Sample records for ns5a replication complex

  1. Phosphorylation of NS5A Serine-235 is essential to hepatitis C virus RNA replication and normal replication compartment formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyre, Nicholas S., E-mail: nicholas.eyre@adelaide.edu.au; Centre for Cancer Biology, SA Pathology, Adelaide; Hampton-Smith, Rachel J.

    Hepatitis C virus (HCV) NS5A protein is essential for HCV RNA replication and virus assembly. Here we report the identification of NS5A phosphorylation sites Ser-222, Ser-235 and Thr-348 during an infectious HCV replication cycle and demonstrate that Ser-235 phosphorylation is essential for HCV RNA replication. Confocal microscopy revealed that both phosphoablatant (S235A) and phosphomimetic (S235D) mutants redistribute NS5A to large juxta-nuclear foci that display altered colocalization with known replication complex components. Using electron microscopy (EM) we found that S235D alters virus-induced membrane rearrangements while EM using ‘APEX2’-tagged viruses demonstrated S235D-mediated enrichment of NS5A in irregular membranous foci. Finally, using amore » customized siRNA screen of candidate NS5A kinases and subsequent analysis using a phospho-specific antibody, we show that phosphatidylinositol-4 kinase III alpha (PI4KIIIα) is important for Ser-235 phosphorylation. We conclude that Ser-235 phosphorylation of NS5A is essential for HCV RNA replication and normal replication complex formation and is regulated by PI4KIIIα. - Highlights: • NS5A residues Ser-222, Ser-235 and Thr-348 are phosphorylated during HCV infection. • Phosphorylation of Ser-235 is essential to HCV RNA replication. • Mutation of Ser-235 alters replication compartment localization and morphology. • Phosphatidylinositol-4 kinase III alpha is important for Ser-235 phosphorylation.« less

  2. Daclatasvir Prevents Hepatitis C Virus Infectivity by Blocking Transfer of the Viral Genome to Assembly Sites.

    PubMed

    Boson, Bertrand; Denolly, Solène; Turlure, Fanny; Chamot, Christophe; Dreux, Marlène; Cosset, François-Loïc

    2017-03-01

    Daclatasvir is a direct-acting antiviral agent and potent inhibitor of NS5A, which is involved in replication of the hepatitis C virus (HCV) genome, presumably via membranous web shaping, and assembly of new virions, likely via transfer of the HCV RNA genome to viral particle assembly sites. Daclatasvir inhibits the formation of new membranous web structures and, ultimately, of replication complex vesicles, but also inhibits an early assembly step. We investigated the relationship between daclatasvir-induced clustering of HCV proteins, intracellular localization of viral RNAs, and inhibition of viral particle assembly. Cell-culture-derived HCV particles were produced from Huh7.5 hepatocarcinoma cells in presence of daclatasvir for short time periods. Infectivity and production of physical particles were quantified and producer cells were subjected to subcellular fractionation. Intracellular colocalization between core, E2, NS5A, NS4B proteins, and viral RNAs was quantitatively analyzed by confocal microscopy and by structured illumination microscopy. Short exposure of HCV-infected cells to daclatasvir reduced viral assembly and induced clustering of structural proteins with non-structural HCV proteins, including core, E2, NS4B, and NS5A. These clustered structures appeared to be inactive assembly platforms, likely owing to loss of functional connection with replication complexes. Daclatasvir greatly reduced delivery of viral genomes to these core clusters without altering HCV RNA colocalization with NS5A. In contrast, daclatasvir neither induced clustered structures nor inhibited HCV assembly in cells infected with a daclatasvir-resistant mutant (NS5A-Y93H), indicating that daclatasvir targets a mutual, specific function of NS5A inhibiting both processes. In addition to inhibiting replication complex biogenesis, daclatasvir prevents viral assembly by blocking transfer of the viral genome to assembly sites. This leads to clustering of HCV proteins because viral particles and replication complex vesicles cannot form or egress. This dual mode of action of daclatasvir could explain its efficacy in blocking HCV replication in cultured cells and in treatment of patients with HCV infection. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides

    PubMed Central

    Chukkapalli, Vineela; Berger, Kristi L.; Kelly, Sean M.; Thomas, Meryl; Deiters, Alexander; Randall, Glenn

    2014-01-01

    Combinations of direct-acting antivirals (DAAs) against the hepatitis C virus (HCV) have the potential to revolutionize the HCV therapeutic regime. An integral component of DAA combination therapies are HCV NS5A inhibitors. It has previously been proposed that NS5A DAAs inhibit two functions of NS5A: RNA replication and virion assembly. In this study, we characterize the impact of a prototype NS5A DAA, daclatasvir (DCV), on HCV replication compartment formation. DCV impaired HCV replicase localization and NS5A motility. In order to characterize the mechanism behind altered HCV replicase localization, we examined the impact of DCV on the interaction of NS5A with its essential cellular cofactor, phosphatidylinositol-4-kinase III α (PI4KA). We observed that DCV does not inhibit PI4KA directly, nor does it impair early events of the NS5A-PI4KA interaction that can occur when NS5A is expressed alone. NS5A functions that are unaffected by DCV include PI4KA binding, as determined by co-immunoprecipitation, and a basal accumulation of the PI4KA product, PI4P. However, DCV impairs late steps in PI4KA activation that requires NS5A expressed in the context of the HCV polyprotein. These NS5A functions include hyper-stimulation of PI4P levels and appropriate replication compartment formation. The data are most consistent with a model wherein DCV inhibits conformational changes in the NS5A protein or protein complex formations that occur in the context of HCV polyprotein expression and stimulate PI4P hyper-accumulation and replication compartment formation. PMID:25546252

  4. Structure and function of the Zika virus full-length NS5 protein

    DOE PAGES

    Zhao, Baoyu; Yi, Guanghui; Du, Fenglei; ...

    2017-03-27

    The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions tomore » those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Altogether, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication.« less

  5. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis.

    PubMed

    Dubrau, Danilo; Tortorici, M Alejandra; Rey, Félix A; Tautz, Norbert

    2017-02-01

    The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Baoyu; Yi, Guanghui; Du, Fenglei

    The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions tomore » those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Altogether, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication.« less

  7. Purification, crystallization and X-ray diffraction analysis of the C-terminal protease domain of Venezuelan equine encephalitis virus nsP2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Andrew T.; Watowich, Stanley J., E-mail: watowich@xray.utmb.edu

    2006-06-01

    The C-terminal protease domain of Venezuelan equine encephalitis virus (VEEV) nsP2 has been overexpressed in E. coli, purified and successfully crystallized. Native crystals diffract to beyond 2.5 Å resolution and isomorphous heavy-atom derivatives suitable for phase analysis have been identified. The C-terminal region of Venezuelan equine encephalitis virus (VEEV) nsP2 is responsible for proteolytic processing of the VEEV polyprotein replication complex. This action regulates the activity of the replication complex and is essential for viral replication, thus making nsP2 a very attractive target for development of VEEV therapeutics. The 338-amino-acid C-terminal region of VEEV nsP2 has been overexpressed in Escherichiamore » coli, purified and crystallized. Crystals diffract to beyond 2.5 Å resolution and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. Isomorphous heavy-atom derivatives suitable for phase analysis have been obtained and work on building a complete structural model is under way.« less

  8. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication.

    PubMed

    Tay, Moon Y F; Saw, Wuan Geok; Zhao, Yongqian; Chan, Kitti W K; Singh, Daljit; Chong, Yuwen; Forwood, Jade K; Ooi, Eng Eong; Grüber, Gerhard; Lescar, Julien; Luo, Dahai; Vasudevan, Subhash G

    2015-01-23

    Dengue virus multifunctional proteins NS3 protease/helicase and NS5 methyltransferase/RNA-dependent RNA polymerase form part of the viral replication complex and are involved in viral RNA genome synthesis, methylation of the 5'-cap of viral genome, and polyprotein processing among other activities. Previous studies have shown that NS5 residue Lys-330 is required for interaction between NS3 and NS5. Here, we show by competitive NS3-NS5 interaction ELISA that the NS3 peptide spanning residues 566-585 disrupts NS3-NS5 interaction but not the null-peptide bearing the N570A mutation. Small angle x-ray scattering study on NS3(172-618) helicase and covalently linked NS3(172-618)-NS5(320-341) reveals a rigid and compact formation of the latter, indicating that peptide NS5(320-341) engages in specific and discrete interaction with NS3. Significantly, NS3:Asn-570 to alanine mutation introduced into an infectious DENV2 cDNA clone did not yield detectable virus by plaque assay even though intracellular double-stranded RNA was detected by immunofluorescence. Detection of increased negative-strand RNA synthesis by real time RT-PCR for the NS3:N570A mutant suggests that NS3-NS5 interaction plays an important role in the balanced synthesis of positive- and negative-strand RNA for robust viral replication. Dengue virus infection has become a global concern, and the lack of safe vaccines or antiviral treatments urgently needs to be addressed. NS3 and NS5 are highly conserved among the four serotypes, and the protein sequence around the pinpointed amino acids from the NS3 and NS5 regions are also conserved. The identification of the functionally essential interaction between the two proteins by biochemical and reverse genetics methods paves the way for rational drug design efforts to inhibit viral RNA synthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Development of viable TAP-tagged dengue virus for investigation of host-virus interactions in viral replication.

    PubMed

    Poyomtip, Teera; Hodge, Kenneth; Matangkasombut, Ponpan; Sakuntabhai, Anavaj; Pisitkun, Trairak; Jirawatnotai, Siwanon; Chimnaronk, Sarin

    2016-03-01

    Dengue virus (DENV) is a mosquito-borne flavivirus responsible for life-threatening dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). The viral replication machinery containing the core non-structural protein 5 (NS5) is implicated in severe dengue symptoms but molecular details remain obscure. To date, studies seeking to catalogue and characterize interaction networks between viral NS5 and host proteins have been limited to the yeast two-hybrid system, computational prediction and co-immunoprecipitation (IP) of ectopically expressed NS5. However, these traditional approaches do not reproduce a natural course of infection in which a number of DENV NS proteins colocalize and tightly associate during the replication process. Here, we demonstrate the development of a recombinant DENV that harbours a TAP tag in NS5 to study host-virus interactions in vivo. We show that our engineered DENV was infective in several human cell lines and that the tags were stable over multiple viral passages, suggesting negligible structural and functional disturbance of NS5. We further provide proof-of-concept for the use of rationally tagged virus by revealing a high confidence NS5 interaction network in human hepatic cells. Our analysis uncovered previously unrecognized hnRNP complexes and several low-abundance fatty acid metabolism genes, which have been implicated in the viral life cycle. This study sets a new standard for investigation of host-flavivirus interactions.

  10. Cyclosporin A associated helicase-like protein facilitates the association of hepatitis C virus RNA polymerase with its cellular cyclophilin B.

    PubMed

    Morohashi, Kengo; Sahara, Hiroeki; Watashi, Koichi; Iwabata, Kazuki; Sunoki, Takashi; Kuramochi, Kouji; Takakusagi, Kaori; Miyashita, Hiroki; Sato, Noriyuki; Tanabe, Atsushi; Shimotohno, Kunitada; Kobayashi, Susumu; Sakaguchi, Kengo; Sugawara, Fumio

    2011-04-29

    Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology.

  11. Prolactin Regulatory Element Binding Protein Is Involved in Hepatitis C Virus Replication by Interaction with NS4B

    PubMed Central

    Kong, Lingbao; Fujimoto, Akira; Nakamura, Mariko; Aoyagi, Haruyo; Matsuda, Mami; Watashi, Koichi; Suzuki, Ryosuke; Arita, Minetaro; Yamagoe, Satoshi; Dohmae, Naoshi; Suzuki, Takehiro; Sakamaki, Yuriko; Ichinose, Shizuko; Suzuki, Tetsuro; Wakita, Takaji

    2016-01-01

    ABSTRACT It has been proposed that the hepatitis C virus (HCV) NS4B protein triggers the membranous HCV replication compartment, but the underlying molecular mechanism is not fully understood. Here, we screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis and identified 202 host proteins. Subsequent screening of replicon cells with small interfering RNA identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. The interaction between PREB and NS4B was confirmed by immunoprecipitation, immunofluorescence, and proximity ligation assays. PREB colocalized with double-stranded RNA and the newly synthesized HCV RNA labeled with bromouridine triphosphate in HCV replicon cells. Furthermore, PREB shifted to detergent-resistant membranes (DRMs), where HCV replication complexes reside, in the presence of NS4B expression in Huh7 cells. However, a PREB mutant lacking the NS4B-binding region (PREBd3) could not colocalize with double-stranded RNA and did not shift to the DRM in the presence of NS4B. These results indicate that PREB locates at the HCV replication complex by interacting with NS4B. PREB silencing inhibited the formation of the membranous HCV replication compartment and increased the protease and nuclease sensitivity of HCV replicase proteins and RNA in DRMs, respectively. Collectively, these data indicate that PREB promotes HCV RNA replication by participating in the formation of the membranous replication compartment and by maintaining its proper structure by interacting with NS4B. Furthermore, PREB was induced by HCV infection in vitro and in vivo. Our findings provide new insights into HCV host cofactors. IMPORTANCE The hepatitis C virus (HCV) protein NS4B can induce alteration of the endoplasmic reticulum and the formation of a membranous web structure, which provides a platform for the HCV replication complex. The molecular mechanism by which NS4B induces the membranous HCV replication compartment is not understood. We screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis, followed by screening with small interfering RNA. We identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. PREB is induced by HCV infection and recruited into the replication complex by interaction with NS4B. Recruited PREB promotes HCV RNA replication by participating in the formation of the membranous HCV replication compartment. To our knowledge, the effect of NS4B-binding protein on the formation of the membranous HCV replication compartment is newly described in this report. Our findings are expected to provide new insights into HCV host cofactors. PMID:26739056

  12. Progress on New Hepatitis C Virus Targets: NS2 and NS5A

    NASA Astrophysics Data System (ADS)

    Marcotrigiano, Joseph

    Hepatitis C virus (HCV) is a major global health problem, affecting about 170 million people worldwide. Chronic infection can lead to cirrhosis and liver cancer. The replication machine of HCV is a multi-subunit membrane associated complex, consisting of nonstructural proteins (NS2-5B), which replicate the viral RNA genome. The structures of NS5A and NS2 were recently determined. NS5A is an essential replicase component that also modulates numerous cellular processes ranging from innate immunity to cell growth and survival. The structure reveals a novel protein fold, a new zinc coordination motif, a disulfide bond and a dimer interface. Analysis of molecular surfaces suggests the location of the membrane interaction surface of NS5A, as well as hypothetical protein and RNA binding sites. NS2 is one of two virally encoded proteases that are required for processing the viral polyprotein into the mature nonstructural proteins. NS2 is a dimeric cysteine protease with two composite active sites. For each active site, the catalytic histidine and glutamate residues are contributed by one monomer and the nucleophilic cysteine by the other. The C-terminal residues remain coordinated in the two active sites, predicting an inactive post-cleavage form. The structure also reveals possible sites of membrane interaction, a rare cis-proline residue, and highly conserved dimer contacts. The novel features of both structures have changed the current view of HCV polyprotein replication and present new opportunities for antiviral drug design.

  13. Strand-like structures and the nonstructural proteins 5, 3 and 1 are present in the nucleus of mosquito cells infected with dengue virus.

    PubMed

    Reyes-Ruiz, José M; Osuna-Ramos, Juan F; Cervantes-Salazar, Margot; Lagunes Guillen, Anel E; Chávez-Munguía, Bibiana; Salas-Benito, Juan S; Del Ángel, Rosa M

    2018-02-01

    Dengue virus (DENV) is an arbovirus, which replicates in the endoplasmic reticulum. Although replicative cycle takes place in the cytoplasm, some viral proteins such as NS5 and C are translocated to the nucleus during infection in mosquitoes and mammalian cells. To localized viral proteins in DENV-infected C6/36 cells, an immunofluorescence (IF) and immunoelectron microscopy (IEM) analysis were performed. Our results indicated that C, NS1, NS3 and NS5 proteins were found in the nucleus of DENV-infected C6/36 cells. Additionally, complex structures named strand-like structures (Ss) were observed in the nucleus of infected cells. Interestingly, the NS5 protein was located in these structures. Ss were absent in mock-infected cells, suggesting that DENV induces their formation in the nucleus of infected mosquito cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Allosteric ligands for the pharmacologically important Flavivirus target (NS5) from ZINC database based on pharmacophoric points, free energy calculations and dynamics correlation.

    PubMed

    Khan, Abbas; Saleem, Shoaib; Idrees, Muhammad; Ali, Syed Shujait; Junaid, Muhammad; Chandra Kaushik, Aman; Wei, Dong-Qing

    2018-04-11

    Dengue virus belongs to a group of human pathogens, which causes different diseases, dengue hemorrhagic fever and dengue shock syndrome in humans. It possesses RNA as a genetic material and is replicated with the aid of NS5 protein. RNA-dependent RNA polymerase (RdRp) is an important domain of NS5 in the replication of that virus. The catalytic process activity of RdRp is making it an important target for antiviral chemical therapy. To date, No FDA drug has been approved and marketed for the treatment of diseases caused by Dengue virus. So, there is a dire need to advance an area of active antiviral inhibitors that is safe, less expensive and widely available. An experimentally validated complex of Dengue NS5 and compound 27 (6LS) were used as pharmacophoric input and hits were identified. We also used Molecular dynamics (MD) simulations alongside free energy and dynamics of the internal residues of the apo and holo systems to understand the binding mechanism. Our analysis resulted that the three inhibitors (ZINC72070002, ZINC6551486, and ZINC39588257) greatly affected the interior dynamics and residual signaling to dysfunction the replicative role of NS5. The interaction of these inhibitors caused the loss of the correlated motion of NS5 near to the N terminus and helped the stability of the binding complex. This investigation provided a methodological route to discover allosteric inhibitors against the epidemics of this Flaviviruses. Allosteric inhibitors are important and major assets in considering the development of the competitive and robust antiviral agents such as against Dengue viral infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Cyclosporin A Associated Helicase-Like Protein Facilitates the Association of Hepatitis C Virus RNA Polymerase with Its Cellular Cyclophilin B

    PubMed Central

    Sahara, Hiroeki; Iwabata, Kazuki; Sunoki, Takashi; Kuramochi, Kouji; Takakusagi, Kaori; Miyashita, Hiroki; Sato, Noriyuki; Tanabe, Atsushi; Shimotohno, Kunitada; Kobayashi, Susumu; Sakaguchi, Kengo; Sugawara, Fumio

    2011-01-01

    Background Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. Principal Findings Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. Conclusions We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology. PMID:21559518

  16. The crystal structure of Zika virus NS5 reveals conserved drug targets.

    PubMed

    Duan, Wenqian; Song, Hao; Wang, Haiyuan; Chai, Yan; Su, Chao; Qi, Jianxun; Shi, Yi; Gao, George F

    2017-04-03

    Zika virus (ZIKV) has emerged as major health concern, as ZIKV infection has been shown to be associated with microcephaly, severe neurological disease and possibly male sterility. As the largest protein component within the ZIKV replication complex, NS5 plays key roles in the life cycle and survival of the virus through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains. Here, we present the crystal structures of ZIKV NS5 MTase in complex with an RNA cap analogue ( m7 GpppA) and the free NS5 RdRp. We have identified the conserved features of ZIKV NS5 MTase and RdRp structures that could lead to development of current antiviral inhibitors being used against flaviviruses, including dengue virus and West Nile virus, to treat ZIKV infection. These results should inform and accelerate the structure-based design of antiviral compounds against ZIKV. © 2017 The Authors.

  17. Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3-4A complex

    PubMed Central

    Brass, Volker; Berke, Jan Martin; Montserret, Roland; Blum, Hubert E.; Penin, François; Moradpour, Darius

    2008-01-01

    Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane α-helix that may be involved in intramembrane protein–protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix α0, formed by NS3 residues 12–23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design. PMID:18799730

  18. Reovirus Nonstructural Protein σNS Acts as an RNA-Stability Factor Promoting Viral Genome Replication.

    PubMed

    Zamora, Paula F; Hu, Liya; Knowlton, Jonathan J; Lahr, Roni M; Moreno, Rodolfo A; Berman, Andrea J; Prasad, B V Venkataram; Dermody, Terence S

    2018-05-16

    Viral nonstructural proteins, which are not packaged into virions, are essential for replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. Reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered that σNS increases RNA half-life using in vitro and cell-based RNA degradation experiments. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication. IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the Reoviridae family encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different Reoviridae family viruses are diverged in primary sequence, these proteins are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell-culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new knowledge about basic mechanisms of dsRNA virus replication and provides a foundation for future studies to determine how viruses in the Reoviridae family assort and replicate their genomes. Copyright © 2018 American Society for Microbiology.

  19. Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A

    PubMed Central

    Zayas, Margarita; Long, Gang; Madan, Vanesa; Bartenschlager, Ralf

    2016-01-01

    Hepatitis C virus (HCV) nonstructural protein (NS)5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI) and two intrinsically disordered domains (DII and DIII) interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood. In this study, we identified a highly conserved basic cluster (BC) at the N-terminus of DIII that is critical for particle assembly. We generated BC mutants and compared them with mutants that are blocked at different stages of the assembly process: a NS5A serine cluster (SC) mutant blocked in NS5A-core interaction and a mutant lacking the envelope glycoproteins (ΔE1E2). We found that BC mutations did not affect core-NS5A interaction, but strongly impaired core–RNA association as well as virus particle envelopment. Moreover, BC mutations impaired RNA-NS5A interaction arguing that the BC might be required for loading of core protein with viral RNA. Interestingly, RNA-core interaction was also reduced with the ΔE1E2 mutant, suggesting that nucleocapsid formation and envelopment are coupled. These findings argue for two NS5A DIII determinants regulating assembly at distinct, but closely linked steps: (i) SC-dependent recruitment of replication complexes to core protein and (ii) BC-dependent RNA genome delivery to core protein, triggering encapsidation that is tightly coupled to particle envelopment. These results provide a striking example how a single viral protein exerts multiple functions to coordinate the steps from RNA replication to the assembly of infectious virus particles. PMID:26727512

  20. Tumor Necrosis Factor Receptor-Associated Factor 5 Interacts with the NS3 Protein and Promotes Classical Swine Fever Virus Replication.

    PubMed

    Lv, Huifang; Dong, Wang; Guo, Kangkang; Jin, Mingxing; Li, Xiaomeng; Li, Cunfa; Zhang, Yanming

    2018-06-05

    Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious and high-mortality viral disease, causing huge economic losses in the swine industry worldwide. CSFV non-structural protein 3 (NS3), a multifunctional protein, plays crucial roles in viral replication. However, how NS3 exactly exerts these functions is currently unknown. Here, we identified tumor necrosis factor receptor-associated factor 5 (TRAF5) as a novel binding partner of the NS3 protein via yeast two-hybrid, co-immunoprecipitation and glutathione S -transferase pull-down assays. Furthermore, we observed that TRAF5 promoted CSFV replication in porcine alveolar macrophages (PAMs). Additionally, CSFV infection or NS3 expression upregulated TRAF5 expression, implying that CSFV may exploit TRAF5 via NS3 for better growth. Moreover, CSFV infection and TRAF5 expression activated p38 mitogen activated protein kinase (MAPK) activity, and inhibition of p38 MAPK activation by the SB203580 inhibitor suppressed CSFV replication. Notably, TRAF5 overexpression did not promote CSFV replication following inhibition of p38 MAPK activation. Our findings reveal that TRAF5 promotes CSFV replication via p38 MAPK activation. This work provides a novel insight into the role of TRAF5 in CSFV replication capacity.

  1. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development.

    PubMed

    Luo, Dahai; Vasudevan, Subhash G; Lescar, Julien

    2015-06-01

    The flavivirus NS3 protein is associated with the endoplasmic reticulum membrane via its close interaction with the central hydrophilic region of the NS2B integral membrane protein. The multiple roles played by the NS2B-NS3 protein in the virus life cycle makes it an attractive target for antiviral drug discovery. The N-terminal region of NS3 and its cofactor NS2B constitute the protease that cleaves the viral polyprotein. The NS3 C-terminal domain possesses RNA helicase, nucleoside and RNA triphosphatase activities and is involved both in viral RNA replication and virus particle formation. In addition, NS2B-NS3 serves as a hub for the assembly of the flavivirus replication complex and also modulates viral pathogenesis and the host immune response. Here, we review biochemical and structural advances on the NS2B-NS3 protein, including the network of interactions it forms with NS5 and NS4B and highlight recent drug development efforts targeting this protein. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Conserved amino acids within the N-terminus of the West Nile virus NS4A protein contribute to virus replication, protein stability and membrane proliferation.

    PubMed

    Ambrose, R L; Mackenzie, J M

    2015-07-01

    The West Nile virus strain Kunjin virus (WNVKUN) NS4A protein is a multifunctional protein involved in many aspects of the virus life-cycle and is a major component of the WNVKUN replication complex (RC). Previously we identified a conserved region in the C-terminus of NS4A regulating proteolytic processing and RC assembly, and now investigate key conserved residues in the N-terminus of NS4A and their contribution to WNVKUN replication. Mutation of P13 completely ablated replication, whereas, mutation of P48 and D49, near the first transmembrane helix, and G66 within the helix, showed variable defects in replication, virion secretion and membrane proliferation. Intriguingly, the P48 and G66 NS4A mutants resulted in specific proteasome depletion of NS4A that could in part be rescued with a proteasome inhibitor. Our results suggest that the N-terminus of NS4A contributes to correct folding and stability, essential for facilitating the essential roles of NS4A during replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen

    PubMed Central

    2011-01-01

    Background The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. Results We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. Conclusions We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy. PMID:22014111

  4. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen.

    PubMed

    Le Breton, Marc; Meyniel-Schicklin, Laurène; Deloire, Alexandre; Coutard, Bruno; Canard, Bruno; de Lamballerie, Xavier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent; Davoust, Nathalie

    2011-10-20

    The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, R.L.; Mackenzie, J.M., E-mail: jason.mackenzie@unimelb.edu.au

    The West Nile virus strain Kunjin virus (WNV{sub KUN}) NS4A protein is a multifunctional protein involved in many aspects of the virus life-cycle and is a major component of the WNV{sub KUN} replication complex (RC). Previously we identified a conserved region in the C-terminus of NS4A regulating proteolytic processing and RC assembly, and now investigate key conserved residues in the N-terminus of NS4A and their contribution to WNV{sub KUN} replication. Mutation of P13 completely ablated replication, whereas, mutation of P48 and D49, near the first transmembrane helix, and G66 within the helix, showed variable defects in replication, virion secretion andmore » membrane proliferation. Intriguingly, the P48 and G66 NS4A mutants resulted in specific proteasome depletion of NS4A that could in part be rescued with a proteasome inhibitor. Our results suggest that the N-terminus of NS4A contributes to correct folding and stability, essential for facilitating the essential roles of NS4A during replication. - Highlights: • Mutation of Proline13 of the WNV NS4A protein is lethal to replication. • 1st TMB helix of NS4A contributes to protein stability and membrane remodelling. • Unstable mutants of NS4A can be rescued with a proteasome inhibitor. • This study (and of others) contributes to a functional mapping of the NS4A protein.« less

  6. Cell culture-adaptive mutations of NS5A affect replication of hepatitis C virus differentially depending on the viral genotypes.

    PubMed

    Chung, Aeri; Jin, Bora; Han, Kwang-Hyub; Ahn, Sang Hoon; Kim, Seungtaek

    2017-01-01

    Most of HCV RNAs require cell culture-adaptive mutations for efficient replication in cell culture and a number of such mutations have been described including a well-known S2204I substitution mutation in NS5A protein. In contrast, the replication of genotype 2a JFH1 RNA in cell culture does not require any cell culture-adaptive mutation. Rather, the presence of S2204I mutation impaired the JFH1 RNA replication. In this study, we examined the effect of reversions and substitutions of NS5A cell culture-adaptive mutations on virus replication in different genotypic backgrounds after either placing genotype 1a NS5A in the genotype 2a JFH1 or vice versa. The results from this investigation suggest that the S2204I mutation affects HCV RNA replication differentially depending on the viral genotypes but that the effect was not simply explained by the genotypic background. Perhaps, the effect of the S2204I mutation on HCV replication reflects both intra- and intergenic interactions of NS5A protein. J. Med. Virol. 89:146-152, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication.

    PubMed

    Bozzacco, Leonia; Yi, Zhigang; Andreo, Ursula; Conklin, Claire R; Li, Melody M H; Rice, Charles M; MacDonald, Margaret R

    2016-01-06

    DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single polyprotein, which is cleaved by host and viral proteases to generate viral proteins required for genome replication and virion production. Several studies suggest a role for molecular chaperones during these processes. While the details of chaperone roles have been elusive, in this report we show that overexpression of the ER-resident cochaperone DNAJC14 affects YFV polyprotein processing at the NS3/4A site. This work reveals that DNAJC14 modulation of NS3/4A site processing is an important mechanism to ensure virus replication. Our work highlights the importance of finely regulating flavivirus polyprotein processing. In addition, it suggests future studies to address similarities and/or differences among flaviviruses and to interrogate the precise mechanisms employed for polyprotein processing, a critical step that can ultimately be targeted for novel drug development. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication

    PubMed Central

    Bozzacco, Leonia; Yi, Zhigang; Andreo, Ursula; Conklin, Claire R.; Li, Melody M. H.; Rice, Charles M.

    2016-01-01

    ABSTRACT DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. IMPORTANCE Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single polyprotein, which is cleaved by host and viral proteases to generate viral proteins required for genome replication and virion production. Several studies suggest a role for molecular chaperones during these processes. While the details of chaperone roles have been elusive, in this report we show that overexpression of the ER-resident cochaperone DNAJC14 affects YFV polyprotein processing at the NS3/4A site. This work reveals that DNAJC14 modulation of NS3/4A site processing is an important mechanism to ensure virus replication. Our work highlights the importance of finely regulating flavivirus polyprotein processing. In addition, it suggests future studies to address similarities and/or differences among flaviviruses and to interrogate the precise mechanisms employed for polyprotein processing, a critical step that can ultimately be targeted for novel drug development. PMID:26739057

  9. RNA-dependent RNA polymerase of hepatitis C virus binds to its coding region RNA stem-loop structure, 5BSL3.2, and its negative strand.

    PubMed

    Kanamori, Hiroshi; Yuhashi, Kazuhito; Ohnishi, Shin; Koike, Kazuhiko; Kodama, Tatsuhiko

    2010-05-01

    The hepatitis C virus NS5B RNA-dependent RNA polymerase (RdRp) is a key enzyme involved in viral replication. Interaction between NS5B RdRp and the viral RNA sequence is likely to be an important step in viral RNA replication. The C-terminal half of the NS5B-coding sequence, which contains the important cis-acting replication element, has been identified as an NS5B-binding sequence. In the present study, we confirm the specific binding of NS5B to one of the RNA stem-loop structures in the region, 5BSL3.2. In addition, we show that NS5B binds to the complementary strand of 5BSL3.2 (5BSL3.2N). The bulge structure of 5BSL3.2N was shown to be indispensable for tight binding to NS5B. In vitro RdRp activity was inhibited by 5BSL3.2N, indicating the importance of the RNA element in the polymerization by RdRp. These results suggest the involvement of the RNA stem-loop structure of the negative strand in the replication process.

  10. Zinc Mesoporphyrin Induces Rapid Proteasomal Degradation of Hepatitis C Nonstructural 5A Protein in Human Hepatoma Cells

    PubMed Central

    Hou, Weihong; Tian, Qing; Zheng, Jianyu; Bonkovsky, Herbert L.

    2009-01-01

    Background & Aims The nonstructural 5A (NS5A) protein of hepatitis C virus (HCV), plays a critical role in HCV replication and is an attractive target for the therapy of HCV infection. So far, little is known about the post-translational regulation of NS5A protein and its precise role in HCV RNA replication. Our objectives were to elucidate the down-regulation of NS5A protein and HCV RNA replication by zinc mesoporphyrin (ZnMP), and the mechanism by which this process occurs. Methods Human hepatoma cells expressing HCV proteins were used to investigate the post-translational regulation of ZnMP on NS5A protein by Western blots (WB) and immunoprecipitation (IP). Quantitative RT-PCR (qRT-PCR) was used to determine the effects of ZnMP on HCV RNA replication. Results ZnMP selectively and markedly down-regulated NS5A protein levels by increasing degradation of NS5A protein [half life fell from 18.7 h to 2.7 h]. The proteasome inhibitors, epoxomicin and MG132, significantly abrogated degradation of NS5A protein by ZnMP without affecting levels of NS5A in the absence of ZnMP. Analysis of immunoprecipitates with an anti-ubiquitin antibody revealed polyubiquitination of NS5A, suggesting that ZnMP induces ubiquitination of NS5A protein. In addition, 10 μM of ZnMP reduced HCV replication by ~63% in the Con1 replicon cells, ~70% in J6/JFH1 HCV transfected cells, and ~90% in J6/JFH1 HCV infected cells without affecting cell viability. Conclusions ZnMP produces a rapid and profound down-regulation of the NS5A protein by enhancing its polyubiquitination and proteasome-dependent catabolism. Zinc mesoporphyrin may hold promise as a novel agent to treat HCV infection. PMID:19909748

  11. Preclinical Profile and Characterization of the Hepatitis C Virus NS3 Protease Inhibitor Asunaprevir (BMS-650032)

    PubMed Central

    Sheaffer, Amy K.; Friborg, Jacques; Hernandez, Dennis; Falk, Paul; Zhai, Guangzhi; Levine, Steven; Chaniewski, Susan; Yu, Fei; Barry, Diana; Chen, Chaoqun; Lee, Min S.; Mosure, Kathy; Sun, Li-Qiang; Sinz, Michael; Meanwell, Nicholas A.; Colonno, Richard J.; Knipe, Jay; Scola, Paul

    2012-01-01

    Asunaprevir (ASV; BMS-650032) is a hepatitis C virus (HCV) NS3 protease inhibitor that has demonstrated efficacy in patients chronically infected with HCV genotype 1 when combined with alfa interferon and/or the NS5A replication complex inhibitor daclatasvir. ASV competitively binds to the NS3/4A protease complex, with Ki values of 0.4 and 0.24 nM against recombinant enzymes representing genotypes 1a (H77) and 1b (J4L6S), respectively. Selectivity was demonstrated by the absence of any significant activity against the closely related GB virus-B NS3 protease and a panel of human serine or cysteine proteases. In cell culture, ASV inhibited replication of HCV replicons representing genotypes 1 and 4, with 50% effective concentrations (EC50s) ranging from 1 to 4 nM, and had weaker activity against genotypes 2 and 3 (EC50, 67 to 1,162 nM). Selectivity was again demonstrated by the absence of activity (EC50, >12 μM) against a panel of other RNA viruses. ASV exhibited additive or synergistic activity in combination studies with alfa interferon, ribavirin, and/or inhibitors specifically targeting NS5A or NS5B. Plasma and tissue exposures in vivo in several animal species indicated that ASV displayed a hepatotropic disposition (liver-to-plasma ratios ranging from 40- to 359-fold across species). Twenty-four hours postdose, liver exposures across all species tested were ≥110-fold above the inhibitor EC50s observed with HCV genotype-1 replicons. Based on these virologic and exposure properties, ASV holds promise for future utility in a combination with other anti-HCV agents in the treatment of HCV-infected patients. PMID:22869577

  12. Sensitive luminescent reporter viruses reveal appreciable release of hepatitis C virus NS5A protein into the extracellular environment.

