency reported for perovskite solar cells has risen rapidly, and is now more than 22%. However, due to their complex dynamic behaviour, the process of measuring the efficiency of perovskite solar cells appears to be much more complicated than for other technologies. It has long been acknowledged that this is likely to greatly reduce the reliability of reported efficiency measurements, but the quantitative extent to which this occurs has not been determined. To investigate this, we conductmore » the first major inter-comparison of this PV technology. The participants included two labs accredited for PV performance measurement (CSIRO and NREL) and eight PV research laboratories. We find that the inter-laboratory measurement variability can be almost ten times larger for a slowly responding perovskite cell than for a control silicon cell. We show that for such a cell, the choice of measurement method, far more so than measurement hardware, is the single-greatest cause for this undesirably large variability. We provide recommendations for identifying the most appropriate method for a given cell, depending on its stabilization and degradation behaviour. Moreover, the results of this study suggest that identifying a consensus technique for accurate and meaningful efficiency measurements of perovskite solar cells will lead to an immediate improvement in reliability. This, in turn, should assist device researchers to correctly evaluate promising new materials and fabrication methods, and further boost the development of this technology.« less
Dunbar, Ricky B.; Duck, Benjamin C.; Moriarty, Tom E.; ...
2017-10-24
Perovskite materials have generated significant interest from academia and industry as a potential component in next-generation, high-efficiency, low-cost, photovoltaic (PV) devices. The record efficiency reported for perovskite solar cells has risen rapidly, and is now more than 22%. However, due to their complex dynamic behaviour, the process of measuring the efficiency of perovskite solar cells appears to be much more complicated than for other technologies. It has long been acknowledged that this is likely to greatly reduce the reliability of reported efficiency measurements, but the quantitative extent to which this occurs has not been determined. To investigate this, we conductmore » the first major inter-comparison of this PV technology. The participants included two labs accredited for PV performance measurement (CSIRO and NREL) and eight PV research laboratories. We find that the inter-laboratory measurement variability can be almost ten times larger for a slowly responding perovskite cell than for a control silicon cell. We show that for such a cell, the choice of measurement method, far more so than measurement hardware, is the single-greatest cause for this undesirably large variability. We provide recommendations for identifying the most appropriate method for a given cell, depending on its stabilization and degradation behaviour. Moreover, the results of this study suggest that identifying a consensus technique for accurate and meaningful efficiency measurements of perovskite solar cells will lead to an immediate improvement in reliability. This, in turn, should assist device researchers to correctly evaluate promising new materials and fabrication methods, and further boost the development of this technology.« less
U.S. Department of Energy Photovoltaic Energy Program Contract Summary: Fiscal Year 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surek, T.
2001-02-21
This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) and U.S. Department of Energy (DOE) National Photovoltaics Program from October 1, 1999, through September 30, 2000 (FY 2000). The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy-as an industry and an energy resource. The two primary goals of the national program are to (1) maintain the U.S. industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in themore » world market. The NCPV is part of the National PV Program and provides leadership and support to the national program toward achieving its mission and goals. This Contract Summary for fiscal year (FY) 2000 documents some 179 research projects supported by the PV Program, performed by 107 organizations in 32 states, including 69 projects performed by universities and 60 projects performed by our industry partners. Of the total FY 2000 PV Program budget of $65.9 million, the industry and university research efforts received $36.9 million, or nearly 56%. And, of this amount, more than 93% was for contractors selected on a competitive basis. Much of the funding to industry was matched by industry cost-sharing. Each individual effort described in this summary represents another step toward improving PV manufacturing, performance, cost, and applications, and another step toward accomplishing the DOE PV Program's overall mission.« less
Community Solar Scenario Tool | Integrated Energy Solutions | NREL
Community Solar Scenario Tool Community Solar Scenario Tool The Community Solar Scenario Tool (CSST ) provides a "first cut" analysis of different community or shared solar program options. NREL sponsoring utility. Community Solar Scenario Tool -Beta Version Available as a Microsoft Excel file, which
Stan Bull, Long-Time NREL Leader, Named AAAS Fellow | News | NREL
, Named AAAS Fellow January 11, 2011 Stanley R. Bull, former associate director for Science and Technology emeritus researcher. He was cited for "distinguished leadership in creating new programs, development partner with existing energy companies, including the fossil-fuel industry, and to "provide our
NREL: News - Customer Choice Would Advance Renewable Energy
Awarded Xcel Energy Contracts for Renewable Research Golden, Colo., Jan. 03, 2002 The U.S . Department of Energy's National Renewable Energy Laboratory (NREL) has been selected to perform three research projects, worth $2.8 million, as part of a program to advance renewable energy that is funded by
An Introduction to Solar Decision-Making Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mow, Benjamin
2017-09-12
The National Renewable Energy Laboratory (NREL) offers a variety of models and analysis tools to help decision makers evaluate and make informed decisions about solar projects, policies, and programs. This fact sheet aims to help decision makers determine which NREL tool to use for a given solar project or policy question, depending on its scope.
Energy Systems Integration News | Energy Systems Integration Facility |
NREL six people standing at a table with various containers of pet food. NREL's ESI program included with this release. Register for the webinar. Presentations Available from Last Month's High withstand the crucial first minute after severe grid disturbances with high penetrations of wind and solar
NREL Announces Third Round of Start-Ups to Participate in the Wells Fargo
innovative commercial building technologies Photo of NREL researchers talking. George Lee and Steven Low that provide scalable solutions to reduce the energy impact of commercial buildings. Including Round 3 kit for commercial buildings. Referred to apply to program by University of Colorado Boulder Software
NREL Document Profiles Natural Gas Fueling, Fleet Operation
, Waste Management's LNG Truck Fleet Start-Up Experience, offers solid evidence that LNG-powered vehicles program from concept to start-up to present-day operation, describing the vehicle, engine and fueling . The document Waste Management's LNG Truck Fleet Start-Up Experience is one of a series of NREL
Products available from NREL`s Renewable Resource Data Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, T.Q.; Rymes, M.
1995-10-01
The Renewable Resource Data Center (RReDC) has been developed at the National Renewable Energy Laboratory (NREL) under the Resource Assessment Program. Initial offerings are broadband solar irradiance data bases such as the Daily Statistics Files and Typical Meteorological Years from the 1961--1990 National Solar Radiation Data Base, the West Associates data gathered in the Southwest US from 1976 through 1980, the New NOAA Network that replaced SOLMET from 1977 through 1980, and the one-minute data from four universities under the SEMRTS program. Unique data sets are the thousands of measured solar spectra and measurements of the solar intensity in themore » circumsolar region. All these data are provided with their accompanying documentation and online help. Other products such as Shining On and Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors are available in their entirety, as well as glossaries, bibliographies, maps, and other user helps. The Uniform Resource Locator (URL) address of the RReDC is ``http://rredc.nrel.gov.`` Users should have World Wide Web (WWW) browsing software (such as Mosaic), which supports Forms and the necessary browsing viewers.« less
Director's Discretionary Research and Development Program: Annual Report, Fiscal Year 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-12-01
The Director's Discretionary Research and Development (DDRD) program is designed to encourage technical innovation and build new research and development capabilities at the National Renewable Energy Laboratory (NREL). Technical innovation is critical to the long-term viability of NREL (also referred to as the Laboratory) and to the success of the U.S. Department of Energy (DOE). The strategic value of DDRD is being continuously enhanced by expanding the opportunities to propose and pursue innovative ideas for building new and enhanced capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, K.
This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehiclesmore » (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Julia, W. P.
