Science.gov

Sample records for ns chelating thiosemicarbazone

  1. Synthesis and biological evaluation of 2-benzoylpyridine thiosemicarbazones in a dimeric system: structure-activity relationship studies on their anti-proliferative and iron chelation efficacy.

    PubMed

    Lukmantara, Adeline Y; Kalinowski, Danuta S; Kumar, Naresh; Richardson, Des R

    2014-12-01

    Thiosemicarbazone chelators represent an exciting class of biologically active compounds that show great potential as anti-tumor agents. Our previous studies demonstrated the potent anti-tumor activity of the 2'-benzoylpyridine thiosemicarbazone series. While extensive studies have been performed on monomeric thiosemicarbazone compounds, dimeric thiosemicarbazone chelators have received comparatively less attention. Thus, it was of interest to investigate the anti-proliferative activity and iron chelation efficacy of dimeric thiosemicarbazones. Two classes of dimeric thiosemicarbazones were designed and synthesized. The first class consisted of two benzoylpyridine-based thiosemicarbazone units connected via a hexane or dodecane alkyl bridge, while the second class of dimer consisted of two thiosemicarbazones attached to a 2,6-dibenzoylpyridine core. These dimeric ligands demonstrated greater anti-proliferative activity than the clinically used iron chelator, desferrioxamine. This study highlights the importance of optimal lipophilicity as a factor influencing the cytotoxicity and iron chelation efficacy of these chelators.

  2. Identification and characterization of thiosemicarbazones with antifungal and antitumor effects: cellular iron chelation mediating cytotoxic activity.

    PubMed

    Opletalová, Veronika; Kalinowski, Danuta S; Vejsová, Marcela; Kunes, Jirí; Pour, Milan; Jampílek, Josef; Buchta, Vladimír; Richardson, Des R

    2008-09-01

    Thiosemicarbazones derived from acetylpyrazines were prepared by condensing an acetylpyrazine or a ring-substituted acetylpyrazine with thiosemicarbazide. Using the same procedure, N, N-dimethylthiosemicarbazones were synthesized from acetylpyrazines and N, N-dimethylthiosemicarbazide. A total of 20 compounds (16 novel) were chemically characterized and then tested for antifungal effects on eight strains of fungi and also for antitumor activity against SK-N-MC neuroepithelioma cells. The most effective compound identified in terms of both antifungal and antitumor activity was N, N-dimethyl-2-(1-pyrazin-2-ylethylidene)hydrazinecarbothioamide (5a). The mechanism of action of this and its related thiosemicarbazones was due, at least in part, to its ability to act as a tridentate ligand that binds metal ions. This was deduced from preparation of the related thiosemicarbazones [acetophenone thiosemicarbazone (6) and acetophenone N, N-dimethylthiosemicarbazone (7)] that do not possess a coordinating ring-N, which plays a vital role in metal ion chelation. Furthermore, 5a and several other thiosemicarbazones that showed high antiproliferative activity were demonstrated to have marked iron (Fe) chelation efficacy. In fact, these agents were highly effective at mobilizing (59)Fe from prelabeled SK-N-MC cells and preventing (59)Fe uptake from the serum Fe transport protein, transferrin. In contrast, compounds 6 and 7 that do not possess a tridentate metal-binding site showed little activity. Further studies examining ascorbate oxidation demonstrated that the Fe complexes of the most effective compounds were redox-inactive. Thus, in contrast to other thiosemicarbazones with potent antiproliferative activity, Fe chelation and mobilization rather than free radical generation played a significant role in the cytotoxic effects of the current ligands. PMID:18698850

  3. Intracellular reduction/activation of a disulfide switch in thiosemicarbazone iron chelators

    PubMed Central

    Akam, Eman A.; Chang, Tsuhen M.; Astashkin, Andrei V.

    2014-01-01

    Iron scavengers (chelators) offer therapeutic opportunities in anticancer drug design by targeting the increased demand for iron in cancer cells as compared to normal cells. Prochelation approaches are expected to avoid systemic iron depletion as chelators are liberated under specific intracellular conditions. In the strategy described herein, a disulfide linkage is employed as a redox-directed switch within the binding unit of an antiproliferative thiosemicarbazone prochelator, which is activated for iron coordination following reduction to the thiolate chelator. In glutathione redox buffer, this reduction event occurs at physiological concentrations and half-cell potentials. Consistent with concurrent reduction and activation, higher intracellular thiol concentrations increase cell susceptibility to prochelator toxicity in cultured cancer cells. The reduction of the disulfide switch and intracellular iron chelation are confirmed in cell-based assays using calcein as a fluorescent probe for paramagnetic ions. The resulting low-spin Fe(III) complex is identified in intact Jurkat cells by EPR spectroscopy measurements, which also document a decreased concentration of active ribonucleotide reductase following exposure to the prochelator. Cell viability and fluorescence-based assays show that the iron complex presents low cytotoxicity and does not participate in intracellular redox chemistry, indicating that this antiproliferative chelation strategy does not rely on the generation of reactive oxygen species. PMID:25100578

  4. Synthesis and biological evaluation of substituted 2-benzoylpyridine thiosemicarbazones: novel structure-activity relationships underpinning their anti-proliferative and chelation efficacy.

    PubMed

    Lukmantara, Adeline Y; Kalinowski, Danuta S; Kumar, Naresh; Richardson, Des R

    2013-02-15

    The 2-benzoylpyridine thiosemicarbazone (BpT) chelators demonstrate potent anti-proliferative effects against tumor cells. To understand their structure-activity relationships, BpT analogues incorporating electron-donating substituents on the pyridine and phenyl rings of the BpT scaffold were designed and represent the first attempts to modify the pyridine ring of these thiosemicarbazones. Eight analogues showed significantly (p <0.001) greater anti-proliferative activity than the 'gold-standard' chelator, desferrioxamine. Structure-activity analysis revealed that mono- or di-methoxy substitution at the phenyl ring resulted in lower anti-proliferative activity, while methoxy substitutions at the phenyl ring enhanced iron chelation efficacy. These important findings facilitate the design of thiosemicarbazones with greater anti-tumor activity.

  5. Bis(thiosemicarbazones) as bifunctional chelators for the room temperature 64-copper labeling of peptides.

    PubMed

    Hueting, Rebekka; Christlieb, Martin; Dilworth, Jonathan R; García Garayoa, Elisa; Gouverneur, Véronique; Jones, Michael W; Maes, Veronique; Schibli, Roger; Sun, Xin; Tourwé, Dirk A

    2010-04-21

    A range of new carboxylate functionalised bis(thiosemicarbazone) ligands and their Cu(II) complexes have been prepared, fully characterised and radiolabeled in high yield with both (64)Cu and (99m)Tc. Conjugation to a bombesin derivative was achieved using standard solid phase synthetic methodologies and the (64)Cu-labeled conjugate was shown to have good tumour uptake in mice with xenografted PC-3 tumours.

  6. Anti-plasmodial activity of aroylhydrazone and thiosemicarbazone iron chelators: effect on erythrocyte membrane integrity, parasite development and the intracellular labile iron pool.

    PubMed

    Walcourt, Asikiya; Kurantsin-Mills, Joseph; Kwagyan, John; Adenuga, Babafemi B; Kalinowski, Danuta S; Lovejoy, David B; Lane, Darius J R; Richardson, Des R

    2013-12-01

    Iron chelators inhibit the growth of the malaria parasite, Plasmodium falciparum, in culture and in animal and human studies. We previously reported the anti-plasmodial activity of the chelators, 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), 2-hydroxy-1-naphthylaldehyde 4-methyl-3-thiosemicarbazone (N4mT), and 2-hydroxy-1-naphthylaldehyde 4-phenyl-3-thiosemicarbazone (N4pT). In fact, these ligands showed greater growth inhibition of chloroquine-sensitive (3D7) and chloroquine-resistant (7G8) strains of P. falciparum in culture compared to desferrioxamine (DFO). The present study examined the effects of 311, N4mT and N4pT on erythrocyte membrane integrity and asexual parasite development. While the characteristic biconcave disk shape of the erythrocytes was unaffected, the chelators caused very slight hemolysis at IC50 values that inhibited parasite growth. The chelators 311, N4mT and N4pT affected all stages of the intra-erythrocytic development cycle (IDC) of P. falciparum in culture. However, while these ligands primarily affected the ring-stage, DFO inhibited primarily trophozoite and schizont-stages. Ring, trophozoite and schizont-stages of the IDC were inhibited by significantly lower concentrations of 311, N4mT, and N4pT (IC50=4.45±1.70, 10.30±4.40, and 3.64±2.00μM, respectively) than DFO (IC50=23.43±3.40μM). Complexation of 311, N4mT and N4pT with iron reduced their anti-plasmodial activity. Estimation of the intracellular labile iron pool (LIP) in erythrocytes showed that the chelation efficacy of 311, N4mT and N4pT corresponded to their anti-plasmodial activities, suggesting that the LIP may be a potential source of non-heme iron for parasite metabolism within the erythrocyte. This study has implications for malaria chemotherapy that specifically disrupts parasite iron utilization.

  7. Methemoglobin formation by triapine, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), and other anticancer thiosemicarbazones: identification of novel thiosemicarbazones and therapeutics that prevent this effect.

    PubMed

    Quach, Patricia; Gutierrez, Elaine; Basha, Maram Talal; Kalinowski, Danuta S; Sharpe, Philip C; Lovejoy, David B; Bernhardt, Paul V; Jansson, Patric J; Richardson, Des R

    2012-07-01

    Thiosemicarbazones are a group of compounds that have received comprehensive investigation as anticancer agents. The antitumor activity of the thiosemicarbazone, 3-amino-2-pyridinecarboxaldehyde thiosemicarbazone (3-AP; triapine), has been extensively assessed in more than 20 phase I and II clinical trials. These studies have demonstrated that 3-AP induces methemoglobin (metHb) formation and hypoxia in patients, limiting its usefulness. Considering this problem, we assessed the mechanism of metHb formation by 3-AP compared with that of more recently developed thiosemicarbazones, including di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT). This was investigated using intact red blood cells (RBCs), RBC lysates, purified oxyhemoglobin, and a mouse model. The chelation of cellular labile iron with the formation of a redox-active thiosemicarbazone-iron complex was found to be crucial for oxyhemoglobin oxidation. This observation was substantiated using a thiosemicarbazone that cannot ligate iron and also by using the chelator, desferrioxamine, that forms a redox-inactive iron complex. Of significance, cellular copper chelation was not important for metHb generation in contrast to its role in preventing tumor cell proliferation. Administration of Dp44mT to mice catalyzed metHb and cardiac metmyoglobin formation. However, ascorbic acid administered together with the drug in vivo significantly decreased metHb levels, providing a potential therapeutic intervention. Moreover, we demonstrated that the structure of the thiosemicarbazone is of importance in terms of metHb generation, because the DpT analog, di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), does not induce metHb generation in vivo. Hence, DpC represents a next-generation thiosemicarbazone that possesses markedly superior properties. This investigation is important for developing more effective thiosemicarbazone treatment regimens. PMID:22508546

  8. Improved cytotoxicity of pyridyl-substituted thiosemicarbazones against MCF-7 when used as metal ionophores.

    PubMed

    Akladios, Fady N; Andrew, Scott D; Parkinson, Christopher J

    2016-02-01

    Zinc is the second most abundant transition metal in the human body, between 3 and 10% of human genes encoding for zinc binding proteins. We have investigated the interplay of reactive oxygen species and zinc homeostasis on the cytotoxicity of the thiosemicarbazone chelators against the MCF-7 cell line. The cytotoxicity of thiosemicarbazone chelators against MCF-7 can be improved through supplementation of ionic zinc provided the zinc ion is at a level exceeding the thiosemicarbazone concentration. Elimination of the entire cell population can be accomplished with this regime, unlike the plateau of cytotoxicity observed on thiosemicarbazone monotherapy. The cytotoxic effects of copper complexes of the thiosemicarbazone are not enhanced by zinc supplementation, displacement of copper from the complex being disfavoured. Treatment of MCF-7 with uncomplexed thiosemicarbazone initiates post G1 blockade alongside the induction of apoptosis, cell death being abrogated through subsequent supplementation with zinc ion after drug removal. This would implicate a metal depletion mechanism in the cytotoxic effect of the un-coordinated thiosemicarbazone. The metal complexes of the species, however, fail to initiate similar G1 blockade and apparently exert their cytotoxic effect through generation of reactive oxygen species, suggesting that multiple mechanisms of cytotoxicity can be associated with the thiosemicarbazones dependant on the level of metal ion association. PMID:26683314

  9. Synthesis, characterization and biological evaluation of paeonol thiosemicarbazone analogues as mushroom tyrosinase inhibitors.

    PubMed

    Zhu, Tian-Hua; Cao, Shu-Wen; Yu, Yan-Ying

    2013-11-01

    A series of hydroxy- and methoxy-substituted paeonol thiosemicarbazone analogues were synthesized as potential tyrosinase inhibitors and their inhibitory effects on mushroom tyrosinase and inhibitory mechanism were evaluated. Paeonol thiosemicarbazone analogues have been found exhibiting more remarkable inhibition than their indexcompounds on mushroom tyrosinase. Among them, compound 2,4-dihydroxy acetophenone-4-phenyl-3-thiosemicarbazone (d1) had the most potent inhibition activity with the IC50 value of 0.006 ± 0.001 mM, displayed as a reversible competitive inhibitor. The inhibitory ability of o- or p-substituted acetophenone thiosemicarbazones was: di-substituted acetophenone thiosemicarbazones>mono-substituted acetophenone thiosemicarbazones>non-substituted acetophenone thiosemicarbazones. Copper ions chelation assay explained that compound d1 exhibited competitive inhibition by forming a chelate with the copper ions at the catalytic domain of tyrosinase as well as indicate a 1.5:1 binding ratio of compound d1 with copper ions. In the fluorescence spectrum study, compound d1 behaved stronger fluorescence quenching on tyrosinase towards d1-Cu(2+) complex, inhibiting tyrosinase mainly by means of chelating the two copper ions in the active site. The newly synthesized compounds may serve as structural templates for designing and developing novel tyrosinase inhibitors.

  10. Synthesis, characterization and biological evaluation of paeonol thiosemicarbazone analogues as mushroom tyrosinase inhibitors.

    PubMed

    Zhu, Tian-Hua; Cao, Shu-Wen; Yu, Yan-Ying

    2013-11-01

    A series of hydroxy- and methoxy-substituted paeonol thiosemicarbazone analogues were synthesized as potential tyrosinase inhibitors and their inhibitory effects on mushroom tyrosinase and inhibitory mechanism were evaluated. Paeonol thiosemicarbazone analogues have been found exhibiting more remarkable inhibition than their indexcompounds on mushroom tyrosinase. Among them, compound 2,4-dihydroxy acetophenone-4-phenyl-3-thiosemicarbazone (d1) had the most potent inhibition activity with the IC50 value of 0.006 ± 0.001 mM, displayed as a reversible competitive inhibitor. The inhibitory ability of o- or p-substituted acetophenone thiosemicarbazones was: di-substituted acetophenone thiosemicarbazones>mono-substituted acetophenone thiosemicarbazones>non-substituted acetophenone thiosemicarbazones. Copper ions chelation assay explained that compound d1 exhibited competitive inhibition by forming a chelate with the copper ions at the catalytic domain of tyrosinase as well as indicate a 1.5:1 binding ratio of compound d1 with copper ions. In the fluorescence spectrum study, compound d1 behaved stronger fluorescence quenching on tyrosinase towards d1-Cu(2+) complex, inhibiting tyrosinase mainly by means of chelating the two copper ions in the active site. The newly synthesized compounds may serve as structural templates for designing and developing novel tyrosinase inhibitors. PMID:24120880

  11. Influence of terminal substitution on structural, DNA, protein binding, anticancer and antibacterial activities of palladium(II) complexes containing 3-methoxy salicylaldehyde-4(N) substituted thiosemicarbazones.

    PubMed

    Kalaivani, P; Prabhakaran, R; Ramachandran, E; Dallemer, F; Paramaguru, G; Renganathan, R; Poornima, P; Vijaya Padma, V; Natarajan, K

    2012-02-28

    The variable chelating behavior of 3-methoxysalicylaldehyde-4(N)-substituted thiosemicarbazones was observed in equimolar reactions with [PdCl(2)(PPh(3))(2)]. The new complexes were characterized by various analytical, spectroscopic techniques (mass, (1)H-NMR, absorption, IR). All the new complexes were structurally characterized by single crystal X-ray diffraction. Crystallographic results showed that the ligands H(2)L(1) and H(2)L(4) are coordinated as binegative tridentate ONS donor ligands in the complexes 1 and 4 by forming six and five member rings. However, the ligands H(2)L(2) and H(2)L(3) bound to palladium in 2 and 3 as uninegative bidentate NS donors by forming a five member chelate ring. From this study, it was found that the substitution on terminal 4(N)-nitrogen may have an influence on the chelating ability of thiosemicarbazone. The presence of hydrogen bonding in 2 and 3 might be responsible for preventing the coordination of phenolic oxygen to the metal ion. The interaction of the complexes with calf-thymus DNA (CT-DNA) has been explored by absorption and emission titration methods. Based on the observations, an electrostatic binding mode of DNA has been proposed. The protein binding studies were monitored by quenching of tryptophan and tyrosine residues in the presence of complexes using Lysozyme as model protein. Antibacterial activity studies of the complexes have been screened against pathogenic bacteria such as Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa. MIC50 values of the complexes showed that they exhibited significant activity against the pathogens and among them, 3 exhibited higher activity. Further, anticancer activity of the complexes on the lung cancer cell line A549 has also been studied. PMID:22222360

  12. The synthesis and antiparasitic activity of aryl- and ferrocenyl-derived thiosemicarbazone ruthenium(II)-arene complexes.

    PubMed

    Adams, Muneebah; Li, Yiqun; Khot, Heena; De Kock, Carmen; Smith, Peter J; Land, Kirkwood; Chibale, Kelly; Smith, Gregory S

    2013-04-01

    A series of aryl-functionalized and ferrocenyl monothiosemicarbazone compounds (L1-L4) were synthesized in moderate yields via a general Schiff-base condensation reaction. The thiosemicarbazone (TSC) ligands were reacted with the ruthenium dimer [Ru(Ar)(μ-Cl)Cl](2) (Ar = benzene; p-cymene) to yield a series of cationic mononuclear ruthenium(II)-arene thiosemicarbazone complexes of the general type [Ru(Cl)(TSC)(Ar)]Cl (1-8). The thiosemicarbazone ligands act as bidentate chelating ligands that coordinate to the ruthenium(ii) ion via the imine nitrogen and the thione sulfur atoms. The thiosemicarbazone ligands, as well as their metal complexes, were characterized by NMR, IR spectroscopy and ESI(+)-mass spectrometry. The molecular structure of the mononuclear ruthenium(II)-arene thiosemicarbazone complex (6) was determined by single-crystal X-ray diffraction analysis. The ruthenium(II)-arene thiosemicarbazone complexes were further evaluated for their in vitro antiparasitic activities against the Plasmodium falciparum chloroquine-sensitive (NF54) and chloroquine-resistant (Dd2) strains, as well as the G3 strain of Trichomonas vaginalis.

  13. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  14. Investigation of the salicylaldehyde thiosemicarbazone scaffold for inhibition of influenza virus PA endonuclease.

    PubMed

    Rogolino, Dominga; Bacchi, Alessia; De Luca, Laura; Rispoli, Gabriele; Sechi, Mario; Stevaert, Annelies; Naesens, Lieve; Carcelli, Mauro

    2015-10-01

    The influenza virus PA endonuclease is an attractive target for the development of novel anti-influenza virus therapeutics, which are urgently needed because of the emergence of drug-resistant viral strains. Reported PA inhibitors are assumed to chelate the divalent metal ion(s) (Mg²⁺ or Mn²⁺) in the enzyme's catalytic site, which is located in the N-terminal part of PA (PA-Nter). In the present work, a series of salicylaldehyde thiosemicarbazone derivatives have been synthesized and evaluated for their ability to inhibit the PA-Nter catalytic activity. Compounds 1-6 have been evaluated against influenza virus, both in enzymatic assays with influenza virus PA-Nter and in virus yield assays in MDCK cells. In order to establish a structure-activity relationship, the hydrazone analogue of the most active thiosemicarbazone has also been evaluated. Since chelation may represent a mode of action of such class of molecules, we studied the interaction of two of them, one with and one without biological activity versus the PA enzyme, towards Mg²⁺, the ion that is probably involved in the endonuclease activity of the heterotrimeric influenza polymerase complex. The crystal structure of the magnesium complex of the o-vanillin thiosemicarbazone ligand 1 is also described. Moreover, docking studies of PA endonuclease with compounds 1 and 2 were performed, to further analyse the possible mechanism of action of this class of inhibitors.

  15. Investigation of the salicylaldehyde thiosemicarbazone scaffold for inhibition of influenza virus PA endonuclease.

    PubMed

    Rogolino, Dominga; Bacchi, Alessia; De Luca, Laura; Rispoli, Gabriele; Sechi, Mario; Stevaert, Annelies; Naesens, Lieve; Carcelli, Mauro

    2015-10-01

    The influenza virus PA endonuclease is an attractive target for the development of novel anti-influenza virus therapeutics, which are urgently needed because of the emergence of drug-resistant viral strains. Reported PA inhibitors are assumed to chelate the divalent metal ion(s) (Mg²⁺ or Mn²⁺) in the enzyme's catalytic site, which is located in the N-terminal part of PA (PA-Nter). In the present work, a series of salicylaldehyde thiosemicarbazone derivatives have been synthesized and evaluated for their ability to inhibit the PA-Nter catalytic activity. Compounds 1-6 have been evaluated against influenza virus, both in enzymatic assays with influenza virus PA-Nter and in virus yield assays in MDCK cells. In order to establish a structure-activity relationship, the hydrazone analogue of the most active thiosemicarbazone has also been evaluated. Since chelation may represent a mode of action of such class of molecules, we studied the interaction of two of them, one with and one without biological activity versus the PA enzyme, towards Mg²⁺, the ion that is probably involved in the endonuclease activity of the heterotrimeric influenza polymerase complex. The crystal structure of the magnesium complex of the o-vanillin thiosemicarbazone ligand 1 is also described. Moreover, docking studies of PA endonuclease with compounds 1 and 2 were performed, to further analyse the possible mechanism of action of this class of inhibitors. PMID:26323352

  16. Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization.

    PubMed

    Stefani, Christian; Al-Eisawi, Zaynab; Jansson, Patric J; Kalinowski, Danuta S; Richardson, Des R

    2015-11-01

    Bis(thiosemicarbazones) and their copper (Cu) complexes possess unique anti-neoplastic properties. However, their mechanism of action remains unclear. We examined the structure-activity relationships of twelve bis(thiosemicarbazones) to elucidate factors regarding their anti-cancer efficacy. Importantly, the alkyl substitutions at the diimine position of the ligand backbone resulted in two distinct groups, namely, unsubstituted/monosubstituted and disubstituted bis(thiosemicarbazones). This alkyl substitution pattern governed their: (1) Cu(II/I) redox potentials; (2) ability to induce cellular (64)Cu release; (3) lipophilicity; and (4) anti-proliferative activity. The potent anti-cancer Cu complex of the unsubstituted bis(thiosemicarbazone) analog, glyoxal bis(4-methyl-3-thiosemicarbazone) (GTSM), generated intracellular reactive oxygen species (ROS), which was attenuated by Cu sequestration by a non-toxic Cu chelator, tetrathiomolybdate, and the anti-oxidant, N-acetyl-l-cysteine. Fluorescence microscopy suggested that the anti-cancer activity of Cu(GTSM) was due, in part, to lysosomal membrane permeabilization (LMP). For the first time, this investigation highlights the role of ROS and LMP in the anti-cancer activity of bis(thiosemicarbazones).

  17. Hydroxypyridonate chelating agents

    DOEpatents

    Raymond, Kenneth N.; Scarrow, Robert C.; White, David L.

    1987-01-01

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided.

  18. Synthesis and Characterization of New Palladium(II) Thiosemicarbazone Complexes and Their Cytotoxic Activity against Various Human Tumor Cell Lines

    PubMed Central

    Hernández, Wilfredo; Paz, Juan; Carrasco, Fernando; Spodine, Evgenia; Manzur, Jorge; Sieler, Joachim; Blaurock, Steffen; Beyer, Lothar

    2013-01-01

    The palladium(II) bis-chelate complexes of the type [Pd(TSC1-5)2] (6–10), with their corresponding ligands 4-phenyl-1-(acetone)-thiosemicarbazone, HTSC1 (1), 4-phenyl-1-(2′-chloro-benzaldehyde)-thiosemicarbazone, HTSC2 (2), 4-phenyl-1-(3′-hydroxy-benzaldehyde)-thiosemicarbazone, HTSC3 (3), 4-phenyl-1-(2′-naphthaldehyde)-thiosemicarbazone, HTSC4 (4), and 4-phenyl-1-(1′-nitro-2′-naphthaldehyde)-thiosemicarbazone, HTSC5 (5), were synthesized and characterized by elemental analysis and spectroscopic techniques (IR and 1H- and 13C-NMR). The molecular structure of HTSC3, HTSC4, and [Pd(TSC1)2] (6) have been determined by single crystal X-ray crystallography. Complex 6 shows a square planar geometry with two deprotonated ligands coordinated to PdII through the azomethine nitrogen and thione sulfur atoms in a cis arrangement. The in vitro cytotoxic activity measurements indicate that the palladium(II) complexes (IC50 = 0.01–9.87 μM) exhibited higher antiproliferative activity than their free ligands (IC50 = 23.48–70.86 and >250 μM) against different types of human tumor cell lines. Among all the studied palladium(II) complexes, the [Pd(TSC3)2] (8) complex exhibited high antitumor activity on the DU145 prostate carcinoma and K562 chronic myelogenous leukemia cells, with low values of the inhibitory concentration (0.01 and 0.02 μM, resp.). PMID:24391528

  19. Iron Chelators with Topoisomerase-Inhibitory Activity and Their Anticancer Applications

    PubMed Central

    2013-01-01

    Abstract Significance: Iron and topoisomerases are abundant and essential cellular components. Iron is required for several key processes such as DNA synthesis, mitochondrial electron transport, synthesis of heme, and as a co-factor for many redox enzymes. Topoisomerases serve as critical enzymes that resolve topological problems during DNA synthesis, transcription, and repair. Neoplastic cells have higher uptake and utilization of iron, as well as elevated levels of topoisomerase family members. Separately, the chelation of iron and the cytotoxic inhibition of topoisomerase have yielded potent anticancer agents. Recent Advances: The chemotherapeutic drugs doxorubicin and dexrazoxane both chelate iron and target topoisomerase 2 alpha (top2α). Newer chelators such as di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone and thiosemicarbazone -24 have recently been identified as top2α inhibitors. The growing list of agents that appear to chelate iron and inhibit topoisomerases prompts the question of whether and how these two distinct mechanisms might interplay for a cytotoxic chemotherapeutic outcome. Critical Issues: While iron chelation and topoisomerase inhibition each represent mechanistically advantageous anticancer therapeutic strategies, dual targeting agents present an attractive multi-modal opportunity for enhanced anticancer tumor killing and overcoming drug resistance. The commonalities and caveats of dual inhibition are presented in this review. Future Directions: Gaps in knowledge, relevant biomarkers, and strategies for future in vivo studies with dual inhibitors are discussed. Antioxid. Redox Signal. 00, 000–000. PMID:22900902

  20. Targeting Iron in Colon Cancer via Glycoconjugation of Thiosemicarbazone Prochelators.

    PubMed

    Akam, Eman A; Tomat, Elisa

    2016-08-17

    The implication of iron in the pathophysiology of colorectal cancer is documented at both the biochemical and epidemiological levels. Iron chelators are therefore useful molecular tools for the study and potential treatment of this type of cancer characterized by high incidence and mortality rates. We report a novel prochelation strategy that utilizes a disulfide redox switch to connect a thiosemicarbazone iron-binding unit with carbohydrate moieties targeting the increased expression of glucose transporters in colorectal cancer cells. We synthesized three glycoconjugates (GA2TC4, G6TC4, and M6TC4) with different connectivity and/or carbohydrate moieties, as well as an aglycone analog (ATC4). The sugar conjugates present increased solubility in neutral aqueous solutions, and the ester-linked conjugates M6TC4 and G6TC4 compete as effectively as d-glucose for transporter-mediated cellular uptake. The glycoconjugates show improved selectivity compared to the aglycone analog and are 6-11 times more toxic in Caco-2 colorectal adenocarcinoma cells than in normal CCD18-co colon fibroblasts. PMID:27471913

  1. Chelation in Metal Intoxication

    PubMed Central

    Flora, Swaran J.S.; Pachauri, Vidhu

    2010-01-01

    Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents) or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications. PMID:20717537

  2. Macrocyclic bifunctional chelating agents

    DOEpatents

    Meares, Claude F.; DeNardo, Sally J.; Cole, William C.; Mol, Min K.

    1987-01-01

    A copper chelate conjugate which is stable in human serum. The conjugate includes the copper chelate of a cyclic tetraaza di-, tri-, or tetra-acetic acid, a linker attached at one linker end to a ring carbon of the chelate, and a biomolecule joined at the other end of the linker. The conjugate, or the linker-copper chelate compound used in forming the conjugate, are designed for use in diagnostic and therapeutic applications which involve Cu(II) localization via the systemic route.

  3. The Chelate Effect Redefined.

    ERIC Educational Resources Information Center

    da Silva, J. J. R. Frausto

    1983-01-01

    Discusses ambiguities of the accepted definition of the chelate effect, suggesting that it be defined in terms of experimental observation rather than mathematical abstraction. Indicates that the effect depends on free energy change in reaction, ligand basicity, pH of medium, type of chelates formed, and concentration of ligands in solution. (JN)

  4. Management of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone-induced methemoglobinemia

    PubMed Central

    Kunos, Charles A; Radivoyevitch, Tomas; Ingalls, Stephen T; Hoppel, Charles L

    2012-01-01

    The anticancer agent 3-aminopyridine-2-carboxaldehyde thiosemicarbazone is a ribonucleotide reductase inhibitor. It inactivates ribonucleotide reductase by disrupting an iron-stabilized radical in ribonucleotide reductase's small subunits, M2 and M2b (p53R2). Unfortunately, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone also alters iron II (Fe2+) in hemoglobin. This creates Fe3+ methemoglobin that does not deliver oxygen. Fe2+ in hemoglobin normally auto-oxidizes to inactive Fe3+ methemoglobin at a rate of nearly 3% per day and this is counterbalanced by a reductase system that normally limits methemoglobin concentrations to less than 1% of hemoglobin. This balance may be perturbed by symptomatic toxicity levels during 3-aminopyridine-2-carboxaldehyde thiosemicarbazone therapy. Indications of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone sequelae attributable to methemoglobinemia include resting dyspnea, headaches and altered cognition. Management of methemoglobinemia includes supplemental oxygen, ascorbate and, most importantly, intravenously administered methylene blue as a therapeutic antidote. PMID:22335579

  5. Novel thiosemicarbazones of the ApT and DpT series and their copper complexes: identification of pronounced redox activity and characterization of their antitumor activity.

    PubMed

    Jansson, Patric J; Sharpe, Philip C; Bernhardt, Paul V; Richardson, Des R

    2010-08-12

    The novel chelators 2-acetylpyridine-4,4-dimethyl-3-thiosemicarbazone (HAp44mT) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (HDp44mT) have been examined to elucidate the structure-activity relationships necessary to form copper (Cu) complexes with pronounced antitumor activity. Electrochemical studies demonstrated that the Cu complexes of these ligands had lower redox potentials than their iron complexes. Moreover, the Cu complexes where the ligand/metal ratio was 1:1 rather than 2:1 had significantly higher intracellular oxidative properties and antitumor efficacy. Interestingly, the 2:1 complex was shown to dissociate to give significant amounts of the 1:1 complex that could be the major cytotoxic effector. Both types of Cu complex showed significantly more antiproliferative activity than the ligand alone. We also demonstrate the importance of the inductive effects of substituents on the carbonyl group of the parent ketone, which influence the Cu(II/I) redox potentials because of their proximity to the metal center. The structure-activity relationships described are important for the design of potent thiosemicarbazone Cu complexes.

  6. Gold(III) complexes with ONS-Tridentate thiosemicarbazones: Toward selective trypanocidal drugs.

    PubMed

    Rettondin, Andressa R; Carneiro, Zumira A; Gonçalves, Ana C R; Ferreira, Vanessa F; Oliveira, Carolina G; Lima, Angélica N; Oliveira, Ronaldo J; de Albuquerque, Sérgio; Deflon, Victor M; Maia, Pedro I S

    2016-09-14

    Tridentate thiosemicarbazone ligands with an ONS donor set, H2L(R) (R = Me and Et) were prepared by reactions of 1-phenyl-1,3-butanedione with 4-R-3-thiosemicarbazides. H2L(R) reacts with Na[AuCl4]·2H2O in MeOH in a 1:1 M ratio under formation of green gold(III) complexes of composition [AuCl(L(R))]. These compounds represent the first examples of gold(III) complexes with ONS chelate-bonded thiosemicarbazones. The in vitro anti-Trypanosoma cruzi activity against both trypomastigote and amastigote forms (IC50try/ama) of CL Brener strains as well as the cytotoxicity against LLC-MK2 cells of the free ligands and complexes was evaluated. The complex [AuCl(L(Me))] was found to be more active and more selective than its precursor ligand and the standard drug benznidazole with a SItry/ama value higher than 200, being considered as a lead candidate for Chagas disease treatment. Moreover the in vitro activity against the replicative amastigote form (IC50ama) of T. cruzi was additionally investigated revealing that [AuCl(L(Me))] was also more potent than benznidazole still with a similar selectivity index. Finally, docking studies showed that free ligands and complexes interact with the same residues of the parasite protease cruzain but with different intensities, suggesting that this protease could be a possible target for the trypanocidal action of the obtained compounds. PMID:27191616

  7. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics.

    PubMed

    Park, Kyung Chan; Fouani, Leyla; Jansson, Patric J; Wooi, Danson; Sahni, Sumit; Lane, Darius J R; Palanimuthu, Duraippandi; Lok, Hiu Chuen; Kovačević, Zaklina; Huang, Michael L H; Kalinowski, Danuta S; Richardson, Des R

    2016-09-01

    Copper is an essential trace metal required by organisms to perform a number of important biological processes. Copper readily cycles between its reduced Cu(i) and oxidised Cu(ii) states, which makes it redox active in biological systems. This redox-cycling propensity is vital for copper to act as a catalytic co-factor in enzymes. While copper is essential for normal physiology, enhanced copper levels in tumours leads to cancer progression. In particular, the stimulatory effect of copper on angiogenesis has been established in the last several decades. Additionally, it has been demonstrated that copper affects tumour growth and promotes metastasis. Based on the effects of copper on cancer progression, chelators that bind copper have been developed as anti-cancer agents. In fact, a novel class of thiosemicarbazone compounds, namely the di-2-pyridylketone thiosemicarbazones that bind copper, have shown great promise in terms of their anti-cancer activity. These agents have a unique mechanism of action, in which they form redox-active complexes with copper in the lysosomes of cancer cells. Furthermore, these agents are able to overcome P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) and act as potent anti-oncogenic agents through their ability to up-regulate the metastasis suppressor protein, N-myc downstream regulated gene-1 (NDRG1). This review provides an overview of the metabolism and regulation of copper in normal physiology, followed by a discussion of the dysregulation of copper homeostasis in cancer and the effects of copper on cancer progression. Finally, recent advances in our understanding of the mechanisms of action of anti-cancer agents targeting copper are discussed.

  8. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics.

    PubMed

    Park, Kyung Chan; Fouani, Leyla; Jansson, Patric J; Wooi, Danson; Sahni, Sumit; Lane, Darius J R; Palanimuthu, Duraippandi; Lok, Hiu Chuen; Kovačević, Zaklina; Huang, Michael L H; Kalinowski, Danuta S; Richardson, Des R

    2016-09-01

    Copper is an essential trace metal required by organisms to perform a number of important biological processes. Copper readily cycles between its reduced Cu(i) and oxidised Cu(ii) states, which makes it redox active in biological systems. This redox-cycling propensity is vital for copper to act as a catalytic co-factor in enzymes. While copper is essential for normal physiology, enhanced copper levels in tumours leads to cancer progression. In particular, the stimulatory effect of copper on angiogenesis has been established in the last several decades. Additionally, it has been demonstrated that copper affects tumour growth and promotes metastasis. Based on the effects of copper on cancer progression, chelators that bind copper have been developed as anti-cancer agents. In fact, a novel class of thiosemicarbazone compounds, namely the di-2-pyridylketone thiosemicarbazones that bind copper, have shown great promise in terms of their anti-cancer activity. These agents have a unique mechanism of action, in which they form redox-active complexes with copper in the lysosomes of cancer cells. Furthermore, these agents are able to overcome P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) and act as potent anti-oncogenic agents through their ability to up-regulate the metastasis suppressor protein, N-myc downstream regulated gene-1 (NDRG1). This review provides an overview of the metabolism and regulation of copper in normal physiology, followed by a discussion of the dysregulation of copper homeostasis in cancer and the effects of copper on cancer progression. Finally, recent advances in our understanding of the mechanisms of action of anti-cancer agents targeting copper are discussed. PMID:27334916

  9. Redox activation of Fe(III)-thiosemicarbazones and Fe(III)-bleomycin by thioredoxin reductase: specificity of enzymatic redox centers and analysis of reactive species formation by ESR spin trapping

    PubMed Central

    Myers, Judith M.; Cheng, Qing; Antholine, William E.; Kalyanaraman, Balaraman; Filipovska, Aleksandra; Arnér, ArnerElias S.J.; Myers, Charles R.

    2013-01-01

    Thiosemicarbazones such as triapine (Tp) and Dp44mT are tridentate iron (Fe) chelators that have well-documented anti-neoplastic activity. While Fe-thiosemicarbazones can undergo redox-cycling to generate reactive species that may have important roles in their cytotoxicity, there is only limited insight into specific cellular agents that can rapidly reduce Fe(III)-thiosemicarbazones and thereby promote their redox activity. Here we report that thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR) have this activity, and that there is considerable specificity to the interactions between specific redox centers in these enzymes and different Fe(III) complexes. Site-directed variants of TrxR1 demonstrate that the selenocysteine (Sec) of the enzyme is not required, whereas the C59 residue and the flavin have important roles. While TrxR1 and GR have analogous C59/flavin motifs, TrxR is considerably faster than GR. For both enzymes, Fe(III)(Tp)2 is reduced faster than Fe(III)(Dp44mT)2. This reduction promotes redox cycling and the generation of hydroxyl radical (HO•) in a peroxide-dependent manner, even with low μM levels of Fe(Tp)2. TrxR also reduces Fe(III)-bleomycin and this activity is Sec-dependent. TrxR cannot reduce Fe(III)-EDTA at significant rates. Our findings are the first to demonstrate pro-oxidant reductive activation of Fe(III)-based antitumor thiosemicarbazones by interactions with specific enzyme species. The marked elevation of TrxR in many tumors could contribute to the selective tumor toxicity of these drugs by enhancing the redox activation of Fe(III)-thiosemicarbazones and the generation of reactive oxygen species such as HO• PMID:23485585

  10. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    2000-02-08

    Bicyclo[2.2.2]octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo[2.2.1]heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  11. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, M.P.; Mease, R.C.; Srivastava, S.C.

    1998-07-21

    Bicyclo[2.2.2] octane-2,3 diamine-N,N,N`,N`-tetraacetic acids (BODTA) and bicyclo[2.2.1] heptane-2,3 diamine-N,N,N`,N`-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  12. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    1998-07-21

    Bicyclo›2.2.2! octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo›2.2.1! heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  13. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability.

    PubMed

    Lux, Jacques; Chan, Minnie; Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-12-14

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd(3+) within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd(3+). This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy.

  14. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability

    PubMed Central

    Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-01-01

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd3+ within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd3+. This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy. PMID:24505553

  15. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability.

    PubMed

    Lux, Jacques; Chan, Minnie; Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-12-14

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd(3+) within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd(3+). This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy. PMID:24505553

  16. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  17. Chelation of cadmium.

    PubMed Central

    Andersen, O

    1984-01-01

    The toxicity of cadmium is determined by chelation reactions: in vivo, Cd2+ exists exclusively in coordination complexes with biological ligands, or with administered chelating agents. The Cd2+ ion has some soft character, but it is not a typical soft ion. It has a high degree of polarizability, and its complexes with soft ligands have predominantly covalent bond characteristics. Cd2+ forms the most stable complexes with soft donor atoms (S much greater than N greater than 0). The coordination stereochemistry of Cd2+ is unusually varied, including coordination numbers from 2 to 8. Even though the Cd2+ ion is a d10 ion, disturbed coordination geometries are often seen. Generally, the stability of complexes increases with the number of coordination groups contributed by the ligand; consequently, complexes of Cd2+ with polydentate ligands containing SH groups are very stable. Cd2+ in metallothionein (MT) is coordinated with 4 thiolate groups, and the log stability constant is estimated to 25.5. Complexes between Cd2+ and low molecular weight monodentate or bidentate ligands, e.g., free amino acids (LMW-Cd), seem to exist very briefly, and Cd2+ is rapidly bound to high molecular weight proteins, mainly serum albumin. These complexes (HMW-Cd) are rapidly scavenged from blood, mainly by the liver, and Cd2+ is redistributed to MT. After about 1 day the Cd-MT complex (MT-Cd) almost exclusively accounts for the total retained dose of Cd2+, independent of the route of exposure. MT-Cd is slowly transferred to and accumulated in kidney cortex. The acute toxicity and interorgan distribution of parenterally administered Cd2+ are strongly influenced by preceding MT induction, or decreased capacity for MT synthesis; however, the gastrointestinal (GI) uptake of Cd2+ seems unaffected by preceding MT induction resulting in considerable capacity for Cd2+ chelation in intestinal mucosa, and this finding indicates that endogenous MT is not involved in Cd2+ absorption. The toxicity of

  18. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L.

    PubMed

    Parker, Erica N; Song, Jiangli; Kishore Kumar, G D; Odutola, Samuel O; Chavarria, Gustavo E; Charlton-Sevcik, Amanda K; Strecker, Tracy E; Barnes, Ashleigh L; Sudhan, Dhivya R; Wittenborn, Thomas R; Siemann, Dietmar W; Horsman, Michael R; Chaplin, David J; Trawick, Mary Lynn; Pinney, Kevin G

    2015-11-01

    Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10 μM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5 μM. The most active cathepsin L inhibitors from this benzoylbenzophenone thiosemicarbazone series (1, 8, and 32) displayed low cytotoxicity toward normal primary cells [in this case human umbilical vein endothelial cells (HUVECs)]. In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre

  19. Polycatecholamide chelating agents

    DOEpatents

    Weitl, Frederick L.; Raymond, Kenneth N.

    1984-01-01

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. The compounds have the formula ##STR1## Polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO.sub.3 H, SO.sub.3 M, NO.sub.2, CO.sub.2 H or CO.sub.2 M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr.sub.3 or BCl.sub.3 in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated.

  20. Novel polycatecholamide chelating agents

    DOEpatents

    Weitl, F.L.; Raymond, K.N.

    1981-08-24

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. Formulas of the compounds are given. To prepare them polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO/sub 3/H, SO/sub 3/M, NO/sub 2/, CO/sub 2/H or CO/sub 2/M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr/sub 3/ or BCl/sub 3/ in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated.

  1. Polycatecholamide chelating agents

    DOEpatents

    Weitl, F.L.; Raymond, K.N.

    1984-04-10

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. The compounds have the formula given in patent. Polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO[sub 3]H, SO[sub 3]M, NO[sub 2], CO[sub 2]H or CO[sub 2]M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr[sub 3] or BCl[sub 3] in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated. No Drawings

  2. In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3.

    PubMed Central

    Preugschat, F; Yao, C W; Strauss, J H

    1990-01-01

    We have tested the hypothesis that the flavivirus nonstructural protein NS3 is a viral proteinase that generates the termini of several nonstructural proteins by using an efficient in vitro expression system and monospecific antisera directed against the nonstructural proteins NS2B and NS3. A series of cDNA constructs was transcribed by using T7 RNA polymerase, and the RNA was translated in reticulocyte lysates. The resulting protein patterns indicated that proteolytic processing occurred in vitro to generate NS2B and NS3. The amino termini of NS2B and NS3 produced in vitro were found to be the same as the termini of NS2B and NS3 isolated from infected cells. Deletion analysis of cDNA constructs localized the protease domain within NS3 to the first 184 amino acids but did not eliminate the possibility that sequences within NS2B were also required for proper cleavage. Kinetic analysis of processing events in vitro and experiments to examine the sensitivity of processing to dilution suggested that an intramolecular cleavage between NS2A and NS2B preceded an intramolecular cleavage between NS2B and NS3. The data from these expression experiments confirm that NS3 is the viral proteinase responsible for cleavage events generating the amino termini of NS2B and NS3 and presumably for cleavages generating the termini of NS4A and NS5 as well. Images PMID:2143543

  3. Hydroxypyridonate chelating agents and synthesis thereof

    DOEpatents

    Raymond, K.N.; Scarrow, R.C.; White, D.L.

    1985-11-12

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided. 4 tabs.

  4. Cu(II) Bis(thiosemicarbazone) Radiopharmaceutical Binding to Serum Albumin: Further Definition of Species-Dependence and Associated Substituent Effects

    PubMed Central

    Basken, Nathan E.; Green, Mark A.

    2009-01-01

    Introduction The Cu-PTSM (pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II)) and Cu-ATSM (diacetyl bis(N4-methylthiosemicarbazonato)copper(II)) radiopharmaceuticals exhibit strong, species-dependent binding to the IIA site of human serum albumin (HSA), while the related Cu-ETS (ethylglyoxal bis(thiosemicarbazonato)copper(II)) radiopharmaceutical appears to only exhibit non-specific binding to human and animal serum albumins. Methods To further probe the structural basis for the species-dependence of this albumin binding interaction, protein binding of these three radiopharmaceuticals was examined in solutions of albumin and/or serum from a broader array of mammalian species (rat, sheep, donkey, rabbit, cow, pig, dog, baboon, mouse, cat, elephant). We also evaluated the albumin binding of several copper(II) bis(thiosemicarbazone) chelates offering more diverse substitution of the ligand backbone. Results Cu-PTSM and Cu-ATSM exhibit a strong interaction with HSA that is not apparent with the albumins of other species, while the binding of Cu-ETS to albumin is much less species-dependent. The strong interaction of Cu-PTSM with HSA does not appear to simply correlate with variation, relative to the animal albumins, of a single amino acid lining HSA's IIA site. Those agents that selectively interact with HSA share the common feature of only methyl or hydrogen substitution at the carbon atoms of the diimine fragment of the ligand backbone. Conclusions The interspecies variations in albumin binding of Cu-PTSM and Cu-ATSM are not simply explained by unique amino acid substitutions in the IIA binding pocket of the serum albumins. However, the specific affinity for this region of HSA is disrupted when substituents bulkier than a methyl group appear on the imine carbons of the copper bis(thiosemicarbazone) chelate. PMID:19520290

  5. The scientific basis for chelation: animal studies and lead chelation.

    PubMed

    Smith, Donald; Strupp, Barbara J

    2013-12-01

    This presentation summarizes several of the rodent and non-human studies that we have conducted to help inform the efficacy and clinical utility of succimer (meso-2,3-dimercaptosuccincinic acid) chelation treatment. We address the following questions: (1) What is the extent of body lead, and in particular brain lead reduction with chelation, and do reductions in blood lead accurately reflect reductions in brain lead? (2) Can succimer treatment alleviate the neurobehavioral impacts of lead poisoning? And (3) does succimer treatment, in the absence of lead poisoning, produce neurobehavioral deficits? Results from our studies in juvenile primates show that succimer treatment is effective at accelerating the elimination of lead from the body, but chelation was only marginally better than the complete cessation of lead exposure alone. Studies in lead-exposed adult primates treated with a single 19-day course of succimer showed that chelation did not measurably reduce brain lead levels compared to vehicle-treated controls. A follow-up study in rodents that underwent one or two 21-day courses of succimer treatment showed that chelation significantly reduced brain lead levels, and that two courses of succimer were significantly more efficacious at reducing brain lead levels than one. In both the primate and rodent studies, reductions in blood lead levels were a relatively poor predictor of reductions in brain lead levels. Our studies in rodents demonstrated that it is possible for succimer chelation therapy to alleviate certain types of lead-induced behavioral/cognitive dysfunction, suggesting that if a succimer treatment protocol that produced a substantial reduction of brain lead levels could be identified for humans, a functional benefit might be derived. Finally, we also found that succimer treatment produced lasting adverse neurobehavioral effects when administered to non-lead-exposed rodents, highlighting the potential risks of administering succimer or other metal-chelating

  6. Questions and Answers on Unapproved Chelation Products

    MedlinePlus

    ... OTC) to prevent or treat diseases. Companies are marketing unapproved OTC chelation therapy products to patients with ... 4. Why did FDA take this action? Companies marketing unapproved OTC chelation products with unsubstantiated treatment claims ...

  7. Isatin based thiosemicarbazone derivatives as potential bioactive agents: Anti-oxidant and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Haribabu, J.; Subhashree, G. R.; Saranya, S.; Gomathi, K.; Karvembu, R.; Gayathri, D.

    2016-04-01

    A new series of isatin based thiosemicarbazones has been synthesized from benzylisatin and unsubstituted/substituted thiosemicarbazides (1-5). The synthesized compounds were characterized by elemental analyses, and UV-Visible, FT-IR, 1H &13C NMR and mass spectroscopic techniques. Three dimensional molecular structure of three compounds (1, 3 and 4) was determined by single crystal X-ray crystallography. Anti-oxidant activity of the thiosemicarbazone derivatives showed their excellent scavenging effect against free radicals. In addition, all the compounds showed good anti-haemolytic activity. In silico molecular docking studies were performed to screen the anti-inflammatory and anti-tuberculosis properties of thiosemicarbazone derivatives.

  8. Hydroxypyridonate and hydroxypyrimidinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Doble, Daniel M.; Sunderland, Christopher J.; Thompson, Marlon

    2005-01-25

    The present invention provides hydroxypyridinone and hydroxypyrimidone chelating agents. Also provides are Gd(III) complexes of these agents, which are useful as contrast enhancing agents for magnetic resonance imaging. The invention also provides methods of preparing the compounds of the invention, as well as methods of using the compounds in magnetic resonance imaging applications.

  9. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, Eugene T.

    1988-01-01

    This invention relates to the preparation of new, naturally produced chelating agents as well as to the method and resulting chelates of desorbing cultures in a bioavailable form involving Pseudomonas species or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 100-1,000 and also forms chelates with uranium of molecular weight in the area of 100-1,000 and 1,000-2,000.

  10. NS&T Management Observations

    SciTech Connect

    Gianotto, David

    2014-09-01

    The INL Management Observation Program (MOP) is designed to improve managers and supervisors understanding of work being performed by employees and the barriers impacting their success. The MOP also increases workers understanding of managements’ expectations as they relate to safety, security, quality, and work performance. Management observations (observations) are designed to improve the relationship and trust between employees and managers through increased engagement and interactions between managers and researchers in the field. As part of continuous improvement, NS&T management took initiative to focus on the participation and quality of observations in FY 14. This quarterly report is intended to (a) summarize the participation and quality of management’s observations, (b) assess observations for commonalities or trends related to facility or process barriers impacting research, and (c) provide feedback and make recommendations for improvements NS&T’s MOP.

  11. Iron chelation and multiple sclerosis

    PubMed Central

    Weigel, Kelsey J.; Lynch, Sharon G.; LeVine, Steven M.

    2014-01-01

    Histochemical and MRI studies have demonstrated that MS (multiple sclerosis) patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1α, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6–8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood–brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen. PMID:24397846

  12. SAR of Cu (II) thiosemicarbazone complexes as hypoxic imaging agents: MM3 analysis and prediction of biologic properties.

    PubMed

    Singh, Sweta; Tiwari, Anjani K; Ojha, Himanshu; Kumar, Nitin; Singh, Bachcha; Mishra, Anil K

    2010-02-01

    Copper(II) bis(thiosemicarbazone) are very useful for blood flow and hypoxic imaging. The aim of this study was to identify structure-activity relationships (SARs) within a series of analogues with different substitution patterns in the ligands, in order to design improved hypoxia imaging agents and elucidate hypoxia selectivity mechanisms. Genetic algorithms (GAs) were used to develop specific copper metal-ligand force field parameters for the MM3 force-field calculations. These new parameters produced results in good agreement with experiment and previously reported copper metal-ligand parameters. A successful quantitative SAR (QSAR) for predicting the several classes of Cu(II)-chelating ligands was built using a training set of 21 Cu(II) complexes. The QSAR exhibited a correlation between the predicted and experimental test set. The QSAR preformed with great accuracy; r(2) = 0.95 and q(2) = 0.90 utilizing a leave-one-out cross-validation with multiple linear regression analysis to find correlation between different calculated molecular descriptors of these complexes. The final QSAR mathematical models were found as the following: Log P = {3.01698 (+/-0.0590)} - LUMO {0.1248 (+/-0.068)} + MR {0.3219 (+/-0.086)} n = 21 |r| = 0.972 s = 0.188 F = 98.102 The resulting models could act as an efficient strategy for estimating the hypoxic conditions through imaging and provide some insights into the structural features related to the biological activity of these compounds.

  13. Influence of anthraquinone scaffold on E/Z isomer distribution of two thiosemicarbazone derivatives. 2D NMR and DFT studies

    NASA Astrophysics Data System (ADS)

    Marković, Violeta; Joksović, Milan D.; Marković, Svetlana; Jakovljević, Ivan

    2014-01-01

    A distribution of possible isomeric and tautomeric forms of two tautomerizable anthraquinone-thiosemicarbazones with pronounced cytotoxic potential was investigated using 2D NMR and DFT studies. Conformational analysis of the E and Z isomers of both thiosemicarbazones was performed to find out the most stable conformation for each molecule. It was found that superior stability of E-isomers results from ten-membered intramolecular hydrogen bond between thiosemicarbazone N2H and anthraquinone carbonyl group. This hydrogen bond is stronger than that between thiosemicarbazone N2H and ester oxygen, owing to the large partial negative charge on the anthraquinone oxygen.

  14. Luminescent lanthanide chelates and methods of use

    DOEpatents

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  15. Impact of terminal dimethylation on the resistance profile of α-N-heterocyclic thiosemicarbazones

    PubMed Central

    Heffeter, Petra; Pirker, Christine; Kowol, Christian R.; Herrman, Gerrit; Dornetshuber, Rita; Miklos, Walter; Jungwirth, Ute; Koellensperger, Gunda; Keppler, Bernhard K.; Berger, Walter

    2012-01-01

    Triapine is an α-N-heterocyclic thiosemicarbazone with promising anticancer activity against hematologic malignancies but widely ineffective against solid tumor types in clinical trials. The anticancer activity of thiosemicarbazones can be dramatically increased by terminal dimethylation. KP1089 is a gallium compound containing two terminal dimethylated thiosemicarbazone ligands. To gain insights on the vulnerability of this highly active terminal dimethylated thiosemicarbazone to drug resistance mechanisms, a new cell model with acquired resistance against the lead compound KP1089 was established. Subsequent genomic analyses (arrayCGH and FISH) revealed amplification of the ABCC1 gene on double minute chromosomal DNA in KP1089-resistant cells as well as overexpression of ABCC1 and ABCG2 on the protein level. KP1089 was further confirmed as a substrate of ABCC1 and ABCG2 but not of ABCB1 using a panel of ABC transporter-overexpressing cell models as well as ABC transporter inhibitors. Moreover, glutathione depletion strongly enhanced KP1089 activity, although no glutathione conjugate formation by glutathione-S-transferase was observed. Thus, a co-transport of KP1089 together with glutathione is suggested. Finally, a panel of thiosemicarbazone derivatives was tested on the new KP1089-resistant cell line. Notably, KP1089-resistant cells were not cross-resistant against thiosemicarbazones lacking terminal dimethylation (e.g. Triapine) which are less active than KP1089. This suggests that terminal dimethylation of thiosemicarbazones – linked with distinctly enhanced anticancer activity – leads to altered resistance profiles compared to classical thiosemicarbazones making this compound class of interest for further (pre)clinical evaluation. PMID:22426010

  16. Chelators for investigating zinc metalloneurochemistry.

    PubMed

    Radford, Robert J; Lippard, Stephen J

    2013-04-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals of hippocampal mossy fiber buttons.

  17. Chelating agents and cadmium intoxication

    SciTech Connect

    Shinobu, L.A.

    1985-01-01

    A wide range of conventional chelating agents have been screened for (a) antidotal activity in acute cadmium poisoning and (b) ability to reduce aged liver and kidney deposits of cadmium. Chelating agents belonging to the dithiocarbamate class have been synthesized and tested in both the acute and chronic modes of cadmium intoxication. Several dithiocarbamates, not only provide antidotal rescue, but also substantially decrease the intracellular deposits of cadmium associated with chronic cadmium intoxication. Fractionating the cytosol from the livers and kidneys of control and treated animals by Sephadex G-25 gel filtration clearly demonstrates that the dithiocarbamates are reducing the level of metallothionein-bound cadmium. However, the results of cell culture (Ehrlich ascites) studies designed to investigate the removal of cadmium from metallothionein and subsequent transport of the resultant cadmium complex across the cell membrane were inconclusive. In other in vitro investigations, the interaction between isolated native Cd, Zn-metallothionein and several chelating agents was explored. Ultracentrifugation, equilibrium dialysis, and Sephadex G-25 gel filtration studies have been carried out in an attempt to determine the rate of removal of cadmium from metallothionein by these small molecules. Chemical shifts for the relevant cadmium-dithiocarbamate complexes have been determined using natural abundance Cd-NMR.

  18. Transition metal quinone-thiosemicarbazone complexes 3: Spectroscopic characterizations of spin-mixed iron (III) of naphthoquinone-thiosemicarbazones.

    PubMed

    Chikate, Rajeev C; Padhye, Subhash B

    2007-04-01

    An interesting series of iron (III) complexes with naphthoquinone-thiosemicarbazones are synthesized and physico-chemically characterized by elemental analysis, UV-vis, IR, EPR and magnetic susceptibility measurements. They possess a cationic octahedral [FeL2]+ species and a tetrahedral [FeCl4]- anion and exhibit unusual spin-mixed states involving high-spin and low-spin ferric centers as revealed from magnetic behavior with significant amount of exchange interactions mediated by intermolecular associations. The magnetic susceptibility data is fitted with S1=5/2 and S2=1/2 Heisengberg's exchange coupled model; H=-2JS1S2 and the magnetic exchange interactions are found to be of the order of -13.6 cm-1 indicating the moderate coupling between two paramagnetic centers present in different chemical and structural environment. The presence of spin-paired iron (III) cation having dxz2dxz2dxz1 ground state is revealed from the EPR spectra with three prominent peaks while the high-spin tetrahedral iron (III) anion exhibits characteristics g=4 signal whose intensity increases with lowering the temperature suggesting its influence on the magnetic properties of the complex molecule. FTIR measurements indicate tridentate ONS donor systems involving quinone/hydroxyl oxygen, imine/hydrazinic nitrogen and thione/thiol sulfur atoms as binding sites for naphthoquinone-thiosemicarbazones. PMID:16876470

  19. Monoclonal Antibodies Against NS3 and NS5 Proteins of Japanese Encephalitis Virus

    PubMed Central

    Chen, Zheng; Shao, Lin; Ye, Jing; Li, Yongmao; Huang, Shaomei; Chen, Huanchun

    2012-01-01

    Non-structural proteins NS3 and NS5 of Japanese encephalitis virus (JEV) were expressed in Escherichia coli and purified by dialysis. Two monoclonal antibodies (MAbs) named 1H7 and 2D4 against NS3 protein and three MAbs named 3C4, 3H7, and 3F10 against NS5 protein were generated by fusing mouse myeloma cell line SP2/0 with spleen lymphocytes from NS3 or NS5 protein immunized mice. Then activity of MAbs was characterized by enzyme-linked immunosorbent assay (ELISA), Western blot analysis, and indirect immunofluorescent assays (IFA). Our results demonstrated that all the MAbs showed high specificity and sensitivity in IFA at 1:100 dilution and in Western blot analysis at 1:500 dilution, which indicated that these MAbs against NS3 and NS5 proteins of JEV may be used as valuable tools for analysis of the protein functions and pathogenesis of JEV. PMID:22509919

  20. Iron Chelation Therapy in Myelodysplastic Syndromes

    PubMed Central

    Messa, Emanuela; Cilloni, Daniela; Saglio, Giuseppe

    2010-01-01

    Myelodysplastic syndromes (MDS) are a heterogeneous disorder of the hematopoietic stem cells, frequently characterized by anemia and transfusion dependency. In low-risk patients, transfusion dependency can be long lasting, leading to iron overload. Iron chelation therapy may be a therapeutic option for these patients, especially since the approval of oral iron chelators, which are easier to use and better accepted by the patients. The usefulness of iron chelation in MDS patients is still under debate, mainly because of the lack of solid prospective clinical trials that should take place in the future. This review aims to summarize what is currently known about the incidence and clinical consequences of iron overload in MDS patients and the state-of the-art of iron chelation therapy in this setting. We also give an overview of clinical guidelines for chelation in MDS published to date and some perspectives for the future. PMID:20672005

  1. Spectral studies of copper(II) complexes of 6-(3-thienyl) pyridine-2-thiosemicarbazone

    SciTech Connect

    Mahjoub, Omima Abdalla; Farina, Yang

    2014-09-03

    Two novel copper(II) complexes [Cu(HL)Cl]Cl.H{sub 2}O (1) and [Cu(L)NO{sub 3}]Ðœ‡H{sub 2}O (2) of the three NNS donor thiosemicarbazone ligand 6-(3-thienyl) pyridine-2-thiosemicarbazone have been synthesized. The ligand and its copper(II) complexes were characterized by elemental analysis (C, H, N, and S), FT-IR, UV-visible, magnetic susceptibility and molar conductance. The thiosemicarbazone is present either as the thione form in complex 1 or as thiol form in complex 2 and is coordinated to copper(II) atom via the pyridine nitrogen atom, the azomethine nitrogen atom and the sulfur atom. The physicochemical and spectral data suggest square planar geometry for copper(II) atoms.

  2. Classical swine fever virus NS5B protein suppresses the inhibitory effect of NS5A on viral translation by binding to NS5A.

    PubMed

    Sheng, Chun; Wang, Jing; Xiao, Jing; Xiao, Jun; Chen, Yan; Jia, Lin; Zhi, Yimiao; Li, Guangyuan; Xiao, Ming

    2012-05-01

    In order to investigate molecular mechanisms of internal ribosome entry site (IRES)-mediated translation in classical swine fever virus (CSFV), an important pathogen of pigs, the expression level of NS3 was evaluated in the context of genomic RNAs and reporter RNA fragments. All data showed that the NS5A protein has an inhibitory effect on IRES-mediated translation and that NS5B proteins suppress the inhibitory effect of NS5A on viral translation, but CSFV NS5B GDD mutants do not. Furthermore, glutathione S-transferase pull-down assay and immunoprecipitation analysis, associated with deletion and alanine-scanning mutations, were performed. Results showed that NS5B interacts with NS5A and that the region aa 390-414, located in the C-terminal half of NS5A, is important for binding of NS5B to NS5A. Furthermore, amino acids K399, T401, E406 and L413 in the region were found to be essential for NS5A-NS5B interaction, virus rescue and infection. The above-mentioned region and four amino acids were observed to overlap with the site responsible for inhibition of IRES-mediated translation by the NS5A protein. We also found that aa 63-72, aa 637-653 and the GDD motif of NS5B were necessary for the interaction between NS5A and NS5B. These findings suggest that the repression activity of the NS5B protein toward the role of NS5A in translation might be achieved by NS5A-NS5B interaction, for which aa 390-414 of NS5A and aa 63-72, aa 637-653 and the GDD motif of NS5B are indispensable. This is important for understanding the role of NS5A-NS5B interaction in the virus life cycle. PMID:22258858

  3. Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain.

    PubMed

    Arias, C F; Preugschat, F; Strauss, J H

    1993-04-01

    Flavivirus genomic RNA is translated into a large polyprotein that is processed into structural and nonstructural proteins. The N-termini of several nonstructural proteins are produced by cleavage at dibasic sites by a two-component viral proteinase consisting of NS2B and NS3. NS3 contains a trypsin-like serine proteinase domain at its N-terminus, whereas the function of NS2B in proteolysis is yet to be determined. We have used an NS3-specific antiserum, under nondenaturing conditions, to demonstrate that NS2B and NS3 form a complex both in vitro and in vivo. The N-terminal 184 residues of NS3 are sufficient to form the complex with NS2B. The complex forms efficiently when the NS2B and NS3 are translated from two different mRNAs as well as when NS2B and NS3 are translated as a polyprotein from the same mRNA. A chimeric complex can be formed between yellow fever NS2B and a chimeric yellow fever-dengue 2 NS3. Using anti-NS3 antisera, we also found that a 50-kDa fragment of NS3, consisting of the N-terminal approximately 460 residues, is produced in infected mammalian cells. This fragment is not produced in infected mosquito cells, but will form in Triton X-100 lysates of mosquito cells. The cleavage of NS3 to form this fragment is catalyzed by the NS3 proteinase itself and proteolysis requires NS2B. Examination of the amino acid sequence of NS3 reveals a potential conserved cleavage site that resembles other sites cleaved by the NS3/NS2B proteinase; this site occurs within a conserved RNA helicase sequence motif. The importance of this alternatively processed form of NS3 and its role in the replication cycle of dengue virus remain to be determined.