    PubMed

    Eyre, Nicholas S; Aloia, Amanda L; Joyce, Michael A; Chulanetra, Monrat; Tyrrell, D Lorne; Beard, Michael R

    2017-07-01

    The HCV NS5A protein is essential for viral RNA replication and virus particle assembly. To study the viral replication cycle and NS5A biology we generated an infectious HCV construct with a NanoLuciferase (NLuc) insertion within NS5A. Surprisingly, beyond its utility as a sensitive reporter of cytoplasmic viral RNA replication, we also observed strong luminescence in cell culture fluids. Further analysis using assembly-defective viruses and subgenomic replicons revealed that infectious virus production was not required for extracellular NS5A-NLuc activity but was associated with enrichment of extracellular NS5A-NLuc in intermediate-density fractions similar to those of exosomes and virus particles. Additionally, BRET analysis indicated that intracellular and extracellular forms of NS5A may adopt differing conformations. Importantly, infection studies using a human liver chimeric mouse model confirmed robust infection in vivo and ready detection of NLuc activity in serum. We hypothesise that the presence of NS5A in extracellular fluids contributes to HCV pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Hepatitis C Virus NS4B Protein Can trans-Complement Viral RNA Replication and Modulates Production of Infectious Virus▿

    PubMed Central

    Jones, Daniel M.; Patel, Arvind H.; Targett-Adams, Paul; McLauchlan, John

    2009-01-01

    Studies of the hepatitis C virus (HCV) life cycle have been aided by development of in vitro systems that enable replication of viral RNA and production of infectious virus. However, the functions of the individual proteins, especially those engaged in RNA replication, remain poorly understood. It is considered that NS4B, one of the replicase components, creates sites for genome synthesis, which appear as punctate foci at the endoplasmic reticulum (ER) membrane. In this study, a panel of mutations in NS4B was generated to gain deeper insight into its functions. Our analysis identified five mutants that were incapable of supporting RNA replication, three of which had defects in production of foci at the ER membrane. These mutants also influenced posttranslational modification and intracellular mobility of another replicase protein, NS5A, suggesting that such characteristics are linked to focus formation by NS4B. From previous studies, NS4B could not be trans-complemented in replication assays. Using the mutants that blocked RNA synthesis, defective NS4B expressed from two mutants could be rescued in trans-complementation replication assays by wild-type protein produced by a functional HCV replicon. Moreover, active replication could be reconstituted by combining replicons that were defective in NS4B and NS5A. The ability to restore replication from inactive replicons has implications for our understanding of the mechanisms that direct viral RNA synthesis. Finally, one of the NS4B mutations increased the yield of infectious virus by five- to sixfold. Hence, NS4B not only functions in RNA replication but also contributes to the processes engaged in virus assembly and release. PMID:19073716

  14. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication

    PubMed Central

    2013-01-01

    Background Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. Methods To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. Results In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role in YFV replication. Conclusions Although the precise function of eIF3L on interactions with viral proteins is not entirely understood, these results indicate an interaction of eIF3L with YF NS5 and that eIF3L overexpression facilitates translation, which has potential implications for virus replication. PMID:23800076

  15. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication.

    PubMed

    Morais, Ana Ts; Terzian, Ana Cb; Duarte, Danilo Vb; Bronzoni, Roberta Vm; Madrid, Maria Cfs; Gavioli, Arieli F; Gil, Laura Hvg; Oliveira, Amanda G; Zanelli, Cleslei F; Valentini, Sandro R; Rahal, Paula; Nogueira, Mauricio L

    2013-06-22

    Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role in YFV replication. Although the precise function of eIF3L on interactions with viral proteins is not entirely understood, these results indicate an interaction of eIF3L with YF NS5 and that eIF3L overexpression facilitates translation, which has potential implications for virus replication.

  16. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex.

    PubMed

    Ganaie, Safder S; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve; Qiu, Jianming

    2017-05-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases.

  17. Recruitment of DNA Replication and Damage Response Proteins to Viral Replication Centers during Infection with NS2 Mutants of Minute Virus of Mice (MVM)

    PubMed Central

    Ruiz, Zandra; Mihaylov, Ivailo S.; Cotmore, Susan F.; Tattersall, Peter

    2010-01-01

    MVM NS2 is essential for viral DNA amplification, but its mechanism of action is unknown. A classification scheme for autonomous parvovirus-associated replication (APAR) center development, based on NS1 distribution, was used to characterize abnormal APAR body maturation in NS2null mutant infections, and their organization examined for defects in host protein recruitment. Since acquisition of known replication factors appeared normal, we looked for differences in invoked DNA damage responses. We observed widespread association of H2AX/MDC1 damage response foci with viral replication centers, and sequestration and complex hyperphosphorylation of RPA32, which occurred in wildtype and mutant infections. Quantifying these responses by western transfer indicated that both wildtype and NS2 mutant MVM elicited ATM activation, while phosphorylation of ATR, already basally activated in asynchronous A9 cells, was downregulated. We conclude that MVM infection invokes multiple damage responses that influence the APAR environment, but that NS2 does not modify the recruitment of cellular proteins. PMID:21193212

  18. Recruitment of DNA replication and damage response proteins to viral replication centers during infection with NS2 mutants of Minute Virus of Mice (MVM).

    PubMed

    Ruiz, Zandra; Mihaylov, Ivailo S; Cotmore, Susan F; Tattersall, Peter

    2011-02-20

    MVM NS2 is essential for viral DNA amplification, but its mechanism of action is unknown. A classification scheme for autonomous parvovirus-associated replication (APAR) center development, based on NS1 distribution, was used to characterize abnormal APAR body maturation in NS2null mutant infections, and their organization examined for defects in host protein recruitment. Since acquisition of known replication factors appeared normal, we looked for differences in invoked DNA damage responses. We observed widespread association of H2AX/MDC1 damage response foci with viral replication centers, and sequestration and complex hyperphosphorylation of RPA(32), which occurred in wildtype and mutant infections. Quantifying these responses by western transfer indicated that both wildtype and NS2 mutant MVM elicited ATM activation, while phosphorylation of ATR, already basally activated in asynchronous A9 cells, was downregulated. We conclude that MVM infection invokes multiple damage responses that influence the APAR environment, but that NS2 does not modify the recruitment of cellular proteins. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Viruses within the Flaviviridae Decrease CD4 Expression and Inhibit HIV Replication in Human CD4+ Cells1

    PubMed Central

    Xiang, Jinhua; McLinden, James H.; Rydze, Robert A.; Chang, Qing; Kaufman, Thomas M.; Klinzman, Donna; Stapleton, Jack T.

    2013-01-01

    Viral infections alter host cell homeostasis and this may lead to immune evasion and/or interfere with the replication of other microbes in coinfected hosts. Two flaviviruses are associated with a reduction in HIV replication or improved survival in HIV-infected people (dengue virus (DV) and GB virus type C (GBV-C)). GBV-C infection and expression of the GBV-C nonstructural protein 5A (NS5A) and the DV NS5 protein in CD4+ T cells inhibit HIV replication in vitro. To determine whether the inhibitory effect on HIV replication is conserved among other flaviviruses and to characterize mechanism(s) of HIV inhibition, the NS5 proteins of GBV-C, DV, hepatitis C virus, West Nile virus, and yellow fever virus (YFV; vaccine strain 17D) were expressed in CD4+ T cells. All NS5 proteins inhibited HIV replication. This correlated with decreased steady-state CD4 mRNA levels and reduced cell surface CD4 protein expression. Infection of CD4+ T cells and macrophages with YFV (17D vaccine strain) also inhibited HIV replication and decreased CD4 gene expression. In contrast, mumps virus was not inhibited by the expression of flavivirus NS5 protein or by YFV infection, and mumps infection did not alter CD4 mRNA or protein levels. In summary, CD4 gene expression is decreased by all human flavivirus NS5 proteins studied. CD4 regulation by flaviviruses may interfere with innate and adaptive immunity and contribute to in vitro HIV replication inhibition. Characterization of the mechanisms by which flaviviruses regulate CD4 expression may lead to novel therapeutic strategies for HIV and immunological diseases. PMID:19923460

  20. The HCV Non-Nucleoside Inhibitor Tegobuvir Utilizes a Novel Mechanism of Action to Inhibit NS5B Polymerase Function

    PubMed Central

    Hebner, Christy M.; Han, Bin; Brendza, Katherine M.; Nash, Michelle; Sulfab, Maisoun; Tian, Yang; Hung, Magdeleine; Fung, Wanchi; Vivian, Randall W.; Trenkle, James; Taylor, James; Bjornson, Kyla; Bondy, Steven; Liu, Xiaohong; Link, John; Neyts, Johan; Sakowicz, Roman; Zhong, Weidong; Tang, Hengli; Schmitz, Uli

    2012-01-01

    Tegobuvir (TGV) is a novel non-nucleoside inhibitor (NNI) of HCV RNA replication with demonstrated antiviral activity in patients with genotype 1 chronic HCV infection. The mechanism of action of TGV has not been clearly defined despite the identification of resistance mutations mapping to the NS5B polymerase region. TGV does not inhibit NS5B enzymatic activity in biochemical assays in vitro, suggesting a more complex antiviral mechanism with cellular components. Here, we demonstrate that TGV exerts anti-HCV activity utilizing a unique chemical activation and subsequent direct interaction with the NS5B protein. Treatment of HCV subgenomic replicon cells with TGV results in a modified form of NS5B with a distinctly altered mobility on a SDS-PAGE gel. Further analysis reveals that the aberrantly migrating NS5B species contains the inhibitor molecule. Formation of this complex does not require the presence of any other HCV proteins. The intensity of the aberrantly migrating NS5B species is strongly dependent on cellular glutathione levels as well as CYP 1A activity. Furthermore analysis of NS5B protein purified from a heterologous expression system treated with TGV by mass spectrometry suggests that TGV undergoes a CYP- mediated intracellular activation step and the resulting metabolite, after forming a glutathione conjugate, directly and specifically interacts with NS5B. Taken together, these data demonstrate that upon metabolic activation TGV is a specific, covalent inhibitor of the HCV NS5B polymerase and is mechanistically distinct from other classes of the non-nucleoside inhibitors (NNI) of the viral polymerase. PMID:22720059

  1. The eukaryotic translation initiation factor 3 subunit E binds to classical swine fever virus NS5A and facilitates viral replication.

    PubMed

    Liu, Xiaofeng; Wang, Xiaoyu; Wang, Qian; Luo, Mingyang; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-02-01

    Classical swine fever virus (CSFV) NS5A protein is a multifunctional protein, playing critical roles in viral RNA replication, translation and assembly. To further explore its functions in viral replication, interaction of NS5A with host factors was assayed using a his-tag "pull down" assay coupled with shotgun LC-MS/MS. Host protein translation initiation factor 3 subunit E was identified as a binding partner of NS5A, and confirmed by co-immunoprecipitation and co-localization analysis. Overexpression of eIF3E markedly enhanced CSFV genomic replication, viral protein expression and production of progeny virus, and downregulation of eIF3E by siRNA significantly decreased viral proliferation in PK-15 cells. Luciferase reporter assay showed an enhancement of translational activity of the internal ribosome entry site of CSFV by eIF3E and a decrease in cellular translation by NS5A. These data indicate that eIF3E plays an important role in CSFV replication, thereby identifying it as a potential target for inhibition of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex

    PubMed Central

    Ganaie, Safder S.; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve

    2017-01-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases. PMID:28459842

  3. Y-box-binding protein 1 interacts with hepatitis C virus NS3/4A and influences the equilibrium between viral RNA replication and infectious particle production.

    PubMed

    Chatel-Chaix, Laurent; Melançon, Pierre; Racine, Marie-Ève; Baril, Martin; Lamarre, Daniel

    2011-11-01

    The hepatitis C virus (HCV) NS3/4A protein has several essential roles in the virus life cycle, most probably through dynamic interactions with host factors. To discover cellular cofactors that are co-opted by HCV for its replication, we elucidated the NS3/4A interactome using mass spectrometry and identified Y-box-binding protein 1 (YB-1) as an interacting partner of NS3/4A protein and HCV genomic RNA. Importantly, silencing YB-1 expression decreased viral RNA replication and severely impaired the propagation of the infectious HCV molecular clone JFH-1. Immunofluorescence studies further revealed a drastic HCV-dependent redistribution of YB-1 to the surface of the lipid droplets, an important organelle for HCV assembly. Core and NS3 protein-dependent polyprotein maturation were shown to be required for YB-1 relocalization. Unexpectedly, YB-1 knockdown cells showed the increased production of viral infectious particles while HCV RNA replication was impaired. Our data support that HCV hijacks YB-1-containing ribonucleoparticles and that YB-1-NS3/4A-HCV RNA complexes regulate the equilibrium between HCV RNA replication and viral particle production.

  4. Hepatitis C Virus Particle Assembly Involves Phosphorylation of NS5A by the c-Abl Tyrosine Kinase.

    PubMed

    Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Sun, Xuedong; Honjoh, Chisato; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao

    2015-09-04

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is thought to regulate the replication of viral RNA and the assembly of virus particles in a serine/threonine phosphorylation-dependent manner. However, the host kinases that phosphorylate NS5A have not been fully identified. Here, we show that HCV particle assembly involves the phosphorylation of NS5A by the c-Abl tyrosine kinase. Pharmacological inhibition or knockdown of c-Abl reduces the production of infectious HCV (J6/JFH1) particles in Huh-7.5 cells without markedly affecting viral RNA translation and replication. NS5A is tyrosine-phosphorylated in HCV-infected cells, and this phosphorylation is also reduced by the knockdown of c-Abl. Mutational analysis reveals that NS5A tyrosine phosphorylation is dependent, at least in part, on Tyr(330) (Tyr(2306) in polyprotein numbering). Mutation of this residue to phenylalanine reduces the production of infectious HCV particles but does not affect the replication of the JFH1 subgenomic replicon. These findings suggest that c-Abl promotes HCV particle assembly by phosphorylating NS5A at Tyr(330). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase.

    PubMed

    Watashi, Koichi; Ishii, Naoto; Hijikata, Makoto; Inoue, Daisuke; Murata, Takayuki; Miyanari, Yusuke; Shimotohno, Kunitada

    2005-07-01

    Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus (HCV) genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies.

  6. Treating hepatitis C: can you teach old dogs new tricks?

    PubMed

    Rice, Charles M; You, Shihyun

    2005-12-01

    Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies.

  7. Multiple enzyme activities of flavivirus proteins.

    PubMed

    Padmanabhan, R; Mueller, N; Reichert, E; Yon, C; Teramoto, T; Kono, Y; Takhampunya, R; Ubol, S; Pattabiraman, N; Falgout, B; Ganesh, V K; Murthy, K

    2006-01-01

    Dengue viruses (DENV) have 5'-capped RNA genomes of (+) polarity and encode a single polyprotein precursor that is processed into mature viral proteins. NS2B, NS3 and NS5 proteins catalyse/activate enzyme activities that are required for key processes in the virus life cycle. The heterodimeric NS2B/NS3 is a serine protease required for processing. Using a high-throughput protease assay, we screened a small molecule chemical library and identified -200 compounds having > or = 50% inhibition. Moreover, NS3 exhibits RNA-stimulated NTPase, RNA helicase and the 5'-RNA triphosphatase activities. The NTPase and the 5'-RTPase activities of NS3 are stimulated by interaction with NS5. Moreover, the conserved, positively charged motif in DENV-2 NS3, 184RKRK, is required for RNA binding and modulates the RNA-dependent enzyme activities of NS3. To study viral replication, a variety of methods are used such as the in vitro RNA-dependent RNA polymerase assays that utilize lysates from DENV-2-infected mosquito or mammalian cells or the purified NS5 along with exogenous short subgenomic viral RNAs or the replicative intracellular membrane-bound viral RNAs as templates. In addition, a cell-based DENV-2 replicon RNA encoding a luciferase reporter is also used to examine the role of cis-acting elements within the 3' UTR and the RKRK motif in viral replication.

  8. Non coding extremities of the seven influenza virus type C vRNA segments: effect on transcription and replication by the type C and type A polymerase complexes

    PubMed Central

    Crescenzo-Chaigne, Bernadette; Barbezange, Cyril; van der Werf, Sylvie

    2008-01-01

    Background The transcription/replication of the influenza viruses implicate the terminal nucleotide sequences of viral RNA, which comprise sequences at the extremities conserved among the genomic segments as well as variable 3' and 5' non-coding (NC) regions. The plasmid-based system for the in vivo reconstitution of functional ribonucleoproteins, upon expression of viral-like RNAs together with the nucleoprotein and polymerase proteins has been widely used to analyze transcription/replication of influenza viruses. It was thus shown that the type A polymerase could transcribe and replicate type A, B, or C vRNA templates whereas neither type B nor type C polymerases were able to transcribe and replicate type A templates efficiently. Here we studied the importance of the NC regions from the seven segments of type C influenza virus for efficient transcription/replication by the type A and C polymerases. Results The NC sequences of the seven genomic segments of the type C influenza virus C/Johannesburg/1/66 strain were found to be more variable in length than those of the type A and B viruses. The levels of transcription/replication of viral-like vRNAs harboring the NC sequences of the respective type C virus segments flanking the CAT reporter gene were comparable in the presence of either type C or type A polymerase complexes except for the NS and PB2-like vRNAs. For the NS-like vRNA, the transcription/replication level was higher after introduction of a U residue at position 6 in the 5' NC region as for all other segments. For the PB2-like vRNA the CAT expression level was particularly reduced with the type C polymerase. Analysis of mutants of the 5' NC sequence in the PB2-like vRNA, the shortest 5' NC sequence among the seven segments, showed that additional sequences within the PB2 ORF were essential for the efficiency of transcription but not replication by the type C polymerase complex. Conclusion In the context of a PB2-like reporter vRNA template, the sequence upstream the polyU stretch plays a role in the transcription/replication process by the type C polymerase complex. PMID:18973655

  9. NS5A inhibitors unmask differences in functional replicase complex half-life between different hepatitis C virus strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benzine, Tiffany; Brandt, Ryan; Lovell, William C.

    We synthesized the Hepatitis C virus (HCV) RNA by the replicase complex (RC), a macromolecular assembly composed of viral non-structural proteins and cellular co-factors. Inhibitors of the HCV NS5A protein block formation of new RCs but do not affect RNA synthesis by preformed RCs. Without new RC formation, existing RCs turn over and are eventually lost from the cell. We aimed to use NS5A inhibitors to estimate the half-life of the functional RC of HCV. We compared different cell culture-infectious strains of HCV that may be grouped based on their sensitivity to lipid peroxidation: robustly replicating, lipid peroxidation resistant (LPOmore » R) viruses (e.g. JFH-1 or H77D) and more slowly replicating, lipid peroxidation sensitive (LPO S) viruses (e.g. H77S.3 and N.2). Furthermore, in luciferase assays, LPO S HCV strains declined under NS5A inhibitor therapy with much slower kinetics compared to LPO R HCV strains. This difference in rate of decline was not observed for inhibitors of the NS5B RNAdependent RNA polymerase suggesting that the difference was not simply a consequence of differences in RNA stability. In further analyses, we compared two isoclonal HCV variants: the LPO S H77S.3 and the LPO R H77D that differ only by 12 amino acids. Differences in rate of decline between H77S.3 and H77D following NS5A inhibitor addition were not due to amino acid sequences in NS5A but rather due to a combination of amino acid differences in the non-structural proteins that make up the HCV RC. The mathematical modeling of intracellular HCV RNA dynamics suggested that differences in RC stability (half-lives of 3.5 and 9.9 hours, for H77D and H77S.3, respectively) are responsible for the different kinetics of antiviral suppression between LPO S and LPO R viruses. In nascent RNA capture assays, the rate of RNA synthesis decline following NS5A inhibitor addition was significantly faster for H77D compared to H77S.3 indicating different half-lives of functional RCs.« less

  10. NS5A inhibitors unmask differences in functional replicase complex half-life between different hepatitis C virus strains

    DOE PAGES

    Benzine, Tiffany; Brandt, Ryan; Lovell, William C.; ...

    2017-06-08

    We synthesized the Hepatitis C virus (HCV) RNA by the replicase complex (RC), a macromolecular assembly composed of viral non-structural proteins and cellular co-factors. Inhibitors of the HCV NS5A protein block formation of new RCs but do not affect RNA synthesis by preformed RCs. Without new RC formation, existing RCs turn over and are eventually lost from the cell. We aimed to use NS5A inhibitors to estimate the half-life of the functional RC of HCV. We compared different cell culture-infectious strains of HCV that may be grouped based on their sensitivity to lipid peroxidation: robustly replicating, lipid peroxidation resistant (LPOmore » R) viruses (e.g. JFH-1 or H77D) and more slowly replicating, lipid peroxidation sensitive (LPO S) viruses (e.g. H77S.3 and N.2). Furthermore, in luciferase assays, LPO S HCV strains declined under NS5A inhibitor therapy with much slower kinetics compared to LPO R HCV strains. This difference in rate of decline was not observed for inhibitors of the NS5B RNAdependent RNA polymerase suggesting that the difference was not simply a consequence of differences in RNA stability. In further analyses, we compared two isoclonal HCV variants: the LPO S H77S.3 and the LPO R H77D that differ only by 12 amino acids. Differences in rate of decline between H77S.3 and H77D following NS5A inhibitor addition were not due to amino acid sequences in NS5A but rather due to a combination of amino acid differences in the non-structural proteins that make up the HCV RC. The mathematical modeling of intracellular HCV RNA dynamics suggested that differences in RC stability (half-lives of 3.5 and 9.9 hours, for H77D and H77S.3, respectively) are responsible for the different kinetics of antiviral suppression between LPO S and LPO R viruses. In nascent RNA capture assays, the rate of RNA synthesis decline following NS5A inhibitor addition was significantly faster for H77D compared to H77S.3 indicating different half-lives of functional RCs.« less

  11. Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment.

    PubMed

    Paul, David; Hoppe, Simone; Saher, Gesine; Krijnse-Locker, Jacomine; Bartenschlager, Ralf

    2013-10-01

    Like all other positive-strand RNA viruses, hepatitis C virus (HCV) induces rearrangements of intracellular membranes that are thought to serve as a scaffold for the assembly of the viral replicase machinery. The most prominent membranous structures present in HCV-infected cells are double-membrane vesicles (DMVs). However, their composition and role in the HCV replication cycle are poorly understood. To gain further insights into the biochemcial properties of HCV-induced membrane alterations, we generated a functional replicon containing a hemagglutinin (HA) affinity tag in nonstructural protein 4B (NS4B), the supposed scaffold protein of the viral replication complex. By using HA-specific affinity purification we isolated NS4B-containing membranes from stable replicon cells. Complementing biochemical and electron microscopy analyses of purified membranes revealed predominantly DMVs, which contained viral proteins NS3 and NS5A as well as enzymatically active viral replicase capable of de novo synthesis of HCV RNA. In addition to viral factors, co-opted cellular proteins, such as vesicle-associated membrane protein-associated protein A (VAP-A) and VAP-B, that are crucial for viral RNA replication, as well as cholesterol, a major structural lipid of detergent-resistant membranes, are highly enriched in DMVs. Here we describe the first isolation and biochemical characterization of HCV-induced DMVs. The results obtained underline their central role in the HCV replication cycle and suggest that DMVs are sites of viral RNA replication. The experimental approach described here is a powerful tool to more precisely define the molecular composition of membranous replication factories induced by other positive-strand RNA viruses, such as picorna-, arteri- and coronaviruses.

  12. Morphological and Biochemical Characterization of the Membranous Hepatitis C Virus Replication Compartment

    PubMed Central

    Hoppe, Simone; Saher, Gesine; Krijnse-Locker, Jacomine

    2013-01-01

    Like all other positive-strand RNA viruses, hepatitis C virus (HCV) induces rearrangements of intracellular membranes that are thought to serve as a scaffold for the assembly of the viral replicase machinery. The most prominent membranous structures present in HCV-infected cells are double-membrane vesicles (DMVs). However, their composition and role in the HCV replication cycle are poorly understood. To gain further insights into the biochemcial properties of HCV-induced membrane alterations, we generated a functional replicon containing a hemagglutinin (HA) affinity tag in nonstructural protein 4B (NS4B), the supposed scaffold protein of the viral replication complex. By using HA-specific affinity purification we isolated NS4B-containing membranes from stable replicon cells. Complementing biochemical and electron microscopy analyses of purified membranes revealed predominantly DMVs, which contained viral proteins NS3 and NS5A as well as enzymatically active viral replicase capable of de novo synthesis of HCV RNA. In addition to viral factors, co-opted cellular proteins, such as vesicle-associated membrane protein-associated protein A (VAP-A) and VAP-B, that are crucial for viral RNA replication, as well as cholesterol, a major structural lipid of detergent-resistant membranes, are highly enriched in DMVs. Here we describe the first isolation and biochemical characterization of HCV-induced DMVs. The results obtained underline their central role in the HCV replication cycle and suggest that DMVs are sites of viral RNA replication. The experimental approach described here is a powerful tool to more precisely define the molecular composition of membranous replication factories induced by other positive-strand RNA viruses, such as picorna-, arteri- and coronaviruses. PMID:23885072

  13. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase.

    PubMed

    Appleby, Todd C; Perry, Jason K; Murakami, Eisuke; Barauskas, Ona; Feng, Joy; Cho, Aesop; Fox, David; Wetmore, Diana R; McGrath, Mary E; Ray, Adrian S; Sofia, Michael J; Swaminathan, S; Edwards, Thomas E

    2015-02-13

    Nucleotide analog inhibitors have shown clinical success in the treatment of hepatitis C virus (HCV) infection, despite an incomplete mechanistic understanding of NS5B, the viral RNA-dependent RNA polymerase. Here we study the details of HCV RNA replication by determining crystal structures of stalled polymerase ternary complexes with enzymes, RNA templates, RNA primers, incoming nucleotides, and catalytic metal ions during both primed initiation and elongation of RNA synthesis. Our analysis revealed that highly conserved active-site residues in NS5B position the primer for in-line attack on the incoming nucleotide. A β loop and a C-terminal membrane-anchoring linker occlude the active-site cavity in the apo state, retract in the primed initiation assembly to enforce replication of the HCV genome from the 3' terminus, and vacate the active-site cavity during elongation. We investigated the incorporation of nucleotide analog inhibitors, including the clinically active metabolite formed by sofosbuvir, to elucidate key molecular interactions in the active site. Copyright © 2015, American Association for the Advancement of Science.

  14. Cyclophilin B stimulates RNA synthesis by the HCV RNA dependent RNA polymerase

    PubMed Central

    Heck, Julie A.; Meng, Xiao; Frick, David N.

    2009-01-01

    Cyclophilins are cellular peptidyl isomerases that have been implicated in regulating hepatitis C virus (HCV) replication. Cyclophilin B (CypB) is a target of cyclosporin A (CsA), an immunosuppressive drug recently shown to suppress HCV replication in cell culture. Watashi et al. recently demonstrated that CypB is important for efficient HCV replication, and proposed that it mediates the anti-HCV effects of CsA through an interaction with NS5B (Mol. Cell 19:111). We examined the effects of purified CypB proteins on the enzymatic activity of NS5B. Recombinant CypB purified from insect cells directly stimulated NS5B-catalyzed RNA synthesis. CypB increased RNA synthesis by NS5B derived from genotype 1a, 1b, and 2a HCV strains. Stimulation appears to arise from an increase in productive RNA binding. NS5B residue Pro540, a previously proposed target of CypB peptidyl-prolyl isomerase activity, is not required for stimulation of RNA synthesis. PMID:19174155

  15. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface.

    PubMed

    Knodel, Markus M; Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; Targett-Adams, Paul; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-08

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  16. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

    PubMed Central

    Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-01

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles. PMID:29316722

  17. RNA Polymerase Activity and Specific RNA Structure Are Required for Efficient HCV Replication in Cultured Cells

    PubMed Central

    Date, Tomoko; Akazawa, Daisuke; Tian, Xiao; Suzuki, Tetsuro; Kato, Takanobu; Tanaka, Yasuhito; Mizokami, Masashi; Wakita, Takaji; Toyoda, Tetsuya

    2010-01-01

    We have previously reported that the NS3 helicase (N3H) and NS5B-to-3′X (N5BX) regions are important for the efficient replication of hepatitis C virus (HCV) strain JFH-1 and viral production in HuH-7 cells. In the current study, we investigated the relationships between HCV genome replication, virus production, and the structure of N5BX. We found that the Q377R, A450S, S455N, R517K, and Y561F mutations in the NS5B region resulted in up-regulation of J6CF NS5B polymerase activity in vitro. However, the activation effects of these mutations on viral RNA replication and virus production with JFH-1 N3H appeared to differ. In the presence of the N3H region and 3′ untranslated region (UTR) of JFH-1, A450S, R517K, and Y561F together were sufficient to confer HCV genome replication activity and virus production ability to J6CF in cultured cells. Y561F was also involved in the kissing-loop interaction between SL3.2 in the NS5B region and SL2 in the 3′X region. We next analyzed the 3′ structure of HCV genome RNA. The shorter polyU/UC tracts of JFH-1 resulted in more efficient RNA replication than J6CF. Furthermore, 9458G in the JFH-1 variable region (VR) was responsible for RNA replication activity because of its RNA structures. In conclusion, N3H, high polymerase activity, enhanced kissing-loop interactions, and optimal viral RNA structure in the 3′UTR were required for J6CF replication in cultured cells. PMID:20442786

  18. Inhibition of protease-inhibitor resistant hepatitis C virus replicons and infectious virus by intracellular intrabodies

    PubMed Central

    Gal-Tanamy, Meital; Zemel, Romy; Bachmatov, Larissa; Jangra, Rohit K.; Shapira, Assaf; Villanueva, Rodrigo; Yi, MinKyung; Lemon, Stanley M.; Benhar, Itai; Tur-Kaspa, Ran

    2015-01-01

    Hepatitis C virus (HCV) infection is a common cause of chronic liver disease and a serious threat to human health. The HCV NS3/4A serine protease is necessary for viral replication and innate immune evasion, and represents a well-validated target for specific antiviral therapy. We previously reported the isolation of single-chain antibodies (scFvs) that inhibit NS3/4A protease activity in vitro. Expressed intracellularly (intrabodies), these scFvs blocked NS3-mediated proliferation of NS3-transfected cells. Here we show that anti-NS3 scFvs suppress HCV RNA replication when expressed intracellularly in Huh7 hepatoma cells bearing either subgenomic or genome-length HCV RNA replicons. The expression of intrabodies directed against NS3 inhibited the autonomous amplification of HCV replicons resistant to small molecule inhibitors of the NS3/4A protease, and replicons derived from different HCV genotypes. The combination of intrabodies and interferon-α had an additive inhibitory effect on RNA replication in the replicon model. Intrabody expression also inhibited production of infectious HCV in a cell culture system. The NS3 protease activity was inhibited by the intrabodies in NS3-expressing cells. In contrast, cell-free synthesis of HCV RNA by preformed replicase complexes was not inhibited by intrabodies, suggesting that the major mode of inhibition of viral replication is inhibition of NS3/4A protease activity and subsequent suppression of viral polyprotein processing. PMID:20705106

  19. Regulation of MVM NS1 by protein kinase C: impact of mutagenesis at consensus phosphorylation sites on replicative functions and cytopathic effects.