2008-09-01
Solar energy conversion is increasingly being recognized as one of the principal ways to meet future energy needs without causing detrimental environmental impact. Hybrid organic-inorganic solar cells (SCs) are attracting particular interest due to the potential for low cost manufacturing and for use in new applications, such as consumer electronics, architectural integration and light-weight sensors. Key materials advantages of these next generation SCs over conventional semiconductor SCs are in design opportunities--since the different functions of the SCs are carried out by different materials, there are greater materials choices for producing optimized structures. In this project, we explore the hybrid organic-inorganicmore » solar cell system that consists of oxide, primarily ZnO, nanostructures as the electron transporter and poly-(3-hexylthiophene) (P3HT) as the light-absorber and hole transporter. It builds on our capabilities in the solution synthesis of nanostructured semiconducting oxide arrays to this photovoltaic (PV) technology. The three challenges in this hybrid material system for solar applications are (1) achieving inorganic nanostructures with critical spacing that matches the exciton diffusion in the polymer, {approx} 10 nm, (2) infiltrating the polymer completely into the dense nanostructure arrays, and (3) optimizing the interfacial properties to facilitate efficient charge transfer. We have gained an understanding and control over growing oriented ZnO nanorods with sub-50 nm diameters and the required rod-to-rod spacing on various substrates. We have developed novel approaches to infiltrate commercially available P3HT in the narrow spacing between ZnO nanorods. Also, we have begun to explore ways to modify the interfacial properties. In addition, we have established device fabrication and testing capabilities at Sandia for prototype devices. Moreover, the control synthesis of ZnO nanorod arrays lead to the development of an efficient anti-reflection coating for multicrystalline Si solar cells. An important component of this project is the collaboration with Dr. Dave Ginley's group at NREL. The NREL efforts, which are funded by NREL's LDRD program, focus on measuring device performance, external quantum efficiency, photoconductance through highly specialized non-contact time-resolved microwave conductivity (TRMC) measurements, and vapor phase deposition of oxide materials. The close collaboration with NREL enables us to enter this competitive field in such short time. Joint publications and presentations have resulted from this fruitful collaboration. To this date, 5 referred journal papers have resulted from this project, with 2 more in preparation. Several invited talks and numerous contributed presentations in international conferences are also noted. Sandia has gained the reputation of being one of forefront research groups on nanostructured hybrid solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark A; Bolinger, Mark
2008-02-01
Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy efficiency improvements, and often featuring low interest rates, longer terms, and no-hassle application requirements. Historically, these loan programs have met with mixed successmore » (particularly for PV), for a variety of reasons, including: (1) historical lack of homeowner interest in PV, (2) lack of program awareness, (3) reduced appeal in a low-interest-rate environment, and (4) a tendency for early PV adopters to be wealthy, and not in need of financing. Although some of these barriers have begun to fade--most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates--the passage of the Energy Policy Act of 2005 (EPAct 2005) introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from several U.S cities concerning a new type of PV financing program. Led by the City of Berkeley, California, these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more-traditional credit vehicle, to recover both system and administrative costs. As discussed in more detail later, this seemingly innovative approach has a number of features that should appeal to PV owners, including: long-term, fixed-cost, attractive financing; loans that are tied to the tax capacity of the property rather than to the owner's credit standing; a repayment obligation that transfers along with the sale of the property; and a potential ability to deduct the repayment obligation from Federal taxable income, as part of the local property tax deduction. For these reasons, Berkeley's program--which was first announced on October 23, 2007--has received considerable nationwide attention in both the trade and general press. Since the announcement, cities from throughout California and the broader U.S. have expressed keen interest in the possibility of replicating this type of program. In California alone, the cities of Santa Cruz, Santa Monica, and Palm Desert are all reportedly considering similar programs, while the city of San Francisco has recently announced its own program, portions of which closely parallel Berkeley's approach. Berkeley's Proposed PV Program In addition, a bill (AB 811) that would authorize all cities (not just 'charter cities' like Berkeley) in California to create this type of program was approved by the California General Assembly on January 29, 2008 and passed on to the State Senate for consideration. That local governments from across California and the broader US are so genuinely excited about the prospect of supporting the installation of residential PV in their communities through this type of program is no doubt an interesting development. Given, however, the potential for such programs to negatively interact with the residential solar ITC, it is important to evaluate the financial attractiveness of this specific type of loan program, particularly in advance of any broader state- or nation-wide 'rollout'. This case study presents such an evaluation. Because Berkeley appears to have the most-well-developed proposal at the moment, this case study begins by describing Berkeley's program, as currently planned, in more detail. It then discusses subsidized energy financing and the potential negative tax implications of this type of program. Next, taking Berkeley's proposed program as a case study, it uses a simple pro forma financial model to first assess the potential financial benefit of the program relative to other commercially available financing options, and then to assess how much of that relative benefit might be eroded by the possible loss of the Federal ITC. Finally, it concludes by discussing potential actions that cities contemplating this sort of program might take to clarify the issues and optimize the value provided to participating residents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'NREL's Resiliencymore » is Taking Many Forms' provides insight into how NREL is drawing on its deep knowledge of renewable energy and energy efficiency to help mitigate or avoid climate change impacts.« less
Southeast Regional Experiment Station
NASA Astrophysics Data System (ADS)
1994-08-01
This is the final report of the Southeast Regional Experiment Station project. The Florida Solar Energy Center (FSEC), a research institute of the University of Central Florida (UCF), has operated the Southeast Regional Experiment Station (SE RES) for the US Department of Energy (DOE) since September 1982. Sandia National Laboratories, Albuquerque (SNLA) provides technical program direction for both the SE RES and the Southwest Regional Experiment Station (SW RES) located at the Southwest Technology Development Institute at Las Cruces, New Mexico. This cooperative effort serves a critical role in the national photovoltaic program by conducting system evaluations, design assistance and technology transfer to enhance the cost-effective utilization and development of photovoltaic technology. Initially, the research focus of the SE RES program centered on utility-connected PV systems and associated issues. In 1987, the SE RES began evaluating amorphous silicon (a-Si) thin-film PV modules for application in utility-interactive systems. Stand-alone PV systems began receiving increased emphasis at the SE RES in 1986. Research projects were initiated that involved evaluation of vaccine refrigeration, water pumping and other stand-alone power systems. The results of this work have led to design optimization techniques and procedures for the sizing and modeling of PV water pumping systems. Later recent research at the SE RES included test and evaluation of batteries and charge controllers for stand-alone PV system applications. The SE RES project provided the foundation on which FSEC achieved national recognition for its expertise in PV systems research and related technology transfer programs. These synergistic products of the SE RES illustrate the high visibility and contributions the FSEC PV program offers to the DOE.
North American Board of Certified Energy Practitioners Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Richard
The U.S. DOE’s Office of EERE National Solar Energy Technology Program (SETP) calls for a “National Accreditation and Certification Program for Installation and Acceptance of Photovoltaic Systems.” A near-term goal listed in the U.S. Photovoltaic Industry’s Roadmap, 2000 - 2020 is to work to establish standards, codes, and certifications which are essential for consumer protection and acceptance as part of the goal of building toward a viable future PV industry. This program paves the way for a voluntary national certification program for PV system practitioners and installers, initiation of the first steps toward certification of hardware, and reinforcement of allmore » five of the technical objectives in the Systems category of SETPs Multi-Year technical Plan. Through this project, NABCEP will direct the continued initiation of and sustained implementation and administration of the NABCEP Solar PV Installer Certification Program (hereafter the “Program”). The NABCEP Program is a national, voluntary program designed to provide certification for those PV installers who demonstrate the requisite skills, abilities and knowledge typically required to install and maintain PV systems. The core document upon which the Program was developed and upon which the national exam is based, is referred to as the (Program) Task Analysis. It is a thorough descriptive document containing specific psychomotor and cognitive tasks for the purposes of identifying the types of training/assessment methods that apply. Psychomotor skills require measuring, assembling, fastening and related activities. Cognitive skills require knowledge processing, decision-making and computations. NABCEP effectively evaluates an applicant’s psychomotor skills through review of a candidate’s PV installations and hands-on training received. NABCEP evaluates the candidate’s cognitive skills through administration of its national Program exam. By first qualifying for and then obtaining the required passing score, NABCEP certificants receive an accreditation that upholds NABCEP’s standards of quality, compliance to applicable codes and safety in PV installation. The objectives of DOE’s National Solar Energy Technology Program (SETP) are intrinsic to NABCEP. As detailed in the PV Roadmap, the lifespan of a PV system is a function of reliability and value. PV system reliability is directly dependent upon the quality of components and, design, installation and maintenance of a system. The latter three are all core components of the NABCEP Task Analysis - accordingly NABCEP certified installers will be instrumental in improving reliability of systems through safe, code and manufacturer-compliant installation and necessary post-installation maintenance of PV systems. This will have the effect of ensuring and increasing the performance of installed systems and, as consumers realize the benefits of well-installed and maintained systems, increased demand will follow and manufacturers will respond - supporting further growth in the PV industry. Furthermore, as more NABCEP certified installers perform these installations and maintenance competently, additional installations (whole system re-installations) and unnecessary repairs can be avoided. This will drive down system costs. This combined with creation/enhancement of the DE-FG36-04GO14348/005 NABCEP Central Data Base of Installers – providing consumers with installation/maintenance service options will further reduce system costs and help meet the overall goal of reducing life cycle costs. As consumers receive more value from PV systems which are providing longer, trouble free, renewable energy, they will join the ranks of professionals and enthusiasts calling for reduced technological barriers to installation (particularly for grid-tied systems). States and utilities will react to pressure and begin easing onerous net-metering and other technological restrictions. The benefits of NABCEP’s Program will be evident to consumers, manufacturers, distributors, state energy officials and solar academic institutions. Consumers benefit through increased system performance and reduced costs. Manufacturers of PV and balance of system components as well as distributors support and benefit from NABCEP because of assurances that systems are installed in accordance to code (i.e., NEC) and their specifications, resulting in longer life. Collaborators including state energy officials (i.e., New York State Energy Research and Development Authority) benefit by knowing that rebate funds are spent on systems whose benefits will far exceed system costs. Program Objectives The improvements and advantages offered by a national voluntary certification program can only expand the horizons for photovoltaic applications.« less
Beacons In Brief. P/PV In Brief. Issue 2
ERIC Educational Resources Information Center
Blank, Susan; Farley, Chelsea
2004-01-01
This second issue in P/PV's "In Brief" series focuses on the San Francisco Beacon Initiative and P/PV's recently released evaluation results. The Beacon Initiative established after-school programs in eight public schools in low-income San Francisco neighborhoods. P/PV's 36-month evaluation examined key developmental and academic outcomes.…
National Renewable Energy Laboratory To Reduce Staff
employees. The reduction will occur in two phases. The first phase will be a Voluntary Separation Program to partners in industry and universities," said NREL Director Dr. Charles Gay. "Congressional budget mitigation of future staff reductions. NREL's work force reductions will be guided by a plan submitted to the
Peregrine System User Basics | High-Performance Computing | NREL
peregrine.hpc.nrel.gov or to one of the login nodes. Example commands to access Peregrine from a Linux or Mac OS X system Code Example Create a file called hello.F90 containing the following code: program hello write(6 information by enclosing it in brackets < >. For example: $ ssh -Y
PuTTY | High-Performance Computing | NREL
PuTTY PuTTY Learn how to use PuTTY to connect to NREL's high-performance computing (HPC) systems . Connecting When you start the PuTTY app, the program will display PuTTY's Configuration menu. When this comes
Distributed Wind Research | Wind | NREL
evaluation, and improve wind turbine and wind power plant performance. A photo of a snowy road leading to a single wind turbine surrounded by snow-covered pine trees against blue sky. Capabilities NREL's power plant and small wind turbine development. Algorithms and programs exist for simulating, designing
Geothermal Technologies News | Geothermal Technologies | NREL
for this avid biker. The reason though is unusual. Passionate about geothermal energy research, he Geothermal Energy Program In her new role, Young will work closely with NREL management to establish the lab's geothermal energy portfolio, including research and development geared toward advancing the use of
Energy Systems Integration Facility News | Energy Systems Integration
, 2018 News Release: NREL Taps Young to Oversee Geothermal Energy Program In her new role, Young will work closely with NREL management to establish the lab's geothermal energy portfolio, including research and development geared toward advancing the use of geothermal energy as a renewable power source
NREL: Renewable Resource Data Center - Geothermal Resource Information
Energy's Office of Energy Efficiency and Renewable Energy Geothermal Technologies Program. Its collection , and thermal springs. View NREL's Geothermal resource maps as well as maps for other renewable energy Geothermal Resource Information Geothermal Prospector Start exploring U.S. geothermal resources
Three-peat NREL Intern Pushes Boundaries of Early-Stage Fuels Research on
Early-Stage Fuels Research on Way to Master's Degree Three-peat NREL Intern Pushes Boundaries of Early -Stage Fuels Research on Way to Master's Degree January 4, 2018 Woman preparing a fuel evaluation in a constant volume combustion vessel Drew Cameron, Research Participant Program Intern, prepares a test for
Pricing Programs Spur Growth of Renewable Energy Technologies
) Golden, Colo., September 25, 2001 - A new study by the U.S. Department of Energy's (DOE) National electrical production from renewable resources such as solar and wind. The study found that the design and production," said NREL Energy Analyst Blair Swezey, who co-wrote the study with NREL Energy Analyst Lori
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, F.; Harrington, C.; Moskovitz, D.