  4. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1985-06-11

    This invention relates to the production of metal-binding compounds useful for the therapy of heavy metal poisoning, for biological mining and for decorporation of radionuclides. The present invention deals with an orderly and effective method of producing new therapeutically effective chelating agents. This method uses challenge biosynthesis for the production of chelating agents that are specific for a particular metal. In this approach, the desired chelating agents are prepared from microorganisms challenged by the metal that the chelating agent is designed to detoxify. This challenge induces the formation of specific or highly selective chelating agents. The present invention involves the use of the challenge biosynthetic method to produce new complexing/chelating agents that are therapeutically useful to detoxify uranium, plutonium, thorium and other toxic metals. The Pseudomonas aeruginosa family of organisms is the referred family of microorganisms to be used in the present invention to produce the new chelating agent because this family is known to elaborate strains resistant to toxic metals.

  5. Antimalarial properties of orally active iron chelators.

    PubMed

    Heppner, D G; Hallaway, P E; Kontoghiorghes, G J; Eaton, J W

    1988-07-01

    The appearance of widespread multiple drug resistance in human malaria has intensified the search for new antimalarial compounds. Metal chelators, especially those with high affinity for iron, represent one presently unexploited class of antimalarials. Unfortunately the use of previously identified chelators as antimalarials has been precluded by their toxicity and, in the case of desferrioxamine, the necessity for parenteral administration. The investigators now report that a new class of orally active iron chelators, namely the derivatives of alpha-ketohydroxypyridines (KHPs), are potent antimalarials against cultured Plasmodium falciparum. The KHPs evidently exert this effect by sequestering iron because a preformed chelator:iron complex has no antimalarial action. The pool(s) of iron being sequestered by the chelators have not been identified but may not include serum transferrin. Preincubation of human serum with KHPs followed by removal of the drug results in the removal of greater than 97% of total serum iron. Nonetheless, this serum effectively supports the growth of P falciparum cultures. Therefore the KHPs may exert antimalarial effect through chelation of erythrocytic rather than serum iron pool(s). The investigators conclude that these powerful, orally active iron chelators may form the basis of a new class of antimalarial drugs. PMID:3291984

  6. EPR, mass, IR, electronic, and magnetic studies on copper(II) complexes of semicarbazones and thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar

    2005-01-01

    Copper(II) complexes having the general composition Cu(L) 2X 2 [where L = isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC), and 4-aminoacetophenone thiosemicarbazone (LLD) and X = Cl -, 1/2SO 42-] have been synthesized. All the Cu(II) complexes reported here have been characterized by elemental analyses, molar conductance, magnetic moment susceptibility, EI mass, 1H NMR, IR, EPR, and electronic spectral studies. All the complexes were found to have magnetic moments corresponding to one unpaired electrons. The possible geometries of the complexes were assigned on the basis of EPR, electronic, and infrared spectral studies.

  7. Spectroscopic evaluation of manganese(II) complexes derived from semicarbazones and thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar

    2005-09-01

    Manganese(II) complexes having the general composition Mn(L) 2X 2 [where L = isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC) and 4-aminoacetophenone thiosemicarbazone (LLD) and X = Cl -, 1/2SO 42-] have been synthesized. All the complexes were characterized by elemental analyses, molar conductance, magnetic moment susceptibility, EI-mass, 1H NMR, IR, EPR and electronic spectral studies. All the complexes show magnetic moments corresponding to five unpaired electrons. The possible geometries of the complexes were assigned on the basis of EPR, electronic and infrared spectral studies.

  8. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    NASA Astrophysics Data System (ADS)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  9. Allosteric inhibition of the NS2B-NS3 protease from dengue virus.

    PubMed

    Yildiz, Muslum; Ghosh, Sumana; Bell, Jeffrey A; Sherman, Woody; Hardy, Jeanne A

    2013-12-20

    Dengue virus is the flavivirus that causes dengue fever, dengue hemorrhagic disease, and dengue shock syndrome, which are currently increasing in incidence worldwide. Dengue virus protease (NS2B-NS3pro) is essential for dengue virus infection and is thus a target of therapeutic interest. To date, attention has focused on developing active-site inhibitors of NS2B-NS3pro. The flat and charged nature of the NS2B-NS3pro active site may contribute to difficulties in developing inhibitors and suggests that a strategy of identifying allosteric sites may be useful. We report an approach that allowed us to scan the NS2B-NS3pro surface by cysteine mutagenesis and use cysteine reactive probes to identify regions of the protein that are susceptible to allosteric inhibition. This method identified a new allosteric site utilizing a circumscribed panel of just eight cysteine variants and only five cysteine reactive probes. The allosterically sensitive site is centered at Ala125, between the 120s loop and the 150s loop. The crystal structures of WT and modified NS2B-NS3pro demonstrate that the 120s loop is flexible. Our work suggests that binding at this site prevents a conformational rearrangement of the NS2B region of the protein, which is required for activation. Preventing this movement locks the protein into the open, inactive conformation, suggesting that this site may be useful in the future development of therapeutic allosteric inhibitors. PMID:24164286

  10. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication.

    PubMed

    Tay, Moon Y F; Saw, Wuan Geok; Zhao, Yongqian; Chan, Kitti W K; Singh, Daljit; Chong, Yuwen; Forwood, Jade K; Ooi, Eng Eong; Grüber, Gerhard; Lescar, Julien; Luo, Dahai; Vasudevan, Subhash G

    2015-01-23

    Dengue virus multifunctional proteins NS3 protease/helicase and NS5 methyltransferase/RNA-dependent RNA polymerase form part of the viral replication complex and are involved in viral RNA genome synthesis, methylation of the 5'-cap of viral genome, and polyprotein processing among other activities. Previous studies have shown that NS5 residue Lys-330 is required for interaction between NS3 and NS5. Here, we show by competitive NS3-NS5 interaction ELISA that the NS3 peptide spanning residues 566-585 disrupts NS3-NS5 interaction but not the null-peptide bearing the N570A mutation. Small angle x-ray scattering study on NS3(172-618) helicase and covalently linked NS3(172-618)-NS5(320-341) reveals a rigid and compact formation of the latter, indicating that peptide NS5(320-341) engages in specific and discrete interaction with NS3. Significantly, NS3:Asn-570 to alanine mutation introduced into an infectious DENV2 cDNA clone did not yield detectable virus by plaque assay even though intracellular double-stranded RNA was detected by immunofluorescence. Detection of increased negative-strand RNA synthesis by real time RT-PCR for the NS3:N570A mutant suggests that NS3-NS5 interaction plays an important role in the balanced synthesis of positive- and negative-strand RNA for robust viral replication. Dengue virus infection has become a global concern, and the lack of safe vaccines or antiviral treatments urgently needs to be addressed. NS3 and NS5 are highly conserved among the four serotypes, and the protein sequence around the pinpointed amino acids from the NS3 and NS5 regions are also conserved. The identification of the functionally essential interaction between the two proteins by biochemical and reverse genetics methods paves the way for rational drug design efforts to inhibit viral RNA synthesis.

  11. Chelation and mobilization of cellular iron by different classes of chelators.

    PubMed

    Zanninelli, G; Glickstein, H; Breuer, W; Milgram, P; Brissot, P; Hider, R C; Konijn, A M; Libman, J; Shanzer, A; Cabantchik, Z I

    1997-05-01

    Iron chelators belonging to three distinct chemical families were assessed in terms of their physicochemical properties and the kinetics of iron chelation in solution and in two biological systems. Several hydroxypyridinones, reversed siderophores, and desferrioxamine derivatives were selected to cover agents with different iron-binding stoichiometry and geometry and a wide range of lipophilicity, as determined by the octanol-water partition coefficients. The selection also included highly lipophilic chelators with potentially cell-cleavable ester groups that can serve as precursors of hydrophilic and membrane-impermeant chelators. Iron binding was determined by the chelator capacity for restoring the fluorescence of iron-quenched calcein (CA), a dynamic fluorescent metallosensor. The iron-scavenging properties of the chelators were assessed under three different conditions: (a) in solution, by mixing iron salts with free CA; (b) in resealed red cell ghosts, by encapsulation of CA followed by loading with iron; and (c) in human erythroleukemia K562 cells, by loading with the permeant CA-acetomethoxy ester, in situ formation of free CA, and binding of cytosolic labile iron. The time-dependent recovery of fluorescence in the presence of a given chelator provided a continuous measure for the capacity of the chelator to access the iron/CA-containing compartment. The resulting rate constants of fluorescence recovery indicated that chelation in solution was comparable for the members of each family of chelators, whereas chelation in either biological system was largely dictated by the lipophilicity of the free chelator. For example, desferrioxamine was among the fastest and most efficient iron scavengers in solution but was essentially ineffective in either biological system when used at < or = 200 microM over a 2-hr period at 37 degrees. On the other hand, the highly lipophilic and potentially cell-cleavable hydroxypyridinones and reversed siderophores were highly

  12. Iron-chelation therapy: an update.

    PubMed

    Franchini, Massimo; Veneri, Dino

    2004-01-01

    Chronically transfused patients develop iron overload that leads to organ damage and ultimately to death. The introduction of the iron-chelating agent, desferrioxamine mesylate, dramatically improved the life expectancy of these patients. However, the very demanding nature of this treatment (subcutaneous continuous infusion via a battery-operated portable pump) has been the motivation for attempts to develop alternative forms of treatment that would facilitate the patients' compliance. In this review, we describe the most important advances in iron-chelating therapy. In particular, we analyze a new method of administering desferrioxamine mesylate (twice daily subcutaneous bolus injections) and a novel, orally active iron chelator (ICL670A). We also present a meta-analysis of the largest trials on the oral iron chelator deferiprone and the results of combined therapy (deferiprone and desferrioxamine).

  13. Spin Complicates Eccentric BH-NS Mergers

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    When a neutron star (NS) has a glancing encounter with a black hole (BH), its spin has a significant effect on the outcome, according to new simulations run by William East of Stanford University and his collaborators. Spotting an Eccentric Merger. In a traditional BH-NS merger, the two objects orbit each other quasi-circularly as they spiral in. But there's another kind of merger that's possible in high-density environments like galactic nuclei or globular clusters: a dynamical capture merger, in which a NS and BH pass each other just close enough that the gravity of the black hole "catches" the NS, leading the two objects to merge with very eccentric orbits. During an eccentric merger, the NS can be torn apart -- at which point some fraction of the tidally-disrupted material will escape the system, while some fraction instead accretes back onto the BH. Knowing these fractions is important for being able to model the expected electromagnetic signatures for the merger: the unbound material can power transients like kilonovae, whereas the accreting material may be the cause of short gamma-ray bursts. The amount of material available for events like these would change their observable strengths. Testing the Effects of Spin. To see whether NS spin has an impact on the behavior of the merger, East and collaborators use a general-relativistic hydrodynamic code to simulate the glancing encounter of a BH and a NS with dimensionless spin between a=0 (non-spinning) and a=0.756 (rotation period of 1 ms). They also vary the separation of the first encounter. The group finds that changing the NS's spin can change a number of outcomes of the merger. To start with, it can affect whether the NS is captured by the BH, or if the encounter is glancing and then both objects carry on their merry way. And if the NS is trapped by the BH and torn apart, then the higher the NS's spin, the more matter outside of the BH ends up unbound, instead of getting trapped into an accretion disk

  14. metal ion interactions of picoline-2-aldehyde thiosemicarbazone.

    PubMed

    Leggett, D J; McBryde, W A

    The reactions of picoline-2-aldehyde thiosemicarbazone (PATS) with silver, mercury, iron(II) and cobalt have been investigated in various environments. The compositions of the complexes have been investigated by continuous variation and molar ratio methods. Stability constants have been evaluated by means of SCOGS and a new program SQUAD. The formation constants, measured at 25 degrees and 0.10M ionic strength were as follows: Ag(PATS), logbeta(101) = 13.40; HgH(PATS), log beta(1110) = 23.6; HgH(2)(PATS)(2), log beta(1220) = 42.1; HgH(2)(PATS)(EDTA), log beta = 44.0; FeH(3)(PATS)(3), log beta(133) = 44.9; FeH(2)(PATS)(3), log beta(123) = 41.7; FeH(PATS)(3), log beta(113) = 38.4; Fe(PATS)(3), log beta(103) = 34.2. A tentative value for a cobalt complex is also suggested. A computer program, suitable for calculation of optimum conditions for a chemical analysis is also introduced and its use is illustrated for the silver-PATS-EDTA system.

  15. A novel series of thiosemicarbazone drugs: From synthesis to structure

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S.; Alsalim, Tahseen A.; Ghali, Thaer S.; Bolandnazar, Zeinab

    2015-02-01

    A new series of thiosemicarbazones (TSCs) and their 1,3,4-thiadiazolines (TDZs) containing acetamide group have been synthesized from thiosemicarbazide compounds by the reaction of TSCs with cyclic ketones as well as aromatic aldehydes. The structures of newly synthesized 1,3,4-thiadiazole derivatives obtained by heterocyclization of the TSCs with acetic anhydride were experimentally characterized by spectral methods using IR, 1H NMR, 13C NMR and mass spectroscopic methods. Furthermore, the structural, thermodynamic, and electronic properties of the studied compounds were also studied theoretically by performing Density Functional Theory (DFT) to access reliable results to the experimental values. The molecular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and Mulliken atomic charges of the studied compounds have been calculated at the B3LYP method and standard 6-31+G(d,p) basis set starting from optimized geometry. The theoretical 13C chemical shift results were also calculated using the gauge independent atomic orbital (GIAO) approach and their respective linear correlations were obtained.

  16. Evaluation of DNA-binding, DNA cleavage, antioxidant and cytotoxic activity of mononuclear ruthenium(II) carbonyl complexes of benzaldehyde 4-phenyl-3-thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Sampath, Krishnan; Sathiyaraj, Subbaiyan; Jayabalakrishnan, Chinnasamy

    2013-11-01

    Two 4-phenyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-phenylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-phenylhydrazinecarbothioamide (HL2), and its ruthenium(II) complexes were synthesized and characterized by physico-chemical and spectroscopic methods. The Schiff bases act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the compounds was investigated by absorption spectroscopy which indicated that the compounds bind to DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes assayed against HeLa and MCF-7 cell lines showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  17. Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxic activity

    NASA Astrophysics Data System (ADS)

    Sampath, K.; Sathiyaraj, S.; Raja, G.; Jayabalakrishnan, C.

    2013-08-01

    The new ruthenium(III) complexes with 4-methyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-methylhydrazinecarbothioamide (HL2), were prepared and characterized by various physico-chemical and spectroscopic methods. The title compounds act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the ligands and complexes were investigated by absorption spectroscopy and IR spectroscopy. It reveals that the compounds bind to nitrogenous bases of DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  18. Rationalizing meat consumption. The 4Ns.

    PubMed

    Piazza, Jared; Ruby, Matthew B; Loughnan, Steve; Luong, Mischel; Kulik, Juliana; Watkins, Hanne M; Seigerman, Mirra

    2015-08-01

    Recent theorizing suggests that the 4Ns - that is, the belief that eating meat is natural, normal, necessary, and nice - are common rationalizations people use to defend their choice of eating meat. However, such theorizing has yet to be subjected to empirical testing. Six studies were conducted on the 4Ns. Studies 1a and 1b demonstrated that the 4N classification captures the vast majority (83%-91%) of justifications people naturally offer in defense of eating meat. In Study 2, individuals who endorsed the 4Ns tended also to objectify (dementalize) animals and included fewer animals in their circle of moral concern, and this was true independent of social dominance orientation. Subsequent studies (Studies 3-5) showed that individuals who endorsed the 4Ns tend not to be motivated by ethical concerns when making food choices, are less involved in animal-welfare advocacy, less driven to restrict animal products from their diet, less proud of their animal-product decisions, tend to endorse Speciesist attitudes, tend to consume meat and animal products more frequently, and are highly committed to eating meat. Furthermore, omnivores who strongly endorsed the 4Ns tended to experience less guilt about their animal-product decisions, highlighting the guilt-alleviating function of the 4Ns. PMID:25865663

  19. Rationalizing meat consumption. The 4Ns.

    PubMed

    Piazza, Jared; Ruby, Matthew B; Loughnan, Steve; Luong, Mischel; Kulik, Juliana; Watkins, Hanne M; Seigerman, Mirra

    2015-08-01

    Recent theorizing suggests that the 4Ns - that is, the belief that eating meat is natural, normal, necessary, and nice - are common rationalizations people use to defend their choice of eating meat. However, such theorizing has yet to be subjected to empirical testing. Six studies were conducted on the 4Ns. Studies 1a and 1b demonstrated that the 4N classification captures the vast majority (83%-91%) of justifications people naturally offer in defense of eating meat. In Study 2, individuals who endorsed the 4Ns tended also to objectify (dementalize) animals and included fewer animals in their circle of moral concern, and this was true independent of social dominance orientation. Subsequent studies (Studies 3-5) showed that individuals who endorsed the 4Ns tend not to be motivated by ethical concerns when making food choices, are less involved in animal-welfare advocacy, less driven to restrict animal products from their diet, less proud of their animal-product decisions, tend to endorse Speciesist attitudes, tend to consume meat and animal products more frequently, and are highly committed to eating meat. Furthermore, omnivores who strongly endorsed the 4Ns tended to experience less guilt about their animal-product decisions, highlighting the guilt-alleviating function of the 4Ns.

  20. Permselective, metal chelate containing, plasma polymers

    SciTech Connect

    Morosoff, N.C.; Clymer, S.D.; Stannett, V.T.; Skelly, J.M.; Crumbliss, A.L.

    1993-12-31

    Metal chelates, including cobalt Schiff bases and a cobalt porphyrin complex, have been codeposited with hydrocarbon plasma polymers to form thin films. The hydrocarbon monomers used were trans-2-butene and cyclooctene. The sorption of O{sub 2} by such membranes before and after reaction with pyridine (Pyr) or 1-methylimidazole (1-MeIm) was measured and the association FTIR and uv/visible absorption spectra were obtained. In addition permeability to O{sub 2} and N{sub 2} was determined. It was found that the structure of the metal chelates, which were sublimed into the plasma, was preserved. When bound to an axial base (Pyr or 1-MeIm), the plasma polymer occluded chelates bound O{sub 2} reversibly. O{sub 2} diffusion coefficients varied with the nature of the plasma polymer matrix. The ideal separation factor (O{sub 2}/N{sub 2}) increased for metal chelate containing plasma polymers vis-a-vis that for the plasma polymer matrix (without metal chelate). The ideal separation factor was at a maximum for low metal chelate loading and at a {open_quotes}mass thickness{close_quotes} of {approximately} 10 {mu}g/(cm{sup 2}min).

  1. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, N.G.; Wai, C.M.; Lin, Y.; Kwang, Y.H.

    1998-11-24

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO{sub 2}, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO{sub 2} and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process. 1 fig.

  2. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa

    1998-01-01

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

  3. Hepatitis C virus core, NS3, NS4B and NS5A are the major immunogenic proteins in humoral immunity in chronic HCV infection

    PubMed Central

    Sillanpää, Maarit; Melén, Krister; Porkka, Päivi; Fagerlund, Riku; Nevalainen, Kaisu; Lappalainen, Maija; Julkunen, Ilkka

    2009-01-01

    Background The viral genome of hepatitis C virus constitutes a 9.6-kb single-stranded positive-sense RNA which encodes altogether 11 viral proteins. In order to study the humoral immune responses against different HCV proteins in patients suffering from chronic HCV infection, we produced three structural (core, E1 and E2) and six nonstructural proteins (NS2, NS3, NS4A, NS4B, NS5A and NS5B) in Sf9 insect cells by using the baculovirus expression system. Results The recombinant HCV core, E1, E2, NS2, NS3, NS4A, NS4B, NS5A and NS5B proteins were purified and used in Western blot analysis to determine antibody responses against individual HCV protein in 68 HCV RNA and antibody positive human sera that were obtained from patients suffering from genotype 1, 2, 3 or 4 infection. These sera were also analysed with INNO-LIA Score test for HCV antibodies against core, NS3, NS4AB and NS5A, and the results were similar to the ones obtained by Western blot method. Based on our Western blot analyses we found that the major immunogenic HCV antigens were the core, NS4B, NS3 and NS5A proteins which were recognized in 97%, 86%, 68% and 53% of patient sera, respectively. There were no major genotype specific differences in antibody responses to individual HCV proteins. A common feature within the studied sera was that all except two sera recognized the core protein in high titers, whereas none of the sera recognized NS2 protein and only three sera (from genotype 3) recognised NS5B. Conclusion The data shows significant variation in the specificity in humoral immunity in chronic HCV patients. PMID:19549310

  4. Synthesis and structure-activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain.

    PubMed

    Espíndola, José Wanderlan Pontes; Cardoso, Marcos Veríssimo de Oliveira; Filho, Gevanio Bezerra de Oliveira; Oliveira E Silva, Dayane Albuquerque; Moreira, Diogo Rodrigo Magalhaes; Bastos, Tanira Matutino; Simone, Carlos Alberto de; Soares, Milena Botelho Pereira; Villela, Filipe Silva; Ferreira, Rafaela Salgado; Castro, Maria Carolina Accioly Brelaz de; Pereira, Valéria Rego Alves; Murta, Silvane Maria Fonseca; Sales Junior, Policarpo Ademar; Romanha, Alvaro José; Leite, Ana Cristina Lima

    2015-08-28

    The discovery of new antiparasitic compounds against Trypanosoma cruzi, the etiological agent of Chagas disease, is necessary. Novel aryloxy/aryl thiosemicarbazone-based conformationally constrained analogs of thiosemicarbazones (1) and (2) were developed as potential inhibitors of the T. cruzi protease cruzain, using a rigidification strategy of the iminic bond of (1) and (2). A structure-activity relationship analysis was performed in substituents attached in both aryl and aryloxy rings. This study indicated that apolar substituents or halogen atom substitution at the aryl position improved cruzain inhibition and antiparasitic activity in comparison to unsubstituted thiosemicarbazone. Two of these compounds displayed potent inhibitory antiparasitic activity by inhibiting cruzain and consequently were able to reduce the parasite burden in infected cells and cause parasite cell death through necrosis. In conclusion, we demonstrated that conformational restriction is a valuable strategy in the development of antiparasitic thiosemicarbazones. PMID:26231082

  5. Thiosemicarbazone modification of 3-acetyl coumarin inhibits Aβ peptide aggregation and protect against Aβ-induced cytotoxicity.

    PubMed

    Ranade, Dnyanesh S; Bapat, Archika M; Ramteke, Shefali N; Joshi, Bimba N; Roussel, Pascal; Tomas, Alain; Deschamps, Patrick; Kulkarni, Prasad P

    2016-10-01

    Aggregation of amyloid β peptide (Aβ) is an important event in the progression of Alzheimer's disease. Therefore, among the available therapeutic approaches to fight with disease, inhibition of Aβ aggregation is widely studied and one of the promising approach for the development of treatments for Alzheimer's disease. Thiosemicarbazone compounds are known for their variety of biological activities. However, the potential of thiosemicarbazone compounds towards inhibition of Aβ peptide aggregation and the subsequent toxicity is little explored. Herein, we report synthesis and x-ray crystal structure of novel compound 3-acetyl coumarin thiosemicarbazone and its efficacy toward inhibition of Aβ(1-42) peptide aggregation. Our results indicate that 3-acetyl coumarin thiosemicarbazone inhibits Aβ(1-42) peptide aggregation up to 80% compared to the parent 3-acetyl coumarin which inhibits 52%. Further, 3-acetyl coumarin thiosemicarbazone provides neuroprotection against Aβ-induced cytotoxicity in SH-SY5Y cell line. These findings indicate that thiosemicarbazone modification renders 3-acetyl coumarin neuroprotective properties.

  6. Thiosemicarbazone modification of 3-acetyl coumarin inhibits Aβ peptide aggregation and protect against Aβ-induced cytotoxicity.

    PubMed

    Ranade, Dnyanesh S; Bapat, Archika M; Ramteke, Shefali N; Joshi, Bimba N; Roussel, Pascal; Tomas, Alain; Deschamps, Patrick; Kulkarni, Prasad P

    2016-10-01

    Aggregation of amyloid β peptide (Aβ) is an important event in the progression of Alzheimer's disease. Therefore, among the available therapeutic approaches to fight with disease, inhibition of Aβ aggregation is widely studied and one of the promising approach for the development of treatments for Alzheimer's disease. Thiosemicarbazone compounds are known for their variety of biological activities. However, the potential of thiosemicarbazone compounds towards inhibition of Aβ peptide aggregation and the subsequent toxicity is little explored. Herein, we report synthesis and x-ray crystal structure of novel compound 3-acetyl coumarin thiosemicarbazone and its efficacy toward inhibition of Aβ(1-42) peptide aggregation. Our results indicate that 3-acetyl coumarin thiosemicarbazone inhibits Aβ(1-42) peptide aggregation up to 80% compared to the parent 3-acetyl coumarin which inhibits 52%. Further, 3-acetyl coumarin thiosemicarbazone provides neuroprotection against Aβ-induced cytotoxicity in SH-SY5Y cell line. These findings indicate that thiosemicarbazone modification renders 3-acetyl coumarin neuroprotective properties. PMID:26232353

  7. Copper Chelation in Alzheimer's Disease Protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. AD is primarily characterized at the cellular level by densely tangled fibrils of amyloid- β protein. These protein clusters have been found in association with elevated levels of multiple transition metals, with copper being the most egregious. Interestingly, metal chelation has shown promise in attenuating the symptoms of AD in recent clinical studies. We investigate this process by constructing an atomistic model of the amyloid- β-copper complex and profile the energetic viability in each of its subsequent disassociation stages. Our results indicate that five energetic barriers must be overcome for full metal chelation. The energy barriers are biologically viable in the presence water mediated bond and proton transfer between the metal and the protein. We model the chelation reaction using a consecutive path nudged elastic band method implemented in our ab initio real-space multi-grid code to obtain a viable sequence. This reaction model details a physically consistent explanation of the chelation process that could lead to the discovery of more effective chelation agents in the treatment of AD.

  8. Nucleocytoplasmic transport: the influenza virus NS1 protein regulates the transport of spliced NS2 mRNA and its precursor NS1 mRNA.

    PubMed

    Alonso-Caplen, F V; Nemeroff, M E; Qiu, Y; Krug, R M

    1992-02-01

    Influenza virus unspliced NS1 mRNA, like retroviral pre-mRNAs, is efficiently exported from the nucleus and translated in the cytoplasm of infected cells. With human immunodeficiency virus (HIV), the transport of viral pre-mRNAs is facilitated by the viral Rev protein. We tested the possibility that the influenza virus NS1 protein, a nuclear protein that is encoded by unspliced NS1 mRNA, has the same function as the HIV Rev protein. Surprisingly, using transient transfection assays, we found that rather than facilitating the nucleocytoplasmic transport of unspliced NS1 mRNA, the NS1 protein inhibited the transport of NS2 mRNA, the spliced mRNA generated from NS1 mRNA. The efficient transport of NS2 mRNA from the nucleus to the cytoplasm occurred only when the synthesis of the NS1 protein was abrogated by amber mutations. The NS1 protein down-regulated the export of NS2 mRNA whether or not it was generated by splicing, indicating that the NS1 protein acted directly on transport. Actinomycin D chase experiments verified that the NS1 protein acted on the transport and not on the differential stability of NS2 mRNA in the nucleus as compared to the cytoplasm. In addition, the NS1 protein inhibited the transport of NS1 mRNA itself, which contains all of the sequences in NS2 mRNA, particularly when NS1 mRNA was released from the splicing machinery by mutating its 3'-splice site. Our results indicate that the NS1 protein-mediated inhibition of transport requires sequences in NS2 mRNA. The transport of the viral PB1 protein, nucleocapsid protein, hemagglutinin, membrane protein, and M2 mRNAs was not affected by the NS1 protein. When the NS2 mRNA sequence was covalently attached to the PB1 mRNA, the transport of the chimeric mRNA was inhibited by the NS1 protein. Our results identify a novel function of the influenza virus NS1 protein and demonstrate that post-transcriptional control of gene expression can also occur at the level of the nucleocytoplasmic transport of a

  9. A novel recombinant single-chain hepatitis C virus NS3-NS4A protein with improved helicase activity.

    PubMed Central

    Howe, A. Y.; Chase, R.; Taremi, S. S.; Risano, C.; Beyer, B.; Malcolm, B.; Lau, J. Y.

    1999-01-01

    Hepatitis C virus (HCV) nonstructural protein 3 (NS3) has been shown to possess protease and helicase activities and has also been demonstrated to spontaneously associate with nonstructural protein NS4A (NS4A) to form a stable complex. Previous attempts to produce the NS3/NS4A complex in recombinant baculovirus resulted in a protein complex that aggregated and precipitated in the absence of nonionic detergent and high salt. A single-chain form of the NS3/NS4A complex (His-NS4A21-32-GSGS-NS3-631) was constructed in which the NS4A core peptide is fused to the N-terminus of the NS3 protease domain as previously described (Taremi et al., 1998). This protein contains a histidine tagged NS4A peptide (a.a. 21-32) fused to the full-length NS3 (a.a. 3-631) through a flexible tetra amino acid linker. The recombinant protein was expressed to high levels in Escherichia coli, purified to homogeneity, and examined for NTPase, nucleic acid unwinding, and proteolytic activities. The single-chain recombinant NS3-NS4A protein possesses physiological properties equivalent to those of the NS3/NS4A complex except that this novel construct is stable, soluble and sixfold to sevenfold more active in unwinding duplex RNA. Comparison of the helicase activity of the single-chain recombinant NS3-NS4A with that of the full-length NS3 (without NS4A) and that of the helicase domain alone suggested that the presence of the protease domain and at least the NS4A core peptide are required for optimal unwinding activity. PMID:10386883

  10. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered.

  11. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-08-11

    A method is described for extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered. 3 figs.

  12. Bifunctional Gallium-68 Chelators: Past, Present, and Future.

    PubMed

    Spang, Philipp; Herrmann, Christian; Roesch, Frank

    2016-09-01

    This article reviews the development of bifunctional chelates for synthesising (68)Ga radiopharmaceuticals. It structures the chelates into groups of macrocycles, nonmacrocycles, and chimeric derivatives. The most relevant bifunctional chelates are discussed in chelate structure, parameters of (68)Ga-labeling, and stability of the (68)Ga-chelate complexes. Furthermore those derivatives are included, where (67)Ga was applied instead of (68)Ga. A particular feature discussed is the ability of certain bifunctional chelate structures to function in kit-type preparation of the (68)Ga radiopharmaceuticals. Currently, nonmacrocyclic and chimeric derivates attract particular attention such as THP-derivates and DATA-derivates. PMID:27553464

  13. Method of encapsulating polyaminopolycarboxylic acid chelating agents in liposomes

    DOEpatents

    Rahman, Yueh Erh

    1977-11-10

    A method is provided for transferring a polyaminopolycarboxylic acid chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes, which liposomes will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. The chelating agent is encapsulated within liposomes by drying a lipid mixture to form a thin film and wetting the lipid film with a solution containing the chelating agent. Mixing then results in the formation of a suspension of liposomes encapsulating the chelating agent, which liposomes can then be separated.

  14. Synthesis of a DNA-targeting nickel (II) complex with testosterone thiosemicarbazone which exhibits selective cytotoxicity towards human prostate cancer cells (LNCaP).

    PubMed

    Heng, Mok Piew; Sinniah, Saravana Kumar; Teoh, Wuen Yew; Sim, Kae Shin; Ng, Seik Weng; Cheah, Yoke Kqueen; Tan, Kong Wai

    2015-01-01

    Testosterone thiosemicarbazone, L and its nickel (II) complex 1 were synthesized and characterized by using FTIR, CHN, (1)H NMR, and X-ray crystallography. X-ray diffraction study confirmed the formation of L from condensation of testosterone and thiosemicarbazide. Mononuclear complex 1 is coordinated to two Schiff base ligands via two imine nitrogens and two tautomeric thiol sulfurs. The cytotoxicity of both compounds was investigated via MTT assay with cisplatin as positive reference standard. L is more potent towards androgen-dependent LNCaP (prostate) and HCT 116 (colon). On the other hand, complex 1, which is in a distorted square planar environment with L acting as a bidentate NS-donor ligand, is capable of inhibiting the growth of all the cancer cell lines tested, including PC-3 (prostate). It is noteworthy that both compounds are less toxic towards human colon cell CCD-18Co. The intrinsic DNA binding constant (Kb) of both compounds were evaluated via UV-Vis spectrophotometry. Both compounds showed Kb values which are comparable to the reported Kb value of typical classical intercalator such as ethidium bromide. The binding constant of the complex is almost double compared with ligand L. Both compounds were unable to inhibit the action topoisomerase I, which is the common target in cancer treatment (especially colon cancer). This suggest a topoisomerase I independent-cell death mechanism. PMID:26057090

  15. Non-structural protein NS3/NS3a is required for propagation of bluetongue virus in Culicoides sonorensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Bluetongue virus (BTV) causes non-contagious haemorrhagic disease in ruminants and is transmitted by Culicoides spp. biting midges. BTV encodes four non-structural proteins of which NS3/NS3a is functional in virus release. NS3/NS3a is not essential for in vitro virus replication. However...

  16. Progress on New Hepatitis C Virus Targets: NS2 and NS5A

    NASA Astrophysics Data System (ADS)

    Marcotrigiano, Joseph

    Hepatitis C virus (HCV) is a major global health problem, affecting about 170 million people worldwide. Chronic infection can lead to cirrhosis and liver cancer. The replication machine of HCV is a multi-subunit membrane associated complex, consisting of nonstructural proteins (NS2-5B), which replicate the viral RNA genome. The structures of NS5A and NS2 were recently determined. NS5A is an essential replicase component that also modulates numerous cellular processes ranging from innate immunity to cell growth and survival. The structure reveals a novel protein fold, a new zinc coordination motif, a disulfide bond and a dimer interface. Analysis of molecular surfaces suggests the location of the membrane interaction surface of NS5A, as well as hypothetical protein and RNA binding sites. NS2 is one of two virally encoded proteases that are required for processing the viral polyprotein into the mature nonstructural proteins. NS2 is a dimeric cysteine protease with two composite active sites. For each active site, the catalytic histidine and glutamate residues are contributed by one monomer and the nucleophilic cysteine by the other. The C-terminal residues remain coordinated in the two active sites, predicting an inactive post-cleavage form. The structure also reveals possible sites of membrane interaction, a rare cis-proline residue, and highly conserved dimer contacts. The novel features of both structures have changed the current view of HCV polyprotein replication and present new opportunities for antiviral drug design.

  17. The two-component NS2B-NS3 proteinase represses DNA unwinding activity of the West Nile virus NS3 helicase.

    PubMed

    Chernov, Andrei V; Shiryaev, Sergey A; Aleshin, Alexander E; Ratnikov, Boris I; Smith, Jeffrey W; Liddington, Robert C; Strongin, Alex Y

    2008-06-20

    Similar to many flavivirus types including Dengue and yellow fever viruses, the nonstructural NS3 multifunctional protein of West Nile virus (WNV) with an N-terminal serine proteinase domain and an RNA triphosphatase, an NTPase domain, and an RNA helicase in the C-terminal domain is implicated in both polyprotein processing and RNA replication and is therefore a promising drug target. To exhibit its proteolytic activity, NS3 proteinase requires the presence of the cofactor encoded by the upstream NS2B sequence. During our detailed investigation of the biology of the WNV helicase, we characterized the ATPase and RNA/DNA unwinding activities of the full-length NS2B-NS3 proteinase-helicase protein as well as the individual NS3 helicase domain lacking both the NS2B cofactor and the NS3 proteinase sequence and the individual NS3 proteinase-helicase lacking only the NS2B cofactor. We determined that both the NS3 helicase and NS3 proteinase-helicase constructs are capable of unwinding both the DNA and the RNA templates. In contrast, the full-length NS2B-NS3 proteinase-helicase unwinds only the RNA templates, whereas its DNA unwinding activity is severely repressed. Our data suggest that the productive, catalytically competent fold of the NS2B-NS3 proteinase moiety represents an essential component of the RNA-DNA substrate selectivity mechanism in WNV and, possibly, in other flaviviruses. Based on our data, we hypothesize that the mechanism we have identified plays a role yet to be determined in WNV replication occurring both within the virus-induced membrane-bound replication complexes in the host cytoplasm and in the nuclei of infected cells.

  18. Current approach to iron chelation in children.

    PubMed

    Aydinok, Yesim; Kattamis, Antonis; Viprakasit, Vip

    2014-06-01

    Transfusion-dependent children, mostly with thalassaemia major, but also and occasionally to a more significant degree, with inherited bone marrow failures, can develop severe iron overload in early life. Moreover, chronic conditions associated with ineffective erythropoiesis, such as non-transfusion-dependent thalassaemia (NTDT), may lead to iron overload through increased gut absorption of iron starting in childhood. Currently, the goal of iron chelation has shifted from treating iron overload to preventing iron accumulation and iron-induced end-organ complications, in order to achieve a normal pattern of complication-free survival and of quality of life. New chelation options increase the likelihood of achieving these goals. Timely initiation, close monitoring and continuous adjustment are the cornerstones of optimal chelation therapy in children, who have a higher transfusional requirements compared to adults in order to reach haemoglobin levels adequate for normal growth and development. Despite increased knowledge, there are still uncertainties about the level of body iron at which iron chelation therapy should be started and about the appropriate degree of iron stores' depletion.

  19. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  20. Development of an upconverting chelate assay

    NASA Astrophysics Data System (ADS)

    Xiao, Xudong; Haushalter, Jeanne P.; Kotz, Kenneth T.; Faris, Gregory W.

    2005-04-01

    We report progress on performing a cell-based assay for the detection of EGFR on cell surfaces by using upconverting chelates. An upconversion microscope has been developed for performing assays and testing optical response. A431 cells are labeled with europium DOTA and imaged using this upconverting microscope.

  1. Microwave-assisted synthesis of new N₁,N₄-substituted thiosemicarbazones.

    PubMed

    Reis, Camilla Moretto dos; Pereira, Danilo Sousa; Paiva, Rojane de Oliveira; Kneipp, Lucimar Ferreira; Echevarria, Aurea

    2011-01-01

    We present an efficient procedure for the synthesis of thirty-six N₁,N₄-substituted thiosemicarbazones, including twenty-five ones that are reported for the first time, using a microwave-assisted methodology for the reaction of thiosemicarbazide intermediates with aldehydes in the presence of glacial acetic acid in ethanol and under solvent free conditions. Overall reaction times (20-40 min when ethanol as solvent, and 3 min under solvent free conditions) were much shorter than with the traditional procedure (480 min); satisfactory yields and high-purity compounds were obtained. The thiosemicarbazide intermediates were obtained from alkyl or aryl isothiocyanates and hydrazine hydrate or phenyl hydrazine by stirring at room temperature for 60 min or by microwave irradiation for 30 min, with lower yields for the latter. The preliminary in vitro antifungal activity of thiosemicarbazones was evaluated against Aspergillus parasiticus and Candida albicans. PMID:22186954

  2. Spectroscopic and biological studies on newly synthesized nickel(II) complexes of semicarbazones and thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar

    2005-12-01

    Nickel(II) complexes, having the general composition Ni(L) 2X 2, have been synthesized [where L: isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC) and 4-aminoacetophenone thiosemicarbazone (LLD) and X = Cl -, 1/2SO 42-]. All the Ni(II) complexes reported here have been characterized by elemental analyses, magnetic moments, IR, electronic and mass spectral studies. All the complexes were found to have magnetic moments corresponding to two unpaired electrons. The possible geometries of the complexes were assigned on the basis of electronic and infrared spectral studies. Newly synthesized ligand and its nickel(II) complexes have been screened against different bacterial and fungal growth.

  3. Synthesis, molecular modeling, and biological evaluation of novel chiral thiosemicarbazone derivatives as potent anticancer agents.

    PubMed

    Taşdemir, Demet; Karaküçük-İyidoğan, Ayşegül; Ulaşli, Mustafa; Taşkin-Tok, Tuğba; Oruç-Emre, Emİne Elçİn; Bayram, Hasan

    2015-02-01

    A series of new chiral thiosemicarbazones derived from homochiral amines in both enantiomeric forms were synthesized and evaluated for their in vitro antiproliferative activity against A549 (human alveolar adenocarcinoma), MCF-7 (human breast adenocarcinoma), HeLa (human cervical adenocarcinoma), and HGC-27 (human stomach carcinoma) cell lines. Some of compounds showed inhibitory activities on the growth of cancer cell lines. Especially, compound exhibited the most potent activity (IC50 4.6 μM) against HGC-27 as compared with the reference compound, sindaxel (IC50 10.3 μM), and could be used as a lead compound to search new chiral thiosemicarbazone derivatives as antiproliferative agents. PMID:25399965

  4. Synthesis, molecular modeling, and biological evaluation of novel chiral thiosemicarbazone derivatives as potent anticancer agents.

    PubMed

    Taşdemir, Demet; Karaküçük-İyidoğan, Ayşegül; Ulaşli, Mustafa; Taşkin-Tok, Tuğba; Oruç-Emre, Emİne Elçİn; Bayram, Hasan

    2015-02-01

    A series of new chiral thiosemicarbazones derived from homochiral amines in both enantiomeric forms were synthesized and evaluated for their in vitro antiproliferative activity against A549 (human alveolar adenocarcinoma), MCF-7 (human breast adenocarcinoma), HeLa (human cervical adenocarcinoma), and HGC-27 (human stomach carcinoma) cell lines. Some of compounds showed inhibitory activities on the growth of cancer cell lines. Especially, compound exhibited the most potent activity (IC50 4.6 μM) against HGC-27 as compared with the reference compound, sindaxel (IC50 10.3 μM), and could be used as a lead compound to search new chiral thiosemicarbazone derivatives as antiproliferative agents.

  5. Structural studies on acetophenone- and benzophenone-derived thiosemicarbazones and their zinc(II) complexes

    NASA Astrophysics Data System (ADS)

    Ferraz, Karina S. O.; Silva, Nayane F.; Da Silva, Jeferson G.; Speziali, Nivaldo L.; Mendes, Isolda C.; Beraldo, Heloisa

    2012-01-01

    In the present work N(3)- meta-chlorophenyl-(HAc3 mCl, 1) and N(3)- meta-fluorphenyl-(HAc3 mF, 2) acetophenone thiosemicarbazone, and N(3)- meta-chlorophenyl-(HBz3 mCl, 3) and N(3)- meta-fluorphenyl-(HBz3 mF, 4) benzophenone thiosemicarbazone were obtained, as well as their zinc(II) complexes [Zn(Ac3 mCl) 2] ( 5), [Zn(Ac3 mF) 2] ( 6), [Zn(Bz3 mCl) 2] ( 7) and [Zn(Bz3 mF) 2] ( 8). Upon re-crystallization in DMSO:acetone conversion of 8 into [Zn(Bz3 mF) 2]·(DMSO) ( 8a) occurred. The crystal structures of 2, 5 and 8a were determined.

  6. Synthesis, biological evaluation and molecular docking of N-phenyl thiosemicarbazones as urease inhibitors.

    PubMed

    Hameed, Abdul; Khan, Khalid Mohammed; Zehra, Syeda Tazeen; Ahmed, Ramasa; Shafiq, Zahid; Bakht, Syeda Mahwish; Yaqub, Muhammad; Hussain, Mazhar; de la Vega de León, Antonio; Furtmann, Norbert; Bajorath, Jürgen; Shad, Hazoor Ahmad; Tahir, Muhammad Nawaz; Iqbal, Jamshed

    2015-08-01

    Urease is an important enzyme which breaks urea into ammonia and carbon dioxide during metabolic processes. However, an elevated activity of urease causes various complications of clinical importance. The inhibition of urease activity with small molecules as inhibitors is an effective strategy for therapeutic intervention. Herein, we have synthesized a series of 19 benzofurane linked N-phenyl semithiocarbazones (3a-3s). All the compounds were screened for enzyme inhibitor activity against Jack bean urease. The synthesized N-phenyl thiosemicarbazones had varying activity levels with IC50 values between 0.077 ± 0.001 and 24.04 ± 0.14 μM compared to standard inhibitor, thiourea (IC50 = 21 ± 0.11 μM). The activities of these compounds may be due to their close resemblance of thiourea. A docking study with Jack bean urease (PDB ID: 4H9M) revealed possible binding modes of N-phenyl thiosemicarbazones. PMID:26119990

  7. Synthesis and Antiproliferative Activity of Steroidal Thiosemicarbazone Platinum (Pt(II)) Complexes

    PubMed Central

    Huang, Yanmin; Kong, Erbin; Gan, Chunfang; Liu, Zhiping; Lin, Qifu; Cui, Jianguo

    2015-01-01

    Steroidal compounds exhibit particular physiological activities. In this paper, some steroidal thiosemicarbazones platinum (Pt(II)) complexes were synthesized by the condensation of steroidal ketones with thiosemicarbazide using estrone, chenodeoxycholic acid, and 7-deoxycholic acid as starting materials and complexation of steroidal thiosesemicarbazones with Pt(II). The complexes were characterized by IR, NMR, and MS, and their antiproliferative activities were evaluated. The results showed that some steroidal thiosemicarbazones platinum (Pt(II)) complexes displayed moderate cytotoxicity to HeLa and Bel-7404 cells. Thereinto, complex 6 showed an excellent inhibited selectivity to HeLa cells with an IC50 value of 9.2 μM and SI value of 21.7. At the same time, all compounds were almost inactive to HEK293T (normal kidney epithelial cells). The information obtained from the studies may be useful for the design of novel chemotherapeutic drugs. PMID:26635511

  8. D-terms from generalized NS-NS fluxes in type II

    NASA Astrophysics Data System (ADS)

    Robbins, Daniel; Wrase, Timm

    2007-12-01

    Orientifolds of type II string theory admit a certain set of generalized NS-NS fluxes, including not only the three-form field strength H, but also metric and non-geometric fluxes, which are related to H by T-duality. We describe in general how these fluxes appear as parameters of an effective Script N = 1 supergravity theory in four dimensions, and in particular how certain generalized NS-NS fluxes can act as charges for R-R axions, leading to D-term contributions to the effective scalar potential. We illustrate these phenomena in type IIB with the example of a certain orientifold of T6/Bbb Z4.

  9. Shortened forms of provocative lead chelation

    SciTech Connect

    Sokas, R.K.; Atleson, J.; Keogh, J.P.

    1988-05-01

    Shortened urinary lead collections following provocative chelation have been standardized for pediatric patients, but have not been considered adequate for adults. This study compared shortened urine collections for lead excretion post chelation with standard 24-hour collections. Thirty-five patients without known current lead exposure and with serum creatinine measurements less than 2 mg/dL were hospitalized and had provocative chelation performed as follows: One gram of CaNa2-ethylenediaminetetraacetic acid (EDTA) was administered in 250 mL of a 5% dextrose in water solution intravenously over one hour; the same dose was repeated 12 hours later. A 24-hour urine collection for lead excretion was begun at the time of initiation of the first dose. At three hours and six hours from start of first dose, each patient was instructed to void, total volume to that point was recorded, and a 10-mL aliquot was withdrawn for lead measurement. Both three-hour and six-hour urinary lead excretion following a single dose of EDTA correlated linearly with 24-hour lead excretion post chelation (r = .89 and .94, respectively). When a 24-hour level of 600 micrograms was defined as true positive the three-hour collection had a sensitivity of 76% and specificity of 95% and six-hour urinary lead excretion had 82% sensitivity and 100% specificity. Mild renal insufficiency (reflected by serum creatinine levels between 1.5 and 2.1 mg/dL) did not significantly alter the correlation between three-, six-, and 24-hour urinary post-chelation lead excretion.

  10. NetSim Project contributions to ns-3

    2012-05-01

    ns-3 is an external (non-LLNL) open-source framework for modeling computer networks. The LLNL NetSim project uses the ns-3 framework to address specific questions in computer network design, operation, and security. As part of the NetSim work, we develop bug fixes, deature enhancements, and new capabilities for the ns-3 framework. The virtual package referenced here, ns-3-contrib, consists of those developments we have (or will) contribute back to the ns-3 project in source code form, for inclusionmore » in future releases of ns-3.« less

  11. Zinc(II)-Thiosemicarbazone Complexes Are Localized to the Lysosomal Compartment Where They Transmetallate with Copper Ions to Induce Cytotoxicity.

    PubMed

    Stacy, Alexandra E; Palanimuthu, Duraippandi; Bernhardt, Paul V; Kalinowski, Danuta S; Jansson, Patric J; Richardson, Des R

    2016-05-26

    As the di-2-pyridylketone thiosemicarbazone (DpT) and 2-acetylpyridine thiosemicarbazone (ApT) series show potent antitumor activity in vitro and in vivo, we synthesized their fluorescent zinc(II) complexes to assess their intracellular distribution. The Zn(II) complexes generally showed significantly greater cytotoxicity than the thiosemicarbazones alone in several tumor cell-types. Notably, specific structure-activity relationships demonstrated the importance of the di-2-pyridyl pharmacophore in their activity. Confocal fluorescence imaging and live cell microscopy showed that the Zn(II) complex of our lead compound, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which is scheduled to enter clinical trials, was localized to lysosomes. Under lysosomal conditions, the Zn(II) complexes were shown to transmetallate with copper ions, leading to redox-active copper complexes that induced lysosomal membrane permeabilization (LMP) and cytotoxicity. This is the first study to demonstrate direct lysosomal targeting of our novel Zn(II)-thiosemicarbazone complexes that mediate their activity via transmetalation with copper ions and LMP. PMID:27023111

  12. Current recommendations for chelation for transfusion-dependent thalassemia.

    PubMed

    Kwiatkowski, Janet L

    2016-03-01

    Regular red cell transfusions used to treat thalassemia cause iron loading that must be treated with chelation therapy. Morbidity and mortality in thalassemia major are closely linked to the adequacy of chelation. Chelation therapy removes accumulated iron and detoxifies iron, which can prevent and reverse much of the iron-mediated organ injury. Currently, three chelators are commercially available--deferoxamine, deferasirox, and deferiprone--and each can be used as monotherapy or in combination. Close monitoring of hepatic and cardiac iron burden is central to tailoring chelation. Other factors, including properties of the individual chelators, ongoing transfusional iron burden, and patient preference, must be considered. Monotherapy generally is utilized if the iron burden is in an acceptable or near-acceptable range and the dose is adjusted accordingly. Combination chelation often is employed for patients with high iron burden, iron-related organ injury, or where adverse effects of chelators preclude administration of an appropriate chelator dose. The combination of deferoxamine and deferiprone is the best studied, but increasing data are available on the safety and efficacy of newer chelator combinations, including deferasirox with deferoxamine and the oral-only combination of deferasirox with deferiprone. The expanding chelation repertoire should enable better control of iron burden and improved outcomes.

  13. Splicing of influenza A virus NS1 mRNA is independent of the viral NS1 protein.

    PubMed

    Robb, Nicole C; Jackson, David; Vreede, Frank T; Fodor, Ervin

    2010-09-01

    RNA segment 8 (NS) of influenza A virus encodes two proteins. The NS1 protein is translated from the unspliced primary mRNA transcript, whereas the second protein encoded by this segment, NS2/NEP, is translated from a spliced mRNA. Splicing of influenza NS1 mRNA is thought to be regulated so that the levels of NS2 spliced transcripts are approximately 10 % of total NS mRNA. Regulation of splicing of the NS1 mRNA has been studied at length, and a number of often-contradictory control mechanisms have been proposed. In this study, we used (32)P-labelled gene-specific primers to investigate influenza A NS1 mRNA splicing regulation. It was found that the efficiency of splicing of NS1 mRNA was maintained at similar levels in both virus infection and ribonucleoprotein-reconstitution assays, and NS2 mRNA comprised approximately 15 % of total NS mRNA in both assays. The effect of NS1 protein expression on the accumulation of viral NS2 mRNA and spliced cellular beta-globin mRNA was analysed, and it was found that NS1 protein expression reduced spliced beta-globin mRNA levels, but had no effect on the accumulation of NS2 mRNA. We conclude that the NS1 protein specifically inhibits the accumulation of cellular RNA polymerase II-driven mRNAs, but does not affect the splicing of its own viral NS1 mRNA.

  14. Synthesis, characterization and binding affinities of rhenium(I) thiosemicarbazone complexes for the estrogen receptor (α/β).

    PubMed

    Núñez-Montenegro, Ara; Carballo, Rosa; Vázquez-López, Ezequiel M

    2014-11-01

    The binding affinities towards estrogen receptors (ERs) α and β of a set of thiosemicarbazone ligands (HL(n)) and their rhenium(I) carbonyl complexes [ReX(HL(n))(CO)3] (X=Cl, Br) were determined by a competitive standard radiometric assay with [(3)H]-estradiol. The ability of the coordinated thiosemicarbazone ligands to undergo deprotonation and the lability of the ReX bond were used as a synthetic strategy to obtain [Re(hpy)(L(n))(CO)3] (hpy=3- or 4-hydroxypyridine). The inclusion of the additional hpy ligand endows the new thiosemicarbazonate complexes with an improved affinity towards the estrogen receptors and, consequently, the values of the inhibition constant (Ki) could be determined for some of them. In general, the values of Ki for both ER subtypes suggest an appreciable selectivity towards ERα.

  15. Paramagnetic lanthanide chelates for multicontrast MRI.

    PubMed

    Cakić, Nevenka; Savić, Tanja; Stricker-Shaver, Janice; Truffault, Vincent; Platas-Iglesias, Carlos; Mirkes, Christian; Pohmann, Rolf; Scheffler, Klaus; Angelovski, Goran

    2016-07-28

    The preparation of a paramagnetic chelator that serves as a platform for multicontrast MRI, and can be utilized either as a T1-weighted, paraCEST or (19)F MRI contrast agent is reported. Its europium(iii) complex exhibits an extremely slow water exchange rate which is optimal for the use in CEST MRI. The potential of this platform was demonstrated through a series of MRI studies on tube phantoms and animals. PMID:27291157

  16. Federal regulation of unapproved chelation products.

    PubMed

    Lee, Charles E

    2013-12-01

    Chelation products can be helpful in the treatment of metal poisoning. However, many unapproved products with unproven effectiveness and safety are marketed to consumers, frequently via the internet. This paper describes the primary responsibility of the Health Fraud and Consumer Outreach Branch of the United States Food and Drug Administration to identify and address health fraud products. Efforts to prevent direct and indirect hazards to the population's health through regulatory actions are described.

  17. Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships

    PubMed Central

    Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G.; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Šimůnek, Tomáš; Richardson, Des R.; Polanski, Jaroslaw

    2014-01-01

    Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized “soft” donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination. PMID:25329549

  18. Acute iron poisoning. Rescue with macromolecular chelators.

    PubMed Central

    Mahoney, J R; Hallaway, P E; Hedlund, B E; Eaton, J W

    1989-01-01

    Acute iron intoxication is a frequent, sometimes life-threatening, form of poisoning. Present therapy, in severe cases, includes oral and intravenous administration of the potent iron chelator, deferoxamine. Unfortunately, high dose intravenous deferoxamine causes acute hypotension additive with that engendered by the iron poisoning itself. To obviate this problem, we have covalently attached deferoxamine to high molecular weight carbohydrates such as dextran and hydroxyethyl starch. These macromolecular forms of deferoxamine do not cause detectable decreases in blood pressure of experimental animals, even when administered intravenously in very large doses, and persist in circulation much longer than the free drug. These novel iron-chelating substances, but not deferoxamine itself, will prevent mortality from otherwise lethal doses of iron administered to mice either orally or intraperitoneally. Further reflecting this enhanced therapeutic efficacy, the high molecular weight iron chelators also abrogate iron-mediated hepatotoxicity, suppressing the release of alanine aminotransferase. We conclude that high molecular weight derivatives of deferoxamine hold promise for the effective therapy of acute iron intoxication and may also be useful in other clinical circumstances in which control of free, reactive iron is therapeutically desirable. PMID:2794068

  19. Evaluation of iron-chelating agents in cultured heart muscle cells. Identification of a potential drug for chelation therapy.

    PubMed

    Sciortino, C V; Byers, B R; Cox, P

    1980-12-01

    Primary cultures of neonatal rat cardiac muscle cells incorporated radioiron from both [55Fe]transferrin and 59FeCl3 (added simultaneously). To evaluate the effect of iron chelators on such uptake, deferri chelators were added 6 hr after addition of the radioiron sources. The microbial chelator agrobactin was significantly more effective than the drug defoxamine in reduction of 55Fe uptake from [55Fe]transferrin; both chelators halted 59Fe3+ uptake. Agrobactin may have potential in chelation therpay for iron-overload disease. Certain other microbial chelators lowered radioiron uptake from either [55Fe]transferrin of 59FeCl3. These chelators should be useful inhibitors for studies of animal cell iron uptake and intracellular iron flow.

  20. Strong effect of copper(II) coordination on antiproliferative activity of thiosemicarbazone-piperazine and thiosemicarbazone-morpholine hybrids.

    PubMed

    Bacher, Felix; Dömötör, Orsolya; Chugunova, Anastasia; Nagy, Nóra V; Filipović, Lana; Radulović, Siniša; Enyedy, Éva A; Arion, Vladimir B

    2015-05-21

    In this study, 2-formylpyridine thiosemicarbazones and three different heterocyclic pharmacophores were combined to prepare thiosemicarbazone–piperazine mPip-FTSC (HL1) and mPip-dm-FTSC (HL2), thiosemicarbazone–morpholine Morph-FTSC (HL3) and Morph-dm-FTSC (HL4), thiosemicarbazone–methylpyrrole-2-carboxylate hybrids mPyrr-FTSC (HL5) and mPyrr-dm-FTSC (HL6) as well as their copper(II) complexes [CuCl(mPipH-FTSC-H)]Cl (1 + H)Cl, [CuCl(mPipH-dm-FTSC-H)]Cl (2 + H)Cl, [CuCl(Morph-FTSC-H)] (3), [CuCl(Morph-dm-FTSC-H)] (4), [CuCl(mPyrr-FTSC-H)(H2O)] (5) and [CuCl(mPyrr-dm-FTSC-H)(H2O)] (6). The substances were characterized by elemental analysis, one- and two-dimensional NMR spectroscopy (HL1–HL6), ESI mass spectrometry, IR and UV–vis spectroscopy and single crystal X-ray diffraction (1–5). All compounds were prepared in an effort to generate potential antitumor agents with an improved therapeutic index. In addition, the effect of structural alterations with organic hybrids on aqueous solubility and copper(II) coordination ability was investigated. Complexation of ligands HL2 and HL4 with copper(II) was studied in aqueous solution by pH-potentiometry, UV–vis spectrophotometry and EPR spectroscopy. Proton dissociation processes of HL2 and HL4 were also characterized in detail and microscopic constants for the Z/E isomers were determined. While the hybrids HL5, HL6 and their copper(II) complexes 5 and 6 proved to be insoluble in aqueous solution, precluding antiproliferative activity studies, the thiosemicarbazone–piperazine and thiosemicarbazone–morpholine hybrids HL1–HL4, as well as copper(II) complexes 1–4 were soluble in water enabling cytotoxicity assays. Interestingly, the metal-free hybrids showed very low or even a lack of cytotoxicity (IC50 values > 300 μM) in two human cancer cell lines HeLa (cervical carcinoma) and A549 (alveolar basal adenocarcinoma), whereas their copper(II) complexes were cytotoxic showing IC50 values from 25.5 to 65.1

  1. Novel thiosemicarbazone derivatives as potential antitumor agents: Synthesis, physicochemical and structural properties, DNA interactions and antiproliferative activity.

    PubMed

    Dilović, Ivica; Rubcić, Mirta; Vrdoljak, Visnja; Kraljević Pavelić, Sandra; Kralj, Marijeta; Piantanida, Ivo; Cindrić, Marina

    2008-05-01

    The paper describes synthesis of several novel thiosemicarbazone derivatives. Furthermore, crystal and molecular structure of 4-diethylamino-salicylaldehyde 4-phenylthiosemicarbazone revealed planarity of conjugated aromatic system, which suggested the possibility of DNA binding by intercalation, especially for here studied naphthalene derivatives. However, here presented DNA binding studies excluded this mode of action. Physicochemical and structural properties of novel derivatives were compared with previously studied analogues, taken as reference compounds, revealing distinctive differences. In addition, novel thiosemicarbazone derivatives (1, 2 and 5-8) clearly display stronger antiproliferative activity on five tumor cell lines than the reference compounds 3 and 4, which supports their further investigation as potential antitumor agents.

  2. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    SciTech Connect

    D’Arcy, Allan Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic; Lim, Siew Pheng; Lefeuvre, Peggy; Erbel, Paul

    2006-02-01

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.

  3. Mechanistic and kinetic characterization of hepatitis C virus NS3 protein interactions with NS4A and protease inhibitors.

    PubMed

    Geitmann, Matthis; Dahl, Göran; Danielson, U Helena

    2011-01-01

    The mechanism and kinetics of the interactions between ligands and immobilized full-length hepatitis C virus (HCV) genotype 1a NS3 have been characterized by SPR biosensor technology. The NS3 interactions for a series of NS3 protease inhibitors as well as for the NS4A cofactor, represented by a peptide corresponding to the sequence interacting with the enzyme, were found to be heterogeneous. It may represent interactions with two stable conformations of the protein. The NS3-NS4A interaction consisted of a high-affinity (K(D) = 50 nM) and a low-affinity (K(D) = 2 µM) interaction, contributing equally to the overall binding. By immobilizing NS3 alone or together with NS4A it was shown that all inhibitors had a higher affinity for NS3 in the presence of NS4A. NS4A thus has a direct effect on the binding of inhibitors to NS3 and not only on catalysis. As predicted, the mechanism-based inhibitor VX 950 exhibited a time-dependent interaction with a slow formation of a stable complex. BILN 2061 or ITMN-191 showed no signs of time-dependent interactions, but ITMN-191 had the highest affinity of the tested compounds, with both the slowest dissociation (k(off)) and fastest association rate, closely followed by BILN 2061. The k(off) for the inhibitors correlated strongly with their NS3 protease inhibitory effect as well as with their effect on replication of viral proteins in replicon cell cultures, confirming the relevance of the kinetic data. This approach for obtaining kinetic and mechanistic data for NS3 protease inhibitor and cofactor interactions is expected to be of importance for understanding the characteristics of HCV NS3 functionality as well as for anti-HCV lead discovery and optimization. PMID:21194118

  4. Chelators whose affinity for calcium is decreased by illumination

    NASA Technical Reports Server (NTRS)

    Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor); Minta, Akwasi (Inventor)

    1987-01-01

    The present invention discloses a group of calcium chelating compounds which have a descreased affinity for calcium following illumination. These new compounds contain a photolabile nitrobenzyl derivative coupled to a tetracarboxylate Ca.sup.2+ chelating parent compound having the octacoordinate chelating groups characteristic of EGTA or BAPTA. In a first form, the new compounds are comprised of a BAPTA-like chelator coupled to a single 2-nitrobenzyl derivative, which in turn is a photochemical precursor of a 2-nitrosobenzophenone. In a second form, the new compounds are comprised of a BAPTA-like chelator coupled to two 2-nitrobenzyl derivatives, themselves photochemical prcursors of the related 2-nitrosobenzophenones. The present invention also discloses a novel method for preparing 1-hydroxy- or 1-alkoxy-1-(2-nitroaryl)-1-aryl methanes. Methanes of this type are critical to the preparation of, or actually constitute, the photolabile Ca.sup.2+ chelating compounds disclosed and claimed herein.

  5. Determinants of Dengue Virus NS4A Protein Oligomerization

    PubMed Central

    Lee, Chia Min; Xie, Xuping; Zou, Jing; Li, Shi-Hua; Lee, Michelle Yue Qi; Dong, Hongping; Qin, Cheng-Feng; Kang, Congbao

    2015-01-01

    ABSTRACT Flavivirus NS4A protein induces host membrane rearrangement and functions as a replication complex component. The molecular details of how flavivirus NS4A exerts these functions remain elusive. Here, we used dengue virus (DENV) as a model to characterize and demonstrate the biological relevance of flavivirus NS4A oligomerization. DENV type 2 (DENV-2) NS4A protein forms oligomers in infected cells or when expressed alone. Deletion mutagenesis mapped amino acids 50 to 76 (spanning the first transmembrane domain [TMD1]) of NS4A as the major determinant for oligomerization, while the N-terminal 50 residues contribute only slightly to the oligomerization. Nuclear magnetic resonance (NMR) analysis of NS4A amino acids 17 to 80 suggests that residues L31, L52, E53, G66, and G67 could participate in oligomerization. Ala substitution for 15 flavivirus conserved NS4A residues revealed that these amino acids are important for viral replication. Among the 15 mutated NS4A residues, 2 amino acids (E50A and G67A) are located within TMD1. Both E50A and G67A attenuated viral replication, decreased NS4A oligomerization, and reduced NS4A protein stability. In contrast, NS4A oligomerization was not affected by the replication-defective mutations (R12A, P49A, and K80A) located outside TMD1. trans complementation experiments showed that expression of wild-type NS4A alone was not sufficient to rescue the replication-lethal NS4A mutants. However, the presence of DENV-2 replicons could partially restore the replication defect of some lethal NS4A mutants (L26A and K80A), but not others (L60A and E122A), suggesting an unidentified mechanism governing the outcome of complementation in a mutant-dependent manner. Collectively, the results have demonstrated the importance of TMD1-mediated NS4A oligomerization in flavivirus replication. IMPORTANCE We report that DENV NS4A forms oligomers. Such NS4A oligomerization is mediated mainly through amino acids 50 to 76 (spanning the first

  6. Heavy metal chelation in neurotoxic exposures.

    PubMed

    Jang, David H; Hoffman, Robert S

    2011-08-01

    Metals such as iron and copper are critical to living organisms, whereas other metals such as lead and arsenic have no known biologic role. Any metals in large amounts may cause toxicity. Many metals cause pervasive systemic effects involving the nervous system, which can be subtle in some cases. Although challenging, the diagnosis and treatment of metal poisoning can be made based on history, physical examination, and the proper use of metal testing. This article focuses on the use, and misuse, of chelation in the diagnosis and management of metal intoxication. PMID:21803213

  7. Exploring the interaction of N/S compounds with a dicopper center: tyrosinase inhibition and model studies.

    PubMed

    Buitrago, Elina; Vuillamy, Alexandra; Boumendjel, Ahcène; Yi, Wei; Gellon, Gisèle; Hardré, Renaud; Philouze, Christian; Serratrice, Guy; Jamet, Hélène; Réglier, Marius; Belle, Catherine

    2014-12-15

    Tyrosinase (Ty) is a copper-containing enzyme widely present in plants, bacteria, and humans, where it is involved in biosynthesis of melanin-type pigments. Development of Ty inhibitors is an important approach to control the production and the accumulation of pigments in living systems. In this paper, we focused our interest in phenylthiourea (PTU) and phenylmethylene thiosemicarbazone (PTSC) recognized as inhibitors of tyrosinase by combining enzymatic studies and coordination chemistry methods. Both are efficient inhibitors of mushroom tyrosinase and they can be considered mainly as competitive inhibitors. Computational studies verify that PTSC and PTU inhibitors interact with the metal center of the active site. The KIC value of 0.93 μM confirms that PTSC is a much more efficient inhibitor than PTU, for which a KIC value of 58 μM was determined. The estimation of the binding free energies inhibitors/Ty confirms the high inhibitor efficiency of PTSC. Binding studies of PTSC along with PTU to a dinuclear copper(II) complex ([Cu2(μ-BPMP)(μ-OH)](ClO4)2 (1); H-BPMP = 2,6-bis-[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol) known to be a structural and functional model for the tyrosinase catecholase activity, have been performed. Interactions of the compounds with the dicopper model complex 1 were followed by spectrophotometry and electrospray ionization (ESI). The molecular structure of 1-PTSC and 1-PTU adducts were determined by single-crystal X-ray diffraction analysis showing for both an unusual bridging binding mode on the dicopper center. These results reflect their adaptable binding mode in relation to the geometry and chelate size of the dicopper center. PMID:25415587

  8. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, Shih-Ger; Littlejohn, David; Shi, Yao

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  9. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  10. Synthesis, experimental and theoretical studies on its crystal structure and FT-IR spectrum of new thiosemicarbazone compound E-2-(4-isopropylbenzylidene)thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Khalaji, Aliakbar Dehno; Mehrani, Sepideh; Eigner, Vaclav; Dusek, Michal

    2013-09-01

    The title compound E-2-(4-isopropylbenzylidene)thiosemicarbazone (1) derived from the reaction of 4-isopropylbenzaldehyde and thiosemicarbazide in ethanol solution has been synthesized and characterized by elemental analyses, FT-IR and 1H NMR spectroscopy and single-crystal X-ray diffraction. Its optimized geometry together with the theoretical assignment of the vibrational frequencies of the title compound has been computed by using density functional theory (DFT) method. In the gas phase the four conformers of the title compound were found and it was found that the conformer Sn1 is the most stable one. The title compound crystallizes in the monoclinic space group P21/c with unit cell parameters: a = 14.4054(4), b = 5.6832(10), c = 14.4337(3) Å, β = 93.306(2)°, V = 1179.70(5) Å3 and Z = 4.