    PubMed

    Corbau, R; Duverger, V; Rommelaere, J; Nüesch, J P

    2000-12-05

    Minute virus of mice NS1, an 83-kDa mainly nuclear phosphoprotein, is the only viral nonstructural protein required in all cell types and it is involved in multiple processes necessary for virus propagation. The diversity of functions assigned to NS1, together with the variation of its complex phosphorylation pattern during infection, suggested that the various activities of NS1 could be regulated by distinct phosphorylation events. So far, it has been demonstrated that NS1 replicative functions, in particular, DNA-unwinding activities, are regulated by protein kinase C (PKC), as exemplified by the modulation of NS1 helicase activity by PKClambda phosphorylation. In order to determine further impact of phosphorylation on NS1 functions, including the induction of cytopathic effects, a mutational approach was pursued in order to produce NS1 variants harboring amino acid substitutions at candidate PKC target residues. Besides the determination of two additional in vivo phosphorylation sites in NS1, this mutagenesis allowed the segregation of distinct NS1 functions from one another, generating NS1 variants with a distinct activity profile. Thus, we obtained NS1 mutants that were fully proficient for trans activation of the viral P38 promoter, while being impaired in their replicative functions. Moreover, the alterations of specific PKC phosphorylation sites gave rise to NS1 polypeptides that exerted reduced cytotoxicity, leading to sustained gene expression, while keeping functions necessary for progeny virus production, i.e., viral DNA replication and activation of the capsid gene promoter. These data suggested that in the course of a viral infection, NS1 may undergo a shift from productive to cytotoxic functions as a result of a phosphorylation-dependent regulation. Copyright 2000 Academic Press.

  20. Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase.

    PubMed

    Godoy, Andre S; Lima, Gustavo M A; Oliveira, Ketllyn I Z; Torres, Naiara U; Maluf, Fernando V; Guido, Rafael V C; Oliva, Glaucius

    2017-03-27

    The current Zika virus (ZIKV) outbreak became a global health threat of complex epidemiology and devastating neurological impacts, therefore requiring urgent efforts towards the development of novel efficacious and safe antiviral drugs. Due to its central role in RNA viral replication, the non-structural protein 5 (NS5) RNA-dependent RNA-polymerase (RdRp) is a prime target for drug discovery. Here we describe the crystal structure of the recombinant ZIKV NS5 RdRp domain at 1.9 Å resolution as a platform for structure-based drug design strategy. The overall structure is similar to other flaviviral homologues. However, the priming loop target site, which is suitable for non-nucleoside polymerase inhibitor design, shows significant differences in comparison with the dengue virus structures, including a tighter pocket and a modified local charge distribution.

  1. Control of temporal activation of hepatitis C virus-induced interferon response by domain 2 of nonstructural protein 5A.

    PubMed

    Hiet, Marie-Sophie; Bauhofer, Oliver; Zayas, Margarita; Roth, Hanna; Tanaka, Yasuhito; Schirmacher, Peter; Willemsen, Joschka; Grünvogel, Oliver; Bender, Silke; Binder, Marco; Lohmann, Volker; Lotteau, Vincent; Ruggieri, Alessia; Bartenschlager, Ralf

    2015-10-01

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a multifunctional protein playing a crucial role in diverse steps of the viral replication cycle and perturbing multiple host cell pathways. We showed previously that removal of a region in domain 2 (D2) of NS5A (mutant NS5A(D2Δ)) is dispensable for viral replication in hepatoma cell lines. By using a mouse model and immune-competent cell systems, we studied the role of D2 in controlling the innate immune response. In vivo replication competence of NS5A(D2Δ) was studied in transgenic mice with human liver xenografts. Results were validated using primary human hepatocytes (PHHs) and mechanistic analyses were conducted in engineered Huh7 hepatoma cells with reconstituted innate signaling pathways. Although the deletion in NS5A removed most of the interferon (IFN) sensitivity determining-region, mutant NS5A(D2Δ) was as sensitive as the wild type to IFN-α and IFN-λ in vitro, but severely attenuated in vivo. This attenuation could be recapitulated in PHHs and was linked to higher activation of the IFN response, concomitant with reduced viral replication and virus production. Importantly, immune-reconstituted Huh7-derived cell lines revealed a sequential activation of the IFN-response via RIG-I (retinoic acid-inducible gene I) and MDA5 (Myeloma differentiation associated factor 5), respectively, that was significantly higher in the case of the mutant lacking most of NS5A D2. Our study reveals an important role of NS5A D2 for suppression of the IFN response that is activated by HCV via RIG-I and MDA5 in a sequential manner. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. Functional interplay among the flavivirus NS3 protease, helicase, and cofactors.

    PubMed

    Li, Kuohan; Phoo, Wint Wint; Luo, Dahai

    2014-04-01

    Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.

  3. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication.

    PubMed Central

    Xu, J; Mendez, E; Caron, P R; Lin, C; Murcko, M A; Collett, M S; Rice, C M

    1997-01-01

    Members of the Flaviviridae encode a serine proteinase termed NS3 that is responsible for processing at several sites in the viral polyproteins. In this report, we show that the NS3 proteinase of the pestivirus bovine viral diarrhea virus (BVDV) (NADL strain) is required for processing at nonstructural (NS) protein sites 3/4A, 4A/4B, 4B/5A, and 5A/5B but not for cleavage at the junction between NS2 and NS3. Cleavage sites of the proteinase were determined by amino-terminal sequence analysis of the NS4A, NS4B, NS5A, and NS5B proteins. A conserved leucine residue is found at the P1 position of all four cleavage sites, followed by either serine (3/4A, 4B/5A, and 5A/5B sites) or alanine (4A/4B site) at the P1' position. Consistent with this cleavage site preference, a structural model of the pestivirus NS3 proteinase predicts a highly hydrophobic P1 specificity pocket. trans-Processing experiments implicate the 64-residue NS4A protein as an NS3 proteinase cofactor required for cleavage at the 4B/5A and 5A/5B sites. Finally, using a full-length functional BVDV cDNA clone, we demonstrate that a catalytically active NS3 serine proteinase is essential for pestivirus replication. PMID:9188600

  4. Hypervariable Domain of Nonstructural Protein nsP3 of Venezuelan Equine Encephalitis Virus Determines Cell-Specific Mode of Virus Replication

    PubMed Central

    Foy, Niall J.; Akhrymuk, Maryna; Shustov, Alexander V.; Frolova, Elena I.

    2013-01-01

    Venezuelan equine encephalitis virus (VEEV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. This genus is divided into the Old World and New World alphaviruses, which demonstrate profound differences in pathogenesis, replication, and virus-host interactions. VEEV is a representative member of the New World alphaviruses. The biology of this virus is still insufficiently understood, particularly the function of its nonstructural proteins in RNA replication and modification of the intracellular environment. One of these nonstructural proteins, nsP3, contains a hypervariable domain (HVD), which demonstrates very low overall similarity between different alphaviruses, suggesting the possibility of its function in virus adaptation to different hosts and vectors. The results of our study demonstrate the following. (i) Phosphorylation of the VEEV nsP3-specific HVD does not play a critical role in virus replication in cells of vertebrate origin but is important for virus replication in mosquito cells. (ii) The VEEV HVD is not required for viral RNA replication in the highly permissive BHK-21 cell line. In fact, it can be either completely deleted or replaced by a heterologous protein sequence. These variants require only one or two additional adaptive mutations in nsP3 and/or nsP2 proteins to achieve an efficiently replicating phenotype. (iii) However, the carboxy-terminal repeat in the VEEV HVD is indispensable for VEEV replication in the cell lines other than BHK-21 and plays a critical role in formation of VEEV-specific cytoplasmic protein complexes. Natural VEEV variants retain at least one of the repeated elements in their nsP3 HVDs. PMID:23637407

  5. Adaptation of tick-borne encephalitis virus from human brain to different cell cultures induces multiple genomic substitutions.

    PubMed

    Ponomareva, Eugenia P; Ternovoi, Vladimir A; Mikryukova, Tamara P; Protopopova, Elena V; Gladysheva, Anastasia V; Shvalov, Alexander N; Konovalova, Svetlana N; Chausov, Eugene V; Loktev, Valery B

    2017-10-01

    The C11-13 strain from the Siberian subtype of tick-borne encephalitis virus (TBEV) was isolated from human brain using pig embryo kidney (PEK), 293, and Neuro-2a cells. Analysis of the complete viral genome of the C11-13 variants during six passages in these cells revealed that the cell-adapted C11-13 variants had multiple amino acid substitutions as compared to TBEV from human brain. Seven out of eight amino acids substitutions in the high-replicating C11-13(PEK) variant mapped to non-structural proteins; 13 out of 14 substitutions in the well-replicating C11-13(293) variant, and all four substitutions in the low-replicating C11-13(Neuro-2a) variant were also localized in non-structural proteins, predominantly in the NS2a (2), NS3 (6) and NS5 (3) proteins. The substitutions NS2a 1067 (Asn → Asp), NS2a 1168 (Leu → Val) in the N-terminus of NS2a and NS3 1745 (His → Gln) in the helicase domain of NS3 were found in all selected variants. We postulate that multiple substitutions in the NS2a, NS3 and NS5 genes play a key role in adaptation of TBEV to different cells.

  6. Osteopontin Regulates Hepatitis C Virus (HCV) Replication and Assembly by Interacting with HCV Proteins and Lipid Droplets and by Binding to Receptors αVβ3 and CD44.

    PubMed

    Iqbal, Jawed; Sarkar-Dutta, Mehuli; McRae, Steven; Ramachandran, Akshaya; Kumar, Binod; Waris, Gulam

    2018-07-01

    Hepatitis C virus (HCV) replication and assembly occur at the specialized site of endoplasmic reticulum (ER) membranes and lipid droplets (LDs), respectively. Recently, several host proteins have been shown to be involved in HCV replication and assembly. In the present study, we demonstrated the important relationship among osteopontin (OPN), the ER, and LDs. OPN is a secreted phosphoprotein, and overexpression of OPN in hepatocellular carcinoma (HCC) tissue can lead to invasion and metastasis. OPN expression is also enhanced in HCV-associated HCC. Our recent studies have demonstrated the induction, proteolytic cleavage, and secretion of OPN in response to HCV infection. We also defined the critical role of secreted OPN in human hepatoma cell migration and invasion through binding to receptors integrin αVβ3 and CD44. However, the role of HCV-induced OPN in the HCV life cycle has not been elucidated. In this study, we showed a significant reduction in HCV replication, assembly, and infectivity in HCV-infected cells transfected with small interfering RNA (siRNA) against OPN, αVβ3, and CD44. We also observed the association of endogenous OPN with HCV proteins (NS3, NS5A, NS4A/B, NS5B, and core). Confocal microscopy revealed the colocalization of OPN with HCV NS5A and core in the ER and LDs, indicating a possible role for OPN in HCV replication and assembly. Interestingly, the secreted OPN activated HCV replication, infectivity, and assembly through binding to αVβ3 and CD44. Collectively, these observations provide evidence that HCV-induced OPN is critical for HCV replication and assembly. IMPORTANCE Recently, our studies uncovered the critical role of HCV-induced endogenous and secreted OPN in migration and invasion of hepatocytes. However, the role of OPN in the HCV life cycle has not been elucidated. In this study, we investigated the importance of OPN in HCV replication and assembly. We demonstrated that endogenous OPN associates with HCV NS3, NS5A, NS5B, and core proteins, which are in close proximity to the ER and LDs. Moreover, we showed that the interactions of secreted OPN with cell surface receptors αVβ3 and CD44 are critical for HCV replication and assembly. These observations provide evidence that HCV-induced endogenous and secreted OPN play pivotal roles in HCV replication and assembly in HCV-infected cells. Taken together, our findings clearly demonstrate that targeting OPN may provide opportunities for therapeutic intervention of HCV pathogenesis. Copyright © 2018 American Society for Microbiology.

  7. Japanese encephalitis virus replication is negatively regulated by autophagy and occurs on LC3-I- and EDEM1-containing membranes.

    PubMed

    Sharma, Manish; Bhattacharyya, Sankar; Nain, Minu; Kaur, Manpreet; Sood, Vikas; Gupta, Vishal; Khasa, Renu; Abdin, Malik Z; Vrati, Sudhanshu; Kalia, Manjula

    2014-09-01

    Autophagy is a lysosomal degradative pathway that has diverse physiological functions and plays crucial roles in several viral infections. Here we examine the role of autophagy in the life cycle of JEV, a neurotropic flavivirus. JEV infection leads to induction of autophagy in several cell types. JEV replication was significantly enhanced in neuronal cells where autophagy was rendered dysfunctional by ATG7 depletion, and in Atg5-deficient mouse embryonic fibroblasts (MEFs), resulting in higher viral titers. Autophagy was functional during early stages of infection however it becomes dysfunctional as infection progressed resulting in accumulation of misfolded proteins. Autophagy-deficient cells were highly susceptible to virus-induced cell death. We also observed JEV replication complexes that are marked by nonstructural protein 1 (NS1) and dsRNA colocalized with endogenous LC3 but not with GFP-LC3. Colocalization of NS1 and LC3 was also observed in Atg5 deficient MEFs, which contain only the nonlipidated form of LC3. Viral replication complexes furthermore show association with a marker of the ER-associated degradation (ERAD) pathway, EDEM1 (ER degradation enhancer, mannosidase α-like 1). Our data suggest that virus replication occurs on ERAD-derived EDEM1 and LC3-I-positive structures referred to as EDEMosomes. While silencing of ERAD regulators EDEM1 and SEL1L suppressed JEV replication, LC3 depletion exerted a profound inhibition with significantly reduced RNA levels and virus titers. Our study suggests that while autophagy is primarily antiviral for JEV and might have implications for disease progression and pathogenesis of JEV, nonlipidated LC3 plays an important autophagy independent function in the virus life cycle.

  8. The Flavivirus Protease As a Target for Drug Discovery

    PubMed Central

    Brecher, Matthew; Zhang, Jing; Li, Hongmin

    2014-01-01

    Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures. PMID:24242363

  9. The flavivirus protease as a target for drug discovery.

    PubMed

    Brecher, Matthew; Zhang, Jing; Li, Hongmin

    2013-12-01

    Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures.

  10. Cyclophilin B stimulates RNA synthesis by the HCV RNA dependent RNA polymerase.

    PubMed

    Heck, Julie A; Meng, Xiao; Frick, David N

    2009-04-01

    Cyclophilins are cellular peptidyl isomerases that have been implicated in regulating hepatitis C virus (HCV) replication. Cyclophilin B (CypB) is a target of cyclosporin A (CsA), an immunosuppressive drug recently shown to suppress HCV replication in cell culture. Watashi et al. recently demonstrated that CypB is important for efficient HCV replication, and proposed that it mediates the anti-HCV effects of CsA through an interaction with NS5B [Watashi K, Ishii N, Hijikata M, Inoue D, Murata T, Miyanari Y, et al. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell 2005;19:111-22]. We examined the effects of purified CypB proteins on the enzymatic activity of NS5B. Recombinant CypB purified from insect cells directly stimulated NS5B-catalyzed RNA synthesis. CypB increased RNA synthesis by NS5B derived from genotype 1a, 1b, and 2a HCV strains. Stimulation appears to arise from an increase in productive RNA binding. NS5B residue Pro540, a previously proposed target of CypB peptidyl-prolyl isomerase activity, is not required for stimulation of RNA synthesis.

  11. Differential roles for the C-terminal hexapeptide domains of NS2 splice variants during MVM infection of murine cells.

    PubMed

    Ruiz, Zandra; D'Abramo, Anthony; Tattersall, Peter

    2006-06-05

    The MVM NS2 proteins are required for viral replication in cells of its normal murine host, but are dispensable in transformed human 324K cells. Alternate splicing at the minor intron controls synthesis of three forms of this protein, which differ in their C-terminal hexapeptides and in their relative abundance, with NS2P and NS2Y, the predominant isoforms, being expressed at a 5:1 ratio. Mutant genomes were constructed with premature termination codons in the C-terminal exons of either NS2P or NS2Y, which resulted in their failure to accumulate in vivo. To modulate their expression levels, we also introduced a mutation at the putative splice branch point of the large intron, dubbed NS2(lo), that reduced total NS2 expression in murine A9 cells such that NS2P accumulated to approximately half the level normally seen for NS2Y. All mutants replicated productively in human 324K cells. In A9 cells, NS2Y(-) mutants replicated like wildtype, and the NS2(lo) mutants expressed NS1 and replicated duplex viral DNA like wildtype, although their progeny single-strand DNA synthesis was reduced. However, while NS2P(-) and NS2-null viruses initiated infection efficiently in A9 cells, they gave diminished NS1 levels, and viral macromolecular synthesis appeared to become paralyzed shortly after the onset of viral duplex DNA amplification, such that no progeny single-strand DNA could be detected. Thus, the NS2P isoform, even when expressed at a level lower than that of NS2Y, performs a critical role in infection of A9 cells that cannot be accomplished by the NS2Y isoform alone.

  12. A Crystal Structure of Classical Swine Fever Virus NS5B Reveals a Novel N-terminal Domain.

    PubMed

    Li, Weiwei; Wu, Baixing; Soca, Wibowo Adian; An, Lei

    2018-05-02

    Classical swine fever virus (CSFV) is the ringleader of Classical swine fever (CSF). The non-structural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp) that is a key enzyme initiating viral RNA replication by a de novo mechanism. It is also an attractive target for the development of anti-CSFV drugs. To gain a better understanding on the mechanism of CSFV RNA synthesis, here we solved the first crystal structure of CSFV-NS5B. Our studies show that the CSFV-NS5B RdRp contains characteristic fingers, palm domain and thumb domain as well as a unique N-terminal domain (NTD) that had never been observed. Mutagenesis studies on NS5B validated the importance of NTD in the catalytic activity of this novel RNA-dependent RNA polymerase. Moreover, our results shed light on the understanding of CSFV infection. IMPORTANCE Pigs are important domestic animal. However, a highly contagious viral disease named Classical swine fever (CSF) causes devastating economic losses. Classical swine fever virus (CSFV) is the primary culprit of CSF, which is a positive-sense single-stranded RNA virus belonging to the Pestivirus genus, Flaviviridae family. Genome replication of CSFV depends on RNA-dependent RNA polymerase known as NS5B. However, the structure of CSFV-NS5B has never been reported, and the mechanism of CSFV replication is poorly understood. Here, we solved the first crystal structure of CSFV-NS5B, analyzed the function of characteristic fingers, palm, and thumb domains. Additionally, our structure also revealed the presence of a novel N-terminal domain (NTD). Biochemical studies demonstrated that the NTD of CSFV-NS5B is very important for RNA-dependent RNA polymerase (RdRp) activity. Collectively, our studies provide a structural basis for future rational design of anti-CSFV drugs which is critically important as no effective anti-CSFV drugs have been developed. Copyright © 2018 American Society for Microbiology.

  13. Characterisation of divergent flavivirus NS3 and NS5 protein sequences detected in Rhipicephalus microplus ticks from Brazil

    PubMed Central

    Maruyama, Sandra Regina; Castro-Jorge, Luiza Antunes; Ribeiro, José Marcos Chaves; Gardinassi, Luiz Gustavo; Garcia, Gustavo Rocha; Brandão, Lucinda Giampietro; Rodrigues, Aline Rezende; Okada, Marcos Ituo; Abrão, Emiliana Pereira; Ferreira, Beatriz Rossetti; da Fonseca, Benedito Antonio Lopes; de Miranda-Santos, Isabel Kinney Ferreira

    2013-01-01

    Transcripts similar to those that encode the nonstructural (NS) proteins NS3 and NS5 from flaviviruses were found in a salivary gland (SG) complementary DNA (cDNA) library from the cattle tick Rhipicephalus microplus. Tick extracts were cultured with cells to enable the isolation of viruses capable of replicating in cultured invertebrate and vertebrate cells. Deep sequencing of the viral RNA isolated from culture supernatants provided the complete coding sequences for the NS3 and NS5 proteins and their molecular characterisation confirmed similarity with the NS3 and NS5 sequences from other flaviviruses. Despite this similarity, phylogenetic analyses revealed that this potentially novel virus may be a highly divergent member of the genus Flavivirus. Interestingly, we detected the divergent NS3 and NS5 sequences in ticks collected from several dairy farms widely distributed throughout three regions of Brazil. This is the first report of flavivirus-like transcripts in R. microplus ticks. This novel virus is a potential arbovirus because it replicated in arthropod and mammalian cells; furthermore, it was detected in a cDNA library from tick SGs and therefore may be present in tick saliva. It is important to determine whether and by what means this potential virus is transmissible and to monitor the virus as a potential emerging tick-borne zoonotic pathogen. PMID:24626302

  14. Host factor SPCS1 regulates the replication of Japanese encephalitis virus through interactions with transmembrane domains of NS2B.

    PubMed

    Ma, Le; Li, Fang; Zhang, Jing-Wei; Li, Wei; Zhao, Dong-Ming; Wang, Han; Hua, Rong-Hong; Bu, Zhi-Gao

    2018-03-28

    Signal peptidase complex subunit 1 (SPCS1) is a newly identified host factor that regulates flavivirus replication, but the molecular mechanism is not fully understood. Herein, using Japanese encephalitis virus (JEV) as a model, we investigated the mechanism through which host factor SPCS1 regulates the replication of flaviviruses. We first validated the regulatory function of SPCS1 in JEV propagation by knocking down and knocking out endogenous SPCS1. Loss of SPCS1 function markedly reduced intracellular virion assembly and production of infectious JEV particles, but did not affect virus cell entry, RNA replication, or translation. SPCS1 was found to interact with NS2B, which is involved in post-translational protein processing and viral assembly. Serial deletion mutation of the JEV NS2B protein revealed that two transmembrane domains, NS2B (1-49) and NS2B (84-131), interact with SPCS1. Further mutagenesis analysis of conserved flavivirus residues in two SPCS1 interaction domains of NS2B demonstrated that G12A, G37A, and G47A in NS2B (1-49), and P112A in NS2B (84-131), weakened the interaction with SPCS1. Deletion mutation of SPCS1 revealed that SPCS1 (91-169) which containing two transmembrane domains was involved in the interaction with both NS2B (1-49) and NS2B (84-131). Taken together, the results demonstrate that SPCS1 affects viral replication by interacting with NS2B, thereby influencing post-translational processing of JEV proteins and the assembly of virions. IMPORTANCE Understanding viral-host interactions is important for elucidating the molecular mechanisms of viral propagation, and identifying potential anti-viral targets. Previous reports demonstrated that SPCS1 is involved in the flavivirus life cycle, but the mechanism remains unknown. In this study, we confirmed that SPCS1 participates in the post-translational protein processing and viral assembly stages of the JEV lifecycle, but not in the cell entry, genome RNA replication, or translation stages. Furthermore, we found that SPCS1 interacts with two independent transmembrane domains of the Flavivirus NS2B protein. NS2B also interacts with NS2A, which is proposed to mediate viral assembly. Therefore, we propose a protein-protein interaction model showing how SPCS1 participates in the assembly of JEV particles. The findings expand our understanding of how host factors participate in the flavivirus replication lifecycle, and identify potential anti-viral targets for combatting flavivirus infection. Copyright © 2018 American Society for Microbiology.

  15. Cellular Hsp27 interacts with classical swine fever virus NS5A protein and negatively regulates viral replication by the NF-κB signaling pathway.

    PubMed

    Ling, Shifeng; Luo, Mingyang; Jiang, Shengnan; Liu, Jiayu; Ding, Chunying; Zhang, Qinghuan; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-05-01

    Classical swine fever virus (CSFV) nonstructural protein NS5A is a multifunctional protein functioning in regulation of viral genome replication, protein translation and assembly by interaction with viral or host proteins. Here, heat shock protein 27 (Hsp27) has been identified as a novel binding partner of NS5A by using His tag "pull down" coupled with shotgun LC-MS/MS, with interaction of both proteins further confirmed by co-immunoprecipitation and laser confocal assays. In PK-15 cells, silencing of Hsp27 expression by siRNA enhanced CSFV replication, and upregulation of Hsp27 inhibited viral proliferation. Additionally, we have shown that overexpression of Hsp27 increased NF-κB signaling induced by TNFα. Blocking NF-κB signaling in PK-15 cells overexpressing Hsp27 by ammonium pyrrolidinedithiocarbamate (PDTC) eliminated the inhibition of CSFV replication by Hsp27. These findings clearly demonstrate that the inhibition of CSFV replication by Hsp27 is mediated via the NF-κB signaling pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization.

    PubMed

    Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D

    2013-08-02

    The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes.

  17. Serotype-specific Differences in Dengue Virus Non-structural Protein 5 Nuclear Localization*

    PubMed Central

    Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D.

    2013-01-01

    The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes. PMID:23770669

  18. High-mobility group 1/2 proteins are essential for initiating rolling-circle-type DNA replication at a parvovirus hairpin origin.

    PubMed

    Cotmore, S F; Tattersall, P

    1998-11-01

    Rolling-circle replication is initiated by a replicon-encoded endonuclease which introduces a single-strand nick into specific origin sequences, becoming covalently attached to the 5' end of the DNA at the nick and providing a 3' hydroxyl to prime unidirectional, leading-strand synthesis. Parvoviruses, such as minute virus of mice (MVM), have adapted this mechanism to amplify their linear single-stranded genomes by using hairpin telomeres which sequentially unfold and refold to shuttle the replication fork back and forth along the genome, creating a continuous, multimeric DNA strand. The viral initiator protein, NS1, then excises individual genomes from this continuum by nicking and reinitiating synthesis at specific origins present within the hairpin sequences. Using in vitro assays to study ATP-dependent initiation within the right-hand (5') MVM hairpin, we have characterized a HeLa cell factor which is absolutely required to allow NS1 to nick this origin. Unlike parvovirus initiation factor (PIF), the cellular complex which activates NS1 endonuclease activity at the left-hand (3') viral origin, the host factor which activates the right-hand hairpin elutes from phosphocellulose in high salt, has a molecular mass of around 25 kDa, and appears to bind preferentially to structured DNA, suggesting that it might be a member of the high-mobility group 1/2 (HMG1/2) protein family. This prediction was confirmed by showing that purified calf thymus HMG1 and recombinant human HMG1 or murine HMG2 could each substitute for the HeLa factor, activating the NS1 endonuclease in an origin-specific nicking reaction.

  19. Kushenin induces the apoptosis of HCV-infected cells by blocking the PI3K-Akt-mTOR pathway via inhibiting NS5A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yi; Chen, Na; Liu, Xiaojing

    With the increased burden induced by HCV, there is an urgent need to develop better-tolerated agents with good safety. In this study, we evaluated the anti-HCV capability of kushenin, as well as the possible mechanism to Huh7.5-HCV cells. The results demonstrated that kushenin significantly inhibited the HCV-RNA level. Similarly, the expression of HCV-specific protein NS5A was also decreased. Molecular docking results displayed that kushenin bonded well to the active pockets of HCV NS5A, further confirming the effects of kushenin on HCV replication. Coimmunoprecipitation assay determined that kushenin suppressed the interaction between PI3K and NS5A in HCV-replicon cells. Furthermore, kushenin exertedmore » an obviously induced function on HCV-replicon cells apoptosis by inhibiting PI3K-Akt-mTOR pathway, which could be ameliorated by the specific activator IGF-1 addition. Taken together, kushenin possesses the ability to inhibit HCV replication, and contributes to the increased apoptosis of HCV-infected cells by blocking the PI3K-Akt-mTOR pathway via inhibiting NS5A. Our results provide important evidence for a better understanding of the pathogenesis of HCV infection, and suggest that kushenin has the potential to treat HCV disease. - Highlights: • Kushenin inhibits HCV replication. • Kushenin bonds directly to NS5A protein. • Kushenin induces the apoptosis of HCV-infected cells. • kushenin suppresses the interaction between PI3K and NS5A. • Kushenin inhibits PI3K-Akt-mTOR pathway.« less

  20. Structure and function of Zika virus NS5 protein: perspectives for drug design.

    PubMed

    Wang, Boxiao; Thurmond, Stephanie; Hai, Rong; Song, Jikui

    2018-05-01

    Zika virus (ZIKV) belongs to the positive-sense single-stranded RNA-containing Flaviviridae family. Its recent outbreak and association with human diseases (e.g. neurological disorders) have raised global health concerns, and an urgency to develop a therapeutic strategy against ZIKV infection. However, there is no currently approved antiviral against ZIKV. Here we present a comprehensive overview on recent progress in structure-function investigation of ZIKV NS5 protein, the largest non-structural protein of ZIKV, which is responsible for replication of the viral genome, RNA capping and suppression of host interferon responses. Structural comparison of the N-terminal methyltransferase domain and C-terminal RNA-dependent RNA polymerase domain of ZIKV NS5 with their counterparts from related viruses provides mechanistic insights into ZIKV NS5-mediated RNA replication, and identifies residues critical for its enzymatic activities. Finally, a collection of recently identified small molecule inhibitors against ZIKV NS5 or its closely related flavivirus homologues are also discussed.

  1. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production.

    PubMed

    Gebhard, Leopoldo G; Iglesias, Néstor G; Byk, Laura A; Filomatori, Claudia V; De Maio, Federico A; Gamarnik, Andrea V

    2016-06-01

    Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly. A thorough site-directed mutagenesis study based on solvent-accessible surface areas of NS3 revealed that, in addition to being essential for RNA replication, different domains of dengue virus NS3 are critically required for production of infectious viral particles. Unexpectedly, point mutations in the protease, interdomain linker, or helicase domain were sufficient to abolish infectious particle formation without affecting translation, polyprotein processing, or RNA replication. In particular, we identified a novel proline-rich N-terminal unstructured region of NS3 that contains several amino acid residues involved in infectious particle formation. We also showed a new role for the interdomain linker of NS3 in virion assembly. In conclusion, we present a comprehensive genetic map of novel NS3 determinants for viral particle assembly. Importantly, our results provide evidence of a central role of NS3 in the coordination of both dengue virus RNA replication and particle formation. Dengue virus is an important human pathogen, and its prominence is expanding globally; however, basic aspects of its biology are still unclear, hindering the development of effective therapeutic and prophylactic treatments. Little is known about the initial steps of dengue and other flavivirus particle assembly. This process involves a complex interplay between viral and cellular components, making it an attractive antiviral target. Unpredictably, we identified spatially separated regions of the large NS3 viral protein as determinants for dengue virus particle assembly. NS3 is a multifunctional enzyme that participates in different steps of the viral life cycle. Using reporter systems to dissect different viral processes, we identified a novel N-terminal unstructured region of the NS3 protein as crucial for production of viral particles. Based on our findings, we propose new ideas that include NS3 as a possible scaffold for the viral assembly process. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Replacement of the respiratory syncytial virus nonstructural proteins NS1 and NS2 by the V protein of parainfluenza virus 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Kim C.; He, Biao; Teng, Michael N.

    2007-11-10

    Paramyxoviruses have been shown to produce proteins that inhibit interferon production and signaling. For human respiratory syncytial virus (RSV), the nonstructural NS1 and NS2 proteins have been shown to have interferon antagonist activity through an unknown mechanism. To understand further the functions of NS1 and NS2, we generated recombinant RSV in which both NS1 and NS2 were replaced by the PIV5 V protein, which has well-characterized IFN antagonist activities ({delta}NS1/2-V). Expression of V was able to partially inhibit IFN responses in {delta}NS1/2-V-infected cells. In addition, the replication kinetics of {delta}NS1/2-V were intermediate between {delta}NS1/2 and wild-type (rA2) in A549 cells.more » However, expression of V did not affect the ability of {delta}NS1/2-V to activate IRF3 nuclear translocation and IFN{beta} transcription. These data indicate that V was able to replace some of the IFN inhibitory functions of the RSV NS1 and NS2 proteins, but also that NS1 and NS2 have functions in viral replication beyond IFN antagonism.« less

  3. Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention.

    PubMed

    Zmurko, Joanna; Neyts, Johan; Dallmeier, Kai

    2015-07-01

    Dengue virus and other flaviviruses such as the yellow fever, West Nile, and Japanese encephalitis viruses are emerging vector-borne human pathogens that affect annually more than 100 million individuals and that may cause debilitating and potentially fatal hemorrhagic and encephalitic diseases. Currently, there are no specific antiviral drugs for the treatment of flavivirus-associated disease. A better understanding of the flavivirus-host interactions during the different events of the flaviviral life cycle may be essential when developing novel antiviral strategies. The flaviviral non-structural protein 4b (NS4b) appears to play an important role in flaviviral replication by facilitating the formation of the viral replication complexes and in counteracting innate immune responses such as the following: (i) type I IFN signaling; (ii) RNA interference; (iii) formation of stress granules; and (iv) the unfolded protein response. Intriguingly, NS4b has recently been shown to constitute an excellent target for the selective inhibition of flavivirus replication. We here review the current knowledge on NS4b. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd.

  4. Flaviviral NS4b, chameleon and jack‐in‐the‐box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention

    PubMed Central

    Zmurko, Joanna; Dallmeier, Kai

    2015-01-01

    Summary Dengue virus and other flaviviruses such as the yellow fever, West Nile, and Japanese encephalitis viruses are emerging vector‐borne human pathogens that affect annually more than 100 million individuals and that may cause debilitating and potentially fatal hemorrhagic and encephalitic diseases. Currently, there are no specific antiviral drugs for the treatment of flavivirus‐associated disease. A better understanding of the flavivirus–host interactions during the different events of the flaviviral life cycle may be essential when developing novel antiviral strategies. The flaviviral non‐structural protein 4b (NS4b) appears to play an important role in flaviviral replication by facilitating the formation of the viral replication complexes and in counteracting innate immune responses such as the following: (i) type I IFN signaling; (ii) RNA interference; (iii) formation of stress granules; and (iv) the unfolded protein response. Intriguingly, NS4b has recently been shown to constitute an excellent target for the selective inhibition of flavivirus replication. We here review the current knowledge on NS4b. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:25828437

  5. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    PubMed Central

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-01-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result. PMID:7853501

  6. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    PubMed

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-03-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result.

  7. Evolution and Persistence of the Resistance-Associated Substitutions of Hepatitis C Virus after Direct-Acting Antiviral Treatment Failures.