Distributed resources can provide cost-effective reliability and energy services - in many cases, obviating the need for more expensive investments in wires and central station electricity generating facilities. Given the unique features of distributed resources, the challenge facing policymakers today is how to restructure wholesale markets for electricity and related services so as to reveal the full value that distributed resources can provide to the electric power system (utility grid). This report looks at the functions that distributed resources can perform and examines the barriers to them. It then identifies a series of policy and operational approaches to promoting DRmore » in wholesale markets. This report is one in the State Electricity Regulatory Policy and Distributed Resources series developed under contract to NREL (see Annual Technical Status Report of the Regulatory Assistance Project: September 2000-September 2001, NREL/SR-560-32733). Other titles in this series are: (1) Distributed Resource Distribution Credit Pilot Programs - Revealing the Value to Consumers and Vendors, NREL/SR-560-32499; (2) Distributed Resources and Electric System Reliability, NREL/SR-560-32498; (3) Distribution System Cost Methodologies for Distributed Generation, NREL/SR-560-32500; (4) Distribution System Cost Methodologies for Distributed Generation Appendices, NREL/SR-560-32501« less
Large-area copper indium diselenide (CIS) process, control and manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillespie, T.J.; Lanning, B.R.; Marshall, C.H.
1997-12-31
Lockheed Martin Astronautics (LMA) has developed a large-area (30x30cm) sequential CIS manufacturing approach amenable to low-cost photovoltaics (PV) production. A prototype CIS manufacturing system has been designed and built with compositional uniformity (Cu/In ratio) verified within {+-}4 atomic percent over the 30x30cm area. CIS device efficiencies have been measured by the National Renewable Energy Laboratory (NREL) at 7% on a flexible non-sodium-containing substrate and 10% on a soda-lime-silica (SLS) glass substrate. Critical elements of the manufacturing capability include the CIS sequential process selection, uniform large-area material deposition, and in-situ process control. Details of the process and large-area manufacturing approach aremore » discussed and results presented.« less
Geostellar: Remote Solar Energy Assessments Personalized
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-01
Geostellar has produced an online tool that generates a unique solar profile for homeowners to learn about the financial benefits to installing rooftop solar panels on their home. The website incorporates the physical building characteristics of the home, including shading, slope, and orientation of the roof, and applies electricity costs and incentives to determine the best solar energy estimated energy production values against actual installed rooftop photovoltaic systems. The validation conducted by NREL concluded that over three-quarters of Geostellar's potential size estimates are at least as large as the actual installed systems, indicating a correct assessment of roof availability. Inmore » addition, 87% of Geostellar's 25-year production estimates are within 90% of the actual PV Watts results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report presents a summary of NREL's environmental protection programs and activities for CY 2012. It is organized according to the different environmental media (e.g., air, waste, ground water, etc.), and includes a brief summary of how the program is managed in that area, any permitting or notification efforts that have been completed during the reporting period or are ongoing, and activities that have occurred during the reporting period in that environmental area. A description of the environmental condition and features of NREL's sites is also included to provide a basis for the program overview.
National Renewable Energy Laboratory Renewable Energy Opportunity Assessment for USAID Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Andrea; Bracho, Ricardo; Romero, Rachel
The United States Agency for International Development (USAID) Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program is designing its second phase of assistance to the Government of Mexico (GOM). In preparation for program design, USAID has asked the National Renewable Energy Laboratory (NREL) to assist in identifying options for enabling renewable energy in Mexico and reducing greenhouse gas (GHG) emissions in the energy sector. The NREL team conducted a literature review and consulted with over 20 Mexican agencies and organizations during a two-week temporary duty assignment (TDY) to Mexico to identify gaps, opportunities, and program theme areas for Mexico.
atomic layer deposition for applications. He also manages the majority of X-ray characterization equipment at NREL, specifically X-ray diffraction and X-ray fluorescence instrumentation. Additionally, he for EERE's Hydrogen Storage program. He is also an expert in X-ray diffraction and X-ray fluorescence
NREL Manages Program to Transform Mexico's Power Sector | Integrated Energy
. Through 21CPP, NREL is helping Mexico with: Long-range planning of the power system for transmission , generation, and integration of renewable energy How best to operate the electric grid as Mexico increases the deep energy efficiency and smart grid solutions. Impact Mexico is on the brink of a major energy reform
Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-12-01
This NREL Hydrogen and Fuel Cell Technical Highlight describes a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. The map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publicly available annual summaries of electric disturbance events.
Photovoltaic module certification and laboratory accreditation criteria development
NASA Astrophysics Data System (ADS)
Osterwald, Carl R.; Zerlaut, Gene; Hammond, Robert; D'Aiello, Robert
1996-01-01
This paper overviews a model product certification and test laboratory accreditation program for photovoltaic (PV) modules that was recently developed by the National Renewable Energy Laboratory and Arizona State University. The specific objective of this project was to produce a document that details the equipment, facilities, quality assurance procedures, and technical expertise an accredited laboratory needs for performance and qualification testing of PV modules, along with the specific tests needed for a module design to be certified. The document was developed in conjunction with a criteria development committee consisting of representatives from 30 U.S. PV manufacturers, end users, standards and codes organizations, and testing laboratories. The intent is to lay the groundwork for a future U.S. PV certification and accreditation program that will be beneficial to the PV industry as a whole.
Power plants development in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanasescu, F.T.; Olariu, N.
1994-12-31
The Romanian PV research program initiated in 1980 has as its aim the development of the Romanian own PV network from solar cells production to demonstration projects and commercial applications. Concerning the PV grid connected systems the Romanian research program is financed by the Romanian Ministry for Research and Technology. Setting out the main objectives and the related stages of this project, in the paper are presented aspects concerning the plant configuration, its component characteristics and preliminary achieved results. The aspects which are going to be developed in the following stages of the grid-connected PV plant implementation in Romania aremore » also underlined.« less
Utility photovoltaic group: Status report
NASA Astrophysics Data System (ADS)
Serfass, Jeffrey A.; Hester, Stephen L.; Wills, Bethany N.
1996-01-01
The Utility PhotoVoltaic Group (UPVG) was formed in October of 1992 with a mission to accelerate the use of cost-effective small-scale and emerging grid-connected applications of photovoltaics for the benefit of electric utilities and their customers. The UPVG is now implementing a program to install up to 50 megawatts of photovoltaics in small-scale and grid-connected applications. This program, called TEAM-UP, is a partnership of the U.S. electric utility industry and the U.S. Department of Energy to help develop utility PV markets. TEAM-UP is a utility-directed program to significantly increase utility PV experience by promoting installations of utility PV systems. Two primary program areas are proposed for TEAM-UP: (1) Small-Scale Applications (SSA)—an initiative to aggregate utility purchases of small-scale, grid-independent applications; and (2) Grid-Connected Applications (GCA)—an initiative to identify and competitively award cost-sharing contracts for grid-connected PV systems with high market growth potential, or collective purchase programs involving multiple buyers. This paper describes these programs and outlines the schedule, the procurement status, and the results of the TEAM-UP process.
Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation
NASA Astrophysics Data System (ADS)
Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi
In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.