  11. Synthesis of 1H-indole-2,3-dione-3-thiosemicarbazone ribonucleosides as antibacterial agents.

    PubMed

    Kassab, Shaymaa E; Hegazy, Gehan H; Eid, Nahed M; Amin, Kamelia M; El-Gendy, Adel A

    2010-01-01

    A new isatin ribonucleoside (3) was synthesized in a good yield by trimethylsilyl trifluoromethanesulfonate (TMSOTf) catalyzed coupling reaction between the silylated nitrogenated base of 1H-Indole-2,3-dione (1) and 1,2,3,5-tetra-O-acetyl-beta-D-ribfuranose (2). Thiosemicarbazides 4a-e were utilized by the prepared ribonucleoside (3) to give new series of 1H-indole-2,3-dione-3-thiosemicarbazone ribonucleosides 5a-e. All compounds tested as antibacterial agents showed slight inhibitory activity against the selected bacterial strains.

  12. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types

    PubMed Central

    Moussa, Rayan S.; Kovacevic, Zaklina; Richardson, Des R.

    2015-01-01

    Chelators such as 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone (311) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) target tumor cell iron pools and inhibit proliferation. These agents also modulate multiple targets, one of which is the cyclin-dependent kinase inhibitor, p21. Hence, this investigation examined the mechanism of action of these compounds in targeting p21. All the chelators up-regulated p21 mRNA in the five tumor cell-types assessed. In contrast, examining their effect on total p21 protein levels, these agents induced either: (1) down-regulation in MCF-7 cells; (2) up-regulation in SK-MEL-28 and CFPAC-1 cells; or (3) had no effect in LNCaP and SK-N-MC cells. The nuclear localization of p21 was also differentially affected by the ligands depending upon the cell-type, with it being decreased in MCF-7 cells, but increased in SK-MEL-28 and CFPAC-1 cells. Further studies assessing the mechanisms responsible for these effects demonstrated that p21 expression was not correlated with p53 status, suggesting a p53-independent mechanism. Considering this, we examined proteins that modulate p21 independently of p53, namely NDRG1, MDM2 and ΔNp63. These studies demonstrated that a dominant negative MDM2 isoform (p75MDM2) closely resembled p21 expression in response to chelation in three cell lines. These data suggest MDM2 may be involved in the regulation of p21 by chelators. PMID:26335183

  13. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types.

    PubMed

    Moussa, Rayan S; Kovacevic, Zaklina; Richardson, Des R

    2015-10-01

    Chelators such as 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone (311) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) target tumor cell iron pools and inhibit proliferation. These agents also modulate multiple targets, one of which is the cyclin-dependent kinase inhibitor, p21. Hence, this investigation examined the mechanism of action of these compounds in targeting p21. All the chelators up-regulated p21 mRNA in the five tumor cell-types assessed. In contrast, examining their effect on total p21 protein levels, these agents induced either: (1) down-regulation in MCF-7 cells; (2) up-regulation in SK-MEL-28 and CFPAC-1 cells; or (3) had no effect in LNCaP and SK-N-MC cells. The nuclear localization of p21 was also differentially affected by the ligands depending upon the cell-type, with it being decreased in MCF-7 cells, but increased in SK-MEL-28 and CFPAC-1 cells. Further studies assessing the mechanisms responsible for these effects demonstrated that p21 expression was not correlated with p53 status, suggesting a p53-independent mechanism. Considering this, we examined proteins that modulate p21 independently of p53, namely NDRG1, MDM2 and ΔNp63. These studies demonstrated that a dominant negative MDM2 isoform (p75(MDM2)) closely resembled p21 expression in response to chelation in three cell lines. These data suggest MDM2 may be involved in the regulation of p21 by chelators. PMID:26335183

  14. Antiviral activity against the hepatitis C virus (HCV) of 1-indanone thiosemicarbazones and their inclusion complexes with hydroxypropyl-β-cyclodextrin.

    PubMed

    Glisoni, Romina J; Cuestas, María L; Mathet, Verónica L; Oubiña, José R; Moglioni, Albertina G; Sosnik, Alejandro

    2012-10-01

    The hepatitis C virus (HCV) is a major cause of acute and chronic hepatitis in humans. Approximately 5% of the infected people die from cirrhosis or hepatocellular carcinoma. The current standard therapy comprises a combination of pegylated-interferon alpha and ribavirin. Due to the relatively low effectiveness, the prohibitive costs and the extensive side effects of the treatment, an intense research for new direct-acting anti-HCV agents is taking place. Furthermore, NS3 protease inhibitors recently introduced into the market are not effective against all HCV subgenotypes. Thiosemicarbazones (TSCs) have shown antiviral activity against a wide range of DNA and RNA viruses. However, their extremely low aqueous solubility and high self-aggregation tendency often preclude their reliable biological evaluation in vitro. In this work, we investigated and compared for the first time the anti-HCV activity of two 1-indanone TSCs, namely 5,6-dimethoxy-1-indanone TSC and 5,6-dimethoxy-1-indanone N4-allyl TSC, and their inclusion complexes with hydroxypropyl-β-cyclodextrin (HPβ-CD) in Huh-7.5 cells containing the full-length and the subgenomic subgenotype 1b HCV replicon system. Studies of physical stability in culture medium showed that free TSCs precipitated rapidly and formed submicron aggregates. Conversely, TSC complexation with HPβ-CD led to more stable systems with minimal size growth and drug concentration loss. More importantly, both TSCs and their inclusion complexes displayed a potent suppression of the HCV replication in both cell lines with no cytotoxic effects. The mechanism likely involves the inhibition of non-structural proteins of the virus. In addition, findings suggested that the cyclodextrin released the drug to the culture medium over time. This platform could be exploited for the study of the drug toxicity and pharmacokinetics animal models.

  15. Antiviral activity against the hepatitis C virus (HCV) of 1-indanone thiosemicarbazones and their inclusion complexes with hydroxypropyl-β-cyclodextrin.

    PubMed

    Glisoni, Romina J; Cuestas, María L; Mathet, Verónica L; Oubiña, José R; Moglioni, Albertina G; Sosnik, Alejandro

    2012-10-01

    The hepatitis C virus (HCV) is a major cause of acute and chronic hepatitis in humans. Approximately 5% of the infected people die from cirrhosis or hepatocellular carcinoma. The current standard therapy comprises a combination of pegylated-interferon alpha and ribavirin. Due to the relatively low effectiveness, the prohibitive costs and the extensive side effects of the treatment, an intense research for new direct-acting anti-HCV agents is taking place. Furthermore, NS3 protease inhibitors recently introduced into the market are not effective against all HCV subgenotypes. Thiosemicarbazones (TSCs) have shown antiviral activity against a wide range of DNA and RNA viruses. However, their extremely low aqueous solubility and high self-aggregation tendency often preclude their reliable biological evaluation in vitro. In this work, we investigated and compared for the first time the anti-HCV activity of two 1-indanone TSCs, namely 5,6-dimethoxy-1-indanone TSC and 5,6-dimethoxy-1-indanone N4-allyl TSC, and their inclusion complexes with hydroxypropyl-β-cyclodextrin (HPβ-CD) in Huh-7.5 cells containing the full-length and the subgenomic subgenotype 1b HCV replicon system. Studies of physical stability in culture medium showed that free TSCs precipitated rapidly and formed submicron aggregates. Conversely, TSC complexation with HPβ-CD led to more stable systems with minimal size growth and drug concentration loss. More importantly, both TSCs and their inclusion complexes displayed a potent suppression of the HCV replication in both cell lines with no cytotoxic effects. The mechanism likely involves the inhibition of non-structural proteins of the virus. In addition, findings suggested that the cyclodextrin released the drug to the culture medium over time. This platform could be exploited for the study of the drug toxicity and pharmacokinetics animal models. PMID:22885176

  16. Novel heterocyclic thiosemicarbazones derivatives as colorimetric and “turn on” fluorescent sensors for fluoride anion sensing employing hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, S. L.; Saravana Kumar, M.; Sreeja, P. B.; Sreekanth, A.

    2013-09-01

    Two novel heterocyclic thiosemicarbazone derivatives have been synthesized, and characterized, by means of spectroscopic and single crystal X-ray diffraction methods. Their chromophoric-fluorogenic response towards anions in competing solvent dimethyl sulfoxide (DMSO) was studied. The receptor shows selective recognition towards fluoride anion. The binding affinity of the receptors with fluoride anion was calculated using UV-visible and fluorescence spectroscopic techniques.

  17. Chelation treatment of neurological Wilson's disease.

    PubMed

    Walshe, J M; Yealland, M

    1993-03-01

    The results of chelation treatment of 137 patients presenting with neurological Wilson's disease are described, together with the more commonly observed toxic reactions to the various drugs employed. Fifty-seven patients made an excellent response to treatment and became symptom free. Thirty-six patients made a good recovery, but were left with some minor neurological deficit. Twenty-four patients had a poor response: although the disease process was arrested they were left more or less disabled. Twenty patients died: nine had little or no treatment, but 11 died despite apparently adequate chelation therapy. There was no obvious reason for this failure. The liver copper level was estimated in six of these patients: it was still significantly elevated in only one, but in all four in whom it was possible to make the determination, the concentration of copper in the basal ganglia was in excess of 45 micrograms/g wet weight. It was not apparent why adequate therapy failed to remove copper from the brains of these patients. There was no obvious clinical, histological or biochemical indicator of failure to respond to treatment. Initial deterioration before improvement was seen in 30 patients: the prognosis for a useful recovery was not necessarily worse than that in patients who did not show this phenomenon.

  18. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination.

    PubMed

    Beatty, P Robert; Puerta-Guardo, Henry; Killingbeck, Sarah S; Glasner, Dustin R; Hopkins, Kaycie; Harris, Eva

    2015-09-01

    The four dengue virus serotypes (DENV1 to DENV4) are mosquito-borne flaviviruses that cause up to ~100 million cases of dengue annually worldwide. Severe disease is thought to result from immunopathogenic processes involving serotype cross-reactive antibodies and T cells that together induce vasoactive cytokines, causing vascular leakage that leads to shock. However, no viral proteins have been directly implicated in triggering endothelial permeability, which results in vascular leakage. DENV nonstructural protein 1 (NS1) is secreted and circulates in patients' blood during acute infection; high levels of NS1 are associated with severe disease. We show that inoculation of mice with DENV NS1 alone induces both vascular leakage and production of key inflammatory cytokines. Furthermore, simultaneous administration of NS1 with a sublethal dose of DENV2 results in a lethal vascular leak syndrome. We also demonstrate that NS1 from DENV1, DENV2, DENV3, and DENV4 triggers endothelial barrier dysfunction, causing increased permeability of human endothelial cell monolayers in vitro. These pathogenic effects of physiologically relevant amounts of NS1 in vivo and in vitro were blocked by NS1-immune polyclonal mouse serum or monoclonal antibodies to NS1, and immunization of mice with NS1 from DENV1 to DENV4 protected against lethal DENV2 challenge. These findings add an important and previously overlooked component to the causes of dengue vascular leak, identify a new potential target for dengue therapeutics, and support inclusion of NS1 in dengue vaccines. PMID:26355030

  19. NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex.

    PubMed

    Kim, Young Mee; Gayen, Shovanlal; Kang, CongBao; Joy, Joma; Huang, Qiwei; Chen, Angela Shuyi; Wee, John Liang Kuan; Ang, Melgious Jin Yan; Lim, Huichang Annie; Hung, Alvin W; Li, Rong; Noble, Christian G; Lee, Le Tian; Yip, Andy; Wang, Qing-Yin; Chia, Cheng San Brian; Hill, Jeffrey; Shi, Pei-Yong; Keller, Thomas H

    2013-05-01

    The dengue virus (DENV) is a mosquito-borne pathogen responsible for an estimated 100 million human infections annually. The viral genome encodes a two-component trypsin-like protease that contains the cofactor region from the nonstructural protein NS2B and the protease domain from NS3 (NS3pro). The NS2B-NS3pro complex plays a crucial role in viral maturation and has been identified as a potential drug target. Using a DENV protease construct containing NS2B covalently linked to NS3pro via a Gly4-Ser-Gly4 linker ("linked protease"), previous x-ray crystal structures show that the C-terminal fragment of NS2B is remote from NS3pro and exists in an open state in the absence of an inhibitor; however, in the presence of an inhibitor, NS2B complexes with NS3pro to form a closed state. This linked enzyme produced NMR spectra with severe signal overlap and line broadening. To obtain a protease construct with a resolved NMR spectrum, we expressed and purified an unlinked protease complex containing a 50-residue segment of the NS2B cofactor region and NS3pro without the glycine linker using a coexpression system. This unlinked protease complex was catalytically active at neutral pH in the absence of glycerol and produced dispersed cross-peaks in a (1)H-(15)N heteronuclear single quantum correlation spectrum that enabled us to conduct backbone assignments using conventional techniques. In addition, titration with an active-site peptide aldehyde inhibitor and paramagnetic relaxation enhancement studies demonstrated that the unlinked DENV protease exists predominantly in a closed conformation in solution. This protease complex can serve as a useful tool for drug discovery against DENV.

  20. A Closer Look at the NS1 of Influenza Virus

    PubMed Central

    Dundon, William G.; Capua, Ilaria

    2009-01-01

    The Non-Structural 1 (NS1) protein is a multifactorial protein of type A influenza viruses that plays an important role in the virulence of the virus. A large amount of what we know about this protein has been obtained from studies using human influenza isolates and, consequently, the human NS1 protein. The current global interest in avian influenza, however, has highlighted a number of sequence and functional differences between the human and avian NS1. This review discusses these differences in addition to describing potential uses of NS1 in the management and control of avian influenza outbreaks. PMID:21994582

  1. Anthracene-based inhibitors of dengue virus NS2B-NS3 protease.

    PubMed

    Tomlinson, Suzanne M; Watowich, Stanley J

    2011-02-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that has strained global healthcare systems throughout tropical and subtropical regions of the world. In addition to plaguing developing nations, it has re-emerged in several developed countries with recent outbreaks in the USA (CDC, 2010), Australia (Hanna et al., 2009), Taiwan (Kuan et al., 2010) and France (La Ruche et al., 2010). DENV infection can cause significant disease, including dengue fever, dengue hemorrhagic fever, dengue shock syndrome, and death. There are no approved vaccines or antiviral therapies to prevent or treat dengue-related illnesses. However, the viral NS2B-NS3 protease complex provides a strategic target for antiviral drug development since NS3 protease activity is required for virus replication. Recently, we reported two compounds with inhibitory activity against the DENV protease in vitro and antiviral activity against dengue 2 (DEN2V) in cell culture (Tomlinson et al., 2009a). Analogs of one of the lead compounds were purchased, tested in protease inhibition assays, and the data evaluated with detailed kinetic analyses. A structure activity relationship (SAR) identified key atomic determinants (i.e. functional groups) important for inhibitory activity. Four "second series" analogs were selected and tested to validate our SAR and structural models. Here, we report improvements to inhibitory activity ranging between ∼2- and 60-fold, resulting in selective low micromolar dengue protease inhibitors.

  2. Discovery of Metal Ions Chelator Quercetin Derivatives with Potent Anti-HCV Activities.

    PubMed

    Zhong, Dongwei; Liu, Mingming; Cao, Yang; Zhu, Yelin; Bian, Shihui; Zhou, Jiayi; Wu, Fengjie; Ryu, Kum-Chol; Zhou, Lu; Ye, Deyong

    2015-04-16

    Analogues or isosteres of α,γ-diketoacid (DKA) 1a show potent inhibition of hepatitis C virus (HCV) NS5B polymerase through chelation of the two magnesium ions at the active site. The anti-HCV activity of the flavonoid quercetin (2) could partly be attributed to it being a structural mimic of DKAs. In order to delineate the structural features required for the inhibitory effect and improve the anti-HCV potency, two novel types of quercetin analogues, 7-O-arylmethylquercetins and quercetin-3-O-benzoic acid esters, were designed, synthesized and evaluated for their anti-HCV properties in cell-based assays. Among the 38 newly synthesized compounds, 7-O-substituted derivative 3i and 3-O-substituted derivative 4f were found to be the most active in the corresponding series (EC50 = 3.8 μM and 9.0 μΜ, respectively). Docking studies suggested that the quercetin analogues are capable of establishing key coordination with the two magnesium ions as well as interactions with residues at the active site of HCV NS5B.

  3. Generating nanoparticles containing a new 4-nitrobenzaldehyde thiosemicarbazone compound with antileishmanial activity.

    PubMed

    Britta, Elizandra Aparecida; da Silva, Cleuza Conceição; Rubira, Adley Forti; Nakamura, Celso Vataru; Borsali, Redouane

    2016-12-01

    Thiosemicarbazones are an important class of compounds that have been extensively studied in recent years, mainly because of their broad profile of pharmacological activity. A new 4-nitrobenzaldehyde thiosemicarbazone compound (BZTS) that was derived from S-limonene has been demonstrated to have significant antiprotozoan activity. However, the hydrophobic characteristic of BZTS limits its administration and results in low oral bioavailability. In the present study, we proposed the synthesis of nanoparticle-based block copolymers that can encapsulate BZTS, with morphological evaluation of the nanoparticle suspensions being performed by transmission and cryo-transmission electronic microscopy. The mean particle sizes of the nanoparticle suspensions were determined by static light and dynamic light scattering (SLS/DLS), and the hydrodynamic radius (Rh) was determined using the Stokes-Einstein equation. The zeta potential (ζ) and polydispersity index (PDI) were also determined. The entrapment encapsulation efficiency of the BZTS nanoparticles was measured by ultraviolet spectrophotometry. In vitro activity of BZTS nanoparticle suspensions against intracellular amastigotes of Leishmania amazonensis and cytotoxic activity were also evaluated. The results showed the production of spherical nanoparticles with varied sizes depending on the hydrophobic portion of the amphiphilic diblock copolymers used. Significant concentration-dependent inhibitory activity against intracellular amastigotes was observed, and low cytotoxic activity was demonstrated against macrophages. PMID:27612813

  4. Generating nanoparticles containing a new 4-nitrobenzaldehyde thiosemicarbazone compound with antileishmanial activity.

    PubMed

    Britta, Elizandra Aparecida; da Silva, Cleuza Conceição; Rubira, Adley Forti; Nakamura, Celso Vataru; Borsali, Redouane

    2016-12-01

    Thiosemicarbazones are an important class of compounds that have been extensively studied in recent years, mainly because of their broad profile of pharmacological activity. A new 4-nitrobenzaldehyde thiosemicarbazone compound (BZTS) that was derived from S-limonene has been demonstrated to have significant antiprotozoan activity. However, the hydrophobic characteristic of BZTS limits its administration and results in low oral bioavailability. In the present study, we proposed the synthesis of nanoparticle-based block copolymers that can encapsulate BZTS, with morphological evaluation of the nanoparticle suspensions being performed by transmission and cryo-transmission electronic microscopy. The mean particle sizes of the nanoparticle suspensions were determined by static light and dynamic light scattering (SLS/DLS), and the hydrodynamic radius (Rh) was determined using the Stokes-Einstein equation. The zeta potential (ζ) and polydispersity index (PDI) were also determined. The entrapment encapsulation efficiency of the BZTS nanoparticles was measured by ultraviolet spectrophotometry. In vitro activity of BZTS nanoparticle suspensions against intracellular amastigotes of Leishmania amazonensis and cytotoxic activity were also evaluated. The results showed the production of spherical nanoparticles with varied sizes depending on the hydrophobic portion of the amphiphilic diblock copolymers used. Significant concentration-dependent inhibitory activity against intracellular amastigotes was observed, and low cytotoxic activity was demonstrated against macrophages.

  5. Lanthanum(III) and praseodymium(III) complexes with isatin thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Rai, Anita; Sengupta, Soumitra K.; Pandey, Om P.

    2005-09-01

    Ten new lanthanum(III) and praseodymium(III) complexes of the general formula Na[La(L) 2H 2O] (Ln = La(III) or Pr(III); LH 2 = thiosemicarbazones) derived from the condensation of isatin with 4-phenyl thiosemicarbazide, 4-(4-chlorophenyl) thiosemicarbazide, 4-(2-nitrophenyl) thiosemicarbazide, 4-(2-bromophenyl) thiosemicarbazide and 4-(2-methylphenyl) thiosemicarbazide, have been synthesized in methanol in presence of sodium hydroxide. The XRD spectra of the complexes were monitored to verify complex formation. The complexes have also been characterized by elemental analysis, molar conductance, electronic absorption and fluorescence, infrared, far infrared, 1H and 13C NMR spectral studies. Thermal studies of these complexes have been carried out in the temperature range 25-800 °C using TG, DTG and DTA techniques. All these complexes decompose gradually with the formation of Ln 2O 3 as the end product. The Judd-ofelt intensity parameter, oscillator strength, transition probability, stimulated emission cross section for different transitions of Pr 3+ for 4-phenyl thiosemicarbazones have been calculated.

  6. Cytotoxic gallium complexes containing thiosemicarbazones derived from 9-anthraldehyde: Molecular docking with biomolecules

    NASA Astrophysics Data System (ADS)

    Beckford, Floyd A.; Brock, Alyssa; Gonzalez-Sarrías, Antonio; Seeram, Navindra P.

    2016-10-01

    We have synthesized a trio of gallium complexes bearing 9-anthraldehyde thiosemicarbazones. The complexes were assessed for their anticancer activity and their biophysical reactivity was also investigated. The three complexes displayed good cytotoxic profiles against two human colon cancer cell lines, HCT-116 and Caco-2. The IC50 ranged from 4.7 to 44.1 μM with the complex having an unsubstituted amino group on the thiosemicarbazone being the most active. This particular complex also showed a high therapeutic index. All three complexes bind strongly to DNA via intercalation with binding constants ranging from 7.46 × 104 M-1 to 3.25 × 105 M-1. The strength of the binding cannot be directly related to the level of anticancer activity. The complexes also bind strongly to human serum albumin with binding constants on the order of 104-105 M-1 as well. The complexes act as chemical nucleases as evidenced by their ability to cleave pBR322 plasmid DNA. The binding constants along with the cleavage results may suggest that the extent of DNA interaction is not directly correlated with anticancer activity. The results of docking studies with DNA, ribonucleotide reductase and human serum albumin, however showed that the complex with the best biological activity had the largest binding constant to DNA.

  7. Lanthanum(III) and praseodymium(III) complexes with isatin thiosemicarbazones.

    PubMed

    Rai, Anita; Sengupta, Soumitra K; Pandey, Om P

    2005-09-01

    Ten new lanthanum(III) and praseodymium(III) complexes of the general formula Na[La(L)2H2O] (Ln=La(III) or Pr(III); LH2=thiosemicarbazones) derived from the condensation of isatin with 4-phenyl thiosemicarbazide, 4-(4-chlorophenyl) thiosemicarbazide, 4-(2-nitrophenyl) thiosemicarbazide, 4-(2-bromophenyl) thiosemicarbazide and 4-(2-methylphenyl) thiosemicarbazide, have been synthesized in methanol in presence of sodium hydroxide. The XRD spectra of the complexes were monitored to verify complex formation. The complexes have also been characterized by elemental analysis, molar conductance, electronic absorption and fluorescence, infrared, far infrared, 1H and 13C NMR spectral studies. Thermal studies of these complexes have been carried out in the temperature range 25-800 degrees C using TG, DTG and DTA techniques. All these complexes decompose gradually with the formation of Ln2O3 as the end product. The Judd-ofelt intensity parameter, oscillator strength, transition probability, stimulated emission cross section for different transitions of Pr3+ for 4-phenyl thiosemicarbazones have been calculated.

  8. Vanadium(IV/V) complexes of Triapine and related thiosemicarbazones: Synthesis, solution equilibrium and bioactivity.

    PubMed

    Kowol, Christian R; Nagy, Nóra V; Jakusch, Tamás; Roller, Alexander; Heffeter, Petra; Keppler, Bernhard K; Enyedy, Éva A

    2015-11-01

    The stoichiometry and thermodynamic stability of vanadium(IV/V) complexes of Triapine and two related α(N)-heterocyclic thiosemicarbazones (TSCs) with potential antitumor activity have been determined by pH-potentiometry, EPR and (51)V NMR spectroscopy in 30% (w/w) dimethyl sulfoxide/water solvent mixtures. In all cases, mono-ligand complexes in different protonation states were identified. Dimethylation of the terminal amino group resulted in the formation of vanadium(IV/V) complexes with considerably higher stability. Three of the most stable complexes were also synthesized in solid state and comprehensively characterized. The biological evaluation of the synthesized vanadium complexes in comparison to the metal-free ligands in different human cancer cell lines revealed only minimal influence of the metal ion. Thus, in addition the coordination ability of salicylaldehyde thiosemicarbazone (STSC) to vanadium(IV/V) ions was investigated. The exchange of the pyridine nitrogen of the α(N)-heterocyclic TSCs to a phenolate oxygen in STSC significantly increased the stability of the complexes in solution. Finally, this also resulted in increased cytotoxicity activity of a vanadium(V) complex of STSC compared to the metal-free ligand.

  9. Cytotoxic gallium complexes containing thiosemicarbazones derived from 9-anthraldehyde: Molecular docking with biomolecules

    NASA Astrophysics Data System (ADS)

    Beckford, Floyd A.; Brock, Alyssa; Gonzalez-Sarrías, Antonio; Seeram, Navindra P.

    2016-10-01

    We have synthesized a trio of gallium complexes bearing 9-anthraldehyde thiosemicarbazones. The complexes were assessed for their anticancer activity and their biophysical reactivity was also investigated. The three complexes displayed good cytotoxic profiles against two human colon cancer cell lines, HCT-116 and Caco-2. The IC50 ranged from 4.7 to 44.1 μM with the complex having an unsubstituted amino group on the thiosemicarbazone being the most active. This particular complex also showed a high therapeutic index. All three complexes bind strongly to DNA via intercalation with binding constants ranging from 7.46 × 104 M-1 to 3.25 × 105 M-1. The strength of the binding cannot be directly related to the level of anticancer activity. The complexes also bind strongly to human serum albumin with binding constants on the order of 104-105 M-1 as well. The complexes act as chemical nucleases as evidenced by their ability to cleave pBR322 plasmid DNA. The binding constants along with the cleavage results may suggest that the extent of DNA interaction is not directly correlated with anticancer activity. The results of docking studies with DNA, ribonucleotide reductase and human serum albumin, however showed that the complex with the best biological activity had the largest binding constant to DNA.

  10. Differential ferrioxamine test for measuring chelatable body iron

    PubMed Central

    Fielding, J.

    1965-01-01

    The differential ferrioxamine test is a simple method for the measurement of chelation of body iron by desferrioxamine. A single six-hour specimen of urine is obtained after intravenous Desferal, accompanied by 59Fe-ferrioxamine. Two values are measured: Fd, the excretion of ferrioxamine derived from body iron by chelation, and Fex, the proportion of ferrioxamine excreted from a known intravenous dose. The data enables Fv, chelation of iron in vivo, to be calculated by simple proportion. Desferrioxamine chelation proceeds for about half an hour after injection. The results in normal subjects, in cases with known high iron stores, and in cases of iron-deficiency anaemia are described. High, normal, and low body iron states have been differentiated. Fv values in the higher ranges obtained in iron-storage diseases and in haemolytic states are differentiated by the pattern of excretion, high Fd values and low Fex values respectively. It is suggested that there are two main sources of chelatable body iron: as ferritin-haemosiderin and as iron newly released from haem in a more readily chelatable form. The significance of variable chelation susceptibility in iron metabolism is briefly discussed. It is suggested that variable chelatability of different sources of body iron may explain the preferential utilization of iron released from red cells or absorbed from the intestine, rather than storage iron, in the biosynthesis of haem. PMID:14247711

  11. Chelation Treatment for Autism Spectrum Disorders: A Systematic Review

    ERIC Educational Resources Information Center

    Davis, Tonya N.; O'Reilly, Mark; Kang, Soyeon; Lang, Russell; Rispoli, Mandy; Sigafoos, Jeff; Lancioni, Giulio; Copeland, Daelynn; Attai, Shanna; Mulloy, Austin

    2013-01-01

    Chelation treatment is used to eliminate specific metals from the body, such as mercury. It has been hypothesized that mercury poisoning may be a factor in autism and data suggest that perhaps 7% of individuals with autism spectrum disorder (ASD) have received chelation treatment. It would therefore seem timely to review studies investigating the…

  12. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  13. Clawing Back: Broadening the Notion of Metal Chelators in Medicine

    PubMed Central

    Franz, Katherine J.

    2013-01-01

    The traditional notion of chelation therapy is the administration of a chemical agent to remove metals from the body. But formation of a metal-chelate can have biological ramifications that are much broader than metal elimination. Exploring these other possibilities could lead to pharmacological interventions that alter the concentration, distribution, or reactivity of metals in targeted ways for therapeutic benefit. This review highlights recent examples that showcase four general strategies of using principles of metal chelation in medicinal contexts beyond the traditional notion of chelation therapy. These strategies include altering metal biodistribution, inhibiting specific metalloenzymes associated with disease, enhancing the reactivity of a metal complex to promote cytotoxicity, and conversely, passivating the reactivity of metals by site-activated chelation to prevent cytotoxicity. PMID:23332666

  14. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals†

    PubMed Central

    Cai, Zhengxin; Anderson, Carolyn J.

    2014-01-01

    The development of chelating agents for copper radionuclides in positron emission tomography radiopharmaceuticals has been a highly active and important area of study in recent years. The rapid evolution of chelators has resulted in highly specific copper chelators that can be readily conjugated to biomolecules and efficiently radiolabeled to form stable complexes in vivo. Chelators are not only designed for conjugation to monovalent biomolecules but also for incorporation into multivalent targeting ligands such as theranostic nanoparticles. These advancements have strengthened the role of copper radionuclides in the fields of nuclear medicine and molecular imaging. This review emphasizes developments of new copper chelators that have most greatly advanced the field of copper-based radiopharmaceuticals over the past 5 years. PMID:24347474

  15. Balance of RNA sequence requirement and NS3/NS3a expression of segment 10 of orbiviruses.

    PubMed

    Feenstra, Femke; van Gennip, René G P; Schreuder, Myrte; van Rijn, Piet A

    2016-02-01

    Orbiviruses are insect-transmitted, non-enveloped viruses with a ten-segmented dsRNA genome of which the bluetongue virus (BTV) is the prototype. Viral non-structural protein NS3/NS3a is encoded by genome segment 10 (Seg-10), and is involved in different virus release mechanisms. This protein induces specific release via membrane disruptions and budding in both insect and mammalian cells, but also the cytopathogenic release that is only seen in mammalian cells. NS3/NS3a is not essential for virus replication in vitro with BTV Seg-10 containing RNA elements essential for virus replication, even if protein is not expressed. Recently, new BTV serotypes with distinct NS3/NS3a sequence and cell tropism have been identified. Multiple studies have hinted at the importance of Seg-10 in orbivirus replication, but the exact prerequisites are still unknown. Here, more insight is obtained with regard to the needs for orbivirus Seg-10 and the balance between protein expression and RNA elements. Multiple silent mutations in the BTV NS3a ORF destabilized Seg-10, resulting in deletions and sequences originating from other viral segments being inserted, indicating strong selection at the level of RNA during replication in mammalian cells in vitro. The NS3a ORFs of other orbiviruses were successfully exchanged in BTV1 Seg-10, resulting in viable chimeric viruses. NS3/NS3a proteins in these chimeric viruses were generally functional in mammalian cells, but not in insect cells. NS3/NS3a of the novel BTV serotypes 25 and 26 affected virus release from Culicoides cells, which might be one of the reasons for their distinct cell tropism. PMID:26644214

  16. A ns-Pulse Laser Microthruster

    SciTech Connect

    Phipps, Claude R.; Luke, James R.

    2006-05-02

    We have developed a prototype device which demonstrates the feasibility of using ns-duration laser pulses in a laser microthruster. Relative to the ms-duration thrusters which we have demonstrated in the past, this change offers the use of any target material, the use of reflection-mode target illumination, and adjustable specific impulse. Specific impulse is adjusted by varying laser intensity on target. In this way, we were able to vary specific impulse from 200s to 3,200s on gold. We used a Concepts Research, Inc. microchip laser with 170mW average optical power, 8kHz repetition rate and 20{mu}J pulse energy for many of the measurements. Thrust was in the 100nN - 1{mu}N range for all the work, requiring development of an extremely sensitive, low-noise thrust stand. We will discuss the design of metallic fuel delivery systems. Ablation efficiency near 100% was observed. Results obtained on metallic fuel systems agreed with simulations. We also report time-of-flight measurements on ejected metal ions, which gave velocities up to 80km/s.

  17. Brazilian Flavivirus phylogeny based on NS5.

    PubMed

    Baleotti, Flúvia Graciela; Moreli, Marcos Lázaro; Figueiredo, Luiz Tadeu Moraes

    2003-04-01

    In this work, a comprehensive phylogenetic study based on 600 base pair nucleotide and on putative 200 amino acid sequences of NS5 was carried out in order to establish genetic relationships among 15 strains of 10 Brazilian flaviviruses: Bussuquara, Cacipacore, dengue type 1, 2 and 4, Iguape, Ilheus, Rocio, Saint Louis encephalitis (SLE), and yellow fever. Phylogenetic trees were created by neighbor-joining and maximum parsimony methods. These trees showed Brazilian flaviviruses grouped into three main branches: yellow fever branch, dengue branch subdivided in types 1, 2 and 4 branches, and Japanese encephalitis virus (JEV) complex branch including SLE virus strains, Cacipacore, Iguape, Rocio, Ilheus and Bussuquara. Viruses transmitted by Aedes mosquitoes, such as dengue and urban yellow fever, that are also the only Flavivirus causing hemorrhagic fevers in Brazil, were grouped in the same cluster. Encephalitis associated viruses, transmitted by Culex mosquitoes such as JEV complex branch including SLE virus strains, Cacipacore, Iguape, Rocio, Ilheus and Bussuquara were also grouped in the same clade.

  18. Synergistic Activity of Combined NS5A Inhibitors

    PubMed Central

    Nower, Peter T.; Gao, Min; Fridell, Robert; Wang, Chunfu; Hewawasam, Piyasena; Lopez, Omar; Tu, Yong; Meanwell, Nicholas A.; Belema, Makonen; Roberts, Susan B.; Cockett, Mark; Sun, Jin-Hua

    2015-01-01

    Daclatasvir (DCV) is a first-in-class hepatitis C virus (HCV) nonstructural 5A replication complex inhibitor (NS5A RCI) that is clinically effective in interferon-free combinations with direct-acting antivirals (DAAs) targeting alternate HCV proteins. Recently, we reported NS5A RCI combinations that enhance HCV inhibitory potential in vitro, defining a new class of HCV inhibitors termed NS5A synergists (J. Sun, D. R. O’Boyle II, R. A. Fridell, D. R. Langley, C. Wang, S. Roberts, P. Nower, B. M. Johnson F. Moulin, M. J. Nophsker, Y. Wang, M. Liu, K. Rigat, Y. Tu, P. Hewawasam, J. Kadow, N. A. Meanwell, M. Cockett, J. A. Lemm, M. Kramer, M. Belema, and M. Gao, Nature 527:245–248, 2015, doi:10.1038/nature15711). To extend the characterization of NS5A synergists, we tested new combinations of DCV and NS5A synergists against genotype (gt) 1 to 6 replicons and gt 1a, 2a, and 3a viruses. The kinetics of inhibition in HCV-infected cells treated with DCV, an NS5A synergist (NS5A-Syn), or a combination of DCV and NS5A-Syn were distinctive. Similar to activity observed clinically, DCV caused a multilog drop in HCV, followed by rebound due to the emergence of resistance. DCV–NS5A-Syn combinations were highly efficient at clearing cells of viruses, in line with the trend seen in replicon studies. The retreatment of resistant viruses that emerged using DCV monotherapy with DCV–NS5A-Syn resulted in a multilog drop and rebound in HCV similar to the initial decline and rebound observed with DCV alone on wild-type (WT) virus. A triple combination of DCV, NS5A-Syn, and a DAA targeting the NS3 or NS5B protein cleared the cells of viruses that are highly resistant to DCV. Our data support the observation that the cooperative interaction of DCV and NS5A-Syn potentiates both the genotype coverage and resistance barrier of DCV, offering an additional DAA option for combination therapy and tools for explorations of NS5A function. PMID:26711745

  19. Chelation in metal intoxication XXI: chelation in lead intoxication during vitamin B complex deficiency

    SciTech Connect

    Not Available

    1986-09-01

    The vitamin B-complex deficiency increases the vulnerability to neuro- and systemic toxicity of Pb in young rats. Thus, the nutritional status of vitamins like that of protein or minerals seems to influence the etiology of Pb toxicity and may be expected to affect the response toward Pb chelators. 2,3 dimercaptosuccinic acid (DMSA) and N-(2-hydroxyethyl) ethylene-diamine triacetic acid (HEDTA) have been found to be effective antidotes to Pb intoxication. In the present study, these selective metal chelating agents were compared for their ability to reduce the body burden of Pb and restore the altered biochemical parameters in young developing Pb intoxicated rats maintained on normal or vitamin B-complex deficient diet. The investigation was aimed to suggest suitable prophylaxis of Pb poisoning prevalent among children who may also be suffering from vitamin deficiency in developing and poor countries.

  20. Relationship between conformational flexibility and chelate cooperativity.

    PubMed

    Misuraca, M Cristina; Grecu, Tudor; Freixa, Zoraida; Garavini, Valentina; Hunter, Christopher A; van Leeuwen, Piet W N M; Segarra-Maset, M Dolores; Turega, Simon M

    2011-04-15

    A family of four biscarbamates (AA) and four bisphenols (DD) were synthesized, and H-bonding interactions between all AA•DD combinations were characterized using (1)H NMR titrations in carbon tetrachloride. A chemical double mutant cycle analysis shows that there are no secondary electrostatic interactions or allosteric cooperativity in these systems, and the system therefore provides an ideal platform for investigating the relationship between chemical structure and chelate cooperativity. Effective molarities (EMs) were measured for 12 different systems, where the number of rotors in the chains connecting the two H-bond sites was varied from 5 to 20. The association constants vary by less than an order of magnitude for all 12 complexes, and the variation in EM is remarkably small (0.1-0.9 M). The results provide a relationship between EM and the number of rotors in the connecting chains (r): EM ≈ 10r(-3/2). The value of 10 M is the upper limit for the value of EM for a noncovalent intramolecular interaction. Introduction of rotors reduces the value of EM from this maximum in accord with a random walk analysis of the encounter probability of the chain ends (r(-3/2)). Noncovalent EMs never reach the very high values observed for covalent processes, which places limitations on the magnitudes of the effects that one is likely to achieve through the use of chelate cooperativity in supramolecular assembly and catalysis. On the other hand, the decrease in EM due to the introduction of conformational flexibility is less dramatic than one might expect based on the behavior of covalent systems, which limits the losses in binding affinity caused by poor preorganization of the interaction sites.

  1. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions. PMID:23558696

  2. Fixation kinetics of chelated and non-chelated zinc in semi-arid alkaline soils: application to zinc management

    NASA Astrophysics Data System (ADS)

    Udeigwe, Theophilus K.; Eichmann, Madeleine; Menkiti, Matthew C.

    2016-07-01

    This study was designed to examine the fixation pattern and kinetics of zinc (Zn) in chelated (ethylenediaminetetraacetic acid, EDTA) and non-chelated mixed micronutrient systems of semi-arid alkaline soils from the Southern High Plains, USA. Soils were characterized for a suite of chemical and physical properties and data obtained from extraction experiments fitted to various kinetic models. About 30 % more plant-available Zn was fixed in the non-chelated system within the first 14 days with only about 18 % difference observed between the two systems by day 90, suggesting that the effectiveness of the chelated compounds tended to decrease over time. The strengths of the relationships of change in available Zn with respect to other micronutrients (copper, iron, and manganese) were higher and more significant in the non-chelated system (average R2 of 0.83), compared to the chelated (average R2 of 0.42). Fixation of plant-available Zn was best described by the power-function model (R2 = 0.94, SE = 0.076) in the non-chelated system, and was poorly described by all the models examined in the chelated system. Reaction rate constants and relationships generated from this study can serve as important tools for micronutrient management and for future micronutrient modeling studies on these soils and other semi-arid regions of the world.

  3. Medical toxicology case presentations: to chelate or not to chelate, is that the question?

    PubMed

    McKay, Charles A

    2013-12-01

    Four case studies described in this article were presented to a panel of physicians participating in the ACMT "Use and Misuse of Metal Chelation Therapy" Symposium in February 2012. The individuals who participated in the panel are listed in the appendix. These cases highlight some of the practical questions facing medical providers when issues of metal toxicity and its treatment arise. Medical toxicologists are valuable resources for information, public debate, consultation, and treatment of patients with concerns about heavy metal exposure.

  4. Medical toxicology case presentations: to chelate or not to chelate, is that the question?

    PubMed

    McKay, Charles A

    2013-12-01

    Four case studies described in this article were presented to a panel of physicians participating in the ACMT "Use and Misuse of Metal Chelation Therapy" Symposium in February 2012. The individuals who participated in the panel are listed in the appendix. These cases highlight some of the practical questions facing medical providers when issues of metal toxicity and its treatment arise. Medical toxicologists are valuable resources for information, public debate, consultation, and treatment of patients with concerns about heavy metal exposure. PMID:24243289

  5. Hepatitis C Virus NS3 Inhibitors: Current and Future Perspectives

    PubMed Central

    Akimitsu, Nobuyoshi

    2013-01-01

    Currently, hepatitis C virus (HCV) infection is considered a serious health-care problem all over the world. A good number of direct-acting antivirals (DAAs) against HCV infection are in clinical progress including NS3-4A protease inhibitors, RNA-dependent RNA polymerase inhibitors, and NS5A inhibitors as well as host targeted inhibitors. Two NS3-4A protease inhibitors (telaprevir and boceprevir) have been recently approved for the treatment of hepatitis C in combination with standard of care (pegylated interferon plus ribavirin). The new therapy has significantly improved sustained virologic response (SVR); however, the adverse effects associated with this therapy are still the main concern. In addition to the emergence of viral resistance, other targets must be continually developed. One such underdeveloped target is the helicase portion of the HCV NS3 protein. This review article summarizes our current understanding of HCV treatment, particularly with those of NS3 inhibitors. PMID:24282816

  6. Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures.

    PubMed Central

    Westaway, E G; Mackenzie, J M; Kenney, M T; Jones, M K; Khromykh, A A

    1997-01-01

    The subcellular location of the nonstructural proteins NS1, NS2B, and NS3 in Vero cells infected with the flavivirus Kunjin was investigated using indirect immunofluorescence and cryoimmunoelectron microscopy with monospecific antibodies. Comparisons were also made by dual immunolabelling using antibodies to double-stranded RNA (dsRNA), the putative template in the flavivirus replication complex. At 8 h postinfection, the immunofluorescent patterns showed NS1, NS2B, NS3, and dsRNA located in a perinuclear rim with extensions into the peripheral cytoplasm. By 16 h, at the end of the latent period, all patterns had changed to some discrete perinuclear foci associated with a thick cytoplasmic reticulum. By 24 h, this localization in perinuclear foci was more apparent and some foci were dual labelled with antibodies to dsRNA. In immuno-gold-labelled cryosections of infected cells at 24 h, all antibodies were associated with clusters of induced membrane structures in the perinuclear region. Two important and novel observations were made. First, one set of induced membranes comprised vesicle packets of smooth membranes dual labelled with anti-dsRNA and anti-NS1 or anti-NS3 antibodies. Second, adjacent masses of paracrystalline arrays or of convoluted smooth membranes, which appeared to be structurally related, were strongly labelled only with anti-NS2B and anti-NS3 antibodies. Paired membranes similar in appearance to the rough endoplasmic reticulum were also labelled, but less strongly, with antibodies to the three nonstructural proteins. Other paired membranes adjacent to the structures discussed above enclosed accumulated virus particles but were not labelled with any of the four antibodies. The collection of induced membranes may represent virus factories in which translation, RNA synthesis, and virus assembly occur. PMID:9261387

  7. Nanoparticle and Iron Chelators as a Potential Novel Alzheimer Therapy

    PubMed Central

    Liu, Gang; Men, Ping; Perry, George; Smith, Mark A.

    2010-01-01

    Current therapies for Alzheimer disease (AD) such as the acetylcholinesterase inhibitors and the latest NMDA receptor inhibitor, Namenda, provide moderate symptomatic delay at various stages of the disease, but do not arrest the disease progression or bring in meaningful remission. New approaches to the disease management are urgently needed. Although the etiology of AD is largely unknown, oxidative damage mediated by metals is likely a significant contributor since metals such as iron, aluminum, zinc, and copper are dysregulated and/or increased in AD brain tissue and create a pro-oxidative environment. This role of metal ion-induced free radical formation in AD makes chelation therapy an attractive means of dampening the oxidative stress burden in neurons. The chelator desferrioxamine, FDA approved for iron overload, has shown some benefit in AD, but like many chelators, it has a host of adverse effects and substantial obstacles for tissue-specific targeting. Other chelators are under development and have shown various strengths and weaknesses. Here, we propose a novel system of chelation therapy through the use of nanoparticles. Nanoparticles conjugated to chelators show unique ability to cross the blood–brain barrier (BBB), chelate metals, and exit through the BBB with their corresponding complexed metal ions. This method may provide a safer and more effective means of reducing the metal load in neural tissue, thus attenuating the harmful effects of oxidative damage and its sequelae. Experimental procedures are presented in this chapter. PMID:20013176

  8. Chelation: harnessing and enhancing heavy metal detoxification--a review.

    PubMed

    Sears, Margaret E

    2013-01-01

    Toxic metals such as arsenic, cadmium, lead, and mercury are ubiquitous, have no beneficial role in human homeostasis, and contribute to noncommunicable chronic diseases. While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning. Chelation, that is multiple coordination bonds between organic molecules and metals, is very common in the body and at the heart of enzymes with a metal cofactor such as copper or zinc. Peptides glutathione and metallothionein chelate both essential and toxic elements as they are sequestered, transported, and excreted. Enhancing natural chelation detoxification pathways, as well as use of pharmaceutical chelators against heavy metals are reviewed. Historical adverse outcomes with chelators, lessons learned in the art of using them, and successes using chelation to ameliorate renal, cardiovascular, and neurological conditions highlight the need for renewed attention to simple, safe, inexpensive interventions that offer potential to stem the tide of debilitating, expensive chronic disease.

  9. Synthetic and natural iron chelators: therapeutic potential and clinical use

    PubMed Central

    Hatcher, Heather C; Singh, Ravi N; Torti, Frank M; Torti, Suzy V

    2013-01-01

    Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade®) and deferiprone (Ferriprox®), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry. PMID:21425984

  10. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  11. Chelation therapy for metal intoxication: comments from a thermodynamic viewpoint.

    PubMed

    Nurchi, Valeria Marina; Alonso, Miriam Crespo; Toso, Leonardo; Lachowicz, Joanna Izabela; Crisponi, Guido

    2013-10-01

    Chelation therapy plays a prominent role in the clinical treatment of metal intoxication. In this paper the principal causes of metal toxicity are exposed, and the chemical and biomedical requisites of a chelating agent are sketched. The chelating agents currently in use for scavenging toxic metal ions from humans belong to few categories: those characterized by coordinating mercapto groups, by oxygen groups, poliaminocarboxylic acids, and dithiocarbamates. Considering that the complex formation equilibria have been studied for less than 50% of chelators in use, some reflections on the utility of stability constants are presented, together with an evaluation of ligands under the stability profile. The competition between endogenous and toxic target metal ions for the same chelating agent is furthermore examined. A thorough examination of stability constant databases has allowed to select, for each toxic metal, the ligands distinguished by the best pMe values. Even though this selection does not consider the biomedical requisites of a chelating agent, it gives a clear picture both of the pMe values that can be attained, and of the most appropriate chelators for each metal ion.

  12. Chelation therapy for metal intoxication: comments from a thermodynamic viewpoint.

    PubMed

    Nurchi, Valeria Marina; Alonso, Miriam Crespo; Toso, Leonardo; Lachowicz, Joanna Izabela; Crisponi, Guido

    2013-10-01

    Chelation therapy plays a prominent role in the clinical treatment of metal intoxication. In this paper the principal causes of metal toxicity are exposed, and the chemical and biomedical requisites of a chelating agent are sketched. The chelating agents currently in use for scavenging toxic metal ions from humans belong to few categories: those characterized by coordinating mercapto groups, by oxygen groups, poliaminocarboxylic acids, and dithiocarbamates. Considering that the complex formation equilibria have been studied for less than 50% of chelators in use, some reflections on the utility of stability constants are presented, together with an evaluation of ligands under the stability profile. The competition between endogenous and toxic target metal ions for the same chelating agent is furthermore examined. A thorough examination of stability constant databases has allowed to select, for each toxic metal, the ligands distinguished by the best pMe values. Even though this selection does not consider the biomedical requisites of a chelating agent, it gives a clear picture both of the pMe values that can be attained, and of the most appropriate chelators for each metal ion. PMID:23895193

  13. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies.

    PubMed

    de Sousa, Lorena Ramos Freitas; Wu, Hongmei; Nebo, Liliane; Fernandes, João Batista; da Silva, Maria Fátima das Graças Fernandes; Kiefer, Werner; Kanitz, Manuel; Bodem, Jochen; Diederich, Wibke E; Schirmeister, Tanja; Vieira, Paulo Cezar

    2015-02-01

    NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 μM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors.

  14. Minimal role of metallothionein in decreased chelator efficacy for cadmium.

    PubMed

    Waalkes, M P; Watkins, J B; Klaassen, C D

    1983-05-01

    Chelator efficacy in Cd poisoning drops precipitously if therapy is not commenced almost immediately after exposure. Metallothionein (MT), a low-molecular-weight metal-binding protein with high affinity for Cd, may be important for this phenomenon. To more fully assess this role of MT in the acute drop in chelator efficacy following Cd poisoning, rats were injected iv with radioisotopic Cd (1mg/kg as CdCl2; 50 muCi/kg) followed by diethylenetriaminepentaacetic acid (DTPA; 90 mg/kg ip) at various times (0, 15, 30, 60, and 120 min) after Cd. Ther percentage of the Cd dose remaining in major organs 24 hr following Cd was determined. Although DTPA reduced Cd content in the various organs when given immediately after Cd, the chelator was ineffective at all later times. Increases in hepatic and renal MT did not occur until 2 hr after Cd, and did not coincide with the earlier drop in chelator efficacy. Blockade of MT synthesis by actinomycin D treatment (1.25 mg/kg, 1 hr before Cd) failed to prolong the chelators effectiveness. Furthermore, newborn rats have high levels of hepatic MT which had no effect on the time course of chelator effectiveness since DTPA still decreased Cd organ contents if given immediately following Cd but had no effect if given 2 hr after Cd. Therefore, if appears that MT does not have an important role in the acute decrease in efficacy of chelation therapy for Cd poisoning. The quick onset of chelator ineffectiveness may be due to the rapid uptake of Cd into tissues which makes it relatively unavailable of chelation.

  15. Novel Dengue Virus NS2B/NS3 Protease Inhibitors

    PubMed Central

    Wu, Hongmei; Bock, Stefanie; Snitko, Mariya; Berger, Thilo; Weidner, Thomas; Holloway, Steven; Kanitz, Manuel; Diederich, Wibke E.; Steuber, Holger; Walter, Christof; Hofmann, Daniela; Weißbrich, Benedikt; Spannaus, Ralf; Acosta, Eliana G.; Bartenschlager, Ralf; Engels, Bernd; Schirmeister, Tanja

    2014-01-01

    Dengue fever is a severe, widespread, and neglected disease with more than 2 million diagnosed infections per year. The dengue virus NS2B/NS3 protease (PR) represents a prime target for rational drug design. At the moment, there are no clinical PR inhibitors (PIs) available. We have identified diaryl (thio)ethers as candidates for a novel class of PIs. Here, we report the selective and noncompetitive inhibition of the serotype 2 and 3 dengue virus PR in vitro and in cells by benzothiazole derivatives exhibiting 50% inhibitory concentrations (IC50s) in the low-micromolar range. Inhibition of replication of DENV serotypes 1 to 3 was specific, since all substances influenced neither hepatitis C virus (HCV) nor HIV-1 replication. Molecular docking suggests binding at a specific allosteric binding site. In addition to the in vitro assays, a cell-based PR assay was developed to test these substances in a replication-independent way. The new compounds inhibited the DENV PR with IC50s in the low-micromolar or submicromolar range in cells. Furthermore, these novel PIs inhibit viral replication at submicromolar concentrations. PMID:25487800

  16. Monoclonal antibodies against NS1 protein of Goose parvovirus.

    PubMed

    Qiu, Zheng; Tian, Wei; Yu, Tianfei; Li, Li; Ma, Bo; Wang, Junwei

    2012-04-01

    In the present study, monoclonal antibodies (MAbs) against NS1 protein of Goose parvovirus (GPV) were generated. The secreted MAbs were obtained by fusing mouse myeloma cells and spleen cells of BALB/c mice, which were immunized with the plasmid pcDNA3.1-GPV-NS1 and recombinant protein of GPV-NS1. With indirect ELISA, six hybridoma cell lines against GPV-NS1 were screened. The subtypes of the two MAbs were IgG2a; the others were IgM. The light chain was κ. Western blot analysis showed that six MAbs reacted with recombinant protein GPV-NS1. GPV-NS1 was dissected into 15 overlapping epitopes, which were used to react with MAbs in Western blot. Results showed that six MAbs recognized NS1 protein linear B-cell epitopes located at the C-terminus 453-514 aa, 485-542 aa, and 533-598 aa.

  17. Psammaplin A inhibits hepatitis C virus NS3 helicase.

    PubMed

    Salam, Kazi Abdus; Furuta, Atsushi; Noda, Naohiro; Tsuneda, Satoshi; Sekiguchi, Yuji; Yamashita, Atsuya; Moriishi, Kohji; Nakakoshi, Masamichi; Tsubuki, Masayoshi; Tani, Hidenori; Tanaka, Junichi; Akimitsu, Nobuyoshi

    2013-10-01

    Hepatitis C virus (HCV) is the causative agent of hepatitis C, a chronic infectious disease that can lead to development of hepatocellular carcinoma. The NS3 nucleoside triphosphatase (NTPase)/helicase has an essential role in HCV replication, and is therefore an attractive target for direct-acting antiviral strategies. In this study, we employed high-throughput screening using a photo-induced electron transfer (PET) system to identify an inhibitor of NS3 helicase from marine organism extracts. We successfully identified psammaplin A as a novel NS3 inhibitor. The dose-response relationship clearly demonstrates the inhibition of NS3 RNA helicase and ATPase activities by psammaplin A, with IC₅₀ values of 17 and 32 μM, respectively. Psammaplin A has no influence on the apparent Km value (0.4 mM) of NS3 ATPase activity, and acts as a non-competitive inhibitor. Additionally, it inhibits the binding of NS3 to single-stranded RNA in a dose-dependent manner. Furthermore, psammaplin A shows an inhibitory effect on viral replication, with EC₅₀ values of 6.1 and 6.3 μM in subgenomic replicon cells derived from genotypes 1b and 2a, respectively. We postulate that psammaplin A is a potential anti-viral agent through the inhibition of ATPase, RNA binding and helicase activities of NS3. PMID:23359228

  18. Silencing by H-NS Potentiated the Evolution of Salmonella

    PubMed Central

    Rao, Chitong; Leung, Andrea S.; Ngai, David Hon-Man; Ensminger, Alexander W.; Navarre, William Wiley

    2014-01-01

    The bacterial H-NS protein silences expression from sequences with higher AT-content than the host genome and is believed to buffer the fitness consequences associated with foreign gene acquisition. Loss of H-NS results in severe growth defects in Salmonella, but the underlying reasons were unclear. An experimental evolution approach was employed to determine which secondary mutations could compensate for the loss of H-NS in Salmonella. Six independently derived S. Typhimurium hns mutant strains were serially passaged for 300 generations prior to whole genome sequencing. Growth rates of all lineages dramatically improved during the course of the experiment. Each of the hns mutant lineages acquired missense mutations in the gene encoding the H-NS paralog StpA encoding a poorly understood H-NS paralog, while 5 of the mutant lineages acquired deletions in the genes encoding the Salmonella Pathogenicity Island-1 (SPI-1) Type 3 secretion system critical to invoke inflammation. We further demonstrate that SPI-1 misregulation is a primary contributor to the decreased fitness in Salmonella hns mutants. Three of the lineages acquired additional loss of function mutations in the PhoPQ virulence regulatory system. Similarly passaged wild type Salmonella lineages did not acquire these mutations. The stpA missense mutations arose in the oligomerization domain and generated proteins that could compensate for the loss of H-NS to varying degrees. StpA variants most able to functionally substitute for H-NS displayed altered DNA binding and oligomerization properties that resembled those of H-NS. These findings indicate that H-NS was central to the evolution of the Salmonellae by buffering the negative fitness consequences caused by the secretion system that is the defining characteristic of the species. PMID:25375226

  19. The influenza virus NS1 protein as a therapeutic target.

    PubMed

    Engel, Daniel A

    2013-09-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists.

  20. The influenza virus NS1 protein as a therapeutic target

    PubMed Central

    Engel, Daniel A.

    2015-01-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2’-5’ oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN- mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. PMID:23796981

  1. Nickel(II) complexes containing thiosemicarbazone and triphenylphosphine: Synthesis, spectroscopy, crystallography and catalytic activity

    NASA Astrophysics Data System (ADS)

    Priyarega, S.; Kalaivani, P.; Prabhakaran, R.; Hashimoto, T.; Endo, A.; Natarajan, K.

    2011-09-01

    Four new Ni(II) complexes of the general formula [Ni(PPh 3)(L)] (L = dibasic tridentate ligand derived from 4-diethylamino-salicylaldehyde and thiosemicarbazide or 4-N-substituted thiosemicarbazide) have been reported. The new complexes have been synthesized and characterized by analytical and spectroscopic (IR, electronic, 1H NMR and 31P NMR) techniques. Molecular structure of one of the complexes has been determined by X-ray crystallography. The complex, [Ni(PPh 3)(L4)] (H 2L4 = thiosemicarbazone prepared from 4-diethylamino-salicylaldehyde and 4-phenylthiosemicarbazide) crystallized in monoclinic space group with two molecules per unit cell and has the dimensions of a = 13.232(6) Å, b = 10.181(5) Å, c = 13.574(7) Å, α = 90°, β = 98.483(2)° and γ = 90°. Catalytic activity of the complexes has been explored for aryl-aryl coupling reaction.

  2. Synthesis of isatin thiosemicarbazones derivatives: In vitro anti-cancer, DNA binding and cleavage activities

    NASA Astrophysics Data System (ADS)

    Ali, Amna Qasem; Teoh, Siang Guan; Salhin, Abdussalam; Eltayeb, Naser Eltaher; Khadeer Ahamed, Mohamed B.; Majid, A. M. S. Abdul

    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (kb = 5.03-33.00 × 105 M-1) for L1-L3 and L5 and (6.14-9.47 × 104 M-1) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency.

  3. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  4. Copper complexes of bis(thiosemicarbazones): from chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals.

    PubMed

    Paterson, Brett M; Donnelly, Paul S

    2011-05-01

    The molecules known as bis(thiosemicarbazones) derived from 1,2-diones can act as tetradentate ligands for Cu(II), forming stable, neutral complexes. As a family, these complexes possess fascinating biological activity. This critical review presents an historical perspective of their progression from potential chemotherapeutics through to more recent applications in nuclear medicine. Methods of synthesis are presented followed by studies focusing on their potential application as anti-cancer agents and more recent investigations into their potential as therapeutics for Alzheimer's disease. The Cu(II) complexes are of sufficient stability to be used to coordinate copper radioisotopes for application in diagnostic and therapeutic radiopharmaceuticals. Detailed understanding of the coordination chemistry has allowed careful manipulation of the metal based properties to engineer specific biological activities. Perhaps the most promising complex radiolabelled with copper radioisotopes to date is Cu(II)(atsm), which has progressed to clinical trials in humans (162 references).

  5. Vibrational spectroscopic studies and computational study of ethyl methyl ketone thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Anoop, M. R.; Binil, P. S.; Suma, S.; Sudarsanakumar, M. R.; Y, Sheena Mary.; Varghese, Hema Tresa; Panicker, C. Yohannan

    2010-04-01

    FT-IR and FT-Raman spectra of ethyl methyl ketone thiosemicarbazone were recorded and analyzed. The crystal structure is also described. The vibrational wavenumbers were computed using HF/6-31G(d) and B3LYP/6-31G(d) basis sets and are assigned with the aid of MOLEKEL program. The first hyperpolarizability, infrared intensities and Raman activities are also reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive molecule for future applications in non-linear optics. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated values. The red shift of the NH stretching wavenumber in the infrared spectrum compared to the computed wavenumber indicates the weakening of the N-H bond resulting in proton transfer to the neighbouring sulfur atom.

  6. Copper complexes of bis(thiosemicarbazones): from chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals.

    PubMed

    Paterson, Brett M; Donnelly, Paul S

    2011-05-01

    The molecules known as bis(thiosemicarbazones) derived from 1,2-diones can act as tetradentate ligands for Cu(II), forming stable, neutral complexes. As a family, these complexes possess fascinating biological activity. This critical review presents an historical perspective of their progression from potential chemotherapeutics through to more recent applications in nuclear medicine. Methods of synthesis are presented followed by studies focusing on their potential application as anti-cancer agents and more recent investigations into their potential as therapeutics for Alzheimer's disease. The Cu(II) complexes are of sufficient stability to be used to coordinate copper radioisotopes for application in diagnostic and therapeutic radiopharmaceuticals. Detailed understanding of the coordination chemistry has allowed careful manipulation of the metal based properties to engineer specific biological activities. Perhaps the most promising complex radiolabelled with copper radioisotopes to date is Cu(II)(atsm), which has progressed to clinical trials in humans (162 references). PMID:21409228

  7. Chelation of organoarsenate with dimercaptosuccinic acid.

    PubMed

    Shum, S; Whitehead, J; Vaughn, L; Shum, S; Hale, T

    1995-06-01

    Alkane arsenate herbicides are available commercially, and their acute toxicity has been well documented in previous studies. Animal studies have indicated that dimercaptosuccinic acid (DMSA) can be used as an oral chelating agent. A 20-y-old white male cocaine addict attempted suicide by drinking approximately 500 ml of a 16% monosodium methanearsenate solution. He vomited 10 or more times and was admitted to the intensive care unit with impending shock and early liver and renal involvement. Four 5-day courses of 30 mg DMSA/kg/24 h were given. This brought the serum arsenic level from 2,871 micrograms/L to 6 micrograms/L, and his urine arsenic level from 78,920 micrograms/L to 21 micrograms/L in 30 d. Renal function tests returned to normal, with normal renal creatinine clearance, normal blood urea nitrogen and serum creatinine. However liver functions were abnormal, with elevation of serum transaminases, which later proved secondary to chronic hepatitis. No side effects of DMSA was encountered during the therapy. DMSA was successfully used to detoxify acute organoarsenate poisoning in a clinical setting, supporting experimental reports in the literature.

  8. Chelating ligands for nanocrystals' surface functionalization.

    PubMed

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-09-22

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors.

  9. Novel ruthenium(II) cyclopentadienyl thiosemicarbazone compounds with antiproliferative activity on pathogenic trypanosomatid parasites.