    PubMed

    Jeong, Yechan; Jin, Bora; Lee, Hye Won; Park, Hye Jung; Park, Jun Yong; Kim, Do Young; Han, Kwang-Hyub; Ahn, Sang Hoon; Kim, Seungtaek

    2018-05-16

    Daclatasvir plus asunaprevir (DCV+ASV) treatment is an all-oral direct-acting antiviral (DAA) therapy for the genotype 1b HCV-infected patients. In this study, we investigated how resistance-associated substitutions (RASs) evolved after treatment failures and assessed the effect of those substitutions on viral fitness. Sequencing of NS5A and NS3 revealed typical RASs after treatment failures. Interestingly, the RASs of NS3 reverted to the wild-type amino acid within one year after treatment failures. However, the RASs of NS5A were stable and did not change. The effect of NS5A and NS3 RASs on viral RNA replication was assessed after mutagenic substitution in the genotype 1b HCV RNA. Among the single substitutions, the effect of D168V was more substantial than the others and the effect of the triple mutant combination (D168V+L31V+Y93H) was the most severe. The RAS at NS5A Y93 affected both viral RNA replication and virus production. Finally, the effect of trans-complementation of NS5A was demonstrated in our co-transfection experiments and these results suggest that such a trans-complementation effect of NS5A may help maintain the NS5A RASs for a long time even after cessation of the DAA treatment. In conclusion, the results from this investigation would help understand the emergence and persistence of RASs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Minute Virus of Mice Initiator Protein NS1 and a Host KDWK Family Transcription Factor Must Form a Precise Ternary Complex with Origin DNA for Nicking To Occur

    PubMed Central

    Christensen, Jesper; Cotmore, Susan F.; Tattersall, Peter

    2001-01-01

    Parvoviral rolling hairpin replication generates palindromic genomic concatemers whose junctions are resolved to give unit-length genomes by a process involving DNA replication initiated at origins derived from each viral telomere. The left-end origin of minute virus of mice (MVM), oriL, contains binding sites for the viral initiator nickase, NS1, and parvovirus initiation factor (PIF), a member of the emerging KDWK family of transcription factors. oriL is generated as an active form, oriLTC, and as an inactive form, oriLGAA, which contains a single additional nucleotide inserted between the NS1 and PIF sites. Here we examined the interactions on oriLTC which lead to activation of NS1 by PIF. The two subunits of PIF, p79 and p96, cooperatively bind two ACGT half-sites, which can be flexibly spaced. When coexpressed from recombinant baculoviruses, the PIF subunits preferentially form heterodimers which, in the presence of ATP, show cooperative binding with NS1 on oriL, but this interaction is preferentially enhanced on oriLTC compared to oriLGAA. Without ATP, NS1 is unable to bind stably to its cognate site, but PIF facilitates this interaction, rendering the NS1 binding site, but not the nick site, resistant to DNase I. Varying the spacing of the PIF half-sites shows that the distance between the NS1 binding site and the NS1-proximal half-site is critical for nickase activation, whereas the position of the distal half-site is unimportant. When expressed separately, both PIF subunits form homodimers that bind site specifically to oriL, but only complexes containing p79 activate the NS1 nickase function. PMID:11435581

  9. TRIM79α, an interferon-stimulated gene product, restricts tick-borne encephalitis virus replication by degrading the viral RNA polymerase

    PubMed Central

    Taylor, R. Travis; Lubick, Kirk J.; Robertson, Shelly J.; Broughton, James P.; Bloom, Marshall E.; Bresnahan, Wade A.; Best, Sonja M.

    2011-01-01

    In response to virus infection, type I interferons (IFNs) induce several genes, most of whose functions are largely unknown. Here we show that the tripartite motif (TRIM) protein, TRIM79α, is an IFN-stimulated gene (ISG) product that specifically targets tick-borne encephalitis virus (TBEV), a Flavivirus that causes encephalitides in humans. TRIM79α restricts TBEV replication by mediating lysosome-dependent degradation of the flavivirus NS5 protein, an RNA-dependent RNA polymerase essential for virus replication. NS5 degradation was specific to tick-borne flaviviruses as TRIM79α did not recognize NS5 from West Nile virus (WNV) or inhibit WNV replication. In the absence of TRIM79α, IFN-β was less effective in inhibiting tick-borne flavivirus infection of mouse macrophages, highlighting the importance of a single virus-specific ISG in establishing an antiviral state. The specificity of TRIM79α for TBEV reveals a remarkable ability of the innate IFN response to discriminate between closely related flaviviruses. PMID:21925107

  10. Identification of chikungunya virus nsP2 protease inhibitors using structure-base approaches.

    PubMed

    Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A

    2015-04-01

    The nsP2 protease of chikungunya virus (CHIKV) is one of the essential components of viral replication and it plays a crucial role in the cleavage of polyprotein precursors for the viral replication process. Therefore, it is gaining attention as a potential drug design target against CHIKV. Based on the recently determined crystal structure of the nsP2 protease of CHIKV, this study identified potential inhibitors of the virus using structure-based approaches with a combination of molecular docking, virtual screening and molecular dynamics (MD) simulations. The top hit compounds from database searching, using the NCI Diversity Set II, with targeting at five potential binding sites of the nsP2 protease, were identified by blind dockings and focused dockings. These complexes were then subjected to MD simulations to investigate the stability and flexibility of the complexes and to gain a more detailed insight into the interactions between the compounds and the enzyme. The hydrogen bonds and hydrophobic contacts were characterized for the complexes. Through structural alignment, the catalytic residues Cys1013 and His1083 were identified in the N-terminal region of the nsP2 protease. The absolute binding free energies were estimated by the linear interaction energy approach and compared with the binding affinities predicted with docking. The results provide valuable information for the development of inhibitors for CHIKV. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  11. microRNA-122 target sites in the hepatitis C virus RNA NS5B coding region and 3' untranslated region: function in replication and influence of RNA secondary structure.

    PubMed

    Gerresheim, Gesche K; Dünnes, Nadia; Nieder-Röhrmann, Anika; Shalamova, Lyudmila A; Fricke, Markus; Hofacker, Ivo; Höner Zu Siederdissen, Christian; Marz, Manja; Niepmann, Michael

    2017-02-01

    We have analyzed the binding of the liver-specific microRNA-122 (miR-122) to three conserved target sites of hepatitis C virus (HCV) RNA, two in the non-structural protein 5B (NS5B) coding region and one in the 3' untranslated region (3'UTR). miR-122 binding efficiency strongly depends on target site accessibility under conditions when the range of flanking sequences available for the formation of local RNA secondary structures changes. Our results indicate that the particular sequence feature that contributes most to the correlation between target site accessibility and binding strength varies between different target sites. This suggests that the dynamics of miRNA/Ago2 binding not only depends on the target site itself but also on flanking sequence context to a considerable extent, in particular in a small viral genome in which strong selection constraints act on coding sequence and overlapping cis-signals and model the accessibility of cis-signals. In full-length genomes, single and combination mutations in the miR-122 target sites reveal that site 5B.2 is positively involved in regulating overall genome replication efficiency, whereas mutation of site 5B.3 showed a weaker effect. Mutation of the 3'UTR site and double or triple mutants showed no significant overall effect on genome replication, whereas in a translation reporter RNA, the 3'UTR target site inhibits translation directed by the HCV 5'UTR. Thus, the miR-122 target sites in the 3'-region of the HCV genome are involved in a complex interplay in regulating different steps of the HCV replication cycle.

  12. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Hongping; Zhang Bo; Shi Peiyong

    2008-11-10

    Genome cyclization is essential for flavivirus replication. We used RNases to probe the structures formed by the 5'-terminal 190 nucleotides and the 3'-terminal 111 nucleotides of the West Nile virus (WNV) genomic RNA. When analyzed individually, the two RNAs adopt stem-loop structures as predicted by the thermodynamic-folding program. However, when mixed together, the two RNAs form a duplex that is mediated through base-pairings of two sets of RNA elements (5'CS/3'CSI and 5'UAR/3'UAR). Formation of the RNA duplex facilitates a conformational change that leaves the 3'-terminal nucleotides of the genome (position - 8 to - 16) to be single-stranded. Viral NS5more » binds specifically to the 5'-terminal stem-loop (SL1) of the genomic RNA. The 5'SL1 RNA structure is essential for WNV replication. The study has provided further evidence to suggest that flavivirus genome cyclization and NS5/5'SL1 RNA interaction facilitate NS5 binding to the 3' end of the genome for the initiation of viral minus-strand RNA synthesis.« less

  13. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Masaya; Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp; Hasegawa, Hideki

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while themore » physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.« less

  14. A host YB-1 ribonucleoprotein complex is hijacked by hepatitis C virus for the control of NS3-dependent particle production.

    PubMed

    Chatel-Chaix, Laurent; Germain, Marie-Anne; Motorina, Alena; Bonneil, Éric; Thibault, Pierre; Baril, Martin; Lamarre, Daniel

    2013-11-01

    Hepatitis C virus (HCV) orchestrates the different stages of its life cycle in time and space through the sequential participation of HCV proteins and cellular machineries; hence, these represent tractable molecular host targets for HCV elimination by combination therapies. We recently identified multifunctional Y-box-binding protein 1 (YB-1 or YBX1) as an interacting partner of NS3/4A protein and HCV genomic RNA that negatively regulates the equilibrium between viral translation/replication and particle production. To identify novel host factors that regulate the production of infectious particles, we elucidated the YB-1 interactome in human hepatoma cells by a quantitative mass spectrometry approach. We identified 71 YB-1-associated proteins that included previously reported HCV regulators DDX3, heterogeneous nuclear RNP A1, and ILF2. Of the potential YB-1 interactors, 26 proteins significantly modulated HCV replication in a gene-silencing screening. Following extensive interaction and functional validation, we identified three YB-1 partners, C1QBP, LARP-1, and IGF2BP2, that redistribute to the surface of core-containing lipid droplets in HCV JFH-1-expressing cells, similarly to YB-1 and DDX6. Importantly, knockdown of these proteins stimulated the release and/or egress of HCV particles without affecting virus assembly, suggesting a functional YB-1 protein complex that negatively regulates virus production. Furthermore, a JFH-1 strain with the NS3 Q221L mutation, which promotes virus production, was less sensitive to this negative regulation, suggesting that this HCV-specific YB-1 protein complex modulates an NS3-dependent step in virus production. Overall, our data support a model in which HCV hijacks host cell machinery containing numerous RNA-binding proteins to control the equilibrium between viral RNA replication and NS3-dependent late steps in particle production.

  15. A Host YB-1 Ribonucleoprotein Complex Is Hijacked by Hepatitis C Virus for the Control of NS3-Dependent Particle Production

    PubMed Central

    Chatel-Chaix, Laurent; Germain, Marie-Anne; Motorina, Alena; Bonneil, Éric; Thibault, Pierre; Baril, Martin

    2013-01-01

    Hepatitis C virus (HCV) orchestrates the different stages of its life cycle in time and space through the sequential participation of HCV proteins and cellular machineries; hence, these represent tractable molecular host targets for HCV elimination by combination therapies. We recently identified multifunctional Y-box-binding protein 1 (YB-1 or YBX1) as an interacting partner of NS3/4A protein and HCV genomic RNA that negatively regulates the equilibrium between viral translation/replication and particle production. To identify novel host factors that regulate the production of infectious particles, we elucidated the YB-1 interactome in human hepatoma cells by a quantitative mass spectrometry approach. We identified 71 YB-1-associated proteins that included previously reported HCV regulators DDX3, heterogeneous nuclear RNP A1, and ILF2. Of the potential YB-1 interactors, 26 proteins significantly modulated HCV replication in a gene-silencing screening. Following extensive interaction and functional validation, we identified three YB-1 partners, C1QBP, LARP-1, and IGF2BP2, that redistribute to the surface of core-containing lipid droplets in HCV JFH-1-expressing cells, similarly to YB-1 and DDX6. Importantly, knockdown of these proteins stimulated the release and/or egress of HCV particles without affecting virus assembly, suggesting a functional YB-1 protein complex that negatively regulates virus production. Furthermore, a JFH-1 strain with the NS3 Q221L mutation, which promotes virus production, was less sensitive to this negative regulation, suggesting that this HCV-specific YB-1 protein complex modulates an NS3-dependent step in virus production. Overall, our data support a model in which HCV hijacks host cell machinery containing numerous RNA-binding proteins to control the equilibrium between viral RNA replication and NS3-dependent late steps in particle production. PMID:23986595

  16. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3

    PubMed Central

    Zheng, Fengwei; Lu, Guoliang; Li, Ling

    2017-01-01

    ABSTRACT The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a “closed” global conformation related to the NS3-NS4A cis-cleavage event. Although this conformation is incompatible with protease trans-cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo. Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein. IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis-cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through different conformational states. PMID:28835495

  17. Structural Protein VP2 of African Horse Sickness Virus Is Not Essential for Virus Replication In Vitro

    PubMed Central

    van de Water, Sandra G. P.; Potgieter, Christiaan A.; van Rijn, Piet A.

    2016-01-01

    ABSTRACT The Reoviridae family consists of nonenveloped multilayered viruses with a double-stranded RNA genome consisting of 9 to 12 genome segments. The Orbivirus genus of the Reoviridae family contains African horse sickness virus (AHSV), bluetongue virus, and epizootic hemorrhagic disease virus, which cause notifiable diseases and are spread by biting Culicoides species. Here, we used reverse genetics for AHSV to study the role of outer capsid protein VP2, encoded by genome segment 2 (Seg-2). Expansion of a previously found deletion in Seg-2 indicates that structural protein VP2 of AHSV is not essential for virus replication in vitro. In addition, in-frame replacement of RNA sequences in Seg-2 by that of green fluorescence protein (GFP) resulted in AHSV expressing GFP, which further confirmed that VP2 is not essential for virus replication. In contrast to virus replication without VP2 expression in mammalian cells, virus replication in insect cells was strongly reduced, and virus release from insect cells was completely abolished. Further, the other outer capsid protein, VP5, was not copurified with virions for virus mutants without VP2 expression. AHSV without VP5 expression, however, could not be recovered, indicating that outer capsid protein VP5 is essential for virus replication in vitro. Our results demonstrate for the first time that a structural viral protein is not essential for orbivirus replication in vitro, which opens new possibilities for research on other members of the Reoviridae family. IMPORTANCE Members of the Reoviridae family cause major health problems worldwide, ranging from lethal diarrhea caused by rotavirus in humans to economic losses in livestock production caused by different orbiviruses. The Orbivirus genus contains many virus species, of which bluetongue virus, epizootic hemorrhagic disease virus, and African horse sickness virus (AHSV) cause notifiable diseases according to the World Organization of Animal Health. Recently, it has been shown that nonstructural proteins NS3/NS3a and NS4 are not essential for virus replication in vitro, whereas it is generally assumed that structural proteins VP1 to -7 of these nonenveloped, architecturally complex virus particles are essential. Here we demonstrate for the first time that structural protein VP2 of AHSV is not essential for virus replication in vitro. Our findings are very important for virologists working in the field of nonenveloped viruses, in particular reoviruses. PMID:27903804

  18. HCV Core Residues Critical for Infectivity Are Also Involved in Core-NS5A Complex Formation

    PubMed Central

    Gawlik, Katarzyna; Baugh, James; Chatterji, Udayan; Lim, Precious J.; Bobardt, Michael D.; Gallay, Philippe A.

    2014-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver disease. The molecular machinery of HCV assembly and particle release remains obscure. A better understanding of the assembly events might reveal new potential antiviral strategies. It was suggested that the nonstructural protein 5A (NS5A), an attractive recent drug target, participates in the production of infectious particles as a result of its interaction with the HCV core protein. However, prior to the present study, the NS5A-binding site in the viral core remained unknown. We found that the D1 domain of core contains the NS5A-binding site with the strongest interacting capacity in the basic P38-K74 cluster. We also demonstrated that the N-terminal basic residues of core at positions 50, 51, 59 and 62 were required for NS5A binding. Analysis of all substitution combinations of R50A, K51A, R59A, and R62A, in the context of the HCVcc system, showed that single, double, triple, and quadruple mutants were fully competent for viral RNA replication, but deficient in secretion of viral particles. Furthermore, we found that the extracellular and intracellular infectivity of all the mutants was abolished, suggesting a defect in the formation of infectious particles. Importantly, we showed that the interaction between the single and quadruple core mutants and NS5A was impaired in cells expressing full-length HCV genome. Interestingly, mutations of the four basic residues of core did not alter the association of core or NS5A with lipid droplets. This study showed for the first time that basic residues in the D1 domain of core that are critical for the formation of infectious extracellular and intracellular particles also play a role in core-NS5A interactions. PMID:24533158

  19. Structure of Hepatitis C Virus Polymerase in Complex with Primer-Template RNA

    PubMed Central

    Murakami, Eisuke; Lam, Angela M.; Grice, Rena L.; Du, Jinfa; Sofia, Michael J.; Furman, Philip A.; Otto, Michael J.

    2012-01-01

    The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory β-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory β-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus. PMID:22496223

  20. Replicative Functions of Minute Virus of Mice NS1 Protein Are Regulated In Vitro by Phosphorylation through Protein Kinase C

    PubMed Central

    Nüesch, Jürg P. F.; Dettwiler, Sabine; Corbau, Romuald; Rommelaere, Jean

    1998-01-01

    NS1, the major nonstructural protein of the parvovirus minute virus of mice, is a multifunctional phosphoprotein which is involved in cytotoxicity, transcriptional regulation, and initiation of viral DNA replication. For coordination of these various functions during virus propagation, NS1 has been proposed to be regulated by posttranslational modifications, in particular phosphorylation. Recent in vitro studies (J. P. F. Nüesch, R. Corbau, P. Tattersall, and J. Rommelaere, J. Virol. 72:8002–8012, 1998) provided evidence that distinct NS1 activities, notably the intrinsic helicase function, are modulated by the phosphorylation state of the protein. In order to study the dependence of the initiation of viral DNA replication on NS1 phosphorylation and to identify the protein kinases involved, we established an in vitro replication system that is devoid of endogenous protein kinases and is based on plasmid substrates containing the minimal left-end origins of replication. Cellular components necessary to drive NS1-dependent rolling-circle replication (RCR) were freed from endogenous serine/threonine protein kinases by affinity chromatography, and the eukaryotic DNA polymerases were replaced by the bacteriophage T4 DNA polymerase. While native NS1 (NS1P) supported RCR under these conditions, dephosphorylated NS1 (NS1O) was impaired. Using fractionated HeLa cell extracts, we identified two essential protein components which are able to phosphorylate NS1O, are enriched in protein kinase C (PKC), and, when present together, reactivate NS1O for replication. One of these components, containing atypical PKC, was sufficient to restore NS1O helicase activity. The requirement of NS1O reactivation for characteristic PKC cofactors such as Ca2+/phosphatidylserine or phorbol esters strongly suggests the involvement of this protein kinase family in regulation of NS1 replicative functions in vitro. PMID:9811734

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosley, Ralph T.; Edwards, Thomas E.; Murakami, Eisuke

    The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory {beta}-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesismore » at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory {beta}-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus.« less

  2. Therapeutic potential of Taraxacum officinale against HCV NS5B polymerase: In-vitro and In silico study.

    PubMed

    Rehman, Sidra; Ijaz, Bushra; Fatima, Nighat; Muhammad, Syed Aun; Riazuddin, Sheikh

    2016-10-01

    Discovery of alternative and complementary regimens for HCV infection treatment is a need of time from clinical as well as economical point of views. Low cost of bioactive natural compounds production, high biochemical diversity and inexistent/milder side effects contribute to new therapies. Aim of this study is to clarify anti-HCV role of Taraxacum officinale, a natural habitat plant rich of flavonoids. In this study, methanol extract of T. officinale leaves was initially analyzed for its cytotoxic activity in human hepatoma (Huh-7) and CHO cell lines. Hepatoma cells were transfected with pCR3.1/Flagtag/HCV NS5B gene cloned vector (genotype 1a) along with T. officinale extract. Considering NS5B polymerase as potential therapeutic drug target, twelve phytochemicals of T. officinale were selected as ligands for molecular interaction with NS5B protein using Molecular Operating Environment (MOE) software. Sofosbuvir (Sovaldi: brand name) currently approved as new anti-HCV drug, was used as standard in current study for comparative analysis in computational docking screening. HCV NS5B polymerase as name indicates plays key role in viral genome replication. On the basis of which NS5B gene is targeted for determining antiviral role of T. officinale extract and 65% inhibition of NS5B expression was documented at nontoxic dose concentration (200μg/ml) using Real-time PCR. In addition, 57% inhibition of HCV replication was recorded when incubating Huh-7 cells with high titer serum of HCV infected patients along with leaves extract. Phytochemicals for instance d-glucopyranoside (-31.212 Kcal/mol), Quercetin (-29.222 Kcal/mol), Luteolin (-26.941 Kcal/mol) and some others displayed least binding energies as compared to standard drug Sofosbuvir (-21.0746 Kcal/mol). Results of our study strongly revealed that T. officinale leaves extract potentially blocked the viral replication and NS5B gene expression without posing any toxic effect on normal fibroblast cells of body. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Antiviral therapy of hepatitis C in 2014: do we need resistance testing?

    PubMed

    Schneider, Maximilian David; Sarrazin, Christoph

    2014-05-01

    The treatment of chronic hepatitis C has fundamentally changed since the approval of the first direct-acting antivirals (DAA) in 2011. In addition to telaprevir and boceprevir, in 2014 two new NS3 protease inhibitors (simeprevir and faldaprevir), one non-nucleoside polymerase inhibitor (sofosbuvir) and one NS5a replication complex inhibitor (daclatasvir) have expanded the treatment options for chronic hepatitis C. Resistance-associated variants (RAV) are naturally produced during the HCV life cycle. The frequency of RAVs within HCV quasispecies mainly depends on their replicational fitness. Variants conferring resistance to nucleos(t)ide analogues have not been detected, and the majority of NS3 protease-resistant variants are present at low frequencies (0.1-3%) before initiation of DAA-based therapies. However, the Q80K variant conferring resistance to simeprevir has been observed in 9-48% of untreated HCV genotype 1a-infected patients, leading to reduced SVR rates. Resistant variants are detectable in the majority of patients with treatment failure to NS3 protease inhibitor- or NS5a inhibitor-based antiviral therapy. Long-term follow-up studies by population-based sequence analysis have shown the disappearance of resistant variants in the majority of patients, with median times to loss of mutations of 4-64weeks. For the nucleotide analogue sofosbuvir, the emergence of the S282T resistant variant has been observed only in single patients, with reversion to wild-type within several weeks. Data are sparse on retreatment of patients with the same DAA or the same class of DAAs. However, retreatment with a different class of DAAs after failure of NS3 protease inhibitor-based therapy has been successful in small studies. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication." Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Mutation of Putative N-Glycosylation Sites on Dengue Virus NS4B Decreases RNA Replication.

    PubMed

    Naik, Nenavath Gopal; Wu, Huey-Nan

    2015-07-01

    Dengue virus (DENV) nonstructural protein 4B (NS4B) is an endoplasmic reticulum (ER) membrane-associated protein, and mutagenesis studies have revealed its significance in viral genome replication. In this work, we demonstrated that NS4B is an N-glycosylated protein in virus-infected cells as well as in recombinant protein expression. NS4B is N glycosylated at residues 58 and 62 and exists in two forms, glycosylated and unglycosylated. We manipulated full-length infectious RNA clones and subgenomic replicons to generate N58Q, N62Q, and N58QN62Q mutants. Each of the single mutants had distinct effects, but the N58QN62Q mutation resulted in dramatic reduction of viral production efficiency without affecting secretion or infectivity of the virion in mammalian and mosquito C6/36 hosts. Real-time quantitative PCR (qPCR), subgenomic replicon, and trans-complementation assays indicated that the N58QN62Q mutation affected RNA replication possibly by the loss of glycans. In addition, four intragenic mutations (S59Y, S59F, T66A, and A137T) were obtained from mammalian and/or mosquito C6/36 cell culture systems. All of these second-site mutations compensated for the replication defect of the N58QN62Q mutant without creating novel glycosylation sites. In vivo protein stability analyses revealed that the N58QN62Q mutation alone or plus a compensatory mutation did not affect the stability of NS4B. Overall, our findings indicated that mutation of putative N-glycosylation sites affected the biological function of NS4B in the viral replication complex. This is the first report to identify and reveal the biological significance of dengue virus (DENV) nonstructural protein 4B (NS4B) posttranslation N-glycosylation to the virus life cycle. The study demonstrated that NS4B is N glycosylated in virus-infected cells and in recombinant protein expression. NS4B is modified by glycans at Asn-58 and Asn-62. Functional characterization implied that DENV NS4B utilizes the glycosylation machinery in both mammalian and mosquito hosts. Four intragenic mutations were found to compensate for replication and subsequent viral production deficiencies without creating novel N-glycosylation sites or modulating the stabilities of the protein, suggesting that glycans may be involved in maintaining the NS4B protein conformation. NS4B glycans may be necessary elements of the viral life cycle, but compensatory mutations can circumvent their requirement. This novel finding may have broader implications in flaviviral biology as the most likely glycan at Asn-62 of NS4B is conserved in DENV serotypes and in some related flaviviruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Functional RNA elements in the dengue virus genome.

    PubMed

    Gebhard, Leopoldo G; Filomatori, Claudia V; Gamarnik, Andrea V

    2011-09-01

    Dengue virus (DENV) genome amplification is a process that involves the viral RNA, cellular and viral proteins, and a complex architecture of cellular membranes. The viral RNA is not a passive template during this process; it plays an active role providing RNA signals that act as promoters, enhancers and/or silencers of the replication process. RNA elements that modulate RNA replication were found at the 5' and 3' UTRs and within the viral coding sequence. The promoter for DENV RNA synthesis is a large stem loop structure located at the 5' end of the genome. This structure specifically interacts with the viral polymerase NS5 and promotes RNA synthesis at the 3' end of a circularized genome. The circular conformation of the viral genome is mediated by long range RNA-RNA interactions that span thousands of nucleotides. Recent studies have provided new information about the requirement of alternative, mutually exclusive, structures in the viral RNA, highlighting the idea that the viral genome is flexible and exists in different conformations. In this article, we describe elements in the promoter SLA and other RNA signals involved in NS5 polymerase binding and activity, and provide new ideas of how dynamic secondary and tertiary structures of the viral RNA participate in the viral life cycle.

  6. NS3 from Hepatitis C Virus Strain JFH-1 Is an Unusually Robust Helicase That Is Primed To Bind and Unwind Viral RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ting; Ren, Xiaoming; Adams, Rebecca L.

    Hepatitis C viruses (HCV) encode a helicase enzyme that is essential for viral replication and assembly (nonstructural protein 3 [NS3]). This helicase has become the focus of extensive basic research on the general helicase mechanism, and it is also of interest as a novel drug target. Despite the importance of this protein, mechanistic work on NS3 has been conducted almost exclusively on variants from HCV genotype 1. Our understanding of NS3 from the highly active HCV strains that are used to study HCV genetics and mechanism in cell culture (such as JFH-1) is lacking. We therefore set out to determinemore » whether NS3 from the replicatively efficient genotype 2a strain JFH-1 displays novel functional or structural properties. Using biochemical assays for RNA binding and duplex unwinding, we show that JFH-1 NS3 binds RNA much more rapidly than the previously studied NS3 variants from genotype 1b. Unlike NS3 variants from other genotypes, JFH-1 NS3 binds RNA with high affinity in a functionally active form that is capable of immediately unwinding RNA duplexes without undergoing rate-limiting conformational changes that precede activation. Unlike other superfamily 2 (SF2) helicases, JFH-1 NS3 does not require long 3' overhangs, and it unwinds duplexes that are flanked by only a few nucleotides, as in the folded HCV genome. To understand the physical basis for this, we solved the crystal structure of JFH-1 NS3, revealing a novel conformation that contains an open, positively charged RNA binding cleft that is primed for productive interaction with RNA targets, potentially explaining robust replication by HCV JFH-1. IMPORTANCEGenotypes of HCV are as divergent as different types of flavivirus, and yet mechanistic features of HCV variants are presumed to be held in common. One of the most well-studied components of the HCV replication complex is a helicase known as nonstructural protein 3 (NS3). We set out to determine whether this important mechanical component possesses biochemical and structural properties that differ between common strains such as those of genotype 1b and a strain of HCV that replicates with exceptional efficiency (JFH-1, classified as genotype 2a). Indeed, unlike the inefficient genotype 1b NS3, which has been well studied, JFH-1 NS3 is a superhelicase with strong RNA affinity and high unwinding efficiency on a broad range of targets. Crystallographic analysis reveals architectural features that promote enhanced biochemical activity of JFH-1 NS3. These findings show that even within a single family of viruses, drift in sequence can result in the acquisition of radically new functional properties that enhance viral fitness.« less

  7. 2′-5′-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1

    PubMed Central

    Dhar, Jayeeta; Cuevas, Rolando A.; Goswami, Ramansu; Zhu, Jianzhong

    2015-01-01

    2′-5′-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein. Here we describe differential inhibitory activities of human OASL and the two mouse OASL homologs against respiratory syncytial virus (RSV) replication. Interestingly, nonstructural protein 1 (NS1) of RSV promoted proteasome-dependent degradation of specific OASL isoforms. We conclude that OASL acts as a cellular antiviral protein and that RSV NS1 suppresses this function to evade cellular innate immunity and allow virus growth. PMID:26178980

  8. Porcine Mx1 Protein Inhibits Classical Swine Fever Virus Replication by Targeting Nonstructural Protein NS5B.

    PubMed

    Zhou, Jing; Chen, Jing; Zhang, Xiao-Min; Gao, Zhi-Can; Liu, Chun-Chun; Zhang, Yun-Na; Hou, Jin-Xiu; Li, Zhao-Yao; Kan, Lin; Li, Wen-Liang; Zhou, Bin

    2018-04-01

    Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S -transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B. IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo , but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities. Copyright © 2018 American Society for Microbiology.

  9. Quantitative Proteomic Analysis of Host-virus Interactions Reveals a Role for Golgi Brefeldin A Resistance Factor 1 (GBF1) in Dengue Infection*

    PubMed Central

    Carpp, Lindsay N.; Rogers, Richard S.; Moritz, Robert L.; Aitchison, John D.

    2014-01-01

    Dengue virus is considered to be the most important mosquito-borne virus worldwide and poses formidable economic and health care burdens on many tropical and subtropical countries. Dengue infection induces drastic rearrangement of host endoplasmic reticulum membranes into complex membranous structures housing replication complexes; the contribution(s) of host proteins and pathways to this process is poorly understood but is likely to be mediated by protein-protein interactions. We have developed an approach for obtaining high confidence protein-protein interaction data by employing affinity tags and quantitative proteomics, in the context of viral infection, followed by robust statistical analysis. Using this approach, we identified high confidence interactors of NS5, the viral polymerase, and NS3, the helicase/protease. Quantitative proteomics allowed us to exclude a large number of presumably nonspecific interactors from our data sets and imparted a high level of confidence to our resulting data sets. We identified 53 host proteins reproducibly associated with NS5 and 41 with NS3, with 13 of these candidates present in both data sets. The host factors identified have diverse functions, including retrograde Golgi-to-endoplasmic reticulum transport, biosynthesis of long-chain fatty-acyl-coenzyme As, and in the unfolded protein response. We selected GBF1, a guanine nucleotide exchange factor responsible for ARF activation, from the NS5 data set for follow up and functional validation. We show that GBF1 plays a critical role early in dengue infection that is independent of its role in the maintenance of Golgi structure. Importantly, the approach described here can be applied to virtually any organism/system as a tool for better understanding its molecular interactions. PMID:24855065

  10. Fast hepatitis C virus RNA elimination and NS5A redistribution by NS5A inhibitors studied by a multiplex assay approach.

    PubMed

    Liu, Dandan; Ji, Juan; Ndongwe, Tanya P; Michailidis, Eleftherios; Rice, Charles M; Ralston, Robert; Sarafianos, Stefan G

    2015-01-01

    While earlier therapeutic strategies for the treatment of hepatitis C virus (HCV) infection relied exclusively on interferon (IFN) and ribavirin (RBV), four direct-acting antiviral agents (DAAs) have now been approved, aiming for an interferon-free strategy with a short treatment duration and fewer side effects. To facilitate studies on the mechanism of action (MOA) and efficacy of DAAs, we established a multiplex assay approach, which employs flow cytometry, a Gaussia luciferase reporter system, Western blot analysis, reverse transcription-quantitative PCR (RT-qPCR), a limited dilution assay (50% tissue culture infectious dose [TCID50]), and an image profiling assay that follows the NS5A redistribution in response to drug treatment. We used this approach to compare the relative potency of various DAAs and the kinetics of their antiviral effects as a potential preclinical measure of their potential clinical utility. We evaluated the NS5A inhibitors ledipasvir (LDV) and daclatasvir (DCV), the NS3/4A inhibitor danoprevir (DNV), and the NS5B inhibitor sofosbuvir (SOF). In terms of kinetics, our data demonstrate that the NS5A inhibitor LDV, followed closely by DCV, has the fastest effect on suppression of viral proteins and RNA and on redistribution of NS5A. In terms of MOA, LDV has a more pronounced effect than DCV on the viral replication, assembly, and infectivity of released virus. Our approach can be used to facilitate the study of the biological processes involved in HCV replication and help identify optimal drug combinations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Noroviruses Co-opt the Function of Host Proteins VAPA and VAPB for Replication via a Phenylalanine-Phenylalanine-Acidic-Tract-Motif Mimic in Nonstructural Viral Protein NS1/2.