Eastern Renewable Generation Integration Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, Aaron; Townsend, Aaron; Palchak, David
2016-08-01
The Eastern Interconnection (EI) is one of the largest power systems in the world, and its size and complexity have historically made it difficult to study in high levels of detail in a modeling environment. In order to understand how this system might be impacted by high penetrations (30% of total annual generation) of wind and solar photovoltaic (PV) during steady state operations, the National Renewable Energy Laboratory (NREL) and the U.S. Department of Energy (DOE) conducted the Eastern Renewable Generation Integration Study (ERGIS). This study investigates certain aspects of the reliability and economic efficiency problem faced by power systemmore » operators and planners. Specifically, the study models the ability to meet electricity demand at a 5-minute time interval by scheduling resources for known ramping events, while maintaining adequate reserves to meet random variation in supply and demand, and contingency events. To measure the ability to meet these requirements, a unit commitment and economic dispatch (UC&ED) model is employed to simulate power system operations. The economic costs of managing this system are presented using production costs, a traditional UC&ED metric that does not include any consideration of long-term fixed costs. ERGIS simulated one year of power system operations to understand regional and sub-hourly impacts of wind and PV by developing a comprehensive UC&ED model of the EI. In the analysis, it is shown that, under the study assumptions, generation from approximately 400 GW of combined wind and PV capacity can be balanced on the transmission system at a 5-minute level. In order to address the significant computational burdens associated with a model of this detail we apply novel computing techniques to dramatically reduce simulation solve time while simultaneously increasing the resolution and fidelity of the analysis. Our results also indicate that high penetrations of wind and PV (collectively variable generation (VG)), significantly impact the operation of traditional generating resources and cause these resources to be used less frequently and operate across a broader output range because wind and PV have lower operating costs and variable output levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Colin; Boardman, Richard; McKellar, Michael
Changes are occurring throughout the U.S. economy, especially in regard to how energy is generated and used in the electricity, buildings, industrial, and transportation sectors. These changes are being driven by environmental and energy security concerns and by economics. The electric-sector market share of natural gas and variable renewable generation, such as wind and solar photovoltaics (PV), continues to grow. The buildings sector is evolving to meet efficiency standards, the transportation sector is evolving to meet efficiency and renewable fuels standards, and the industrial sector is evolving to reduce emissions. Those changes are driving investment and utilization strategies for generationmore » and other assets. Nuclear and renewable energy sources are important to consider in the energy sector’s evolution because both are considered to be clean and non-carbon-emitting energy sources. The Idaho National Laboratory (INL) and the National Renewable Energy Laboratory (NREL) are jointly investigating potential synergies between technologies exploiting nuclear and renewable energy sources. The two laboratories have held several joint workshops since 2011. Those workshops brought together experts in both areas to identify synergies and potential opportunities to work together. Workshop participants identified nuclear-renewable hybrid energy systems (N-R HESs) as one of the opportunities and recommended investigating whether N-R HESs could both generate dispatchable electricity without carbon emissions and provide clean energy to industrial processes. They also recommended analyzing the potential for N-R HESs to provide dispatchable capacity to a grid with high penetrations of non-dispatchable resources and to investigate whether real inertia provided by thermal power cycles within N-R HESs provides value to the grid. This report is one of a series of reports INL and NREL are producing to investigate the technical and economic aspects of N-R HESs. Previous reports focused on tightly coupled N-R HESs. Previously, INL analyzed the dynamic performance of two hypothetical N-R HESs and NREL analyzed the optimal economic configurations and operation of the same two N-R HESs. The first of those two is a Texas-synthetic gasoline scenario that includes four subsystems: a nuclear reactor, thermal power cycle, wind power plant, and synthetic gasoline production technology. The second hypothetical N-R HES is an Arizona-desalination scenario with four subsystems: a nuclear reactor, thermal power cycle, PV, and a desalination plant. INL analyzed the technical performance of the same two N-R HESs in another report. In another report NREL used the Texas-synthetic gasoline scenario provides the basis; however, the industrial process was removed. Instead, that N-R HES sells heat directly to an industrial customer. Subsystems that convert electricity to heat were also included. Future analyses are planned for other N-R HES options including one where hydrogen is produced within an N-R HES. This report quantifies greenhouse gas (GHG) emissions from the industrial sector and identifies opportunities for non-GHG-emitting thermal energy sources, such as N-R HESs, to replace the most significant GHG-emitting U.S. industries based on targeted, process-level analysis of industrial heat requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-08-21
NREL's Developer Network, developer.nrel.gov, provides data that users can access to provide data to their own analyses, mobile and web applications. Developers can retrieve the data through a Web services API (application programming interface). The Developer Network handles overhead of serving up web services such as key management, authentication, analytics, reporting, documentation standards, and throttling in a common architecture, while allowing web services and APIs to be maintained and managed independently.
Photovoltaics as a terrestrial energy source. Volume 2: System value
NASA Technical Reports Server (NTRS)
Smith, J. L.
1980-01-01
Assumptions and techniques employed by the electric utility industry and other electricity planners to make estimates of the future value of photovoltaic (PV) systems interconnected with U.S. electric utilities were examined. Existing estimates of PV value and their interpretation and limitations are discussed. PV value is defined as the marginal private savings accruing to potential PV owners. For utility-owned PV systems, these values are shown to be the after-tax savings in conventional fuel and capacity displaced by the PV output. For non-utility-owned (distributed) systems, the utility's savings in fuel and capacity must first be translated through the electric rate structure (prices) to the potential PV system owner. Base-case estimates of the average value of PV systems to U.S. utilities are presented. The relationship of these results to the PV Program price goals and current energy policy is discussed; the usefulness of PV output quantity goals is also reviewed.
Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-03-01
The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts containedmore » in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, David; Margolis, Robert
This report examines the tradeoffs among financing methods for businesses installing onsite photovoltaics (PV). We present case studies of PV financing strategies used by two large commercial retailers that have deployed substantial U.S. PV capacity: IKEA, which owns its PV, and Staples, which purchases power generated from onsite PV systems through power purchase agreements (PPAs). We also analyze the financial considerations that influence any company's choice of PV financing strategy. Our goal in this report is to clarify the financial and institutional costs and benefits of financing strategies and to inform other companies that are considering launching or expanding similarmore » PV programs.« less
Photovoltaics: Energy for the New Millenium
NASA Astrophysics Data System (ADS)
Surek, Thomas
2000-04-01
Photovoltaics (PV) is a semiconductor-based technology that directly converts sunlight to electricity. The stimulus for terrestrial PV started more than 25 years ago in response to the oil crises of the 1970s, which resulted in major government programs in the United States, Europe, Japan, and elsewhere. Ongoing concerns with the global environment, as well as the worldwide efforts to seek alternate, indigenous sources of energy, continue to drive the investment in PV research and deployment. Today, the manufacture, sale, and use of PV has become a billion-dollar industry worldwide, with nearly 200 megawatts (MW) of PV modules shipped in 1999. The twenty five years of research and development led to the discovery of new PV materials, devices, and fabrication approaches; continuing improvements in the efficiency and reliability of solar cells and modules; and lower PV module and system costs. This talk reviews the rapid progress that has occurred in PV technology from the laboratory to the marketplace, including reviews of the leading technology options, status and issues, and key industry players. New processes for fabricating PV materials and devices, and innovative PV approaches with low-cost potential are elements of an ongoing research program aimed at future advancements in PV cost and performance While major market opportunities continue to exist in the developing countries, where sizable populations are without any electricity, today's manufacturing expansions are fueled by market initiatives for grid-connected PV in residential and commercial buildings. The combinations of increased production capacities, with the attendant cost reductions as a result of economies of scale, are expected to lead to sustainable markets. A key to achieving the ultimate potential of PV is to continue to increase the sunlight-to-electricity conversion efficiencies and translate the laboratory successes to cost-competitive products. Building a robust technology base is essential to overcoming this high-risk transition. Then PV will make a globally significant contribution to our energy supply and environment.
HOMER® Micropower Optimization Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilienthal, P.
2005-01-01
NREL has developed the HOMER micropower optimization model. The model can analyze all of the available small power technologies individually and in hybrid configurations to identify least-cost solutions to energy requirements. This capability is valuable to a diverse set of energy professionals and applications. NREL has actively supported its growing user base and developed training programs around the model. These activities are helping to grow the global market for solar technologies.
Market assessment of photovoltaic power systems for agricultural applications in Mexico
NASA Technical Reports Server (NTRS)
Steigelmann, W.; Asmon, I.
1981-01-01
The first year of cost-competitiveness, the market potential, and the environment in which PV systems would be marketed and employed were examined. Market elements specific to Mexico addressed include: (1) useful applications and estimates of the potential market for PV systems; (2) power requirements and load profiles for applications compatible with PV usage; (3) operating and cost characteristics of power systems that compete against PV; (4) national development goals in rural electrification and rural services, technology programs and government policies that influence the demand for PV in Mexico; (5) financing mechanisms and capital available for PV acquisition; (6) channels for distribution, installation and maintenance of PV systems; and (7) appropriate methods for conducting business in Mexico.
Market assessment of photovoltaic power systems for agricultural applications in Mexico
NASA Astrophysics Data System (ADS)
Steigelmann, W.; Asmon, I.
1981-07-01
The first year of cost-competitiveness, the market potential, and the environment in which PV systems would be marketed and employed were examined. Market elements specific to Mexico addressed include: (1) useful applications and estimates of the potential market for PV systems; (2) power requirements and load profiles for applications compatible with PV usage; (3) operating and cost characteristics of power systems that compete against PV; (4) national development goals in rural electrification and rural services, technology programs and government policies that influence the demand for PV in Mexico; (5) financing mechanisms and capital available for PV acquisition; (6) channels for distribution, installation and maintenance of PV systems; and (7) appropriate methods for conducting business in Mexico.