    PubMed

    Fernández, Mariana; Arce, Esteban Rodríguez; Sarniguet, Cynthia; Morais, Tânia S; Tomaz, Ana Isabel; Azar, Claudio Olea; Figueroa, Roberto; Diego Maya, J; Medeiros, Andrea; Comini, Marcelo; Helena Garcia, M; Otero, Lucía; Gambino, Dinorah

    2015-12-01

    Searching for new prospective antitrypanosomal agents, three novel Ru(II)-cyclopentadienyl compounds, [Ru(η(5)-C5H5)(PPh3)L], with HL=bioactive 5-nitrofuryl containing thiosemicarbazones were synthesized and characterized in the solid state and in solution. The compounds were evaluated in vitro on the blood circulating trypomastigote form of Trypanosoma cruzi (Dm28c strain), the infective form of Trypanosoma brucei brucei (strain 427) and on J774 murine macrophages and human-derived EA.hy926 endothelial cells. The compounds were active against both parasites with IC50 values in the micromolar or submicromolar range. Interestingly, they are much more active on T. cruzi than previously developed Ru(II) classical and organometallic compounds with the same bioactive ligands. The new compounds showed moderate to very good selectivity towards the parasites in respect to mammalian cells. The global results point at [RuCp(PPh3)L2] (L2=N-methyl derivative of 5-nitrofuryl containing thiosemicarbazone and Cp=cyclopentadienyl) as the most promising compound for further developments (IC50T. cruzi=0.41μM; IC50T. brucei brucei=3.5μM). Moreover, this compound shows excellent selectivity towards T. cruzi (SI>49) and good selectivity towards T. brucei brucei (SI>6). In order to get insight into the mechanism of antiparasitic action, the intracellular free radical production capacity of the new compounds was assessed by ESR. DMPO (5,5-dimethyl-1-pirroline-N-oxide) spin adducts related to the bioreduction of the complexes and to redox cycling processes were characterized. In addition, DNA competitive binding studies with ethidium bromide by fluorescence measurements showed that the compounds interact with this biomolecule.

  10. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, Shih-Ger T.

    1994-01-01

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO.sub.x and optionally SO.sub.2 from a fluid using a metal ion (Fe.sup.2+) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC' is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution.

  11. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth; Xu, Jide

    1999-01-01

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity.

  12. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.; Xu, J.

    1999-04-06

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. 2 figs.

  13. Potential of iron chelators as effective antiproliferative agents.

    PubMed

    Richardson, D R

    1997-01-01

    Initially the impetus to develop iron (Fe) chelators for clinical use was based upon the need for a drug to treat Fe-overload diseases such as beta-thalassemia. However, it has become clear that Fe chelators may be useful for the treatment of a wide variety of disease states, including cancer, malaria, and free radical mediated injury. In particular, over the last 10 years a number of studies have shown that Fe chelators may be of use in the treatment of a number of aggressive human cancers, including neuroblastoma and leukemia, and several clinical trials have substantiated their potential. In the current review the role of Fe in cellular proliferation will be discussed, followed by the possible sites and mechanism of action of some of the most effective ligands. Attention will then be turned to examine the Fe chelators shown to possess antiproliferative activity and the clinical trials performed to assess their efficacy.

  14. An Evaluation of the Chelating Agent EDDS for Marigold Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminopolycarboxylic acid (APCA) ligands (chelating agents) like ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) are commonly used in soluble fertilizers to supply copper (Cu), iron (Fe), manganese (Mn), and/or zinc (Zn) to plants. The offsite runoff and contamina...

  15. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  16. An efficient chelator for complexation of thorium-227.

    PubMed

    Ramdahl, Thomas; Bonge-Hansen, Hanne T; Ryan, Olav B; Larsen, Smund; Herstad, Gunnar; Sandberg, Marcel; Bjerke, Roger M; Grant, Derek; Brevik, Ellen M; Cuthbertson, Alan S

    2016-09-01

    We present the synthesis and characterization of a highly efficient thorium chelator, derived from the octadentate hydroxypyridinone class of compounds. The chelator forms extremely stable complexes with fast formation rates in the presence of Th-227 (ambient temperature, 20min). In addition, mouse biodistribution data are provided which indicate rapid hepatobiliary excretion route of the chelator which, together with low bone uptake, supports the stability of the complex in vivo. The carboxylic acid group may be readily activated for conjugation through the ɛ-amino groups of lysine residues in biomolecules such as antibodies. This chelator is a critical component of a new class of Targeted Thorium Conjugates (TTCs) currently under development in the field of oncology. PMID:27476138

  17. Comparing potential copper chelation mechanisms in Parkinson's disease protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    We have implemented the nudged elastic band (NEB) as a guided dynamics framework for our real-space multigrid method of DFT-based quantum simulations. This highly parallel approach resolves a minimum energy pathway (MEP) on the energy hypersurface by relaxing intermediates in a chain-of-states. As an initial application we present an investigation of chelating agents acting on copper ion bound to α -synuclein, whose misfolding is implicated in Parkinson's disease (PD). Copper ions are known to act as highly effective misfolding agents in a-synuclein and are thus an important target in understanding PD. Furthermore, chelation therapy has shown promise in the treatment of Alzheimer's and other neuro-degenerative diseases with similar metal-correlated pathologies. At present, our candidate chelating agents include nicotine, curcumin and clioquinol. We examine their MEP activation barriers in the context of a PD onset mechanism to assess the viability of various chelators for PD remediation.

  18. Chelation in metal intoxication XVI. Influence of chelating agents on chromate poisoned rats

    SciTech Connect

    Tandon, S.K.; Srivastava, L.

    1985-01-01

    The ability of selective polyaminocarboxylic acids and common drugs to reduce the body burden of chromium and restore Cr induced biochemical alterations in chromate intoxicated rats was investigated. 1,2 Cychlohexylene dinitrilotetraacetic acid (CDTA) and triethylenetetramine hexacetic acid (TTHA) were more effective than p-aminosalicylic acid (PAS) and isoniazid (INH) in enhancing urinary excretion of Cr, lowering hepatic and blood levels of Cr and restoring inhibited activity of hepatic aldolase. The chromate antidotal property of chelators seem to be related to the combination of nitrogen and oxygen as the electron donating centres.

  19. The Influenza A Virus Protein NS1 Displays Structural Polymorphism

    PubMed Central

    Carrillo, Berenice; Choi, Jae-Mun; Bornholdt, Zachary A.; Sankaran, Banumathi; Rice, Andrew P.

    2014-01-01

    ABSTRACT NS1 of influenza A virus is a potent antagonist of host antiviral interferon responses. This multifunctional protein with two distinctive domains, an RNA-binding domain (RBD) and an effector domain (ED) separated by a linker region (LR), is implicated in replication, pathogenesis, and host range. Although the structures of individual domains of NS1 from different strains of influenza viruses have been reported, the only structure of full-length NS1 available to date is from an H5N1 strain (A/Vietnam/1203/2004). By carrying out crystallographic analyses of full-length H6N6-NS1 (A/blue-winged teal/MN/993/1980) and an LR deletion mutant, combined with mutational analysis, we show here that these full-length NS1 structures provide an exquisite structural sampling of various conformational states of NS1 that based on the orientation of the ED with respect to RBD can be summarized as “open,” “semi-open,” and “closed” conformations. Our studies show that preference for these states is clearly dictated by determinants such as linker length, residue composition at position 71, and a mechanical hinge, providing a structural basis for strain-dependent functional variations in NS1. Because of the flexibility inherent in the LR, any particular NS1 could sample the conformational space around these states to engage ED in different quaternary interactions so that it may participate in specific protein-protein or protein-RNA interactions to allow for the known multifunctionality of NS1. We propose that such conformational plasticity provides a mechanism for autoregulating NS1 functions, depending on its temporal distribution, posttranslational modifications, and nuclear or cellular localization, during the course of virus infection. IMPORTANCE NS1 of influenza A virus is a multifunctional protein associated with numerous strain-specific regulatory functions during viral infection, including conferring resistance to antiviral interferon induction, replication

  20. Novel heterocyclic thiosemicarbazones derivatives as colorimetric and "turn on" fluorescent sensors for fluoride anion sensing employing hydrogen bonding.

    PubMed

    Ashok Kumar, S L; Saravana Kumar, M; Sreeja, P B; Sreekanth, A

    2013-09-01

    Two novel heterocyclic thiosemicarbazone derivatives have been synthesized, and characterized, by means of spectroscopic and single crystal X-ray diffraction methods. Their chromophoric-fluorogenic response towards anions in competing solvent dimethyl sulfoxide (DMSO) was studied. The receptor shows selective recognition towards fluoride anion. The binding affinity of the receptors with fluoride anion was calculated using UV-visible and fluorescence spectroscopic techniques. PMID:23714188

  1. Alteration of tissue disposition of cadmium by chelating agents.

    PubMed Central

    Klaassen, C D; Waalkes, M P; Cantilena, L R

    1984-01-01

    The effect of several chelating agents (diethyldithiocarbamic acid, DDC; nitrilotriacetic acid, NTA; 2,3-dimercaptopropanol, BAL; d,l-penicillamine, PEN; 2,3-dimercaptosuccinic acid, DMSA; ethylenediaminetetraacetic acid, EDTA; and diethylenetriaminepentaacetic acid, DTPA) on the toxicity, distribution and excretion of cadmium (Cd) was determined in mice. When chelators were administered immediately after Cd, significant increases in survival were noted after treatment with DMSA, EDTA, and DTPA. DTPA, followed by EDTA and then DMSA, were consistently the most effective in decreasing the tissue concentrations of Cd and increasing the excretion of Cd. NTA, BAL, DDC and PEN had no beneficial effects. The effects of increasing the time interval between Cd administration and initiation of chelation therapy was determined by using a single administration of DTPA, EDTA, and DMSA. Mice treated immediately after Cd administration excreted approximately 50% of the administered dose of Cd compared to 0.2% in controls. Treatment with chelator at later times significantly increased Cd excretion but the magnitude of the effect was much less than that seen in mice treated immediately after Cd. To determine the role of MT in the acute decrease in chelator efficacy following Cd poisoning, rats were injected IV with Cd followed by DTPA at various times after Cd. Although DTPA reduced Cd content in the various organs when given immediately after Cd, the chelator was ineffective at all later times. Increases in hepatic and renal metallothionein (MT) did not occur until 2 hr after Cd, and did not coincide with the earlier drop in chelator efficacy. Blockade of MT synthesis by actinomycin D failed to eliminate this decreased DTPA effectiveness. Therefore, it appears that MT does not play an important role in the acute decrease in efficacy of chelation therapy for Cd poisoning. The effect of repeated daily administration of chelators on the distribution and excretion of Cd was studied by

  2. Chelation of bismuth by combining desferrioxamine and deferiprone in rats.

    PubMed

    Tubafard, S; Fatemi, S J

    2008-05-01

    Consumption and production of bismuth compounds are increasing, however, a little information on the toxic effect and also the effective method in removal of bismuth compounds are available. The present research aimed to characterize the potential efficiency of two chelators after bismuth administration for 55A days following two dose levels of 20 and 40A mg/kg body weight daily to male rats. However, we found abnormalities after bismuth administration in clinical signs, such as body weight, kidneys and liver damages, a black line on gums and skin reactions. Furthermore, the hypothesis that the two chelators might be more efficient as combined therapy than as single therapy in removing bismuth from the body was considered. Along this line, two known chelators deferiprone (1, 2-dimethy1-3-hydroxypyride-4-one, L(1)) and desferrioxamine (DFO) were chosen and tested in the acute rat model. Chelators were given orally (L(1)) or intraperitoneally (DFO) as a single or combined therapy for the period of a week. Doses of L(1) and DFO were 110A mg/kg body weight in experiments. Bismuth and iron concentrations in various tissues were determined by graphite furnace and flame atomic absorption spectrometry, respectively. The combined chelation therapy results show that DFO and L(1) are able to remove bismuth ions from the body, whereas iron concentration returned to the normal level and symptoms are also decreased. DFO was more effective than L1 in reducing bismuth concentration in tissues. The efficiency of DFOA +A L(1) is more than DFO or L(1) in removing bismuth from organs. Our results are indicative that the design procedure might be useful for preliminary in-vivo testing of the efficiency of chelating agents. Results of combined chelators' treatment should be confirmed in a different experimental model before extrapolation to other systems. This testing procedure of course does not provide all the relevant answers for efficiency of chelating agents in bismuth toxicity.

  3. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    PubMed Central

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis. PMID:21563826

  4. Preparation and Biodistribution Studies of a Radiogallium-Acetylacetonate Bis (Thiosemicarbazone) Complex in Tumor-Bearing Rodents

    PubMed Central

    Jalilian, Amir Reza; Yousefnia, Hassan; Shafaii, Kamaleddin; Novinrouz, Aytak; Rajamand, Amir Abbas

    2012-01-01

    Various radiometal complexes have been developed for tumor imaging, especially Ga-68 tracer. In the present study, the development of a radiogallium bis-thiosemicarbazone complex has been reported. [67Ga] acetylacetonate bis(thiosemicarbazone) complex ([67Ga] AATS) was prepared starting [67Ga]Gallium acetate and freshly prepared acetylacetonate bis (thiosemicarbazone) (AATS) in 30 min at 90°C. The partition co-efficient and the stability of the tracer were determined in final solution (25°C) and the presence of human serum (37°C) up to 24 h. The biodistribution of the labeled compound in wild-type and fibrosarcoma-bearing rodents were determined up to 72 h. The radiolabled Ga complex was prepared in high radiochemical purity (> 97%, HPLC) followed by initial biodistribution data with the significant tumor accumulation of the tracer in 2 h which is far higher than free Ga-67 cation while the compound wash-out is significantly faster. Above-mentioned pharmacokinetic properties suggest an interesting radiogallium complex while prepared by the PET Ga radioisotope, 68Ga, in accordance with the physical half life, for use in fibrosarcoma tumors, and possibly other malignancies. PMID:24250475

  5. Copper(II) complexes with 2-pyridineformamide-derived thiosemicarbazones: Spectral studies and toxicity against Artemia salina

    NASA Astrophysics Data System (ADS)

    Ferraz, Karina O.; Wardell, Solange M. S. V.; Wardell, James L.; Louro, Sonia R. W.; Beraldo, Heloisa

    2009-07-01

    The copper(II) complexes [Cu(H2Am4DH)Cl 2] ( 1), [Cu(H2Am4Me)Cl 2] ( 2), [Cu(H2Am4Et)Cl 2] ( 3) and [Cu(2Am4Ph)Cl] ( 4) with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives were studied by means of infrared and EPR spectral techniques. The crystal structure of 4 was determined. The studied compounds proved to be toxic to Artemia salina, suggesting that they could present cytotoxic activity against solid tumors. Among the free thiosemicarbazones H2Am4Ph presented higher toxicity than all other compounds, which showed comparable effects. In the case of complexes 2 and 3 toxicity is probably attributable to the complex as an entity or to a synergistic effect involving the thiosemicarbazone and copper. H2Am4Ph and complexes 2 and 3 revealed to be the most promising compounds as potential antineoplasic agents.

  6. G2/M Cell Cycle Arrest and Tumor Selective Apoptosis of Acute Leukemia Cells by a Promising Benzophenone Thiosemicarbazone Compound

    PubMed Central

    Cabrera, Maia; Gomez, Natalia; Remes Lenicov, Federico; Echeverría, Emiliana; Shayo, Carina; Moglioni, Albertina; Fernández, Natalia; Davio, Carlos

    2015-01-01

    Anti-mitotic therapies have been considered a hallmark in strategies against abnormally proliferating cells. Focusing on the extensively studied family of thiosemicarbazone (TSC) compounds, we have previously identified 4,4’-dimethoxybenzophenone thiosemicarbazone (T44Bf) as a promising pharmacological compound in a panel of human leukemia cell lines (HL60, U937, KG1a and Jurkat). Present findings indicate that T44Bf-mediated antiproliferative effects are associated with a reversible chronic mitotic arrest caused by defects in chromosome alignment, followed by induced programmed cell death. Furthermore, T44Bf selectively induces apoptosis in leukemia cell lines when compared to normal peripheral blood mononuclear cells. The underlying mechanism of action involves the activation of the mitochondria signaling pathway, with loss of mitochondrial membrane potential and sustained phosphorylation of anti-apoptotic protein Bcl-xL as well as increased Bcl-2 (enhanced phosphorylated fraction) and pro-apoptotic protein Bad levels. In addition, ERK signaling pathway activation was found to be a requisite for T44Bf apoptotic activity. Our findings further describe a novel activity for a benzophenone thiosemicarbazone and propose T44Bf as a promising anti-mitotic prototype to develop chemotherapeutic agents to treat acute leukemia malignancies. PMID:26360247

  7. G2/M Cell Cycle Arrest and Tumor Selective Apoptosis of Acute Leukemia Cells by a Promising Benzophenone Thiosemicarbazone Compound.

    PubMed

    Cabrera, Maia; Gomez, Natalia; Remes Lenicov, Federico; Echeverría, Emiliana; Shayo, Carina; Moglioni, Albertina; Fernández, Natalia; Davio, Carlos

    2015-01-01

    Anti-mitotic therapies have been considered a hallmark in strategies against abnormally proliferating cells. Focusing on the extensively studied family of thiosemicarbazone (TSC) compounds, we have previously identified 4,4'-dimethoxybenzophenone thiosemicarbazone (T44Bf) as a promising pharmacological compound in a panel of human leukemia cell lines (HL60, U937, KG1a and Jurkat). Present findings indicate that T44Bf-mediated antiproliferative effects are associated with a reversible chronic mitotic arrest caused by defects in chromosome alignment, followed by induced programmed cell death. Furthermore, T44Bf selectively induces apoptosis in leukemia cell lines when compared to normal peripheral blood mononuclear cells. The underlying mechanism of action involves the activation of the mitochondria signaling pathway, with loss of mitochondrial membrane potential and sustained phosphorylation of anti-apoptotic protein Bcl-xL as well as increased Bcl-2 (enhanced phosphorylated fraction) and pro-apoptotic protein Bad levels. In addition, ERK signaling pathway activation was found to be a requisite for T44Bf apoptotic activity. Our findings further describe a novel activity for a benzophenone thiosemicarbazone and propose T44Bf as a promising anti-mitotic prototype to develop chemotherapeutic agents to treat acute leukemia malignancies. PMID:26360247

  8. Lead chelation to immobilised Symphytum officinale L. (comfrey) root tannins.

    PubMed

    Chin, Lily; Leung, David W M; Harry Taylor, H

    2009-07-01

    Reported correlations between tannin level and metal accumulation within plant tissues suggest that metal-chelating tannins may help plants to tolerate toxic levels of heavy metal contaminants. This paper supports such correlations using a new method that demonstrated the ability of plant tannins to chelate heavy metals, and showed that the relative levels of tannins in tissues were quantitatively related to lead chelation in vitro. Using this in vitro metal chelation method, we showed that immobilised tannins prepared from lateral roots of Symphytum officinale L., that contained high tannin levels, chelated 3.5 times more lead than those from main roots with lower tannin levels. This trend was confirmed using increasing concentrations of tannins from a single root type, and using purified tannins (tannic acid) from Chinese gallnuts. This study presents a new, simple, and reliable method that demonstrates direct lead-tannin chelation. In relation to phytoremediation, it also suggests that plant roots with more 'built-in' tannins may advantageously accumulate more lead. PMID:19477483

  9. Technetium-99m chelators in nuclear medicine. A review.

    PubMed

    Hjelstuen, O K

    1995-03-01

    Nuclear medicine is a branch of medical imaging that uses radioactive tracers to examine the function of body systems. The radionuclide used in about 90% of all examinations is 99Tcm, which is available from 99Mo/99Tcm generators at most nuclear medicine departments. In aqueous medium, technetium is chemically stable as pertechnetate, 99TcmO4-. Injected into the human body, pertechnetate will be absorbed by the thyroid gland because of the similarity to iodide in its radius and charge. To reach targets in the human body other than glandula thyreoidea, 99Tcm needs a carrier molecule, usually a chelating agent. Many chelators that form stable complexes with 99Tcm have affinities for certain tissues in the human body. Other chelators can be manipulated by pharmaceutical formation to be retained in certain body systems. In order to form bonds with technetium, the chelator must contain electron donors like nitrogen, oxygen and sulfur. Space between multiple electron donor atoms is required to allow several bonds to form with the central metal. The stability of the complex increases with increasing number of bonds. Today, chelators for the use with 99Tcm exist for a number of highly sensitive scintigraphic studies of the brain, heart, skeleton, kidneys, hepatobiliary system and lungs. This includes chelators such as dimercaptosuccinic acid, 1,2-ethylenediylbis-L-cysteine diethyl ester, methylenediphosphonate, hexamethylpropyleneamineoxime and hexakis(methoxy isobutyl isonitrile).

  10. A TACTful reappraisal of chelation therapy in cardiovascular disease.

    PubMed

    Sidhu, Mandeep S; Saour, Basil M; Boden, William E

    2014-03-01

    Atherosclerotic cardiovascular disease (CVD) is highly prevalent and, despite therapeutic advances, remains a leading cause of morbidity and mortality. Many patients with CVD seek additional alternative therapies when symptoms are not controlled with evidence-based therapies. Although its therapeutic efficacy is unproven, chelation therapy with ethylenediamine tetra acetic acid (EDTA) is increasingly being used in patients with CVD. Early studies of chelation in atherosclerotic CVD provided the basis for the randomized Trial to Assess Chelation Therapy (TACT), in which chelation with disodium EDTA was compared with placebo in patients who had experienced a myocardial infarction. Here, we discuss the results, limitations, and implications of TACT in the context of other studies in the field. We believe that the findings from TACT are not robust and do not marshal evidence in support of the potential clinical use of chelation therapy for CVD, with the potential exception of certain high-risk cohorts such as patients with diabetes mellitus. Therefore, chelation is unlikely to become a widely-accepted approach until additional data are available.

  11. Extraction of metals using supercritical fluid and chelate forming ligand

    DOEpatents

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  12. Extraction of metals using supercritical fluid and chelate forming legand

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  13. Iron chelators ICL670 and 311 inhibit HIV-1 transcription

    SciTech Connect

    Debebe, Zufan; Ammosova, Tatyana; Jerebtsova, Marina; Kurantsin-Mills, Joseph; Niu, Xiaomei; Charles, Sharroya; Richardson, Des R.; Ray, Patricio E.; Gordeuk, Victor R.; Nekhai, Sergei

    2007-10-25

    HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics.

  14. Monoclonal Antibodies Against NS2B of Japanese Encephalitis Virus.

    PubMed

    Dong, Qian; Xu, Qiuping; Ruan, Xindi; Huang, Shaomei; Cao, Shengbo

    2015-04-01

    Japanese encephalitis (JE) is one of the most important viral encephalitis, caused by the Japanese encephalitis virus (JEV). The function of non-structural protein 2B (NS2B) mostly remains unclear. In our study, NS2B of Japanese encephalitis virus (JEV) was expressed in Escherichia coli and purified by dialysis. After fusing mouse myeloma cell line SP2/0 with spleen lymphocytes from NS2B protein immunized mice, three clones of monoclonal antibodies (MAbs), named 1B9, 3E12, and 4E6, were generated. The specificity and sensitivity of MAbs were demonstrated by ELISA, indirect immunofluorescence assay, and Western blot. These MAbs will be useful in further exploration of the functions of NS2B and the pathogenesis of Japanese encephalitis virus. PMID:25897607

  15. NS1: A corner piece in the dengue pathogenesis puzzle?

    PubMed

    Thomas, Stephen J

    2015-09-01

    Soluble dengue virus NS1 protein induces proinflammatory immune responses via Toll-like receptor 4 and disrupts endothelial cell integrity, resulting in vascular leakage (Beatty et al. and Modhiran et al., this issue). PMID:26355028

  16. BHHST: An improved lanthanide chelate for time-resolved fluorescence applications

    NASA Astrophysics Data System (ADS)

    Connally, Russell; Jin, Dayong; Piper, James

    2005-04-01

    The detection of the waterborne pathogens Giardia lamblia and Cryptosporidium parvum in environmental water bodies requires concentration of large volumes of water due to the low dose required for infection. The highly concentrated (10,000-fold) water sample is often rich in strongly autofluorescent algae, organic debris and mineral particles that can obscure immunofluorescently labeled (oo)cysts during analysis. Time-resolved fluorescence techniques exploit the long fluorescence lifetimes of lanthanide chelates (ms) to differentiate target fluorescence from background autofluorescence (ns). Relatively simple instrumentation can be used to enhance the signal-to-noise ratio (S/N) of labelled target. Time-resolved fluorescence techniques exploit the large difference in lifetime by briefly exciting fluorescence from the sample using a pulsed excitation source. Capture of the resulting fluorescence emission is delayed until the more rapidly decaying autofluorescence has faded beyond detection, whereon the much stronger and slower fading emission from labelled target is collected. BHHCT is a tetradentate beta-diketone chelate that is activated to bind with protein (antibody) as the chlorosulfonate. The high activity of this residue makes conjugations difficult to control and can lead to the formation of unstable immunoconjugates. To overcome these limitations a 5-atom hydrophylic molecular tether was attached to BHHCT via the chlorosulfonate and the BHHCT derivative was then activated to bind to proteins as the succinimide. The new compound (BHHST) could be prepared in high purity and was far more stable than the chlorosulfonate on storage. A high activity immunocojugate was prepared against Cryptosporidium that yielded an 8-fold increase in SNR using a lab-built time-resolved fluorescence microscope.

  17. The magnesium chelation step in chlorophyll biosynthesis

    SciTech Connect

    Weinstein, J.

    1990-11-01

    In photosynthetic organisms, the biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins, and various lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX (Proto). Insertion of iron leads to the formation of hemes, while insertion of magnesium is the first step unique to chlorophyll formation. This project is directed toward identifying the enzyme(s) responsible for magnesium chelation and elucidating the mechanism which regulates the flux of precursors through the branch point enzymes in isolated chloroplasts. Using intact chloroplasts from greening cucumber cotyledons, we have confirmed the ATP requirement for Mg-Proto formation. Use of non-hydrolyzable ATP analogs, uncouplers and ionophores has led to the conclusions that ATP hydrolysis is necessary, but that this hydrolysis is not linked to the requirement for membrane intactness by transmembrane ion gradients or electrical potentials. The enzyme(s) are flexible with respect to the porphyrin substrate specificity, accepting porphyrins with -vinyl, -ethyl, or -H substituents at the 2 and 4 positions. The activity increases approximately four-fold during greening. Possible physiological feedback inhibitors such as heme, protochlorophyllide, and chlorophyllide had no specific effect on the activity. The activity has now been assayed in barely, corn and peas, with the system from peas almost ten-fold more active than the cucumber system. Work is continuing in pea chloroplasts with the development of a continuous assay and investigation of the feasibility of characterizing an active, organelle-free preparation. 6 figs.

  18. Method for preparing radionuclide-labeled chelating agent-ligand complexes

    DOEpatents

    Meares, Claude F.; Li, Min; DeNardo, Sally J.

    1999-01-01

    Radionuclide-labeled chelating agent-ligand complexes that are useful in medical diagnosis or therapy are prepared by reacting a radionuclide, such as .sup.90 Y or .sup.111 In, with a polyfunctional chelating agent to form a radionuclide chelate that is electrically neutral; purifying the chelate by anion exchange chromatography; and reacting the purified chelate with a targeting molecule, such as a monoclonal antibody, to form the complex.

  19. Flavivirus NS1: a multifaceted enigmatic viral protein.

    PubMed

    Rastogi, Meghana; Sharma, Nikhil; Singh, Sunit Kumar

    2016-01-01

    Flaviviruses are emerging arthropod-borne viruses representing an immense global health problem. The prominent viruses of this group include dengue virus, yellow fever virus, Japanese encephalitis virus, West Nile virus tick borne encephalitis virus and Zika Virus. These are endemic in many parts of the world. They are responsible for the illness ranging from mild flu like symptoms to severe hemorrhagic, neurologic and cognitive manifestations leading to death. NS1 is a highly conserved non-structural protein among flaviviruses, which exist in diverse forms. The intracellular dimer form of NS1 plays role in genome replication, whereas, the secreted hexamer plays role in immune evasion. The secreted NS1 has been identified as a potential diagnostic marker for early detection of the infections caused by flaviviruses. In addition to the diagnostic marker, the importance of NS1 has been reported in the development of therapeutics. NS1 based subunit vaccines are at various stages of development. The structural details and diverse functions of NS1 have been discussed in detail in this review.

  20. Flavivirus NS1: a multifaceted enigmatic viral protein.

    PubMed

    Rastogi, Meghana; Sharma, Nikhil; Singh, Sunit Kumar

    2016-01-01

    Flaviviruses are emerging arthropod-borne viruses representing an immense global health problem. The prominent viruses of this group include dengue virus, yellow fever virus, Japanese encephalitis virus, West Nile virus tick borne encephalitis virus and Zika Virus. These are endemic in many parts of the world. They are responsible for the illness ranging from mild flu like symptoms to severe hemorrhagic, neurologic and cognitive manifestations leading to death. NS1 is a highly conserved non-structural protein among flaviviruses, which exist in diverse forms. The intracellular dimer form of NS1 plays role in genome replication, whereas, the secreted hexamer plays role in immune evasion. The secreted NS1 has been identified as a potential diagnostic marker for early detection of the infections caused by flaviviruses. In addition to the diagnostic marker, the importance of NS1 has been reported in the development of therapeutics. NS1 based subunit vaccines are at various stages of development. The structural details and diverse functions of NS1 have been discussed in detail in this review. PMID:27473856

  1. Replacement of the respiratory syncytial virus nonstructural proteins NS1 and NS2 by the V protein of parainfluenza virus 5

    SciTech Connect

    Tran, Kim C.; He, Biao; Teng, Michael N.

    2007-11-10

    Paramyxoviruses have been shown to produce proteins that inhibit interferon production and signaling. For human respiratory syncytial virus (RSV), the nonstructural NS1 and NS2 proteins have been shown to have interferon antagonist activity through an unknown mechanism. To understand further the functions of NS1 and NS2, we generated recombinant RSV in which both NS1 and NS2 were replaced by the PIV5 V protein, which has well-characterized IFN antagonist activities ({delta}NS1/2-V). Expression of V was able to partially inhibit IFN responses in {delta}NS1/2-V-infected cells. In addition, the replication kinetics of {delta}NS1/2-V were intermediate between {delta}NS1/2 and wild-type (rA2) in A549 cells. However, expression of V did not affect the ability of {delta}NS1/2-V to activate IRF3 nuclear translocation and IFN{beta} transcription. These data indicate that V was able to replace some of the IFN inhibitory functions of the RSV NS1 and NS2 proteins, but also that NS1 and NS2 have functions in viral replication beyond IFN antagonism.

  2. Proper processing of dengue virus nonstructural glycoprotein NS1 requires the N-terminal hydrophobic signal sequence and the downstream nonstructural protein NS2a.

    PubMed

    Falgout, B; Chanock, R; Lai, C J

    1989-05-01

    Expression of dengue virus gene products involves specific proteolytic cleavages of a precursor polyprotein. To study the flanking sequences required for expression of the dengue virus nonstructural glycoprotein NS1, we constructed a series of recombinant vaccinia viruses that contain the coding sequence for NS1 in combination with various lengths of upstream and downstream sequences. The NS1 products expressed by these viruses in infected CV-1 cells were immune precipitated and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The data show that the 24-residue hydrophobic sequence preceding NS1 was necessary and sufficient for the production of glycosylated NS1 and that this sequence was cleaved from NS1 in the absence of most dengue virus proteins. This finding is consistent with previous proposals that this hydrophobic sequence serves as an N-terminal signal sequence that is cleaved by signal peptidase. The cleavage between the C terminus of NS1 and the downstream protein NS2a occurred when the complete NS2a was present. Recombinant viruses containing NS1 plus 15 or 49% of NS2a produced proteins larger than authentic NS1, indicating that the cleavage between NS1 and NS2a had not occurred. Failure of cleavage was not corrected by coinfection with a recombinant virus capable of cleavage. These results suggest that NS2a may be a cis-acting protease that cleaves itself from NS1, or NS2a may provide sequences for recognition by a specific cellular protease that cleaves at the NS1-NS2a junction.

  3. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide

    1997-01-01

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.

  4. Ab initio coordination chemistry for nickel chelation motifs.

    PubMed

    Sudan, R Jesu Jaya; Kumari, J Lesitha Jeeva; Sudandiradoss, C

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  5. Oxidation-Induced Degradable Nanogels for Iron Chelation

    PubMed Central

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-01-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174

  6. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.N.; Xu, J.

    1997-04-29

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.

  7. Chelation in metal intoxication--Principles and paradigms.

    PubMed

    Aaseth, Jan; Skaug, Marit Aralt; Cao, Yang; Andersen, Ole

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new oral iron antidotes deferiprone and desferasirox have entered into the clinical arena. Comparisons of these agents and deferoxamine infusions are in progress. General principles for research and development of new chelators are briefly outlined in this review.

  8. Essential Metalloelement Chelates Facilitate Repair of Radiation Injury

    PubMed Central

    Soderberg, Lee S. F.; Chang, Louis W.; Walker, Richard B.

    2001-01-01

    Treatment with essential metalloelement (Cu, Fe, Mn, and Zn) chelates or combinations of them before and/or after radiation injury is a useful approach to overcoming radiation injury. No other agents are known to increase survival when they are used to treat after irradiation, in a radiorecovery treatment paradigm. These chelates may be useful in facilitating de novo syntheses of essential metalloelement-dependent enzymes required to repair radiation injury. Reports of radioprotection, which involves treatment before irradiation, with calcium-channel blockers, acyl Melatonin homologs, and substituted anilines, which may serve as chelating agents after biochemical modification in vivo, as well as Curcumin, which is a chelating agent, have been included in this review. These inclusions are intended to suggest additional approaches to combination treatments that may be useful in facilitating radiation recovery. These approaches to radioprotection and radiorecovery offer promise in facilitating recovery from radiation-induced injury experienced by patients undergoing radiotherapy for neoplastic disease and by individuals who experience environmental, occupational, or accidental exposure to ultraviolet, x-ray, or γ-ray radiation. Since there are no existing treatments of radiation-injury intended to facilitate tissue repair, studies of essential metalloelement chelates and combinations of them, as well as combinations of them with existing organic radioprotectants, seem worthwhile. PMID:18475999

  9. Ab initio coordination chemistry for nickel chelation motifs.

    PubMed

    Sudan, R Jesu Jaya; Kumari, J Lesitha Jeeva; Sudandiradoss, C

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies. PMID:25985439

  10. Chelation in metal intoxication--Principles and paradigms.

    PubMed

    Aaseth, Jan; Skaug, Marit Aralt; Cao, Yang; Andersen, Ole

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new oral iron antidotes deferiprone and desferasirox have entered into the clinical arena. Comparisons of these agents and deferoxamine infusions are in progress. General principles for research and development of new chelators are briefly outlined in this review. PMID:25457281

  11. Ab Initio Coordination Chemistry for Nickel Chelation Motifs

    PubMed Central

    Jesu Jaya Sudan, R.; Lesitha Jeeva Kumari, J.; Sudandiradoss, C.

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies. PMID:25985439

  12. The role of chelation in the treatment of other metal poisonings.

    PubMed

    Smith, Silas W

    2013-12-01

    These proceedings will review the role of chelation in five metals-aluminum, cadmium, chromium, cobalt, and uranium-in order to illustrate various chelation concepts. The process of "chelation" can often be oversimplified, leading to incorrect assumptions and risking patient harm. For chelation to be effective, two critical assumptions must be fulfilled: the presumed "metal toxicity" must correlate with a given body or a particular compartment burden, and reducing this compartmental or the body burden (through chelation) attenuates toxicity. Fulfilling these assumptions requires an established dose-response relationship, a validated, reproducible means of toxicity assessment (clinical, biochemical, or radiographical), and an appropriate assessment mechanisms of body or compartment burden. While a metal might "technically" be capable of chelation (and readily demonstrable in urine or feces), this is an insufficient endpoint. Clinical relevance must be affirmed. Deferoxamine is an accepted chelator for appropriately documented aluminum toxicity. There is a very minimal treatment window in order to address chelation in cadmium toxicity. In acute toxicity, while no definitive chelation benefit is described, succimer (DMSA), diethylenetriaminepentaacetate (DTPA), and potentially ethylenediaminetetraacetic acid (EDTA) have been considered. In chronic toxicity, chelation is unsupported. There is little evidence to suggest that currently available chromium chelators are efficacious. Similarly, scant human evidence exists with which to provide recommendation for cobalt chelation. DTPA has been recommended for cobalt radionuclide chelation, although DMSA, EDTA, and N-acetylcysteine have also been suggested. DTPA is unsupported for uranium chelation. Sodium bicarbonate is currently recommended, although animal evidence is conflicting.

  13. The NS1 protein: a multitasking virulence factor.

    PubMed

    Ayllon, Juan; García-Sastre, Adolfo

    2015-01-01

    The non-structural protein 1 of influenza virus (NS1) is a relatively small polypeptide with an outstanding number of ascribed functions. NS1 is the main viral antagonist of the innate immune response during influenza virus infection, chiefly by inhibiting the type I interferon system at multiple steps. As such, its role is critical to overcome the first barrier the host presents to halt the viral infection. However, the pro-viral activities of this well-studied protein go far beyond and include regulation of viral RNA and protein synthesis, and disruption of the host cell homeostasis by dramatically affecting general gene expression while tweaking the PI3K signaling network. Because of all of this, NS1 is a key virulence factor that impacts influenza pathogenesis, and adaptation to new hosts, making it an attractive target for control strategies. Here, we will overview the many roles that have been ascribed to the NS1 protein, and give insights into the sequence features and structural properties that make them possible, highlighting the need to understand how NS1 can actually perform all of these functions during viral infection. PMID:25007846

  14. The NS1 protein: a multitasking virulence factor.

    PubMed

    Ayllon, Juan; García-Sastre, Adolfo

    2015-01-01

    The non-structural protein 1 of influenza virus (NS1) is a relatively small polypeptide with an outstanding number of ascribed functions. NS1 is the main viral antagonist of the innate immune response during influenza virus infection, chiefly by inhibiting the type I interferon system at multiple steps. As such, its role is critical to overcome the first barrier the host presents to halt the viral infection. However, the pro-viral activities of this well-studied protein go far beyond and include regulation of viral RNA and protein synthesis, and disruption of the host cell homeostasis by dramatically affecting general gene expression while tweaking the PI3K signaling network. Because of all of this, NS1 is a key virulence factor that impacts influenza pathogenesis, and adaptation to new hosts, making it an attractive target for control strategies. Here, we will overview the many roles that have been ascribed to the NS1 protein, and give insights into the sequence features and structural properties that make them possible, highlighting the need to understand how NS1 can actually perform all of these functions during viral infection.

  15. Computer-based approach to chelation therapy: a theoretical study of some chelating agents for the selective removal of toxic metal ions from plasma.

    PubMed

    Agarwal, R P; Perrin, D D

    1976-09-01

    COMICS is a computer programme for calculating equilibrium concentrations of metal complexes and reactive species in multi-metal-multi-ligand systems. Its usefulness for analysing metal ion equilibria in blood plasma has been improved by including albumin as a ligand. Using this model system the distribution and removal of copper(II) and zinc ions in histidinaemia, lead poisoning and Wilson's disease have been examined. The efficacy of TRIEN in removing excess copper(II) is shown. The use of specific tripeptides such as Gly-Gly-His methyl ester for the selective removal of copper(II) is suggested. A possible chemoprophylaxis of influenza based on complexation of zinc is discussed. Calculations confirm that thiosemicarbazones such as methisazone and 2-acetylpyridine thiosemicarbazone are effective competitors for heavy metal ions under physiological conditions. PMID:970298

  16. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates

    PubMed Central

    Mikhailov, Oleg V.

    2014-01-01

    This article is a review of recent developments in the self-assembled nanostructures based on chelate coordination compounds. Molecular nanotechnologies of self-assembly of 3d-element aza- and thiazametalmacrocyclic complexes that happen in nanoreactors on the basis of metal hexacyanoferrate(II) gelatin-immobilized matrix under their contact with water solutions containing various (N,O,S)-donor atomic ligands and organic compounds having one or two carbonyl groups have been considered in this review. It has been noted that the assortment of macrocyclic metal chelates obtained as a result of using molecular nanotechnologies in such specific conditions considerably differs from the assortment of metal chelates formed at the conditions traditional for chemical synthesis. PMID:24516711

  17. Chelation and foam separation of metal ions from solutions

    SciTech Connect

    Carleson, T.E.; Moussavi, M.

    1988-08-01

    An experimental study was conducted on the chelation and foam separation of trace amounts of cadmium, zinc, and lead from their water solutions. The chelation agents ethylenediaminetetraacetate (sodium salt), sodium diethyldithiocarbamate, and citric acid were used with sodium dodecylsulfate (SDS) as a foam-producing agent. The chelation agents did not produce metal complexes that were very surface active. The foam-producing agent produced metal ion complexes that were surface active and resulted in appreciable separation of the metal ions. The use of 100 ppm SDS resulted in separation of 90% of the zinc ions from solution containing 2 to 20 ppm zinc. At concentrations below and above this, the removal efficiency dropped significantly.

  18. Iron chelation inhibits the development of pulmonary vascular remodeling.

    PubMed

    Wong, Chi-Ming; Preston, Ioana R; Hill, Nicholas S; Suzuki, Yuichiro J

    2012-11-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Because iron is an important regulator of ROS biology, this study examined the effects of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited the growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension.

  19. Role of EDTA chelation therapy in cardiovascular diseases.

    PubMed

    Shrihari, J S; Roy, A; Prabhakaran, D; Reddy, K Srinath

    2006-01-01

    Chelation therapy is a widely practised mode of treatment for atherosclerotic cardiovascular diseases all over the world. However, evidence for the utility of this therapy is limited and conflicting. We did a systematic review of the literature. The reference listings of the articles, obtained from a Pubmed search using relevant keywords, were searched for additional related articles. Most of the evidence supporting the use of EDTA chelation therapy is from case reports, small series or uncontrolled, open-label clinical trials. The published randomized controlled trials include few patients and their results are of limited value. Uncontrolled studies have reported symptomatic improvements but the few controlled trials suggest that these benefits are due to a placebo effect. The available data do not support the use of chelation in cardiovascular diseases. This therapy should be used only in the context of a research trial including patients who have failed to respond to conventional treatment.

  20. Iron chelation inhibits the development of pulmonary vascular remodeling

    PubMed Central

    Wong, Chi-Ming; Preston, Ioana R.; Hill, Nicholas S.; Suzuki, Yuichiro J.

    2012-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Since iron is an important regulator of ROS biology, the present study examined the effect of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension. PMID:22974762

  1. Chelation therapy in intoxications with mercury, lead and copper.

    PubMed

    Cao, Yang; Skaug, Marit Aralt; Andersen, Ole; Aaseth, Jan

    2015-01-01

    In the present review we provide an update of the appropriate use of chelating agents in the treatment of intoxications with compounds of mercury, lead and copper. The relatively new chelators meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propanesulphonate (DMPS) can effectively mobilize deposits of mercury as well as of lead into the urine. These drugs can be administered orally and have relatively low toxicity compared to the classical antidote dimercaptopropanol (BAL). d-Penicillamine has been widely used in copper overload, although 2,3-dimercaptosuccinic acid or tetrathiomolybdate may be more suitable alternatives today. In copper-toxicity, a free radical scavenger might be recommended as adjuvant to the chelator therapy.

  2. Predicting stability constants of various chelating agents using QSAR technology

    SciTech Connect

    Okey, R.W.; Lin, S.W.; Hong, P.K.A.

    1995-12-31

    The practice of capturing metals from contaminated soil slurry often involves the use of organics as chelators. This work was undertaken to develop information on the molecular characteristics which optimize the removal or the complexation of cadmium, copper, lead and zinc. Quantitative structure-activity relationship (QSAR) technology was employed using special techniques developed for the determination of the correct set of variables. The linear free energy relationship was applied using a 183 case data set to obtain regression coefficients. Equations obtained are provided. The differences in the coefficients and variables may be used as a guide in selecting the optimum chelator for a specific metal. The use of QSAR technology appears effective in furthering the understanding of metal-chelator relationships. A variable set combining molecular connectivity indices and fragments or groups can be used to minimize the size of the data set required for a valid regression and for the avoidance of collinearity problems.

  3. Novel chelate-induced magnetic alignment of biological membranes.

    PubMed Central

    Prosser, R S; Volkov, V B; Shiyanovskaya, I V

    1998-01-01

    A phospholipid chelate complexed with ytterbium (DMPE-DTPA:Yb3+) is shown to be readily incorporated into a model membrane system, which may then be aligned in a magnetic field such that the average bilayer normal lies along the field. This so-called positively ordered smectic phase, whose lipids consist of less than 1% DMPE-DTPA:Yb3+, is ideally suited to structural studies of membrane proteins by solid-state NMR, low-angle diffraction, and spectroscopic techniques that require oriented samples. The chelate, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine diethylenetriaminepentaacetic acid, which strongly binds the lanthanide ions and serves to orient the membrane in a magnetic field, prevents direct lanthanide-protein interactions and significantly reduces paramagnetic shifts and line broadening. Similar low-spin lanthanide chelates may have applications in field-ordered solution NMR studies of water-soluble proteins and in the design of new magnetically aligned liquid crystalline phases. PMID:9788910

  4. Clinical monitoring and management of complications related to chelation therapy in patients with β-thalassemia.

    PubMed

    Saliba, Antoine N; El Rassi, Fuad; Taher, Ali T

    2016-01-01

    Iron chelating agents - deferoxamine (DFO), deferiprone (DFP), and deferasirox (DFX) - are used to treat chronic iron overload in patients with β-thalassemia in an attempt to reduce morbidity and mortality related to siderosis. Each of the approved iron chelating agents has its own advantages over the others and also has its own risks, whether related to over-chelation or not. In this review, we briefly discuss the methods to monitor the efficacy of iron chelation therapy (ICT) and the evidence behind the use of each iron chelating agent. We also portray the risks and complications associated with each iron chelating agent and recommend strategies to manage adverse events.

  5. Heterosandwich immunoswab assay for dengue virus Ns1 antigen detection.

    PubMed

    Ganguly, Advaita; Malabadi, Ravindra B; Loebenberg, Raimer; Suresh, Mavanur R; Sunwoo, Hoon H

    2014-01-01

    Dengue and the more severe dengue hemorrhagic fever have been a very critical public health problem globally. Millions of people especially in the tropical areas get infected with dengue. An efficient diagnostic is very important for early screening of dengue infection. In dengue-infected patients, the nonstructural protein NS1 is present on the surface of infected cells and secreted in plasma. The NS1 antigen is an important target for developing a quick diagnostic largely due to its long presence in the blood. We have developed a simple-to-use immunoswab-based diagnostic procedure employing monoclonal antibodies and the second-generation quadromas. The detection limit for NS1 has been established to be in the subnanogram range. The assay is very sensitive, has a visual end point, and also being extremely inexpensive. With this assay, screening time for a dengue-infected person would be very rapid. PMID:24211216

  6. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    NASA Astrophysics Data System (ADS)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  7. Efficacy of chelation therapy to remove aluminium intoxication.

    PubMed

    Fulgenzi, Alessandro; De Giuseppe, Rachele; Bamonti, Fabrizia; Vietti, Daniele; Ferrero, Maria Elena

    2015-11-01

    There is a distinct correlation between aluminium (Al) intoxication and neurodegenerative diseases (ND). We demonstrated how patients affected by ND showing Al intoxication benefit from short-term treatment with calcium disodium ethylene diamine tetraacetic acid (EDTA) (chelation therapy). Such therapy further improved through daily treatment with the antioxidant Cellfood. In the present study we examined the efficacy of long-term treatment, using both EDTA and Cellfood. Slow intravenous treatment with the chelating agent EDTA (2 g/10 mL diluted in 500 mL physiological saline administered in 2 h) (chelation test) removed Al, which was detected (using inductively coupled plasma mass spectrometry) in urine samples collected from patients over 12 h. Patients that revealed Al intoxication (expressed in μg per g creatinine) underwent EDTA chelation therapy once a week for ten weeks, then once every two weeks for a further six or twelve months. At the end of treatment (a total of 22 or 34 chelation therapies, respectively), associated with daily assumption of Cellfood, Al levels in the urine samples were analysed. In addition, the following blood parameters were determined: homocysteine, vitamin B12, and folate, as well as the oxidative status e.g. reactive oxygen species (ROS), total antioxidant capacity (TAC), oxidized LDL (oxLDL), and glutathione. Our results showed that Al intoxication reduced significantly following EDTA and Cellfood treatment, and clinical symptoms improved. After treatment, ROS, oxLDL, and homocysteine decreased significantly, whereas vitamin B12, folate and TAC improved significantly. In conclusion, our data show the efficacy of chelation therapy associated with Cellfood in subjects affected by Al intoxication who have developed ND.

  8. Lauriston S. Taylor Lecture: the quest for therapeutic actinide chelators.

    PubMed

    Durbin, Patricia W

    2008-11-01

    All of the actinides are radioactive. Taken into the body, they damage and induce cancer in bone and liver, and in the lungs if inhaled, and U(VI) is a chemical kidney poison. Containment of radionuclides is fundamental to radiation protection, but if it is breached accidentally or deliberately, decontamination of exposed persons is needed to reduce the consequences of radionuclide intake. The only known way to reduce the health risks of internally deposited actinides is to accelerate their excretion with chelating agents. Ethylendiaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) were introduced in the 1950's. DTPA is now clinically accepted, but its oral activity is low, it must be injected as a Ca(II) or Zn(II) chelate to avoid toxicity, and it is structurally unsuitable for chelating U(VI) or Np(V). Actinide penetration into the mammalian iron transport and storage systems suggested that actinide ions would form stable complexes with the Fe(III)-binding units found in potent selective natural iron chelators (siderophores). Testing of that biomimetic approach began in the late 1970's with the design, production, and assessment for in vivo Pu(IV) chelation of synthetic multidentate ligands based on the backbone structures and Fe(III)-binding groups of siderophores. New efficacious actinide chelators have emerged from that program, in particular, octadentate 3,4,3-LI(1,2-HOPO) and tetradentate 5-LIO(Me-3,2-HOPO) have potential for clinical acceptance. Both are much more effective than CaNa3-DTPA for decorporation of Pu(IV), Am(III), U(VI), and Np(IV,V), they are orally active, and toxicity is acceptably low at effective dosage.

  9. Interaction of chelating agents with cadmium in mice and rats

    SciTech Connect

    Eybl, V.; Sykora, J.; Koutensky, J.; Caisova, D.; Schwartz, A.; Mertl, F.

    1984-03-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl/sub 2/ and on the whole body retention and tissue distribution of cadmium after the IV application of /sup 115mCdCl/sub 2/ was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatement of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl/sub 2/ and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of /sup 115m/Cd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes.

  10. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats

    SciTech Connect

    Pachauri, Vidhu; Saxena, Geetu; Mehta, Ashish; Mishra, Deepshikha; Flora, Swaran J.S.

    2009-10-15

    Lead, a ubiquitous and potent neurotoxicant causes oxidative stress which leads to numerous neurobehavioral and physiological alterations. The ability of lead to bind sulfhydryl groups or compete with calcium could be one of the reasons for its debilitating effects. In the present study, we addressed: i) if chelation therapy could circumvent the altered oxidative stress and prevent neuronal apoptosis in chronic lead-intoxicated rats, ii) whether chelation therapy could reverse biochemical and behavioral changes, and iii) if mono or combinational therapy with captopril (an antioxidant) and thiol chelating agents (DMSA/MiADMSA) is more effective than individual thiol chelator in lead-exposed rats. Results indicated that lead caused a significant increase in reactive oxygen species, nitric oxide, and intracellular free calcium levels along with altered behavioral abnormalities in locomotor activity, exploratory behavior, learning, and memory that were supported by changes in neurotransmitter levels. A fall in membrane potential, release of cytochrome c, and DNA damage indicated mitochondrial-dependent apoptosis. Most of these alterations showed significant recovery following combined therapy with captopril with MiADMSA and to a smaller extend with captopril + DMSA over monotherapy with these chelators. It could be concluded from our present results that co-administration of a potent antioxidant (like captopril) might be a better treatment protocol than monotherapy to counter lead-induced oxidative stress. The major highlight of the work is an interesting experimental evidence of the efficacy of combinational therapy using an antioxidant with a thiol chelator in reversing neurological dystrophy caused due to chronic lead exposure in rats.

  11. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    SciTech Connect

    Miyazaki, Masaya; Nishihara, Hiroshi; Hasegawa, Hideki; Tashiro, Masato; Wang, Lei; Kimura, Taichi; Tanino, Mishie; Tsuda, Masumi; Tanaka, Shinya

    2013-11-29

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.

  12. Fuel specificity of the hepatitis C virus NS3 helicase.

    PubMed

    Belon, Craig A; Frick, David N

    2009-05-15

    The hepatitis C virus (HCV) NS3 protein is a helicase capable of unwinding duplex RNA or DNA. This study uses a newly developed molecular-beacon-based helicase assay (MBHA) to investigate how nucleoside triphosphates (NTPs) fuel HCV helicase-catalyzed DNA unwinding. The MBHA monitors the irreversible helicase-catalyzed displacement of an oligonucleotide-bound molecular beacon so that rates of helicase translocation can be directly measured in real time. The MBHA reveals that HCV helicase unwinds DNA at different rates depending on the nature and concentration of NTPs in solution, such that the fastest reactions are observed in the presence of CTP followed by ATP, UTP, and GTP. 3'-Deoxy-NTPs generally support faster DNA unwinding, with dTTP supporting faster rates than any other canonical (d)NTP. The presence of an intact NS3 protease domain makes HCV helicase somewhat less specific than truncated NS3 bearing only its helicase region (NS3h). Various NTPs bind NS3h with similar affinities, but each NTP supports a different unwinding rate and processivity. Studies with NTP analogs reveal that specificity is determined by the nature of the Watson-Crick base-pairing region of the NTP base and the nature of the functional groups attached to the 2' and 3' carbons of the NTP sugar. The divalent metal bridging the NTP to NS3h also influences observed unwinding rates, with Mn(2+) supporting about 10 times faster unwinding than Mg(2+). Unlike Mg(2+), Mn(2+) does not support HCV helicase-catalyzed ATP hydrolysis in the absence of stimulating nucleic acids. Results are discussed in relation to models for how ATP might fuel the unwinding reaction.

  13. Chelation-assisted regioselective C-O bond clevage reactions

    SciTech Connect

    Sue-Min Yeh; yu-Huei Chen; Ruey-Min Chen

    1995-12-31

    Chelation demonstrates a unique role to direct the chemo- and regioselectivity on a variety of fascinating transformations. The strategy has been extensively employed in the regioselective intramolecular addition of an organometallic species to a coordinated double bond and in the activation of a neighboring C-H bond. In this paper, the authors present the recent progress on applications of the chelation-assisted C-O bond cleavage reactions in acetals. Thus, treatments of various acetonides of monosaccharide and inositol derivatives with the Grignard reagent afford regioselectively the corresponding products having only one free hydroxy group.

  14. SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-01

    Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

  15. Structures of NS5 Methyltransferase from Zika Virus.

    PubMed

    Coloma, Javier; Jain, Rinku; Rajashankar, Kanagalaghatta R; García-Sastre, Adolfo; Aggarwal, Aneel K

    2016-09-20

    The Zika virus (ZIKV) poses a major public health emergency. To aid in the development of antivirals, we present two high-resolution crystal structures of the ZIKV NS5 methyltransferase: one bound to S-adenosylmethionine (SAM) and the other bound to SAM and 7-methyl guanosine diphosphate (7-MeGpp). We identify features of ZIKV NS5 methyltransferase that lend to structure-based antiviral drug discovery. Specifically, SAM analogs with functionalities on the Cβ atom of the methionine portion of the molecules that occupy the RNA binding tunnel may provide better specificity relative to human RNA methyltransferases.

  16. Structures of NS5 Methyltransferase from Zika Virus.

    PubMed

    Coloma, Javier; Jain, Rinku; Rajashankar, Kanagalaghatta R; García-Sastre, Adolfo; Aggarwal, Aneel K

    2016-09-20

    The Zika virus (ZIKV) poses a major public health emergency. To aid in the development of antivirals, we present two high-resolution crystal structures of the ZIKV NS5 methyltransferase: one bound to S-adenosylmethionine (SAM) and the other bound to SAM and 7-methyl guanosine diphosphate (7-MeGpp). We identify features of ZIKV NS5 methyltransferase that lend to structure-based antiviral drug discovery. Specifically, SAM analogs with functionalities on the Cβ atom of the methionine portion of the molecules that occupy the RNA binding tunnel may provide better specificity relative to human RNA methyltransferases. PMID:27633330

  17. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export

    SciTech Connect

    Wang, Yimeng; Zhou, Jianhong; Du, Yuchun

    2014-01-20

    The NS1 protein of influenza viruses is a major virulence factor and exerts its function through interacting with viral/cellular RNAs and proteins. In this study, we identified heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as an interacting partner of NS1 proteins by a proteomic method. Knockdown of hnRNP A2/B1 by small interfering RNA (siRNA) resulted in higher levels of NS vRNA, NS1 mRNA, and NS1 protein in the virus-infected cells. In addition, we demonstrated that hnRNP A2/B1 proteins are associated with NS1 and NS2 mRNAs and that knockdown of hnRNP A2/B1 promotes transport of NS1 mRNA from the nucleus to the cytoplasm in the infected cells. Lastly, we showed that knockdown of hnRNP A2/B1 leads to enhanced virus replication. Our results suggest that hnRNP A2/B1 plays an inhibitory role in the replication of influenza A virus in host cells potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nucleocytoplasmic translocation. - Highlights: • Cellular protein hnRNP A2/B1 interacts with influenza viral protein NS1. • hnRNP A2/B1 suppresses the levels of NS1 protein, vRNA and mRNA in infected cells. • hnRNP A2/B1 protein is associated with NS1 and NS2 mRNAs. • hnRNP A2/B1 inhibits the nuclear export of NS1 mRNAs. • hnRNP A2/B1 inhibits influenza virus replication.

  18. Facilitation of cell adhesion by immobilized dengue viral nonstructural protein 1 (NS1): arginine-glycine-aspartic acid structural mimicry within the dengue viral NS1 antigen.

    PubMed

    Chang, Hsin-Hou; Shyu, Huey-Fen; Wang, Yo-Ming; Sun, Der-Shan; Shyu, Rong-Hwa; Tang, Shiao-Shek; Huang, Yao-Shine

    2002-09-15

    Dengue virus infection causes life-threatening hemorrhagic fever. Increasing evidence implies that dengue viral nonstructural protein 1 (NS1) exhibits a tendency to elicit potentially hazardous autoantibodies, which show a wide spectrum of specificity against extracellular matrix and platelet antigens. How NS1 elicits autoantibodies remains unclear. To address the hypothesis that NS1 and matrix proteins may have structural and functional similarity, cell-matrix and cell-NS1 interactions were evaluated using a cell-adhesion assay. The present study showed that dengue NS1 immobilized on coverslips resulted in more cell adhesion than did the control proteins. This cell adhesion was inhibited by peptides containing arginine-glycine-aspartic acid (RGD), a motif important for integrin-mediated cell adhesion. In addition, anti-NS1 antibodies blocked RGD-mediated cell adhesion. Although there is no RGD motif in the NS1 protein sequence, these data indicate that RGD structural mimicry exists within the NS1 antigen.

  19. Resistance Analyses of HCV NS3/4A Protease and NS5B Polymerase from Clinical Studies of Deleobuvir and Faldaprevir

    PubMed Central

    Berger, Kristi L.; Sarrazin, Christoph; Nelson, David R.; Scherer, Joseph; Sha, Nanshi; Marquis, Martin; Côté-Martin, Alexandra; Vinisko, Richard; Stern, Jerry O.; Mensa, Federico J.; Kukolj, George

    2016-01-01

    Background & Aim The resistance profile of anti-hepatitis C virus (HCV) agents used in combination is important to guide optimal treatment regimens. We evaluated baseline and treatment-emergent NS3/4A and NS5B amino-acid variants among HCV genotype (GT)-1a and -1b-infected patients treated with faldaprevir (HCV protease inhibitor), deleobuvir (HCV polymerase non-nucleoside inhibitor), and ribavirin in multiple clinical studies. Methods HCV NS3/4A and NS5B population sequencing (Sanger method) was performed on all baseline plasma samples (n = 1425 NS3; n = 1556 NS5B) and on post-baseline plasma samples from patients with virologic failure (n = 113 GT-1a; n = 221 GT-1b). Persistence and time to loss of resistance-associated variants (RAVs) was estimated using Kaplan–Meier analysis. Results Faldaprevir RAVs (NS3 R155 and D168) and deleobuvir RAVs (NS5B 495 and 496) were rare (<1%) at baseline. Virologic response to faldaprevir/deleobuvir/ribavirin was not compromised by common baseline NS3 polymorphisms (e.g. Q80K in 17.5% of GT-1a) or by NS5B A421V, present in 20% of GT-1a. In GT-1b, alanine at NS5B codon 499 (present in 15% of baseline sequences) was associated with reduced response. Treatment-emergent RAVs consolidated previous findings: NS3 R155 and D168 were key faldaprevir RAVs; NS5B A421 and P495 were key deleobuvir RAVs. Among on-treatment virologic breakthroughs, RAVs emerged in both NS3 and NS5B (>90%). Virologic relapse was associated with RAVs in both NS3 and NS5B (53% GT-1b; 52% GT-1b); some virologic relapses had NS3 RAVs only (47% GT-1a; 17% GT-1b). Median time to loss of GT-1b NS5B P495 RAVs post-treatment (5 months) was less than that of GT-1b NS3 D168 (8.5 months) and GT-1a R155 RAVs (11.5 months). Conclusion Faldaprevir and deleobuvir RAVs are more prevalent among virologic failures than at baseline. Treatment response was not compromised by common NS3 polymorphisms; however, alanine at NS5B amino acid 499 at baseline (wild-type in GT-1a

  20. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor.

    PubMed

    Lei, Jian; Hansen, Guido; Nitsche, Christoph; Klein, Christian D; Zhang, Linlin; Hilgenfeld, Rolf

    2016-07-29

    The ongoing Zika virus (ZIKV) outbreak is linked to severe neurological disorders. ZIKV relies on its NS2B/NS3 protease for polyprotein processing; hence, this enzyme is an attractive drug target. The 2.7 angstrom; crystal structure of ZIKV protease in complex with a peptidomimetic boronic acid inhibitor reveals a cyclic diester between the boronic acid and glycerol. The P2 4-aminomethylphenylalanine moiety of the inhibitor forms a salt-bridge with the nonconserved Asp(83) of NS2B; ion-pairing between Asp(83) and the P2 residue of the substrate likely accounts for the enzyme's high catalytic efficiency. The unusual dimer of the ZIKV protease:inhibitor complex seen in the crystal may provide a model for assemblies formed at high local concentrations of protease at the endoplasmatic reticulum membrane, the site of polyprotein processing. PMID:27386922

  1. Further theoretical insight into the reaction mechanism of the hepatitis C NS3/NS4A serine protease

    NASA Astrophysics Data System (ADS)

    Martínez-González, José Ángel; Rodríguez, Alex; Puyuelo, María Pilar; González, Miguel; Martínez, Rodrigo

    2015-01-01

    The main reactions of the hepatitis C virus NS3/NS4A serine protease are studied using the second-order Møller-Plesset ab initio method and rather large basis sets to correct the previously reported AM1/CHARMM22 potential energy surfaces. The reaction efficiencies measured for the different substrates are explained in terms of the tetrahedral intermediate formation step (the rate-limiting process). The energies of the barrier and the corresponding intermediate are so close that the possibility of a concerted mechanism is open (especially for the NS5A/5B substrate). This is in contrast to the suggested general reaction mechanism of serine proteases, where a two-step mechanism is postulated.

  2. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor.

    PubMed

    Lei, Jian; Hansen, Guido; Nitsche, Christoph; Klein, Christian D; Zhang, Linlin; Hilgenfeld, Rolf

    2016-07-29

    The ongoing Zika virus (ZIKV) outbreak is linked to severe neurological disorders. ZIKV relies on its NS2B/NS3 protease for polyprotein processing; hence, this enzyme is an attractive drug target. The 2.7 angstrom; crystal structure of ZIKV protease in complex with a peptidomimetic boronic acid inhibitor reveals a cyclic diester between the boronic acid and glycerol. The P2 4-aminomethylphenylalanine moiety of the inhibitor forms a salt-bridge with the nonconserved Asp(83) of NS2B; ion-pairing between Asp(83) and the P2 residue of the substrate likely accounts for the enzyme's high catalytic efficiency. The unusual dimer of the ZIKV protease:inhibitor complex seen in the crystal may provide a model for assemblies formed at high local concentrations of protease at the endoplasmatic reticulum membrane, the site of polyprotein processing.

  3. Novel fullerene derivatives as dual inhibitors of Hepatitis C virus NS5B polymerase and NS3/4A protease.

    PubMed

    Kataoka, Hiroki; Ohe, Tomoyuki; Takahashi, Kyoko; Nakamura, Shigeo; Mashino, Tadahiko

    2016-10-01

    We evaluated the Hepatitis C virus (HCV) NS5B polymerase and HCV NS3/4A protease inhibition activities of a new set of proline-type fullerene derivatives. All of the compounds had the potential to inhibit both the enzymes, indicating that the fullerene derivatives may be dual inhibitors against NS5B and NS3/4A and could be novel lead compounds for the treatment of HCV infections. PMID:27597249

  4. A straightforward experimental approach to expression, purification, refolding, and enzymatic analysis of recombinant dengue virus NS2B(H)-NS3pro protease.