    PubMed

    McCune, Broc T; Tang, Wei; Lu, Jia; Eaglesham, James B; Thorne, Lucy; Mayer, Anne E; Condiff, Emily; Nice, Timothy J; Goodfellow, Ian; Krezel, Andrzej M; Virgin, Herbert W

    2017-07-11

    The Norovirus genus contains important human pathogens, but the role of host pathways in norovirus replication is largely unknown. Murine noroviruses provide the opportunity to study norovirus replication in cell culture and in small animals. The human norovirus nonstructural protein NS1/2 interacts with the host protein VAMP-associated protein A (VAPA), but the significance of the NS1/2-VAPA interaction is unexplored. Here we report decreased murine norovirus replication in VAPA- and VAPB-deficient cells. We characterized the role of VAPA in detail. VAPA was required for the efficiency of a step(s) in the viral replication cycle after entry of viral RNA into the cytoplasm but before the synthesis of viral minus-sense RNA. The interaction of VAPA with viral NS1/2 proteins is conserved between murine and human noroviruses. Murine norovirus NS1/2 directly bound the major sperm protein (MSP) domain of VAPA through its NS1 domain. Mutations within NS1 that disrupted interaction with VAPA inhibited viral replication. Structural analysis revealed that the viral NS1 domain contains a mimic of the phenylalanine-phenylalanine-acidic-tract (FFAT) motif that enables host proteins to bind to the VAPA MSP domain. The NS1/2-FFAT mimic region interacted with the VAPA-MSP domain in a manner similar to that seen with bona fide host FFAT motifs. Amino acids in the FFAT mimic region of the NS1 domain that are important for viral replication are highly conserved across murine norovirus strains. Thus, VAPA interaction with a norovirus protein that functionally mimics host FFAT motifs is important for murine norovirus replication. IMPORTANCE Human noroviruses are a leading cause of gastroenteritis worldwide, but host factors involved in norovirus replication are incompletely understood. Murine noroviruses have been studied to define mechanisms of norovirus replication. Here we defined the importance of the interaction between the hitherto poorly studied NS1/2 norovirus protein and the VAPA host protein. The NS1/2-VAPA interaction is conserved between murine and human noroviruses and was important for early steps in murine norovirus replication. Using structure-function analysis, we found that NS1/2 contains a short sequence that molecularly mimics the FFAT motif that is found in multiple host proteins that bind VAPA. This represents to our knowledge the first example of functionally important mimicry of a host FFAT motif by a microbial protein. Copyright © 2017 McCune et al.

  12. Establishment of a robust dengue virus NS3-NS5 binding assay for identification of protein-protein interaction inhibitors.

    PubMed

    Takahashi, Hirotaka; Takahashi, Chikako; Moreland, Nicole J; Chang, Young-Tae; Sawasaki, Tatsuya; Ryo, Akihide; Vasudevan, Subhash G; Suzuki, Youichi; Yamamoto, Naoki

    2012-12-01

    Whereas the dengue virus (DENV) non-structural (NS) proteins NS3 and NS5 have been shown to interact in vitro and in vivo, the biological relevance of this interaction in viral replication has not been fully clarified. Here, we first applied a simple and robust in vitro assay based on AlphaScreen technology in combination with the wheat-germ cell-free protein production system to detect the DENV-2 NS3-NS5 interaction in a 384-well plate. The cell-free-synthesized NS3 and NS5 recombinant proteins were soluble and in possession of their respective enzymatic activities in vitro. In addition, AlphaScreen assays using the recombinant proteins detected a specific interaction between NS3 and NS5 with a robust Z' factor of 0.71. By employing the AlphaScreen assay, we found that both the N-terminal protease and C-terminal helicase domains of NS3 are required for its association with NS5. Furthermore, a competition assay revealed that the binding of full-length NS3 to NS5 was significantly inhibited by the addition of an excess of NS3 protease or helicase domains. Our results demonstrate that the AlphaScreen assay can be used to discover novel antiviral agents targeting the interactions between DENV NS proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. NS Segment of a 1918 Influenza A Virus-Descendent Enhances Replication of H1N1pdm09 and Virus-Induced Cellular Immune Response in Mammalian and Avian Systems

    PubMed Central

    Petersen, Henning; Mostafa, Ahmed; Tantawy, Mohamed A.; Iqbal, Azeem A.; Hoffmann, Donata; Tallam, Aravind; Selvakumar, Balachandar; Pessler, Frank; Beer, Martin; Rautenschlein, Silke; Pleschka, Stephan

    2018-01-01

    The 2009 pandemic influenza A virus (IAV) H1N1 strain (H1N1pdm09) has widely spread and is circulating in humans and swine together with other human and avian IAVs. This fact raises the concern that reassortment between H1N1pdm09 and co-circulating viruses might lead to an increase of H1N1pdm09 pathogenicity in different susceptible host species. Herein, we explored the potential of different NS segments to enhance the replication dynamics, pathogenicity and host range of H1N1pdm09 strain A/Giessen/06/09 (Gi-wt). The NS segments were derived from (i) human H1N1- and H3N2 IAVs, (ii) highly pathogenic- (H5- or H7-subtypes) or (iii) low pathogenic avian influenza viruses (H7- or H9-subtypes). A significant increase of growth kinetics in A549 (human lung epithelia) and NPTr (porcine tracheal epithelia) cells was only noticed in vitro for the reassortant Gi-NS-PR8 carrying the NS segment of the 1918-descendent A/Puerto Rico/8/34 (PR8-wt, H1N1), whereas all other reassortants showed either reduced or comparable replication efficiencies. Analysis using ex vivo tracheal organ cultures of turkeys (TOC-Tu), a species susceptible to IAV H1N1 infection, demonstrated increased replication of Gi-NS-PR8 compared to Gi-wt. Also, Gi-NS-PR8 induced a markedly higher expression of immunoregulatory and pro-inflammatory cytokines, chemokines and interferon-stimulated genes in A549 cells, THP-1-derived macrophages (dHTP) and TOC-Tu. In vivo, Gi-NS-PR8 induced an earlier onset of mortality than Gi-wt in mice, whereas, 6-week-old chickens were found to be resistant to both viruses. These data suggest that the specific characteristics of the PR8 NS segments can impact on replication, virus induced cellular immune responses and pathogenicity of the H1N1pdm09 in different avian and mammalian host species. PMID:29623073

  14. The New Era of Interferon-Free Treatment of Chronic Hepatitis C

    PubMed Central

    Solbach, Philipp; Wedemeyer, Heiner

    2015-01-01

    Summary Background Within the development and approval of several new direct-acting antivirals (DAA) against hepatitis C virus (HCV), a new era of hepatitis C therapy has begun. Even more treatment options are likely to become available during the next 1-2 years. Methods A summary of the current phase II and III trials investigating DAA and a review of the recent HCV guidelines was conducted. Results With the development of new potent DAA and the approval of different DAA combinations, cure rates of HCV infection of >90% are achievable for almost all HCV genotypes and stages of liver disease. Currently available DAA target different steps in the HCV replication cycle, in particular the NS3/4A protease, the NS5B polymerase, and the NS5A replication complex. Treatment duration varies between 8 and 24 weeks depending on the stage of fibrosis, prior treatment, HCV viral load, and HCV genotype. Ribavirin is required only for some treatment regimens and may be particularly beneficial in patients with cirrhosis. DAA resistance influences treatment outcome only marginally; thus, drug resistance testing is not routinely recommended before treatment. In the case of treatment failure, however, resistance testing should be performed before re-treatment with other DAA is initiated. Conclusion With the new, almost side effect-free DAA treatment options chronic HCV infection became a curable disease. The clinical benefit of DAA combination therapies in patients with advanced cirrhosis and the effects on incidence rates of hepatocellular carcinoma remain to be determined. PMID:26557839

  15. 2'-5'-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1.

    PubMed

    Dhar, Jayeeta; Cuevas, Rolando A; Goswami, Ramansu; Zhu, Jianzhong; Sarkar, Saumendra N; Barik, Sailen

    2015-10-01

    2'-5'-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein. Here we describe differential inhibitory activities of human OASL and the two mouse OASL homologs against respiratory syncytial virus (RSV) replication. Interestingly, nonstructural protein 1 (NS1) of RSV promoted proteasome-dependent degradation of specific OASL isoforms. We conclude that OASL acts as a cellular antiviral protein and that RSV NS1 suppresses this function to evade cellular innate immunity and allow virus growth. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Roles of the phosphorylation of specific serines and threonines in the NS1 protein of human influenza A viruses.

    PubMed

    Hsiang, Tien-Ying; Zhou, Ligang; Krug, Robert M

    2012-10-01

    We demonstrate that phosphorylation of the NS1 protein of a human influenza A virus occurs not only at the threonine (T) at position 215 but also at serines (Ss), specifically at positions 42 and 48. By generating recombinant influenza A/Udorn/72 (Ud) viruses that encode mutant NS1 proteins, we determined the roles of these phosphorylations in virus replication. At position 215 only a T-to-A substitution attenuated replication, whereas other substitutions (T to E to mimic constitutive phosphorylation, T to N, and T to P, the amino acid in avian influenza A virus NS1 proteins) had no effect. We conclude that attenuation resulting from the T-to-A substitution at position 215 is attributable to a deleterious structural change in the NS1 protein that is not caused by other amino acid substitutions and that phosphorylation of T215 does not affect virus replication. At position 48 neither an S-to-A substitution nor an S-to-D substitution that mimics constitutive phosphorylation affected virus replication. In contrast, at position 42, an S-to-D, but not an S-to-A, substitution caused attenuation. The S-to-D substitution eliminates detectable double-stranded RNA binding by the NS1 protein, accounting for attenuation of virus replication. We show that protein kinase C α (PKCα) catalyzes S42 phosphorylation. Consequently, the only phosphorylation of the NS1 protein of this human influenza A virus that regulates its replication is S42 phosphorylation catalyzed by PKCα. In contrast, phosphorylation of Ts or Ss in the NS1 protein of the 2009 H1N1 pandemic virus was not detected, indicating that NS1 phosphorylation probably does not play any role in the replication of this virus.

  17. The rearrangement of motif F in the flavivirus RNA-directed RNA polymerase.

    PubMed

    Potapova, Ulyana; Feranchuk, Sergey; Leonova, Galina; Belikov, Sergei

    2018-03-01

    In the flavivirus genus, the non-structural protein NS5 plays a central role in RNA viral replication and constitutes a major target for drug discovery. One of the prime challenges in the study of NS5 protein is to investigate the interplay between the two protein domains, namely, the RNA-dependent RNA polymerase (RdRp) domain and the methyltransferase (MTase) domain. These investigations could clarify the multiple roles of NS5 protein in the virus life cycle. Here we present the results of sequence analyses and structural bioinformatics studies of NS5 protein, which suggest that the conserved motif F in the NS5 protein could act as a lock which controls the rearrangement of the domains and as a switch in the protein enzymatic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. HCV RNA traffic and association with NS5A in living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiches, Guillaume N.; Eyre, Nicholas S.; Aloia, Amanda L.

    The spatiotemporal dynamics of Hepatitis C Virus (HCV) RNA localisation are poorly understood. To address this we engineered HCV genomes harbouring MS2 bacteriophage RNA stem-loops within the 3′-untranslated region to allow tracking of HCV RNA via specific interaction with a MS2-Coat-mCherry fusion protein. Despite the impact of these insertions on viral fitness, live imaging revealed that replication of tagged-HCV genomes induced specific redistribution of the mCherry-tagged-MS2-Coat protein to motile and static foci. Further analysis showed that HCV RNA was associated with NS5A in both static and motile structures while a subset of motile NS5A structures was devoid of HCV RNA.more » Further investigation of viral RNA traffic with respect to lipid droplets (LDs) revealed HCV RNA-positive structures in close association with LDs. These studies provide new insights into the dynamics of HCV RNA traffic with NS5A and LDs and provide a platform for future investigations of HCV replication and assembly. - Highlights: • HCV can tolerate can bacteriophage MS2 stem-loop insertions within the 3′ UTR. • MS2 stem-loop containing HCV genomes allow for real-time imaging of HCV RNA. • HCV RNA is both static and motile and associates with NS5A and lipid droplets.« less

  19. Aeginetia indica Decoction Inhibits Hepatitis C Virus Life Cycle

    PubMed Central

    Lin, Cheng-Wei; Lo, Chieh-Wen; Tsai, Chia-Ni; Pan, Ting-Chun; Chen, Pin-Yin

    2018-01-01

    Chronic hepatitis C virus (HCV) infection is still a global epidemic despite the introduction of several highly effective direct-acting antivirals that are tagged with sky-high prices. The present study aimed to identify an herbal decoction that ameliorates HCV infection. Among six herbal decoctions tested, the Aeginetia indica decoction had the most profound effect on the HCV reporter activity in infected Huh7.5.1 liver cells in a dose- and time-dependent manner. The Aeginetia indica decoction exerted multiple inhibitory effects on the HCV life cycle. Pretreatment of the cells with the Aeginetia indica decoction prior to HCV infection reduced the HCV RNA and non-structural protein 3 (NS3) protein levels in the infected cells. The Aeginetia indica decoction reduced HCV internal ribosome entry site-mediated protein translation activity. It also reduced the HCV RNA level in the infected cells in association with reduced NS5A phosphorylation at serine 235, a predominant phosphorylation event indispensable to HCV replication. Thus, the Aeginetia indica decoction inhibits HCV infection, translation, and replication. Mechanistically, the Aeginetia indica decoction probably reduced HCV replication via reducing NS5A phosphorylation at serine 235. PMID:29315273

  20. Construction and applications of yellow fever virus replicons.

    PubMed

    Jones, Christopher T; Patkar, Chinmay G; Kuhn, Richard J

    2005-01-20

    Subgenomic replicons of yellow fever virus (YFV) were constructed to allow expression of heterologous reporter genes in a replication-dependent manner. Expression of the antibiotic resistance gene neomycin phosphotransferase II (Neo) from one of these YFV replicons allowed selection of a stable population of cells (BHK-REP cells) in which the YFV replicon persistently replicated. BHK-REP cells were successfully used to trans-complement replication-defective YFV replicons harboring large internal deletions within either the NS1 or NS3 proteins. Although replicons with large deletions in either NS1 or NS3 were trans-complemented in BHK-REP, replicons that contained deletions of NS3 were trans-complemented at lower levels. In addition, replicons that retained the N-terminal protease domain of NS3 in cis were trans-complemented with higher efficiency than replicons in which both the protease and helicase domains of NS3 were deleted. To study packaging of YFV replicons, Sindbis replicons were constructed that expressed the YFV structural proteins in trans. Using these Sindbis replicons, both replication-competent and trans-complemented, replication-defective YFV replicons could be packaged into pseudo-infectious particles (PIPs). Although these results eliminate a potential role of either NS1 or full-length NS3 in cis for packaging and assembly of the flavivirus virion, they do not preclude the possibility that these proteins may act in trans during these processes.

  1. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalime, Erin N.; Pekosz, Andrew, E-mail: apekosz@jhsph.edu

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 inmore » addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.« less

  2. Characterization of monoclonal antibodies that specifically recognize the palm subdomain of hepatitis C virus nonstructural protein 5B polymerase.

    PubMed

    Ingravallo, P; Lahser, F; Xia, E; Sodowich, B; Lai, V C; Hong, Z; Zhong, W

    2001-06-01

    The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp) which plays an essential role in viral RNA replication. Antibodies that specifically recognize NS5B will have utilities in monitoring NS5B production and subcellular localization, as well as in structure-function studies. In this report, three mouse monoclonal antibodies (mAbs), 16A9C9, 16D9A4 and 20A12C7, against a recombinant NS5B protein (genotype 1a, H-77 strain) were produced. These mAbs specifically recognize HCV NS5B, but not RdRps of polivirus (PV), bovine viral diarrhea virus (BVDV) or GB virus B (GBV-B). The mAbs can readily detect NS5B in cellular lysates of human osteosarcoma Saos2 cells constitutively expressing the nonstructural region of HCV (NS3-NS4A-NS4B-NS5A-NS5B). NS5B proteins of different HCV genotypes/subtypes (1a, 1b, 2a, 2c, 5a) showed varied affinity for these mAbs. Interestingly, the epitopes for the mAbs were mapped to the palm subdomain (amino acid 188-370) of the HCV RdRp as determined by immunoblotting analysis of a panel of HCV/GBV-B chimeric NS5B proteins. The binding site was mapped between amino acid 231 and 267 of NS5B for 16A9C9, and between 282 and 372 for 16D9A4 and 20A12C7. Furthermore, these mAbs showed no inhibitory effect on the NS5B polymerase activity in vitro.

  3. Downregulation of viral RNA translation by hepatitis C virus non-structural protein NS5A requires the poly(U/UC) sequence in the 3' UTR.

    PubMed

    Hoffman, Brett; Li, Zhubing; Liu, Qiang

    2015-08-01

    Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is essential for viral replication; however, its effect on HCV RNA translation remains controversial partially due to the use of reporters lacking the 3' UTR, where NS5A binds to the poly(U/UC) sequence. We investigated the role of NS5A in HCV translation using a monocistronic RNA containing a Renilla luciferase gene flanked by the HCV UTRs. We found that NS5A downregulated viral RNA translation in a dose-dependent manner. This downregulation required both the 5' and 3' UTRs of HCV because substitution of either sequence with the 5' and 3' UTRs of enterovirus 71 or a cap structure at the 5' end eliminated the effects of NS5A on translation. Translation of the HCV genomic RNA was also downregulated by NS5A. The inhibition of HCV translation by NS5A required the poly(U/UC) sequence in the 3' UTR as NS5A did not affect translation when it was deleted. In addition, we showed that, whilst the amphipathic α-helix of NS5A has no effect on viral translation, the three domains of NS5A can inhibit translation independently, also dependent on the presence of the poly(U/UC) sequence in the 3' UTR. These results suggested that NS5A downregulated HCV RNA translation through a mechanism involving the poly(U/UC) sequence in the 3' UTR.

  4. NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease.

    PubMed

    Su, Xun-Cheng; Ozawa, Kiyoshi; Yagi, Hiromasa; Lim, Siew P; Wen, Daying; Ekonomiuk, Dariusz; Huang, Danzhi; Keller, Thomas H; Sonntag, Sebastian; Caflisch, Amedeo; Vasudevan, Subhash G; Otting, Gottfried

    2009-08-01

    The two-component NS2B-NS3 protease of West Nile virus is essential for its replication and presents an attractive target for drug development. Here, we describe protocols for the high-yield expression of stable isotope-labelled samples in vivo and in vitro. We also describe the use of NMR spectroscopy to determine the binding mode of new low molecular mass inhibitors of the West Nile virus NS2B-NS3 protease which were discovered using high-throughput in vitro screening. Binding to the substrate-binding sites S1 and S3 is confirmed by intermolecular NOEs and comparison with the binding mode of a previously identified low molecular mass inhibitor. Our results show that all these inhibitors act by occupying the substrate-binding site of the protease rather than by an allosteric mechanism. In addition, the NS2B polypeptide chain was found to be positioned near the substrate-binding site, as observed previously in crystal structures of the protease in complex with peptide inhibitors or bovine pancreatic trypsin inhibitor. This indicates that the new low molecular mass compounds, although inhibiting the protease, also promote the proteolytically active conformation of NS2B, which is very different from the crystal structure of the protein without inhibitor.

  5. Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities.

    PubMed

    Pelliccia, Sveva; Wu, Yu-Hsuan; Coluccia, Antonio; La Regina, Giuseppe; Tseng, Chin-Kai; Famiglini, Valeria; Masci, Domiziana; Hiscott, John; Lee, Jin-Ching; Silvestri, Romano

    2017-12-01

    Dengue virus (DENV) is the leading mosquito-transmitted viral infection in the world. With more than 390 million new infections annually, and up to 1 million clinical cases with severe disease manifestations, there continues to be a need to develop new antiviral agents against dengue infection. In addition, there is no approved anti-DENV agents for treating DENV-infected patients. In the present study, we identified new compounds with anti-DENV replication activity by targeting viral replication enzymes - NS5, RNA-dependent RNA polymerase (RdRp) and NS3 protease, using cell-based reporter assay. Subsequently, we performed an enzyme-based assay to clarify the action of these compounds against DENV RdRp or NS3 protease activity. Moreover, these compounds exhibited anti-DENV activity in vivo in the ICR-suckling DENV-infected mouse model. Combination drug treatment exhibited a synergistic inhibition of DENV replication. These results describe novel prototypical small anti-DENV molecules for further development through compound modification and provide potential antivirals for treating DENV infection and DENV-related diseases.

  6. PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins.

    PubMed

    Li, Lili; Zhao, Hui; Liu, Ping; Li, Chunfeng; Quanquin, Natalie; Ji, Xue; Sun, Nina; Du, Peishuang; Qin, Cheng-Feng; Lu, Ning; Cheng, Genhong

    2018-06-19

    Zika virus infection stimulates a type I interferon (IFN) response in host cells, which suppresses viral replication. Type I IFNs exert antiviral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). To screen for antiviral ISGs that restricted Zika virus replication, we individually knocked out 21 ISGs in A549 lung cancer cells and identified PARP12 as a strong inhibitor of Zika virus replication. Our findings suggest that PARP12 mediated the ADP-ribosylation of NS1 and NS3, nonstructural viral proteins that are involved in viral replication and modulating host defense responses. This modification of NS1 and NS3 triggered their proteasome-mediated degradation. These data increase our understanding of the antiviral activity of PARP12 and suggest a molecular basis for the potential development of therapeutics against Zika virus. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Interaction between the NS4B amphipathic helix, AH2, and charged lipid headgroups alters membrane morphology and AH2 oligomeric state--Implications for the Hepatitis C virus life cycle.

    PubMed

    Ashworth Briggs, Esther L; Gomes, Rafael G B; Elhussein, Malaz; Collier, William; Findlow, I Stuart; Khalid, Syma; McCormick, Chris J; Williamson, Philip T F

    2015-08-01

    The non-structural protein 4B (NS4B) from Hepatitis C virus (HCV) plays a pivotal role in the remodelling of the host cell's membranes, required for the formation of the viral replication complex where genome synthesis occurs. NS4B is an integral membrane protein that possesses a number of domains vital for viral replication. Structural and biophysical studies have revealed that one of these, the second amphipathic N-terminal helix (AH2), plays a key role in these remodelling events. However, there is still limited understanding of the mechanism through which AH2 promotes these changes. Here we report on solid-state NMR and molecular dynamics studies that demonstrate that AH2 promotes the clustering of negatively charged lipids within the bilayer, a process that reduces the strain within the bilayer facilitating the remodelling of the lipid bilayer. Furthermore, the presence of negatively charged lipids within the bilayer appears to promote the disassociation of AH2 oligomers, highlighting a potential role for lipid recruitment in regulating NS protein interactions. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Systems Biology Reveals NS4B-Cyclophilin A Interaction: A New Target to Inhibit YFV Replication.

    PubMed

    Vidotto, Alessandra; Morais, Ana T S; Ribeiro, Milene R; Pacca, Carolina C; Terzian, Ana C B; Gil, Laura H V G; Mohana-Borges, Ronaldo; Gallay, Philippe; Nogueira, Mauricio L

    2017-04-07

    Yellow fever virus (YFV) replication is highly dependent on host cell factors. YFV NS4B is reported to be involved in viral replication and immune evasion. Here interactions between NS4B and human proteins were determined using a GST pull-down assay and analyzed using 1-DE and LC-MS/MS. We present a total of 207 proteins confirmed using Scaffold 3 Software. Cyclophilin A (CypA), a protein that has been shown to be necessary for the positive regulation of flavivirus replication, was identified as a possible NS4B partner. 59 proteins were found to be significantly increased when compared with a negative control, and CypA exhibited the greatest difference, with a 22-fold change. Fisher's exact test was significant for 58 proteins, and the p value of CypA was the most significant (0.000000019). The Ingenuity Systems software identified 16 pathways, and this analysis indicated sirolimus, an mTOR pathway inhibitor, as a potential inhibitor of CypA. Immunofluorescence and viral plaque assays showed a significant reduction in YFV replication using sirolimus and cyclosporine A (CsA) as inhibitors. Furthermore, YFV replication was strongly inhibited in cells treated with both inhibitors using reporter BHK-21-rep-YFV17D-LucNeoIres cells. Taken together, these data suggest that CypA-NS4B interaction regulates YFV replication. Finally, we present the first evidence that YFV inhibition may depend on NS4B-CypA interaction.

  9. Analysis of cis and trans Requirements for DNA Replication at the Right-End Hairpin of the Human Bocavirus 1 Genome

    PubMed Central

    Shen, Weiran; Deng, Xuefeng; Zou, Wei; Engelhardt, John F.; Yan, Ziying

    2016-01-01

    ABSTRACT Parvoviruses are single-stranded DNA viruses that use the palindromic structures at the ends of the viral genome for their replication. The mechanism of parvovirus replication has been studied mostly in the dependoparvovirus adeno-associated virus 2 (AAV2) and the protoparvovirus minute virus of mice (MVM). Here, we used human bocavirus 1 (HBoV1) to understand the replication mechanism of bocaparvovirus. HBoV1 is pathogenic to humans, causing acute respiratory tract infections, especially in young children under 2 years old. By using the duplex replicative form of the HBoV1 genome in human embryonic kidney 293 (HEK293) cells, we identified the HBoV1 minimal replication origin at the right-end hairpin (OriR). Mutagenesis analyses confirmed the putative NS1 binding and nicking sites within the OriR. Of note, unlike the large nonstructural protein (Rep78/68 or NS1) of other parvoviruses, HBoV1 NS1 did not specifically bind OriR in vitro, indicating that other viral and cellular components or the oligomerization of NS1 is required for NS1 binding to the OriR. In vivo studies demonstrated that residues responsible for NS1 binding and nicking are within the origin-binding domain. Further analysis identified that the small nonstructural protein NP1 is required for HBoV1 DNA replication at OriR. NP1 and other viral nonstructural proteins (NS1 to NS4) colocalized within the viral DNA replication centers in both OriR-transfected cells and virus-infected cells, highlighting a direct involvement of NP1 in viral DNA replication at OriR. Overall, our study revealed the characteristics of HBoV1 DNA replication at OriR, suggesting novel characteristics of autonomous parvovirus DNA replication. IMPORTANCE Human bocavirus 1 (HBoV1) causes acute respiratory tract infections in young children. The duplex HBoV1 genome replicates in HEK293 cells and produces progeny virions that are infectious in well-differentiated airway epithelial cells. A recombinant AAV2 vector pseudotyped with an HBoV1 capsid has been developed to efficiently deliver the cystic fibrosis transmembrane conductance regulator gene to human airway epithelia. Here, we identified both cis-acting elements and trans-acting proteins that are required for HBoV1 DNA replication at the right-end hairpin in HEK293 cells. We localized the minimal replication origin, which contains both NS1 nicking and binding sites, to a 46-nucleotide sequence in the right-end hairpin. The identification of these essential elements of HBoV1 DNA replication acting both in cis and in trans will provide guidance to develop antiviral strategies targeting viral DNA replication at the right-end hairpin and to design next-generation recombinant HBoV1 vectors, a promising tool for gene therapy of lung diseases. PMID:27334591

  10. Analysis of cis and trans Requirements for DNA Replication at the Right-End Hairpin of the Human Bocavirus 1 Genome.

    PubMed

    Shen, Weiran; Deng, Xuefeng; Zou, Wei; Engelhardt, John F; Yan, Ziying; Qiu, Jianming

    2016-09-01

    Parvoviruses are single-stranded DNA viruses that use the palindromic structures at the ends of the viral genome for their replication. The mechanism of parvovirus replication has been studied mostly in the dependoparvovirus adeno-associated virus 2 (AAV2) and the protoparvovirus minute virus of mice (MVM). Here, we used human bocavirus 1 (HBoV1) to understand the replication mechanism of bocaparvovirus. HBoV1 is pathogenic to humans, causing acute respiratory tract infections, especially in young children under 2 years old. By using the duplex replicative form of the HBoV1 genome in human embryonic kidney 293 (HEK293) cells, we identified the HBoV1 minimal replication origin at the right-end hairpin (OriR). Mutagenesis analyses confirmed the putative NS1 binding and nicking sites within the OriR. Of note, unlike the large nonstructural protein (Rep78/68 or NS1) of other parvoviruses, HBoV1 NS1 did not specifically bind OriR in vitro, indicating that other viral and cellular components or the oligomerization of NS1 is required for NS1 binding to the OriR. In vivo studies demonstrated that residues responsible for NS1 binding and nicking are within the origin-binding domain. Further analysis identified that the small nonstructural protein NP1 is required for HBoV1 DNA replication at OriR. NP1 and other viral nonstructural proteins (NS1 to NS4) colocalized within the viral DNA replication centers in both OriR-transfected cells and virus-infected cells, highlighting a direct involvement of NP1 in viral DNA replication at OriR. Overall, our study revealed the characteristics of HBoV1 DNA replication at OriR, suggesting novel characteristics of autonomous parvovirus DNA replication. Human bocavirus 1 (HBoV1) causes acute respiratory tract infections in young children. The duplex HBoV1 genome replicates in HEK293 cells and produces progeny virions that are infectious in well-differentiated airway epithelial cells. A recombinant AAV2 vector pseudotyped with an HBoV1 capsid has been developed to efficiently deliver the cystic fibrosis transmembrane conductance regulator gene to human airway epithelia. Here, we identified both cis-acting elements and trans-acting proteins that are required for HBoV1 DNA replication at the right-end hairpin in HEK293 cells. We localized the minimal replication origin, which contains both NS1 nicking and binding sites, to a 46-nucleotide sequence in the right-end hairpin. The identification of these essential elements of HBoV1 DNA replication acting both in cis and in trans will provide guidance to develop antiviral strategies targeting viral DNA replication at the right-end hairpin and to design next-generation recombinant HBoV1 vectors, a promising tool for gene therapy of lung diseases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yimeng; Zhou, Jianhong; Du, Yuchun, E-mail: ydu@uark.edu

    The NS1 protein of influenza viruses is a major virulence factor and exerts its function through interacting with viral/cellular RNAs and proteins. In this study, we identified heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as an interacting partner of NS1 proteins by a proteomic method. Knockdown of hnRNP A2/B1 by small interfering RNA (siRNA) resulted in higher levels of NS vRNA, NS1 mRNA, and NS1 protein in the virus-infected cells. In addition, we demonstrated that hnRNP A2/B1 proteins are associated with NS1 and NS2 mRNAs and that knockdown of hnRNP A2/B1 promotes transport of NS1 mRNA from the nucleus to themore » cytoplasm in the infected cells. Lastly, we showed that knockdown of hnRNP A2/B1 leads to enhanced virus replication. Our results suggest that hnRNP A2/B1 plays an inhibitory role in the replication of influenza A virus in host cells potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nucleocytoplasmic translocation. - Highlights: • Cellular protein hnRNP A2/B1 interacts with influenza viral protein NS1. • hnRNP A2/B1 suppresses the levels of NS1 protein, vRNA and mRNA in infected cells. • hnRNP A2/B1 protein is associated with NS1 and NS2 mRNAs. • hnRNP A2/B1 inhibits the nuclear export of NS1 mRNAs. • hnRNP A2/B1 inhibits influenza virus replication.« less

  12. Molecular and Structural Basis for the Roles of Hepatitis C Virus Polymerase NS5B Amino Acids 15, 223, and 321 in Viral Replication and Drug Resistance

    PubMed Central

    Mosley, Ralph T.; Murakami, Eisuke; Bansal, Shalini; Lugo, Christopher; Bao, Haiying; Otto, Michael J.; Sofia, Michael J.; Furman, Phillip A.

    2014-01-01

    Resistance to the 2′-F-2′-C-methylguanosine monophosphate nucleotide hepatitis C virus (HCV) inhibitors PSI-352938 and PSI-353661 was associated with a combination of amino acid changes (changes of S to G at position 15 [S15G], C223H, and V321I) within the genotype 2a nonstructural protein 5B (NS5B), an RNA-dependent RNA polymerase. To understand the role of these residues in viral replication, we examined the effects of single and multiple point mutations on replication fitness and inhibition by a series of nucleotide analog inhibitors. An acidic residue at position 15 reduced replicon fitness, consistent with its proximity to the RNA template. A change of the residue at position 223 to an acidic or large residue reduced replicon fitness, consistent with its proposed proximity to the incoming nucleoside triphosphate (NTP). A change of the residue at position 321 to a charged residue was not tolerated, consistent with its position within a hydrophobic cavity. This triple resistance mutation was specific to both genotype 2a virus and 2′-F-2′-C-methylguanosine inhibitors. A crystal structure of the NS5B S15G/C223H/V321I mutant of the JFH-1 isolate exhibited rearrangement to a conformation potentially consistent with short primer-template RNA binding, which could suggest a mechanism of resistance accomplished through a change in the NS5B conformation, which was better tolerated by genotype 2a virus than by viruses of other genotypes. PMID:25182647

  13. Evasion of superinfection exclusion and elimination of primary viral RNA by an adapted strain of hepatitis C virus.

    PubMed

    Webster, Brian; Ott, Melanie; Greene, Warner C

    2013-12-01

    Cells that are productively infected by hepatitis C virus (HCV) are refractory to a second infection by HCV via a block in viral replication known as superinfection exclusion. The block occurs at a postentry step and likely involves translation or replication of the secondary viral RNA, but the mechanism is largely unknown. To characterize HCV superinfection exclusion, we selected for an HCV variant that could overcome the block. We produced a high-titer HC-J6/JFH1 (Jc1) viral genome with a fluorescent reporter inserted between NS5A and NS5B and used it to infect Huh7.5 cells containing a Jc1 replicon. With multiple passages of these infected cells, we isolated an HCV variant that can superinfect cells at high levels. Notably, the superinfectious virus rapidly cleared the primary replicon from superinfected cells. Viral competition experiments, using a novel strategy of sequence-barcoding viral strains, as well as superinfection of replicon cells demonstrated that mutations in E1, p7, NS5A, and the poly(U/UC) tract of the 3' untranslated region were important for superinfection. Furthermore, these mutations dramatically increased the infectivity of the virus in naive cells. Interestingly, viruses with a shorter poly(U/UC) and an NS5A domain II mutation were most effective in overcoming the postentry block. Neither of these changes affected viral RNA translation, indicating that the major barrier to postentry exclusion occurs at viral RNA replication. The evolution of the ability to superinfect after less than a month in culture and the concomitant exclusion of the primary replicon suggest that superinfection exclusion dramatically affects viral fitness and dynamics in vivo.