Wyoming | Solar Research | NREL
There are currently no statewide community solar policies or programs in Wyoming. State Incentive Programs There are currently no statewide solar financial incentive programs in Wyoming. Utility Incentive Programs Please check with your distribution utility for utility incentive programs for midmarket solar
Arkansas | Solar Research | NREL
programs. State Incentive Programs There are currently no statewide solar financial incentive programs in Wyoming. Program Administrator Incentive Arkansas Energy Technology Loans for Green Technology Arkansas for the most up-to-date and accurate information on state and utility policies and incentive programs
King County Metro Battery Electric Bus Demonstration: Preliminary Project Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Federal Transit Administration (FTA) funds a variety of research projects that support the commercialization of zero-emission bus technology. To evaluate projects funded through these programs, FTA has enlisted the help of the National Renewable Energy Laboratory (NREL) to conduct third-party evaluations of the technologies deployed under the FTA programs. NREL works with the selected agencies to evaluate the performance of the zero-emission buses compared to baseline conventional buses in similar service. The evaluation effort will advance the knowledge base of zero-emission technologies in transit bus applications and provide 'lessons learned' to aid other fleets in incrementally introducing nextmore » generation zero-emission buses into their operations. This report provides preliminary performance evaluation results from a demonstration of three zero-emission battery electric buses at King County Metro in King County, Washington. NREL developed this preliminary results report to quickly disseminate evaluation results to stakeholders. Detailed evaluation results will be published in future reports.« less
strategic scenario planning and analysis Program portfolio analysis Program management, planning and strategic execution Change management and operational improvement Research Interests Bioenergy supply chains management, organizational improvement, and program and project management. Prior Work Experience Consultant
Planning influenza vaccination programs: a cost benefit model
2012-01-01
Background Although annual influenza vaccination could decrease the significant economic and humanistic burden of influenza in the United States, immunization rates are below recommended levels, and concerns remain whether immunization programs can be cost beneficial. The research objective was to compare cost benefit of various immunization strategies from employer, employee, and societal perspectives. Methods An actuarial model was developed based on the published literature to estimate the costs and benefits of influenza immunization programs. Useful features of the model included customization by population age and risk-level, potential pandemic risk, and projection year. Various immunization strategies were modelled for an average U.S. population of 15,000 persons vaccinated in pharmacies or doctor’s office during the 2011/12 season. The primary outcome measure reported net cost savings per vaccinated (PV) from the perspective of various stakeholders. Results Given a typical U.S. population, an influenza immunization program will be cost beneficial for employers when more than 37% of individuals receive vaccine in non-traditional settings such as pharmacies. The baseline scenario, where 50% of persons would be vaccinated in non-traditional settings, estimated net savings of $6 PV. Programs that limited to pharmacy setting ($31 PV) or targeted persons with high-risk comorbidities ($83 PV) or seniors ($107 PV) were found to increase cost benefit. Sensitivity analysis confirmed the scenario-based findings. Conclusions Both universal and targeted vaccination programs can be cost beneficial. Proper planning with cost models can help employers and policy makers develop strategies to improve the impact of immunization programs. PMID:22835081
The Eastern Renewable Generation Integration Study: Insights on System Stress: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, Aaron; Novacheck, Josh
The Eastern Renewable Generation Integration Study (ERGIS) explores the operational impacts of the wide spread adoption of wind and solar photovoltaics (PV) resources in North America's Eastern and Quebec Interconnections. We explore the impact of large scale adoption of wind and solar generation on the unit commitment and economic dispatch of the largest coordinated power system in the world by simulating hourly and five-minute operations. Using NREL's high-performance computing capabilities and new methodologies to model operations, we found that the modeled system, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and solar PVmore » at a five-minute level under a variety of conditions. Our simulations achieve instantaneous penetrations that exceed 50% of load while meeting an annual penetration of 30% on an energy basis. The system meets balanced load and supply in all intervals, with modest curtailment, using technologies and practices that are widely available today. However, a variety of the conditions present in these simulations deviate substantially from historical practice. In this work, we analyze potentially stressful system conditions that occur in the simulations and identify opportunities for innovation, regulatory reform, and changes in operating practices that require further analysis to enable the transition to a system with more wind and solar PV.« less
Domestic Wind Energy Workforce; NREL (National Renewable Energy Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegen, Suzanne
2015-07-30
A robust workforce is essential to growing domestic wind manufacturing capabilities. NREL researchers conducted research to better understand today's domestic wind workforce, projected needs for the future, and how existing and new education and training programs can meet future needs. This presentation provides an overview of this research and the accompanying industry survey, as well as the Energy Department's Career Maps, Jobs & Economic Development Impacts models, and the Wind for Schools project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, A
Southwest Technology Development Institute (SWTDI), an independent, university-based research institute, has been the operator of the Southwest Region Photovoltaic Experiment Station (SWRES) for almost 30 years. The overarching mission of SWTDI is to position PV systems and solar technologies to become cost-effective, major sources of energy for the United States. Embedded in SWTDI's general mission has been the more-focused mission of the SWRES: to provide value added technical support to the DOE Solar Energy Technologies Program (SETP) to effectively and efficiently meet the R&D needs and targets specified in the SETP Multi-Year Technical Plan. : The DOE/SETP goals of growingmore » U.S. PV manufacturing into giga-watt capacities and seeing tera-watt-hours of solar energy production in the U.S. require an infrastructure that is under development. The staff of the SWRES has supported DOE/SETP through a coherent, integrated program to address infrastructural needs inhibiting wide-scale PV deployment in three major technical categories: specialized engineering services, workforce development, and deployment facilitation. The SWRES contract underwent three major revisions during its five year period-of- performance, but all tasks and deliverables fell within the following task areas: Task 1: PV Systems Assistance Center 1. Develop a Comprehensive multi-year plan 2. Provide technical workforce development materials and workshops for PV stakeholder groups including university, professional installers, inspectors, state energy offices, Federal agencies 3. Serve on the NABCEP exam committee 4. Provide on-demand technical PV system design reviews for U.S. PV stakeholders 5. Provide PV system field testing and instrumentation, technical outreach (including extensive support for the DOE Market Transformation program) Task 2: Design-for-Manufacture PV Systems 1. Develop and install 18 kW parking carport (cost share) and PV-thermal carport (Albuquerque) deriving and publishing lessons learned Task 3: PV Codes and Standards 1. Serve as the national lead for development and preparation of all proposals (related to PV) to the National Electrical Code 2. Participate in the Standards Technical Panels for modules (UL1703) and inverters (UL1741) Task 4: Assess Inverter Long Term Reliability 1. Install and monitor identical inverters at SWRES and SERES 2. Operate and monitor all inverters for 5 years, characterizing all failures and performance trends Task 5: Test and Evaluation Support for Solar America Initiative 1. Provide test and evaluation services to the National Laboratories for stage gate and progress measurements of SAI TPP winners« less
NREL's Education Program in Action in the Concentrating Solar Power Program Advanced Materials Task
NASA Astrophysics Data System (ADS)
Kennedy, Cheryl
2010-03-01
Concentrating solar power (CSP) technologies use large mirrors to concentrate sunlight and the thermal energy collected is converted to electricity. The CSP industry is growing rapidly and is expected to reach 25 GW globally by 2020. Cost target goals are for CSP technologies to produce electricity competitive with intermediate-load power generation (i.e., natural gas) by 2015 with 6 hours of thermal storage and competitive in carbon constrained base load power markets (i.e., coal) by 2020 with 12-17 hours of thermal storage. The solar field contributes more than 40% of the total cost of a parabolic trough plant and together the mirrors and receivers contribute more than 25% of the installed solar field cost. CSP systems cannot hit these targets without aggressive cost reductions and revolutionary performance improvements from technology advances. NREL's Advanced Materials task in the CSP Advanced R&D project performs research to develop low cost, high performance, durable solar reflector and high-temperature receiver materials to meet these needs. The Advanced Materials task leads the world in this research and the task's reliance on NREL's educational program will be discussed.
Program and Proceedings: NCPV Program Review Meeting 2000, 16-19 April 2000, Denver, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2000-04-01
In entering the 21st century, we in industry and government who have labored to develop PV and bring it into the marketplace can be proud. World demand for PV is increasing faster than supply. The NCPV Program Review Meeting will a provide a forum for exploring how to implement strategies and recommendations for achieving critical goals and foster creative thinking on combining laboratory and industry talents to achieve the goals. The oral sessions focus on both strategic and tactical issues relating to the overall advance of the PV industry and the poster sessions provide an opportunity for more detailed discussionsmore » relating to particular tasks.« less
BEopt-CA (Ex): A Tool for Optimal Integration of EE, DR and PV in Existing California Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Craig; Horowitz, Scott; Maguire, Jeff
2014-04-01
This project targeted the development of a software tool, BEopt-CA (Ex) (Building Energy Optimization Tool for California Existing Homes), that aims to facilitate balanced integration of energy efficiency (EE), demand response (DR), and photovoltaics (PV) in the residential retrofit1 market. The intent is to provide utility program managers and contractors in the EE/DR/PV marketplace with a means of balancing the integration of EE, DR, and PV
NASA Technical Reports Server (NTRS)
Christensen, Elmer
1985-01-01
The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.
West Virginia | Solar Research | NREL
Incentive Programs West Virginia currently does not have any statewide financial incentives for midmarket solar. Utility Incentive Programs Check with local utility for utility incentive programs. Resources The utility policies and incentive programs. Net Metering and Interconnection West Virginia Public Service
A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem
NASA Astrophysics Data System (ADS)
Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao
A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.
NASA Astrophysics Data System (ADS)
Woei Leow, Shin; Corrado, Carley; Osborn, Melissa; Isaacson, Michael; Alers, Glenn; Carter, Sue A.
2013-06-01
Luminescent solar concentrators (LSC) collect ambient light from a broad range of angles and concentrate the captured light onto photovoltaic (PV) cells. LSCs with front-facing cells collect direct and indirect sunlight ensuring a gain factor greater than one. The flexible placement and percentage coverage of PV cells on the LSC panel allow for layout adjustments to be made in order to balance re-absorption losses and the level of light concentration desired. A weighted Monte Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption/emission spectra of an organic luminescent dye (LR305), the transmission coefficient, and refractive index of acrylic as parameters that describe the system. Simulations suggest that for LR305, 8-10 cm of luminescent material surrounding the PV cell yields the highest increase in power gain per unit area of LSC added, thereby determining the ideal spacing between PV cells in the panel. For rectangular PV cells, results indicate that for each centimeter of PV cell width, an additional increase of 0.15 mm to the waveguide thickness is required to efficiently transport photon collected by the LSC to the PV cell with minimal loss.
Inaugural History of the National Center for Photovoltaics | Photovoltaic
technology and disseminating information about photovoltaics (PV) in the United States. When created, the NCPV's long-term goals were for PV modules and systems to reach still higher efficiencies with improved , industry, and other federal programs into a united effort and accelerating the advance of PV as an industry
Photovoltaic Research in the Small Business Innovative Research Program
NASA Astrophysics Data System (ADS)
Bower, Ward I.; Bulawka, Alec
1997-02-01
The Small Business Innovative Research Program (SBIR) is currently authorized to be funded through September 30, 2000. The National Photovoltaics Program is a contributor to the Department of Energy (DOE) SBIR program. The small business photovoltaic industry has been benefiting from the SBIR program through awards that have funded basic research, new processes and products that have PV and other commercial applications. This paper provides information on SBIR opportunities, selected details of the SBIR program, statistics from the 1995 and 1996 DOE SBIR program, and methods for improving PV industry participation and success in the SBIR program.