    PubMed

    Junaid, M; Angsuthanasombat, C; Wikberg, J E S; Ali, N; Katzenmeier, G

    2013-08-01

    Dengue virus threatens around 2.5 billion people worldwide; about 50 million become infected every year, and yet no vaccine or drug is available for prevention and/or treatment. The flaviviral NS2B-NS3pro complex is indispensable for flaviviral replication and is considered to be an important drug target. The aim of this study was to develop a simple and generally applicable experimental strategy to construct, purify, and assay a highly active recombinant NS2B(H)-NS3pro complex that would be useful for high-throughput screening of potential inhibitors. The sequence of NS2B(H)-NS3pro was generated by overlap extension PCR (SOE-PCR) and cloned into the pTrcHisA vector. Hexahistidine-tagged NS2B(H)-NS3pro complex was expressed in E. coli predominantly as insoluble protein and purified to >95% purity by single-step immobilized metal affinity chromatography. SDS-PAGE followed by immunoblotting of the purified enzyme demonstrated the presence of the NS2B(H)-NS3pro precursor and its autocleavage products, NS3pro and NS2B(H), as 37, 21, and 10 kDa bands, respectively. Kinetic parameters, Km, kcat, and kcat/Km for the fluorophore-linked protease model substrate Ac-nKRR-amc were obtained using inner-filter effect correction. The kinetic parameters Km, kcat, and kcat/Km for Ac-nKRR-amc substrate were 100 µM, 0.112 s(-1), and 1120 M(-1)·s(-1), respectively. A simplified procedure for the cloning, overexpression, and purification of the NS2B(H)-NS3pro complex was applied, and a highly active recombinant NS2B(H)-NS3pro complex was obtained that could be useful for the design of high-throughput assays aimed at flaviviral inhibitor discovery.

  5. Structural and biological evaluation of some metal complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2013-12-01

    The synthesis and characterization of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O2 complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone (H2PVT) are reported. Theoretical calculations have been performed to obtain IR spectra of ligand and its complexes using AM1, Zindo/1, MM+ and PM3, methods. The Schiff base and its metal complexes have been screened for antibacterial Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus saprophyticus. H2VPT shows no apparent digestion effect on the egg albumin while Mn(II), Hg(II) and Cu(II) complexes exhibited a considerable digestion effect following the order Cu(II) > Mn(II) > Hg(II). Moreover, Ni(II) and Co(II) complexes revealed strong digestion effect. Fe(II), Mn(II), Cu(II), Zn(II) and Ni(II) acted as metal co- SOD enzyme factors, which are located in different compartments of the cell.

  6. Synthesis and biological evaluation of new naphthalene substituted thiosemicarbazone derivatives as potent antifungal and anticancer agents.

    PubMed

    Altıntop, Mehlika Dilek; Atlı, Özlem; Ilgın, Sinem; Demirel, Rasime; Özdemir, Ahmet; Kaplancıklı, Zafer Asım

    2016-01-27

    New thiosemicarbazone derivatives (1-10) were obtained via the reaction of 4-(naphthalen-1-yl)thiosemicarbazide with fluoro-substituted aromatic aldehydes. The synthesized compounds were evaluated for their in vitro antifungal effects against pathogenic yeasts and molds using broth microdilution assay. Ames and umuC assays were carried out to determine the genotoxicity of the most effective antifungal derivatives. Furthermore, all compounds were evaluated for their cytotoxic effects on A549 human lung adenocarcinoma and NIH/3T3 mouse embryonic fibroblast cell lines using XTT test. Among these derivatives, 4-(naphthalen-1-yl)-1-(2,3-difluorobenzylidene)thiosemicarbazide (1) and 4-(naphthalen-1-yl)-1-(2,5-difluorobenzylidene)thiosemicarbazide (3) can be identified as the most promising antifungal derivatives due to their notable inhibitory effects on Candida species and no cytotoxicity against NIH/3T3 mouse embryonic fibroblast cell line. According to Ames and umuC assays, compounds 1 and 3 were classified as non-mutagenic compounds. On the other hand, 4-(naphthalen-1-yl)-1-(2,4-difluorobenzylidene)thiosemicarbazide (2) can be considered as the most promising anticancer agent against A549 cell line owing to its notable inhibitory effect on A549 cells with an IC50 value of 31.25 μg/mL when compared with cisplatin (IC50 = 16.28 μg/mL) and no cytotoxicity against NIH/3T3 cells.

  7. Spectroscopic analysis, AIM, NLO and VCD investigations of acetaldehyde thiosemicarbazone using quantum mechanical simulations

    NASA Astrophysics Data System (ADS)

    Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Govindarajan, M.; Gnanamuthu, S. Joshua; Pandian, G. V.

    2016-08-01

    The prepared Acetaldehyde thiosemicarbazone (ATSC) have been investigated by both the experimental and theoretical methods; through this work, the essentiality of elucidation of molecular fragments source linear and non-linear optical properties was explored. The stability of the structure and entire calculations have been performed on HF and B3LYP methods with 6-311++G(d,p) level of basis set. The Mulliken charge profile, electronic, optical and hyper polarizability analyses have been carried out in order to evaluate nonlinear optical (NLO) performance of the present compound. The exact optical location of the ATSC was determined by executing UV-Visible calculations on TDSCF method. The existence of the molecular group for the inducement and tuning of NLO properties were thoroughly investigated by performing fundamental vibrational investigation. The optical energy transformation among frontier molecular levels has been described in UV-Visible region. The Gibbs energy coefficient of thermodynamic functions was monitored in different temperature and it was found constant irrespective of temperatures. The appearance of different chemical environment of H and C was monitored from the 1H and 13C NMR spectra. The vibrational optical polarization characteristics with respect to molecular composition in the compound have been studied by VCD spectrum. The bond critical point, Laplacian of electron density, electron kinetic energy density and total electron energy density have calculated and analysed using AIM study.

  8. Benzaldehyde Thiosemicarbazone Derived from Limonene Complexed with Copper Induced Mitochondrial Dysfunction in Leishmania amazonensis

    PubMed Central

    Britta, Elizandra Aparecida; Barbosa Silva, Ana Paula; Ueda-Nakamura, Tânia; Dias-Filho, Benedito Prado; Silva, Cleuza Conceição; Sernaglia, Rosana Lázara; Nakamura, Celso Vataru

    2012-01-01

    Background Leishmaniasis is a major health problem that affects more than 12 million people. Treatment presents several problems, including high toxicity and many adverse effects, leading to the discontinuation of treatment and emergence of resistant strains. Methodology/Principal Findings We evaluated the in vitro antileishmanial activity of benzaldehyde thiosemicarbazone derived from limonene complexed with copper, termed BenzCo, against Leishmania amazonensis. BenzCo inhibited the growth of the promastigote and axenic amastigote forms, with IC50 concentrations of 3.8 and 9.5 µM, respectively, with 72 h of incubation. Intracellular amastigotes were inhibited by the compound, with an IC50 of 10.7 µM. BenzCo altered the shape, size, and ultrastructure of the parasites. Mitochondrial membrane depolarization was observed in protozoa treated with BenzCo but caused no alterations in the plasma membrane. Additionally, BenzCo induced lipoperoxidation and the production of mitochondrial superoxide anion radicals in promastigotes and axenic amastigotes of Leishmania amazonensis. Conclusion/Significance Our studies indicated that the antileishmania activity of BenzCo might be associated with mitochondrial dysfunction and oxidative damage, leading to parasite death. PMID:22870222

  9. Study on the Interaction between Isatin-β-Thiosemicarbazone and Calf Thymus DNA by Spectroscopic Techniques

    PubMed Central

    Pakravan, Parvaneh; Masoudian, Shahla

    2015-01-01

    The interaction between isatin-β-thiosemicarbazone (IBT) and calf thymus DNA (CT-DNA) was investigated in physiological buffer (pH 7.4) using Neutral Red (NR) dye as a spectral probe by UV–Vis absorption and fluorescence spectroscopy, as well as viscosity measurements. The IBT is stabilized by intercalation in the DNA (K [IBT –DNA] = 1.03×105 M−1), and displaces the NR dye from the NR–DNA complex. The binding constants Kf and number of binding sites (n≈1) of IBT with DNA were obtained by fluorescence quenching method at different temperatures. Furthermore, the enthalpy and entropy of the reaction between IBT and CT-DNA showed that the reaction is enthalpy-favored and entropy-disfavored. The changes in the base stacking of CT-DNA upon the binding of IBT are reflected in the circular dichroic (CD) spectral studies. The viscosity increase of CT-DNA solution is another evidence to indicate that, IBT is able to be intercalated in the DNA base pairs. PMID:25561917

  10. Mosquito densonucleosis virus non-structural protein NS2 is necessary for a productive infection

    SciTech Connect

    Azarkh, Eugene; Robinson, Erin; Hirunkanokpun, Supanee; Afanasiev, Boris; Kittayapong, Pattamaporn; Carlson, Jonathan Corsini, Joe

    2008-04-25

    Mosquito densonucleosis viruses synthesize two non-structural proteins, NS1 and NS2. While NS1 has been studied relatively well, little is known about NS2. Antiserum was raised against a peptide near the N-terminus of NS2, and used to conduct Western blot analysis and immuno-fluorescence assays. Western blots revealed a prominent band near the expected size (41 kDa). Immuno-fluorescence studies of mosquito cells transfected with AeDNV indicate that NS2 has a wider distribution pattern than does NS1, and the distribution pattern appears to be a function of time post-infection. Nuclear localization of NS2 requires intact C-terminus but does not require additional viral proteins. Mutations ranging from complete NS2 knock-out to a single missense amino acid substitution in NS2 can significantly reduce viral replication and production of viable progeny.

  11. The binding of β-d-glucopyranosyl-thiosemicarbazone derivatives to glycogen phosphorylase: A new class of inhibitors.

    PubMed

    Alexacou, Kyra-Melinda; Tenchiu Deleanu, Alia-Cristina; Chrysina, Evangelia D; Charavgi, Maria-Despoina; Kostas, Ioannis D; Zographos, Spyros E; Oikonomakos, Nikos G; Leonidas, Demetres D

    2010-11-15

    Glycogen phosphorylase (GP) is a promising target for the treatment of type 2 diabetes. In the process of structure based drug design for GP, a group of 15 aromatic aldehyde 4-(β-d-glucopyranosyl)thiosemicarbazones have been synthesized and evaluated as inhibitors of rabbit muscle glycogen phosphorylase b (GPb) by kinetic studies. These compounds are competitive inhibitors of GPb with respect to α-d-glucose-1-phosphate with IC(50) values ranging from 5.7 to 524.3μM. In order to elucidate the structural basis of their inhibition, the crystal structures of these compounds in complex with GPb at 1.95-2.23Å resolution were determined. The complex structures reveal that the inhibitors are accommodated at the catalytic site with the glucopyranosyl moiety at approximately the same position as α-d-glucose and stabilize the T conformation of the 280s loop. The thiosemicarbazone part of the studied glucosyl thiosemicarbazones possess a moiety derived from substituted benzaldehydes with NO(2), F, Cl, Br, OH, OMe, CF(3), or Me at the ortho-, meta- or para-position of the aromatic ring as well as a moiety derived from 4-pyridinecarboxaldehyde. These fit tightly into the β-pocket, a side channel from the catalytic site with no access to the bulk solvent. The differences in their inhibitory potency can be interpreted in terms of variations in the interactions of the aldehyde-derived moiety with protein residues in the β-pocket. In addition, 14 out of the 15 studied inhibitors were found bound at the new allosteric site of the enzyme.

  12. Interaction cloning of NS1-I, a human protein that binds to the nonstructural NS1 proteins of influenza A and B viruses.

    PubMed Central

    Wolff, T; O'Neill, R E; Palese, P

    1996-01-01

    The yeast interaction trap system was used to identify, NS1-I (for NS1 interactor), which is a human protein that binds to the nonstructural NS1 protein of the influenza A virus. NS1-I is a human homolog of the porcine 17beta-estradiol dehydrogenase precursor protein, to which it is 84% identical. We detected only one NS1-I mRNA species, of about 3.0 kb, in HeLa cells, and the NS1-I cDNA was found to have a coding capacity for a 79.6-kDa protein. However, immunoblot analysis detected predominantly a 55-kDa protein in human cells, suggesting that NS1-I, like the porcine 17beta-estradiol dehydrogenase, is posttranslationally processed. Using an in vitro coprecipitation assay, we showed that NS1-I interacts with NS1 proteins from extracts of cells infected with five different influenza A virus strains as well as with the NS1 of an influenza B virus. The fact that influenza A and influenza B virus NS1 proteins bind to NS1-I suggests that this cellular protein plays a role in the influenza virus life cycle. PMID:8764047

  13. Synthesis and cytotoxic activity of N-substituted thiosemicarbazones of 3-(3,4-methylenedioxy)phenylpropanal.

    PubMed

    Joselice e Silva, M; Alves, A J; Do Nascimento, S C

    1998-03-01

    Five new N-substituted thiosemicarbazones of 3-(3,4-methylenedioxy)phenylpropanal were synthesized. Safrole, a natural product obtained from sassafras oil (Ocotea pretiosa), was oxidized to alcohol using BH3-THF and H2O2, followed by oxidation to aldehyde using pyridinium dichromate (PDC) and condensation with five N-substituted derivatives of thiosemicarbazide. Tests were performed to evaluate the cytotoxic activity with continuous chain KB cells (epidermoide carcinoma of the floor of the mouth). Compounds 5 and 6 showed IC50 values of 1.5 and 4.6 micrograms/ml, respectively.

  14. [System of ns time-resolved spectroscopy diagnosis and radioprotection].

    PubMed

    Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo

    2014-06-01

    Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth. PMID:25358142

  15. Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators.

    PubMed

    Ogiwara, Yoshiko; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-04-01

    Many packaged foods utilize synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) to inhibit iron-promoted oxidation or microbial growth which would result in quality loss. To address consumer demands for all natural products, we have previously developed a non-migratory iron chelating active packaging material by covalent immobilization of polyhydroxamate and demonstrated its efficacy in delaying lipid oxidation. Herein, we demonstrate the ability of this hydroxamate-functionalized iron chelating active packaging to retain iron chelating capacity; even in the presence of competing ions common in food. Both immobilized and soluble hydroxamate chelators retained iron chelating capacity in the presence of calcium, magnesium, and sodium competing ions, although at pH 5.0 the presence of calcium reduced immobilized hydroxamate iron chelation. A strong correlation was found between colorimetric and mass spectral analysis of iron chelation by the chelating packaging material. Such chelating active packaging may support reducing additive use in product formulations, while retaining quality and shelf life.

  16. Scintigraphic monitoring of immunotoxins using radionuclides and heterobifunctional chelators

    SciTech Connect

    Reardan, D.; Bernhard, S.

    1991-10-22

    This patent describes a method for in vivo radioimmunodetection of cytotoxic immunotoxin. It comprises administering internally to a mammal a radio-labeled immunotoxin, wherein a heterobifunctional chelating agent provides a chemical bridge between a radiolabel and a cytotoxic component bound to the antigen-binding component of the immunotoxin, and detecting externally the distribution of the immunotoxin in the mammal.

  17. Chelation of thallium by combining deferasirox and desferrioxamine in rats.

    PubMed

    Saljooghi, Amir Shokooh; Babaie, Maryam; Mendi, Fatemeh Delavar; Zahmati, Maliheh; Saljooghi, Zoheir Shokouh

    2016-01-01

    The hypothesis that two known chelators deferasirox (4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid) and desferrioxamine (DFO) might be more efficient as combined treatment than as monotherapies in removing thallium from the body was tested in a new acute rat model. 7-week-old male Wistar rats received chelators: deferasirox (orally), DFO (intraperitoneal; i.p.), or deferasirox + DFO as 75 or 150 mg/kg dose half an hour after a single i.p. administration of 8 mg thallium/kg body weight in the form of chloride. Serum thallium concentration, urinary thallium, and iron excretions were determined by graphite furnace atomic absorption spectrometry. Both chelators were effective only at the higher dose level, while DFO was more effective than deferasirox in enhancing urinary thallium excretion, deferasirox was more effective than DFO in enhancing urinary iron excretion. In the combined treatment group, deferasirox did not increase the DFO effect on thallium and DFO did not increase the effect of deferasirox on iron elimination. Our results support the usefulness of this animal model for preliminary in vivo testing of thallium chelators. Urinary values were more useful because of the high variability of serum results.

  18. Chelation And Extraction Of Metals For GC-MS Analysis

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.

    1995-01-01

    Chelation followed by supercritical-fluid extraction enables mass-spectrometric analysis. When fully developed, method implemented in field-portable apparatus for detection and quantification of metals in various matrices without need for elaborate preparation of samples. Used to analyze soil samples for toxic metals.

  19. Evaluation of intakes of transuranics influenced by chelation therapy

    SciTech Connect

    LaBone, T.R.

    1994-02-01

    Once an intake of transuranics occurs, there are only three therapeutic procedures available to the physician for reducing the intake and mitigating the dose: excision of material from wounds, removal of material from the lungs with lavage, and chelation therapy. The only chelation agents approved in the United States for the treatment of occupational intakes of transuranics are the zinc and calcium salts of diethylene-triamine-pentaacetic acid, better known as Zn-DTPA and Ca-DTPA. In the past 35 years, approximately 3000 doses of DTPA have been administrated to over 500 individuals who had intakes of transuranics. The drug is considered to be quiet safe and has few side effects. For the internal dosimetrist, perhaps the most important aspects of chelation therapy is that if enhances the excretion rate of a transuranic and perturbs the shape of the urinary excretion curve. These perturbations last for months and are so great that standard urinary excretion models cannot be used to evaluate the intake. We review here a method for evaluating intakes of transuranics influenced by chelation therapy that has been used with some degree of success at the Savannah River Site for over 20 years.

  20. Chelation therapy in cardiovascular disease: ethylenediaminetetraacetic acid, deferoxamine, and dexrazoxane.

    PubMed

    Elihu, N; Anandasbapathy, S; Frishman, W H

    1998-02-01

    This review was conducted to assess whether there is sufficient evidence for the clinical use of chelation therapy in cardiovascular disease based on original articles and abstracts published in the last 30 years, with emphasis placed on the most recent placebo-controlled studies. Articles postulating the mechanisms of chelation also were included. The majority of the literature focused on three chelators in particular, ethylenediaminetetraacetic acid (EDTA), deferoxamine, and dexrazoxane (ICRF-187). Historically, much has been written on the beneficial effects of EDTA. However, there are few controlled studies, and the mechanism of action of EDTA is poorly understood. Although studies of deferoxamine are more recent, most of the research is limited to animals and ex vivo models. Recently, dexrazoxane was approved, but only for parenteral use for reducing the incidence and severity of cardiomyopathy associated with doxorubicin administration in women with metastatic breast cancer. Given these limitations, it is concluded that more controlled studies are required to determine the efficacy of chelation therapy in cardiovascular disease before it can be used broadly in the clinical setting.

  1. Desferrithiocin: A Search for Clinically Effective Iron Chelators

    PubMed Central

    2015-01-01

    The successful search for orally active iron chelators to treat transfusional iron-overload diseases, e.g., thalassemia, is overviewed. The critical role of iron in nature as a redox engine is first described, as well as how primitive life forms and humans manage the metal. The problems that derive when iron homeostasis in humans is disrupted and the mechanism of the ensuing damage, uncontrolled Fenton chemistry, are discussed. The solution to the problem, chelator-mediated iron removal, is clear. Design options for the assembly of ligands that sequester and decorporate iron are reviewed, along with the shortcomings of the currently available therapeutics. The rationale for choosing desferrithiocin, a natural product iron chelator (a siderophore), as a platform for structure–activity relationship studies in the search for an orally active iron chelator is thoroughly developed. The study provides an excellent example of how to systematically reengineer a pharmacophore in order to overcome toxicological problems while maintaining iron clearing efficacy and has led to three ligands being evaluated in human clinical trials. PMID:25207964

  2. Sirtuin inhibitor sirtinol is an intracellular iron chelator

    PubMed Central

    Gautam, R.; Akam, E. A.; Astashkin, A. V.; Loughrey, J. J.

    2015-01-01

    Sirtinol is a known inhibitor of sirtuin proteins, a family of deacetylases involved in the pathophysiology of aging. Spectroscopic and structural data reveal that this compound is also an iron chelator forming high-spin ferric species in vitro and in cultured leukemia cells. Interactions with the highly regulated iron pool therefore contribute to its overall intracellular agenda. PMID:25715179

  3. MDs remain sceptical as chelation therapy goes mainstream in Saskatchewan

    PubMed Central

    Oliver, M

    1997-01-01

    The College of Physicians and Surgeons of Saskatchewan recently agreed to allow physicians to administer chelation therapy. Supporters, relying on anecdotal evidence, say it works wonders in overcoming heart disease, but many physicians remain profoundly sceptical. In Saskatchewan, the college decision has proved popular with patients but has drawn an angry reaction from doctors. PMID:9307563

  4. In Vitro Characterization of the Pharmacological Properties of the Anti-Cancer Chelator, Bp4eT, and Its Phase I Metabolites

    PubMed Central

    Potůčková, Eliška; Roh, Jaroslav; Macháček, Miloslav; Sahni, Sumit; Stariat, Ján; Šesták, Vít; Jansová, Hana; Hašková, Pavlína; Jirkovská, Anna; Vávrová, Kateřina; Kovaříková, Petra; Kalinowski, Danuta S.; Richardson, Des R.; Šimůnek, Tomáš

    2015-01-01

    Cancer cells have a high iron requirement and many experimental studies, as well as clinical trials, have demonstrated that iron chelators are potential anti-cancer agents. The ligand, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), demonstrates both potent anti-neoplastic and anti-retroviral properties. In this study, Bp4eT and its recently identified amidrazone and semicarbazone metabolites were examined and compared with respect to their anti-proliferative activity towards cancer cells (HL-60 human promyelocytic leukemia, MCF-7 human breast adenocarcinoma, HCT116 human colon carcinoma and A549 human lung adenocarcinoma), non-cancerous cells (H9c2 neonatal rat-derived cardiomyoblasts and 3T3 mouse embryo fibroblasts) and their interaction with intracellular iron pools. Bp4eT was demonstrated to be a highly potent and selective anti-neoplastic agent that induces S phase cell cycle arrest, mitochondrial depolarization and apoptosis in MCF-7 cells. Both semicarbazone and amidrazone metabolites showed at least a 300-fold decrease in cytotoxic activity than Bp4eT towards both cancer and normal cell lines. The metabolites also lost the ability to: (1) promote the redox cycling of iron; (2) bind and mobilize iron from labile intracellular pools; and (3) prevent 59Fe uptake from 59Fe-labeled transferrin by MCF-7 cells. Hence, this study demonstrates that the highly active ligand, Bp4eT, is metabolized to non-toxic and pharmacologically inactive analogs, which most likely contribute to its favorable pharmacological profile. These findings are important for the further development of this drug candidate and contribute to the understanding of the structure-activity relationships of these agents. PMID:26460540

  5. In Vitro Characterization of the Pharmacological Properties of the Anti-Cancer Chelator, Bp4eT, and Its Phase I Metabolites.

    PubMed

    Potůčková, Eliška; Roh, Jaroslav; Macháček, Miloslav; Sahni, Sumit; Stariat, Ján; Šesták, Vít; Jansová, Hana; Hašková, Pavlína; Jirkovská, Anna; Vávrová, Kateřina; Kovaříková, Petra; Kalinowski, Danuta S; Richardson, Des R; Šimůnek, Tomáš

    2015-01-01

    Cancer cells have a high iron requirement and many experimental studies, as well as clinical trials, have demonstrated that iron chelators are potential anti-cancer agents. The ligand, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), demonstrates both potent anti-neoplastic and anti-retroviral properties. In this study, Bp4eT and its recently identified amidrazone and semicarbazone metabolites were examined and compared with respect to their anti-proliferative activity towards cancer cells (HL-60 human promyelocytic leukemia, MCF-7 human breast adenocarcinoma, HCT116 human colon carcinoma and A549 human lung adenocarcinoma), non-cancerous cells (H9c2 neonatal rat-derived cardiomyoblasts and 3T3 mouse embryo fibroblasts) and their interaction with intracellular iron pools. Bp4eT was demonstrated to be a highly potent and selective anti-neoplastic agent that induces S phase cell cycle arrest, mitochondrial depolarization and apoptosis in MCF-7 cells. Both semicarbazone and amidrazone metabolites showed at least a 300-fold decrease in cytotoxic activity than Bp4eT towards both cancer and normal cell lines. The metabolites also lost the ability to: (1) promote the redox cycling of iron; (2) bind and mobilize iron from labile intracellular pools; and (3) prevent 59Fe uptake from 59Fe-labeled transferrin by MCF-7 cells. Hence, this study demonstrates that the highly active ligand, Bp4eT, is metabolized to non-toxic and pharmacologically inactive analogs, which most likely contribute to its favorable pharmacological profile. These findings are important for the further development of this drug candidate and contribute to the understanding of the structure-activity relationships of these agents. PMID:26460540

  6. Inhibitory effect of synthetic aromatic heterocycle thiosemicarbazone derivatives on mushroom tyrosinase: Insights from fluorescence, (1)H NMR titration and molecular docking studies.

    PubMed

    Xie, Juan; Dong, Huanhuan; Yu, Yanying; Cao, Shuwen

    2016-01-01

    Three structurally similar aromatic heterocyclic compounds 2-thiophenecarboxaldehyde (a), 2-furaldehyde (b), 2-pyrrolecarboxaldehyde (c) were chosen and a series of their thiosemicarbazone derivatives(1a-3a, 1b-3b and 1c-3c) were synthesized to evaluate their biological activities as mushroom tyrosinase inhibitors. The inhibitory effects of these compounds on tyrosinase were investigated by using spectrofluorimetry, (1)H NMR titration and molecular docking techniques. From the results of fluorescence spectrum and (1)H NMR titration, it was found that forming complexes between the sulfur atom from thiourea and copper ion of enzyme center may play a key role for inhibition activity. Moreover, investigation of (1)H NMR spectra further revealed that formation of hydrogen bond between inhibitor and enzyme may be helpful to above complexes formation. The results were well coincident with the suggestion of molecular docking and obviously showed that 2-thiophone N(4)-thiosemicarbazone (1a), 2-furfuran N(4)-thiosemicarbazone (1b) and 2-pyrrole N(4)-thiosemicarbazone (1c) are potential inhibitors which deserves further investigation. PMID:26213029

  7. Inhibitory effect of synthetic aromatic heterocycle thiosemicarbazone derivatives on mushroom tyrosinase: Insights from fluorescence, (1)H NMR titration and molecular docking studies.

    PubMed

    Xie, Juan; Dong, Huanhuan; Yu, Yanying; Cao, Shuwen

    2016-01-01

    Three structurally similar aromatic heterocyclic compounds 2-thiophenecarboxaldehyde (a), 2-furaldehyde (b), 2-pyrrolecarboxaldehyde (c) were chosen and a series of their thiosemicarbazone derivatives(1a-3a, 1b-3b and 1c-3c) were synthesized to evaluate their biological activities as mushroom tyrosinase inhibitors. The inhibitory effects of these compounds on tyrosinase were investigated by using spectrofluorimetry, (1)H NMR titration and molecular docking techniques. From the results of fluorescence spectrum and (1)H NMR titration, it was found that forming complexes between the sulfur atom from thiourea and copper ion of enzyme center may play a key role for inhibition activity. Moreover, investigation of (1)H NMR spectra further revealed that formation of hydrogen bond between inhibitor and enzyme may be helpful to above complexes formation. The results were well coincident with the suggestion of molecular docking and obviously showed that 2-thiophone N(4)-thiosemicarbazone (1a), 2-furfuran N(4)-thiosemicarbazone (1b) and 2-pyrrole N(4)-thiosemicarbazone (1c) are potential inhibitors which deserves further investigation.

  8. Chelator induced phytoextraction and in situ soil washing of Cu.

    PubMed

    Kos, Bostjan; Lestan, Domen

    2004-11-01

    In a soil column experiment, we investigated the effect of 5 mmol kg(-1) soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg(-1) Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8 +/-1.3 mg kg(-1) Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg(-1) exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53 +/- 0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates.

  9. Copper chelators: chemical properties and bio-medical applications.

    PubMed

    Tegoni, M; Valensin, D; Toso, L; Remelli, M

    2014-01-01

    Copper is present in different concentrations and chemical forms throughout the earth crust, surface and deep water and even, in trace amounts, in the atmosphere itself. Copper is one of the first metals used by humans, the first artifacts dating back 10,000 years ago. Currently, the world production of refined copper exceeds 16,000 tons/year. Copper is a micro-element essential to life, principally for its red-ox properties that make it a necessary cofactor for many enzymes, like cytochrome-c oxidase and superoxide dismutase. In some animal species (e.g. octopus, snails, spiders, oysters) copper-hemocyanins also act as carriers of oxygen instead of hemoglobin. However, these red-ox properties also make the pair Cu(+)/Cu(2+) a formidable catalyst for the formation of reactive oxygen species, when copper is present in excess in the body or in tissues. The treatment of choice in cases of copper overloading or intoxication is the chelation therapy. Different molecules are already in clinical use as chelators or under study or clinical trial. It is worth noting that chelation therapy has also been suggested to treat some neurodegenerative diseases or cardiovascular disorders. In this review, after a brief description of the homeostasis and some cases of dyshomeostasis of copper, the main (used or potential) chelators are described; their properties in solution, even in relation to the presence of metal or ligand competitors, under physiological conditions, are discussed. The legislation of the most important Western countries, regarding both the use of chelating agents and the limits of copper in foods, drugs and cosmetics, is also outlined.

  10. EDTA Chelation Therapy, Without Added Vitamin C, Decreases Oxidative DNA Damage and Lipid Peroxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chelation therapy is thought to not only remove contaminating metals, but also to decrease free radical production. However, in standard EDTA chelation therapy high doses of vitamin C with potential prooxidant effects are often added to the chelation solution. We demonstrated previously that the in...

  11. TFaNS-Tone Fan Noise Design/Prediction System: Users' Manual TFaNS Version 1.5

    NASA Technical Reports Server (NTRS)

    Topol, David A.; Huff, Dennis L. (Technical Monitor)

    2003-01-01

    TFaNS is the Tone Fan Noise Design/Prediction System developed by Pratt & Whitney under contract to NASA Glenn. The purpose of this system is to predict tone noise emanating from a fan stage including the effects of reflection and transmission by the rotor and stator and by the duct inlet and nozzle. The first version of this design system was developed under a previous NASA contract. Several improvements have been made to TFaNS. This users' manual shows how to run this new system. TFaNS consists of the codes that compute the acoustic properties (reflection and transmission coefficients) of the various elements and writes them to files, CUP3D Fan Noise Coupling Code that reads these files, solves the coupling problem, and outputs the desired noise predictions, and AWAKEN CFD/Measured Wake Postprocessor which reformats CFD wake predictions and/or measured wake data so they can be used by the system. This report provides information on code input and file structure essential for potential users of TFaNS.

  12. Comparison of 24-month outcomes in chelated and non-chelated lower-risk patients with myelodysplastic syndromes in a prospective registry.

    PubMed

    Lyons, Roger M; Marek, Billie J; Paley, Carole; Esposito, Jason; Garbo, Lawrence; DiBella, Nicholas; Garcia-Manero, Guillermo

    2014-02-01

    This 5-year, prospective registry enrolled 600 lower-risk MDS patients (pts) with transfusional iron overload. Clinical outcomes were compared between chelated and nonchelated pts. At baseline, cardiovascular comorbidities were more common in non-chelated pts, and MDS therapy was more common in chelated pts. At 24 months, chelation was associated with longer median overall survival (52.2 months vs. 104.4 months; p<.0001) and a trend toward longer leukemia-free survival and fewer cardiac events. No differences in safety were apparent between groups. Limitations of this analysis included, varying time from diagnosis and duration of chelation, and the fact that the decision to chelate may have been influenced by pt clinical status.

  13. The Hepatitis C Virus NS5A Stimulates NS5B During In Vitro RNA Synthesis in a Template Specific Manner

    PubMed Central

    Quezada, Elizabeth M; Kane, Caroline M

    2009-01-01

    The hepatitis C virus (HCV) NS5B protein contains the RNA dependent RNA polymerase (RdRp) activity that catalyzes the synthesis of the viral genome with other host and viral factors. NS5A is an HCV-encoded protein previously shown to localize to the replisome and be necessary for viral replication. However, its role in replication has not been defined. Using an in vitro biochemical assay, we detected a stimulatory effect of NS5A on the NS5B replication reaction with minimal natural templates. NS5A stimulates replication by NS5B on two templates derived from the 3’ end of the RNA genome (4 fold ± 1.3 fold). A pre-incubation step with the two proteins prior to the replication reaction and substoichiometric levels of NS5A are required for detecting stimulation. With a template derived from the 3’end complementary to the RNA genome (the negative strand) no stimulation was observed. Furthermore, with a synthetic template that allows studying different phases of replication, NS5A stimulates NS5B during elongation. These findings suggest that NS5A stimulates NS5B during synthesis of the complementary (i.e., negative) strand of the RNA genome. PMID:19590581

  14. Effects of terminal dimethylation and metal coordination of proline-2-formylpyridine thiosemicarbazone hybrids on lipophilicity, antiproliferative activity, and hR2 RNR inhibition.

    PubMed

    Bacher, Felix; Dömötör, Orsolya; Kaltenbrunner, Maria; Mojović, Miloš; Popović-Bijelić, Ana; Gräslund, Astrid; Ozarowski, Andrew; Filipovic, Lana; Radulović, Sinisa; Enyedy, Éva A; Arion, Vladimir B

    2014-12-01

    The nickel(II), copper(II), and zinc(II) complexes of the proline-thiosemicarbazone hybrids 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone (L-Pro-FTSC or (S)-H2L(1)) and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone (D-Pro-FTSC or (R)-H2L(1)), as well as 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine 4,4-dimethyl-thiosemicarbazone (dm-L-Pro-FTSC or (S)-H2L(2)), namely, [Ni(L-Pro-FTSC-2H)]2 (1), [Ni(D-Pro-FTSC-2H)]2 (2), [Ni(dm-L-Pro-FTSC-2H)]2 (3), [Cu(dm-L-Pro-FTSC-2H)] (6), [Zn(L-Pro-FTSC-2H)] (7), and [Zn(D-Pro-FTSC-2H)] (8), in addition to two previously reported, [Cu(L-Pro-FTSC-2H)] (4), [Cu(D-Pro-FTSC-2H)] (5), were synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, circular dichroism, UV-vis, and electrospray ionization mass spectrometry. Compounds 1-3, 6, and 7 were also studied by single-crystal X-ray diffraction. Magnetic properties and solid-state high-field electron paramagnetic resonance spectra of 2 over the range of 50-420 GHz were investigated. The complex formation processes of L-Pro-FTSC with nickel(II) and zinc(II) were studied in aqueous solution due to the excellent water solubility of the complexes via pH potentiometry, UV-vis, and (1)H NMR spectroscopy. The results of the antiproliferative activity in vitro showed that dimethylation improves the cytotoxicity and hR2 RNR inhibition. Therefore, introduction of more lipophilic groups into thiosemicarbazone-proline backbone becomes an option for the synthesis of more efficient cytotoxic agents of this family of compounds. PMID:25391085

  15. Examining the fixation kinetics of chelated and non-chelated copper and the applications to micronutrient management in semiarid alkaline soils

    NASA Astrophysics Data System (ADS)

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.; Kusi, N. Y. O.

    2016-02-01

    This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semiarid soils of the Southern High Plains, USA, using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system compared to the chelated within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrients over time, highlighting the significance of timing even when chelated micronutrients are used. The strengths of the relationship of change in available Cu with respect to other micronutrients (iron (Fe), manganese (Mn), and zinc (Zn)) were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81), with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated system. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second-order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semiarid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  16. Use of parallel validation high-throughput screens to reduce false positives and identify novel dengue NS2B-NS3 protease inhibitors†

    PubMed Central

    Tomlinson, Suzanne M.; Watowich, Stanley J.

    2011-01-01

    Dengue virus (DENV), a mosquito-borne member of the family Flaviviridae, is a significant global pathogen affecting primarily tropical and subtropical regions of the world and placing tremendous burden on the limited medical infrastructure that exists in many of the developing countries located within these regions. Recent outbreaks in developed countries, including Australia (Hanna et al., 2009), France (Laruche et al., 2010), Taiwan (Kuan et al., 2010), and the USA (CDC, 2010), lead many researchers to believe that continued emergence into more temperate latitudes is likely. A primary concern is that there are no approved vaccines or antiviral therapies to treat DENV infections. Since the viral NS2B-NS3 protease (DENV NS2B-NS3pro) is required for virus replication, it provides a strategic target for the development of antiviral drugs. In this study, proof-of-concept high-throughput screenings (HTSs) were performed to unambiguously identify dengue 2 virus (DEN2V) NS2B-NS3pro inhibitors from a library of 2000 compounds. Validation screens were performed in parallel to concurrently eliminate insoluble, auto-fluorescing, and/or nonspecific inhibitors. Kinetic analyses of the hits revealed that parallel substrate fluorophore (AMC) interference controls and trypsin inhibition controls were able to reduce false positive rates due to solubility and fluorophore interference while the trypsin inhibition control additionally eliminated non-specific inhibitors. We identified five DEN2V NS2B-NS3pro inhibitors that also inhibited the related West Nile virus (WNV) protease (NS2B-NS3pro), but did not inhibit the trypsin protease. Biochemical analyses revealed various mechanisms of inhibition including competitive and mixed noncompetitive inhibition, with the lowest Ki values being 12 ± 1.5 μM for DEN2V NS2B-NS3pro and 2 ± 0.2 μM for WNV NS2B-NS3pro. PMID:22193283

  17. Synthesis, spectroscopic characterization, structural studies and antibacterial and antitumor activities of diorganotin complexes with 3-methoxysalicylaldehyde thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Khandani, Marzieh; Sedaghat, Tahereh; Erfani, Nasrollah; Haghshenas, Mohammad Reza; Khavasi, Hamid Reza

    2013-04-01

    Three organotin(IV) complexes, Ph2Sn(mstsc) (1), Me2Sn(mstsc) (2) and Bu2Sn(mstsc) (3), have been synthesized from reaction of R2SnCl2 (R = Ph, Me and Bu) with 3-methoxysalicylaldehyde thiosemicarbazone (H2mstsc). The synthesized complexes have been characterized by elemental analysis and FT-IR, 1H, 13C and 119Sn NMR spectroscopy. The structures of 2 and 3 have been also confirmed by X-ray crystallography. On the basis of spectral and structural data thiosemicarbazone acts as a tridentate dianionic ligand and coordinates to tin through phenolic oxygen, the azomethine nitrogen and thiolate sulfur atoms. The metal coordination geometry for 2 and 3 is described as distorted square pyramid and the crystal lattices are stabilized by intermolecular hydrogen bands. On the basis of 119Sn NMR data, coordination number of tin retains five in solution. The in vitro antibacterial activity of ligand and its complexes has been evaluated against one Gram-positive and three Gram-negative bacteria. Complex 2 exhibited good activity along with the standard antibacterial drugs. The in vitro cytotoxicities of the synthesized compounds against Jurkat cells were evaluated by the standard WST-1 assay. The activity decreases in the order 3 > 1 > 2 = H2mstsc.

  18. Antitumor and immunomodulatory activities of thiosemicarbazones and 1,3-Thiazoles in Jurkat and HT-29 cells.

    PubMed

    Dos Santos, Thiago André R; da Silva, Aline Caroline; Silva, Elany Barbosa; Gomes, Paulo André Teixeira de Moraes; Espíndola, José Wanderlan Pontes; Cardoso, Marcos Veríssimo de Oliveira; Moreira, Diogo Rodrigo Magalhaes; Leite, Ana Cristina Lima; Pereira, Valéria R A

    2016-08-01

    Cancer remains a high incidence and mortality disease, causing around 8.2 million of deaths in the last year. Current chemotherapy needs to be expanded, making research for new drugs a necessary task. Immune system modulation is an emerging concept in cancer cell proliferation control. In fact, there are a number of mechanisms underlying the role immune system plays in tumor cells. In this work, we describe the structural design, synthesis, antitumor and immunomodulatory potential of 31 new 1,3-thiazole and thiosemicarbazone compounds. Cisplatin was used as anticancer drug control. Cytotoxicity against J774A.1 macrophages and antitumor activity against HT-29 and Jurkat cells was determined. These 1,3-thiazole and thiosemicarbazone compounds not only exhibited cytotoxicity in cancer cells, but were able to cause irreversible cancer cell damage by inducing necrosis and apoptosis. In addition, these compounds, especially pyridyl-thiazoles compounds, regulated immune factors such as interleukin 10 and tumor necrosis factor, possible by directing immune system in favor of modulating cancer cell proliferation. By examining their pharmacological activity, we were able to identify new potent and selective anticancer compounds.

  19. Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their in vitro and in vivo antitumor activities.

    PubMed

    de Oliveira, Jamerson Ferreira; da Silva, Anekécia Lauro; Vendramini-Costa, Débora Barbosa; da Cruz Amorim, Cezar Augusto; Campos, Júlia Furtado; Ribeiro, Amélia Galdino; Olímpio de Moura, Ricardo; Neves, Jorge Luiz; Ruiz, Ana Lúcia Tasca Gois; Ernesto de Carvalho, João; Alves de Lima, Maria do Carmo

    2015-11-01

    A series of thiophene-2-thiosemicarbazones derivatives (5-14) was synthesized, characterized and evaluated for their antitumor activity. They were tested in vitro against human tumor cell lines through the colorimetric method. The results revealed that compounds 7 and 9 were the most effective in inhibiting 50% of the cell growth after 48 h of treatment. As compound 7 showed a potent antiproliferative profile, it has been chosen for further studies in 786-0 cell line by flow cytometry. Treatments with compound 7 (50 μM) induced early phosphatidylserine exposure after 18 h of exposure and this process progressed phosphatidylserine exposure with loss of cell membrane integrity after 24 h of treatment, suggesting a time-dependent cell death process. Regarding the cell cycle profile, no changes were observed after treatment with compound 7 (25 μM), suggesting a mechanism of cell death independent on the cell cycle. The in vivo studies show that compound 7 possess low acute toxicity, being the doses of 30-300 mgKg(-1) chosen for studies in Ehrlich solid tumor model in mice. All doses were able to inhibit tumor development being the lowest one the most effective. Our findings highlight thiophene-2-thiosemicarbazones as a promising class of compounds for further studies concerning new anticancer therapies.

  20. Vibrational, NMR and UV-Visible spectroscopic investigation, VCD and NLO studies on Benzophenone thiosemicarbazone using computational calculations

    NASA Astrophysics Data System (ADS)

    Moorthy, N.; Jobe Prabakar, P. C.; Ramalingam, S.; Periandy, S.; Parasuraman, K.

    2016-04-01

    In order to explore the unbelievable NLO property of prepared Benzophenone thiosemicarbazone (BPTSC), the experimental and theoretical investigation has been made. The theoretical calculations were made using RHF and CAM-B3LYP methods at 6-311++G(d,p) basis set. The title compound contains Cdbnd S ligand which helps to improve the second harmonic generation (SHG) efficiency. The molecule has been examined in terms of the vibrational, electronic and optical properties. The entire molecular behavior was studied by their fundamental IR and Raman wavenumbers and was compared with the theoretical aspect. The molecular chirality has been studied by performing vibrational circular dichroism (circularly polarized infrared radiation). The Mulliken charge levels of the compound ensure the perturbation of atomic charges according to the ligand. The molecular interaction of frontier orbitals emphasizes the modification of chemical properties of the compound through the reaction path. The enormous amount of NLO activity was induced by the Benzophenone in thiosemicarbazone. The Gibbs free energy was evaluated at different temperature and from which the enhancement of chemical stability was stressed. The VCD spectrum was simulated and the optical dichroism of the compound has been analyzed.

  1. Structural studies and investigation on the activity of imidazole-derived thiosemicarbazones and hydrazones against crop-related fungi.

    PubMed

    Reis, Débora C; Despaigne, Angel A Recio; Da Silva, Jeferson G; Silva, Nayane F; Vilela, Camila F; Mendes, Isolda C; Takahashi, Jacqueline A; Beraldo, Heloisa

    2013-10-14

    New imidazole derived thiosemicarbazones and hydrazones were prepared by condensation of 4(5)-imidazole carboxaldehyde, 4-(1H-imidazole-1-yl)benzaldehyde and 4-(1H-imidazole-1-yl)acetophenone with a thiosemicarbazide or hydrazide. All compounds were characterized by quantitative elemental analysis, IR and NMR techniques. Eight structures were determined by single crystal X-ray diffraction. The antifungal activities of the compounds were evaluated. None of the compounds exhibited significant activity against Aspergillus flavus and Candida albicans, while 4(5)-imidazolecarboxaldehyde thiosemicarbazone (ImT) and 4-(1H-imidazole-1-yl)benzaldehyde thiosemicabazone (4ImBzT) were highly and selectively active against Cladosporium cladosporioides. 4(5)-Imidazolecarboxaldehyde benzoyl hydrazone (4(5)ImPh), 4(5)-imidazolecarboxaldehyde-para-chlorobenzoyl hydrazone (4(5)ImpClPh), 4(5)-imidazolecarboxaldehyde-para-nitrobenzoyl hydrazone (4(5)ImpNO2Ph), 4-(imidazole-1-yl)acetophenone-para-chloro-benzoyl hydrazone (4ImAcpClPh) and 4-(imidazole-1-yl)acetophenone-para-nitro-benzoylhydrazone (4ImAcpNO2Ph) were highly active against Candida glabrata. 4(5)ImpClPh and 4(5)ImpNO2Ph were very effective against C. cladosporioides. In many cases, activity was superior to that of the reference compound nystatin.

  2. Vibrational, NMR and UV-visible spectroscopic investigation and NLO studies on benzaldehyde thiosemicarbazone using computational calculations

    NASA Astrophysics Data System (ADS)

    Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Pandian, G. V.; Anbusrinivasan, P.

    2016-04-01

    In order to investigate the vibrational, electronic and NLO characteristics of the compound; benzaldehyde thiosemicarbazone (BTSC), the XRD, FT-IR, FT-Raman, NMR and UV-visible spectra were recorded and were analysed with the calculated spectra by using HF and B3LYP methods with 6-311++G(d,p) basis set. The XRD results revealed that the stabilized molecular systems were confined in orthorhombic unit cell system. The cause for the change of chemical and physical properties behind the compound has been discussed makes use of Mulliken charge levels and NBO in detail. The shift of molecular vibrational pattern by the fusing of ligand; thiosemicarbazone group with benzaldehyde has been keenly observed. The occurrence of in phase and out of phase molecular interaction over the frontier molecular orbitals was determined to evaluate the degeneracy of the electronic energy levels. The thermodynamical studies of the temperature region 100-1000 K to detect the thermal stabilization of the crystal phase of the compound were investigated. The NLO properties were evaluated by the determination of the polarizability and hyperpolarizability of the compound in crystal phase. The physical stabilization of the geometry of the compound has been explained by geometry deformation analysis.

  3. Comparative evaluation of Bis(thiosemicarbazone)- Biotin and Met-ac-TE3A for tumor imaging

    NASA Astrophysics Data System (ADS)

    Singh, Sweta; Tiwari, Anjani K.; Varshney, Raunak; Mathur, R.; Shukla, Gauri; Bag, N.; Singh, B.; Mishra, Anil K.

    2016-01-01

    2,2‧,2″-(11-(2-((4-mercapto-1-methoxy-1-oxobutan-2-yl)amino)-2-oxoethyl)-1,4,8,11-tetraaza cyclotetradecane-1,4,8-triyl)triacetic acid, Met-ac-TE3A and (E)-N-methyl-2-((E)-3-(2-(2-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl)hydrazinecarbono-thioyl)hydrazonobutan-2-ylidene)hydrazinecarbothioamide, Bis(thiosemicarbazone)- Biotin were synthesized and evaluated for imaging application. The pharmacokinetics of these ligands were determined by tracer methods. In vitro human serum stability of 99mTc Met-ac-TE3A/99mTc Bis(thiosemicarbazone)-Biotin after 24 h was found to be 96.5% and 97.0% respectively. Blood kinetics of both ligands in normal rabbits showed biphasic clearance pattern. Ex vivo biodistribution study revealed significant initial tumor uptake and high tumor/muscles ratio which is a pre-requisite condition for a ligand to work as SPECT-radiopharmaceutical for tumor imaging.

  4. Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their in vitro and in vivo antitumor activities.

    PubMed

    de Oliveira, Jamerson Ferreira; da Silva, Anekécia Lauro; Vendramini-Costa, Débora Barbosa; da Cruz Amorim, Cezar Augusto; Campos, Júlia Furtado; Ribeiro, Amélia Galdino; Olímpio de Moura, Ricardo; Neves, Jorge Luiz; Ruiz, Ana Lúcia Tasca Gois; Ernesto de Carvalho, João; Alves de Lima, Maria do Carmo

    2015-11-01

    A series of thiophene-2-thiosemicarbazones derivatives (5-14) was synthesized, characterized and evaluated for their antitumor activity. They were tested in vitro against human tumor cell lines through the colorimetric method. The results revealed that compounds 7 and 9 were the most effective in inhibiting 50% of the cell growth after 48 h of treatment. As compound 7 showed a potent antiproliferative profile, it has been chosen for further studies in 786-0 cell line by flow cytometry. Treatments with compound 7 (50 μM) induced early phosphatidylserine exposure after 18 h of exposure and this process progressed phosphatidylserine exposure with loss of cell membrane integrity after 24 h of treatment, suggesting a time-dependent cell death process. Regarding the cell cycle profile, no changes were observed after treatment with compound 7 (25 μM), suggesting a mechanism of cell death independent on the cell cycle. The in vivo studies show that compound 7 possess low acute toxicity, being the doses of 30-300 mgKg(-1) chosen for studies in Ehrlich solid tumor model in mice. All doses were able to inhibit tumor development being the lowest one the most effective. Our findings highlight thiophene-2-thiosemicarbazones as a promising class of compounds for further studies concerning new anticancer therapies. PMID:26454648

  5. Novel 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones: Synthesis and antileishmanial effects against Leishmania amazonensis.

    PubMed

    de Melos, Jorge Luiz R; Torres-Santos, Eduardo Caio; Faiões, Viviane dos S; Del Cistia, Catarina de Nigris; Sant'Anna, Carlos Maurício R; Rodrigues-Santos, Cláudio Eduardo; Echevarria, Aurea

    2015-10-20

    A series of eleven 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones (16-27) was synthesised as part of a study to search for potential new drugs with a leishmanicidal effect. The thiosemicarbazones, ten of which are new compounds, were prepared in good yields (85-98%) by the reaction of 3,4-methylenedioxyde-6-benzaldehydes (6-X-piperonal), previously synthesised for this work by several methodologies, and thiosemicarbazide in ethanol with a few drops of H2SO4. These compounds were evaluated against Leishmania amazonensis promastigotes, and derivatives where X = I (22) and X = CN (23) moieties showed impressive results, having IC₅₀ = 20.74 μM and 16.40 μM, respectively. The intracellular amastigotes assays showed IC₅₀ = 22.00 μM (22) and 17.00 μM (23), and selectivity index >5.7 and >7.4, respectively, with a lower toxicity compared to pentamidine (positive control, SI = 4.5). The results obtained from the preliminary QSAR study indicated the hydrophobicity (log P) as a fundamental parameter for the 2D-QSAR linear model. A molecular docking study demonstrated that both compounds interact with flavin mononucleotide (FMN), important binding site of NO synthase. PMID:26375353

  6. Comparative evaluation of Bis(thiosemicarbazone)- Biotin and Met-ac-TE3A for tumor imaging.

    PubMed

    Singh, Sweta; Tiwari, Anjani K; Varshney, Raunak; Mathur, R; Shukla, Gauri; Bag, N; Singh, B; Mishra, Anil K

    2016-01-15

    2,2',2″-(11-(2-((4-mercapto-1-methoxy-1-oxobutan-2-yl)amino)-2-oxoethyl)-1,4,8,11-tetraaza cyclotetradecane-1,4,8-triyl)triacetic acid, Met-ac-TE3A and (E)-N-methyl-2-((E)-3-(2-(2-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl)hydrazinecarbono-thioyl)hydrazonobutan-2-ylidene)hydrazinecarbothioamide, Bis(thiosemicarbazone)- Biotin were synthesized and evaluated for imaging application. The pharmacokinetics of these ligands were determined by tracer methods. In vitro human serum stability of (99m)Tc Met-ac-TE3A/(99m)Tc Bis(thiosemicarbazone)-Biotin after 24h was found to be 96.5% and 97.0% respectively. Blood kinetics of both ligands in normal rabbits showed biphasic clearance pattern. Ex vivo biodistribution study revealed significant initial tumor uptake and high tumor/muscles ratio which is a pre-requisite condition for a ligand to work as SPECT-radiopharmaceutical for tumor imaging. PMID:26436844

  7. Phylogenetic analysis of the NS5 gene of Zika virus.

    PubMed

    Adiga, Rama

    2016-10-01

    ZIKV infection has become a global threat spreading across 31 countries in Central America, South America, and the Caribbean. However, little information is available about the molecular epidemiology of ZIKV. Shared mutation of a threonine residue to alanine at the same position in the C terminal of NS5 sequences was observed in sequences from Colombia, Mexico, Panama, and Martinique. The sequences in the phylogenetic tree fell within the same cluster. Based on shared mutation the presence of a Latin American genotype was proposed. Comparison of African and Asian lineages yielded R29N, N273S, H383Q, and P391S mutation. The study highlights that mutation of amino acids at NS5 may contribute to neutropism of ZIKV. J. Med. Virol. 88:1821-1826, 2016. © 2016 Wiley Periodicals, Inc.

  8. Phylogenetic analysis of the NS5 gene of Zika virus.

    PubMed

    Adiga, Rama

    2016-10-01

    ZIKV infection has become a global threat spreading across 31 countries in Central America, South America, and the Caribbean. However, little information is available about the molecular epidemiology of ZIKV. Shared mutation of a threonine residue to alanine at the same position in the C terminal of NS5 sequences was observed in sequences from Colombia, Mexico, Panama, and Martinique. The sequences in the phylogenetic tree fell within the same cluster. Based on shared mutation the presence of a Latin American genotype was proposed. Comparison of African and Asian lineages yielded R29N, N273S, H383Q, and P391S mutation. The study highlights that mutation of amino acids at NS5 may contribute to neutropism of ZIKV. J. Med. Virol. 88:1821-1826, 2016. © 2016 Wiley Periodicals, Inc. PMID:27335310

  9. NS&T Managment Observations - 1st Quarter

    SciTech Connect

    David Gianotto

    2014-06-01

    The INL Management Observation Program (MOP) is designed to improve managers and supervisors understanding of work being performed by employees and the barriers impacting their success. The MOP also increases workers understanding of managements’ expectations as they relate to safety, security, quality, and work performance. Management observations (observations) are designed to improve the relationship and trust between employees and managers through increased engagement and interactions between managers and researchers in the field. As part of continuous improvement, NS&T management took initiative to focus on the participation and quality of observations in FY 14. This quarterly report is intended to (a) summarize the participation and quality of management’s observations, (b) assess observations for commonalities or trends related to facility or process barriers impacting research, and (c) provide feedback and make recommendations for improvements NS&T’s MOP.

  10. NS&T Management Observations: Quarterly Performance Analysis

    SciTech Connect

    Gianotto, David

    2014-09-01

    The INL Management Observation Program (MOP) is designed to improve managers and supervisors understanding of work being performed by employees and the barriers impacting their success. The MOP also increases workers understanding of managements’ expectations as they relate to safety, security, quality, and work performance. Management observations (observations) are designed to improve the relationship and trust between employees and managers through increased engagement and interactions between managers and researchers in the field. As part of continuous improvement, NS&T management took initiative to focus on the participation and quality of observations in FY-14. This quarterly report is intended to (a) summarize the participation and quality of management’s observations, (b) assess observations for commonalities or trends related to facility or process barriers impacting research, and (c) provide feedback and make recommendations for improvements NS&T’s MOP.

  11. NS&T Management Observations - 3rd Quarter

    SciTech Connect

    David Gianotto

    2014-07-01

    The INL Management Observation Program (MOP) is designed to improve managers and supervisors understanding of work being performed by employees and the barriers impacting their success. The MOP also increases workers understanding of managements’ expectations as they relate to safety, security, quality, and work performance. Management observations are designed to improve the relationship and trust between employees and managers through increased engagement and interactions between managers and researchers in the field. As part of continuous improvement, NS&T management took initiative to focus on the participation and quality of observations in FY 14. This quarterly report is intended to (a) summarize the participation and quality of management’s observations, (b) assess observations for commonalities or trends related to facility or process barriers impacting research, and (c) provide feedback and make recommendations for improvements NS&T’s MOP.

  12. SAT: a Late NS Protein of Porcine Parvovirus

    PubMed Central

    Zádori, Zoltán; Szelei, József; Tijssen, Peter

    2005-01-01

    The genomes of all members of the Parvovirus genus were found to contain a small open reading frame (ORF), designated SAT, with a start codon four or seven nucleotides downstream of the VP2 initiation codon. Green fluorescent protein or FLAG fusion constructs of SAT demonstrated that these ORFs were expressed. Although the SAT proteins of the different parvoviruses are not particularly conserved, they were all predicted to contain a membrane-spanning helix, and mutations in this hydrophobic stretch affected the localization of the SAT protein. SAT colocalized with calreticulin in the membranes of the endoplasmic reticulum and the nucleus. A knockout mutant (SAT−), with an unmodified VP sequence, showed a “slow-spreading” phenotype. These knockout mutants could be complemented with VP2− SAT+ mutant. The SAT protein is a late nonstructural (NS) protein, in contrast to previously identified NS proteins, since it is expressed from the same mRNA as VP2. PMID:16189014

  13. [Isolation of Achromobacter xylosoxidans NS12 and degradation of nitrophenols].

    PubMed

    Wan, Nian-Sheng; Gu, Ji-Dong; Huang, Jin-Hui; Gao, Chuan-De

    2007-02-01

    A nitrophenols-degrading bacterium, strain NS12, was isolated from a mangrove sediment by enrichment culture under aerobic conditions. Based on the analysis of 16S rDNA gene sequence the isolate was identified as Achromobacter xylosoxidans Strain NS12 was able to metabolize both o-nitrophenol (ONP) and p-nitrophenol (PNP) as the sole source of carbon, energy and nitrogen. However, this strain was not able to use 3-nitrophenol (MNP) as the only source of carbon energy and nitrogen for growth. The study demonstrated that when PNP and ONP occurred as a mixed substrate PNP degradation restrained the degradation of ONP and caused the major carbon source shift from ONP to PNP. Moreover, the results showed nitrophenols could be degraded by the indigenous bacteria in mangrove sediment.

  14. Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones

    PubMed Central

    Pahontu, Elena; Julea, Felicia; Rosu, Tudor; Purcarea, Victor; Chumakov, Yurie; Petrenco, Petru; Gulea, Aurelian

    2015-01-01

    1-phenyl-3-methyl-4-benzoyl-5-pyrazolone 4-ethyl-thiosemicarbazone (HL) and its copper(II), vanadium(V) and nickel(II) complexes: [Cu(L)(Cl)]·C2H5OH·(1), [Cu(L)2]·H2O (2), [Cu(L)(Br)]·H2O·CH3OH (3), [Cu(L)(NO3)]·2C2H5OH (4), [VO2(L)]·2H2O (5), [Ni(L)2]·H2O (6), were synthesized and characterized. The ligand has been characterized by elemental analyses, IR, 1H NMR and 13C NMR spectroscopy. The tridentate nature of the ligand is evident from the IR spectra. The copper(II), vanadium(V) and nickel(II) complexes have been characterized by different physico-chemical techniques such as molar conductivity, magnetic susceptibility measurements and electronic, infrared and electron paramagnetic resonance spectral studies. The structures of the ligand and its copper(II) (2, 4), and vanadium(V) (5) complexes have been determined by single-crystal X-ray diffraction. The composition of the coordination polyhedron of the central atom in 2, 4 and 5 is different. The tetrahedral coordination geometry of Cu was found in complex 2 while in complex 4, it is square planar, in complex 5 the coordination polyhedron of the central ion is distorted square pyramid. The in vitro antibacterial activity of the complexes against Escherichia coli, Salmonella abony, Staphylococcus aureus, Bacillus cereus and the antifungal activity against Candida albicans strains was higher for the metal complexes than for free ligand. The effect of the free ligand and its metal complexes on the proliferation of HL-60 cells was tested. PMID:25708540

  15. Nickel(ii) radical complexes of thiosemicarbazone ligands appended by salicylidene, aminophenol and aminothiophenol moieties.

    PubMed

    Kochem, Amélie; Gellon, Gisèle; Jarjayes, Olivier; Philouze, Christian; du Moulinet d'Hardemare, Amaury; van Gastel, Maurice; Thomas, Fabrice

    2015-07-28

    The nickel(ii) complexes of three unsymmetrical thiosemicarbazone-based ligands featuring a sterically hindered salicylidene (1), aminophenol (2) or thiophenol (3) moiety were synthesized and structurally characterized. The metal ion lies in an almost square planar geometry in all the complexes. The cyclic voltammetry (CV) curve of 1 shows an irreversible oxidation wave at E = 0.49 V, which is assigned to the phenoxyl/phenolate redox couple. The CV curves of 2 and 3 display a reversible one-electron oxidation wave (E1/2 = 0.26 and 0.22 V vs. Fc(+)/Fc, respectively) and an one-electron reduction wave (E1/2 = -1.55 and -1.46 V, respectively). The cations 2(+) and 3(+) as well as the anions 2(-) and 3(-) were generated. The EPR spectra of the cations in THF show a rhombic signal at g1 = 2.034, g2 = 2.010 and g3 = 1.992 (2(+)) and g1 = 2.069, g2 = 2.018, g3 = 1.986 (3(+)) that is consistent with a main radical character of the complexes. The difference in anisotropy is assigned to the different nature of the radical, iminosemiquinonate vs. iminothiosemiquinonate. The anions display an isotropic EPR signal at giso = 2.003 (2(+)) and 2.006 (3(+)), which is indicative of a main α-diimine radical character of the compounds. Both the anions and cations exhibit charge transfer transitions of low to moderate intensity in their visible spectrum. Quantum chemical calculations (B3LYP) reproduce both the g-values and Vis-NIR spectra of the complexes. The radical anions readily react with dioxygen to give the radical cations. 2(+) catalyzes the aerobic oxidation of benzyl alcohol into benzaldehyde. PMID:26086684

  16. Discovery of an irreversible HCV NS5B polymerase inhibitor.

    PubMed

    Zeng, Qingbei; Nair, Anilkumar G; Rosenblum, Stuart B; Huang, Hsueh-Cheng; Lesburg, Charles A; Jiang, Yueheng; Selyutin, Oleg; Chan, Tin-Yau; Bennett, Frank; Chen, Kevin X; Venkatraman, Srikanth; Sannigrahi, Mousumi; Velazquez, Francisco; Duca, Jose S; Gavalas, Stephen; Huang, Yuhua; Pu, Haiyan; Wang, Li; Pinto, Patrick; Vibulbhan, Bancha; Agrawal, Sony; Ferrari, Eric; Jiang, Chuan-kui; Li, Cheng; Hesk, David; Gesell, Jennifer; Sorota, Steve; Shih, Neng-Yang; Njoroge, F George; Kozlowski, Joseph A

    2013-12-15

    The discovery of lead compound 2e was described. Its covalent binding to HCV NS5B polymerase enzyme was investigated by X-ray analysis. The results of distribution, metabolism and pharmacokinetics were reported. Compound 2e was demonstrated to be potent (replicon GT-1b EC50 = 0.003 μM), highly selective, and safe in in vitro and in vivo assays.

  17. Membrane interacting regions of Dengue virus NS2A protein.

    PubMed

    Nemésio, Henrique; Villalaín, José

    2014-08-28

    The Dengue virus (DENV) NS2A protein, essential for viral replication, is a poorly characterized membrane protein. NS2A displays both protein/protein and membrane/protein interactions, yet neither its functions in the viral cycle nor its active regions are known with certainty. To highlight the different membrane-active regions of NS2A, we characterized the effects of peptides derived from a peptide library encompassing this protein's full length on different membranes by measuring their membrane leakage induction and modulation of lipid phase behavior. Following this initial screening, one region, peptide dens25, had interesting effects on membranes; therefore, we sought to thoroughly characterize this region's interaction with membranes. This peptide presents an interfacial/hydrophobic pattern characteristic of a membrane-proximal segment. We show that dens25 strongly interacts with membranes that contain a large proportion of lipid molecules with a formal negative charge, and that this effect has a major electrostatic contribution. Considering its membrane modulating capabilities, this region might be involved in membrane rearrangements and thus be important for the viral cycle.

  18. Membrane Interacting Regions of Dengue Virus NS2A Protein

    PubMed Central

    2015-01-01

    The Dengue virus (DENV) NS2A protein, essential for viral replication, is a poorly characterized membrane protein. NS2A displays both protein/protein and membrane/protein interactions, yet neither its functions in the viral cycle nor its active regions are known with certainty. To highlight the different membrane-active regions of NS2A, we characterized the effects of peptides derived from a peptide library encompassing this protein’s full length on different membranes by measuring their membrane leakage induction and modulation of lipid phase behavior. Following this initial screening, one region, peptide dens25, had interesting effects on membranes; therefore, we sought to thoroughly characterize this region’s interaction with membranes. This peptide presents an interfacial/hydrophobic pattern characteristic of a membrane-proximal segment. We show that dens25 strongly interacts with membranes that contain a large proportion of lipid molecules with a formal negative charge, and that this effect has a major electrostatic contribution. Considering its membrane modulating capabilities, this region might be involved in membrane rearrangements and thus be important for the viral cycle. PMID:25119664

  19. Effects of influenza A virus NS1 protein on protein expression: the NS1 protein enhances translation and is not required for shutoff of host protein synthesis.