  14. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Arcy, Allan, E-mail: allan.darcy@novartis.com; Chaillet, Maxime; Schiering, Nikolaus

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but maymore » also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.« less

  15. Molecular Docking Based Screening of Plant Flavonoids as Dengue NS1 Inhibitors

    PubMed Central

    Qamar, Muhammad Tahir ul; Mumtaz, Arooj; Naseem, Rabbia; Ali, Amna; Fatima, Tabeer; Jabbar, Tehreem; Ahmad, Zubair; Ashfaq, Usman Ali

    2014-01-01

    Dengue infection has turned into a serious health concern globally due to its high morbidity rate and a high possibility of increase in its mortality rate on the account of unavailability of any proper treatment for severe dengue infection. The situation demands an urgent development of efficient and practicable treatment to deal with Dengue virus (DENV). Flavonoids, a class of phytochemicals present in medicinal plants, possess anti-viral activity and can be strong drug candidates against viruses. NS1 glycoprotein of Dengue virus is involved in its RNA replication and can be a strong target for screening of drugs against this virus. Current study focuses on the identification of flavonoids which can block Asn-130 glycosylation site of Dengue virus NS1 to inhibit viral replication as glycosylation of NS1 is required for its biological functioning. Molecular docking approach was used in this study and the results revealed that flavonoids have strong potential interactions with active site of NS1. Six flavonoids (Deoxycalyxin A; 3,5,7,3',4'-pentahydroxyflavonol-3-O-beta-D-galactopyranoside; (3R)-3',8-Dihydroxyvestitol; Sanggenon O; Epigallocatechin gallate; Chamaejasmin) blocked the Asn-130 glycosylation site of NS1 and could be able to inhibit the viral replication. It can be concluded from this study that these flavonoids could serve as antiviral drugs for dengue infections. Further in-vitro analyses are required to confirm their efficacy and to evaluate their drug potency. PMID:25187688

  16. Crystal structure of full-length Zika virus NS5 protein reveals a conformation similar to Japanese encephalitis virus NS5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Anup K.; Cyr, Matthew; Longenecker, Kenton

    The rapid spread of the recentZika virus(ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 ofZika virus(ZIKV-NS5) is critical for ZIKV replication through the 5'-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively. The crystal structure of the full-length ZIKV-NS5 protein has been determined at 3.05 Å resolution from a crystal belonging to space groupP2 12 12 and containing two protein molecules in the asymmetricmore » unit. The structure is similar to that reported for the NS5 protein fromJapanese encephalitis virusand suggests opportunities for structure-based drug design targeting either its MTase or RdRp domain.« less

  17. Selective Modification of Adenovirus Replication Can Be Achieved through Rational Mutagenesis of the Adenovirus Type 5 DNA Polymerase

    PubMed Central

    Capella, Cristina; Beltejar, Michael-John; Brown, Caitlin; Fong, Vincent; Daddacha, Waaqo; Kim, Baek

    2012-01-01

    Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates. PMID:22811532

  18. DNA Unwinding Functions of Minute Virus of Mice NS1 Protein Are Modulated Specifically by the Lambda Isoform of Protein Kinase C

    PubMed Central

    Dettwiler, Sabine; Rommelaere, Jean; Nüesch, Jürg P. F.

    1999-01-01

    The parvovirus minute virus of mice NS1 protein is a multifunctional protein involved in a variety of processes during virus propagation, ranging from viral DNA replication to promoter regulation and cytotoxic action to the host cell. Since NS1 becomes phosphorylated during infection, it was proposed that the different tasks of this protein might be regulated in a coordinated manner by phosphorylation. Indeed, comparing biochemical functions of native NS1 with its dephosphorylated counterpart showed that site-specific nicking of the origin and the helicase and ATPase activities are remarkably reduced upon NS1 dephosphorylation while site-specific affinity of the protein to the origin became enhanced. As a consequence, the dephosphorylated polypeptide is deficient for initiation of DNA replication. By adding fractionated cell extracts to a kinase-free in vitro replication system, the combination of two protein components containing members of the protein kinase C (PKC) family was found to rescue the replication activity of the dephosphorylated NS1 protein upon addition of PKC cofactors. One of these components, termed HA-1, also stimulated NS1 helicase function in response to acidic lipids but not phorbol esters, indicating the involvement of atypical PKC isoforms in the modulation of this NS1 function (J. P. F. Nüesch, S. Dettwiler, R. Corbau, and J. Rommelaere, J. Virol. 72:9966–9977, 1998). The present study led to the identification of atypical PKCλ/ι as the active component of HA-1 responsible for the regulation of NS1 DNA unwinding and replicative functions. Moreover, a target PKCλ phosphorylation site was localized at S473 of NS1. By site-directed mutagenesis, we showed that this residue is essential for NS1 helicase activity but not promoter regulation, suggesting a possible modulation of NS1 functions by PKCλ phosphorylation at residue S473. PMID:10438831

  19. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution

    PubMed Central

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina; Subramanian Manimekalai, Malathy Sony; Zhao, Yongqian; Chandramohan, Arun; Srinivasan Anand, Ganesh; Matsui, Tsutomu; Weiss, Thomas M.; Vasudevan, Subhash G.; Grüber, Gerhard

    2015-01-01

    Infection by the four serotypes of Dengue virus (DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all four Dengue virus serotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1 to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase–RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented. PMID:26527147

  20. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina

    Infection by the four serotypes ofDengue virus(DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all fourDengue virusserotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1more » to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase–RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented.« less

  1. Biochemical Activities of Minute Virus of Mice Nonstructural Protein NS1 Are Modulated In Vitro by the Phosphorylation State of the Polypeptide

    PubMed Central

    Nüesch, Jürg P. F.; Corbau, Romuald; Tattersall, Peter; Rommelaere, Jean

    1998-01-01

    NS1, the 83-kDa major nonstructural protein of minute virus of mice (MVM), is a multifunctional nuclear phosphoprotein which is required in a variety of steps during progeny virus production, early as well as late during infection. NS1 is the initiator protein for viral DNA replication. It binds specifically to target DNA motifs; has site-specific single-strand nickase, intrinsic ATPase, and helicase activities; trans regulates viral and cellular promoters; and exerts cytotoxic stress on the host cell. To investigate whether these multiple activities of NS1 depend on posttranslational modifications, in particular phosphorylation, we expressed His-tagged NS1 in HeLa cells by using recombinant vaccinia viruses, dephosphorylated it at serine and threonine residues with calf intestine alkaline phosphatase, and compared the biochemical activities of the purified un(der)phosphorylated (NS1O) and the native (NS1P) polypeptides. Biochemical analyses of replicative functions of NS1O revealed a severe reduction of intrinsic helicase activity and, to a minor extent, of ATPase and nickase activities, whereas its affinity for the target DNA sequence [ACCA]2–3 was enhanced compared to that of NS1P. In the presence of endogenous protein kinases found in replication extracts, NS1O showed all functions necessary for resolution and replication of the 3′ dimer bridge, indicating reactivation of NS1O by rephosphorylation. Partial reactivation of the helicase activity was found as well when NS1O was incubated with protein kinase C. PMID:9733839

  2. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly.

    PubMed

    Xie, Xuping; Zou, Jing; Puttikhunt, Chunya; Yuan, Zhiming; Shi, Pei-Yong

    2015-01-15

    Flavivirus nonstructural protein 2A (NS2A) plays important roles in both viral RNA synthesis and virion assembly. The molecular details of how the NS2A protein modulates the two distinct events have not been defined. To address this question, we have performed a systematic mutagenesis of NS2A using dengue virus (DENV) serotype 2 (DENV-2) as a model. We identified two sets of NS2A mutations with distinct defects during a viral infection cycle. One set of NS2A mutations (D125A and G200A) selectively abolished viral RNA synthesis. Mechanistically, the D125A mutation abolished viral RNA synthesis through blocking the N-terminal cleavage of the NS2A protein, leading to an unprocessed NS1-NS2A protein; this result suggests that amino acid D125 (far downstream of the N terminus of NS2A) may contribute to the recognition of host protease at the NS1-NS2A junction. The other set of NS2A mutations (G11A, E20A, E100A, Q187A, and K188A) specifically impaired virion assembly without significantly affecting viral RNA synthesis. Remarkably, mutants defective in virion assembly could be rescued by supplying in trans wild-type NS2A molecules expressed from a replicative replicon, by wild-type NS2A protein expressed alone, by a mutant NS2A (G200A) that is lethal for viral RNA synthesis, or by a different mutant NS2A that is defective in virion assembly. In contrast, none of the mutants defective in viral RNA synthesis could be rescued by trans-complementation. Collectively, the results indicate that two distinct sets of NS2A molecules are responsible for DENV RNA synthesis and virion assembly. Dengue virus (DENV) represents the most prevalent mosquito-borne human pathogen. Understanding the replication of DENV is essential for development of vaccines and therapeutics. Here we characterized the function of DENV-2 NS2A using a systematic mutagenesis approach. The mutagenesis results revealed two distinct sets of NS2A mutations: one set of mutations that result in defects in viral RNA synthesis and another set of mutations that result in defects in virion assembly. trans-Complementation analysis showed that mutants defective in viral RNA synthesis could not be rescued by wild-type NS2A; in contrast, mutants defective in virion assembly could be successfully rescued by wild-type NS2A or even by a mutant NS2A that is incompetent to support viral RNA synthesis. These results support a model in which two distinct sets of NS2A molecules are responsible for DENV RNA synthesis (located in the viral replication complex) and virion assembly (located in the virion assembly/budding site). The study confirms and extends our understanding of the two critical roles of flavivirus NS2A in viral RNA synthesis and virion assembly. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity.

    PubMed

    Kathum, Omer Abid; Schräder, Tobias; Anhlan, Darisuren; Nordhoff, Carolin; Liedmann, Swantje; Pande, Amit; Mellmann, Alexander; Ehrhardt, Christina; Wixler, Viktor; Ludwig, Stephan

    2016-06-01

    Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non-structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post-translational events yet. Here, we show that the newly identified phospho-site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double-stranded RNA and TRIM25 as well as complex formation with RIG-I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon-antagonistic activity are needed. © 2016 The Authors Cellular Microbiology published by John Wiley & Sons Ltd.

  4. A Naturally Occurring Deletion in the Effector Domain of H5N1 Swine Influenza Virus Nonstructural Protein 1 Regulates Viral Fitness and Host Innate Immunity.

    PubMed

    Wang, Junyong; Zeng, Yan; Xu, Shuai; Yang, Jiayun; Wang, Wanbing; Zhong, Bo; Ge, Jinying; Yin, Lei; Bu, Zhigao; Shu, Hong-Bing; Chen, Hualan; Lei, Cao-Qi; Zhu, Qiyun

    2018-06-01

    Nonstructural protein 1 (NS1) of influenza A virus regulates innate immune responses via various mechanisms. We previously showed that a naturally occurring deletion (the EALQR motif) in the NS1 effector domain of an H5N1 swine-origin avian influenza virus impairs the inhibition of type I interferon (IFN) in chicken fibroblasts and attenuates virulence in chickens. Here we found that the virus bearing this deletion in its NS1 effector domain showed diminished inhibition of IFN-related cytokine expression and attenuated virulence in mice. We further showed that deletion of the EALQR motif disrupted NS1 dimerization, impairing double-stranded RNA (dsRNA) sequestration and competitive binding with RIG-I. In addition, the EALQR-deleted NS1 protein could not bind to TRIM25, unlike full-length NS1, and was less able to block TRIM25 oligomerization and self-ubiquitination, further impairing the inhibition of TRIM25-mediated RIG-I ubiquitination compared to that with full-length NS1. Our data demonstrate that the EALQR deletion prevents NS1 from blocking RIG-I-mediated IFN induction via a novel mechanism to attenuate viral replication and virulence in mammalian cells and animals. IMPORTANCE H5 highly pathogenic avian influenza viruses have infected more than 800 individuals across 16 countries, with an overall case fatality rate of 53%. Among viral proteins, nonstructural protein 1 (NS1) of influenza virus is considered a key determinant for type I interferon (IFN) antagonism, pathogenicity, and host range. However, precisely how NS1 modulates virus-host interaction, facilitating virus survival, is not fully understood. Here we report that a naturally occurring deletion (of the EALQR motif) in the NS1 effector domain of an H5N1 swine-origin avian influenza virus disrupted NS1 dimerization, which diminished the blockade of IFN induction via the RIG-I signaling pathway, thereby impairing virus replication and virulence in the host. Our study demonstrates that the EALQR motif of NS1 regulates virus fitness to attain a virus-host compromise state in animals and identifies this critical motif as a potential target for the future development of small molecular drugs and attenuated vaccines. Copyright © 2018 American Society for Microbiology.

  5. Rab1A is required for assembly of classical swine fever virus particle.

    PubMed

    Lin, Jihui; Wang, Chengbao; Liang, Wulong; Zhang, Jing; Zhang, Longxiang; Lv, Huifang; Dong, Wang; Zhang, Yanming

    2018-01-15

    Rab1A belongs to the small Rab GTPase family and is involved in the lifecycle of numerous viruses. Here, knockdown of Rab1A inhibited CSFV growth. Further study revealed that Rab1A depletion decreased intracellular and extracellular CSFV titers, but did not affect intracellular virus genome copies and E2 protein expression within a virus lifecycle, which suggested that Rab1A is required for CSFV particle assembly rather than for genome replication or virion release. This was proofed by blocking the spread of virus using neutralizing antibodies, through which the negative effects of Rab1A knockdown on multi-cycle replication of CSFV were eliminated. Moreover, co-immunoprecipitation and confocal microscopy assays showed that Rab1A bound to CSFV NS5A protein, indicating that Rab1A and viral NS5A proteins may work cooperatively during CSFV particle assembly. In conclusion, this study demonstrated for the first time that Rab1A is required for CSFV particle assembly and binds to viral particle assembly-related NS5A protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Epitope reactions can be gauged by relative antibody discriminating specificity (RADS) values supported by deletion, substitution and cysteine bridge formation analyses: potential uses in pathogenesis studies

    PubMed Central

    2012-01-01

    Background Epitope-mapping of infectious agents is essential for pathogenesis studies. Since polyclonal antibodies (PAbs) and monoclonal antibodies (MAbs) are always polyspecific and can react with multiple epitopes, it is important to distinguish between specific and non-specific reactions. Relative antibody discriminating specificity (RADS) values, obtained from their relative ELISA reactions with L-amino acid peptides prepared in the natural versus reverse orientations (x-fold absorbance natural/absorbance reverse = RADS value) may be valuable for this purpose. PAbs generated against the dengue type-2 virus (DENV-2) nonstructural-1 (NS1) glycoprotein candidate vaccine also reacted with both DENV envelope (E) glycoproteins and blood-clotting proteins. New xKGSx/xSGKx amino acid motifs were identified on DENV-2 glycoproteins, HIV-1 gp41 and factor IXa. Their potential roles in DENV and HIV-1 antibody-enhanced replication (AER) and auto-immunity were assessed. In this study, a) RADS values were determined for MAbs and PAbs, generated in congeneic (H2: class II) mice against DENV NS1 glycoprotein epitopes, to account for their cross-reaction patterns, and b) MAb 1G5.3 reactions with xKGSx/xSGKx motifs present in the DENV-4 NS1, E and HIV-1 glycoproteins and factor IXa were assessed after the introduction of amino acid substitutions, deletions, or intra-/inter-cysteine (C-C) bridges. Results MAbs 1H7.4, 5H4.3, 3D1.4 and 1G5.3 had high (4.23- to 16.83-fold) RADS values against single epitopes on the DENV-2 NS1 glycoprotein, and MAb 3D1.4 defined the DENV complex-conserved LX1 epitope. In contrast, MAbs 1G5.4-A1-C3 and 1C6.3 had low (0.47- to 1.67-fold) RADS values against multiple epitopes. PAb DENV complex-reactions occurred through moderately-high (2.77- and 3.11-fold) RADS values against the LX1 epitope. MAb 1G5.3 reacted with xSGKx motifs present in DENV-4 NS1 and E glycoproteins, HIV-1 gp41 and factor IXa, while natural C-C bridge formations or certain amino acid substitutions increased its binding activity. Conclusions These results: i) were readily obtained using a standard 96-well ELISA format, ii) showed the LX1 epitope to be the immuno-dominant DENV complex determinant in the NS1 glycoprotein, iii) supported an antigenic co-evolution of the DENV NS1 and E glycoproteins, and iv) identified methods that made it possible to determine the role of anti-DENV PAb reactions in viral pathogenesis. PMID:22546090

  7. A Promising IFN-Deficient System to Manufacture IFN-Sensitive Influenza Vaccine Virus.

    PubMed

    Chen, Can; Fan, Wenhui; Li, Jing; Zheng, Weinan; Zhang, Shuang; Yang, Limin; Liu, Di; Liu, Wenjun; Sun, Lei

    2018-01-01

    Interferon (IFN)-sensitive and replication-incompetent influenza viruses are likely to be the alternatives to inactivated and attenuated virus vaccines. Some IFN-sensitive influenza vaccine candidates with modified non-structural protein 1 (NS1) are highly attenuated in IFN-competent hosts but induce robust antiviral immune responses. However, little research has been done on the manufacturability of these IFN-sensitive vaccine viruses. Here, RIG-I-knockout 293T cells were used to package the IFN-sensitive influenza A/WSN/33 (H1N1) virus expressing the mutant NS1 R38A/K41A. We found that the packaging efficiency of the NS1 R38A/K41A virus in RIG-I-knockout 293T cells was much higher than that in 293T cells. Moreover, the NS1 R38A/K41A virus almost lost its IFN antagonist activity and could no longer replicate in A549, MDCK, and Vero cells after 3-6 passages. This indicated that the replication of NS1 R38A/K41A virus is limited in conventional cells. Therefore, we further established a stable Vero cell line expressing the wild-type (WT) NS1 of the WSN virus, based on the Tet-On 3G system. The NS1 R38A/K41A virus was able to steadily propagate in this IFN-deficient cell line for at least 20 passages. In a mouse model, the NS1 R38A/K41A virus showed more than a 4-log reduction in lung virus titers compared to the WT virus at 3 and 5 days post infection. Furthermore, we observed that the NS1 R38A/K41A virus triggered high-level of IFN-α/β production in lung tissues and was eliminated from the host in a relatively short period of time. Additionally, this virus induced high-titer neutralizing antibodies against the WT WSN, A/Puerto Rico/8/1934 (PR8), or A/California/04/2009 (CA04) viruses and provided 100% protection against the WT WSN virus. Thus, we found that the replication of the NS1 R38A/K41A virus was limited in IFN-competent cells and mice. We also presented a promising IFN-deficient system, involving a RIG-I-knockout 293T cell line to package the IFN-sensitive vaccine virus and a stable Vero cell line expressing NS1 to propagate the IFN-sensitive vaccine virus. The IFN-deficient system is applicable for the manufacture of IFN-sensitive vaccine virus.

  8. Mutagenesis of Dengue Virus Protein NS2A Revealed a Novel Domain Responsible for Virus-Induced Cytopathic Effect and Interactions between NS2A and NS2B Transmembrane Segments.

    PubMed

    Wu, Ren-Huang; Tsai, Ming-Han; Tsai, Kuen-Nan; Tian, Jia Ni; Wu, Jian-Sung; Wu, Su-Ying; Chern, Jyh-Haur; Chen, Chun-Hong; Yueh, Andrew

    2017-06-15

    The NS2A protein of dengue virus (DENV) has eight predicted transmembrane segments (pTMS1 to -8) and participates in RNA replication, virion assembly, and host antiviral response. However, the roles of specific amino acid residues within the pTMS regions of NS2A during the viral life cycle are not clear. Here, we explore the function of DENV NS2A by introducing a series of alanine substitutions into the N-terminal half (pTMS1 to -4) of the protein in the context of a DENV infectious clone or subgenomic replicon. Six NS2A mutants (NM5, -7, -9, and -17 to -19) around pTMS1 and -2 displayed a novel phenotype showing a >1,000-fold reduction in virus yield, an absence of plaque formation despite wild-type-like replicon activity, and infectious-virus-like particle yields. HEK-293 cells infected with the six NS2A mutant viruses failed to cause a virus-induced cytopathic effect (CPE) by MitoCapture staining, cell proliferation, and lactate dehydrogenase release assays. Sequencing analyses of pseudorevertant viruses derived from lethal-mutant viruses revealed two consensus reversion mutations, leucine to phenylalanine at codon 181 (L181F) within pTMS7 of NS2A and isoleucine to threonine at codon 114 (I114T) within NS2B. The introduction of an NS2A-L181F mutation into the lethal (NM15, -16, -25, and -33) and CPE-defective (NM7, -9, and -19) mutants substantially rescued virus infectivity and virus-induced CPE, respectively, whereas the NS2B-L114T mutation rescued the NM16, -25, and -33 mutants. In conclusion, the results revealed the essential roles of the N-terminal half of NS2A in RNA replication and virus-induced CPE. Intramolecular interactions between pTMSs of NS2A and intermolecular interactions between the NS2A and NS2B proteins were also implicated. IMPORTANCE The characterization of the N-terminal (current study) and C-terminal halves of DENV NS2A is the most comprehensive mutagenesis study to date to investigate the function of NS2A during the flaviviral life cycle. A novel region responsible for virus-induced cytopathic effect (CPE) within pTMS1 and -2 of DENV NS2A was identified. Revertant genetics studies implied unexpected relationships between various pTMSs of DENV NS2A and NS2B. These results provide comprehensive information regarding the functions of DENV NS2A and the specific amino acids and transmembrane segments responsible for these functions. The positions and properties of the rescuing mutations were also revealed, providing important clues regarding the manner in which intramolecular or intermolecular interactions between the pTMSs of NS2A and NS2B regulate virus replication, assembly/secretion, and virus-induced CPE. These results expand the understanding of flavivirus replication. The knowledge may also facilitate studies of pathogenesis and novel vaccine and antiflaviviral drug development. Copyright © 2017 American Society for Microbiology.

  9. Specific interaction of the nonstructural protein NS1 of minute virus of mice (MVM) with [ACCA](2) motifs in the centre of the right-end MVM DNA palindrome induces hairpin-primed viral DNA replication.

    PubMed

    Willwand, Kurt; Moroianu, Adela; Hörlein, Rita; Stremmel, Wolfgang; Rommelaere, Jean

    2002-07-01

    The linear single-stranded DNA genome of minute virus of mice (MVM) is replicated via a double-stranded replicative form (RF) intermediate DNA. Amplification of viral RF DNA requires the structural transition of the right-end palindrome from a linear duplex into a double-hairpin structure, which serves for the repriming of unidirectional DNA synthesis. This conformational transition was found previously to be induced by the MVM nonstructural protein NS1. Elimination of the cognate NS1-binding sites, [ACCA](2), from the central region of the right-end palindrome next to the axis of symmetry was shown to markedly reduce the efficiency of hairpin-primed DNA replication, as measured in a reconstituted in vitro replication system. Thus, [ACCA](2) sequence motifs are essential as NS1-binding elements in the context of the structural transition of the right-end MVM palindrome.

  10. Mutations in the Epithelial Cadherin-p120-Catenin Complex Cause Mendelian Non-Syndromic Cleft Lip with or without Cleft Palate.

    PubMed

    Cox, Liza L; Cox, Timothy C; Moreno Uribe, Lina M; Zhu, Ying; Richter, Chika T; Nidey, Nichole; Standley, Jennifer M; Deng, Mei; Blue, Elizabeth; Chong, Jessica X; Yang, Yueqin; Carstens, Russ P; Anand, Deepti; Lachke, Salil A; Smith, Joshua D; Dorschner, Michael O; Bedell, Bruce; Kirk, Edwin; Hing, Anne V; Venselaar, Hanka; Valencia-Ramirez, Luz C; Bamshad, Michael J; Glass, Ian A; Cooper, Jonathan A; Haan, Eric; Nickerson, Deborah A; van Bokhoven, Hans; Zhou, Huiqing; Krahn, Katy N; Buckley, Michael F; Murray, Jeffrey C; Lidral, Andrew C; Roscioli, Tony

    2018-06-07

    Non-syndromic cleft lip with or without cleft palate (NS-CL/P) is one of the most common human birth defects and is generally considered a complex trait. Despite numerous loci identified by genome-wide association studies, the effect sizes of common variants are relatively small, with much of the presumed genetic contribution remaining elusive. We report exome-sequencing results in 209 people from 72 multi-affected families with pedigree structures consistent with autosomal-dominant inheritance and variable penetrance. Herein, pathogenic variants are described in four genes encoding components of the p120-catenin complex (CTNND1, PLEKHA7, PLEKHA5) and an epithelial splicing regulator (ESRP2), in addition to the known CL/P-associated gene, CDH1, which encodes E-cadherin. The findings were also validated in a second cohort of 497 people with NS-CL/P, comprising small families and singletons with pathogenic variants in these genes identified in 14% of multi-affected families and 2% of the replication cohort of smaller families. Enriched expression of each gene/protein in human and mouse embryonic oro-palatal epithelia, demonstration of functional impact of CTNND1 and ESRP2 variants, and recapitulation of the CL/P spectrum in Ctnnd1 knockout mice support a causative role in CL/P pathogenesis. These data show that primary defects in regulators of epithelial cell adhesion are the most significant contributors to NS-CL/P identified to date and that inherited and de novo single gene variants explain a substantial proportion of NS-CL/P. Copyright © 2018 American Society of Human Genetics. All rights reserved.

  11. Systematic analysis of viral genes responsible for differential virulence between American and Australian West Nile virus strains.

    PubMed

    Setoh, Yin Xiang; Prow, Natalie A; Rawle, Daniel J; Tan, Cindy Si En; Edmonds, Judith H; Hall, Roy A; Khromykh, Alexander A

    2015-06-01

    A variant Australian West Nile virus (WNV) strain, WNVNSW2011, emerged in 2011 causing an unprecedented outbreak of encephalitis in horses in south-eastern Australia. However, no human cases associated with this strain have yet been reported. Studies using mouse models for WNV pathogenesis showed that WNVNSW2011 was less virulent than the human-pathogenic American strain of WNV, New York 99 (WNVNY99). To identify viral genes and mutations responsible for the difference in virulence between WNVNSW2011 and WNVNY99 strains, we constructed chimeric viruses with substitution of large genomic regions coding for the structural genes, non-structural genes and untranslated regions, as well as seven individual non-structural gene chimeras, using a modified circular polymerase extension cloning method. Our results showed that the complete non-structural region of WNVNSW2011, when substituted with that of WNVNY99, significantly enhanced viral replication and the ability to suppress type I IFN response in cells, resulting in higher virulence in mice. Analysis of the individual non-structural gene chimeras showed a predominant contribution of WNVNY99 NS3 to increased virus replication and evasion of IFN response in cells, and to virulence in mice. Other WNVNY99 non-structural proteins (NS2A, NS4B and NS5) were shown to contribute to the modulation of IFN response. Thus a combination of non-structural proteins, likely NS2A, NS3, NS4B and NS5, is primarily responsible for the difference in virulence between WNVNSW2011 and WNVNY99 strains, and accumulative mutations within these proteins would likely be required for the Australian WNVNSW2011 strain to become significantly more virulent. © 2015 The Authors.

  12. Complex Pattern of Resistance-Associated Substitutions of Hepatitis C Virus after Daclatasvir/Asunaprevir Treatment Failure

    PubMed Central

    Hasebe, Chitomi; Osaki, Yukio; Joko, Kouji; Yagisawa, Hitoshi; Sakita, Shinya; Okushin, Hiroaki; Satou, Takashi; Hisai, Hiroyuki; Abe, Takehiko; Tsuji, Keiji; Tamada, Takashi; Kobashi, Haruhiko; Mitsuda, Akeri; Ide, Yasushi; Ogawa, Chikara; Tsuruta, Syotaro; Takaguchi, Kouichi; Murakawa, Miyako; Asahina, Yasuhiro; Enomoto, Nobuyuki; Izumi, Namiki

    2016-01-01

    Backgrounds & Aims We aimed to clarify the characteristics of resistance-associated substitutions (RASs) after treatment failure with NS5A inhibitor, daclatasvir (DCV) in combination with NS3/4A inhibitor, asunaprevir (ASV), in patients with chronic hepatitis C virus genotype 1b infection. Methods This is a nationwide multicenter study conducted by the Japanese Red Cross Liver Study Group. The sera were obtained from 68 patients with virological failure after 24 weeks of DCV/ASV treatment. RASs in NS5A and NS3 were determined by population sequencing. Results The frequency of signature RASs at position D168 of NS3 was 68%, and at positions L31 and Y93 of NS5A was 79 and 76%, respectively. The frequency of dual signature RASs in NS5A (L31-RAS and Y93-RAS) was 63%. RASs at L28, R30, P32, Q54, P58, and A92 in addition to dual signature RAS were detected in 5, 5, 1, 22, 2, and 0 patients, respectively. In total, triple, quadruple, and quintuple RASs in combination with dual signature RAS were detected in 35, 10, and 1.5% patients, respectively. These RASs were detected in patients without baseline RASs or who prematurely discontinued therapy. Co-existence of D168 RAS in NS3 and L31 and/or Y93 RAS in NS5A was observed in 62% of patients. Conclusion Treatment-emergent RASs after failure with DCV/ASV combination therapy are highly complex in more than 50% of the patients. The identification of complex RAS patterns, which may indicate high levels of resistance to NS5A inhibitors, highlights the need for RAS sequencing when considering re-treatment with regimens including NS5A inhibitors. PMID:27776192

  13. Identification of drug resistance and immune-driven variations in hepatitis C virus (HCV) NS3/4A, NS5A and NS5B regions reveals a new approach toward personalized medicine.

    PubMed

    Ikram, Aqsa; Obaid, Ayesha; Awan, Faryal Mehwish; Hanif, Rumeza; Naz, Anam; Paracha, Rehan Zafar; Ali, Amjad; Janjua, Hussnain Ahmed

    2017-01-01

    Cellular immune responses (T cell responses) during hepatitis C virus (HCV) infection are significant factors for determining the outcome of infection. HCV adapts to host immune responses by inducing mutations in its genome at specific sites that are important for HLA processing/presentation. Moreover, HCV also adapts to resist potential drugs that are used to restrict its replication, such as direct-acting antivirals (DAAs). Although DAAs have significantly reduced disease burden, resistance to these drugs is still a challenge for the treatment of HCV infection. Recently, drug resistance mutations (DRMs) observed in HCV proteins (NS3/4A, NS5A and NS5B) have heightened concern that the emergence of drug resistance may compromise the effectiveness of DAAs. Therefore, the NS3/4A, NS5A and NS5B drug resistance variations were investigated in this study, and their prevalence was examined in a large number of protein sequences from all HCV genotypes. Furthermore, potential CD4 + and CD8 + T cell epitopes were predicted and their overlap with genetic variations was explored. The findings revealed that many reported DRMs within NS3/4A, NS5A and NS5B are not drug-induced; rather, they are already present in HCV strains, as they were also detected in HCV-naïve patients. This study highlights several hot spots in which HLA and drug selective pressure overlap. Interestingly, these overlapping mutations were frequently observed among many HCV genotypes. This study implicates that knowledge of the host HLA type and HCV subtype/genotype can provide important information in defining personalized therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Regulation of the Production of Infectious Genotype 1a Hepatitis C Virus by NS5A Domain III▿

    PubMed Central

    Kim, Seungtaek; Welsch, Christoph; Yi, MinKyung; Lemon, Stanley M.

    2011-01-01

    Although hepatitis C virus (HCV) assembly remains incompletely understood, recent studies with the genotype 2a JFH-1 strain suggest that it is dependent upon the phosphorylation of Ser residues near the C terminus of NS5A, a multifunctional nonstructural protein. Since genotype 1 viruses account for most HCV disease yet differ substantially in sequence from that of JFH-1, we studied the role of NS5A in the production of the H77S virus. While less efficient than JFH-1, genotype 1a H77S RNA produces infectious virus when transfected into permissive Huh-7 cells. The exchange of complete NS5A sequences between these viruses was highly detrimental to replication, while exchanges of the C-terminal domain III sequence (46% amino acid sequence identity) were well tolerated, with little effect on RNA synthesis. Surprisingly, the placement of the H77S domain III sequence into JFH-1 resulted in increased virus yields; conversely, H77S yields were reduced by the introduction of domain III from JFH-1. These changes in infectious virus yield correlated well with changes in the abundance of NS5A in RNA-transfected cells but not with RNA replication or core protein expression levels. Alanine replacement mutagenesis of selected Ser and Thr residues in the C-terminal domain III sequence revealed no single residue to be essential for infectious H77S virus production. However, virus production was eliminated by Ala substitutions at multiple residues and could be restored by phosphomimetic Asp substitutions at these sites. Thus, despite low overall sequence homology, the production of infectious virus is regulated similarly in JFH-1 and H77S viruses by a conserved function associated with a C-terminal Ser/Thr cluster in domain III of NS5A. PMID:21525356

  15. Polypyrimidine tract-binding protein influences negative strand RNA synthesis of dengue virus.

    PubMed

    Jiang, Linbin; Yao, Huiling; Duan, Xiaoqun; Lu, Xi; Liu, Yongming

    2009-07-24

    Flavivirus non-structural protein 4A (NS4A) induces membrane rearrangements to form viral replication complex and functions as interferon antagonist. However, other non-structural roles of NS4A protein in relation to virus life-cycle are poorly defined. This study elucidated if dengue virus (DENV) NS4A protein interacts with host proteins and contributes to viral pathogenesis by screening human liver cDNA yeast-two-hybrid library. Our study identified polypyrimidine tract-binding protein (PTB) as a novel interacting partner of DENV NS4A protein. We reported for the first time that PTB influenced DENV production. Gene-silencing studies showed that PTB did not have an effect on DENV entry and DENV RNA translation. Further functional studies revealed that PTB influenced DENV production by modulating negative strand RNA synthesis. This is the first study that enlightens the interaction of DENV NS4A protein with PTB, in addition to demonstrating the novel role of PTB in relation to mosquito-borne flavivirus life-cycle.