Technology to Market subprogram. Sue focuses on effective management, planning, milestone tracking, reporting Market programs, the Federal Energy Management Program Office, and the Office of Strategic Programs administration, planning and financial analysis. Education Human Resources Management, Employee Relations and
Pharmacovigilance in resource-limited countries.
Olsson, Sten; Pal, Shanthi N; Dodoo, Alex
2015-01-01
In the past 20 years, many low- and middle-income countries have created national pharmacovigilance (PV) systems and joined the WHO's global PV network. However, very few of them have fully functional systems. Scientific evidence on the local burden of medicine-related harm and their preventability is missing. Legislation and regulatory framework as well as financial support to build sustainable PV systems are needed. Public health programs need to integrate PV to monitor new vaccines and medicines introduced through these programs. Signal analysis should focus on high-burden preventable adverse drug problems. Increased involvement of healthcare professionals from public and private sectors, pharmaceutical companies, academic institutions and the public at large is necessary to assure a safe environment for drug therapy. WHO has a major role in supporting and coordinating these developments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit; Dooraghi, Mike
Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less
Xie, Yu; Sengupta, Manajit; Dooraghi, Mike
2018-03-20
Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less
Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.
2014-10-11
High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system,more » GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls.« less
Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.
2014-06-08
High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts, such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been developed that have the potential to mitigate many power quality concerns. However, local closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. To enable the study of the performance of advanced control schemes in a detailed distribution system environment, a test platform has been developed that integrates Power Hardware-in-the-Loop (PHIL) withmore » concurrent time-series electric distribution system simulation. In the test platform, GridLAB-D, a distribution system simulation tool, runs a detailed simulation of a distribution feeder in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling. At the National Renewable Energy Laboratory (NREL), a hardware inverter interacts with grid and PV simulators emulating an operational distribution system. Power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of inverter control modes—constant power factor and active Volt/VAr control—when integrated into a simulated IEEE 8500-node test feeder. We demonstrate that this platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, results are used to validate GridLAB-D simulations of advanced inverter controls.« less
NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-01-01
This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market. Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available formore » model calibration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares software simulation findings to reference results generated with state-of-the-art simulation tools such as EnergyPlus, SUNREL, and DOE-2.1E. The BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX includes building physics and utility bill calibration test cases. The diagram illustrates the utility bill calibration test cases. Participants are given input ranges and synthetic utility bills. Software tools use the utility bills to calibrate key model inputs and predict energy savings for the retrofit cases. Participant energy savings predictions using calibrated models are compared to NREL predictions using state-of-the-art building energy simulation programs.« less
Opportunities for renewable energy technologies in water supply in developing country villages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niewoehner, J.; Larson, R.; Azrag, E.
1997-03-01
This report provides the National Renewable Energy Laboratory (NREL) with information on village water supply programs in developing countries. The information is intended to help NREL develop renewable energy technologies for water supply and treatment that can be implemented, operated, and maintained by villagers. The report is also useful to manufacturers and suppliers in the renewable energy community in that it describes a methodology for introducing technologies to rural villages in developing countries.
Annual Report: Photovoltaic Subcontract Program FY 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summers, K. A.
1991-03-01
This report summarizes the progress of the Photovoltaic (PV) Subcontract Program of the Solar Energy Research Institute (SERI) from October 1, 1989 through September 30, 1990. The PV Subcontract Program is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year 1990, this included more than 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of the subcontracts were with universities at a total funding of nearly $3.3 million. The six technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project,more » Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports on its progress.« less
NASA Astrophysics Data System (ADS)
Palz, W.
Several operational examples of photovoltaic (PV) power generation systems in Europe are described. The systems include: a 300 kW power plant in Pellworm, West Germany; the Tremiti desalination plant in Tremiti, Italy; and the Kythnos PV power plant in Kythnos, Greece. Consideration is also given to a PV-powered swimming pool heating system in Chevretogne, Belgium; a rural electrification program using PV power plants in French Guyana; a solar-wind project on Terschelling Island, the Netherlands; and a PV power plant for hydrogen production and water pumping in Hoboken, Belgium. A 30-kW power station in Marchwood, England and the Nice airport survey and control system are also cited as examples of successful PV power generation systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hodge, Bri-Mathias
2016-08-11
This paper discusses the development of, approaches for, experiences with, and some results from a large-scale, high-performance-computer-based (HPC-based) co-simulation of electric power transmission and distribution systems using the Integrated Grid Modeling System (IGMS). IGMS was developed at the National Renewable Energy Laboratory (NREL) as a novel Independent System Operator (ISO)-to-appliance scale electric power system modeling platform that combines off-the-shelf tools to simultaneously model 100s to 1000s of distribution systems in co-simulation with detailed ISO markets, transmission power flows, and AGC-level reserve deployment. Lessons learned from the co-simulation architecture development are shared, along with a case study that explores the reactivemore » power impacts of PV inverter voltage support on the bulk power system.« less
Alternative Fuel Transit Bus Evaluation Program Results
DOT National Transportation Integrated Search
1996-05-06
The objective of this program, which is supported by the U.S. Department of : Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to : provide an unbiased and comprehensive comparison of transit buses operating on : alternative f...
DGIC Interconnection Insights | Distributed Generation Interconnection
Power Association (SEPA), produced a webinar Utility Participation in the Roof Top Solar PV Market with ). These leaders are pioneering utility-owned rooftop solar programs to broaden the reach of solar PV utility hired solar PV developers who, representing CPS Energy, will install, own, and maintain solar
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDade, Mark
2016-12-01
The Department of Energy/National Renewable Energy Laboratory (DOE/NREL) owns and operates a megawatt-scale dynamometer used for testing wind turbine drive trains up to 1.5 megawatt (MW) in rated capacity. At this time, this unit is the only unit of its type in the United States, available for use by the American Wind Industry. Currently this dynamometer is heavily backlogged and unavailable to provide testing needed by various wind industry members. DOE/NREL is in possession of two critical pieces of equipment that may be used to develop an alternative Dynamometer facility, but does not have the funds or other resources necessarymore » to develop such a facility. The Participant possesses complimentary facilities and infrastructure that when combined with the NREL equipment can create such a test facility. The Participant is also committed to expending funds to develop and operate such a facility to the subsequent benefit of the Wind Industry and DOE Wind Energy program. In exchange for DOE/NREL providing the critical equipment, the Participant will grant DOE/NREL a minimum of 90 days of testing time per year in the new facility while incurring no facilities fees.« less
Optimal Solar PV Arrays Integration for Distributed Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omitaomu, Olufemi A; Li, Xueping
2012-01-01
Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introducemore » quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.« less
NREL: SMARTS - Register for SMARTS
provided free of charge to the User under the conditions that: The User recognizes that the Program is the Author's preliminary acceptance only if it is distributed free of charge. The Program is not to be used for
Green Pricing Program Marketing Expenditures: Finding the Right Balance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, B.; Miller, M.
In practice, it is difficult to determine the optimal amount to spend on marketing and administering a green pricing program. Budgets for marketing and administration of green pricing programs are a function of several factors: the region of the country; the size of the utility service area; the customer base and media markets encompassed within that service area; the point or stage in the lifespan of the program; and certainly, not least, the utility's commitment to and goals for the program. All of these factors vary significantly among programs. This report presents data on programs that have funded both marketingmore » and program administration. The National Renewable Energy Laboratory (NREL) gathers the data annually from utility green pricing program managers. Programs reporting data to NREL spent a median of 18.8% of program revenues on marketing their programs in 2008 and 16.6% in 2007. The smallest utilities (those with less than 25,000 in their eligible customer base) spent 49% of revenues on marketing, significantly more than the overall median. This report addresses the role of renewable energy credit (REC) marketers and start-up costs--and the role of marketing, generally, in achieving program objectives, including expansion of renewable energy.« less
technology areas that included: nanotechnology, nanomaterials, thin-film photovoltaics, thin-film processing , and program management. This includes extensive experience in nanotechnology, materials science
NASA Technical Reports Server (NTRS)
Sours, Thomas J.
1989-01-01
A concept is described for the assembly of the outboard PV modules for Space Station Freedom. Analysis of the on-orbit assembly operations was performed using CADAM design graphics software. A scenario for assembly using the various assembly equipment, as currently defined, is described in words, tables and illustrations. This work is part of ongoing studies in the area of space station assembly. The outboard PV module and the assembly equipment programs are all in definition and preliminary design phases. An input is provided to the design process of assembly equipment programs. It is established that the outboard PV module assembly operations can be performed using the assembly equipment currently planned in the Space Station Freedom Program.
WinHPC System Programming | High-Performance Computing | NREL
Programming WinHPC System Programming Learn how to build and run an MPI (message passing interface (mpi.h) and library (msmpi.lib) are. To build from the command line, run... Start > Intel Software Development Tools > Intel C++ Compiler Professional... > C++ Build Environment for applications running
for the Concentrating Solar Power Program's Market Transformation activities, which includes , and grid integration and transmission. Education Ph.D. Chemical Engineering, North Carolina State
tools for complex sample analysis Affiliated Research Programs Biochemical Catalysis Working Group The synthesis Catalyst characterization Catalyst testing and reaction screening Analysis of complex organics
Technical Risk Analysis for the Geothermal Technologies ProgramPDF. Golden, CO: National Renewable Energy analysis and planning activities (PAE Hub) Research Interests Analytical support to Geothermal Technologies Program, including assessment of the competitiveness of geothermal electricity generation Investigation of
The Italian programme in photovoltaic solar energy
NASA Astrophysics Data System (ADS)
Farinelli, U.
Italian programs and goals for developing a photovoltaic (PV) industry and market are outlined. It is suggested that only a few megawatts of PVs will be produced for domestic consumption in the next few years, while the largest market is for developing nations where costly diesel-fueled generators are used. The installation of PV systems in developing areas will permit testing and scaling up of production capacities from several MW to several hundred MW and then to GW annual production. Approximately 55,000,000 was devoted to government research in PV in 1982 and a PV research laboratory is being built near Naples.