    PubMed

    Salvatore, Mirella; Basler, Christopher F; Parisien, Jean-Patrick; Horvath, Curt M; Bourmakina, Svetlana; Zheng, Hongyong; Muster, Thomas; Palese, Peter; García-Sastre, Adolfo

    2002-02-01

    The influenza A virus NS1 protein, a virus-encoded alpha/beta interferon (IFN-alpha/beta) antagonist, appears to be a key regulator of protein expression in infected cells. We now show that NS1 protein expression results in enhancement of reporter gene activity from transfected plasmids. This effect appears to be mediated at the translational level, and it is reminiscent of the activity of the adenoviral virus-associated I (VAI) RNA, a known inhibitor of the antiviral, IFN-induced, PKR protein. To study the effects of the NS1 protein on viral and cellular protein synthesis during influenza A virus infection, we used recombinant influenza viruses lacking the NS1 gene (delNS1) or expressing truncated NS1 proteins. Our results demonstrate that the NS1 protein is required for efficient viral protein synthesis in COS-7 cells. This activity maps to the amino-terminal domain of the NS1 protein, since cells infected with wild-type virus or with a mutant virus expressing a truncated NS1 protein-lacking approximately half of its carboxy-terminal end-showed similar kinetics of viral and cellular protein expression. Interestingly, no major differences in host cell protein synthesis shutoff or in viral protein expression were found among NS1 mutant viruses in Vero cells. Thus, another viral component(s) different from the NS1 protein is responsible for the inhibition of host protein synthesis during viral infection. In contrast to the earlier proposal suggesting that the NS1 protein regulates the levels of spliced M2 mRNA, no effects on M2 protein accumulation were seen in Vero cells infected with delNS1 virus.

  20. A novel antimycobacterial compound acts as an intracellular iron chelator.

    PubMed

    Dragset, Marte S; Poce, Giovanna; Alfonso, Salvatore; Padilla-Benavides, Teresita; Ioerger, Thomas R; Kaneko, Takushi; Sacchettini, James C; Biava, Mariangela; Parish, Tanya; Argüello, José M; Steigedal, Magnus; Rubin, Eric J

    2015-04-01

    Efficient iron acquisition is crucial for the pathogenesis of Mycobacterium tuberculosis. Mycobacterial iron uptake and metabolism are therefore attractive targets for antitubercular drug development. Resistance mutations against a novel pyrazolopyrimidinone compound (PZP) that is active against M. tuberculosis have been identified within the gene cluster encoding the ESX-3 type VII secretion system. ESX-3 is required for mycobacterial iron acquisition through the mycobactin siderophore pathway, which could indicate that PZP restricts mycobacterial growth by targeting ESX-3 and thus iron uptake. Surprisingly, we show that ESX-3 is not the cellular target of the compound. We demonstrate that PZP indeed targets iron metabolism; however, we found that instead of inhibiting uptake of iron, PZP acts as an iron chelator, and we present evidence that the compound restricts mycobacterial growth by chelating intrabacterial iron. Thus, we have unraveled the unexpected mechanism of a novel antimycobacterial compound.

  1. A Novel Antimycobacterial Compound Acts as an Intracellular Iron Chelator

    PubMed Central

    Dragset, Marte S.; Poce, Giovanna; Alfonso, Salvatore; Padilla-Benavides, Teresita; Ioerger, Thomas R.; Kaneko, Takushi; Sacchettini, James C.; Biava, Mariangela; Parish, Tanya; Argüello, José M.

    2015-01-01

    Efficient iron acquisition is crucial for the pathogenesis of Mycobacterium tuberculosis. Mycobacterial iron uptake and metabolism are therefore attractive targets for antitubercular drug development. Resistance mutations against a novel pyrazolopyrimidinone compound (PZP) that is active against M. tuberculosis have been identified within the gene cluster encoding the ESX-3 type VII secretion system. ESX-3 is required for mycobacterial iron acquisition through the mycobactin siderophore pathway, which could indicate that PZP restricts mycobacterial growth by targeting ESX-3 and thus iron uptake. Surprisingly, we show that ESX-3 is not the cellular target of the compound. We demonstrate that PZP indeed targets iron metabolism; however, we found that instead of inhibiting uptake of iron, PZP acts as an iron chelator, and we present evidence that the compound restricts mycobacterial growth by chelating intrabacterial iron. Thus, we have unraveled the unexpected mechanism of a novel antimycobacterial compound. PMID:25645825

  2. Doping of graphene nanomeshes by ion-chelation

    NASA Astrophysics Data System (ADS)

    Maarouf, Ahmed; Nistor, Razvan; Afzali, Ali; Kuroda, Marcelo; Newns, Dennis; Martyna, Glenn

    2013-03-01

    Graphene nanomeshes (GNM's) are formed by the creation of a superlattice of pores in graphene. Depending upon the pore shape, size, superlattice constant and symmetry, GNM's can be semimetallic, or semiconducting with a fractional eV band gap, allowing them to be fruitfully employed in applications that pristine graphene cannot. In this work, first principles calculations are used to study the doping of semiconducting GNM's using a chemically motivated approach. It is shown that ion-chelation leads to a stable doping of the GNM's, and that it occurs within a rigid band doping picture. Such chelated or ``crown'' GNM structures are thus stable, high mobility semiconducting materials which can serve as building blocks for novel graphene-based nanoelectronics applications.

  3. Multidentate terephthalamidate and hydroxypyridonate ligands: towards new orally active chelators.

    PubMed

    Abergel, Rebecca J; Raymond, Kenneth N

    2011-01-01

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using (59)Fe, (238)Pu, and (241)Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity. PMID:21599440

  4. Self-assembled polymeric chelate nanoparticles as potential theranostic agents.

    PubMed

    Škodová, M; Černoch, P; Štěpánek, P; Chánová, E; Kučka, J; Kálalová, Z; Kaňková, D; Hrubý, M

    2012-12-21

    Improvements in cancer diagnostics and therapy have recently attracted the interest of many different branches of science. This study presents one of the new possible approaches in the diagnostics and therapy of cancer by using polymeric chelates as carriers. Graft copolymers with a backbone containing 8-hydroxyquinoline-5-sulfonic acid chelating groups and poly(ethylene oxide) hydrophilic grafts are synthesized and characterized. The polymers assemble and form particles after the addition of a biometal cation, such as iron or copper. The obtained nanoparticles exhibit a hydrodynamic diameter of around 25 nm and a stability of at least several hours, which are counted as essential parameters for biomedical purposes. To prove their biodegradability, a model degradation with deferoxamine is performed and, together with high radiolabeling efficiency with copper-64, their possible use for nuclear medicine purposes is demonstrated.

  5. Removal of cadmium from fish sauce using chelate resin.

    PubMed

    Sasaki, Tetsuya; Araki, Ryohei; Michihata, Toshihide; Kozawa, Miyuki; Tokuda, Koji; Koyanagi, Takashi; Enomoto, Toshiki

    2015-04-15

    Fish sauce that is prepared from squid organs contains cadmium (Cd), which may be present at hazardous concentrations. Cd molecules are predominantly protein bound in freshly manufactured fish sauce, but are present in a liberated form in air-exposed fish sauce. In the present study, we developed a new method for removing both Cd forms from fish sauce using chelate resin and a previously reported tannin treatment. Sixteen-fold decreases in Cd concentrations were observed (0.78-0.05 mg/100 mL) following the removal of liberated Cd using chelate resin treatment, and the removal of protein-bound Cd using tannin treatment. Major nutritional components of fish sauce were maintained, including free amino acids and peptides, and angiotensin I-converting enzyme inhibitory and antioxidant activities.

  6. Challenges Associated with Metal Chelation Therapy in Alzheimer's Disease

    PubMed Central

    Hegde, Muralidhar L.; Bharathi, P.; Suram, Anitha; Venugopal, Chitra; Jagannathan, Ramya; Poddar, Pankaj; Srinivas, Pullabhatla; Sambamurti, Kumar; Rao, Kosagisharaf Jagannatha; Scancar, Janez; Messori, Luigi; Zecca, Luigi; Zatta, Paolo

    2010-01-01

    A close association between brain metal dishomeostasis and the onset and/or progression of Alzheimer's disease (AD) has been clearly established in a number of studies, although the underlying biochemical mechanisms remain obscure. This observation renders chelation therapy an attractive pharmacological option for the treatment of this disease. However, a number of requirements must be fulfilled in order to adapt chelation therapy to AD so that the term “metal targeted strategies” seems now more appropriate. Indeed, brain metal redistribution rather than brain metal scavenging and removal is the major goal of this type of intervention. The most recent developments in metal targeted strategies for AD will be discussed using, as useful examples, clioquinol, curcumin, and epigallocatechin, and the future perspectives will also be outlined. PMID:19363258

  7. Lanthanides caged by the organic chelates; structural properties.

    PubMed

    Smentek, Lidia

    2011-04-13

    The structure, in particular symmetry, geometry and morphology of organic chelates coordinated with the lanthanide ions are analyzed in the present review. This is the first part of a complete presentation of a theoretical description of the properties of systems, which are widely used in technology, but most of all, in molecular biology and medicine. The discussion is focused on the symmetry and geometry of the cages, since these features play a dominant role in the spectroscopic activity of the lanthanides caged by organic chelates. At the same time, the spectroscopic properties require more formal presentation in the language of Racah algebra, and deserve a separate analysis. In addition to the parent systems of DOTA, DOTP, EDTMP and CDTMP presented here, their modifications by various antennas are analyzed. The conclusions that have a strong impact upon the theory of the energy transfer and the sensitized luminescence of these systems are based on the results of numerical density functional theory calculations.

  8. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    SciTech Connect

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  9. Improved paramagnetic chelate for molecular imaging with MRI

    NASA Astrophysics Data System (ADS)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-05-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent.

  10. Lanthanides caged by the organic chelates; structural properties

    NASA Astrophysics Data System (ADS)

    Smentek, Lidia

    2011-04-01

    The structure, in particular symmetry, geometry and morphology of organic chelates coordinated with the lanthanide ions are analyzed in the present review. This is the first part of a complete presentation of a theoretical description of the properties of systems, which are widely used in technology, but most of all, in molecular biology and medicine. The discussion is focused on the symmetry and geometry of the cages, since these features play a dominant role in the spectroscopic activity of the lanthanides caged by organic chelates. At the same time, the spectroscopic properties require more formal presentation in the language of Racah algebra, and deserve a separate analysis. In addition to the parent systems of DOTA, DOTP, EDTMP and CDTMP presented here, their modifications by various antennas are analyzed. The conclusions that have a strong impact upon the theory of the energy transfer and the sensitized luminescence of these systems are based on the results of numerical density functional theory calculations.

  11. Pressure-assisted chelation extraction of lead from contaminated soil.

    PubMed

    Hong, P K Andy; Cai, Xiaoxiao; Cha, Zhixiong

    2008-05-01

    Soil contamination by metallic elements including lead occurs frequently. Contaminant metals in soil pose a serious risk to public health and groundwater supplies. Extraction using chelants is seen as a remediation option; however, it is often hampered by access to the contaminants that are shielded by the soil matrix. We have developed a novel extraction technique that utilizes a mildly elevated pressure in consecutive cycles of compression and decompression along with a chelating agent for the soil slurry. Complete extraction of 3300 mg/kg of Pb from soil was achieved by 100 mM of EDTA (ethylenediaminetetraacetic acid) in 10 min using 20 pressure cycles at 150 psi (10 atm). Extraction was studied according to pressure, number of pressure cycles, chelant concentration, solid content, pH, agitation, and use of consecutive washings. Heightened extraction is attributed to fracturing of the soil particles that leads to enhanced contaminant exposure to the chelating agent.

  12. Examining the fixation kinetics of chelated and non-chelated copper micronutrient and the applications to micronutrient management in semi-arid alkaline soils

    NASA Astrophysics Data System (ADS)

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.

    2015-10-01

    The relationship between the deficiency of a nutrient in plants and its total concentration in the soil is complex. This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (Ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semi-arid soils of the Southern High Plains, US using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrient over time, highlighting the significance of timing even when chelated micronutrients are applied. The strengths of the relationship of change in available Cu with respect to other micronutrients [iron (Fe), manganese (Mn), and zinc (Zn)] were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81) with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semi-arid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  13. Decontamination of process equipment using recyclable chelating solvent

    SciTech Connect

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  14. Copper-64 labelling of triazacyclononane-triphosphinate chelators.

    PubMed

    Simeček, Jakub; Wester, Hans-Jürgen; Notni, Johannes

    2012-12-01

    The 1,4,7-triazacyclononane-1,4,7-tris(methylenephosphinic acid) chelators TRAP and NOPO are complexing copper-64 with similar efficiency as 1,4,7-triazacyclononane-triacetic acid (NOTA). The kinetic stability of Cu-64-labelled TRAP-peptides is sufficient for PET imaging at early time points (1-2 h post injection). For labelling of TRAP conjugates, Cu-64 can be recommended as an alternative to Ga-68 to achieve higher resolution of PET images.

  15. Flue gas desulfurization/denitrification using metal-chelate additives

    DOEpatents

    Harkness, John B. L.; Doctor, Richard D.; Wingender, Ronald J.

    1986-01-01

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  16. EFFECT OF TEMPERATURE ON THE SORPTION OF CHELATED RADIONUCLIDES.

    USGS Publications Warehouse

    Maest, Ann S.; Crerar, David A.; Dillon, Edward C.; Trehu, Stephen M.; Rountree, Tamara N.; ,

    1985-01-01

    Temperature effects in the near-field radioactive waste disposal environment can result in changes in the adsorptive capacity and character of the substrate and the chemistry of the reacting fluids. This work examines the effect of temperature on 1) the kinetics of radionuclide sorption onto clays from 25 degree -75 degree C and 2) the degradation and metal-binding ability of two organic complexing agents found in chelated radioactive wastes and natural groundwaters.

  17. Flue gas desulfurization/denitrification using metal-chelate additives

    DOEpatents

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  18. Mineral Levels in Thalassaemia Major Patients Using Different Iron Chelators.

    PubMed

    Genc, Gizem Esra; Ozturk, Zeynep; Gumuslu, Saadet; Kupesiz, Alphan

    2016-03-01

    The goal of the present study was to determine the levels of minerals in chronically transfused thalassaemic patients living in Antalya, Turkey and to determine mineral levels in groups using different iron chelators. Three iron chelators deferoxamine, deferiprone and deferasirox have been used to remove iron from patients' tissues. There were contradictory results in the literature about minerals including selenium, zinc, copper, and magnesium in thalassaemia major patients. Blood samples from the 60 thalassaemia major patients (the deferoxamine group, n = 19; the deferiprone group, n = 20 and the deferasirox group, n = 21) and the controls (n = 20) were collected. Levels of selenium, zinc, copper, magnesium, and iron were measured, and all of them except iron showed no significant difference between the controls and the patients regardless of chelator type. Serum copper levels in the deferasirox group were lower than those in the control and deferoxamine groups, and serum magnesium levels in the deferasirox group were higher than those in the control, deferoxamine and deferiprone groups. Iron levels in the patient groups were higher than those in the control group, and iron levels showed a significant correlation with selenium and magnesium levels. Different values of minerals in thalassaemia major patients may be the result of different dietary intake, chelator type, or regional differences in where patients live. That is why minerals may be measured in thalassaemia major patients at intervals, and deficient minerals should be replaced. Being careful about levels of copper and magnesium in thalassaemia major patients using deferasirox seems to be beneficial.

  19. Targeting Chelatable Iron as a Therapeutic Modality in Parkinson's Disease

    PubMed Central

    Moreau, Caroline; Devedjian, Jean Christophe; Kluza, Jérome; Petrault, Maud; Laloux, Charlotte; Jonneaux, Aurélie; Ryckewaert, Gilles; Garçon, Guillaume; Rouaix, Nathalie; Duhamel, Alain; Jissendi, Patrice; Dujardin, Kathy; Auger, Florent; Ravasi, Laura; Hopes, Lucie; Grolez, Guillaume; Firdaus, Wance; Sablonnière, Bernard; Strubi-Vuillaume, Isabelle; Zahr, Noel; Destée, Alain; Corvol, Jean-Christophe; Pöltl, Dominik; Leist, Marcel; Rose, Christian; Defebvre, Luc; Marchetti, Philippe; Cabantchik, Z. Ioav; Bordet, Régis

    2014-01-01

    Abstract Aims: The pathophysiological role of iron in Parkinson's disease (PD) was assessed by a chelation strategy aimed at reducing oxidative damage associated with regional iron deposition without affecting circulating metals. Translational cell and animal models provided concept proofs and a delayed-start (DS) treatment paradigm, the basis for preliminary clinical assessments. Results: For translational studies, we assessed the effect of oxidative insults in mice systemically prechelated with deferiprone (DFP) by following motor functions, striatal dopamine (HPLC and MRI-PET), and brain iron deposition (relaxation-R2*-MRI) aided by spectroscopic measurements of neuronal labile iron (with fluorescence-sensitive iron sensors) and oxidative damage by markers of protein, lipid, and DNA modification. DFP significantly reduced labile iron and biological damage in oxidation-stressed cells and animals, improving motor functions while raising striatal dopamine. For a pilot, double-blind, placebo-controlled randomized clinical trial, early-stage Parkinson's patients on stabilized dopamine regimens enrolled in a 12-month single-center study with DFP (30 mg/kg/day). Based on a 6-month DS paradigm, early-start patients (n=19) compared to DS patients (n=18) (37/40 completed) responded significantly earlier and sustainably to treatment in both substantia nigra iron deposits (R2* MRI) and Unified Parkinson's Disease Rating Scale motor indicators of disease progression (p<0.03 and p<0.04, respectively). Apart from three rapidly resolved neutropenia cases, safety was maintained throughout the trial. Innovation: A moderate iron chelation regimen that avoids changes in systemic iron levels may constitute a novel therapeutic modality for PD. Conclusions: The therapeutic features of a chelation modality established in translational models and in pilot clinical trials warrant comprehensive evaluation of symptomatic and/or disease-modifying potential of chelation in PD. Antioxid

  20. Detection of dengue NS1 and NS3 proteins in placenta and umbilical cord in fetal and maternal death.

    PubMed

    Nunes, Priscila Conrado Guerra; Paes, Marciano Viana; de Oliveira, Carlos Alberto Basilio; Soares, Ana Carla Gomes; de Filippis, Ana Maria Bispo; Lima, Monique da Rocha Queiroz; de Barcelos Alves, Ada Maria; da Silva, Juliana Fernandes Amorim; de Oliveira Coelho, Janice Mery Chicarino; de Carvalho Rodrigues, Francisco das Chagas; Nogueira, Rita Maria Ribeiro; Dos Santos, Flávia Barreto

    2016-08-01

    In Brazil, dengue is a public health problem with the occurrence of explosive epidemics. This study reports maternal and fetal deaths due to dengue and which tissues of placenta and umbilical cord were analyzed by molecular methods and immunohistochemistry. The dengue NS3 and NS1 detection revealed the viral presence in different cells from placenta and umbilical cord. In the latter, DENV-2 was detected at a viral titer of 1,02 × 10(4) amounts of viral RNA. It was shown that the DENV markers analyzed here may be an alternative approach for dengue fatal cases investigation, especially involving maternal and fetal death. J. Med. Virol. 88:1448-1452, 2016. © 2016 Wiley Periodicals, Inc.

  1. Regeneration of the heart in diabetes by selective copper chelation.

    PubMed

    Cooper, Garth J S; Phillips, Anthony R J; Choong, Soon Y; Leonard, Bridget L; Crossman, David J; Brunton, Dianne H; Saafi, 'Etuate L; Dissanayake, Ajith M; Cowan, Brett R; Young, Alistair A; Occleshaw, Christopher J; Chan, Yih-Kai; Leahy, Fiona E; Keogh, Geraldine F; Gamble, Gregory D; Allen, Grant R; Pope, Adèle J; Boyd, Peter D W; Poppitt, Sally D; Borg, Thomas K; Doughty, Robert N; Baker, John R

    2004-09-01

    Heart disease is the major cause of death in diabetes, a disorder characterized by chronic hyperglycemia and cardiovascular complications. Although altered systemic regulation of transition metals in diabetes has been the subject of previous investigation, it is not known whether changed transition metal metabolism results in heart disease in common forms of diabetes and whether metal chelation can reverse the condition. We found that administration of the Cu-selective transition metal chelator trientine to rats with streptozotocin-induced diabetes caused increased urinary Cu excretion compared with matched controls. A Cu(II)-trientine complex was demonstrated in the urine of treated rats. In diabetic animals with established heart failure, we show here for the first time that 7 weeks of oral trientine therapy significantly alleviated heart failure without lowering blood glucose, substantially improved cardiomyocyte structure, and reversed elevations in left ventricular collagen and beta(1) integrin. Oral trientine treatment also caused elevated Cu excretion in humans with type 2 diabetes, in whom 6 months of treatment caused elevated left ventricular mass to decline significantly toward normal. These data implicate accumulation of elevated loosely bound Cu in the mechanism of cardiac damage in diabetes and support the use of selective Cu chelation in the treatment of this condition.

  2. Mobilization of iron from cells by hydroxyquinoline-based chelators.

    PubMed

    Mouralian, C; Buss, J L; Stranix, B; Chin, J; Ponka, P

    2005-12-19

    With the aim of identifying an iron (Fe) chelator which is effective at mobilizing intracellular Fe, two novel ligands were synthesized and tested. Hydroxyquinoline is known to possess a high affinity for Fe and was thus chosen as the Fe binding motif for the hexadentate chelators, C1 (2,2'-[ethane-1,2-diylbis(iminomethylene)]diquinolin-8-ol) and C2 (2,2'-[cyclohexane-1,2-diylbis(iminomethylene)]diquinolin-8-ol). Both chelators are lipophilic, with Fe3+ complexes slightly more hydrophilic than the free ligands. C1 and C2 were equally toxic to K562 cells, and partial protection was afforded by supplementing the culture medium with human holotransferrin, suggesting that some of the toxicity of the ligands is due to cellular Fe depletion. Micromolar concentrations of both ligands effectively mobilized 59Fe from reticulocytes and K562 cells. In reticulocytes, 50 microM C1 caused the release of 60% of the cells' initial 59Fe uptake after a 4h incubation. Under the same conditions, C2 revealed a release of 50% of the 59Fe. Overall, both ligands merit in vivo study for oral activity. Their effectiveness at low concentrations makes them candidates for therapeutic use.

  3. Prevention by chelating agents of metal-induced developmental toxicity.

    PubMed

    Domingo, J L

    1995-01-01

    Chelating agents such as calcium disodium ethylenediaminetetraacetate (EDTA), 2,3-dimercaptopropanol (BAL), or D-penicillamine (D-PA) have been widely used for the past 4 decades as antidotes for the treatment of acute and chronic metal poisoning. In recent years, meso-2,3-dimercaptosuccinic acid (DMSA), sodium 2,3-dimercapto-1-propanesulfonate (DMPS) and sodium 4,5-dihydroxybenzene-1,3-disulfonate (Tiron) have also shown to be effective to prevent against toxicity induced by a number of heavy metals. The purpose of the present article was to review the protective activity of various chelating agents against the embryotoxic and teratogenic effects of well-known developmental toxicants (arsenic, cadmium, lead, mercury, uranium, and vanadium). DMSA and DMPS were found to be effective in alleviating arsenate- and arsenite-induced teratogenesis, whereas BAL afforded only some protection against arsenic-induced embryo/fetal toxicity. Also, DMSA, DMPS, and Tiopronin were effective in ameliorating methyl mercury-induced developmental toxicity. Although the embryotoxic and teratogenic effects of vanadate were significantly reduced by Tiron, no significant amelioration of uranium-induced embryotoxicity was observed after treatment with this chelator.

  4. Effectiveness of chelation therapy with time after acute uranium intoxication

    SciTech Connect

    Domingo, J.L.; Ortega, A.; Llobet, J.M.; Corbella, J. )

    1990-01-01

    The effect of increasing the time interval between acute uranium exposure and chelation therapy was studied in male Swiss mice. Gallic acid, 4,5-dihydroxy-1,3- benzenedisulfonic acid (Tiron), diethylenetriaminepentaacetic acid (DTPA), and 5-aminosalicylic acid (5-AS) were administered ip at 0, 0.25, 1, 4, and 24 hr after sc injection of 10 mg/kg of uranyl acetate dihydrate. Chelating agents were given at doses equal to one-fourth of their respective LD50 values. Daily elimination of uranium into urine and feces was determined for 4 days after which time the mice were killed, and the concentration of uranium was measured in kidney, spleen, and bone. The excretion of uranium was especially rapid in the first 24 hr. Treatment with Tiron or gallic acid at 0, 0.25, or 1 hr after uranium exposure significantly increased the total excretion of the metal. In kidney and bone, only administration of Tiron at 0, 0.25, or 1 hr after uranium injection, or gallic acid at 1 hr after uranium exposure significantly reduced tissue uranium concentrations. Treatment at later times (4 to 24 hr) did not increase the total excretion of the metal and did not decrease the tissue uranium concentrations 4 days after uranyl acetate administration. The results show that the length of time before initiating chelation therapy for acute uranium intoxication greatly influences the effectiveness of this therapy.

  5. Elucidating Interactions between DMSO and Chelate-Based Ionic Liquids.

    PubMed

    Chen, Hang; Wang, Xinyu; Yao, Jia; Chen, Kexian; Guo, Yan; Zhang, Pengfei; Li, Haoran

    2015-12-21

    The C-D bond stretching vibrations of deuterated dimethyl sulfoxide ([D6 ]DMSO) and the C2 -H bond stretching vibrations of 1,1,1,5,5,5-hexafluoropentane-2,4-dione (hfac) ligand in anion are chosen as probes to elucidate the solvent-solute interaction between chelate-based ionic liquids (ILs) and DMSO by vibrational spectroscopic studies. The indirect effect from the interaction of the adjacent S=O functional group of DMSO with the cation [C10 mim](+) and anion [Mn(hfac)3 ](-) of the ILs leads to the blue-shift of the C-D stretching vibrations of DMSO. The C2 -H bond stretching vibrations in hfac ligand is closely related to the ionic hydrogen bond strength between the cation and anion of chelate-based ILs. EPR studies reveal that the crystal field of the central metal is kept when the chelate-based ILs are in different microstructure environment in the solution.

  6. Antibacterial and antibiofilm effects of iron chelators against Prevotella intermedia.

    PubMed

    Moon, Ji-Hoi; Kim, Cheul; Lee, Hee-Su; Kim, Sung-Woon; Lee, Jin-Yong

    2013-09-01

    Prevotella intermedia, a major periodontopathogen, has been shown to be resistant to many antibiotics. In the present study, we examined the effect of the FDA-approved iron chelators deferoxamine (DFO) and deferasirox (DFRA) against planktonic and biofilm cells of P. intermedia in order to evaluate the possibility of using these iron chelators as alternative control agents against P. intermedia. DFRA showed strong antimicrobial activity (MIC and MBC values of 0.16 mg ml(-1)) against planktonic P. intermedia. At subMICs, DFRA partially inhibited the bacterial growth and considerably prolonged the bacterial doubling time. DFO was unable to completely inhibit the bacterial growth in the concentration range tested and was not bactericidal. Crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that DFRA significantly decreased the biofilm-forming activity as well as the biofilm formation, while DFO was less effective. DFRA was chosen for further study. In the ATP-bioluminescent assay, which reflects viable cell counts, subMICs of DFRA significantly decreased the bioactivity of biofilms in a concentration-dependent manner. Under the scanning electron microscope, P. intermedia cells in DFRA-treated biofilm were significantly elongated compared to those in untreated biofilm. Further experiments are necessary to show that iron chelators may be used as a therapeutic agent for periodontal disease. PMID:23329319

  7. Copper and Zinc Chelation as a Treatment of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. The cause of the disease remains unknown, but amyloid- β (A β), a short peptide, is considered causal its pathogenesis. At cellular level, AD is characterized by deposits mainly composed of A β that also contain elevated levels of transition metals ions. Targeting metals is a promising new strategy for AD treatment, which uses moderately strong metal chelators to sequester them from A β or the environment. PBT2 is a chelating compound that has been the most promising in clinical trials. In our work, we use computer simulations to investigate complexes of a close analog of PBT2 with Cu2+ and Zn2+ ions. The calculations employ KS/FD DFT method, which combines Kohn-Sham DFT with the frozen-density DFT to achieve efficient description of explicit solvent beyond the first solvation shell. Our work is based on recent experiments and examines both 1:1 and 2:1 chelator-metal stochiometries detected experimentally. The results show that copper attaches more strongly than zinc, find that 1:1 complexes involve water in the first coordination shell and determine which one of several possible 2:1 geometries is the most preferable.

  8. Mercury removal in utility wet scrubber using a chelating agent

    DOEpatents

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  9. Human Bocavirus NS1 and NS1-70 Proteins Inhibit TNF-α-Mediated Activation of NF-κB by targeting p65

    PubMed Central

    Liu, Qingshi; Zhang, Zhenfeng; Zheng, Zhenhua; Zheng, Caishang; Liu, Yan; Hu, Qinxue; Ke, Xianliang; Wang, Hanzhong

    2016-01-01

    Human bocavirus (HBoV), a parvovirus, is a single-stranded DNA etiologic agent causing lower respiratory tract infections in young children worldwide. Nuclear factor kappa B (NF-κB) transcription factors play crucial roles in clearance of invading viruses through activation of many physiological processes. Previous investigation showed that HBoV infection could significantly upregulate the level of TNF-α which is a strong NF-κB stimulator. Here we investigated whether HBoV proteins modulate TNF-α–mediated activation of the NF-κB signaling pathway. We showed that HBoV NS1 and NS1-70 proteins blocked NF-κB activation in response to TNF-α. Overexpression of TNF receptor-associated factor 2 (TRAF2)-, IκB kinase alpha (IKKα)-, IκB kinase beta (IKKβ)-, constitutively active mutant of IKKβ (IKKβ SS/EE)-, or p65-induced NF-κB activation was inhibited by NS1 and NS1-70. Furthermore, NS1 and NS1-70 didn’t interfere with TNF-α-mediated IκBα phosphorylation and degradation, nor p65 nuclear translocation. Coimmunoprecipitation assays confirmed the interaction of both NS1 and NS1-70 with p65. Of note, NS1 but not NS1-70 inhibited TNF-α-mediated p65 phosphorylation at ser536. Our findings together indicate that HBoV NS1 and NS1-70 inhibit NF-κB activation. This is the first time that HBoV has been shown to inhibit NF-κB activation, revealing a potential immune-evasion mechanism that is likely important for HBoV pathogenesis. PMID:27329558

  10. Chelation therapy in Wilson's disease: from D-penicillamine to the design of selective bioinspired intracellular Cu(I) chelators.

    PubMed

    Delangle, Pascale; Mintz, Elisabeth

    2012-06-01

    Wilson's disease is an orphan disease due to copper homeostasis dysfunction. Mutations of the ATP7B gene induces an impaired functioning of a Cu-ATPase, impaired Cu detoxification in the liver and copper overload in the body. Indeed, even though copper is an essential element, which is used as cofactor by many enzymes playing vital roles, it becomes toxic when in excess as it promotes cytotoxic reactions leading to oxidative stress. In this perspective, human copper homeostasis is first described in order to explain the mechanisms promoting copper overload in Wilson's disease. We will see that the liver is the main organ for copper distribution and detoxification in the body. Nowadays this disease is treated life-long by systemic chelation therapy, which is not satisfactory in many cases. Therefore the design of more selective and efficient drugs is of great interest. A strategy to design more specific chelators to treat localized copper accumulation in the liver will then be presented. In particular we will show how bioinorganic chemistry may help in the design of such novel chelators by taking inspiration from the biological copper cell transporters.

  11. Generation and characterization of mouse monoclonal antibodies against NS4B protein of dengue virus.

    PubMed

    Xie, Xuping; Zou, Jing; Wang, Qing-Yin; Noble, Christian G; Lescar, Julien; Shi, Pei-Yong

    2014-02-01

    Dengue virus (DENV) non-structural protein 4B (NS4B) has been demonstrated to be an attractive antiviral target. Due to its nature as an integral membrane protein, NS4B remains poorly characterized. In this study, we generated and characterized two monoclonal antibodies (mAb) that selectively bind to DENV NS4B protein. One mAb, 10-3-7, is specific for DENV-2 NS4B, and its epitope was mapped to residues 5-15 of NS4B. The other mAb, 44-4-7, cross-reacts with all the four serotypes of DENV NS4B, and its epitope was mapped to residues 141-147 of NS4B. Using the mAbs, we probed the intracellular orientation of the epitopes of NS4B by an epitope accessibility assay. The results showed that the N-terminus of NS4B is located in the ER lumen, whereas amino acids 130-148 of NS4B are located in the cytosol. The study demonstrates that the two anti-NS4B mAbs will be useful for future structural and functional analyses of DENV NS4B. PMID:24503088

  12. A comparative biochemical analysis of the NS2B(H)-NS3pro protease complex from four dengue virus serotypes.

    PubMed

    Iempridee, Tawin; Thongphung, Ratchanu; Angsuthanasombat, Chanan; Katzenmeier, Gerd

    2008-01-01

    The two-component protease NS2B-NS3 of dengue virus mediates proteolytic processing of the polyprotein precursor and therefore represents a target for the development of antiviral drugs. The amino acid sequences of the NS3 serine protease and the NS2B cofactor exhibit relatively low degrees of conservation among the 4 serotypes thus suggesting that differences in enzyme activity exist which could modulate their susceptibility to future protease inhibitors. In this study we have addressed the question of functional similarity among the NS2B(H)-NS3pro proteases from 4 dengue virus serotypes by employing a uniform approach to clone, purify and assay proteolytic activity of these enzymes. Significant differences were observed for patterns of protein formation and expression levels in the E. coli host. Renaturation of the NS2B(H)-NS3pro precursors from dengue virus serotypes 2, 3 and 4 mediated by artificial chaperone-assisted refolding yielded enzymatically active proteases, whereas the enzyme from serotype 1 was obtained as soluble protein. Kinetic experiments using the GRR-amc substrate revealed comparable K(m) values while k(cat) values as obtained by active-site titration experiments displayed minor variations. Denaturation experiments demonstrated significant differences in half-life of the NS3 proteases from serotypes 2, 3 and 4 at 50 degrees C, whereas pH optima for all 4 enzymes were comparable.

  13. Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-09-01

    Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "cleanˮ labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ∼1 to ∼10(5)  mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES).  Maximum iron chelation was reached in solutions up to viscosity ∼10(2)  mPa·s. In more viscous solutions (up to ∼10(4)  mPa·s), there was a significant decrease in iron chelating capacity (P < 0.05). However, materials still retained at least 76% iron chelating capacity. Additionally, the influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while

  14. Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-09-01

    Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "cleanˮ labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ∼1 to ∼10(5)  mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES).  Maximum iron chelation was reached in solutions up to viscosity ∼10(2)  mPa·s. In more viscous solutions (up to ∼10(4)  mPa·s), there was a significant decrease in iron chelating capacity (P < 0.05). However, materials still retained at least 76% iron chelating capacity. Additionally, the influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while

  15. The 150 ns detector project: Prototype preamplifier results

    NASA Astrophysics Data System (ADS)

    Warburton, W. K.; Russell, S. R.; Kleinfelder, Stuart A.

    1994-08-01

    The long-term goal of the 150 ns detector project is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1×256 1D and 8×8 2D detectors, 256×256 2D detectors and, finally, 1024 × 1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front-end preamplifiers are integrated first, since their design and performance are the most unusual and also critical to the project's success. Similarly, our early work is concentrated on devising and perfecting detector structures. In this paper we demonstrate the performance of prototypes of our integrated preamplifiers. While the final design will have 64 preamps to a chip, including a switchable gain stage, the prototypes were integrated 8 channels to a "Tiny Chip" and tested in 4 configurations (feedback capacitor Cf equal 2.5 or 4.0 pF, output directly or through a source follower). These devices have been tested thoroughly for reset settling times, gain, linearity, and electronic noise. They generally work as designed, being fast enough to easily integrate detector charge, settle, and reset in 150 ns. Gain and linearity appear to be acceptable. Current values of electronic noise, in double-sampling mode, are about twice the design goal of {2}/{3} of a single photon at 6 keV. We expect this figure to improve with the addition of the onboard amplifier stage and improved packaging. Our next test chip will include these improvements and allow testing with our first detector samples, which will be 1×256 (50 μm wide pixels) and 8×8 (1 mm 2 pixels) element detector on 1 mm thick silicon.

  16. VM version of INTERLAN's NS4240 Xerox ITP Network Software

    SciTech Connect

    Frese, H.; Cottrell, R.L.; Downey, T.

    1986-04-01

    This manual describes Stanford Linear Accelerator Center's VM adaptation of INTERLAN's NS4240 ITP Network Software. The ITP Network Software is an implementation of the Xerox Network Systems Internet Transport Protocols. The ITP Network Software runs under the VM/SP operating system. This manual assumes familiarity with the use of the VM operating system. The user is also expected to have experience in assembling, linking, and running application programs on a system. The user should be familiar with the concepts of computer networking and have an understanding of the more specific concepts of Ethernet-based networks. 10 refs.

  17. Cyclosporine Inhibits a Direct Interaction between Cyclophilins and Hepatitis C NS5A

    PubMed Central

    Striker, Rob

    2010-01-01

    Background Hepatitis C Virus (HCV) infection is a leading indication for liver transplantation. HCV infection reoccurs almost universally post transplant, decreasing both graft longevity and patient survival. The immunosuppressant, cyclosporine A (CsA) has potent anti-HCV activity towards both HCV replicons and the genotype 2a cell culture infectious virus. Previously, we isolated mutations in the 1bN replicon with less sensitivity to CsA that mapped to both NS5A and NS5B regions of the virus. Mutations in NS5A alone conferred decreased CsA susceptibility regardless of NS5B mutations. Methodology/Principal Findings We examined the mechanisms by which NS5A mutations contribute to CsA resistance and if they are strain dependent. Using in vitro mutagenesis, the amino acid position 321 mutation of NS5A was restored to the wild-type tyrosine residue conferring partial CsA susceptibility on the mutant replicon. The 321 mutation also alters CsA susceptibility of the JFH cell culture virus. Additionally, we demonstrated a novel CsA-sensitive interaction between NS5A and both cyclophilin A and B. Both the mutant NS5A and wild type NS5A bind cyclophilin in vitro. The NS5A: cyclophilin interaction requires both the NS5A region identified by the resistance mutants and cyclophilin catalytic residues. In cell culture, NS5A from CsA resistant mutant has an enhanced interaction with cyclophilin B. Additionally; NS5B facilitates a stronger binding of mutant NS5A to endogenous cyclophilin B than wild-type in cell culture. Conclusions/Significance Collectively, this data suggests direct interactions between cyclophilins and NS5A are critical to understand for optimal use of cyclophilin inhibitors in anti-HCV therapy. PMID:20352119

  18. Is macrocycle a synonym for kinetic inertness in Gd(III) complexes? Effect of coordinating and non-coordinating substituents on inertness and relaxivity of Gd(III) chelates with DO3A-like ligands

    PubMed Central

    Polasek, Miloslav; Caravan, Peter

    2013-01-01

    Gadolinium chelates with octadentate ligands are widely used as contrast agents for magnetic resonance imaging (MRI), with macrocyclic ligands based on DO3A being preferred for the high kinetic inertness of their Gd chelates. A major challenge in the design of new bifunctional MRI probes is the need to control the rotational motion of the chelate, which greatly affects its relaxivity. In this work we explored facile alkylation of a secondary amine in macrocyclic DO3A-like ligands to create a short, achiral linkage to limit the undesired internal motion of chelates within larger molecular constructs. The acetate moiety on the trans nitrogen was also replaced with either a bidentate (ethoxyacetate, L1 or methyl picolinate, L2) or bulky monodentate (methyl phosphonate, L3) donor arm to give octa- or heptadentate ligands, respectively. The resultant Gd(III) complexes were all monohydrated (q = 1) and exhibited water residency times that spanned 2 orders of magnitude (τM = 2190 ± 170, 3500 ± 90 and 12.7 ± 3.8 ns at 37 °C for GdL1, GdL2 and GdL3 respectively). Alkylation of the secondary amine with a non-coordinating biphenyl moiety resulted in coordinatively saturated q = 0 complexes of octadentate ligands L1 and L2. Relaxivities were limited by slow water exchange and/or lack of water co-ligand. All complexes showed decreased inertness compared to [Gd(DO3A)] despite higher ligand denticity, and inertness was further decreased upon N-alkylation. These results demonstrate that high kinetic inertness and in vivo safety of Gd chelates with macrocyclic ligands should not be generalized. PMID:23517079

  19. In vitro Splicing of Influenza Viral NS1 mRNA and NS1-β -globin Chimeras: Possible Mechanisms for the Control of Viral mRNA Splicing

    NASA Astrophysics Data System (ADS)

    Plotch, Stephen J.; Krug, Robert M.

    1986-08-01

    In influenza virus-infected cells, the splicing of the viral NS1 mRNA catalyzed by host nuclear enzymes is controlled so that the steady-state amount of the spliced NS2 mRNA is only 5-10% of that of the unspliced NS1 mRNA. Here we examine the splicing of NS1 mRNA in vitro, using nuclear extracts from HeLa cells. We show that in addition to its consensus 5' and 3' splice sites, NS1 mRNA has an intron branch-point adenosine residue that was functional in lariat formation. Nonetheless, this RNA was not detectably spliced in vitro under conditions in which a human β -globin precursor was efficiently spliced. Using chimeric RNA precursors containing both NS1 and β -globin sequences, we show that the NS1 5' splice site was effectively utilized by the β -globin branch-point sequence and 3' splice site to form a spliced RNA, whereas the NS1 3' splice site did not function in detectable splicing in vitro, even in the presence of the β -globin branch-point sequence or in the presence of both the branch-point sequence and 5' exon and splice site from β -globin With the chimeric precursors that were not detectably spliced, as with NS1 mRNA itself, a low level of a lariat structure containing only intron and not 3' exon sequences was formed. The inability of the consensus 3' splice site of NS1 mRNA to function effectively in in vitro splicing suggests that this site is structurally inaccessible to components of the splicing machinery. Based on these results, we propose two mechanisms whereby NS1 mRNA splicing in infected cells is controlled via the accessibility of its 3' splice site.

  20. Antiviral potential of 4-hydroxypanduratin A, secondary metabolite of Fingerroot, Boesenbergia pandurata (Schult.), towards Japanese Encephalitis virus NS2B/NS3 protease.

    PubMed

    Seniya, Chandrabhan; Mishra, Harshal; Yadav, Ajay; Sagar, Nitin; Chaturvedi, Babita; Uchadia, Kuldeep; Wadhwa, Gulshan

    2013-01-01

    4-hydroxypanduratin A is a secondary metabolite of Boesenbergia pandurata Schult. (Fingerroot) plant with various pharmacological activities such as neuroprotective, potent antioxidant, antibacterial and antifungal. Flaviviral NS2B/NS3 protease activity is essential for polyprotein processing and viral replication for Japanese Encephalitis Virus (JEV), a major cause of Acute Encephaltis in Asia. Inhibition of formation of this complex by arresting the binding of NS2B with NS3 would reduce the enzyme's activity to meager proportions and hence would prevent further viral proliferation. The automated 3D structure of NS2B protein of the JEV GP78 was predicted based on the sequence-to-structure-to-function paradigm using I-TASSER and the function of NS2B protein was inferred by matching to other known proteins. The stereochemical quality of predicted structure was checked by PROCHECK. The antiviral activity of 4-hydroxypanduratin A against NS2B protein as a potential drug has been elucidated in this paper. Docking simulation analysis showed 4-hydroxypanduratin A as potential inhibitor of NS2B protein/cofactor which is necessary for NS3 protease activity. 220 derivatives of 4-hydroxypanduratin A were virtually screened with rigid criteria of Lipinski's rule of 5 using Autodock4.2. 4-hydroxypanduratin A was found interacting with target hydrophilic domain in NS2B protein by two Hbonds (Gly80 and Asp81) with active residues, several hydrophobic interactions, Log P value of 5.6, inhibition constant (Ki) of 51.07nM and lowest binding energy of -9.95Kcal/Mol. Hence, 4-hydroxypanduratin A targeted to Site 2 will have sufficient profound effect to inhibit protease activity to abrogate viral replication. It could be a promising potential drug candidate for JEV infections using NS2B Site 2 as a Drug target.

  1. Influenza C virus NS1 protein upregulates the splicing of viral mRNAs.

    PubMed

    Muraki, Yasushi; Furukawa, Takatoshi; Kohno, Yoshihiko; Matsuzaki, Yoko; Takashita, Emi; Sugawara, Kanetsu; Hongo, Seiji

    2010-02-01

    Pre-mRNAs of the influenza A virus M and NS genes are poorly spliced in virus-infected cells. By contrast, in influenza C virus-infected cells, the predominant transcript from the M gene is spliced mRNA. The present study was performed to investigate the mechanism by which influenza C virus M gene-specific mRNA (M mRNA) is readily spliced. The ratio of M1 encoded by a spliced M mRNA to CM2 encoded by an unspliced M mRNA in influenza C virus-infected cells was about 10 times larger than that in M gene-transfected cells, suggesting that a viral protein(s) other than M gene translational products facilitates viral mRNA splicing. RNase protection assays showed that the splicing of M mRNA in infected cells was much higher than that in M gene-transfected cells. The unspliced and spliced mRNAs of the influenza C virus NS gene encode two nonstructural (NS) proteins, NS1(C/NS1) and NS2(C/NS2), respectively. The introduction of premature translational termination into the NS gene, which blocked the synthesis of the C/NS1 and C/NS2 proteins, drastically reduced the splicing of NS mRNA, raising the possibility that C/NS1 or C/NS2 enhances viral mRNA splicing. The splicing of influenza C virus M mRNA was increased by coexpression of C/NS1, whereas it was reduced by coexpression of the influenza A virus NS1 protein (A/NS1). The splicing of influenza A virus M mRNA was also increased by coexpression of C/NS1, though it was inhibited by that of A/NS1. These results suggest that influenza C virus NS1, but not A/NS1, can upregulate viral mRNA splicing.

  2. Cytotoxic and Antitumour Studies of Acetoacetanilide N(4)-methyl(phenyl)thiosemicarbazone and its Transition Metal Complexes

    PubMed Central

    Priya, N. P.; Firdous, A. P.; Jeevana, R.; Aravindakshan, K. K.

    2015-01-01

    Cytotoxic activities of acetoacetanilide N(4)-methyl(phenyl)thiosemicarbazone (L2H) and its seven different metal complexes were studied. Of these, IC50 value of the copper complex was found to be 46 μg/ml. Antitumour studies of this copper complex was carried out using Daltons Lymphoma Ascites cell-induced solid tumour model and Ehrlich's Ascites Carcinoma cell-induced ascites tumour model. Administration of the copper complex at different concentrations (10, 5 and 1 mg/kg b. wt) inhibited the solid tumour development in mice and increased the mean survival rate and the life span of Ascites tumour bearing mice in a concentration dependent manner. PMID:26997691

  3. Microwave gallium-68 radiochemistry for kinetically stable bis(thiosemicarbazone) complexes: structural investigations and cellular uptake under hypoxia.

    PubMed

    Alam, Israt S; Arrowsmith, Rory L; Cortezon-Tamarit, Fernando; Twyman, Frazer; Kociok-Köhn, Gabriele; Botchway, Stanley W; Dilworth, Jonathan R; Carroll, Laurence; Aboagye, Eric O; Pascu, Sofia I

    2016-01-01

    We report the microwave synthesis of several bis(thiosemicarbazones) and the rapid gallium-68 incorporation to give the corresponding metal complexes. These proved kinetically stable under 'cold' and 'hot' biological assays and were investigated using laser scanning confocal microscopy, flow cytometry and radioactive cell retention studies under normoxia and hypoxia. (68)Ga complex retention was found to be 34% higher in hypoxic cells than in normoxic cells over 30 min, further increasing to 53% at 120 min. Our data suggests that this class of gallium complexes show hypoxia selectivity suitable for imaging in living cells and in vivo tests by microPET in nude athymic mice showed that they are excreted within 1 h of their administration.

  4. Eco-Friendly Synthesis of Some Thiosemicarbazones and Their Applications as Intermediates for 5-Arylazothiazole Disperse Dyes.

    PubMed

    Gaffer, Hatem E; Khalifa, Mohamed E

    2015-01-01

    The solid-solid reactions of thiosemicarbazide with 4-formylantipyrine, 2-acetylpyrrole and camphor were performed to afford the thiosemicarbazones 1-3 which underwent hetero-cyclization with phenacyl bromide to furnish the corresponding thiazole derivatives 4-6. The yields of the reactions are quantitative in all cases and the products do not require further purification. A series of 5-arylazo-2-(substituted ylidene-hydrazinyl)-thiazole dyes 7-9 was then prepared by diazo coupling of thiazole derivatives 4-6 with several diazonium chlorides. The synthesized dyes were applied as disperse dyes for dyeing polyester fabric. The dyed fabrics exhibit good washing, perspiration, sublimation and light fastness properties, with little variation in their moderate to good rubbing fastness. PMID:26690111

  5. Two thiosemicarbazones derived from salicylaldehyde: very specific hydrogen-bonding interactions of the N-H...S=C type.

    PubMed

    Rubcić, Mirta; Dilović, Ivica; Cindrić, Marina; Matković-Calogović, Dubravka

    2008-10-01

    The molecular structures of two salicylaldehyde thiosemicarbazone derivatives, namely salicylaldehyde 4-phenylthiosemicarbazone, C(14)H(13)N(3)OS, (I), and 4-methoxysalicylaldehyde 4-phenylthiosemicarbazone, C(15)H(15)N(3)O(2)S, (II), both of potential pharmacological interest, are found in the keto (thione) tautomeric form. The first compound represents a second triclinic polymorph of composition beta-C(14)H(13)N(3)OS. Although both polymorphs crystallize in the same space group (P1), the alpha-polymorph [Seena, Kurup & Suresh (2008). J. Chem. Crystallogr. 38, 93-96] differs from the beta form in its unit-cell volume at 293 K. The molecules in the crystal structures of (I) and (II) are linked into centrosymmetric R(2)(2)(8) dimers by hydrogen bonds of the N-H...S=C type. These dimers are connected through pi-pi stacking and T-shaped C-H...pi interactions into three-dimensional networks.

  6. Spectroscopic evaluation of Co(II), Ni(II) and Cu(II) complexes derived from thiosemicarbazone and semicarbazone

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-12-01

    Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.

  7. The Investigation of Electronic Properties and Microscopic Second-Order Nonlinear Optical Behavior of 1-SALICYLIDENE-3-THIO-SEMICARBAZONE

    NASA Astrophysics Data System (ADS)

    Karakas, Asli; Unver, Huseyin; Elmali, Ayhan

    To investigate the microscopic second-order nonlinear optical (NLO) behavior of the 1-salicylidene-3-thio-semicarbazone Schiff base compound, the electric dipole moments (μ), linear static polarizabilities (α) and first static hyperpolarizabilites (β) have been calculated using finite field second-order Møller-Plesset perturbation (FF MP2) theory. The ab-initio results on (hyper)polarizabilities show that the investigated molecule might have microscopic NLO properties with non-zero values. To understand the NLO behavior in the context of molecular orbital structure, we have also examined the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and the HOMO-LUMO gap in the same theoretical framework as the (hyper)polarizability calculations. In addition to the NLO properties, the electronic transition spectra have been computed using a semi-empirical method (ZINDO). ZINDO calculation results show that the electronic transition wavelengths have been estimated to be shorter than 400 nm.

  8. Chelation ion chromatography as a method for trace elemental analysis in complex environmental and biological samples

    SciTech Connect

    Siriraks, A.; Kingston, H.M. ); Riviello, J.M. )

    1990-06-01

    The development and evaluation of a new method for the determination of trace transition and rare-earth elements based on the combination of chelation and ion chromatography are described. The new method, chelation ion chromatography (Chelation IC), uses a chelating column to concentrate and separate transition and rare-earth elements from the common alkali and alkaline-earth metals, as well as other matrix components, prior to analysis by ion chromatography. The sample fraction from the chelating column contains only the concentrated analyte ions, thus eliminating interfering matrix components from complex matrices such as seawater and digested biological, botanical, and geological materials. This combination of chelation and ion chromatography provides a technique that makes possible the determination of trace elements in complex matrices that have proven to be difficult or impossible to analyze by ion chromatography or conventional atomic spectroscopy techniques.

  9. EDTA Chelation Therapy to Reduce Cardiovascular Events in Persons with Diabetes.

    PubMed

    Ouyang, Pamela; Gottlieb, Sheldon H; Culotta, Valerie L; Navas-Acien, Ana

    2015-11-01

    The Trial to Assess Chelation Therapy (TACT) was a randomized double-blind placebo-controlled trial enrolling patients age ≥50 years with prior myocardial infarction. TACT used a 2 × 2 factorial design to study ethylene diamine tetraacetic acid (EDTA) chelation and high-dose vitamin supplementation. Chelation provided a modest but significant reduction in cardiovascular endpoints. The benefit was stronger and significant among participants with diabetes but absent in those without diabetes. Mechanisms by which chelation might reduce cardiovascular risk in persons with diabetes include the effects of EDTA chelation on transition and toxic metals. Transition metals, particularly copper and iron, play important roles in oxidative stress pathways. Toxic metals, in particular cadmium and lead, are toxic for the cardiovascular system. This review discusses the epidemiologic evidence and animal and human studies supporting the role of these metals in the development of diabetes and ischemic heart disease and potential ways by which EDTA chelation could confer cardiovascular benefit.

  10. CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties

    PubMed Central

    Zhu, Congqing; Yang, Caixia; Wang, Yongheng; Lin, Gan; Yang, Yuhui; Wang, Xiaoyong; Zhu, Jun; Chen, Xiaoyuan; Lu, Xin; Liu, Gang; Xia, Haiping

    2016-01-01

    The coordinating atoms in polydentate chelates are primarily heteroatoms. We present the first examples of pentadentate chelates with all binding atoms of the chelating agent being carbon atoms, denoted as CCCCC chelates. Having up to five metal-carbon bonds in the equatorial plane has not been previously observed in transition metal chemistry. Density functional theory calculations showed that the planar metallacycle has extended Craig-Möbius aromaticity arising from 12-center–12-electron dπ-pπ π-conjugation. These planar chelates have broad absorption in the ultraviolet-visible–near-infrared region and, thus, notable photothermal performance upon irradiation by an 808-nm laser, indicating that these chelates have potential applications in photothermal therapy. The combination of facile synthesis, high stability, and broad absorption of these complexes could make the polydentate carbon chain a novel building block in coordination chemistry. PMID:27574707

  11. CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties.

    PubMed

    Zhu, Congqing; Yang, Caixia; Wang, Yongheng; Lin, Gan; Yang, Yuhui; Wang, Xiaoyong; Zhu, Jun; Chen, Xiaoyuan; Lu, Xin; Liu, Gang; Xia, Haiping

    2016-08-01

    The coordinating atoms in polydentate chelates are primarily heteroatoms. We present the first examples of pentadentate chelates with all binding atoms of the chelating agent being carbon atoms, denoted as CCCCC chelates. Having up to five metal-carbon bonds in the equatorial plane has not been previously observed in transition metal chemistry. Density functional theory calculations showed that the planar metallacycle has extended Craig-Möbius aromaticity arising from 12-center-12-electron dπ-pπ π-conjugation. These planar chelates have broad absorption in the ultraviolet-visible-near-infrared region and, thus, notable photothermal performance upon irradiation by an 808-nm laser, indicating that these chelates have potential applications in photothermal therapy. The combination of facile synthesis, high stability, and broad absorption of these complexes could make the polydentate carbon chain a novel building block in coordination chemistry. PMID:27574707

  12. Folding Proteins at 500 ns/hour with Work Queue

    PubMed Central

    Abdul-Wahid, Badi’; Yu, Li; Rajan, Dinesh; Feng, Haoyun; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A.

    2014-01-01

    Molecular modeling is a field that traditionally has large computational costs. Until recently, most simulation techniques relied on long trajectories, which inherently have poor scalability. A new class of methods is proposed that requires only a large number of short calculations, and for which minimal communication between computer nodes is required. We considered one of the more accurate variants called Accelerated Weighted Ensemble Dynamics (AWE) and for which distributed computing can be made efficient. We implemented AWE using the Work Queue framework for task management and applied it to an all atom protein model (Fip35 WW domain). We can run with excellent scalability by simultaneously utilizing heterogeneous resources from multiple computing platforms such as clouds (Amazon EC2, Microsoft Azure), dedicated clusters, grids, on multiple architectures (CPU/GPU, 32/64bit), and in a dynamic environment in which processes are regularly added or removed from the pool. This has allowed us to achieve an aggregate sampling rate of over 500 ns/hour. As a comparison, a single process typically achieves 0.1 ns/hour. PMID:25540799

  13. X-ray structures of NS1 effector domain mutants.

    PubMed

    Xia, Shuangluo; Robertus, Jon D

    2010-02-15

    The influenza A virus nonstructural protein NS1 is a multifunctional dimeric protein that acts as a potent inhibitor of the host cellular antiviral state. The C-terminal effector domain of NS1 binds host proteins, including CPSF30, and is a target for the development of new antiviral drugs. Here we present crystallographic structures of two mutant effector domains, W187Y and W187A, of influenza A/Udorn/72 virus. Unlike wild-type, the mutants behave exclusively as monomers in solution based on gel filtration data and light scattering. The W187Y mutant is able to bind CPSF30 with a binding affinity close to the wild-type protein; that is, it retains a receptor site for aromatic ligands nearly identical to the wild-type. Therefore, this monomeric mutant protein could serve as a drug target for a high throughput inhibitor screening assays, since its binding pocket is unoccupied in solution and potentially more accessible to small molecule ligands.

  14. Dengue virus RNA polymerase NS5: a potential therapeutic target?

    PubMed

    Rawlinson, Stephen M; Pryor, Melinda J; Wright, Peter J; Jans, David A

    2006-12-01

    Dengue fever (DF)/dengue haemorrhagic fever (DHF) is the most common arthropod-borne viral infection, where it is now estimated that 2.5-3 billion people world-wide are at risk of infection. Currently there is no available treatment, in the form of vaccine or drug, making eradication of the mosquito vector the only viable control measure, which has proved costly and of limited success. There are a number of different vaccines undergoing testing, but whilst a dengue vaccine is clearly desirable, there are several issues which make live-attenuated vaccines problematic. These include the phenomenon of antibody-dependent enhancement (ADE) and the possibility of recombination of attenuated vaccine strains with wild-type flavivirus members reverting vaccines to a virulent form. Until we gain a better understanding of these issues and their associated risks, the safety of any live dengue vaccine cannot be assured. It therefore may be safer and more feasible for therapeutic-based approaches to be developed as an alternative to live vaccines. As our understanding of dengue molecular biology expands, new potential targets for drugs are emerging. One of the most promising is the dengue non-structural protein 5 (NS5), the largest and most highly conserved of the dengue proteins. This review examines the unique properties of NS5, including its functions, interactions, subcellular localisation and regulation, and looks at ways in which some of these may be exploited in our quest for effective drugs.

  15. Spectrophotometric determination of Cu(II) in soil and vegetable samples collected from Abraha Atsbeha, Tigray, Ethiopia using heterocyclic thiosemicarbazone.

    PubMed

    Admasu, Daniel; Reddy, Desam Nagarjuna; Mekonnen, Kebede Nigussie

    2016-01-01

    Two selective and sensitive reagents, 2-acetylpyridine thiosemicarbazone (2-APT) and 3-acetylpyridine thiosemicarbazone (3-APT) were used for the spectrophotometric determination of Cu(II). Both reagents gave yellowish Cu(II) complex at a pH range of 8.0-10.0. Beer's law was obeyed for Cu(II)-2-APT and Cu(II)-3-APT in the concentration range of 0.16-1.3 and 0.44-1.05 µg/mL, respectively. The molar absorptivity and of Cu(II)-2-APT and Cu(II)-3-APT were 2.14 × 10(4) at 370 nm, and 6.7 × 10(3) L/mol cm at 350 nm, respectively, while the Sandell's sensitivity were 0.009 and 0.029 µg/cm(2) in that order. The correlation coefficient of the standard curves of Cu(II)-2-APT and Cu(II)-3-APT were 0.999 and 0.998, respectively. The detection limit of the Cu(II)-2-APT and Cu(II)-3-APT methods were 0.053 and 0.147 µg/mL, respectively. The results demonstrated that the procedure is precise (relative standard deviation <2 %, n = 10). The method was tested for Cu(II) determination in soil and vegetable samples. Comparisons of the results with those obtained using a flame atomic absorption spectrophotometer for Cu(II) determination also tested the validity of the method using paired sample t test at the 0.05 level showing a good agreement between them.

  16. Spectrophotometric determination of Cu(II) in soil and vegetable samples collected from Abraha Atsbeha, Tigray, Ethiopia using heterocyclic thiosemicarbazone.

    PubMed

    Admasu, Daniel; Reddy, Desam Nagarjuna; Mekonnen, Kebede Nigussie

    2016-01-01

    Two selective and sensitive reagents, 2-acetylpyridine thiosemicarbazone (2-APT) and 3-acetylpyridine thiosemicarbazone (3-APT) were used for the spectrophotometric determination of Cu(II). Both reagents gave yellowish Cu(II) complex at a pH range of 8.0-10.0. Beer's law was obeyed for Cu(II)-2-APT and Cu(II)-3-APT in the concentration range of 0.16-1.3 and 0.44-1.05 µg/mL, respectively. The molar absorptivity and of Cu(II)-2-APT and Cu(II)-3-APT were 2.14 × 10(4) at 370 nm, and 6.7 × 10(3) L/mol cm at 350 nm, respectively, while the Sandell's sensitivity were 0.009 and 0.029 µg/cm(2) in that order. The correlation coefficient of the standard curves of Cu(II)-2-APT and Cu(II)-3-APT were 0.999 and 0.998, respectively. The detection limit of the Cu(II)-2-APT and Cu(II)-3-APT methods were 0.053 and 0.147 µg/mL, respectively. The results demonstrated that the procedure is precise (relative standard deviation <2 %, n = 10). The method was tested for Cu(II) determination in soil and vegetable samples. Comparisons of the results with those obtained using a flame atomic absorption spectrophotometer for Cu(II) determination also tested the validity of the method using paired sample t test at the 0.05 level showing a good agreement between them. PMID:27512628

  17. The 2NS Translocation from Aegilops ventricosa Confers Resistance to the Triticum Pathotype of Magnaporthe oryzae

    PubMed Central

    Cruz, C.D.; Peterson, G.L.; Bockus, W.W.; Kankanala, P.; Dubcovsky, J.; Jordan, K.W.; Akhunov, E.; Chumley, F.; Baldelomar, F.D.; Valent, B.

    2016-01-01

    Wheat blast is a serious disease caused by the fungus Magnaporthe oryzae (Triticum pathotype) (MoT). The objective of this study was to determine the effect of the 2NS translocation from Aegilops ventricosa (Zhuk.) Chennav on wheat head and leaf blast resistance. Disease phenotyping experiments were conducted in growth chamber, greenhouse, and field environments. Among 418 cultivars of wheat (Triticum aestivum L.), those with 2NS had 50.4 to 72.3% less head blast than those without 2NS when inoculated with an older MoT isolate under growth chamber conditions. When inoculated with recently collected isolates, cultivars with 2NS had 64.0 to 80.5% less head blast. Under greenhouse conditions when lines were inoculated with an older MoT isolate, those with 2NS had a significant head blast reduction. With newer isolates, not all lines with 2NS showed a significant reduction in head blast, suggesting that the genetic background and/or environment may influence the expression of any resistance conferred by 2NS. However, when near-isogenic lines (NILs) with and without 2NS were planted in the field, there was strong evidence that 2NS conferred resistance to head blast. Results from foliar inoculations suggest that the resistance to head infection that is imparted by the 2NS translocation does not confer resistance to foliar disease. In conclusion, the 2NS translocation was associated with significant reductions in head blast in both spring and winter wheat. PMID:27814405

  18. Synthesis, X-ray structure and in vitro cytotoxicity studies of Cu(I/II) complexes of thiosemicarbazone: special emphasis on their interactions with DNA.

    PubMed

    Saswati; Chakraborty, Ayon; Dash, Subhashree P; Panda, Alok K; Acharyya, Rama; Biswas, Ashis; Mukhopadhyay, Subhadip; Bhutia, Sujit K; Crochet, Aurélien; Patil, Yogesh P; Nethaji, M; Dinda, Rupam

    2015-04-01

    4-(p-X-phenyl)thiosemicarbazone of napthaldehyde {where X = Cl (HL¹) and X = Br (HL²)}, thiosemicarbazone of quinoline-2-carbaldehyde (HL³) and 4-(p-fluorophenyl)thiosemicarbazone of salicylaldehyde (H₂L⁴) and their copper(I) {[Cu(HL¹)(PPh₃)₂Br]·CH₃CN (1) and [Cu(HL²)(PPh₃)₂Cl]·DMSO (2)} and copper(II) {[(Cu₂L³₂Cl)₂(μ-Cl)₂]·2H₂O (3) and [Cu(L⁴)(Py)] (4)} complexes are reported herein. The synthesized ligands and their copper complexes were successfully characterized by elemental analysis, cyclic voltammetry, NMR, ESI-MS, IR and UV-Vis spectroscopy. Molecular structures of all the Cu(I) and Cu(II) complexes have been determined by X-ray crystallography. All the complexes (1-4) were tested for their ability to exhibit DNA-binding and -cleavage activity. The complexes effectively interact with CT-DNA possibly by groove binding mode, with binding constants ranging from 10⁴ to 10⁵ M⁻¹. Among the complexes, 3 shows the highest chemical (60%) as well as photo-induced (80%) DNA cleavage activity against pUC19 DNA. Finally, the in vitro antiproliferative activity of all the complexes was assayed against the HeLa cell line. Some of the complexes have proved to be as active as the clinical referred drugs, and the greater potency of 3 may be correlated with its aqueous solubility and the presence of the quinonoidal group in the thiosemicarbazone ligand coordinated to the metal.

  19. Highly potent anti-proliferative effects of a gallium(III) complex with 7-chloroquinoline thiosemicarbazone as a ligand: synthesis, cytotoxic and antimalarial evaluation.