  16. Identification of genetic determinants of a tick-borne flavivirus associated with host-specific adaptation and pathogenicity.

    PubMed

    Mitzel, Dana N; Best, Sonja M; Masnick, Max F; Porcella, Stephen F; Wolfinbarger, James B; Bloom, Marshall E

    2008-11-25

    Tick-borne flaviviruses are maintained in nature in an enzootic cycle involving a tick vector and a vertebrate host. Thus, the virus replicates in two disparate hosts, each providing selective pressures that can influence virus replication and pathogenicity. To identify viral determinants associated with replication in the individual hosts, plaque purified Langat virus (TP21pp) was adapted to growth in mouse or tick cell lines to generate two virus variants, MNBp20 and ISEp20, respectively. Virus adaptation to mouse cells resulted in four amino acid changes in MNBp20 relative to TP21pp, occurring in E, NS4A and NS4B. A comparison between TP21pp and ISEp20 revealed three amino acid modifications in M, NS3 and NS4A of ISEp20. ISEp20, but not MNBp20, was attenuated following intraperitoneal inoculation of mice. Following isolation from mice brains, additional mutations reproducibly emerged in E and NS3 of ISEp20 that were possibly compensatory for the initial adaptation to tick cells. Thus, our data implicate a role for E, M, NS3, NS4A and NS4B in host adaptation and pathogenicity of tick-borne flaviviruses.

  17. Scanning mutagenesis studies reveal a potential intramolecular interaction within the C-terminal half of dengue virus NS2A involved in viral RNA replication and virus assembly and secretion.

    PubMed

    Wu, Ren-Huang; Tsai, Ming-Han; Chao, Day-Yu; Yueh, Andrew

    2015-04-01

    The NS2A protein of dengue virus (DENV) has eight predicted transmembrane segments (pTMSs; pTMS1 to pTMS8). NS2A has been shown to participate in RNA replication, virion assembly, and the host antiviral response. However, the role of the amino acid residues within the pTMS regions of NS2A during the virus life cycle is poorly understood. In the study described here, we explored the function of DENV NS2A by introducing a series of double or triple alanine substitutions into the C-terminal half (pTMS4 to pTMS8) of NS2A in the context of a DENV infectious clone or subgenomic replicon. Fourteen (8 within pTMS8) of 35 NS2A mutants displayed a lethal phenotype due to impairment of RNA replication by a replicon assay. Three NS2A mutants with mutations within pTMS7, the CM20, CM25, and CM27 mutants, displayed similar phenotypes, low virus yields (>100-fold reduction), wild-type-like replicon activity, and low infectious virus-like particle yields by transient trans-packaging experiments, suggesting a defect in virus assembly and secretion. The sequencing of revertant viruses derived from CM20, CM25, and CM27 mutant viruses revealed a consensus reversion mutation, leucine (L) to phenylalanine (F), at codon 181 within pTMS7. The introduction of an L181F mutation into a full-length NS2A mutant, i.e., the CM20, CM25, and CM27 constructs, completely restored wild-type infectivity. Notably, L181F also substantially rescued the other severely RNA replication-defective mutants with mutations within pTMS4, pTMS6, and pTMS8, i.e., the CM2, CM3, CM13, CM31, and CM32 mutants. In conclusion, the results revealed the essential roles of pTMS4 to pTMS8 of NS2A in RNA replication and/or virus assembly and secretion. The intramolecular interaction between pTMS7 and pTMS4, pTMS6, or pTMS8 of the NS2A protein was also implicated. The reported characterization of the C-terminal half of dengue virus NS2A is the first comprehensive mutagenesis study to investigate the function of flavivirus NS2A involved in the steps of the virus life cycle. In particular, detailed mapping of the amino acid residues within the predicted transmembrane segments (pTMSs) of NS2A involved in RNA replication and/or virus assembly and secretion was performed. A revertant genetics study also revealed that L181F within pTMS7 is a consensus reversion mutation that rescues both RNA replication-defective and virus assembly- and secretion-defective mutants with mutations within the other three pTMSs of NS2A. Collectively, these findings elucidate the role played by NS2A during the virus life cycle, possibly through the intricate intramolecular interaction between pTMS7 and other pTMSs within the NS2A protein. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Inhibitors of the tick-borne, hemorrhagic fever-associated flaviviruses.

    PubMed

    Flint, Mike; McMullan, Laura K; Dodd, Kimberly A; Bird, Brian H; Khristova, Marina L; Nichol, Stuart T; Spiropoulou, Christina F

    2014-06-01

    No antiviral therapies are available for the tick-borne flaviviruses associated with hemorrhagic fevers: Kyasanur Forest disease virus (KFDV), both classical and the Alkhurma hemorrhagic fever virus (AHFV) subtype, and Omsk hemorrhagic fever virus (OHFV). We tested compounds reported to have antiviral activity against members of the Flaviviridae family for their ability to inhibit AHFV replication. 6-Azauridine (6-azaU), 2'-C-methylcytidine (2'-CMC), and interferon alpha 2a (IFN-α2a) inhibited the replication of AHFV and also KFDV, OHFV, and Powassan virus. The combination of IFN-α2a and 2'-CMC exerted an additive antiviral effect on AHFV, and the combination of IFN-α2a and 6-azaU was moderately synergistic. The combination of 2'-CMC and 6-azaU was complex, being strongly synergistic but with a moderate level of antagonism. The antiviral activity of 6-azaU was reduced by the addition of cytidine but not guanosine, suggesting that it acted by inhibiting pyrimidine biosynthesis. To investigate the mechanism of action of 2'-CMC, AHFV variants with reduced susceptibility to 2'-CMC were selected. We used a replicon system to assess the substitutions present in the selected AHFV population. A double NS5 mutant, S603T/C666S, and a triple mutant, S603T/C666S/M644V, were more resistant to 2'-CMC than the wild-type replicon. The S603T/C666S mutant had a reduced level of replication which was increased when M644V was also present, although the replication of this triple mutant was still below that of the wild type. The S603 and C666 residues were predicted to lie in the active site of the AHFV NS5 polymerase, implicating the catalytic center of the enzyme as the binding site for 2'-CMC. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Inhibitors of the Tick-Borne, Hemorrhagic Fever-Associated Flaviviruses

    PubMed Central

    Flint, Mike; McMullan, Laura K.; Dodd, Kimberly A.; Bird, Brian H.; Khristova, Marina L.; Nichol, Stuart T.

    2014-01-01

    No antiviral therapies are available for the tick-borne flaviviruses associated with hemorrhagic fevers: Kyasanur Forest disease virus (KFDV), both classical and the Alkhurma hemorrhagic fever virus (AHFV) subtype, and Omsk hemorrhagic fever virus (OHFV). We tested compounds reported to have antiviral activity against members of the Flaviviridae family for their ability to inhibit AHFV replication. 6-Azauridine (6-azaU), 2′-C-methylcytidine (2′-CMC), and interferon alpha 2a (IFN-α2a) inhibited the replication of AHFV and also KFDV, OHFV, and Powassan virus. The combination of IFN-α2a and 2′-CMC exerted an additive antiviral effect on AHFV, and the combination of IFN-α2a and 6-azaU was moderately synergistic. The combination of 2′-CMC and 6-azaU was complex, being strongly synergistic but with a moderate level of antagonism. The antiviral activity of 6-azaU was reduced by the addition of cytidine but not guanosine, suggesting that it acted by inhibiting pyrimidine biosynthesis. To investigate the mechanism of action of 2′-CMC, AHFV variants with reduced susceptibility to 2′-CMC were selected. We used a replicon system to assess the substitutions present in the selected AHFV population. A double NS5 mutant, S603T/C666S, and a triple mutant, S603T/C666S/M644V, were more resistant to 2′-CMC than the wild-type replicon. The S603T/C666S mutant had a reduced level of replication which was increased when M644V was also present, although the replication of this triple mutant was still below that of the wild type. The S603 and C666 residues were predicted to lie in the active site of the AHFV NS5 polymerase, implicating the catalytic center of the enzyme as the binding site for 2′-CMC. PMID:24663025

  20. Quantitative Proteomic Analysis of the Influenza A Virus Nonstructural Proteins NS1 and NS2 during Natural Cell Infection Identifies PACT as an NS1 Target Protein and Antiviral Host Factor

    PubMed Central

    Tawaratsumida, Kazuki; Phan, Van; Hrincius, Eike R.; High, Anthony A.; Webby, Richard; Redecke, Vanessa

    2014-01-01

    ABSTRACT Influenza A virus (IAV) replication depends on the interaction of virus proteins with host factors. The viral nonstructural protein 1 (NS1) is essential in this process by targeting diverse cellular functions, including mRNA splicing and translation, cell survival, and immune defense, in particular the type I interferon (IFN-I) response. In order to identify host proteins targeted by NS1, we established a replication-competent recombinant IAV that expresses epitope-tagged forms of NS1 and NS2, which are encoded by the same gene segment, allowing purification of NS proteins during natural cell infection and analysis of interacting proteins by quantitative mass spectrometry. We identified known NS1- and NS2-interacting proteins but also uncharacterized proteins, including PACT, an important cofactor for the IFN-I response triggered by the viral RNA-sensor RIG-I. We show here that NS1 binds PACT during virus replication and blocks PACT/RIG-I-mediated activation of IFN-I, which represents a critical event for the host defense. Protein interaction and interference with IFN-I activation depended on the functional integrity of the highly conserved RNA binding domain of NS1. A mutant virus with deletion of NS1 induced high levels of IFN-I in control cells, as expected; in contrast, shRNA-mediated knockdown of PACT compromised IFN-I activation by the mutant virus, but not wild-type virus, a finding consistent with the interpretation that PACT (i) is essential for IAV recognition and (ii) is functionally compromised by NS1. Together, our data describe a novel approach to identify virus-host protein interactions and demonstrate that NS1 interferes with PACT, whose function is critical for robust IFN-I production. IMPORTANCE Influenza A virus (IAV) is an important human pathogen that is responsible for annual epidemics and occasional devastating pandemics. Viral replication and pathogenicity depends on the interference of viral factors with components of the host defense system, particularly the type I interferon (IFN-I) response. The viral NS1 protein is known to counteract virus recognition and IFN-I production, but the molecular mechanism is only partially defined. We used a novel proteomic approach to identify host proteins that are bound by NS1 during virus replication and identified the protein PACT, which had previously been shown to be involved in virus-mediated IFN-I activation. We find that NS1 prevents PACT from interacting with an essential component of the virus recognition pathway, RIG-I, thereby disabling efficient IFN-I production. These observations provide an important piece of information on how IAV efficiently counteracts the host immune defense. PMID:24899174

  1. Zika Virus Hijacks Stress Granule Proteins and Modulates the Host Stress Response

    PubMed Central

    Hou, Shangmei; Kumar, Anil; Xu, Zaikun; Airo, Adriana M.; Stryapunina, Iryna; Wong, Cheung Pang; Branton, William; Tchesnokov, Egor; Götte, Matthias; Power, Christopher

    2017-01-01

    ABSTRACT Zika virus (ZIKV), a member of the Flaviviridae family, has recently emerged as an important human pathogen with increasing economic and health impact worldwide. Because of its teratogenic nature and association with the serious neurological condition Guillain-Barré syndrome, a tremendous amount of effort has focused on understanding ZIKV pathogenesis. To gain further insights into ZIKV interaction with host cells, we investigated how this pathogen affects stress response pathways. While ZIKV infection induces stress signaling that leads to phosphorylation of eIF2α and cellular translational arrest, stress granule (SG) formation was inhibited. Further analysis revealed that the viral proteins NS3 and NS4A are linked to translational repression, whereas expression of the capsid protein, NS3/NS2B-3, and NS4A interfered with SG formation. Some, but not all, flavivirus capsid proteins also blocked SG assembly, indicating differential interactions between flaviviruses and SG biogenesis pathways. Depletion of the SG components G3BP1, TIAR, and Caprin-1, but not TIA-1, reduced ZIKV replication. Both G3BP1 and Caprin-1 formed complexes with capsid, whereas viral genomic RNA stably interacted with G3BP1 during ZIKV infection. Taken together, these results are consistent with a scenario in which ZIKV uses multiple viral components to hijack key SG proteins to benefit viral replication. IMPORTANCE There is a pressing need to understand ZIKV pathogenesis in order to advance the development of vaccines and therapeutics. The cellular stress response constitutes one of the first lines of defense against viral infection; therefore, understanding how ZIKV evades this antiviral system will provide key insights into ZIKV biology and potentially pathogenesis. Here, we show that ZIKV induces the stress response through activation of the UPR (unfolded protein response) and PKR (protein kinase R), leading to host translational arrest, a process likely mediated by the viral proteins NS3 and NS4A. Despite the activation of translational shutoff, formation of SG is strongly inhibited by the virus. Specifically, ZIKV hijacks the core SG proteins G3BP1, TIAR, and Caprin-1 to facilitate viral replication, resulting in impaired SG assembly. This process is potentially facilitated by the interactions of the viral RNA with G3BP1 as well as the viral capsid protein with G3BP1 and Caprin-1. Interestingly, expression of capsid proteins from several other flaviviruses also inhibited SG formation. Taken together, the present study provides novel insights into how ZIKV modulates cellular stress response pathways during replication. PMID:28592527

  2. A Panoptic Uncovering of the Dynamical Evolution of the Zika Virus NS5 Methyltransferase Binding Site Loops- Zeroing in on the Molecular Landscape.

    PubMed

    Devnarain, Nikita; Soliman, Mahmoud E S

    2018-06-20

    The global threat of the Zika virus to humanity is real. Innovative and potent anti-Zika virus drugs are still at large, due to the lack of anti-Zika virus drugs that have passed phase 1 trials. Experimental research has revealed novel inhibitors of Zika virus NS5 methyltransferase enzyme. This study has taken a step further to provide insight into the molecular dynamics of Zika virus and inhibitor binding, which have not been established experimentally. Movements of the methyltransferase binding site loops have a large role to play in the methylation of the viral mRNA cap, which is essential for Zika virus replication. Here we pinpoint the binding interactions between each potential inhibitor and the methyltransferase, residues that are responsible for binding, as well as which inhibitor-bound complex renders the methyltransferase more stable. We also highlight the conformational changes that occur within the methyltransferase to accommodate binding of inhibitors and consequences of those changes upon the RNA- and cap-binding sites in the methyltransferase. This research will improve the understanding of the Zika virus NS5 methyltransferase enzyme, and will be beneficial in driving the development of anti-Zika virus drugs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Non-structural protein 1 of influenza viruses inhibits rapid mRNA degradation mediated by double-stranded RNA-binding protein, staufen1.

    PubMed

    Cho, Hana; Ahn, Sang Ho; Kim, Kyoung Mi; Kim, Yoon Ki

    2013-07-11

    Although non-structural protein 1 (NS1) of influenza viruses is not essential for virulence, this protein is involved in host-virus interactions, viral replication, and translation. In particular, NS1 is known to interact with the host protein, staufen1 (Stau1). This interaction is important for efficient viral replication. However, the underlying molecular mechanism by which NS1 influences the viral life cycle remains obscure. Here, we show using immunoprecipitation and artificial tethering that the N-terminus of NS1, NS1(1-73), interacts with Stau1, blocks the Stau1-Upf1 interaction, and consequently inhibits the efficiency of Stau1-mediated mRNA decay (SMD), but not nonsense-mediatedmRNA decay (NMD). The regulation of SMD efficiency by NS1 may contribute to building a more favorable cellular environment for viral replication. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses.

    PubMed Central

    Ahlquist, P; Strauss, E G; Rice, C M; Strauss, J H; Haseloff, J; Zimmern, D

    1985-01-01

    Although the genetic organization of tobacco mosaic virus (TMV) differs considerably from that of the tripartite viruses (alfalfa mosaic virus [AlMV] and brome mosaic virus [BMV]), all of these RNA plant viruses share three domains of homology among their nonstructural proteins. One such domain, common to the AlMV and BMV 2a proteins and the readthrough portion of TMV p183, is also homologous to the readthrough protein nsP4 of Sindbis virus (Haseloff et al., Proc. Natl. Acad. Sci. U.S.A. 81:4358-4362, 1984). Two more domains are conserved among the AlMV and BMV 1a proteins and TMV p126. We show here that these domains have homology with portions of the Sindbis proteins nsP1 and nsP2, respectively. These results strengthen the view that the four viruses share mechanistic similarities in their replication strategies and may be evolutionarily related. These results also suggest that either the AlMV 1a, BMV 1a, and TMV p126 proteins are multifunctional or Sindbis proteins nsP1 and nsP2 function together as subunits in a single complex. PMID:3968720

  5. The influenza virus NS1 protein as a therapeutic target.

    PubMed

    Engel, Daniel A

    2013-09-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. The influenza virus NS1 protein as a therapeutic target

    PubMed Central

    Engel, Daniel A.

    2015-01-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2’-5’ oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN- mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. PMID:23796981

  7. [Bioinformatics analysis of mosquito densovirus nostructure protein NS1].

    PubMed

    Dong, Yun-qiao; Ma, Wen-li; Gu, Jin-bao; Zheng, Wen-ling

    2009-12-01

    To analyze and predict the structure and function of mosquito densovirus (MDV) nostructual protein1 (NS1). Using different bioinformatics software, the EXPASY pmtparam tool, ClustalX1.83, Bioedit, MEGA3.1, ScanProsite, and Motifscan, respectively to comparatively analyze and predict the physic-chemical parameters, homology, evolutionary relation, secondary structure and main functional motifs of NS1. MDV NS1 protein was a unstable hydrophilic protein and the amino acid sequence was highly conserved which had a relatively closer evolutionary distance with infectious hypodermal and hematopoietic necrosis virus (IHHNV). MDV NS1 has a specific domain of superfamily 3 helicase of small DNA viruses. This domain contains the NTP-binding region with a metal ion-dependent ATPase activity. A virus replication roller rolling-circle replication(RCR) initiation domain was found near the N terminal of this protein. This protien has the biological function of single stranded incision enzyme. The bioinformatics prediction results suggest that MDV NS1 protein plays a key role in viral replication, packaging, and the other stages of viral life.

  8. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.

    PubMed

    Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A

    2013-01-01

    Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.

  9. Purification and crystallization of dengue and West Nile virus NS2B-NS3 complexes.

    PubMed

    D'Arcy, Allan; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic; Lim, Siew Pheng; Lefeuvre, Peggy; Erbel, Paul

    2006-02-01

    Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B-NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.

  10. The 5.5 protein of phage T7 inhibits H-NS through interactions with the central oligomerization domain.

    PubMed

    Ali, Sabrina S; Beckett, Emily; Bae, Sandy Jeehoon; Navarre, William Wiley

    2011-09-01

    The 5.5 protein (T7p32) of coliphage T7 (5.5(T7)) was shown to bind and inhibit gene silencing by the nucleoid-associated protein H-NS, but the mechanism by which it acts was not understood. The 5.5(T7) protein is insoluble when expressed in Escherichia coli, but we find that 5.5(T7) can be isolated in a soluble form when coexpressed with a truncated version of H-NS followed by subsequent disruption of the complex during anion-exchange chromatography. Association studies reveal that 5.5(T7) binds a region of H-NS (residues 60 to 80) recently found to contain a distinct domain necessary for higher-order H-NS oligomerization. Accordingly, we find that purified 5.5(T7) can disrupt higher-order H-NS-DNA complexes in vitro but does not abolish DNA binding by H-NS per se. Homologues of the 5.5(T7) protein are found exclusively among members of the Autographivirinae that infect enteric bacteria, and despite fairly low sequence conservation, the H-NS binding properties of these proteins are largely conserved. Unexpectedly, we find that the 5.5(T7) protein copurifies with heterogeneous low-molecular-weight RNA, likely tRNA, through several chromatography steps and that this interaction does not require the DNA binding domain of H-NS. The 5.5 proteins utilize a previously undescribed mechanism of H-NS antagonism that further highlights the critical importance that higher-order oligomerization plays in H-NS-mediated gene repression. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  11. The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1) are responsible for pathogenicity in ducks

    PubMed Central

    2013-01-01

    Background Wild ducks are the natural hosts of influenza A viruses. Duck influenza, therefore, has been believed inapparent infection with influenza A viruses, including highly pathogenic avian influenza viruses (HPAIVs) in chickens. In fact, ducks experimentally infected with an HPAIV strain, A/Hong Kong/483/1997 (H5N1) (HK483), did not show any clinical signs. Another HPAIV strain, A/whooper swan/Mongolia/3/2005 (H5N1) (MON3) isolated from a dead swan, however, caused neurological dysfunction and death in ducks. Method To understand the mechanism whereby MON3 shows high pathogenicity in ducks, HK483, MON3, and twenty-four reassortants generated between these two H5N1 viruses were compared for their pathogenicity in domestic ducks. Results None of the ducks infected with MON3-based single-gene reassortants bearing the PB2, NP, or NS gene segment of HK483 died, and HK483-based single-gene reassortants bearing PB2, NP, or NS genes of MON3 were not pathogenic in ducks, suggesting that multiple gene segments contribute to the pathogenicity of MON3 in ducks. All the ducks infected with the reassortant bearing PB2, PA, HA, NP, and NS gene segments of MON3 died within five days post-inoculation, as did those infected with MON3. Each of the viruses was assessed for replication in ducks three days post-inoculation. MON3 and multi-gene reassortants pathogenic in ducks were recovered from all of the tissues examined and replicated with high titers in the brains and lungs. Conclusion The present results indicate that multigenic factors are responsible for efficient replication of MON3 in ducks. In particular, virus growth in the brain might correlate with neurological dysfunction and the disease severity. PMID:23374292

  12. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    PubMed

    Ke, Po-Yuan; Chen, Steve S-L

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  13. Active RNA Replication of Hepatitis C Virus Downregulates CD81 Expression

    PubMed Central

    Ke, Po-Yuan; Chen, Steve S.-L.

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81. PMID:23349980

  14. Replication Cycle and Molecular Biology of the West Nile Virus

    PubMed Central

    Brinton, Margo A.

    2013-01-01

    West Nile virus (WNV) is a member of the genus Flavivirus in the family Flaviviridae. Flaviviruses replicate in the cytoplasm of infected cells and modify the host cell environment. Although much has been learned about virion structure and virion-endosomal membrane fusion, the cell receptor(s) used have not been definitively identified and little is known about the early stages of the virus replication cycle. Members of the genus Flavivirus differ from members of the two other genera of the family by the lack of a genomic internal ribosomal entry sequence and the creation of invaginations in the ER membrane rather than double-membrane vesicles that are used as the sites of exponential genome synthesis. The WNV genome 3' and 5' sequences that form the long distance RNA-RNA interaction required for minus strand initiation have been identified and contact sites on the 5' RNA stem loop for NS5 have been mapped. Structures obtained for many of the viral proteins have provided information relevant to their functions. Viral nonstructural protein interactions are complex and some may occur only in infected cells. Although interactions between many cellular proteins and virus components have been identified, the functions of most of these interactions have not been delineated. PMID:24378320

  15. In Vitro Antiviral Activity and Resistance Profile of the Next-Generation Hepatitis C Virus NS5A Inhibitor Pibrentasvir.

    PubMed

    Ng, Teresa I; Krishnan, Preethi; Pilot-Matias, Tami; Kati, Warren; Schnell, Gretja; Beyer, Jill; Reisch, Thomas; Lu, Liangjun; Dekhtyar, Tatyana; Irvin, Michelle; Tripathi, Rakesh; Maring, Clarence; Randolph, John T; Wagner, Rolf; Collins, Christine

    2017-05-01

    Pibrentasvir (ABT-530) is a novel and pan-genotypic hepatitis C virus (HCV) NS5A inhibitor with 50% effective concentration (EC 50 ) values ranging from 1.4 to 5.0 pM against HCV replicons containing NS5A from genotypes 1 to 6. Pibrentasvir demonstrated similar activity against a panel of chimeric replicons containing HCV NS5A of genotypes 1 to 6 from clinical samples. Resistance selection studies were conducted using HCV replicon cells with NS5A from genotype 1a, 1b, 2a, 2b, 3a, 4a, 5a, or 6a at a concentration of pibrentasvir that was 10- or 100-fold over its EC 50 for the respective replicon. With pibrentasvir at 10-fold over the respective EC 50 , only a small number of colonies (0.00015 to 0.0065% of input cells) with resistance-associated amino acid substitutions were selected in replicons containing genotype 1a, 2a, or 3a NS5A, and no viable colonies were selected in replicons containing NS5A from other genotypes. With pibrentasvir at 100-fold over the respective EC 50 , very few colonies (0.0002% of input cells) were selected by pibrentasvir in genotype 1a replicon cells while no colonies were selected in other replicons. Pibrentasvir is active against common resistance-conferring substitutions in HCV genotypes 1 to 6 that were identified for other NS5A inhibitors, including those at key amino acid positions 28, 30, 31, or 93. The combination of pibrentasvir with HCV inhibitors of other classes produced synergistic inhibition of HCV replication. In summary, pibrentasvir is a next-generation HCV NS5A inhibitor with potent and pan-genotypic activity, and it maintains activity against common amino acid substitutions of HCV genotypes 1 to 6 that are known to confer resistance to currently approved NS5A inhibitors. Copyright © 2017 Ng et al.

  16. Molecular Dynamics of the ZIKA Virus NS3 Helicase

    NASA Astrophysics Data System (ADS)

    Raubenolt, Bryan; Rick, Steven; The Rick Group Team

    The recent outbreaks of the ZIKA virus (ZIKV) and its connection to microcephaly in newborns has raised its awareness as a global threat and many scientific research efforts are currently underway in attempt to create a vaccine. Molecular Dynamics is a powerful method of investigating the physical behavior of protein complexes. ZIKV is comprised of 3 structural and 7 nonstructural proteins. The NS3 helicase protein appears to play a significant role in the replication complex and its inhibition could be a crucial source of antiviral drug design. This research primarily focuses on studying the structural dynamics, over the course of few hundred nanoseconds, of NS3 helicase in the free state, as well as in complex form with human ssRNA, ATP, and an analogue of GTP. RMSD and RMSF plots of each simulation will provide details on the forces involved in the overall stability of the active and inactive states. Furthermore, free energy calculations on a per residue level will reveal the most interactive residues between states and ultimately the primary driving force behind these interactions. Together these analyses will provide highly relevant information on the binding surface chemistry and thus serve as the basis for potential drug design.

  17. Sus scrofa miR-204 and miR-4331 Negatively Regulate Swine H1N1/2009 Influenza A Virus Replication by Targeting Viral HA and NS, Respectively.

    PubMed

    Zhang, Shishuo; Wang, Ruifang; Su, Huijuan; Wang, Biaoxiong; Sizhu, Suolang; Lei, Zhixin; Jin, Meilin; Chen, Huanchun; Cao, Jiyue; Zhou, Hongbo

    2017-04-03

    The prevalence of swine pandemic H1N1/2009 influenza A virus (SIV-H1N1/2009) in pigs has the potential to generate novel reassortant viruses, posing a great threat to human health. Cellular microRNAs (miRNAs) have been proven as promising small molecules for regulating influenza A virus replication by directly targeting viral genomic RNA. In this study, we predicted potential Sus scrofa (ssc-, swine) miRNAs targeting the genomic RNA of SIV-H1N1/2009 by RegRNA 2.0, and identified ssc-miR-204 and ssc-miR-4331 to target viral HA and NS respectively through dual-luciferase reporter assays. The messenger RNA (mRNA) levels of viral HA and NS were significantly suppressed when newborn pig trachea (NPTr) cells respectively overexpressed ssc-miR-204 and ssc-miR-4331 and were infected with SIV-H1N1/2009, whereas the suppression effect could be restored when respectively decreasing endogenous ssc-miR-204 and ssc-miR-4331 with inhibitors. Because of the importance of viral HA and NS in the life cycle of influenza A virus, ssc-miR-204 and ssc-miR-4331 exhibited an inhibition effect on SIV-H1N1/2009 replication. The antiviral effect was sequence-specific of SIV-H1N1/2009, for the target sites in HA and NS of H5N1 or H9N2 influenza A virus were not conserved. Furthermore, SIV-H1N1/2009 infection reversely downregulated the expression of ssc-miR-204 and ssc-miR-4331, which might facilitate the virus replication in the host. In summary, this work will provide us some important clues for controlling the prevalence of SIV-H1N1/2009 in pig populations.

  18. Three Conformational Snapshots of the Hepatitis Virus NS3 Helicase Reveal a Ratchet Translocation Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, M.; Rice, C

    2010-01-01

    A virally encoded superfamily-2 (SF2) helicase (NS3h) is essential for the replication of hepatitis C virus, a leading cause of liver disease worldwide. Efforts to elucidate the function of NS3h and to develop inhibitors against it, however, have been hampered by limited understanding of its molecular mechanism. Here we show x-ray crystal structures for a set of NS3h complexes, including ground-state and transition-state ternary complexes captured with ATP mimics (ADP {center_dot} BeF{sub 3} and ADP {center_dot} AlF{sub 4}{sup -}). These structures provide, for the first time, three conformational snapshots demonstrating the molecular basis of action for a SF2 helicase. Uponmore » nucleotide binding, overall domain rotation along with structural transitions in motif V and the bound DNA leads to the release of one base from the substrate base-stacking row and the loss of several interactions between NS3h and the 3{prime} DNA segment. As nucleotide hydrolysis proceeds into the transition state, stretching of a 'spring' helix and another overall conformational change couples rearrangement of the (d)NTPase active site to additional hydrogen-bonding between NS3h and DNA. Together with biochemistry, these results demonstrate a 'ratchet' mechanism involved in the unidirectional translocation and define the step size of NS3h as one base per nucleotide hydrolysis cycle. These findings suggest feasible strategies for developing specific inhibitors to block the action of this attractive, yet largely unexplored drug target.« less

  19. Transmembrane Domains of NS2B Contribute to both Viral RNA Replication and Particle Formation in Japanese Encephalitis Virus.

    PubMed

    Li, Xiao-Dan; Deng, Cheng-Lin; Ye, Han-Qing; Zhang, Hong-Lei; Zhang, Qiu-Yan; Chen, Dong-Dong; Zhang, Pan-Tao; Shi, Pei-Yong; Yuan, Zhi-Ming; Zhang, Bo

    2016-06-15

    Flavivirus nonstructural protein 2B (NS2B) is a transmembrane protein that functions as a cofactor for viral NS3 protease. The cytoplasmic region (amino acids 51 to 95) alone of NS2B is sufficient for NS3 protease activity, whereas the role of transmembrane domains (TMDs) remains obscure. Here, we demonstrate for the first time that flavivirus NS2B plays a critical role in virion assembly. Using Japanese encephalitis virus (JEV) as a model, we performed a systematic mutagenesis at the flavivirus conserved residues within the TMDs of NS2B. As expected, some mutations severely attenuated (L38A and R101A) or completely destroyed (G12L) viral RNA synthesis. Interestingly, two mutations (G37L and P112A) reduced viral RNA synthesis and blocked virion assembly. None of the mutations affected NS2B-NS3 protease activity. Because mutations G37L and P112A affected virion assembly, we selected revertant viruses for these two mutants. For mutant G37L, replacement with G37F, G37H, G37T, or G37S restored virion assembly. For mutant P112A, insertion of K at position K127 (leading to K127KK) of NS2B rescued virion assembly. A biomolecular fluorescent complementation (BiFC) analysis demonstrated that (i) mutation P112A selectively weakened NS2B-NS2A interaction and (ii) the adaptive mutation K127KK restored NS2B-NS2A interaction. Collectively, our results demonstrate that, in addition to being a cofactor for NS3 protease, flavivirus NS2B also functions in viral RNA replication, as well as virion assembly. Many flaviviruses are important human pathogens. Understanding the molecular mechanisms of the viral infection cycle is essential for vaccine and antiviral development. In this study, we demonstrate that the TMDs of JEV NS2B participate in both viral RNA replication and virion assembly. A viral genetic study and a BiFC assay demonstrated that interaction between NS2B and NS2A may participate in modulating viral assembly in the flavivirus life cycle. Compensatory-mutation analysis confirmed that there was a correlation between viral assembly and NS2B-NS2A interaction. TMDs of NS2B may serve as novel antiviral targets to prevent flavivirus infection, and the structure determination of NS2B will help us to understand the functional mechanism of NS2B in viral RNA replication and assembly. The results have uncovered a new function of flavivirus NS2B in virion assembly, possibly through interaction with the NS2A protein. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5.