Improvements in Cz silicon PV module manufacturing
NASA Astrophysics Data System (ADS)
King, Richard R.; Mitchell, Kim W.; Jester, Theresa L.
1997-02-01
Work focused on reducing the cost per watt of Cz Si photovoltaic modules under Phase I of Siemens Solar Industries' DOE/NREL PVMaT 4A subcontract is described. Module cost components are analyzed and solutions to high-cost items are discussed in terms of specific module designs. The approaches of using larger cells and modules to reduce per-part processing cost, and of minimizing yield loss are particularly leveraging. Yield components for various parts of the fabrication process and various types of defects are shown, and measurements of the force required to break wafers throughout the cell fabrication sequence are given. The most significant type of yield loss is mechanical breakage. The implementation of statistical process control on key manufacturing processes at Siemens Solar Industries is described. Module configurations prototyped during Phase I of this project and scheduled to begin production in Phase II have a projected cost per watt reduction of 19%.
; standardization, process improvement, monitoring and reporting; energy-water-food nexus project implementation efficiency and innovative renewable energy programs and policies Community solar; Energy-water-food nexus
Architecture/Implementation of GIS Applications Open Source Programming and Web Development Spatial Analysis and Cartography Research Interests Transportation Systems and Urban Mobility Wind and Solar Resource
Rebuilding for Sustainability: Case Studies in the Making (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billman, L.
NREL has made significant contributions to communities suffering from natural disasters since 2007 in terms of technical assistance regarding energy efficiency and renewable energy options. NREL's work has covered all aspects of energy, including energy opportunities in community planning, policy design, new program design, and specific project design and implementation for energy related to electricity generation, building energy use, and transportation. This presentation highlights work done in New Orleans following Hurricane Katrina; Greensburg, Kansas, following a devastating tornado; and New York and New Jersey following Hurricane Sandy.
Trallero, Gloria; Cabrerizo, María; Avellón, Ana
2013-01-01
The Spanish acute flaccid paralysis surveillance network is coordinated by the National Poliovirus Laboratory (NPL), which, since 1998, carries out polioviruses (PV) and other enteroviruses detected characterization by cell culture and molecular techniques. A total of 110,725 (70046+40679) samples were studied between 1998-2012 and enteroviruses were detected in 8% of these. Among these enteroviruses 241 PV were characterized as PV Sabin-like, except samples belong to an imported poliomyelitis case, all of which were characterised as vaccine derived PV type 2. The NPL has carried out the serotyping and the intratypic differentiation of all the isolated PV in Spain of any syndrome. It is shown that wild PV has not circulated in our country during the 15 years studied and that has led to the signing of the Act of the "eradication of poliomyelitis in Spain" by WHO in 2001, and the /"certification of the eradication of wild PV free for European countries" on 21 June 2002. Currently only 3 countries have endemic transmission of wild PV (Pakistan, Afghanistan and Nigeria). Until a complete worldwide eradication, was achieved, Spain will actively continue to participate in the maintenance of the poliomyelitis eradication infrastructure by monitoring and vaccination as well as the wild PV containment plan to avoid the spread of wild PV.
ERIC Educational Resources Information Center
Jucovy, Linda; Herrera, Carla
2009-01-01
This issue of "Public/Private Ventures (P/PV) In Brief" is based on "High School Students as Mentors," a report that examined the efficacy of high school mentors using data from P/PV's large-scale random assignment impact study of Big Brothers Big Sisters school-based mentoring programs. The brief presents an overview of the findings, which…
Poliovirus immunity among pregnant females aged 15-44 years, Namibia, 2010.
Cardemil, Cristina V; Jonas, Anna; Gerber, Sue; Weldon, William C; Oberste, M Steven; Beukes, Anita; Sawadogo, Souleymane; Patel, Sadhna V; Zeko, Sikota; Muroua, Clementine; Gaeb, Esegiel; Wannemuehler, Kathleen; Goodson, James L
2014-11-01
Poliovirus (PV) antibody seroprevalence studies assess population immunity, verify an immunization program's performance and vaccine efficacy, and guide polio eradication strategy. Namibia experienced a polio outbreak among adults in 2006, yet population seroimmunity was unknown. We tested 2061 specimens from Namibian pregnant females aged 15-44 years for neutralizing antibody to PV types 1-3 (PV1-3); all females were sampled during the 2010 National HIV Sentinel Survey. We determined the proportion of females seropositive for PV antibody by 5-year age strata, and analyzed factors associated with seropositivity, including age, gravidity, human immunodeficiency virus (HIV) infection status, residence, and antiretroviral treatment, by log-binomial regression. The seroprevalence was 94.6% for PV1, 97.0% for PV2, and 85.1% for PV3. HIV-positive females had significantly lower seroprevalence than HIV-negative females for PV1 (91.8% vs 95.3%; P<.01) and PV3 (80.0% vs 86.1%; P<.01) but not for PV2 (96.4% vs 97.1%; P=.3). The prevalence ratio of seropositivity for HIV-positive females versus HIV-negative females was 0.95 (95% confidence interval [CI], .92-.98) for PV1, 0.99 (95% CI, .97-1.01) for PV2, and 0.92 (95% CI, .87-.96) for PV3. Despite relatively high PV seroprevalence, Namibia might remain at risk for a PV outbreak, particularly in lower-seroprevalence populations, such as HIV-positive females. Namibia should continue to maintain high routine polio vaccination coverage. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
provided administrative support to the Employment Team in Human Resources, the Deployment Programs Office support to various departments, such as Human Resources, Information Services, and Industrial Hygiene at
Corrie Christol Photo of Corrie Christol Corrie Christol Project Manager II-Research Support project manager for the Federal Wind, Integrated Deployment, and Wind Powering America programs. In her
PV water pumping: NEOS Corporation recent PV water pumping activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, C.
1995-11-01
NEOS Corporation has been very active in PV-powered water pumping, particularly with respect to electric utilities. Most of the recent activity has been through the Photovoltaic Services Network (PSN). The PSN is an independent, not-for-profit organization comprised of all types of electric utilities: rural electric coops, public power districts, investor-owned utilities, and power marketing agencies. The PSN`s mission is to work pro-actively to promote utility involvement in PV through education and training. PV information is distributed by the PSN in three primary forms: (1) consultation with PSN technical service representatives: (2) literature generated by the PSN; and (3) literature publishedmore » by other organizations. The PSN can also provide assistance to members in developing PV customer service programs. The PSN`s product support activities include consolidation of information on existing packaged PV systems and facilitation of the development of new PV product packages that meet utility-defined specifications for cost performance, and reliability. The PSN`s initial product support efforts will be focused on commercially available packaged PV systems for a variety of off-grid applications. In parallel with this effort, if no products exist that meet the PSN`s functional specifications, the PSN will initiate the second phase of product development support process by encouraging the development of new packaged systems. Through these services and product support activities, the PSN anticipates engaging all segments for the PV industry, thus providing benefits to PV systems suppliers as well as local PV service contractors.This paper describes field testing of pv power systems for water pumping.« less
NASA Astrophysics Data System (ADS)
Wu, H.; Zhou, L.; Xu, T.; Fang, W. L.; He, W. G.; Liu, H. M.
2017-11-01
In order to improve the situation of voltage violation caused by the grid-connection of photovoltaic (PV) system in a distribution network, a bi-level programming model is proposed for battery energy storage system (BESS) deployment. The objective function of inner level programming is to minimize voltage violation, with the power of PV and BESS as the variables. The objective function of outer level programming is to minimize the comprehensive function originated from inner layer programming and all the BESS operating parameters, with the capacity and rated power of BESS as the variables. The differential evolution (DE) algorithm is applied to solve the model. Based on distribution network operation scenarios with photovoltaic generation under multiple alternative output modes, the simulation results of IEEE 33-bus system prove that the deployment strategy of BESS proposed in this paper is well adapted to voltage violation regulation invariable distribution network operation scenarios. It contributes to regulating voltage violation in distribution network, as well as to improve the utilization of PV systems.
Executive Energy Leadership Academy | NREL
Management-Development, EDF Renewable Energy, Class of 2017 Executive Energy Leadership Academy Alumni Since Energy Leadership Academy. See the list of alumni sorted by program and year
Competition, and Integrated Deployment programs, Ian assists organizations in the deployment of wind technologies and provides information on the appropriate implementation of wind energy. Ian also manages the
Determination of Duty Cycle for Energy Storage Systems in a PV Smoothing Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenwald, David A.; Ellison, James
This report supplements the document, "Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems," issued in a revised version in April 2016 (see [4]), which will include the photovoltaic (PV) smoothing application for an energy storage system (ESS). This report provides the background and documentation associated with the determination of a duty cycle for an ESS operated in a PV smoothing application for the purpose of measuring and expressing ESS performance in accordance with the ESS performance protocol. ACKNOWLEDGEMENTS The authors gratefully acknowledge the support of Dr. Imre Gyuk, program manager for the DOE Energy Storage Systemsmore » Program. The authors would also like to express their appreciation to all the stakeholders who participated as members of the PV Smoothing Subgroup. Without their thoughtful input and recommendations, the definitions, metrics, and duty cycle provided in this report would not have been possible. A complete listing of members of the PV Smoothing Subgroup appears in the first chapter of this report. Special recognition should go to the staffs at Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories (SNL) in collaborating on this effort. In particular, Mr. David Conover and Dr. Vish Viswanathan of PNNL and Dr. Summer Ferreira of SNL were especially helpful in their suggestions for the determination of a duty cycle for the PV Smoothing application.« less
NASA Technical Reports Server (NTRS)
Christensen, Elmer
1985-01-01
The Flat-Plate Solar Array (FSA) Project, a Government-sponsored photovoltaics project, was initiated in January 1975 (previously named the Low-Cost Silicon Solar Array Project) to stimulate the development of PV systems for widespread use. Its goal then was to develop PV modules with 10% efficiency, a 20-year lifetime, and a selling price of $0.50 per peak watt of generating capacity (1975 dollars). It was recognized that cost reduction of PV solar-cell and module manufacturing was the key achievement needed if PV power systems were to be economically competitive for large-scale terrestrial use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandwisch, D W
1995-11-01
This report describes work performed by Solar Cells, Inc. (SCI), under a 3-year subcontract to advance SCI`s PV manufacturing technologies, reduce module production costs, increase module performance, and provide the groundwork for SCI to expand its commercial production capacities. SCI will meet these objectives in three phases by designing, debugging, and operating a 20-MW/year, automated, continuous PV manufacturing line that produces 60-cm {times} 120-cm thin-film CdTe PV modules. This report describes tasks completed under Phase 1 of the US Department of Energy`s PV Manufacturing Technology program.