    PubMed

    Kumar, Kewal; Schniper, Sarah; González-Sarrías, Antonio; Holder, Alvin A; Sanders, Natalie; Sullivan, David; Jarrett, William L; Davis, Krystyn; Bai, Fengwei; Seeram, Navindra P; Kumar, Vipan

    2014-10-30

    A gallium(III) complex with 7-chloroquinoline thiosemicarbazone was synthesized and characterized. The complex proved to be thirty-one times more potent on colon cancer cell line, HCT-116, with considerably less cytotoxicity on non-cancerous colon fibroblast, CCD-18Co, when compared to etoposide. Its anti-malarial potential on 3D7 isolate of Plasmodium falciparum was better than lumefantrine.

  20. Highly potent anti-proliferative effects of a gallium(III) complex with 7-chloroquinoline thiosemicarbazone as a ligand: synthesis, cytotoxic and antimalarial evaluation.

    PubMed

    Kumar, Kewal; Schniper, Sarah; González-Sarrías, Antonio; Holder, Alvin A; Sanders, Natalie; Sullivan, David; Jarrett, William L; Davis, Krystyn; Bai, Fengwei; Seeram, Navindra P; Kumar, Vipan

    2014-10-30

    A gallium(III) complex with 7-chloroquinoline thiosemicarbazone was synthesized and characterized. The complex proved to be thirty-one times more potent on colon cancer cell line, HCT-116, with considerably less cytotoxicity on non-cancerous colon fibroblast, CCD-18Co, when compared to etoposide. Its anti-malarial potential on 3D7 isolate of Plasmodium falciparum was better than lumefantrine. PMID:25147149

  1. Enhancement of Virus Replication in An Influenza A Virus NS1-Expresssing 293 Cell Line.

    PubMed

    Zhu, Wu Yang; Tao, Xiao Yan; Lyu, Xin Jun; Yu, Peng Cheng; Lu, Zhuo Zhuang

    2016-03-01

    The nonstructural protein 1 (NS1) of influenza A virus, which is absent from the viral particle, but highly expressed in infected cells, strongly antagonizes the interferon (IFN)-mediated antiviral response. We engineered an NS1-expressing 293 (293-NS1) cell line with no response to IFN stimulation. Compared with the parental 293 cells, the IFN-nonresponsive 293-NS1 cells improved the growth capacity of various viruses, but the introduction of NS1 barely enhanced the propagation of Tahyna virus, a negative-strand RNA virus. In particular, fastidious enteric adenovirus that replicates poorly in 293 cells may grow more efficiently in 293-NS1 cells; thus, IFN-nonresponsive 293-NS1 cells might be of great value in diagnostic laboratories for the cultivation and isolation of human enteric adenoviruses.

  2. Enhancement of Virus Replication in An Influenza A Virus NS1-Expresssing 293 Cell Line.

    PubMed

    Zhu, Wu Yang; Tao, Xiao Yan; Lyu, Xin Jun; Yu, Peng Cheng; Lu, Zhuo Zhuang

    2016-03-01

    The nonstructural protein 1 (NS1) of influenza A virus, which is absent from the viral particle, but highly expressed in infected cells, strongly antagonizes the interferon (IFN)-mediated antiviral response. We engineered an NS1-expressing 293 (293-NS1) cell line with no response to IFN stimulation. Compared with the parental 293 cells, the IFN-nonresponsive 293-NS1 cells improved the growth capacity of various viruses, but the introduction of NS1 barely enhanced the propagation of Tahyna virus, a negative-strand RNA virus. In particular, fastidious enteric adenovirus that replicates poorly in 293 cells may grow more efficiently in 293-NS1 cells; thus, IFN-nonresponsive 293-NS1 cells might be of great value in diagnostic laboratories for the cultivation and isolation of human enteric adenoviruses. PMID:27109134

  3. Synergistic intracellular iron chelation combinations: mechanisms and conditions for optimizing iron mobilization.

    PubMed

    Vlachodimitropoulou Koumoutsea, Evangelia; Garbowski, Maciej; Porter, John

    2015-09-01

    Iron chelators are increasingly combined clinically but the optimal conditions for cellular iron mobilization and mechanisms of interaction are unclear. Speciation plots for iron(III) binding of paired combinations of the licensed iron chelators desferrioxamine (DFO), deferiprone (DFP) and deferasirox (DFX) suggest conditions under which chelators can combine as 'shuttle' and 'sink' molecules but this approach does not consider their relative access and interaction with cellular iron pools. To address this issue, a sensitive ferrozine-based detection system for intracellular iron removal from the human hepatocyte cell line (HuH-7) was developed. Antagonism, synergism or additivity with paired chelator combinations was distinguished using mathematical isobologram analysis over clinically relevant chelator concentrations. All combinations showed synergistic iron mobilization at 8 h with clinically achievable concentrations of sink and shuttle chelators. Greatest synergism was achieved by combining DFP with DFX, where about 60% of mobilized iron was attributable to synergistic interaction. These findings predict that the DFX dose required for a half-maximum effect can be reduced by 3·8-fold when only 1 μmol/l DFP is added. Mechanisms for the synergy are suggested by consideration of the iron-chelate speciation plots together with the size, charge and lipid solubilities for each chelator. Hydroxypyridinones with low lipid solubilities but otherwise similar properties to DFP were used to interrogate the mechanistic interactions of chelator pairs. These studies confirm that synergistic cellular iron mobilization requires one chelator to have the physicochemical properties to enter cells, chelate intracellular iron and subsequently donate iron to a second 'sink' chelator.

  4. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89†

    PubMed Central

    Pandya, Darpan N.; Pailloux, Sylvie; Tatum, David; Magda, Darren; Wadas, Thaddeus J.

    2015-01-01

    The development of bifunctional chelators (BFCs) which can stably chelate zirconium-89 (89Zr) while being conjugated to targeting molecules is an area of active research. Herein we report the first octadentate terephthalamide ligands, which are easily radiolabeled with 89Zr and are highly stable in vitro. They represent a novel class of chelators, which are worthy of further development as BFCs for 89Zr. PMID:25556851

  5. Synergistic intracellular iron chelation combinations: mechanisms and conditions for optimizing iron mobilization.

    PubMed

    Vlachodimitropoulou Koumoutsea, Evangelia; Garbowski, Maciej; Porter, John

    2015-09-01

    Iron chelators are increasingly combined clinically but the optimal conditions for cellular iron mobilization and mechanisms of interaction are unclear. Speciation plots for iron(III) binding of paired combinations of the licensed iron chelators desferrioxamine (DFO), deferiprone (DFP) and deferasirox (DFX) suggest conditions under which chelators can combine as 'shuttle' and 'sink' molecules but this approach does not consider their relative access and interaction with cellular iron pools. To address this issue, a sensitive ferrozine-based detection system for intracellular iron removal from the human hepatocyte cell line (HuH-7) was developed. Antagonism, synergism or additivity with paired chelator combinations was distinguished using mathematical isobologram analysis over clinically relevant chelator concentrations. All combinations showed synergistic iron mobilization at 8 h with clinically achievable concentrations of sink and shuttle chelators. Greatest synergism was achieved by combining DFP with DFX, where about 60% of mobilized iron was attributable to synergistic interaction. These findings predict that the DFX dose required for a half-maximum effect can be reduced by 3·8-fold when only 1 μmol/l DFP is added. Mechanisms for the synergy are suggested by consideration of the iron-chelate speciation plots together with the size, charge and lipid solubilities for each chelator. Hydroxypyridinones with low lipid solubilities but otherwise similar properties to DFP were used to interrogate the mechanistic interactions of chelator pairs. These studies confirm that synergistic cellular iron mobilization requires one chelator to have the physicochemical properties to enter cells, chelate intracellular iron and subsequently donate iron to a second 'sink' chelator. PMID:26033030

  6. Alkenes as Chelating Groups in Diastereoselective Additions of Organometallics to Ketones

    PubMed Central

    2015-01-01

    Alkenes have been discovered to be chelating groups to Zn(II), enforcing highly stereoselective additions of organozincs to β,γ-unsaturated ketones. 1H NMR studies and DFT calculations provide support for this surprising chelation mode. The results expand the range of coordinating groups for chelation-controlled carbonyl additions from heteroatom Lewis bases to simple C–C double bonds, broadening the 60 year old paradigm. PMID:25328269

  7. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89.

    PubMed

    Pandya, Darpan N; Pailloux, Sylvie; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2015-02-11

    The development of bifunctional chelators (BFCs) which can stably chelate zirconium-89 ((89)Zr) while being conjugated to targeting molecules is an area of active research. Herein we report the first octadentate terephthalamide ligands, which are easily radiolabeled with (89)Zr and are highly stable in vitro. They represent a novel class of chelators, which are worthy of further development as BFCs for (89)Zr.

  8. A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1' may derive from ribosomal frameshifting

    PubMed Central

    Firth, Andrew E; Atkins, John F

    2009-01-01

    Japanese encephalitis, West Nile, Usutu and Murray Valley encephalitis viruses form a tight subgroup within the larger Flavivirus genus. These viruses utilize a single-polyprotein expression strategy, resulting in ~10 mature proteins. Plotting the conservation at synonymous sites along the polyprotein coding sequence reveals strong conservation peaks at the very 5' end of the coding sequence, and also at the 5' end of the sequence encoding the NS2A protein. Such peaks are generally indicative of functionally important non-coding sequence elements. The second peak corresponds to a predicted stable pseudoknot structure whose biological importance is supported by compensatory mutations that preserve the structure. The pseudoknot is preceded by a conserved slippery heptanucleotide (Y CCU UUU), thus forming a classical stimulatory motif for -1 ribosomal frameshifting. We hypothesize, therefore, that the functional importance of the pseudoknot is to stimulate a portion of ribosomes to shift -1 nt into a short (45 codon), conserved, overlapping open reading frame, termed foo. Since cleavage at the NS1-NS2A boundary is known to require synthesis of NS2A in cis, the resulting transframe fusion protein is predicted to be NS1-NS2AN-term-FOO. We hypothesize that this may explain the origin of the previously identified NS1 'extension' protein in JEV-group flaviviruses, known as NS1'. PMID:19196463

  9. Association of hepatitis C virus replication complexes with microtubules and actin filaments is dependent on the interaction of NS3 and NS5A.

    PubMed

    Lai, Chao-Kuen; Jeng, King-Song; Machida, Keigo; Lai, Michael M C

    2008-09-01

    The hepatitis C virus (HCV) RNA replication complex (RC), which is composed of viral nonstructural (NS) proteins and host cellular proteins, replicates the viral RNA genome in association with intracellular membranes. Two viral NS proteins, NS3 and NS5A, are essential elements of the RC. Here, by using immunoprecipitation and fluorescence resonance energy transfer assays, we demonstrated that NS3 and NS5A interact with tubulin and actin. Furthermore, immunofluorescence microscopy and electron microscopy revealed that HCV RCs were aligned along microtubules and actin filaments in both HCV replicon cells and HCV-infected cells. In addition, the movement of RCs was inhibited when microtubules or actin filaments were depolymerized by colchicine and cytochalasin B, respectively. Based on our observations, we propose that microtubules and actin filaments provide the tracks for the movement of HCV RCs to other regions in the cell, and the molecular interactions between RCs and microtubules, or RCs and actin filaments, are mediated by NS3 and NS5A. PMID:18562541

  10. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Ohsuna, Tetsu; Inagaki, Shinji

    2014-11-01

    We report the synthesis of organosilica nanotubes containing 2,2'-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2'-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce4+, due to the ready access of reactants to the active sites in the nanotubes.

  11. Chelation-Induced Polymer Structural Hierarchy/Complexity in Water.

    PubMed

    Han, Jie; Zhou, Kaiyi; Zhu, Xuechao; Yu, Qiuping; Ding, Yi; Lu, Xinhua; Cai, Yuanli

    2016-08-01

    Understanding nanoscale structural hierarchy/complexity of hydrophilic flexible polymers is imperative because it can be viewed as an analogue to protein-alike superstructures. However, current understanding is still in infancy. Herein the first demonstration of nanoscale structural hierarchy/complexity via copper chelation-induced self-assembly (CCISA) is presented. Hierarchically-ordered colloidal networks and disks can be achieved by deliberate control of spacer length and solution pH. Dynamic light scattering, transmission electron microscopy, and atomic force microscopy demonstrate that CCISA underwent supramolecular-to-supracolloidal stepwise-growth mechanism, and underline amazing prospects to the hierarchically-ordered superstructures of hydrophilic flexible polymers in water.

  12. Chelate-modified polymers for atmospheric gas chromatography

    NASA Technical Reports Server (NTRS)

    Christensen, W. W.; Mayer, L. A.; Woeller, F. H. (Inventor)

    1980-01-01

    Chromatographic materials were developed to serve as the stationary phase of columns used in the separation of atmospheric gases. These materials consist of a crosslinked porous polymer matrix, e.g., a divinylbenzene polymer, into which has been embedded an inorganic complexed ion such as N,N'-ethylene-bis-(acetylacetoniminato)-cobalt (2). Organic nitrogenous bases, such as pyridine, may be incorporated into the chelate polymer complexes to increase their chromatographic utility. With such materials, the process of gas chromatography is greatly simplified, especially in terms of time and quantity of material needed for a gas separation.

  13. Chemistry and bifunctional chelating agents for binding (177)Lu.

    PubMed

    Parus, Józef L; Pawlak, Dariusz; Mikolajczak, Renata; Duatti, Adriano

    2015-01-01

    A short overview of fundamental chemistry of lutetium and of structural characteristics of lutetium coordination complexes, as relevant for understanding the properties of lutetium-177 radiopharmaceuticals, is presented. This includes basic concepts on lutetium electronic structure, lanthanide contraction, coordination geometries, behavior in aqueous solution and thermodynamic stability. An illustration of the structure and binding properties of the most important chelating agents for the Lu(3+) ion in aqueous solution is also reported with specific focus on coordination complexes formed with linear and macrocyclic polydentate amino-carboxylate donor ligands.

  14. Synthesis of a Sugar-Based Thiosemicarbazone Series and Structure-Activity Relationship versus the Parasite Cysteine Proteases Rhodesain, Cruzain, and Schistosoma mansoni Cathepsin B1

    PubMed Central

    Fonseca, Nayara Cristina; da Cruz, Luana Faria; da Silva Villela, Filipe; do Nascimento Pereira, Glaécia Aparecida; de Siqueira-Neto, Jair Lage; Kellar, Danielle; Suzuki, Brian M.; Ray, Debalina; de Souza, Thiago Belarmino; Alves, Ricardo José; Júnior, Policarpo Ademar Sales; Romanha, Alvaro José; Murta, Silvane Maria Fonseca; McKerrow, James H.; Caffrey, Conor R.; de Oliveira, Renata Barbosa

    2015-01-01

    The pressing need for better drugs against Chagas disease, African sleeping sickness, and schistosomiasis motivates the search for inhibitors of cruzain, rhodesain, and Schistosoma mansoni CB1 (SmCB1), the major cysteine proteases from Trypanosoma cruzi, Trypanosoma brucei, and S. mansoni, respectively. Thiosemicarbazones and heterocyclic analogues have been shown to be both antitrypanocidal and inhibitory against parasite cysteine proteases. A series of compounds was synthesized and evaluated against cruzain, rhodesain, and SmCB1 through biochemical assays to determine their potency and structure-activity relationships (SAR). This approach led to the discovery of 6 rhodesain, 4 cruzain, and 5 SmCB1 inhibitors with 50% inhibitory concentrations (IC50s) of ≤10 μM. Among the compounds tested, the thiosemicarbazone derivative of peracetylated galactoside (compound 4i) was discovered to be a potent rhodesain inhibitor (IC50 = 1.2 ± 1.0 μM). The impact of a range of modifications was determined; removal of thiosemicarbazone or its replacement by semicarbazone resulted in virtually inactive compounds, and modifications in the sugar also diminished potency. Compounds were also evaluated in vitro against the parasites T. cruzi, T. brucei, and S. mansoni, revealing active compounds among this series. PMID:25712353

  15. Tricarbonyl (99m)Tc(i) and Re(i)-thiosemicarbazone complexes: synthesis, characterization and biological evaluation for targeting bacterial infection.

    PubMed

    Nayak, Dipak Kumar; Baishya, Rinku; Natarajan, Ramalingam; Sen, Tuhinadri; Debnath, Mita Chatterjee

    2015-09-28

    Methyl, ethyl and phenyl nitrofuryl thiosemicarbazone ligands (, and respectively) were radiolabeled with freshly prepared aqueous solution of a fac[(99m)Tc(CO)3(H2O)3](+) precursor. The radiochemical yield was around 98% as determined by thin layer chromatography and HPLC. The complexes exhibited substantial stability. The corresponding Re(i) complexes were prepared from a Re(CO)5Br precursor to understand the coordination behavior of the ligands against a tricarbonyl rhenium(i) precursor. The rhenium(i) complexes were characterized by means of IR, NMR and mass spectroscopic studies as well as by X-ray crystallography, and correlated with the technetium complexes by means of HPLC studies. Electrochemical reduction of monomeric Re(CO)3-complexes of nitrofuryl ethyl thiosemicarbazone was also studied using cyclic voltammetry. Biodistribution studies of (99m)Tc(CO)3-labeled thiosemicarbazones in rats intramuscularly infected with S. aureus exhibited substantial in vivo stability of the complex and moderate accumulation at the site of focal infection. PMID:26289802

  16. Copper(II) complexes with highly water-soluble L- and D-proline-thiosemicarbazone conjugates as potential inhibitors of Topoisomerase IIα.

    PubMed

    Bacher, Felix; Enyedy, Éva A; Nagy, Nóra V; Rockenbauer, Antal; Bognár, Gabriella M; Trondl, Robert; Novak, Maria S; Klapproth, Erik; Kiss, Tamás; Arion, Vladimir B

    2013-08-01

    Two proline-thiosemicarbazone bioconjugates with excellent aqueous solubility, namely, 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [L-Pro-FTSC or (S)-H2L] and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [D-Pro-FTSC or (R)-H2L], have been synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, and electrospray ionization mass spectrometry. The complexation behavior of L-Pro-FTSC with copper(II) in an aqueous solution and in a 30% (w/w) dimethyl sulfoxide/water mixture has been studied via pH potentiometry, UV-vis spectrophotometry, electron paramagnetic resonance, (1)H NMR spectroscopy, and spectrofluorimetry. By the reaction of copper(II) acetate with (S)-H2L and (R)-H2L in water, the complexes [Cu(S,R)-L] and [Cu(R,S)-L] have been synthesized and comprehensively characterized. An X-ray diffraction study of [Cu(S,R)-L] showed the formation of a square-pyramidal complex, with the bioconjugate acting as a pentadentate ligand. Both copper(II) complexes displayed antiproliferative activity in CH1 ovarian carcinoma cells and inhibited Topoisomerase IIα activity in a DNA plasmid relaxation assay. PMID:23829568

  17. Correlation of molecular structure with fluorescence spectra in rare earth chelates. I.

    NASA Technical Reports Server (NTRS)

    Bjorklund, S.; Degnan, J.; Filipescu, N.; Mcavoy, N.

    1968-01-01

    Rare earth chelates fluorescence spectra correlation with molecular structure, analyzing emission spectrum internal Stark splitting of tetramethylammonium tetrakis /dibenzoylmethido/europate microcrystals

  18. Note: A rectangular pulse generator for 50 kV voltage, 0.8 ns rise time, and 10 ns pulse width based on polymer-film switch.

    PubMed

    Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo

    2015-10-01

    In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source. PMID:26521006

  19. Development of novel antibodies against non-structural proteins nsP1, nsP3 and nsP4 of chikungunya virus: potential use in basic research.

    PubMed

    Kumar, Sameer; Mamidi, Prabhudutta; Kumar, Abhishek; Basantray, Itishree; Bramha, Umarani; Dixit, Anshuman; Maiti, Prasanta Kumar; Singh, Sujay; Suryawanshi, Amol Ratnakar; Chattopadhyay, Subhasis; Chattopadhyay, Soma

    2015-11-01

    Chikungunya virus (CHIKV) has reemerged recently as an important pathogen, causing several large epidemics worldwide. This necessitates the development of better reagents to understand its biology and to establish effective and safe control measures. The present study describes the development and characterization of polyclonal antibodies (pAbs) against synthetic peptides of CHIKV non-structural proteins (nsPs; nsP1, nsP3 and nsP4). The reactivity of these pAbs was demonstrated by ELISA and Western blot. Additionally, in vitro infection studies in a mammalian system confirmed that these pAbs are highly sensitive and specific for CHIKV nsPs, as these proteins were detected very early during viral replication. Homology analysis of the selected epitope sequences revealed that they are conserved among all of the CHIKV strains of different genotypes, while comparison with other alphavirus sequences showed that none of them are 100% identical to the epitope sequences (except Onyong-nyong and Igbo Ora viruses, which show 100% identity to the nsP4 epitope). Interestingly, two different forms of CHIKV nsP1 and three different forms of nsP3 were detected in Western blot analysis during infection; however, further experimental investigations are required to confirm their identity. Also, the use of these antibodies demonstrated faster and enhanced expression profiles of all CHIKV nsPs in 2006 Indian outbreak strains when compared to the CHIKV prototype strain, suggesting the epidemic potential of the 2006 isolate. Accordingly, it can be suggested that the pAbs reported in this study can be used as sensitive and specific tools for experimental investigations of CHIKV replication and infection. PMID:26280524

  20. Development of novel antibodies against non-structural proteins nsP1, nsP3 and nsP4 of chikungunya virus: potential use in basic research.

    PubMed

    Kumar, Sameer; Mamidi, Prabhudutta; Kumar, Abhishek; Basantray, Itishree; Bramha, Umarani; Dixit, Anshuman; Maiti, Prasanta Kumar; Singh, Sujay; Suryawanshi, Amol Ratnakar; Chattopadhyay, Subhasis; Chattopadhyay, Soma

    2015-11-01

    Chikungunya virus (CHIKV) has reemerged recently as an important pathogen, causing several large epidemics worldwide. This necessitates the development of better reagents to understand its biology and to establish effective and safe control measures. The present study describes the development and characterization of polyclonal antibodies (pAbs) against synthetic peptides of CHIKV non-structural proteins (nsPs; nsP1, nsP3 and nsP4). The reactivity of these pAbs was demonstrated by ELISA and Western blot. Additionally, in vitro infection studies in a mammalian system confirmed that these pAbs are highly sensitive and specific for CHIKV nsPs, as these proteins were detected very early during viral replication. Homology analysis of the selected epitope sequences revealed that they are conserved among all of the CHIKV strains of different genotypes, while comparison with other alphavirus sequences showed that none of them are 100% identical to the epitope sequences (except Onyong-nyong and Igbo Ora viruses, which show 100% identity to the nsP4 epitope). Interestingly, two different forms of CHIKV nsP1 and three different forms of nsP3 were detected in Western blot analysis during infection; however, further experimental investigations are required to confirm their identity. Also, the use of these antibodies demonstrated faster and enhanced expression profiles of all CHIKV nsPs in 2006 Indian outbreak strains when compared to the CHIKV prototype strain, suggesting the epidemic potential of the 2006 isolate. Accordingly, it can be suggested that the pAbs reported in this study can be used as sensitive and specific tools for experimental investigations of CHIKV replication and infection.

  1. Suitable technological conditions for enzymatic hydrolysis of waste paper by Novozymes® enzymes NS50013 and NS50010.

    PubMed

    Brummer, Vladimir; Skryja, Pavel; Jurena, Tomas; Hlavacek, Viliam; Stehlik, Petr

    2014-10-01

    Waste paper belongs to a group of quantitatively the most produced waste types. Enzymatic hydrolysis is becoming a suitable way to treat this type of waste and at the same time, to produce a valuable liquid biofuel, because reducing sugars solutions that are formed during the process of saccharification can be a precursor for following or simultaneous fermentation. If it will be possible to make the enzymatic hydrolysis of the waste paper economically viable, it could serve as one of the new ways to lower the dependence of the transport sector on oil in the future. Only several studies comparing the enzymatic hydrolysis of different waste papers were performed in the past; they are summarized in this manuscript. In our experimental trials, suitable technological conditions for waste paper enzymatic hydrolysis using enzymes from Novozymes® biomass kit: enzymes NS50013 and NS50010 were investigated. The following enzymatic hydrolysis parameters in laboratory scale trials were verified on high cellulose content substrates-filter paper and cellulose pulp: type of buffer, pH, temperature, concentration of the substrate, loading of the enzyme and rate of stirring.

  2. In Silico Screening, Alanine Mutation, and DFT Approaches for Identification of NS2B/NS3 Protease Inhibitors

    PubMed Central

    Balajee, R.; Srinivasadesikan, V.; Sakthivadivel, M.; Gunasekaran, P.

    2016-01-01

    To identify the ligand that binds to a target protein with high affinity is a nontrivial task in computer-assisted approaches. Antiviral drugs have been identified for NS2B/NS3 protease enzyme on the mechanism to cleave the viral protein using the computational tools. The consequence of the molecular docking, free energy calculations, and simulation protocols explores the better ligand. It provides in-depth structural insights with the catalytic triad of His51, Asp75, Ser135, and Gly133. The MD simulation was employed here to predict the stability of the complex. The alanine mutation has been performed and its stability was monitored by using the molecular dynamics simulation. The minimal RMSD value suggests that the derived complexes are close to equilibrium. The DFT outcome reveals that the HOMO-LUMO gap of Ligand19 is 2.86 kcal/mol. Among the considered ligands, Ligand19 shows the lowest gap and it is suggested that the HOMO of Ligand19 may transfer the electrons to the LUMO in the active regions. The calculated binding energy of Ligand19 using the DFT method is in good agreement with the docking studies. The pharmacological activity of ligand was performed and satisfies Lipinski rule of 5. Moreover, the computational results are compared with the available IC50 values of experimental results. PMID:27057355

  3. On the chemistry of CS and NS in cometary comae

    NASA Astrophysics Data System (ADS)

    Canaves, M.; de Almeida, A.; Boice, D.; Sanzovo, G.

    The most fundamental scientific reason for studying comets is to retrieve information on their origin, relationship to interstellar and interplanetary material and implication for the formation of the Solar System or Cosmogony. The determination of the basic parameters of the nucleus and its activity and comp osition is desirable in order to establish a consistent database for comparative studies of comets and, as such, is vital for the safety and success of space missions. The objective of the present work is to contribute to the establishment of a unique description of the physical-chemical nature of the nucleus. We study carbon monosulfide (CS) - which is the only sulfur compound that persistently appears in cometary ultraviolet spectra and, therefore, seems to play a key role in sulfur photochemistry in cometary comae - and nitrogen monosulfide (NS) - the first cometary molecular species to contain both nitrogen and sulfur atoms which was recently observed by Irvine et al. (2000) in comet Hale -Bopp. The determination of the abundance of each such species helps to constrain the chemistry and physics of comets and hence their place and mode of origin of the nucleus. With this purpose in mind we have developed a multifluid chemical model of cometary comae (Boice 1990) with gas-phase chemical kinetics and gas dynamics to predict molecular abundance variations in a sensitive manner with cometocentric distance. We apply the model to the recent bright comets Hyakutake and Hale-Bopp at a heliocentric distance of 1 AU to study the abundances of CS and NS in their comae using a detailed photo and chemical reaction network with more than 100 species and over 1000 reactions. We conclude that the CS abundance in comets does not seem to vary much with the cometocentric distance. In particular, if NS is the daughter of an unknown long-lived parent molecular species, its production rate and abundance should be much larger than the obtained values. These results should be

  4. Characterization of the Determinants of NS2-3-Independent Virion Morphogenesis of Pestiviruses

    PubMed Central

    Klemens, O.; Dubrau, D.

    2015-01-01

    ABSTRACT A peculiarity of the Flaviviridae is the critical function of nonstructural (NS) proteins for virus particle formation. For pestiviruses, like bovine viral diarrhea virus (BVDV), uncleaved NS2-3 represents an essential factor for virion morphogenesis, while NS3 is an essential component of the viral replicase. Accordingly, in natural pestivirus isolates, processing at the NS2-3 cleavage site is not complete, to allow for virion morphogenesis. Virion morphogenesis of the related hepatitis C virus (HCV) shows a major deviation from that of pestiviruses: while RNA replication also requires free NS3, virion formation does not depend on uncleaved NS2-NS3. Recently, we described a BVDV-1 chimera based on strain NCP7 encompassing the NS2-4B*-coding region of strain Osloss (E. Lattwein, O. Klemens, S. Schwindt, P. Becher, and N. Tautz, J Virol 86:427–437, 2012, doi:10.1128/JVI.06133-11). This chimera allowed for the production of infectious virus particles in the absence of uncleaved NS2-3. The Osloss sequence deviates in the NS2-4B* part from NCP7 in 48 amino acids and also has a ubiquitin insertion between NS2 and NS3. The present study demonstrates that in the NCP7 backbone, only two amino acid exchanges in NS2 (E1576V) and NS3 (V1721A) are sufficient and necessary to allow for efficient NS2-3-independent virion morphogenesis. The adaptation of a bicistronic virus encompassing an internal ribosomal entry site element between the NS2 and NS3 coding sequences to efficient virion morphogenesis led to the identification of additional amino acids in E2, NS2, and NS5B that are critically involved in this process. The surprisingly small requirements for approximating the packaging schemes of pestiviruses and HCV with respect to the NS2-3 region is in favor of a common mechanism in an ancestral virus. IMPORTANCE For positive-strand RNA viruses, the processing products of the viral polyprotein serve in RNA replication as well as virion morphogenesis. For bovine viral

  5. Using iron chelating agents to enhance dermatological PDT

    NASA Astrophysics Data System (ADS)

    Curnow, Alison; Dogra, Yuktee; Winyard, Paul; Campbell, Sandra

    2009-06-01

    Topical protoporphyrin IX (PPIX) induced photodynamic therapy (PDT) of basal cell carcinoma (BCC) produces good clinical outcomes with excellent cosmesis as long as the disease remains superficial. Efficacy for nodular BCC however appears inferior to standard treatment unless repeat treatments are performed. Enhancement is therefore required and is possible by employing iron chelating agents to temporarily increase PPIX accumulation above the levels normally obtained using aminolevulinic acid (ALA) or the methyl ester of ALA (MAL) alone. In vitro studies investigated the effect of the novel iron chelator, CP94 on necrotic or apoptotic cell death in cultured human skin fibroblasts and epidermal carcinoma cells incubated with MAL. Furthermore, following a dose escalating safety study conducted with ALA in patients, an additional twelve nodular BCCs were recruited for topical treatment with standard MAL-PDT +/- increasing doses of CP94. Six weeks later following clinical assessment, the whole treatment site was excised for histological analysis. CP94 produced greater cell death in vitro when administered in conjunction with MAL than this porphyrin precursor could produce when administered alone. Clinically, PDT treatment using Metvix + CP94 was a simple and safe modification associated with a trend of reduced tumor thickness with increasing CP94 dose.

  6. Impact of histidine residue on chelating ability of 2'-deoxyriboadenosine.

    PubMed

    Lodyga-Chruścińska, Elżbieta; Ołdziej, Stanisław; Sochacka, Elżbieta; Korzycka, Karolina; Chruściński, Longin; Micera, Giovanni; Sanna, Daniele; Turek, Monika; Pawlak, Justyna

    2011-09-01

    Copper(II) complexes with a new chelator-type nucleoside-histidine modified 2'-deoxyriboadenosine (N-[(9-β-D-2'-deoxyribofuranosylpurin-6-yl)-carbamoyl]histidine) were studied by potentiometric and spectroscopic (UV-visible, CD, EPR) techniques, in conjunction with computer modeling optimization. The ligand can act as bidentate or tridentate depending on pH range. In acidic pH a very stable dimeric complex Cu(2)L(2) predominates with coordination spheres of both metal ions composed of oxygen atoms from carboxylic groups, one oxygen atom from ureido group and two nitrogen atoms derived from purine base and histidine ring. Above pH 5, deprotonation of carbamoyl nitrogens leads to the formation of CuL(2), Cu(2)L(2)H(-1) and Cu(2)L(2)H(-2) species. The CuL(2)H(-1) and CuL(2)H(-2) complexes with three or four nitrogens in Cu(II) coordination sphere have been detected in alkaline medium. Our findings suggest that N-[(9-beta-D-2'-deoxyribofuranosylpurin-6-yl)-carbamoyl]histidine chelates copper(II) ions very efficiently. The resulting complex might be used as an alternative base-pairing mode in which hydrogen-bonded base pairs present in natural DNA are replaced by metal-mediated ones. PMID:21723807

  7. Impact of histidine residue on chelating ability of 2'-deoxyriboadenosine.

    PubMed

    Lodyga-Chruścińska, Elżbieta; Ołdziej, Stanisław; Sochacka, Elżbieta; Korzycka, Karolina; Chruściński, Longin; Micera, Giovanni; Sanna, Daniele; Turek, Monika; Pawlak, Justyna

    2011-09-01

    Copper(II) complexes with a new chelator-type nucleoside-histidine modified 2'-deoxyriboadenosine (N-[(9-β-D-2'-deoxyribofuranosylpurin-6-yl)-carbamoyl]histidine) were studied by potentiometric and spectroscopic (UV-visible, CD, EPR) techniques, in conjunction with computer modeling optimization. The ligand can act as bidentate or tridentate depending on pH range. In acidic pH a very stable dimeric complex Cu(2)L(2) predominates with coordination spheres of both metal ions composed of oxygen atoms from carboxylic groups, one oxygen atom from ureido group and two nitrogen atoms derived from purine base and histidine ring. Above pH 5, deprotonation of carbamoyl nitrogens leads to the formation of CuL(2), Cu(2)L(2)H(-1) and Cu(2)L(2)H(-2) species. The CuL(2)H(-1) and CuL(2)H(-2) complexes with three or four nitrogens in Cu(II) coordination sphere have been detected in alkaline medium. Our findings suggest that N-[(9-beta-D-2'-deoxyribofuranosylpurin-6-yl)-carbamoyl]histidine chelates copper(II) ions very efficiently. The resulting complex might be used as an alternative base-pairing mode in which hydrogen-bonded base pairs present in natural DNA are replaced by metal-mediated ones.

  8. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme.

    PubMed

    Solti, Adám; Müller, Brigitta; Czech, Viktória; Sárvári, Éva; Fodor, Ferenc

    2014-05-01

    Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.

  9. Multivalent chelators for spatially and temporally controlled protein functionalization.

    PubMed

    You, Changjiang; Piehler, Jacob

    2014-05-01

    Site-specific protein modification-e.g. for immobilization or labelling-is a key prerequisite for numerous bioanalytical applications. Although modification by use of short peptide tags is particularly attractive, efficient and bio-orthogonal systems are still lacking. Here, we review the application of multivalent chelators (MCH) for high-affinity yet reversible recognition of oligohistidine (His)-tagged proteins. MCH are based on multiple nitrilotriacetic acid (NTA) moieties grafted on to molecular scaffolds suitable for conjugation to surfaces, probes or other biomolecules. Reversible interaction with the His-tag is mediated via transition metal ions chelated by the NTA moieties. The small size and biochemical compatibility of these recognition units and the possibility of rapid dissociation of the interaction with His-tagged proteins despite sub-nanomolar binding affinity, enable distinct and versatile handling and modification of recombinant proteins. In this review, we briefly introduce the key principles and features of MCH-His-tag interactions and recapitulate the broad spectrum of bioanalytical applications with a focus on quantitative protein interaction analysis on micro or nano-patterned solid surfaces and specific protein labelling in living cells. PMID:24770786

  10. Branched polymeric media: boron-chelating resins from hyperbranched polyethylenimine.

    PubMed

    Mishra, Himanshu; Yu, Changjun; Chen, Dennis P; Goddard, William A; Dalleska, Nathan F; Hoffmann, Michael R; Diallo, Mamadou S

    2012-08-21

    Extraction of boron from aqueous solutions using selective resins is important in a variety of applications including desalination, ultrapure water production, and nuclear power generation. Today's commercial boron-selective resins are exclusively prepared by functionalization of styrene-divinylbenzene (STY-DVB) beads with N-methylglucamine to produce resins with boron-chelating groups. However, such boron-selective resins have a limited binding capacity with a maximum free base content of 0.7 eq/L, which corresponds to a sorption capacity of 1.16 ± 0.03 mMol/g in aqueous solutions with equilibrium boron concentration of ∼70 mM. In this article, we describe the synthesis and characterization of a new resin that can selectively extract boron from aqueous solutions. We show that branched polyethylenimine (PEI) beads obtained from an inverse suspension process can be reacted with glucono-1,5-D-lactone to afford a resin consisting of spherical beads with high density of boron-chelating groups. This resin has a sorption capacity of 1.93 ± 0.04 mMol/g in aqueous solution with equilibrium boron concentration of ∼70 mM, which is 66% percent larger than that of standard commercial STY-DVB resins. Our new boron-selective resin also shows excellent regeneration efficiency using a standard acid wash with a 1.0 M HCl solution followed by neutralization with a 0.1 M NaOH solution.

  11. Chelating polymeric beads as potential therapeutics for Wilson's disease.

    PubMed

    Mattová, Jana; Poučková, Pavla; Kučka, Jan; Skodová, Michaela; Vetrík, Miroslav; Stěpánek, Petr; Urbánek, Petr; Petřík, Miloš; Nový, Zbyněk; Hrubý, Martin

    2014-10-01

    Wilson's disease is a genetic disorder caused by a malfunction of ATPase 7B that leads to high accumulation of copper in the organism and consequent toxic effects. We propose a gentle therapy to eliminate the excessive copper content with oral administration of insoluble non-resorbable polymer sorbents containing selective chelating groups for copper(II). Polymeric beads with the chelating agents triethylenetetramine, N,N-di(2-pyridylmethyl)amine, and 8-hydroxyquinoline (8HQB) were investigated. In a preliminary copper uptake experiment, we found that 8HQB significantly reduced copper uptake (using copper-64 as a radiotracer) after oral administration in Wistar rats. Furthermore, we measured organ radioactivity in rats to demonstrate that 8HQB radiolabelled with iodine-125 is not absorbed from the gastrointestinal tract after oral administration. Non-resorbability and the blockade of copper uptake were also confirmed with small animal imaging (PET/CT) in mice. In a long-term experiment with Wistar rats fed a diet containing the polymers, we have found that there were no signs of polymer toxicity and the addition of polymers to the diet led to a significant reduction in the copper contents in the kidneys, brains, and livers of the rats. We have shown that polymers containing specific ligands could potentially be novel therapeutics for Wilson's disease.

  12. Dengue NS1 antigen contributes to disease severity by inducing interleukin (IL)-10 by monocytes.

    PubMed

    Adikari, T N; Gomes, L; Wickramasinghe, N; Salimi, M; Wijesiriwardana, N; Kamaladasa, A; Shyamali, N L A; Ogg, G S; Malavige, G N

    2016-04-01

    Both dengue NS1 antigen and serum interleukin (IL)-10 levels have been shown to associate with severe clinical disease in acute dengue infection, and IL-10 has also been shown to suppress dengue-specific T cell responses. Therefore, we proceeded to investigate the mechanisms by which dengue NS1 contributes to disease pathogenesis and if it is associated with altered IL-10 production. Serum IL-10 and dengue NS1 antigen levels were assessed serially in 36 adult Sri Lankan individuals with acute dengue infection. We found that the serum IL-10 levels correlated positively with dengue NS1 antigen levels (Spearman's r = 0·47, P < 0·0001), and NS1 also correlated with annexin V expression by T cells in acute dengue (Spearman's r = 0·63, P = 0·001). However, NS1 levels did not associate with the functionality of T cell responses or with expression of co-stimulatory molecules. Therefore, we further assessed the effect of dengue NS1 on monocytes and T cells by co-culturing primary monocytes and peripheral blood mononuclear cells (PBMC), with varying concentrations of NS1 for up to 96 h. Monocytes co-cultured with NS1 produced high levels of IL-10, with the highest levels seen at 24 h, and then declined gradually. Therefore, our data show that dengue NS1 appears to contribute to pathogenesis of dengue infection by inducing IL-10 production by monocytes.

  13. Characterising Non-Structural Protein NS4 of African Horse Sickness Virus

    PubMed Central

    Zwart, Lizahn; Potgieter, Christiaan A.; Clift, Sarah J.; van Staden, Vida

    2015-01-01

    African horse sickness is a serious equid disease caused by the orbivirus African horse sickness virus (AHSV). The virus has ten double-stranded RNA genome segments encoding seven structural and three non-structural proteins. Recently, an additional protein was predicted to be encoded by genome segment 9 (Seg-9), which also encodes VP6, of most orbiviruses. This has since been confirmed in bluetongue virus and Great Island virus, and the non-structural protein was named NS4. In this study, in silico analysis of AHSV Seg-9 sequences revealed the existence of two main types of AHSV NS4, designated NS4-I and NS4-II, with different lengths and amino acid sequences. The AHSV NS4 coding sequences were in the +1 reading frame relative to that of VP6. Both types of AHSV NS4 were expressed in cultured mammalian cells, with sizes close to the predicted 17–20 kDa. Fluorescence microscopy of these cells revealed a dual cytoplasmic and nuclear, but not nucleolar, distribution that was very similar for NS4-I and NS4-II. Immunohistochemistry on heart, spleen, and lung tissues from AHSV-infected horses showed that NS4 occurs in microvascular endothelial cells and mononuclear phagocytes in all of these tissues, localising to the both the cytoplasm and the nucleus. Interestingly, NS4 was also detected in stellate-shaped dendritic macrophage-like cells with long cytoplasmic processes in the red pulp of the spleen. Finally, nucleic acid protection assays using bacterially expressed recombinant AHSV NS4 showed that both types of AHSV NS4 bind dsDNA, but not dsRNA. Further studies will be required to determine the exact function of AHSV NS4 during viral replication. PMID:25915516

  14. Characterising Non-Structural Protein NS4 of African Horse Sickness Virus.

    PubMed

    Zwart, Lizahn; Potgieter, Christiaan A; Clift, Sarah J; van Staden, Vida

    2015-01-01

    African horse sickness is a serious equid disease caused by the orbivirus African horse sickness virus (AHSV). The virus has ten double-stranded RNA genome segments encoding seven structural and three non-structural proteins. Recently, an additional protein was predicted to be encoded by genome segment 9 (Seg-9), which also encodes VP6, of most orbiviruses. This has since been confirmed in bluetongue virus and Great Island virus, and the non-structural protein was named NS4. In this study, in silico analysis of AHSV Seg-9 sequences revealed the existence of two main types of AHSV NS4, designated NS4-I and NS4-II, with different lengths and amino acid sequences. The AHSV NS4 coding sequences were in the +1 reading frame relative to that of VP6. Both types of AHSV NS4 were expressed in cultured mammalian cells, with sizes close to the predicted 17-20 kDa. Fluorescence microscopy of these cells revealed a dual cytoplasmic and nuclear, but not nucleolar, distribution that was very similar for NS4-I and NS4-II. Immunohistochemistry on heart, spleen, and lung tissues from AHSV-infected horses showed that NS4 occurs in microvascular endothelial cells and mononuclear phagocytes in all of these tissues, localising to the both the cytoplasm and the nucleus. Interestingly, NS4 was also detected in stellate-shaped dendritic macrophage-like cells with long cytoplasmic processes in the red pulp of the spleen. Finally, nucleic acid protection assays using bacterially expressed recombinant AHSV NS4 showed that both types of AHSV NS4 bind dsDNA, but not dsRNA. Further studies will be required to determine the exact function of AHSV NS4 during viral replication.

  15. The 150 ns detector project: Progress with small detectors

    NASA Astrophysics Data System (ADS)

    Warburton, W. K.; Russell, S. R.; Kleinfelder, Stuart A.; Segal, Julie

    1994-09-01

    This project's long term goal is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1 × 256 1D and 8 × 8 2D detectors, 256 × 256 2D detectors and, finally, 1024 × 1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front end preamplifiers are being integrated first, since their design and performance are both the most unusual and also critical to the project's success. Similarly, our early work is also concentrating on devising and perfecting detector structures which are thick enough (1 mm) to absorb over 99% of the incident X-rays in the energy range of interest. In this paper we discuss our progress toward the 1 × 256 1D and 8 × 8 2D detectors. We have fabricated sample detectors at Stanford's Center for Integrated Systems and are preparing both to test them individually and to wirebond them to the preamplifier samples to produce our first working small 1D and 2D detectors. We will describe our solutions to the design problems associated with collecting charge in less than 30 ns from 1 mm thick pixels in high resistivity silicon. We have constructed and tested the front end of our preamplifier design using a commercial 1.2 μm CMOS technology and are moving on to produce a few channels of the complete preamplifier, including a switchable gain stage and output stage. We will discuss both the preamplifier design and our initial test results.

  16. Gold nanoparticles functionalised with fast water exchanging Gd3+ chelates: linker effects on the relaxivity.

    PubMed

    Ferreira, Miguel F; Gonçalves, Janaina; Mousavi, Bibimaryam; Prata, Maria I M; Rodrigues, Sérgio P J; Calle, Daniel; López-Larrubia, Pilar; Cerdan, Sebastian; Rodrigues, Tiago B; Ferreira, Paula M; Helm, Lothar; Martins, José A; Geraldes, Carlos F G C

    2015-03-01

    The relaxivity displayed by Gd(3+) chelates immobilized onto gold nanoparticles is the result of the complex interplay between the nanoparticle size, the water exchange rate and the chelate structure. In this work we study the effect of the length of ω-thioalkyl linkers, anchoring fast water exchanging Gd(3+) chelates onto gold nanoparticles, on the relaxivity of the immobilized chelates. Gold nanoparticles functionalized with Gd(3+) chelates of mercaptoundecanoyl and lipoyl amide conjugates of the DO3A-N-(α-amino)propionate chelator were prepared and studied as potential CA for MRI. High relaxivities per chelate, of the order of magnitude 28-38 mM(-1) s(-1) (30 MHz, 25 °C), were attained thanks to simultaneous optimization of the rotational correlation time and of the water exchange rate. Fast local rotational motions of the immobilized chelates around connecting linkers (internal flexibility) still limit the attainable relaxivity. The degree of internal flexibility of the immobilized chelates seems not to be correlated with the length of the connecting linkers. Biodistribution and MRI studies in mice suggest that the in vivo behavior of the gold nanoparticles was determined mainly by size. Small nanoparticles (HD = 3.9 nm) undergo fast renal clearance and avoidance of the RES organs while larger nanoparticles (HD = 4.8 nm) undergo predominantly hepatobiliary excretion. High relaxivities, allied to chelate and nanoparticle stability and fast renal clearance in vivo suggest that functionalized gold nanoparticles hold great potential for further investigation as MRI contrast agents. This study contributes to a better understanding of the effect of linker length on the relaxivity of gold nanoparticles functionalized with Gd(3+) complexes. It is a relevant contribution towards "design rules" for nanostructures functionalized with Gd(3+) chelates as Contrast Agents for MRI and multimodal imaging.

  17. Calcium transients and the effect of a photolytically released calcium chelator during electrically induced contractions in rabbit rectococcygeus smooth muscle.

    PubMed Central

    Arner, A; Malmqvist, U; Rigler, R

    1998-01-01

    Intracellular Ca2+ was determined with the fura-2 technique during electrically induced contractions in the rabbit rectococcygeus smooth muscle at 22 degreesC. The muscles were electrically activated to give short, reproducible contractions. Intracellular [Ca2+] increased during activation; the increase in [Ca2+] preceded force development by approximately 2 s. After cessation of stimulation Ca2+ fell, preceding the fall in force by approximately 4 s. The fluorescence properties of fura-2 were determined with time-resolved spectroscopy using synchrotron light at the MAX-storage ring, Lund, Sweden. The fluorescence decay of free fura-2 was best described by two exponential decays (time constants approximately 0.5 and 1.5 ns) at low Ca2+ (pCa 9). At high Ca2+ (pCa 4.5), fluorescence decay became slower and could be fitted by one exponential decay (1.9 ns). Time-resolved anisotropy of free fura-2 was characteristic of free rotational motion (correlation time 0.3 ns). Motion of fura-2 could be markedly inhibited by high concentrations of creatine kinase. Time-resolved spectroscopy measurements of muscle fibers loaded with fura-2 showed that the fluorescence lifetime of the probe was longer, suggesting an influence of the chemical environment. Anisotropy measurements revealed, however, that the probe was mobile in the cells. The Ca2+-dependence of contraction and relaxation was studied using a photolabile calcium chelator, diazo-2, which could be loaded into the muscle cells in a similar manner as fura-2. Photolysis of diazo-2 leads to an increase in its Ca2+-affinity and a fall in free Ca2+. When muscles that had been loaded with diazo-2 were illuminated with UV light flashes during the rising phase of contraction, the rate of contraction became slower, suggesting a close relation between intracellular Ca2+ and the cross-bridge interaction. In contrast, photolysis during relaxation did not influence the rate of force decay, suggesting that relaxation of these

  18. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  19. Coordination of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) with 2,5-hexanedione bis(thiosemicarbazone), HBTS: Crystal structure of cis-[Pd(HBTS)]Cl2 and 1-(2,5-dimethyl-1H-pyrrol-yl)-thiourea

    NASA Astrophysics Data System (ADS)

    Jeragh, Bakir; El-Asmy, Ahmed A.

    2014-09-01

    Metal complexes of Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pd2+ or Pt2+ with 2,5-hexanedione bis(thiosemicarbazone), HBTS; have been prepared and spectroscopically investigated. The empirical formulae of the complexes were suggested based on the elemental analysis. Single crystal of Pd(II) has been solved to be cis-form of square-planar geometry by the X-ray crystallography. 1H and 13C NMR spectra have been recorded for HBTS, Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) complexes, in DMSO-d6, showing the mode of chelation. The ligand acts as a neutral or a binegative tetradentate (N2S2) or neutral bidentate on the basis of FT-IR. The magnetic moments and electronic spectra provide information about the geometry of the complexes which supported by calculating the ligand field parameters for the Co(II) and Fe(III) complexes. The Ni(II) complex has subnormal magnetic moment (0.71 BM) indicative of a mixed stereochemistry of square-planar and tetrahedral structure. [Cu(HBTS-2H)] measured 0.93 BM indicating high interaction between the copper centers. The ligand may be ordered at the top of the spectrochemical series which giving high ligand field splitting energy (10Dq = 17,900 cm-1 for Co2+ complex). The mass spectra of some complexes proved their stable chemical formulae while the TGA depicts the degradation steps and the final residue. In evaporating the mother liquor during the preparation of HBTS, new compound is obtained naming 1-(2,5-dimethyl-1H-pyrrol-yl)thiourea and its crystal was solved.

  20. Coordination of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) with 2,5-hexanedione bis(thiosemicarbazone), HBTS: crystal structure of cis-[Pd(HBTS)]Cl2 and 1-(2,5-dimethyl-1H-pyrrol-yl)-thiourea.

    PubMed

    Jeragh, Bakir; El-Asmy, Ahmed A

    2014-09-15

    Metal complexes of Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pd2+ or Pt2+ with 2,5-hexanedione bis(thiosemicarbazone), HBTS; have been prepared and spectroscopically investigated. The empirical formulae of the complexes were suggested based on the elemental analysis. Single crystal of Pd(II) has been solved to be cis-form of square-planar geometry by the X-ray crystallography. 1H and 13C NMR spectra have been recorded for HBTS, Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) complexes, in DMSO-d6, showing the mode of chelation. The ligand acts as a neutral or a binegative tetradentate (N2S2) or neutral bidentate on the basis of FT-IR. The magnetic moments and electronic spectra provide information about the geometry of the complexes which supported by calculating the ligand field parameters for the Co(II) and Fe(III) complexes. The Ni(II) complex has subnormal magnetic moment (0.71 BM) indicative of a mixed stereochemistry of square-planar and tetrahedral structure. [Cu(HBTS-2H)] measured 0.93 BM indicating high interaction between the copper centers. The ligand may be ordered at the top of the spectrochemical series which giving high ligand field splitting energy (10 Dq=17,900 cm(-1) for Co2+ complex). The mass spectra of some complexes proved their stable chemical formulae while the TGA depicts the degradation steps and the final residue. In evaporating the mother liquor during the preparation of HBTS, new compound is obtained naming 1-(2,5-dimethyl-1H-pyrrol-yl)thiourea and its crystal was solved.

  1. Policresulen, a novel NS2B/NS3 protease inhibitor, effectively inhibits the replication of DENV2 virus in BHK-21 cells

    PubMed Central

    Wu, Deng-wei; Mao, Fei; Ye, Yan; Li, Jian; Xu, Chuan-lian; Luo, Xiao-min; Chen, Jing; Shen, Xu

    2015-01-01

    Aim: Dengue is a severe epidemic disease caused by dengue virus (DENV) infection, for which no effective treatment is available. The protease complex, consisting of nonstructural protein 3 (NS3) and its cofactor NS2B, plays a pivotal role in the replication of DENV, thus may be a potential target for anti-DENV drugs. Here, we report a novel inhibitor of DENV2 NS2B/NS3 protease and its antiviral action. Methods: An enzymatic inhibition assay was used for screening DENV2 NS2B/NS3 inhibitors. Cytotoxicity to BHK-21 cells was assessed with MTT assay. Antiviral activity was evaluated in BHK-21 cells transfected with Rlu-DENV-Rep. The molecular mechanisms of the antiviral action was analyzed using surface plasmon resonance, ultraviolet-visible spectral analysis and differential scanning calorimetry assays, as well as molecular docking analysis combined with site-directed mutagenesis. Results: In our in-house library of old drugs (∼1000 compounds), a topical hemostatic and antiseptic 2-hydroxy-3,5-bis[(4-hydroxy-2-methyl-5-sulfophenyl)methyl]-4-methyl-benzene-sulfonic acid (policresulen) was found to be a potent inhibitor of DENV2 NS2B/NS3 protease with IC50 of 0.48 μg/mL. Furthermore, policresulen inhibited DENV2 replication in BHK-21 cells with IC50 of 4.99 μg/mL, whereas its IC50 for cytotoxicity to BHK-21 cells was 459.45 μg/mL. Policresulen acted as a competitive inhibitor of the protease, and slightly affected the protease stability. Using biophysical technology-based assays and molecular docking analysis combined with site-directed mutagenesis, we demonstrated that the residues Gln106 and Arg133 of DENV2 NS2B/NS3 protease directly interacted with policresulen via hydrogen bonding. Conclusion: Policresulen is a potent inhibitor of DENV2 NS2B/NS3 protease that inhibits DENV2 replication in BHK-21 cells. The binding mode of the protease and policresulen provides useful hints for designing new type of inhibitors against the protease. PMID:26279156

  2. VP2 Exchange and NS3/NS3a Deletion in African Horse Sickness Virus (AHSV) in Development of Disabled Infectious Single Animal Vaccine Candidates for AHSV

    PubMed Central

    van de Water, Sandra G. P.; van Gennip, René G. P.; Potgieter, Christiaan A.; Wright, Isabel M.

    2015-01-01

    ABSTRACT African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. There are nine serotypes of AHSV showing different levels of cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African horse sickness (AHS) in equids, with a mortality rate of up to 95% in naive horses. AHS has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates appear to be competent vectors for the related bluetongue virus (BTV). To control AHS, live-attenuated vaccines (LAVs) are used in Africa. We used reverse genetics to generate “synthetic” reassortants of AHSV for all nine serotypes by exchange of genome segment 2 (Seg-2). This segment encodes VP2, which is the serotype-determining protein and the dominant target for neutralizing antibodies. Single Seg-2 AHSV reassortants showed similar cytopathogenic effects in mammalian cells but displayed different growth kinetics. Reverse genetics for AHSV was also used to study Seg-10 expressing NS3/NS3a proteins. We demonstrated that NS3/NS3a proteins are not essential for AHSV replication in vitro. NS3/NS3a of AHSV is, however, involved in the cytopathogenic effect in mammalian cells and is very important for virus release from cultured insect cells in particular. Similar to the concept of the bluetongue disabled infectious single animal (BT DISA) vaccine platform, an AHS DISA vaccine platform lacking NS3/NS3a expression was developed. Using exchange of genome segment 2 encoding VP2 protein (Seg-2[VP2]), we will be able to develop AHS DISA vaccine candidates for all current AHSV serotypes. IMPORTANCE African horse sickness virus is transmitted by species of Culicoides biting midges and causes African horse sickness in equids, with a mortality rate of up to 95% in naive horses. African horse sickness has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate

  3. [Grouping of the NS1 nonstructural proteins of influenza A viruses].

    PubMed

    Sokolov, B P; Rudneva, I A; Zhdanov, V M

    1981-01-01

    Peptide mapping was used for comparative analysis of nonstructural proteins (NS1) of 21 strains of human and animal influenza A viruses. At least 4 groups of NS1 proteins could be distinguished by the analysis of the peptide maps; we designated these groups as 0, 1, 2, and 3. Group O includes NS1 proteins of human influenza virus serotype HON1, group 1 - NS1 proteins of viruses of serotypes H1N1 and H2N2, group 2 - NS1 proteins of viruses of serotype H3N2. NS1 proteins of avian influenza viruses A/duck Czechoslovakia/63, A/turkey Massachusetts/65, A/petrel Australia/1/71, A/duck Ukraine/63, and A/turkey Ontario/68 have been included into group 3. PMID:7336689

  4. Functions of the influenza A virus NS1 protein in antiviral defense.

    PubMed

    Krug, Robert M

    2015-06-01

    Influenza A viruses counteract host antiviral activities, especially the production of interferons (IFNs) and the activities of IFN-induced proteins that inhibit virus replication. The viral NS1 protein is largely responsible for countering these IFN antiviral responses, but there are functional differences between the NS1 proteins of different virus strains. The NS1 protein inhibits IFN production by two mechanisms: inhibition of the activation of IRF3 and IFN transcription; and inhibition of the processing of IFN pre-mRNAs. The NS1 proteins of several virus strains do not inhibit IRF3 activation, and the NS1 protein of one virus strain does not inhibit the processing of IFN pre-mRNAs. Many issues remain concerning the mechanisms of action of the various NS1 proteins in countering the IFN response.

  5. Functions of the Influenza A Virus NS1 Protein In Antiviral Defense

    PubMed Central

    Krug, Robert M.

    2015-01-01

    Influenza A viruses counteract host antiviral activities, especially the production of interferons (IFNs) and the activities of IFN-induced proteins that inhibit virus replication. The viral NS1 protein is largely responsible for countering these IFN antiviral responses, but there are functional differences between the NS1 proteins of different virus strains. The NS1 protein inhibits IFN production by two mechanisms: inhibition of the activation of IRF3 and IFN transcription; and inhibition of the processing of IFN pre-mRNAs. The NS1 proteins of several virus strains do not inhibit IRF3 activation, and the NS1 protein of one virus strain does not inhibit the processing of IFN pre-mRNAs. Many issues remain concerning the mechanisms of action of the various NS1 proteins in countering the IFN response. PMID:25638592

  6. Structure of NS1A effector domain from the influenza A/Udorn/72 virus

    SciTech Connect

    Xia, Shuangluo; Monzingo, Arthur F.; Robertus, Jon D.

    2009-01-01

    The structure of the effector domain of the influenza protein NS1, a validated antiviral drug target, has been solved in two space groups. The nonstructural protein NS1A from influenza virus is a multifunctional virulence factor and a potent inhibitor of host immunity. It has two functional domains: an N-terminal 73-amino-acid RNA-binding domain and a C-terminal effector domain. Here, the crystallographic structure of the NS1A effector domain of influenza A/Udorn/72 virus is presented. Structure comparison with the NS1 effector domain from mouse-adapted influenza A/Puerto Rico/8/34 (PR8) virus strain reveals a similar monomer conformation but a different dimer interface. Further analysis and evaluation shows that the dimer interface observed in the structure of the PR8 NS1 effector domain is likely to be a crystallographic packing effect. A hypothetical model of the intact NS1 dimer is presented.

  7. Characterization of the magnetization reversal of perpendicular Nanomagnetic Logic clocked in the ns-range

    NASA Astrophysics Data System (ADS)

    Ziemys, Grazvydas; Trummer, Christian; Gamm, Stephan Breitkreutz-v.; Eichwald, Irina; Schmitt-Landsiedel, Doris; Becherer, Markus

    2016-05-01

    We have investigated the magnetization reversal of fabricated Co/Pt nanomagnets with perpendicular anisotropy within a wide range of magnetic field pulse widths. This experiment covers the pulse lengths from 700 ms to 20 ns. We observed that the commonly used Arrhenius model fits very well the experimental data with a single parameter set for pulse times above 100 ns (tp > 100 ns). However, below 100 ns (tp < 100 ns), a steep increase of the switching field amplitude is observed and the deviation from the Arrhenius model becomes unacceptable. For short pulse times the model can be adjusted by the reversal time term for the dynamic switching field which is only dependent on the pulse amplitude and not on temperature anymore. Precise modeling of the magnetization reversal in the sub-100 ns-range is crucially important to ensure reliable operation in the favored GHz-range as well as to explore and design new kinds of Nanomagnetic Logic circuits and architectures.

  8. Inhibitory activity of chelating agent against bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N, N’-disuccinic acid (EDDS) are chelating agents that can bind minerals that produce water hardness. By sequestering minerals in hard water, chelators reduce water hardness and increase the ability of cleansers to remove dirt and debris dur...

  9. Spectroscopic properties and Judd-Ofelt theory analysis of erbium chelates.

    PubMed

    Wang, Huaishan; Qian, Guodong; Wang, Zhiyu; Wang, Minquan

    2005-11-01

    Erbium chelates including tris(acetylacetonato) erbium(III) monohydrate, tris(acetylacetonato)(1,10-phenanthroline) erbium(III) and tris(trifluoroacetylacetonato)(1,10-phenanthroline) erbium(III) are synthesized. Judd-Ofelt theory is employed on basis of the UV-Vis-NIR absorption spectra of erbium chelates dissolved in methanol. Judd-Ofelt parameters of erbium chelates are determined by a least square fitting and dealt with the chemical structure of erbium chelates. Photoluminescence characteristics of erbium chelates are investigated upon excitation at 488 nm by an Ar(+) laser. The qualitative correlation of Judd-Ofelt parameters with photoluminescence properties for erbium chelates is also discussed. It is found that larger Omega(6) value for erbium chelate is and larger photoluminescence intensity at 1.54 microm is, and Omega(2) value should contribute to the photoluminescence full width at half maximum (FWHM) at 1.54 microm. The changes of Judd-Ofelt parameters result from the introduction of the second ligand phenathroline or the substitution of electron-drawing group CF(3) in beta-diketone for erbium chelates.

  10. 21 CFR 176.150 - Chelating agents used in the manufacture of paper and paperboard.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Chelating agents used in the manufacture of paper... for Use Only as Components of Paper and Paperboard § 176.150 Chelating agents used in the manufacture... the manufacture of paper and paperboard, in accordance with the conditions prescribed in paragraphs...

  11. 21 CFR 176.150 - Chelating agents used in the manufacture of paper and paperboard.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Chelating agents used in the manufacture of paper... Chelating agents used in the manufacture of paper and paperboard. The substances named in paragraph (a) of this section may be safely used in the manufacture of paper and paperboard, in accordance with...

  12. 21 CFR 176.150 - Chelating agents used in the manufacture of paper and paperboard.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Chelating agents used in the manufacture of paper... Chelating agents used in the manufacture of paper and paperboard. The substances named in paragraph (a) of this section may be safely used in the manufacture of paper and paperboard, in accordance with...

  13. 21 CFR 176.150 - Chelating agents used in the manufacture of paper and paperboard.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Chelating agents used in the manufacture of paper... Chelating agents used in the manufacture of paper and paperboard. The substances named in paragraph (a) of this section may be safely used in the manufacture of paper and paperboard, in accordance with...

  14. Functional differences in hepatitis C virus nonstructural (NS) 3/4A- and 5A-specific T cell responses

    PubMed Central

    Holmström, Fredrik; Chen, Margaret; Balasiddaiah, Anangi; Sällberg, Matti; Ahlén, Gustaf; Frelin, Lars

    2016-01-01

    The hepatitis C virus nonstructural (NS) 3/4A and NS5A proteins are major targets for the new direct-acting antiviral compounds. Both viral proteins have been suggested as modulators of the response to the host cell. We have shown that NS3/4A- and NS5A-specific T cell receptors confer different effector functions, and that killing of NS3/4A-expressing hepatocytes is highly dependent on IFN-γ. We here characterize the functional differences in the T cell responses to NS3/4A and NS5A. NS3/4A- and NS5A-specific T cells could be induced at various frequencies in wild-type-, NS3/4A-, and NS5A-transgenic mice. Priming of NS5A-specific T cells required a high DNA dose, and was unlike NS3/4A dependent on both CD4+ and CD8+ T cells, but less influenced by CD25+/GITR+ regulatory T cells. The presence of IL-12 greatly improved specific CD8+ T cell priming by NS3/4A but not by NS5A, suggesting a less dependence of IFN-γ for NS5A. This notion was supported by the observation that NS5A-specific T cells could eliminate NS5A-expressing hepatocytes also in the absence of IFN-γ-receptor-2. This supports that NS3/4A- and NS5A-specific T cells become activated and eliminate antigen expressing, or infected hepatocytes, by distinct mechanisms, and that NS5A-specific T cells show an overall less dependence of IFN-γ. PMID:27141891

  15. The NS5A protein of hepatitis C virus is a zinc metalloprotein.

    PubMed

    Tellinghuisen, Timothy L; Marcotrigiano, Joseph; Gorbalenya, Alexander E; Rice, Charles M

    2004-11-19

    The NS5A protein of hepatitis C virus is believed to be an integral part of the viral replicase. Despite extensive investigation, the role of this protein remains elusive. Only limited biochemical characterization of NS5A has been performed, with most research to date involving the myriad of host proteins and signaling cascades that interact with NS5A. The need for better characterization of NS5A is paramount for elucidating the role of this protein in the virus life cycle. Examination of NS5A using bioinformatics tools suggested the protein consisted of three domains and contained an unconventional zinc binding motif within the N-terminal domain. We have developed a method to produce NS5A and performed limited proteolysis to confirm the domain organization model. The zinc content of purified NS5A and the N-terminal domain of NS5A was determined, and each of these proteins was found to coordinate one zinc atom per protein. The predicted zinc binding motif consists of four cysteine residues, conserved among the Hepacivirus and Pestivirus genera, fitting the formula of CX17CXCX20C. Mutation of any of the four cysteine components of this motif reduced NS5A zinc coordination and led to a lethal phenotype for HCV RNA replication, whereas mutation of other potential metal coordination residues in the N-terminal domain of NS5A, but outside the zinc binding motif, had little effect on zinc binding and, aside from one exception, were tolerated for replication. Collectively, these results indicate that NS5A is a zinc metalloprotein and that zinc coordination is likely required for NS5A function in the hepatitis C replicase.