SUNREL Related Links | Buildings | NREL
SUNREL Related Links SUNREL Related Links DOE Simulation Software Tools Directory a directory of 301 building software tools for evaluation of energy efficiency, renewable energy, and sustainability in buildings. TREAT Software Program a computer program that uses SUNREL and is designed to provide
NASA Astrophysics Data System (ADS)
Risser, V. V.
1982-06-01
In 1977 the New Mexico State Energy Research and Development (R & D) Program provided $25,000 to the New Mexico Solar Energy Institute to be used in conjunction with US Department of Energy (DOE) funding for design, engineering, and installation of a proposed 150-kilowatt peak photovoltaic (PV) system in Lovington, New Mexico. An additional $75,000 was also committed contingent on award of a contract for construction, test, and evaluation of the system. This award was made in 1979 and the PV system was completed in 1981. Even though budget constraints dictated reduction of the plant size to 100-kilowatts peak, this system has produced more energy than any other flat-plate PV system in the world. The utilization of the R & D Program funding in contributing to the success of this important New Mexico energy project is detailed.
2017 TRIAD Small Business Advisory Panel
2017-10-11
government service in 2007 as the Science & Technology (S&T) Project Manager for the United States Navy’s Unmanned Maritime Systems Program Office...National Renewable Energy Laboratory (NREL) as a Program Manager for over 110 energy and water projects on military installations. He worked... management , project management , program management , donor relation service, contract and subcontract policy development and implementation, data integrity
Integration program, developing inverse modeling algorithms to calibrate building energy models, and is part related equipment. This work included developing an engineering grade operator training simulator for an
(NREL), 2010-present Scientist I, NREL, 2009-2010 Senior Research Technician, NREL, 2009-2009 Research Technician I, NREL, 2008-2009 Research Associate, NREL, 2000-2008 Patents "Process and genes for in Rubrivivax gelatinosus," Applied and Environmental Microbiology (2010) "Energy
NREL technical assistance to Argentina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilienthal, P.
1997-12-01
This paper describes assistance to Argentina from the National Renewable Energy Laboratory which has touched on four programs: tariff analysis for rural concessions programs; wind/diesel hybrid retrofits in Patagonia; small hybrid systems designs for rural schools; an assessment of wind resources. The paper expands briefly on the first two points.
technological and implementation barriers faced by the residential construction industry. Prior to working at provides technical research management for DOE's Building America Program. In this role, she works to
Inverter testing at Sandia National Laboratories
NASA Astrophysics Data System (ADS)
Ginn, Jerry W.; Bonn, Russell H.; Sittler, Greg
1997-02-01
Inverters are key building blocks of photovoltaic (PV) systems that produce ac power. The balance of systems (BOS) portion of a PV system can account for up to 50% of the system cost, and its reliable operation is essential for a successful PV system. As part of its BOS program, Sandia National Laboratories (SNL) maintains a laboratory wherein accurate electrical measurements of power systems can be made under a variety of conditions. This paper outlines the work that is done in that laboratory.
Figueroa Velez, Dario X.; Ellefsen, Kyle L.; Hathaway, Ethan R.; Carathedathu, Mathew C.
2017-01-01
The maturation of cortical parvalbumin-positive (PV) interneurons depends on the interaction of innate and experience-dependent factors. Dark-rearing experiments suggest that visual experience determines when broad orientation selectivity emerges in visual cortical PV interneurons. Here, using neural transplantation and in vivo calcium imaging of mouse visual cortex, we investigated whether innate mechanisms contribute to the maturation of orientation selectivity in PV interneurons. First, we confirmed earlier findings showing that broad orientation selectivity emerges in PV interneurons by 2 weeks after vision onset, ∼35 d after these cells are born. Next, we assessed the functional development of transplanted PV (tPV) interneurons. Surprisingly, 25 d after transplantation (DAT) and >2 weeks after vision onset, we found that tPV interneurons have not developed broad orientation selectivity. By 35 DAT, however, broad orientation selectivity emerges in tPV interneurons. Transplantation does not alter orientation selectivity in host interneurons, suggesting that the maturation of tPV interneurons occurs independently from their endogenous counterparts. Together, these results challenge the notion that the onset of vision solely determines when PV interneurons become broadly tuned. Our results reveal that an innate cortical mechanism contributes to the emergence of broad orientation selectivity in PV interneurons. SIGNIFICANCE STATEMENT Early visual experience and innate developmental programs interact to shape cortical circuits. Visual-deprivation experiments have suggested that the onset of visual experience determines when interneurons mature in the visual cortex. Here we used neuronal transplantation and cellular imaging of visual responses to investigate the maturation of parvalbumin-positive (PV) interneurons. Our results suggest that the emergence of broad orientation selectivity in PV interneurons is innately timed. PMID:28123018
tour through NREL's campus. NREL's 327-acre campus in Golden, Colorado, houses many research projects. Explore the ESIF's interactive illustration to learn more. Photo of NREL's Research Support Facility. Research Support Facility Completed in 2010, NREL's ultra-high-efficiency Research Support
Quantifying Co-benefits of Renewable Energy through Integrated Electricity and Air Quality Modeling
NASA Astrophysics Data System (ADS)
Abel, D.
2016-12-01
This work focuses on the coordination of electricity sector changes with air quality and health improvement strategies through the integration of electricity and air quality models. Two energy models are used to calculate emission perturbations associated with changes in generation technology (20% generation from solar photovoltaics) and demand (future electricity use under a warmer climate). Impacts from increased solar PV penetration are simulated with the electricity model GridView, in collaboration with the National Renewable Energy Laboratory (NREL). Generation results are used to scale power plant emissions from an inventory developed by the Lake Michigan Air Directors Consortium (LADCO). Perturbed emissions and are used to calculate secondary particulate matter with the Community Multiscale Air Quality (CMAQ) model. We find that electricity NOx and SO2 emissions decrease at a rate similar to the total fraction of electricity supplied by solar. Across the Eastern U.S. region, average PM2.5 is reduced 5% over the summer, with highest reduction in regions and on days of greater PM2.5. A similar approach evaluates the air quality impacts of elevated electricity demand under a warmer climate. Meteorology is selected from the North American Regional Climate Change Assessment Program (NARCCAP) and input to a building energy model, eQUEST, to assess electricity demand as a function of ambient temperature. The associated generation and emissions are calculated on a plant-by-plant basis by the MyPower power sector model. These emissions are referenced to the 2011 National Emissions Inventory to be modeled in CMAQ for the Eastern U.S. and extended to health impact evaluation with the Environmental Benefits Mapping and Analysis Program (BenMAP). All results focus on the air quality and health consequences of energy system changes, considering grid-level changes to meet climate and air quality goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Nagarajan, Adarsh; Chakraborty, Sudipta
This report presents an impact assessment study of distributed photovoltaic (PV) with smart inverter Volt-VAR control on conservation voltage reduction (CVR) energy savings and distribution system power quality. CVR is a methodology of flattening and lowering a distribution system voltage profile in order to conserve energy. Traditional CVR relies on operating utility voltage regulators and switched capacitors. However, with the increased penetration of distributed PV systems, smart inverters provide the new opportunity to control local voltage and power factor by regulating the reactive power output, leading to a potential increase in CVR energy savings. This report proposes a methodology tomore » implement CVR scheme by operating voltage regulators, capacitors, and autonomous smart inverter Volt-VAR control in order to achieve increased CVR benefit. Power quality is an important consideration when operating a distribution system, especially when implementing CVR. It is easy to measure the individual components that make up power quality, but a comprehensive method to incorporate all of these values into a single score has yet to be undertaken. As a result, this report proposes a power quality scoring mechanism to measure the relative power quality of distribution systems using a single number, which is aptly named the 'power quality score' (PQS). Both the CVR and PQS methodologies were applied to two distribution system models, one obtained from the Hawaiian Electric Company (HECO) and another obtained from Pacific Gas and Electric (PG&E). These two models were converted to the OpenDSS platform using previous model conversion tools that were developed by NREL. Multiple scenarios including various PV penetration levels and smart inverter densities were simulated to analyze the impact of smart inverter Volt-VAR support on CVR energy savings and feeder power quality. In order to analyze the CVR benefit and PQS, an annual simulation was conducted for each scenario.« less
NREL Supercomputer Tackles Grid Challenges | News | NREL
traditional database processes. Photo by Dennis Schroeder, NREL "Big data" is playing an imagery, and large-scale simulation data. Photo by Dennis Schroeder, NREL "Peregrine provides much . Photo by Dennis Schroeder, NREL Collaboration is key, and it is hard-wired into the ESIF's core. NREL
Partnerships Drive New Transportation Solutions | News | NREL
efficiency challenges. Photo by Dennis Schroeder, NREL Hybrid car sales have taken off in recent years, with by Dennis Schroeder, NREL "NREL's connection to the marketplace and deployment, its strong Systems Integration Facility. Photo by Dennis Schroeder, NREL NREL leverages partnerships to deepen its