  16. Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides

    PubMed Central

    Chukkapalli, Vineela; Berger, Kristi L.; Kelly, Sean M.; Thomas, Meryl; Deiters, Alexander; Randall, Glenn

    2014-01-01

    Combinations of direct-acting antivirals (DAAs) against the hepatitis C virus (HCV) have the potential to revolutionize the HCV therapeutic regime. An integral component of DAA combination therapies are HCV NS5A inhibitors. It has previously been proposed that NS5A DAAs inhibit two functions of NS5A: RNA replication and virion assembly. In this study, we characterize the impact of a prototype NS5A DAA, daclatasvir (DCV), on HCV replication compartment formation. DCV impaired HCV replicase localization and NS5A motility. In order to characterize the mechanism behind altered HCV replicase localization, we examined the impact of DCV on the interaction of NS5A with its essential cellular cofactor, phosphatidylinositol-4-kinase III α (PI4KA). We observed that DCV does not inhibit PI4KA directly, nor does it impair early events of the NS5A-PI4KA interaction that can occur when NS5A is expressed alone. NS5A functions that are unaffected by DCV include PI4KA binding, as determined by co-immunoprecipitation, and a basal accumulation of the PI4KA product, PI4P. However, DCV impairs late steps in PI4KA activation that requires NS5A expressed in the context of the HCV polyprotein. These NS5A functions include hyper-stimulation of PI4P levels and appropriate replication compartment formation. The data are most consistent with a model wherein DCV inhibits conformational changes in the NS5A protein or protein complex formations that occur in the context of HCV polyprotein expression and stimulate PI4P hyper-accumulation and replication compartment formation. PMID:25546252

  17. Multifunctional adaptive NS1 mutations are selected upon human influenza virus evolution in the mouse.

    PubMed

    Forbes, Nicole E; Ping, Jihui; Dankar, Samar K; Jia, Jian-Jun; Selman, Mohammed; Keleta, Liya; Zhou, Yan; Brown, Earl G

    2012-01-01

    The role of the NS1 protein in modulating influenza A virulence and host range was assessed by adapting A/Hong Kong/1/1968 (H3N2) (HK-wt) to increased virulence in the mouse. Sequencing the NS genome segment of mouse-adapted variants revealed 11 mutations in the NS1 gene and 4 in the overlapping NEP gene. Using the HK-wt virus and reverse genetics to incorporate mutant NS gene segments, we demonstrated that all NS1 mutations were adaptive and enhanced virus replication (up to 100 fold) in mouse cells and/or lungs. All but one NS1 mutant was associated with increased virulence measured by survival and weight loss in the mouse. Ten of twelve NS1 mutants significantly enhanced IFN-β antagonism to reduce the level of IFN β production relative to HK-wt in infected mouse lungs at 1 day post infection, where 9 mutants induced viral yields in the lung that were equivalent to or significantly greater than HK-wt (up to 16 fold increase). Eight of 12 NS1 mutants had reduced or lost the ability to bind the 30 kDa cleavage and polyadenylation specificity factor (CPSF30) thus demonstrating a lack of correlation with reduced IFN β production. Mutant NS1 genes resulted in increased viral mRNA transcription (10 of 12 mutants), and protein production (6 of 12 mutants) in mouse cells. Increased transcription activity was demonstrated in the influenza mini-genome assay for 7 of 11 NS1 mutants. Although we have shown gain-of-function properties for all mutant NS genes, the contribution of the NEP mutations to phenotypic changes remains to be assessed. This study demonstrates that NS1 is a multifunctional virulence factor subject to adaptive evolution.

  18. H-NS Facilitates Sequence Diversification of Horizontally Transferred DNAs during Their Integration in Host Chromosomes

    PubMed Central

    Higashi, Koichi; Tobe, Toru; Kanai, Akinori; Uyar, Ebru; Ishikawa, Shu; Suzuki, Yutaka; Ogasawara, Naotake; Kurokawa, Ken; Oshima, Taku

    2016-01-01

    Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches. PMID:26789284

  19. Toward resolving the unsettled role of iron chelation therapy in myelodysplastic syndromes.

    PubMed

    Merkel, Drorit G; Nagler, Arnon

    2014-07-01

    Transfusion dependent low risk myelodysplastic syndromes (MDS) patients, eventually develop iron overload. Iron toxicity, via oxidative stress, can damage cellular components and impact organ function. In thalassemia major patients, iron chelation therapy lowered iron levels with recovery of cardiac and liver functions and significant improvement in survival. Several noncontrolled studies show inferior survival in MDS patients with iron overload, including an increase in transplant-related mortality and infection risk while iron chelation appears to improve survival in both lower risk MDS patients and in stem cell transplant settings. Collated data are presented on the pathophysiological impact of iron overload; measuring techniques and chelating agents' therapy positive impact on hematological status and overall survival are discussed. Although suggested by retrospective analyses, the lack of clear prospective data of the beneficial effects of iron chelation on morbidity and survival, the role of iron chelation therapy in MDS patients remains controversial.

  20. The Design and Synthesis of Highly Branched and Spherically Symmetric Fluorinated Macrocyclic Chelators

    PubMed Central

    Jiang, Zhong-Xing; Yu, Y. Bruce

    2010-01-01

    Two novel, highly fluorinated macrocyclic chelators with highly branched and spherically symmetric fluorocarbon moieties have been designed and efficiently synthesized. This is achieved by conjugating a spherically symmetric fluorocarbon moiety to the macrocyclic chelator DOTA, with or without a flexible oligo-oxyethylene linker between these two parts. As a result of the spherical symmetry, all 27 fluorine atoms in each fluorinated chelator give a sharp singlet 19F NMR signal. The hydrophilicity and the 19F relaxation behavior of fluorinated chelators can be modulated by the insertion of a flexible linker between the fluorocarbon moiety and the macrocyclic linker. These chelators serve as prototypes for 1H-19F dual-nuclei magnetic resonance imaging agents. PMID:20585414

  1. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    NASA Astrophysics Data System (ADS)

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-01

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  2. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  3. Role of pH in metal adsorption from aqueous solutions containing chelating agents on chitosan

    SciTech Connect

    Wu, F.C.; Tseng, R.L.; Juang, R.S.

    1999-01-01

    The role of pH in adsorption of Cu(II) from aqueous solutions containing chelating agents on chitosan was emphasized. Four chelating agents including ethylenediaminetetraacetic acid (EDTA), citric acid, tartaric acid, and sodium gluconate were used. It was shown that the adsorption ability of Cu(II) on chitosan from its chelated solutions varied significantly with pH variations. The competition between coordination of Cu(II) with unprotonated chitosan and electrostatic interaction of the Cu(II) chelates with protonated chitosan took place because of the change in solution pH during adsorption. The maximum adsorption capacity was obtained within each optimal pH range determined from titration curves of the chelated solutions. Coordination of Cu(II) with the unprotonated chitosan was found to dominate at pH below such an optimal pH value.

  4. Design and synthesis of zinc-selective chelators for extracellular applications.

    PubMed

    Kawabata, Eri; Kikuchi, Kazuya; Urano, Yasuteru; Kojima, Hirotatsu; Odani, Akira; Nagano, Tetsuo

    2005-01-26

    Zinc (Zn2+) is found in every cell in human bodies. A few millimolar of free Zn2+ exists in the vesicles of presynaptic neurons in the mammalian brain and is released by synaptic activity or depolarization, modulating the function of certain ion channels and receptors. Although various chemical tools for measuring Zn2+ in biological samples, such as fluorescent probes for Zn2+, have been developed, Zn2+-selective chelators have room to be improved. Research on Zn2+ signals in the brain has traditionally employed several chelators, which have several shortcomings for biological applications. Here we report the design, synthesis, and properties of new membrane-impermeable chelators selective for Zn2+ and describe biological applications in hippocampal slices. As a result, our newly designed chelator revealed the first biological implication that presynaptic Zn2+ can be released in the CA1 region. This confirms the utility of these new chelatotrs as extracellular Zn2+ chelators for biological applications.

  5. A Hepatitis C Virus NS5A Phosphorylation Site That Regulates RNA Replication

    PubMed Central

    LeMay, K. L.; Treadaway, J.; Angulo, I.

    2013-01-01

    The hepatitis C virus NS5A protein is essential for RNA replication and virion assembly. NS5A is phosphorylated on multiple residues during infections, but these sites remain uncharacterized. Here we identify serine 222 of genotype 2a NS5A as a phosphorylation site that functions as a negative regulator of RNA replication. This site is a component of the hyperphosphorylated form of NS5A, which is in good agreement with previous observations that hyperphosphorylation negatively affects replication. PMID:23115292

  6. Sequestration of Zinc Oxide by Fimbrial Designer Chelators

    PubMed Central

    Kjærgaard, Kristian; Sørensen, Jack K.; Schembri, Mark A.; Klemm, Per

    2000-01-01

    Type 1 fimbriae are surface organelles of Escherichia coli. By engineering a structural component of the fimbriae, FimH, to display a random peptide library, we were able to isolate metal-chelating bacteria. A library consisting of 4 × 107 independent clones was screened for binding to ZnO. Sequences responsible for ZnO adherence were identified, and distinct binding motifs were characterized. The sequences selected exhibited various degrees of affinity and specificity towards ZnO. Competitive binding experiments revealed that the sequences recognized only the oxide form of Zn. Interestingly, one of the inserts exhibited significant homology to a specific sequence in a putative zinc-containing helicase, which suggests that searches such as this one may aid in identifying binding motifs in nature. The zinc-binding bacteria might have a use in detoxification of metal-polluted water. PMID:10618196

  7. Comparison of 225actinium chelates: tissue distribution and radiotoxicity.

    PubMed

    Davis, I A; Glowienka, K A; Boll, R A; Deal, K A; Brechbiel, M W; Stabin, M; Bochsler, P N; Mirzadeh, S; Kennel, S J

    1999-07-01

    The biodistribution and tissue toxicity of intravenously administered 225-actinium (225Ac) complexed with acetate, ethylene diamine tetraacetic acid (EDTA), 1, 4, 7, 10, 13-pentaazacyclopentadecane-N, N', N", N"', N"-pentaacetic acid (PEPA), or the "a" isomer of cyclohexyl diethylenetriamine pentaacetic acid (CHX-DTPA), were examined. The percent of injected dose per organ and per gram of tissue for each chelate complex was determined. 225Ac-CHX-DTPA was evaluated further for radiotoxic effects. Mice receiving > or =185 kBq 225Ac-CHX-DTPA suffered 100% morbidity by 5 days and 100% mortality by 8 days postinjection, and all animals evaluated had significant organ damage. The in vivo instability of the 225Ac-CHX-DTPA complex likely allowed accumulation of free 225Ac in organs, which resulted in tissue pathology.

  8. Control of cytoplasmic calcium with photolabile tetracarboxylate 2-nitrobenzhydrol chelators.

    PubMed Central

    Tsien, R Y; Zucker, R S

    1986-01-01

    This paper introduces nitr-2, a new Ca2+ chelator designed to release Ca2+ upon illumination with near UV (300-400 nm) light. Before illumination nitr-2 has Ca2+ dissociation constants of 160 and 630 nM in 0.1 and 0.3 M ionic strength respectively; after photoconversion to a nitrosobenzophenone the values shift to 7 and 18 microM, high enough to liberate substantial amounts of Ca2+ under intracellular conditions. The speed of release is limited by a dark reaction with rate constant 5 s-1. Aplysia central neurons injected with nitr-2 and exposed to UV light exhibit two separate Ca2+-dependent membrane currents: one carried by potassium ions and one a nonspecific cation current. A quantitative estimate of the spatial distribution of intracellular [Ca2+] changes in large cells filled with a high concentration of nitr-2 and exposed to an intense UV flash is offered. PMID:3098316

  9. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    SciTech Connect

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Inagaki, Shinji

    2014-11-01

    We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce{sup 4+}, due to the ready access of reactants to the active sites in the nanotubes.

  10. Chelation-Induced Polymer Structural Hierarchy/Complexity in Water.

    PubMed

    Han, Jie; Zhou, Kaiyi; Zhu, Xuechao; Yu, Qiuping; Ding, Yi; Lu, Xinhua; Cai, Yuanli

    2016-08-01

    Understanding nanoscale structural hierarchy/complexity of hydrophilic flexible polymers is imperative because it can be viewed as an analogue to protein-alike superstructures. However, current understanding is still in infancy. Herein the first demonstration of nanoscale structural hierarchy/complexity via copper chelation-induced self-assembly (CCISA) is presented. Hierarchically-ordered colloidal networks and disks can be achieved by deliberate control of spacer length and solution pH. Dynamic light scattering, transmission electron microscopy, and atomic force microscopy demonstrate that CCISA underwent supramolecular-to-supracolloidal stepwise-growth mechanism, and underline amazing prospects to the hierarchically-ordered superstructures of hydrophilic flexible polymers in water. PMID:27219860

  11. Clinically approved iron chelators influence zebrafish mortality, hatching morphology and cardiac function.

    PubMed

    Hamilton, Jasmine L; Hatef, Azadeh; Imran ul-Haq, Muhammad; Nair, Neelima; Unniappan, Suraj; Kizhakkedathu, Jayachandran N

    2014-01-01

    Iron chelation therapy using iron (III) specific chelators such as desferrioxamine (DFO, Desferal), deferasirox (Exjade or ICL-670), and deferiprone (Ferriprox or L1) are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection) also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity.

  12. Clinically Approved Iron Chelators Influence Zebrafish Mortality, Hatching Morphology and Cardiac Function

    PubMed Central

    Hamilton, Jasmine L.; Hatef, Azadeh; Imran ul-haq, Muhammad; Nair, Neelima; Unniappan, Suraj; Kizhakkedathu, Jayachandran N.

    2014-01-01

    Iron chelation therapy using iron (III) specific chelators such as desferrioxamine (DFO, Desferal), deferasirox (Exjade or ICL-670), and deferiprone (Ferriprox or L1) are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection) also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity. PMID:25329065

  13. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion.

    PubMed

    Liang, Chenju; Bruell, Clifford J; Marley, Michael C; Sperry, Kenneth L

    2004-06-01

    In situ chemical oxidation (ISCO) is a technique used to remediate contaminated soil and groundwater systems. It has been postulated that sodium persulfate (Na2S2O8) can be activated by transition metal ions such as ferrous ion (Fe2+) to produce a powerful oxidant known as the sulfate free radical (SO4-*) with a redox potential of 2.6 V, which can potentially destroy organic contaminants. In this laboratory study persulfate oxidation of dissolved trichloroethylene (TCE) was investigated in aqueous and soil slurry systems under a variety of experimental conditions. A chelating agent (i.e., citric acid) was used in attempt to manipulate the quantity of ferrous ion in solution by providing an appropriate chelate/Fe2+ molar ratio. In an aqueous system a chelate/Fe2+ molar ratio of 1/5 (e.g., S2O8(2)-/chelate/Fe2+/TCE ratio of 20/2/10/1) was found to be the lowest acceptable ratio to maintain sufficient quantities of Fe2+ activator in solution resulting in nearly complete TCE destruction after only 20 min. The availability of Fe2+ appeared to be controlled by adjusting the molar ratio of chelate/Fe2+. In general, high levels of chelated ferrous ion concentrations resulted in faster TCE degradation and more persulfate decomposition. However, if initial ferrous ion contents are relatively low, sufficient quantities of chelate must be provided to ensure the chelation of a greater percentage of the limited ferrous ion present. Citric acid chelated ferrous ion appeared effective for TCE degradation within soil slurries but required longer reaction times. Additionally, the use of citric acid without the addition of supplemental Fe2+ in soil slurries, where the citric acid apparently extracted native metals from the soil, appeared to be somewhat effective at enhancing persulfate oxidation of TCE over extended reaction times. A comparison of different chelating agents revealed that citric acid was the most effective.

  14. Mechanistic basis for overcoming platinum resistance using copper chelating agents.

    PubMed

    Liang, Zheng D; Long, Yan; Tsai, Wen-Bin; Fu, Siqing; Kurzrock, Razelle; Gagea-Iurascu, Mihai; Zhang, Fan; Chen, Helen H W; Hennessy, Bryan T; Mills, Gordon B; Savaraj, Niramol; Kuo, Macus Tien

    2012-11-01

    Platinum-based antitumor agents are widely used in cancer chemotherapy. Drug resistance is a major obstacle to the successful use of these agents because once drug resistance develops, other effective treatment options are limited. Recently, we conducted a clinical trial using a copper-lowering agent to overcome platinum drug resistance in ovarian cancer patients and the preliminary results are encouraging. In supporting this clinical study, using three pairs of cisplatin (cDDP)-resistant cell lines and two ovarian cancer cell lines derived from patients who had failed in platinum-based chemotherapy, we showed that cDDP resistance associated with reduced expression of the high-affinity copper transporter (hCtr1), which is also a cDDP transporter, can be preferentially resensitized by copper-lowering agents because of enhanced hCtr1 expression, as compared with their drug-sensitive counterparts. Such a preferential induction of hCtr1 expression in cDDP-resistant variants by copper chelation can be explained by the mammalian copper homeostasis regulatory mechanism. Enhanced cell-killing efficacy by a copper-lowering agent was also observed in animal xenografts bearing cDDP-resistant cells. Finally, by analyzing a public gene expression dataset, we found that ovarian cancer patients with elevated levels of hCtr1 in their tumors, but not ATP7A and ATP7B, had more favorable outcomes after platinum drug treatment than those expressing low hCtr1 levels. This study reveals the mechanistic basis for using copper chelation to overcome cDDP resistance in clinical investigations.

  15. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

    PubMed Central

    Wee, Josephine; Day, Devin M.; Linz, John E.

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  16. Potentials and drawbacks of chelate-enhanced phytoremediation of soils.

    PubMed

    Römkens, Paul; Bouwman, Lucas; Japenga, Jan; Draaisma, Cathrina

    2002-01-01

    Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and lysimeter studies were conducted to study the phytoremedation potential of EDGA and citric acid and to evaluate its effects on microbial activity and leaching of Cd, Zn Cu and Pb. Grass, lupine and yellow mustard were grown on a moderately polluted acid (pH 4.5) sandy soil that contained 2 mg kg(-1) Cd and 200 mg kg(-1) Zn. Citric acid appeared to be degraded microbially within a few days after addition which limited its potential for long-lasting remediation studies. EDGA enhanced metal solubility but plant uptake did not increase accordingly. The metal shoot:root ratio increased upon addition of EDGA but it also reduced the net shoot and root biomass production of both lupine and yellow mustard. Bacterial biomass was higher in both the citric and EDGA treated pots but bacterial activity remained unaffected. The number of microbivorous nematodes was greatly reduced upon addition of EDGA which was most likely related to the reduced biomass production and, to a smaller extent, to the changes in the composition of the available food. Furthermore, EDGA enhanced metal leaching in the lysimeter study which could lead to groundwater pollution. To prevent these unwanted side-effects, careful management of phytoremediation methods, therefore, seems necessary.

  17. Development and clinical evaluation of a highly accurate dengue NS1 rapid test: from the preparation of a soluble NS1 antigen to the construction of an RDT.

    PubMed

    Lee, Jihoo; Kim, Hak-Yong; Chong, Chom-Kyu; Song, Hyun-Ok

    2015-06-01

    Early diagnosis of dengue virus (DENV) is important. There are numerous products on the market claiming to detect DENV NS1, but these are not always reliable. In this study, a highly sensitive and accurate rapid diagnostic test (RDT) was developed using anti-dengue NS1 monoclonal antibodies. A recombinant NS1 protein was produced with high antigenicity and purity. Monoclonal antibodies were raised against this purified NS1 antigen. The RDT was constructed using a capturing (4A6A10, Kd=7.512±0.419×10(-9)) and a conjugating antibody (3E12E6, Kd=7.032±0.322×10(-9)). The diagnostic performance was evaluated with NS1-positive clinical samples collected from various dengue endemic countries and compared to SD BioLine Dengue NS1 Ag kit. The constructed RDT exhibited higher sensitivity (92.9%) with more obvious diagnostic performance than the commercial kit (83.3%). The specificity of constructed RDT was 100%. The constructed RDT could offer a reliable point-of-care testing tool for the early detection of dengue infections in remote areas and contribute to the control of dengue-related diseases. PMID:25824725

  18. Development and clinical evaluation of a highly accurate dengue NS1 rapid test: from the preparation of a soluble NS1 antigen to the construction of an RDT.

    PubMed

    Lee, Jihoo; Kim, Hak-Yong; Chong, Chom-Kyu; Song, Hyun-Ok

    2015-06-01

    Early diagnosis of dengue virus (DENV) is important. There are numerous products on the market claiming to detect DENV NS1, but these are not always reliable. In this study, a highly sensitive and accurate rapid diagnostic test (RDT) was developed using anti-dengue NS1 monoclonal antibodies. A recombinant NS1 protein was produced with high antigenicity and purity. Monoclonal antibodies were raised against this purified NS1 antigen. The RDT was constructed using a capturing (4A6A10, Kd=7.512±0.419×10(-9)) and a conjugating antibody (3E12E6, Kd=7.032±0.322×10(-9)). The diagnostic performance was evaluated with NS1-positive clinical samples collected from various dengue endemic countries and compared to SD BioLine Dengue NS1 Ag kit. The constructed RDT exhibited higher sensitivity (92.9%) with more obvious diagnostic performance than the commercial kit (83.3%). The specificity of constructed RDT was 100%. The constructed RDT could offer a reliable point-of-care testing tool for the early detection of dengue infections in remote areas and contribute to the control of dengue-related diseases.

  19. Antiviral activities of 15 dengue NS2B-NS3 protease inhibitors using a human cell-based viral quantification assay.

    PubMed

    Chu, Justin Jang Hann; Lee, Regina Ching Hua; Ang, Melgious Jin Yan; Wang, Wei-Ling; Lim, Huichang Annie; Wee, John Liang Kuan; Joy, Joma; Hill, Jeffrey; Brian Chia, C S

    2015-06-01

    The dengue virus is a mosquito-borne pathogen responsible for an estimated 50-100 million human dengue infections annually. There are currently no approved drugs against this disease, resulting in a major unmet clinical need. The dengue viral NS2B-NS3 protease has been identified as a plausible drug target due to its involvement in viral replication in mammalian host cells. In the past decade, at least 20 dengue NS2B-NS3 protease inhibitors have been reported in the literature with a range of inhibitory activities in protease assays. However, such assays do not shed light on an inhibitor's ability to penetrate human cell membranes where the viral protease resides. In this study, we investigated the antiviral activities of 15 small-molecule and peptide-based NS2B-NS3 inhibitors on dengue serotype 2-infected HuH-7 human hepatocarcinoma cells. Experimental results revealed anthraquinone ARDP0006 (compound 5) to be the most potent inhibitor which reduced dengue viral titer by more than 1 log PFU/mL at 1 μM in our cell-based assays involving HuH-7 and K562 cell lines, suggesting that its scaffold could serve as a lead for further medicinal chemistry studies. Compound 5 was also found to be non-cytotoxic at 1 μM over 3 days incubation on HuH-7 cells using the Alamar Blue cellular toxicity assay.

  20. Degradation of Dye Wastewater by ns-Pulse DBD Plasma

    NASA Astrophysics Data System (ADS)

    Gao, Jin; Gu, Pingdao; Yuan, Li; Zhong, Fangchuan

    2013-09-01

    Two plasma reactors have been developed and used to degrade dye wastewater agents. The configuration of one plasma reactor is a comb-like extendable unit module consisting of 5 electrodes covered with a quartz tube and the other one is an array reactor which is extended from the unit module. The decomposition of wastewater by ns pulse dielectric barrier discharge (DBD) plasma have been carried out by atomizing the dyeing solutions into the reactors. During experiments, the indigo carmine has been treated as the waste agent. The measurements of UV-VIS absorption spectroscopy and the chemical oxygen demand (COD) are carried out to demonstrate the decomposition effect on the wastewater. It shows that the decoloration rate of 99% and the COD degradation rate of 65% are achieved with 15 min treatment in the unit reactor. The effect of electrical parameters on degradation has been studied in detail. Results from the array reactor indicate that it has a better degradation effect than the unit one. It can not only totally remove the chromogenic bond of the indigo carmine solution, but also effectively degrade unsaturated bonds. The decoloration rate reaches 99% after 10 min treatment, the decomposition rate of the unsaturated bond reaches 83% after 60 min treatment, and the COD degradation rate is nearly 74%.

  1. Development of parallel incompressible NS solver on stretched grids

    NASA Astrophysics Data System (ADS)

    Jothiprasad, G.; Caughey, D.; Pope, S. B.

    2003-11-01

    Development of a parallel NS solver for studying DNS and LES of temporal mixing layers is discussed. The equations are cast in strong conservation form on a uniform computational mesh, transformed from a stretched mesh in the physical domain. Variables are defined on a collocated grid, and the transformed equations are solved using a fractional step method. Convective and dissipative terms are treated using explicit Adams-Bashforth and implicit Crank-Nicolson, respectively. Fourth order spatial accuracy is maintained except for hyperviscous subgrid model terms, which are only 2nd order accurate. The block LU analysis of J. B. Perot, extended to fractional step methods on collocated grids, shows that an O(Δ t^2) term involving the pressure gradient must be added to the momentum equations to maintain 2nd order accuracy in time. Using a smaller stencil for the pressure gradients largely simplifies the pressure Poisson equation while still ensuring that discrete continuity is satisfied to appropriate order. Implementation on distributed-memory multiprocessors is achieved using MPI, with care taken to minimize communication overhead.

  2. Comments on D-brane dynamics near NS5-branes

    NASA Astrophysics Data System (ADS)

    Sahakyan, David A.

    2004-10-01

    We study the properties of a D-brane in the presence of k NS5 branes. The Dirac-Born-Infeld action describing the dynamics of this D-brane is very similar to that of a non-BPS D-brane in ten dimensions. As the D-brane approaches the fivebranes, its equation of state approaches that of a pressureless fluid. In non-BPS D-brane case this is considered as an evidence for the decay of the D-brane into ``tachyon matter''. We show that in our case similar behavior is the consequence of the motion of the D-brane. In particular in the rest frame of the moving D-brane the equation of state is that of a usual D-brane, for which the pressure is equal to the energy density. We also compute the total cross-section for the decay of the D-brane into closed string modes and show that the emitted energy has a power like divergence for D0, D1 and D2 branes, while converges for higher dimensional D-branes. We also speculate on the possibility that the infalling D-brane describes a decaying defect in six dimensional Little String Theory.

  3. Nitrogen oxide removal dynamic process through 15 Ns DBD technique

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojun; Zhang, Lianshui; Lai, Weidong; Liu, Fengliang

    2015-05-01

    Nitrogen oxides exhaust gas assumes the important responsibility on air pollution by forming acid rain. This paper discusses the NO removal mechanism in 15 ns pulse dielectric barrier discharge (DBD) plasma through experimental and simulating method. Emission spectra collected from plasma are evaluated as sourced from N+ and O(3P). The corresponding zero-dimensional model is established and verified through comparing the simulated concentration evolution and the experimental time-resolved spectra of N+. The electron impact ionization plays major role on NO removal and the produced NO+ are further decomposed into N+ and O(3P) through electron impact dissociative excitation rather than the usual reported dissociative recombination process. Simulation also indicates that the removal process can be accelerated by NO inputted at lower initial concentration or electrons streamed at higher concentration, due to the heightened electron impact probability on NO molecules. The repetitive pulse discharge is a benefit for improving the NO removal efficiency by effectively utilizing the radicals generated from the previous pulse under the condition that the pulse period should be shorter enough to ignore the spatial diffusion of radicals. Finally, slight attenuation on NO removal has been experimentally and simulatively observed after N2 mixed, due to the competitive consumption of electrons.

  4. A new panel of NS1 antibodies for easy detection and titration of influenza A virus.

    PubMed

    Tan, Zhihao; Akerstrom, Sara; Wee, Boon Yu; Lal, Sunil K; Mirazimi, Ali; Tan, Yee-Joo

    2010-03-01

    The non-structural protein NS1 of the influenza A virus is a good target for the development of diagnostic assays. In this study, three NS1 monoclonal antibodies (mAbs) were generated by using recombinant NS1 protein of H5N1 virus and found to bind both the native and denatured forms of NS1. Two of the mAbs, 6A4 and 2H6, bind NS1 of three different strains of influenza A virus, namely H1N1, H3N2, and H5N1. Epitope mapping revealed that residues 42-53 of H5N1 NS1 are essential for the interaction with both mAbs. Between the three strains, there is only one amino acid difference in this domain, which is consistent with the observed cross-reactivities. On the other hand, mAb 1G1 binds to residues 206-215 of H5N1 NS1 and does not bind NS1 of H1N1 or H3N2. Furthermore, all three mAbs detected NS1 proteins expressed in virus infected MDCK cells and indirect immunofluorescence staining with mAbs 6A4 and 2H6 provided an alternative method for viral titer determination. Quantifying the numbers of fluorescent foci units yielded viral titers for three different isolates of H5N1 virus that are highly comparable to that obtained by observing cytopathic effect induced by virus infection. Importantly, this alternative method yields results at 1 day post-infection while the conventional method using cytopathic effect yields results at 3 days post-infection. The results showed that this new panel of NS1 antibodies can detect NS1 protein expressed during viral infection and can be used for fast and easy titration of influenza A virus. J. Med. Virol. 82:467-475, 2010. (c) 2010 Wiley-Liss, Inc.

  5. Metal chelation therapy in rheumathoid arthritis: a case report. Successful management of rheumathoid arthritis by metal chelation therapy.

    PubMed

    Bamonti, Fabrizia; Fulgenzi, Alessandro; Novembrino, Cristina; Ferrero, Maria Elena

    2011-12-01

    Toxic metals are involved in the pathogenesis of some neurodegenerative and vascular diseases and are known to impair the immune system functions. We report here the case of a patient affected by heavy metal intoxication, who had developed an autoimmune disease. There was evidence of aluminium, cadmium and lead intoxication in a 63-year old Italian woman affected by rheumatoid arthritis (RA). We treated the patient with calcium disodium edetate (EDTA) once a week for a year in order to remove traces of heavy metal intoxication. Oxidative status profile was carried out at the beginning and after 6 months' EDTA chelation. At the end of the treatment, the patient did not show any signs of metal intoxication, RA symptoms and oxidative status improved.

  6. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    PubMed Central

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-01-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed. PMID:26878770

  7. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil.

    PubMed

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-16

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  8. Generation, Fractionation, and Characterization of Iron-Chelating Protein Hydrolysate from Palm Kernel Cake Proteins.

    PubMed

    Zarei, Mohammad; Ghanbari, Rahele; Tajabadi, Naser; Abdul-Hamid, Azizah; Bakar, Fatimah Abu; Saari, Nazamid

    2016-02-01

    Palm kernel cake protein was hydrolyzed with different proteases namely papain, bromelain, subtilisin, flavourzyme, trypsin, chymotrypsin, and pepsin to generate different protein hydrolysates. Peptide content and iron-chelating activity of each hydrolysate were evaluated using O-phthaldialdehyde-based spectrophotometric method and ferrozine-based colorimetric assay, respectively. The results revealed a positive correlation between peptide contents and iron-chelating activities of the protein hydrolysates. Protein hydrolysate generated by papain exhibited the highest peptide content of 10.5 mM and highest iron-chelating activity of 64.8% compared with the other hydrolysates. Profiling of the papain-generated hydrolysate by reverse phase high performance liquid chromatography fractionation indicated a direct association between peptide content and iron-chelating activity in most of the fractions. Further fractionation using isoelectric focusing also revealed that protein hydrolysate with basic and neutral isoelectric point (pI) had the highest iron-chelating activity, although a few fractions in the acidic range also exhibited good metal chelating potential. After identification and synthesis of papain-generated peptides, GGIF and YLLLK showed among the highest iron-chelating activities of 56% and 53%, whereas their IC50 were 1.4 and 0.2 μM, respectively.

  9. Iron chelators can protect against oxidative stress through ferryl heme reduction.

    PubMed

    Reeder, Brandon J; Hider, Robert C; Wilson, Michael T

    2008-02-01

    Iron chelators such as desferrioxamine have been shown to ameliorate oxidative damage in vivo. The mechanism of this therapeutic action under non-iron-overload conditions is, however, complex, as desferrioxamine has properties that can impact on oxidative damage independent of its capacity to act as an iron chelator. Desferrioxamine can act as a reducing agent to remove cytotoxic ferryl myoglobin and hemoglobin and has recently been shown to prevent the formation of a highly cytotoxic heme-to-protein cross-linked derivative of myoglobin. In this study we have examined the effects of a wide range of iron chelators, including the clinically used hydroxypyridinone CP20 (deferriprone), on the stability of ferryl myoglobin and on the formation of heme-to-protein cross-linking. We show that all hydroxypyridinones, as well as many other iron chelators, are efficient reducing agents of ferryl myoglobin. These compounds are also effective at preventing the formation of cytotoxic derivatives of myoglobin such as heme-to-protein cross-linking. These results show that the use of iron chelators in vivo may ameliorate oxidative damage under conditions of non-iron overload by at least two mechanisms. The antioxidant effects of chelators in vivo cannot, therefore, be attributed solely to iron chelation. PMID:18215735

  10. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    NASA Astrophysics Data System (ADS)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  11. A novel nuclease activity that is activated by Ca(2+) chelated to EGTA.

    PubMed

    Dominguez, Kenneth; Ward, W Steven

    2009-12-01

    Most nucleases require a divalent cation as a cofactor, usually Mg(2+) or Ca(2+), and are inhibited by the chelators EDTA and EGTA. We report the existence of a novel nuclease activity, initially identified in the luminal fluids of the mouse male reproductive tract but subsequently found in other tissues,that requires EGTA chelated to calcium to digest DNA. We refer to this unique enzyme as CEAN (Chelated EGTA Activated Nuclease). Using a fraction of vas deferens luminal fluid, plasmid DNA was degraded in the presence of excess Ca(2+) (Ca(2+) :EGTA = 16) or excess EGTA (Ca(2+) :EGTA = 0.25), but required the presence of both. Higher levels of EGTA (Ca(2+) :EGTA = 0.10) prevented activity, suggesting that unchelated EGTA may be a competitive inhibitor. The EGTA-Ca(2+) activation of CEAN is reversible as removing EGTA-Ca(2+) stops ongoing DNA degradation, but adding EGTA-Ca(2+) again reactivates the enzyme. This suggests the possibility that CEAN binds directly to EGTA-Ca(2+). CEAN has a greater specificity for the chelator than for the divalent cation. Two other chelators, BAPTA and sodium citrate, do not activate CEAN in the presence of cation, but chelated EDTA does. EGTA chelated to other divalent cations such as Mn(2+), Zn(2+) , and Cu(2+) activate CEAN, but not Mg(2+) . The activity is lost upon boiling suggesting that it is a protein. These data suggest that EGTA and EDTA may not always protect DNA from nuclease damage.

  12. A competition model between Pseudomonas fluorescens and pathogens via iron chelation.

    PubMed

    Fgaier, Hedia; Eberl, Hermann J

    2010-04-21

    In this study we present a competition model between a non-chelator (e.g. pathogen) microorganism and an iron chelator microorganism (e.g. Pseudomonas fluorescens). This latter is a beneficial bacteria that can inhibit the growth of the non-chelator through its iron chelating capability. This phenomena of iron chelation is shown to prevent the pathogen from proliferating to numbers capable of causing disease. A mathematical model is formulated and used to study this competition. The model proposes a new and simple conceptual explanation of interactions. It is a nonlinear system of ordinary differential equations. A qualitative analysis of the model for the batch case (no inflow or outflow from the system) is carried out and the global behavior of the model variables is studied. For the chemostat case, the equilibrium points were derived and their stability was performed through extensive numerical simulations. It is found that iron chelation is able to control the non-chelator microorganism growth under a wide range of conditions. PMID:20005236

  13. Fabrication and characterization of the nano-composite of whey protein hydrolysate chelated with calcium.

    PubMed

    Xixi, Cai; Lina, Zhao; Shaoyun, Wang; Pingfan, Rao

    2015-03-01

    The nano-composites of whey protein hydrolysate (WPH) chelated with calcium were fabricated in aqueous solution at 30 °C for 20 min, with the ratio of hydrolysate to calcium 15 : 1 (w/w). UV scanning spectroscopy, fluorescent spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering and atomic force microscopy were applied to characterize the structure of the WPH-calcium chelate. The nano-composites showed the successful incorporation of calcium into the WPH, indicating the interaction between calcium and WPH. The chelation of calcium ions to WPH caused molecular folding and aggregation which led to the formation of a WPH-calcium chelate of nanoparticle size, and the principal sites of calcium-binding corresponded to the carboxyl groups and carbonyl groups of WPH. The WPH-calcium chelate demonstrated excellent stability and absorbability under both acidic and basic conditions, which was beneficial for calcium absorption in the gastrointestinal tract of the human body. Moreover, the calcium absorption of the WPH-calcium chelate on Caco-2 cells was significantly higher than those of calcium gluconate and CaCl₂ in vitro, suggesting the possible increase in calcium bioavailability. The findings suggest that the WPH-calcium chelate has the potential in making dietary supplements for improving bone health of the human body.

  14. Effect of iron chelators on placental uptake and transfer of iron in rat

    SciTech Connect

    Wong, C.T.; McArdle, H.J.; Morgan, E.H.

    1987-05-01

    The uptake of radiolabeled transferrin and iron by the rat placenta has been studied using two approaches. The first involved injection of a ferrous or ferric iron chelator followed by injection of label. Neither chelator decreased the amount of labelled transferrin in the placenta after 2-h incubation and only bipyridine, a ferrous iron chelator, inhibited iron transport to the fetus. Deferoxamine (DFO), a ferric iron chelator, had no effect on iron transport to the fetus but reduced iron uptake by the liver. Both bipyridine and DFO increased iron excretion into the gut and by the urinary tract to the same degree into the gut, but there was a 10-fold greater urinary excretion with bipyridine than with DFO. Injection of iron attached to the chelators showed that neither bipyridine nor DFO could donate iron to the fetus as efficiently as transferrin. The mechanism involved was further investigated by studying the effect of the chelators on uptake of transferrin-bound iron by placental cells in culture. DFO inhibited iron accumulation more effectively than bipyridine in the cultured cells. The effect was not due to a decrease in the cycling time of the receptor. The results can be explained if the iron is released from the transferrin in intracellular vesicles in the ferrous form, where it may be chelated by bipyridine and prevented from passing to the fetus or converted to the ferric form once it is inside the cell matrix.

  15. Experimental evidence and molecular modeling of the interaction between hRSV-NS1 and quercetin.

    PubMed

    Gomes, Deriane Elias; Caruso, Ícaro Putinhon; de Araujo, Gabriela Campos; de Lourenço, Isabella Otenio; de Melo, Fernando Alves; Cornélio, Marinônio Lopes; Fossey, Marcelo Andrés; de Souza, Fátima Pereira

    2016-04-01

    Human Respiratory Syncytial Virus is one of the major causes of acute respiratory infections in children, causing bronchiolitis and pneumonia. Non-Structural Protein 1 (NS1) is involved in immune system evasion, a process that contributes to the success of hRSV replication. This protein can act by inhibiting or neutralizing several steps of interferon pathway, as well as by silencing the hRSV ribonucleoproteic complex. There is evidence that quercetin can reduce the infection and/or replication of several viruses, including RSV. The aims of this study include the expression and purification of the NS1 protein besides experimental and computational assays of the NS1-quercetin interaction. CD analysis showed that NS1 secondary structure composition is 30% alpha-helix, 21% beta-sheet, 23% turn and 26% random coils. The melting temperature obtained through DSC analysis was around 56°C. FRET analysis showed a distance of approximately 19Å between the NS1 and quercetin. Fluorescence titration results showed that the dissociation constant of the NS1-quercetin interaction was around 10(-6)M. In thermodynamic analysis, the enthalpy and entropy balanced forces indicated that the NS1-quercetin interaction presented both hydrophobic and electrostatic contributions. The computational results from the molecular modeling for NS1 structure and molecular docking regarding its interaction with quercetin corroborate the experimental data.

  16. Identification and characterization of coumestans as novel HCV NS5B polymerase inhibitors

    PubMed Central

    Kaushik-Basu, Neerja; Bopda-Waffo, Alain; Talele, Tanaji T.; Basu, Amartya; Costa, Paulo R. R.; da Silva, Alcides J. M.; Sarafianos, Stefan G.; Noël, François

    2008-01-01

    The hepatitis C virus (HCV) NS5B is essential for viral RNA replication and is therefore a prime target for development of HCV replication inhibitors. Here, we report the identification of a new class of HCV NS5B inhibitors belonging to the coumestan family of phytoestrogens. Based on the in vitro NS5B RNA-dependent RNA polymerase (RdRp) inhibition in the low micromolar range by wedelolactone, a naturally occurring coumestan, we evaluated the anti-NS5B activity of four synthetic coumestan analogues bearing different patterns of substitutions in their A and D rings, and observed a good structure-activity correlation. Kinetic characterization of coumestans revealed a noncompetitive mode of inhibition with respect to nucleoside triphosphate (rNTP) substrate and a mixed mode of inhibition towards the nucleic acid template, with a major competitive component. The modified order of addition experiments with coumestans and nucleic acid substrates affected the potencies of the coumestan inhibitors. Coumestan interference at the step of NS5B–RNA binary complex formation was confirmed by cross-linking experiments. Molecular docking of coumestans within the allosteric site of NS5B yielded significant correlation between their calculated binding energies and IC50 values. Coumestans thus add to the diversifying pool of anti-NS5B agents and provide a novel scaffold for structural refinement and development of potent NS5B inhibitors. PMID:18203743

  17. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-01

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity.

  18. NS1-mediated delay of type I interferon induction contributes to influenza A virulence in ferrets.

    PubMed

    Meunier, Isabelle; von Messling, Veronika

    2011-07-01

    Interference of the influenza A virus non-structural protein NS1 with type I interferon (IFN) signalling has been characterized extensively in vitro. To assess the contribution of NS1 to the virulence of a specific strain, we generated recombinant USSR/90/77 viruses bearing the NS1 proteins of the attenuated strain PR/8/34 or the highly pathogenic strain 1918 'Spanish flu', all belonging to the H1N1 subtype. In vitro, the extent of interference with type I IFN production exerted by the different NS1 proteins correlated with the reported virulence of the respective strain. Infection of ferrets with the recombinant viruses revealed that the presence of the 1918 NS1 resulted in a slightly more severe disease with generally higher clinical scores and increased lung pathology. Analysis of mRNA from nasal wash cells revealed that viruses carrying the 1918 and, to a lesser extent, USSR/90/77 NS1 proteins caused a delay in upregulation of type I IFNs compared with the NS1 PR/8/34-expressing virus, demonstrating the importance of NS1 for early host-response control and virulence.

  19. Influenza virus non-structural protein NS1: interferon antagonism and beyond.

    PubMed

    Marc, Daniel

    2014-12-01

    Most viruses express one or several proteins that counter the antiviral defences of the host cell. This is the task of non-structural protein NS1 in influenza viruses. Absent in the viral particle, but highly expressed in the infected cell, NS1 dramatically inhibits cellular gene expression and prevents the activation of key players in the IFN system. In addition, NS1 selectively enhances the translation of viral mRNAs and may regulate the synthesis of viral RNAs. Our knowledge of the virus and of NS1 has increased dramatically during the last 15 years. The atomic structure of NS1 has been determined, many cellular partners have been identified and its multiple activities have been studied in depth. This review presents our current knowledge, and attempts to establish relationships between the RNA sequence, the structure of the protein, its ligands, its activities and the pathogenicity of the virus. A better understanding of NS1 could help in elaborating novel antiviral strategies, based on either live vaccines with altered NS1 or on small-compound inhibitors of NS1.

  20. A Second RNA-Binding Site in the NS1 Protein of Influenza B Virus.

    PubMed

    Ma, Li-Chung; Guan, Rongjin; Hamilton, Keith; Aramini, James M; Mao, Lei; Wang, Shanshan; Krug, Robert M; Montelione, Gaetano T

    2016-09-01

    Influenza viruses cause a highly contagious respiratory disease in humans. The NS1 proteins of influenza A and B viruses (NS1A and NS1B proteins, respectively) are composed of two domains, a dimeric N-terminal domain and a C-terminal domain, connected by a flexible polypeptide linker. Here we report the 2.0-Å X-ray crystal structure and nuclear magnetic resonance studies of the NS1B C-terminal domain, which reveal a novel and unexpected basic RNA-binding site that is not present in the NS1A protein. We demonstrate that single-site alanine replacements of basic residues in this site lead to reduced RNA-binding activity, and that recombinant influenza B viruses expressing these mutant NS1B proteins are severely attenuated in replication. This novel RNA-binding site of NS1B is required for optimal influenza B virus replication. Most importantly, this study reveals an unexpected RNA-binding function in the C-terminal domain of NS1B, a novel function that distinguishes influenza B viruses from influenza A viruses.

  1. A Second RNA-Binding Site in the NS1 Protein of Influenza B Virus.

    PubMed

    Ma, Li-Chung; Guan, Rongjin; Hamilton, Keith; Aramini, James M; Mao, Lei; Wang, Shanshan; Krug, Robert M; Montelione, Gaetano T

    2016-09-01

    Influenza viruses cause a highly contagious respiratory disease in humans. The NS1 proteins of influenza A and B viruses (NS1A and NS1B proteins, respectively) are composed of two domains, a dimeric N-terminal domain and a C-terminal domain, connected by a flexible polypeptide linker. Here we report the 2.0-Å X-ray crystal structure and nuclear magnetic resonance studies of the NS1B C-terminal domain, which reveal a novel and unexpected basic RNA-binding site that is not present in the NS1A protein. We demonstrate that single-site alanine replacements of basic residues in this site lead to reduced RNA-binding activity, and that recombinant influenza B viruses expressing these mutant NS1B proteins are severely attenuated in replication. This novel RNA-binding site of NS1B is required for optimal influenza B virus replication. Most importantly, this study reveals an unexpected RNA-binding function in the C-terminal domain of NS1B, a novel function that distinguishes influenza B viruses from influenza A viruses. PMID:27545620

  2. Reverting cholesterol auxotrophy of NS0 cells by altering epigenetic gene silencing.

    PubMed

    Seth, Gargi; Ozturk, Mustafa; Hu, Wei-Shou

    2006-03-01

    NS0 is a cholesterol-requiring mouse myeloma cell line widely used in the production of recombinant antibodies. We have previously reported that the deficiency of 17beta-hydroxysteroid dehydrogenase type7 (Hsd17b7) is responsible for the cholesterol auxotrophy of NS0 cells. Here we demonstrate DNA methylation to be the mechanism underlying transcriptional suppression of Hsd17b7 in cholesterol dependent NS0 cells. Analysis of the DNA methylation pattern revealed methylation of the CpG-rich region upstream of the Hsd17b7 transcription start site in NS0 cells. This is in contrast to the unmethylated status of this sequence in a naturally isolated cholesterol independent revertant cell population (NS0_r). This transcriptional repression was relieved after treating cells with the demethylating drug, 5-azacytidine. Drug treatment also gave rise to high frequency cholesterol-independent variants. Characterization of revertants revealed substantially elevated transcript level of 17beta-hydroxysteroid dehydrogenase type7 (Hsd17b7) gene along with hypomethylation of the CpG-rich region. These results affirm that deficiency of Hsd17b7 causes cholesterol dependence of NS0 cells. Furthermore, induction of cholesterol independence by altering DNA methylation pattern alludes to the role of epigenetics in the metabolic adaptation of NS0 cells. With the widespread use of NS0 cells, this finding will have a significant impact on the optimization of recombinant antibody production processes. PMID:16189819

  3. Identification of an NTPase motif in classical swine fever virus NS4B protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classical swine fever (CSF) is a highly contagious and often fatal disease of swine caused by CSF virus (CSFV), a positive sense single-stranded RNA virus in the genus Pestivirus of the Flaviviridae family. Here, we have identified, within CSFV non-structural (NS) protein NS4B, conserved sequence el...

  4. Mutations in the classical swine fever virus NS4B protein affects virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NS4B is one of the non-structural proteins of Classical Swine Fever Virus (CSFV), the etiological agent of a severe, highly lethal disease of swine. Protein domain analysis of the predicted amino acid sequence of the NS4B protein of highly pathogenic CSFV strain Brescia (BICv) identified a Toll/Inte...

  5. Physicochemical properties of skim milk powders prepared with the addition of mineral chelators.

    PubMed

    Sikand, V; Tong, P S; Vink, Sean; Roy, Soma

    2016-06-01

    The objective of this study was to determine the effect of mineral chelator addition during skim milk powder (SMP) manufacture on the solubility, turbidity, soluble protein, and heat stability (HS). Three chelators (sodium citrate dihydrate, sodium polyphosphate, and disodium EDTA) at 3 different concentrations (5, 15, and 25mM) were added to skim milk concentrate (30% total solids), and the pH was adjusted to 6.65 before spray drying to produce SMP. Spray-dried SMP samples were tested for solubility index (SI). Additionally, samples were reconstituted to contain 9% total solids, adjusted to pH 7.0, and tested for turbidity, protein content from supernatants of ultracentrifuged samples, and HS. Lower SI values were observed for samples treated with 5mM disodium EDTA and sodium polyphosphate than control samples or samples with 5mM sodium citrate dihydrate. Furthermore, lower SI values were observed with an increased level of chelating agents regardless of chelator type. A decreased turbidity value was found with increasing levels of mineral chelating salt treatment. Low turbidity with increasing levels of added chelators may be associated with the dissociation of caseins from micelles. Furthermore, higher protein content was observed in supernatants of ultracentrifuged samples treated with increased level of chelators as compared with the control sample. Higher HS was observed in samples treated with 5mM compared with samples treated with 25mM mineral chelator. The results suggest improved solubility and HS upon addition of mineral chelators to SMP during its manufacture. PMID:27040785

  6. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates.

    PubMed

    Huang, Saibo; Lin, Huimin; Deng, Shang-Gui

    2015-12-01

    The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH) were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH) were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl₂ treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE), longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone. PMID:26633476

  7. EDTA chelation therapy, without added vitamin C, decreases oxidative DNA damage and lipid peroxidation.

    PubMed

    Roussel, Anne Marie; Hininger-Favier, Isabelle; Waters, Robert S; Osman, Mireille; Fernholz, Karen; Anderson, Richard A

    2009-03-01

    Chelation therapy is thought to not only remove contaminating metals but also to decrease free radical production. However, in standard ethylene diamine tetracetic acid (EDTA) chelation therapy, high doses of vitamin C with potential pro-oxidant effects are often added to the chelation solution. The authors demonstrated previously that the intravenous administration of the standard chelation cocktail, containing high amounts of vitamin C, resulted in an acute transitory pro-oxidant burst that should be avoided in the treatment of pathologies at risk of increased oxidative stress such as diabetes and cardiovascular disease. The current study was designed to determine the acute and chronic biochemical effects of chelation therapy on accepted clinical, antioxidant variables. An EDTA chelation cocktail not containing ascorbic acid was administered to six adult patients for five weeks (10 sessions of chelation therapy); antioxidant indicators were monitored. Immediately after the initial chelation session, in contrast with the data previously reported with the standard cocktail containing high doses of vitamin C, none of the oxidative stress markers were adversely modified. After five weeks, plasma peroxide levels, monitored by malondialdehyde, decreased by 20 percent, and DNA damage, monitored by formamidopyrimidine-DNA glycosylase (Fpg) sensitive sites, decreased by 22 percent. Remaining antioxidant-related variables did not change. In summary, this study demonstrates that multiple sessions of EDTA chelation therapy in combination with vitamins and minerals, but without added ascorbic acid, decreases oxidative stress. These results should be beneficial in the treatment of diseases associated with increased oxidative stress such as diabetes and cardiovascular diseases.

  8. Isomerism in benzyl-DOTA derived bifunctional chelators: implications for molecular imaging.

    PubMed

    Payne, Katherine M; Woods, Mark

    2015-02-18

    The bifunctional chelator IB-DOTA has found use in a range of biomedical applications given its ability to chelate many metal ions, but in particular the lanthanide(III) ions. Gd(3+) in particular is of interest in the development of new molecular imaging agents for MRI and is highly suitable for chelation by IB-DOTA. Given the long-term instability of the aryl isothiocyanate functional group we have used the more stable nitro derivative (NB-DOTA) to conduct a follow-up study of some of our previous work on the coordination chemistry of chelates of these BFCs. Using a combination of NMR and HPLC to study the Eu(3+) and Yb(3+) chelates of NB-DOTA, we have demonstrated that this ligand will produce two discrete regioisomeric chelates at the point at which the metal ion is introduced into the BFC. These regioisomers are defined by the position of the benzylic substituent on the macrocyclic ring: adopting an equatorial position either at the corner or the side of the [3333] ring conformation. These regioisomers are incapable of interconversion and are distinct, separate structures with different SAP/TSAP ratios. The side isomer exhibits an increased population of the TSAP isomer, pointing to more rapid water exchange kinetics in this regioisomer. This has potential ramifications for the use of these two regioisomers of Gd(3+)-BFC chelates in MRI applications. We have also found that, remarkably, there is little or no freedom of rotation about the first single bond extending from the macrocyclic ring to the benzylic substituent. Since this is the linkage through which the chelate is conjugated to the remainder of the molecular imaging probe, this result implies that there may be reduced local rotation of the Gd(3+) chelate within a molecular imaging probe. This implies that this type of BFC could exhibit higher relaxivities than other types of BFC.

  9. Alteration of tissue disposition of cadmium by chelating agents. [Mice; rats

    SciTech Connect

    Klaassen, C.D.; Waalkes, M.P.; Cantilena, L.R. Jr.

    1984-03-01

    The effect of several chelating agents (diethyldithiocarbamic acid, DDC; nitrilotriacetic acid, NTA; 2,3-dimercaptopropanol, BAL; d,l-penicillamine, PEN; 2,3-dimercaptosuccinic acid, DMSA; ethylenediaminetetraacetic acid, EDTA; and diethylenetriaminepentaacetic acid, DTPA) on the toxicity, distribution and excretion of cadmium (Cd) was determined in mice. When chelators were administered immediately after Cd, significant increases in survival were noted after treatment with DMSA, EDTA, and DTPA. DTPA, followed by EDTA and then DMSA, were consistently the most effective in decreasing the tissue concentrations of Cd and increasing the excretion of Cd. NTA, BAL, DDC and PEN had no beneficial effects. To determine the role of MT in the acute decrease in chelator efficacy following Cd poisoning, rats were injected IV with Cd followed by DTPA at various times after Cd. Although DTPA reduced Cd content in the various organs when given immediately after Cd, the chelator was ineffective at all later times. Increases in hepatic and renal metallothionein (MT) did not occur until 2 hr after Cd, and did not coincide with the earlier drop in chelator efficacy. Blockade of MT synthesis by actinomycin D failed to eliminate this decreased DTPA effectiveness. Therefore, it appears that MT does not play an important role in the acute decrease in efficacy of chelation therapy for Cd poisoning. The effect of repeated daily administration of chelators on the distribution and excretion of Cd was studied by administering chelators daily for 5 days starting 48 hr after Cd. DTPA, EDTA, DMSA and BAL significantly increased the urinary elimination of Cd. Thus, mobilization of Cd into urine occurs with repeated chelation therapy, which may decrease tissue concentrations of Cd and reduce the toxicity of the metal. 4 references, 15 figures, 2 tables.

  10. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates

    PubMed Central

    Huang, Saibo; Lin, Huimin; Deng, Shang-gui

    2015-01-01

    The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH) were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH) were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl2 treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE), longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone. PMID:26633476

  11. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity

    PubMed Central

    Kathum, Omer Abid; Schräder, Tobias; Anhlan, Darisuren; Nordhoff, Carolin; Liedmann, Swantje; Pande, Amit; Mellmann, Alexander; Ehrhardt, Christina; Wixler, Viktor

    2016-01-01

    Summary Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non‐structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post‐translational events yet. Here, we show that the newly identified phospho‐site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double‐stranded RNA and TRIM25 as well as complex formation with RIG‐I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon‐antagonistic activity are needed. PMID:26687707

  12. Monoclonal antibodies against NS4B protein of japanese encephalitis virus.

    PubMed

    Ruan, Xindi; Huang, Shaomei; Shao, Lin; Ye, Jing; Chen, Zheng; Chen, Huanchun; Cao, Shengbo

    2013-12-01

    Japanese encephalitis (JE) is one of the most prevalent global viral encephalitis viruses. The functions of JEV (virus) NS4B protein are still under investigation. In our study, NS4B was expressed in Escherichia coli and purified by dialysis. Two clones of monoclonal antibodies (MAbs 1B1 and 1C3) against NS4B protein were generated and their characterizations were investigated. IFA, Western blot, and ELISA results showed that the MAbs were specific against JEV NS4B protein. The epitope of the MAbs was further identified using pairs of synthesized overlapping peptides. These MAbs may provide valuable tools for further exploration of the functions of NS4B and the pathogenesis of Japanese encephalitis virus. PMID:24328740

  13. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity.

    PubMed

    Kathum, Omer Abid; Schräder, Tobias; Anhlan, Darisuren; Nordhoff, Carolin; Liedmann, Swantje; Pande, Amit; Mellmann, Alexander; Ehrhardt, Christina; Wixler, Viktor; Ludwig, Stephan

    2016-06-01

    Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non-structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post-translational events yet. Here, we show that the newly identified phospho-site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double-stranded RNA and TRIM25 as well as complex formation with RIG-I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon-antagonistic activity are needed.

  14. Structure of NS1A effector domain from the influenza A/Udorn/72 virus.

    PubMed

    Xia, Shuangluo; Monzingo, Arthur F; Robertus, Jon D

    2009-01-01

    The nonstructural protein NS1A from influenza virus is a multifunctional virulence factor and a potent inhibitor of host immunity. It has two functional domains: an N-terminal 73-amino-acid RNA-binding domain and a C-terminal effector domain. Here, the crystallographic structure of the NS1A effector domain of influenza A/Udorn/72 virus is presented. Structure comparison with the NS1 effector domain from mouse-adapted influenza A/Puerto Rico/8/34 (PR8) virus strain reveals a similar monomer conformation but a different dimer interface. Further analysis and evaluation shows that the dimer interface observed in the structure of the PR8 NS1 effector domain is likely to be a crystallographic packing effect. A hypothetical model of the intact NS1 dimer is presented.

  15. BOREAS Level-2 NS001 TMS Imagery: Reflectance and Temperature in BSQ Format

    NASA Technical Reports Server (NTRS)

    Lobitz, Brad; Spanner, Michael; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Strub, Richard

    2000-01-01

    For BOREAS, the NS001 TMS images, along with the other remotely sensed data, were collected to provide spatially extensive information over the primary study areas. This information includes detailed land cover and biophysical parameter maps such as fPAR and LAI. Collection of the NS001 images occurred over the study areas during the 1994 field campaigns. The level-2 NS001 data are atmospherically corrected versions of some of the best original NS001 imagery and cover the dates of 19-Apr-1994, 07-Jun-1994, 21-Jul-1994, 08-Aug-1994, and 16-Sep-1994. The data are not geographically/geometrically corrected; however, files of relative X and Y coordinates for each image pixel were derived by using the C130 INS data in an NS001 scan model. The data are provided in binary image format files.

  16. Quinoline-2-carboxaldehyde thiosemicarbazones and their Cu(II) and Ni(II) complexes as topoisomerase IIa inhibitors.

    PubMed

    Bisceglie, Franco; Musiari, Anastasia; Pinelli, Silvana; Alinovi, Rossella; Menozzi, Ilaria; Polverini, Eugenia; Tarasconi, Pieralberto; Tavone, Matteo; Pelosi, Giorgio

    2015-11-01

    A series of quinoline-2-carboxaldehyde thiosemicarbazones and their copper(II) and nickel(II) complexes were synthesized and characterized. In all complexes the ligands are in the E configuration with respect to the imino bond and behave as terdentate. The copper(II) complexes form square planar derivatives with one molecule of terdentate ligand and chloride ion. A further non-coordinated chloride ion compensates the overall charge. Nickel(II) ions form instead octahedral complexes with two ligands for each metal ion, independently from the stoichiometric metal:ligand ratio used in the synthesis. Ligands and complexes were tested for their antiproliferative properties on histiocytic lymphoma cell line U937. Copper(II) derivatives are systematically more active than the ligands and the nickel complexes. All copper derivatives result in inhibiting topoisomerase IIa in vitro. Computational methods were used to propose a model to explain the different extent of inhibition presented by these compounds. The positive charge of the dissociated form of the copper complexes may play a key role in their action. PMID:26335598

  17. Synthesis and evaluation of simple naked-eye colorimetric chemosensors for anions based on azo dye-thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Radchatawedchakoon, Widchaya; Sangsuwan, Withsakorn; Kruanetr, Senee; Sakee, Uthai

    2014-03-01

    A series of novel, highly selective azo dye-thiosemicarbazones based anion sensors (3e-f) have been synthesized from the condensation reaction between thiosemicarbazide and six different azo salicylaldehydes. The structure of the sensors was confirmed by spectroscopic methods. The selectivity and sensitivity in the recognition for acetate anion over other anions such as fluoride, chloride, iodide and dihydrogenphosphate anions were determined by naked-eyes and UV-vis spectra. The color of the solution containing sensor had an obvious change from light yellow to orange only after the addition of acetate anion in aqueous solution (water/dimethylsulfoxide, 7:3, v/v) while other anions did not cause obvious color change. The anion recognition property of the receptor via proton-transfer is monitored by UV-vis titration and 1H NMR spectroscopy. Under condition in aqueous solution of sensor 3e (water/dimethylsulfoxide, 7:3, v/v), linearity range for the quantification of acetate anion was 1-22 μM and limit of detection (LOD) of acetate anion was 0.71 μM.

  18. Transition metal complexes of Vanillin- 4N-(2-pyridyl) thiosemicarbazone (H 2VPT); thermal, structural and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    El-Reash, Gaber Abu; El-Ayaan, Usama; Gabr, I. M.; El-Rachawy, El-Bastawesy

    2010-04-01

    The present work carried out a study on the ligational behavior of the new ligand, Vanillin- 4N-(2-pyridyl) thiosemicarbazone (H 2VPT) 1 towards some transition metal ions namely, Mn 2+, Co 2+, Ni 2+, Cu 2+, Zn 2+,Cd 2+, Hg 2+ and U 6+. These complexes namely [Mn(HVPT)Cl] 2, [Co(VPT)(H 2O)] 2H 2O 3, [Ni(HVPT)Cl(H 2O)] 4, [Cu(HVPT)Cl(H 2O)] 5, [Zn(VPT)(H 2O)]H 2O 6, [Cd(HVPT)Cl(H 2O)] 7, [Hg(VPT)(H 2O)]H 2O 8 and [UO 2(H 2VPT)(OAc) 2]H 2O 9, were characterized by elemental analysis, spectral (IR, 1H NMR and UV-vis) and magnetic moment measurements. The suggested structures were confirmed by applying geometry optimization and conformational analysis. Thermal properties and decomposition kinetics of all compounds are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters ( E, A, Δ H, Δ S and Δ G) of all thermal decomposition stages have been evaluated using Coats-Redfern equation. ESR spectra of [Cu(HVPT)Cl]H 2O at room temperature show broad signal, indicating spin-exchange interactions between copper(II) ions.

  19. Synthesis, spectroscopic, anticancer and antibacterial studies of Ni(II) and Cu(II) complexes with 2-carboxybenzaldehyde thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Vandana

    2014-08-01

    Ni(II) and Cu(II) complexes of 2-carboxybenzaldehyde thiosemicarbazone (L) were synthesized and investigated by their spectral and analytical data. These newly synthesized complexes have a composition of M(L)X(H2O)2 (where M = Ni(II), Cu(II) and X = Cl-, NO3-, CH3COO-) and (L) is the tridentate Schiff base ligand. The ligand and its complexes have been characterized on the basis of analytical, molar conductivity, magnetic susceptibility measurements, FT-IR, ESR, 1H NMR and electronic spectral analysis. All the compounds were non-electrolytic in nature. On the basis of spectral studies an octahedral geometry has been assigned for Ni(II) and a tetragonal geometry for Cu(II) complexes. The ligand and its metal complexes were screened for their anticancer studies against human breast cancer cell lines MCF-7 and calculated minimum inhibitory concentration and also for antibacterial activity using Kirby-Bauer single disk susceptibility test.

  20. Synthesis and evaluation of isatin-β-thiosemicarbazones as novel agents against antibiotic-resistant Gram-positive bacterial species.

    PubMed

    Zhang, Xu-Meng; Guo, Hui; Li, Zai-Shun; Song, Fu-Hang; Wang, Wei-Min; Dai, Huan-Qin; Zhang, Li-Xin; Wang, Jian-Guo

    2015-08-28

    Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) have caused an increasing mortality rate, which means that antibiotic resistance is becoming an important health issue. In the course to screen new agents for resistant bacteria, we identified that a series of isatin-β-thiosemicarbazones (IBTs) could inhibit the growth of MRSA and VRE. This was the first time that the "familiar" IBT compounds exhibited significant anti Gram-positive pathogen activity. Against a clinical isolated MRSA strain, 20 of the 51 synthesized compounds showed minimum inhibitory concentration (MIC) data of 0.78 mg/L and another 12 novel compounds had MICs of 0.39 mg/L. Moreover, these compounds also inhibited Enterococcus faecalis and VRE at similar levels, indicating that IBTs might have different mode of action compared with vancomycin. For these IBTs, comparative field analysis (CoMFA) models were further established to understand the structure-activity relationships in order to design new compounds from steric and electrostatic contributions. This work has suggested that IBTs can be considered as potential lead compounds to discover antibacterial inhibitors to combat drug resistance.