    PubMed

    Zhang, Hong-Lei; Ye, Han-Qing; Liu, Si-Qing; Deng, Cheng-Lin; Li, Xiao-Dan; Shi, Pei-Yong; Zhang, Bo

    2017-09-15

    West Nile virus (WNV) is a mosquito-borne flavivirus that causes epidemics of encephalitis and viscerotropic disease worldwide. This virus has spread rapidly and has posed a significant public health threat since the outbreak in New York City in 1999. The interferon (IFN)-mediated antiviral response represents an important component of virus-host interactions and plays an essential role in regulating viral replication. Previous studies have suggested that multifunctional nonstructural proteins encoded by flaviviruses antagonize the host IFN response via various means in order to establish efficient viral replication. In this study, we demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes IFN-β production, most likely through suppression of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) activation. In a dual-luciferase reporter assay, WNV NS1 significantly inhibited the activation of the IFN-β promoter after Sendai virus infection or poly(I·C) treatment. NS1 also suppressed the activation of the IFN-β promoter when it was stimulated by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in the RLR signaling pathway. Furthermore, NS1 blocked the phosphorylation and nuclear translocation of IRF3 upon stimulation by various inducers. Mechanistically, WNV NS1 targets RIG-I and melanoma differentiation-associated gene 5 (MDA5) by interacting with them and subsequently causing their degradation by the proteasome. Furthermore, WNV NS1 inhibits the K63-linked polyubiquitination of RIG-I, thereby inhibiting the activation of downstream sensors in the RLR signaling pathway. Taken together, our results reveal a novel mechanism by which WNV NS1 interferes with the host antiviral response. IMPORTANCE WNV Nile virus (WNV) has received increased attention since its introduction to the United States. However, the pathogenesis of this virus is poorly understood. This study demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes the induction of interferon beta (IFN-β) by interacting with and degrading retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), which are crucial viral sensors in the host innate immune system. Further experiments suggested that NS1-mediated inhibition of the RIG-I-like receptor (RLR) signaling pathway involves inhibition of RIG-I K63-linked polyubiquitination and that the proteasome plays a role in RIG-I degradation. This study provides new insights into the regulation of WNV NS1 in the RLR signaling pathway and reveals a novel mechanism by which WNV evades the host innate immune response. The novel findings may guide us to discover new therapeutic targets and develop effective vaccines for WNV infections. Copyright © 2017 American Society for Microbiology.

  1. Comparative Characterization of the Sindbis Virus Proteome from Mammalian and Invertebrate Hosts Identifies nsP2 as a Component of the Virus Nucleocapsid and Sorting Nexin 5 as a Significant Host Factor for Alphavirus Replication.

    PubMed

    Schuchman, Ryan; Kilianski, Andy; Piper, Amanda; Vancini, Ricardo; Ribeiro, José M C; Sprague, Thomas R; Nasar, Farooq; Boyd, Gabrielle; Hernandez, Raquel; Glaros, Trevor

    2018-05-09

    Recent advances in mass spectrometry methods and instrumentation now allow for more accurate identification of proteins in low abundance. This technology was applied to Sindbis virus, the prototypical alphavirus to investigate the viral proteome. To determine if host proteins are specifically packaged into alphavirus virions, Sindbis virus (SINV) was grown in multiple host cells representing vertebrate and mosquito hosts and total protein content of purified virions was determined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress. One host protein, sorting nexin 5 (SNX5), was shown to be critical for the replication of three different alphaviruses, Sindbis, Mayaro and Chikungunya virus. The most significant finding was that in addition to the host proteins, SINV non-structural protein 2 (nsP2) was detected within virions grown in all host cells examined. The protein and RNA-interacting capabilities of nsP2 coupled with its presence in the virion support a role for nsP2 during packaging and/or entry of progeny virus. This function has not been identified for this protein. Taken together, this strategy identified at least one host factor integrally involved in alphavirus replication. Identification of other host proteins provides insight into alphavirus-host interactions during viral replication in both vertebrate and invertebrate hosts. This method of virus proteome analysis may also be useful for the identification of protein candidates for host-based therapeutics. IMPORTANCE Pathogenic Alphaviruses, such as Chikungunya and Mayaro virus, continue to plague public health in developing and developed countries alike. Alphaviruses belong to a group of viruses vectored in nature by hematophagous (blood-feeding) insects and are termed Arboviruses (arthropod-borne viruses). This group of viruses contains many human pathogens such as dengue fever, West Nile and Yellow fever viruses. With few exceptions there are no vaccines or prophylactics for these agents leaving one third of the world population at risk of infection. Identifying effective antivirals has been a long term goal for combating these diseases not only because of the lack of vaccines but also because they are effective during an ongoing epidemic. Mass spectrometry-based analysis of the Sindbis virus proteome can be effective in identifying host genes involved in virus replication and novel functions for virus proteins. Identification of these factors is invaluable for the prophylaxis of this group of viruses. Copyright © 2018 Schuchman et al.

  2. CD40 inhibits replication of hepatitis C virus in primary human hepatocytes by c-Jun N terminal kinase activation independent from the interferon pathway.

    PubMed

    Rau, Sibylle J; Hildt, Eberhard; Himmelsbach, Kiyoshi; Thimme, Robert; Wakita, Takaji; Blum, Hubert E; Fischer, Richard

    2013-01-01

    CD40, a member of the tumor necrosis factor receptor family, and its ligand, CD40L (CD154), are important regulators of the antiviral immune response. CD40L is up-regulated on lymphocytes and CD40 on hepatocytes during infection with hepatitis C virus (HCV); we investigated the role of CD40 signaling during HCV replication in hepatocytes. Viral replication was studied in primary human hepatocytes (PHH) and Huh7.5 cells using the infectious HCV Japanese fulminate hepatitis 1 isolate (JFH1) culture system, and in coculture with HCV antigen-specific CD8+ T cells. CD40L rapidly and transiently inhibits expression of the HCV nonstructural proteins NS3 and NS5A as well as HCV structural proteins core and E2 in Huh7.5 cells. Similarly, CD40L prevented replication of HCV in PHH, in synergy with interferon (IFN)-alpha. In Huh7.5 cells with replicating HCV, CD40L prevented production of infectious viral particles. When HCV antigen-specific CD8+ T cells were cocultured with HLA-A2-expressing Huh7 cells that had replicating virus, the T cells became activated, up-regulated CD40L, and inhibited HCV replication. Inhibition of CD40L partially prevented the antiviral activity of the CD8+ T cells. The antiviral effect of CD40L required activation of c-Jun N terminal kinases (JNK)1/2, but not induction of apoptosis or the JAK/STAT pathway that is necessary for the antiviral effects of IFNs. CD40 inhibits HCV replication by a novel, innate immune mechanism. This pathway might mediate viral clearance, and disruptions might be involved in the pathogenesis of HCV infection. Copyright © 2012 American Association for the Study of Liver Diseases.

  3. Inhibition of host protein synthesis by Sindbis virus: correlation with viral RNA replication and release of nuclear proteins to the cytoplasm.

    PubMed

    Sanz, Miguel A; García-Moreno, Manuel; Carrasco, Luis

    2015-04-01

    Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non-structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1-4 does not block cellular protein synthesis in BHK cells. Trans-complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co-expression of nsP1-4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T-cell intracellular antigen and polypyrimidine tract-binding protein is clearly detected in SINV-infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut-off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut-off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR(-/-) mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm. © 2014 John Wiley & Sons Ltd.

  4. Serotype-Specific Structural Differences in the Protease-Cofactor Complexes of the Dengue Virus Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandramouli, Sumana; Joseph, Jeremiah S.; Daudenarde, Sophie

    With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication bymore » processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-{angstrom} crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.« less

  5. Virtual screening of commercial cyclic peptides as NS2B-NS3 protease inhibitor of dengue virus serotype 2 through molecular docking simulation

    NASA Astrophysics Data System (ADS)

    Nasution, M. A. F.; Aini, R. N.; Tambunan, U. S. F.

    2017-04-01

    A disease caused by dengue virus infection has become one of the major health problems in the world, particularly in Asia, Africa, and South America. This disease has become endemic in more than 100 countries, and approximately 100 million cases occur each year with 2.5 billion people or 40% of the world population at risk of having this virus infection. Therefore, we need an antiviral drug that can inhibit the activity of the enzymes that involved in the virus replication in the body. Lately, the peptide-based drug design has been developed and proved to have interesting pharmacological properties. This study uses commercially cyclic peptides that have already marketed. The purpose of this study is to screen the commercial cyclic peptides that can be used as an inhibitor of the NS2B-NS3 protease of dengue virus serotype 2 (DENV-2) through molecular docking simulations. Inhibition of NS3 protease enzyme can lead to enzymatic inhibition activity so the formed polyprotein from the translation of RNA cannot be cut into pieces and remain in the long strand form. Consequently, proteins that are vital for the sustainability of dengue virus replication cannot be formed. This research resulted in [alpha]-ANF (1-28), rat, Brain Natriuretic Peptide, porcine, Atrial Natriuretic Factor (3-28) (human) and Atrial Natriuretic Peptide (126-150) (rat) as the best drug candidate for inhibiting the NS2B-NS3 protease of DENV-2.

  6. Structure-based discovery of pyrazolobenzothiazine derivatives as inhibitors of hepatitis C virus replication

    PubMed Central

    Barreca, Maria Letizia; Manfroni, Giuseppe; Leyssen, Pieter; Winquist, Johan; Kaushik-Basu, Neerja; Paeshuyse, Jan; Krishnan, Ramalingam; Iraci, Nunzio; Sabatini, Stefano; Tabarrini, Oriana; Basu, Amartya; Danielson, U. Helena; Neyts, Johan; Cecchetti, Violetta

    2013-01-01

    The NS5B RNA-dependent RNA polymerase is an attractive target for the development of novel and selective inhibitors of hepatitis C virus replication. In order to identify novel structural hits as anti-HCV agents, we performed structure-based virtual screening of our in-house library followed by rational drug design, organic synthesis and biological testing. These studies led to the identification of pyrazolobenzothiazine scaffold as a suitable template for obtaining novel anti-HCV agents targeting the NS5B polymerase. The best compound of this series was the meta-fluoro-N-1-phenyl pyrazolobenzothiazine derivative 4a, which exhibited an EC50= 3.6 µM, EC90= 25.6 µM and CC50 > 180 µM in the Huh 9–13 replicon system, thus providing a good starting point for further hit evolution. PMID:23409936

  7. Comprehensive assessment of renal tumour complexity in a large percutaneous cryoablation cohort.

    PubMed

    Bhindi, Bimal; Thompson, Robert Houston; Mason, Ross J; Haddad, Mustafa M; Geske, Jennifer R; Kurup, Anil Nicholas; Hannon, James D; Boorjian, Stephen A; Leibovich, Bradley C; Atwell, Thomas D; Schmit, Grant D

    2017-06-01

    To evaluate the association between renal tumour complexity and outcomes in a large cohort of patients undergoing percutaneous cryoablation (PCA). Patients with renal tumours treated with PCA were identified using our prospectively maintained ablation registry (2003-2015). Salvage procedures and inherited tumour syndromes were excluded. The associations between R.E.N.A.L. nephrometry score (NS) and risk of complications, renal function impairment, local failure and cancer-specific mortality (CSM) were evaluated using univariate and multivariable logistic, linear and Cox regression models. The cohort included 618 tumours treated during 580 procedures in 565 patients. The median (interquartile range [IQR]) follow-up was 34 (14.66) months. Complications (any grade) during a procedure (n[total] = 87, 15%) were more frequent with higher NS (NS 4-6: 10%; NS 7-9: 14%; NS 10-12: 36%; P < 0.001). Higher NS was independently associated with risk of complications (odds ratio [OR; per 1 point] = 1.3; 95% confidence interval [CI] 1.2-1.5; P < 0.001). Of all the NS components, tumour size was the most strongly associated with complication risk (OR 3.4; 95% CI 2.2-5.2; P < 0.001). The median (IQR) decline in glomerular filtration rate (GFR) from baseline was 9% (0, 22) at last follow-up. Each additional point in NS was associated with a 1.3% (95% CI 0.4-2.1; P = 0.005) greater GFR decline from baseline. NS was not significantly associated with local failure (n [total] = 14, 2%; NS 4-6: 2%; NS 7-9: 3%; NS 10-12: 5%; P = 0.32) or CSM (n [total] = 8, 2%; NS 4-6: 2%; NS 7-9: 3%; NS 10-12: 2%; P = 0.88). In high-complexity tumours PCA was associated with a tumour size-driven increased risk of post-procedural complications. Higher NS was associated with a small, clinically minor additional decline in renal function. Risks for local failure and CSM were low, regardless of tumour complexity. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  8. Computational Study on the Inhibitor Binding Mode and Allosteric Regulation Mechanism in Hepatitis C Virus NS3/4A Protein

    PubMed Central

    Xue, Weiwei; Yang, Ying; Wang, Xiaoting; Liu, Huanxiang; Yao, Xiaojun

    2014-01-01

    HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But the detailed mechanism remains elusive. Here, we aimed to provide some insight into the inhibitor binding mode and allosteric regulation mechanism of HCV NS3/4A protein by using computational methods. Four simulation systems were investigated. They include: apo state of HCV NS3/4A protein, HCV NS3/4A protein in complex with an allosteric inhibitor and the truncated form of the above two systems. The molecular dynamics simulation results indicate HCV NS3/4A protein in complex with the allosteric inhibitor 4VA adopts a closed conformation (inactive state), while the truncated apo protein adopts an open conformation (active state). Further residue interaction network analysis suggests the communication of the domain-domain interface play an important role in the transition from closed to open conformation of HCV NS3/4A protein. However, the inhibitor stabilizes the closed conformation through interaction with several key residues from both the protease and helicase domains, including His57, Asp79, Asp81, Asp168, Met485, Cys525 and Asp527, which blocks the information communication between the functional domains interface. Finally, a dynamic model about the allosteric regulation and conformational changes of HCV NS3/4A protein was proposed and could provide fundamental insights into the allosteric mechanism of HCV NS3/4A protein function regulation and design of new potent inhibitors. PMID:24586263

  9. Nuclear import inhibitor N-(4-hydroxyphenyl) retinamide targets Zika virus (ZIKV) nonstructural protein 5 to inhibit ZIKV infection.

    PubMed

    Wang, Chunxiao; Yang, Sundy N Y; Smith, Kate; Forwood, Jade K; Jans, David A

    2017-12-02

    In the absence of approved therapeutics, Zika virus (ZIKV)'s recent prolific outbreaks in the Americas, together with impacts on unborn fetuses of infected mothers, make it a pressing human health concern worldwide. Although a key player in viral replication in the infected host cell cytoplasm, ZIKV non-structural protein 5 (NS5) appears to contribute integrally to pathogenesis by localising in the host cell nucleus, in similar fashion to NS5 from Dengue virus (DENV). We show here for the first time that ZIKV NS5 is recognized with high nanomolar affinity by the host cell importin α/β1 heterodimer, and that this interaction can be blocked by the novel DENV NS5 targeting inhibitor N-(4-hydroxyphenyl) retinamide (4-HPR). Importantly, we show that 4-HPR has potent anti-ZIKV activity at low μM concentrations. With an established safety profile for human use, 4-HPR represents an exciting possibility as an anti-ZIKV agent. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs

    PubMed Central

    Hemmes, Hans; Lakatos, Lóránt; Goldbach, Rob; Burgyán, József; Prins, Marcel

    2007-01-01

    RNA silencing plays a key role in antiviral defense as well as in developmental processes in plants and insects. Negative strand RNA viruses such as the plant virus Rice hoja blanca tenuivirus (RHBV) replicate in plants and in their insect transmission vector. Like most plant-infecting viruses, RHBV encodes an RNA silencing suppressor, the NS3 protein, and here it is demonstrated that this protein is capable of suppressing RNA silencing in both plants and insect cells. Biochemical analyses showed that NS3 efficiently binds siRNA as well as miRNA molecules. Binding of NS3 is greatly influenced by the size of small RNA molecules, as 21 nucleotide (nt) siRNA molecules are bound > 100 times more efficiently than 26 nt species. Competition assays suggest that the activity of NS3 is based on binding to siRNAs prior to strand separation during the assembly of the RNA-induced silencing complex. In addition, NS3 has a high affinity for miRNA/miRNA* duplexes, indicating that its activity might also interfere with miRNA-regulated gene expression in both insects and plants. PMID:17513697

  11. Host-derived apolipoproteins play comparable roles with viral secretory proteins Erns and NS1 in the infectious particle formation of Flaviviridae

    PubMed Central

    Ono, Chikako; Shiokawa, Mai; Mori, Hiroyuki; Uemura, Kentaro; Yamamoto, Satomi; Okamoto, Toru; Suzuki, Ryosuke; Yoshii, Kentaro; Kurosu, Takeshi; Igarashi, Manabu; Aoki, Hiroshi; Sakoda, Yoshihiro

    2017-01-01

    Amphipathic α-helices of exchangeable apolipoproteins have shown to play crucial roles in the formation of infectious hepatitis C virus (HCV) particles through the interaction with viral particles. Among the Flaviviridae members, pestivirus and flavivirus possess a viral structural protein Erns or a non-structural protein 1 (NS1) as secretory glycoproteins, respectively, while Hepacivirus including HCV has no secretory glycoprotein. In case of pestivirus replication, the C-terminal long amphipathic α-helices of Erns are important for anchoring to viral membrane. Here we show that host-derived apolipoproteins play functional roles similar to those of virally encoded Erns and NS1 in the formation of infectious particles. We examined whether Erns and NS1 could compensate for the role of apolipoproteins in particle formation of HCV in apolipoprotein B (ApoB) and ApoE double-knockout Huh7 (BE-KO), and non-hepatic 293T cells. We found that exogenous expression of either Erns or NS1 rescued infectious particle formation of HCV in the BE-KO and 293T cells. In addition, expression of apolipoproteins or NS1 partially rescued the production of infectious pestivirus particles in cells upon electroporation with an Erns-deleted non-infectious RNA. As with exchangeable apolipoproteins, the C-terminal amphipathic α-helices of Erns play the functional roles in the formation of infectious HCV or pestivirus particles. These results strongly suggest that the host- and virus-derived secretory glycoproteins have overlapping roles in the viral life cycle of Flaviviridae, especially in the maturation of infectious particles, while Erns and NS1 also participate in replication complex formation and viral entry, respectively. Considering the abundant hepatic expression and liver-specific propagation of these apolipoproteins, HCV might have evolved to utilize them in the formation of infectious particles through deletion of a secretory viral glycoprotein gene. PMID:28644867

  12. Highly Pathogenic H5N1 Influenza A Virus Strains Provoke Heterogeneous IFN-α/β Responses That Distinctively Affect Viral Propagation in Human Cells

    PubMed Central

    Matthaei, Markus; Budt, Matthias; Wolff, Thorsten

    2013-01-01

    The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN-α/β barrier involve mutations in multiple H5N1 genes. PMID:23451066

  13. Mapping of Functional Domains of the Lipid Kinase Phosphatidylinositol 4-Kinase Type III Alpha Involved in Enzymatic Activity and Hepatitis C Virus Replication

    PubMed Central

    Harak, Christian; Radujkovic, Danijela; Taveneau, Cyntia; Reiss, Simon; Klein, Rahel; Bressanelli, Stéphane

    2014-01-01

    ABSTRACT The lipid kinase phosphatidylinositol 4-kinase III alpha (PI4KIIIα) is an endoplasmic reticulum (ER)-resident enzyme that synthesizes phosphatidylinositol 4-phosphate (PI4P). PI4KIIIα is an essential host factor for hepatitis C virus (HCV) replication. Interaction with HCV nonstructural protein 5A (NS5A) leads to kinase activation and accumulation of PI4P at intracellular membranes. In this study, we investigated the structural requirements of PI4KIIIα in HCV replication and enzymatic activity. Therefore, we analyzed PI4KIIIα mutants for subcellular localization, reconstitution of HCV replication in PI4KIIIα knockdown cell lines, PI4P induction in HCV-positive cells, and lipid kinase activity in vitro. All mutants still interacted with NS5A and localized in a manner similar to that of the full-length enzyme, suggesting multiple regions of PI4KIIIα are involved in NS5A interaction and subcellular localization. Interestingly, the N-terminal 1,152 amino acids were dispensable for HCV replication, PI4P induction, and enzymatic function, whereas further N-terminal or C-terminal deletions were deleterious, thereby defining the minimal PI4KIIIα core enzyme at a size of ca. 108 kDa. Additional deletion of predicted functional motifs within the C-terminal half of PI4KIIIα also were detrimental for enzymatic activity and for the ability of PI4KIIIα to rescue HCV replication, with the exception of a proposed nuclear localization signal, suggesting that the entire C-terminal half of PI4KIIIα is involved in the formation of a minimal enzymatic core. This view was supported by structural modeling of the PI4KIIIα C terminus, suggesting a catalytic center formed by an N- and C-terminal lobe and an armadillo-fold motif, which is preceded by three distinct alpha-helical domains probably involved in regulation of enzymatic activity. IMPORTANCE The lipid kinase PI4KIIIα is of central importance for cellular phosphatidylinositol metabolism and is a key host cell factor of hepatitis C virus replication. However, little is known so far about the structure of this 240-kDa protein and the functional importance of specific subdomains regarding lipid kinase activity and viral replication. This work focuses on the phenotypic analysis of distinct PI4KIIIα mutants in different biochemical and cell-based assays and develops a structural model of the C-terminal enzymatic core. The results shed light on the structural and functional requirements of enzymatic activity and the determinants required for HCV replication. PMID:24920820

  14. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyun; Ren, Jinhong; Nocadello, Salvatore

    Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain–Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activitymore » (IC50) and binding affinity (KD) of ~5–10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a “pre-open conformation”, a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.« less

  15. Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein

    NASA Astrophysics Data System (ADS)

    Amelia, F.; Iryani; Sari, P. Y.; Parikesit, A. A.; Bakri, R.; Toepak, E. P.; Tambunan, U. S. F.

    2018-04-01

    Every year an endemic dengue fever estimated to affect over 390 million cases in over 128 countries occurs. However, the antigen types which stimulate the human immune response are variable, as a result, neither effective vaccines nor antiviral treatments have been successfully developed for this disease. The NS2B/NS3 protease of the dengue virus (DENV) responsible for viral replication is a potential drug target. The ligand-enzyme binding site determination is a key role in the success of virtual screening of new inhibitors. The NS2B/NS3 protease of DENV (PDB ID: 2FOM) has two pockets consisting of 37 (Pocket 1) and 27 (Pocket 2) amino acid residues in each pocket. In this research, we characterized the amino acid residues for binding sites in NS3/NS2B based on the hydrophobicity, the percentage of charged residues, volume, depth, ΔGbinding, hydrogen bonding and bond length. The hydrophobic percentages of both pockets are high, 59 % (Pocket 1) and 41% (Pocket 2) and the percentage of charged residues in Pocket 1 and 2 are 22% and 48%, and the pocket volume is less than 700 Å3. An interaction analysis using molecular docking showed that interaction between the ligand complex and protein in Pocket 1 is more negative than Pocket 2. As a result, Pocket 1 is the better potential target for a ligand to inhibit the action of NS2B/NS3 DENV.

  16. The Many Faces of the Flavivirus NS5 Protein in Antagonism of Type I Interferon Signaling

    PubMed Central

    2016-01-01

    ABSTRACT The vector-borne flaviviruses cause severe disease in humans on every inhabited continent on earth. Their transmission by arthropods, particularly mosquitoes, facilitates large emergence events such as witnessed with Zika virus (ZIKV) or West Nile virus in the Americas. Every vector-borne flavivirus examined thus far that causes disease in humans, from dengue virus to ZIKV, antagonizes the host type I interferon (IFN-I) response by preventing JAK-STAT signaling, suggesting that suppression of this pathway is an important determinant of infection. The most direct and potent viral inhibitor of this pathway is the nonstructural protein NS5. However, the mechanisms utilized by NS5 from different flaviviruses are often quite different, sometimes despite close evolutionary relationships between viruses. The varied mechanisms of NS5 as an IFN-I antagonist are also surprising given that the evolution of NS5 is restrained by the requirement to maintain function of two enzymatic activities critical for virus replication, the methyltransferase and RNA-dependent RNA polymerase. This review discusses the different strategies used by flavivirus NS5 to evade the antiviral effects of IFN-I and how this information can be used to better model disease and develop antiviral countermeasures. PMID:27881649

  17. Role of RNA Interference (RNAi) in Dengue Virus Replication and Identification of NS4B as an RNAi Suppressor

    PubMed Central

    Kakumani, Pavan Kumar; Ponia, Sanket Singh; S, Rajgokul K.; Sood, Vikas; Chinnappan, Mahendran; Banerjea, Akhil C.; Medigeshi, Guruprasad R.; Malhotra, Pawan

    2013-01-01

    RNA interference (RNAi) is an important antiviral defense response in plants and invertebrates; however, evidences for its contribution to mammalian antiviral defense are few. In the present study, we demonstrate the anti-dengue virus role of RNAi in mammalian cells. Dengue virus infection of Huh 7 cells decreased the mRNA levels of host RNAi factors, namely, Dicer, Drosha, Ago1, and Ago2, and in corollary, silencing of these genes in virus-infected cells enhanced dengue virus replication. In addition, we observed downregulation of many known human microRNAs (miRNAs) in response to viral infection. Using reversion-of-silencing assays, we further showed that NS4B of all four dengue virus serotypes is a potent RNAi suppressor. We generated a series of deletion mutants and demonstrated that NS4B mediates RNAi suppression via its middle and C-terminal domains, namely, transmembrane domain 3 (TMD3) and TMD5. Importantly, the NS4B N-terminal region, including the signal sequence 2K, which has been implicated in interferon (IFN)-antagonistic properties, was not involved in mediating RNAi suppressor activity. Site-directed mutagenesis of conserved residues revealed that a Phe-to-Ala (F112A) mutation in the TMD3 region resulted in a significant reduction of the RNAi suppression activity. The green fluorescent protein (GFP)-small interfering RNA (siRNA) biogenesis of the GFP-silenced line was considerably reduced by wild-type NS4B, while the F112A mutant abrogated this reduction. These results were further confirmed by in vitro dicer assays. Together, our results suggest the involvement of miRNA/RNAi pathways in dengue virus establishment and that dengue virus NS4B protein plays an important role in the modulation of the host RNAi/miRNA pathway to favor dengue virus replication. PMID:23741001

  18. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    PubMed

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  19. Antiviral Cationic Peptides as a Strategy for Innovation in Global Health Therapeutics for Dengue Virus: High Yield Production of the Biologically Active Recombinant Plectasin Peptide

    PubMed Central

    Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M.; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-01-01

    Abstract Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03±0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection. PMID:24044366

  20. Influenza Viral Vectors Expressing Two Kinds of HA Proteins as Bivalent Vaccine Against Highly Pathogenic Avian Influenza Viruses of Clade 2.3.4.4 H5 and H7N9

    PubMed Central

    Li, Jinping; Hou, Guangyu; Wang, Yan; Wang, Suchun; Peng, Cheng; Yu, Xiaohui; Jiang, Wenming

    2018-01-01

    The H5 and H7N9 subtypes of highly pathogenic avian influenza viruses (HPAIVs) in China pose a serious challenge to public health and the poultry industry. In this study, a replication competent recombinant influenza A virus of the Í5N1 subtype expressing the H7 HA1 protein from a tri-cistronic NS segment was constructed. A heterologous dimerization domain was used to combine with the truncated NS1 protein of 73 amino acids to increase protein stability. H7 HA1, nuclear export protein coding region, and the truncated NS1 were fused in-frame into a single open reading frame via 2A self-cleaving peptides. The resulting PR8-H5-NS1(73)H7 stably expressed the H5 HA and H7 HA1 proteins, and exhibited similar growth kinetics as the parental PR8-H5 virus in vitro. PR8-H5-NS1(73)H7 induced specific hemagglutination inhibition (HI) antibody against H5, which was comparable to that of the combination vaccine of PR8-H5 and PR8-H7. The HI antibody titers against H7 virus were significantly lower than that by the combination vaccine. PR8-H5-NS1(73)H7 completely protected chickens from challenge with both H5 and H7 HPAIVs. These results suggest that PR8-H5-NS1(73)H7 is highly immunogenic and efficacious against both H5 and H7N9 HPAIVs in chickens. Highlights: - PR8-H5-NS1(73)H7 simultaneously expressed two HA proteins of different avian influenza virus subtypes. - PR8-H5-NS1(73)H7 was highly immunogenic in chickens. - PR8-H5-NS1(73)H7 provided complete protection against challenge with both H5 and H7N9 HPAIVs. PMID:29670587

  1. Genome-Wide Mutagenesis of Dengue Virus Reveals Plasticity of the NS1 Protein and Enables Generation of Infectious Tagged Reporter Viruses

    PubMed Central

    Johnson, Stephen M.; Eltahla, Auda A.; Aloi, Maria; Aloia, Amanda L.; McDevitt, Christopher A.; Bull, Rowena A.

    2017-01-01

    ABSTRACT Dengue virus (DENV) is a major global pathogen that causes significant morbidity and mortality in tropical and subtropical areas worldwide. An improved understanding of the regions within the DENV genome and its encoded proteins that are required for the virus replication cycle will expedite the development of urgently required therapeutics and vaccines. We subjected an infectious DENV genome to unbiased insertional mutagenesis and used next-generation sequencing to identify sites that tolerate 15-nucleotide insertions during the virus replication cycle in hepatic cell culture. This revealed that the regions within capsid, NS1, and the 3′ untranslated region were the most tolerant of insertions. In contrast, prM- and NS2A-encoding regions were largely intolerant of insertions. Notably, the multifunctional NS1 protein readily tolerated insertions in regions within the Wing, connector, and β-ladder domains with minimal effects on viral RNA replication and infectious virus production. Using this information, we generated infectious reporter viruses, including a variant encoding the APEX2 electron microscopy tag in NS1 that uniquely enabled high-resolution imaging of its localization to the surface and interior of viral replication vesicles. In addition, we generated a tagged virus bearing an mScarlet fluorescent protein insertion in NS1 that, despite an impact on fitness, enabled live cell imaging of NS1 localization and traffic in infected cells. Overall, this genome-wide profile of DENV genome flexibility may be further dissected and exploited in reporter virus generation and antiviral strategies. IMPORTANCE Regions of genetic flexibility in viral genomes can be exploited in the generation of reporter virus tools and should arguably be avoided in antiviral drug and vaccine design. Here, we subjected the DENV genome to high-throughput insertional mutagenesis to identify regions of genetic flexibility and enable tagged reporter virus generation. In particular, the viral NS1 protein displayed remarkable tolerance of small insertions. This genetic flexibility enabled generation of several novel NS1-tagged reporter viruses, including an APEX2-tagged virus that we used in high-resolution imaging of NS1 localization in infected cells by electron microscopy. For the first time, this analysis revealed the localization of NS1 within viral replication factories known as “vesicle packets” (VPs), in addition to its acknowledged localization to the luminal surface of these VPs. Together, this genetic profile of DENV may be further refined and exploited in the identification of antiviral targets and the generation of reporter virus tools. PMID:28956770

  2. Very-Low-Density Lipoprotein (VLDL)-Producing and Hepatitis C Virus-Replicating HepG2 Cells Secrete No More Lipoviroparticles than VLDL-Deficient Huh7.5 Cells

    PubMed Central

    Jammart, Baptiste; Michelet, Maud; Pécheur, Eve-Isabelle; Parent, Romain; Bartosch, Birke; Zoulim, Fabien

    2013-01-01

    In the plasma samples of hepatitis C virus (HCV)-infected patients, lipoviroparticles (LVPs), defined as (very-) low-density viral particles immunoprecipitated with anti-β-lipoproteins antibodies are observed. This HCV-lipoprotein association has major implications with respect to our understanding of HCV assembly, secretion, and entry. However, cell culture-grown HCV (HCVcc) virions produced in Huh7 cells, which are deficient for very-low-density lipoprotein (VLDL) secretion, are only associated with and dependent on apolipoprotein E (apoE), not apolipoprotein B (apoB), for assembly and infectivity. In contrast to Huh7, HepG2 cells can be stimulated to produce VLDL by both oleic acid treatment and inhibition of the MEK/extracellular signal-regulated kinase (ERK) pathway but are not permissive for persistent HCV replication. Here, we developed a new HCV cell culture model to study the interaction between HCV and lipoproteins, based on engineered HepG2 cells stably replicating a blasticidin-tagged HCV JFH1 strain (JB). Control Huh7.5-JB as well as HepG2-JB cell lines persistently replicated viral RNA and expressed viral proteins with a subcellular colocalization of double-stranded RNA (dsRNA), core, gpE2, and NS5A compatible with virion assembly. The intracellular RNA replication level was increased in HepG2-JB cells upon dimethyl sulfoxide (DMSO) treatment, MEK/ERK inhibition, and NS5A overexpression to a level similar to that observed in Huh7.5-JB cells. Both cell culture systems produced infectious virions, which were surprisingly biophysically and biochemically similar. They floated at similar densities on gradients, contained mainly apoE but not apoB, and were not neutralized by anti-apoB antibodies. This suggests that there is no correlation between the ability of cells to simultaneously replicate HCV as well as secrete VLDL and their capacity to produce LVPs. PMID:23427158

  3. Very-low-density lipoprotein (VLDL)-producing and hepatitis C virus-replicating HepG2 cells secrete no more lipoviroparticles than VLDL-deficient Huh7.5 cells.

    PubMed

    Jammart, Baptiste; Michelet, Maud; Pécheur, Eve-Isabelle; Parent, Romain; Bartosch, Birke; Zoulim, Fabien; Durantel, David

    2013-05-01

    In the plasma samples of hepatitis C virus (HCV)-infected patients, lipoviroparticles (LVPs), defined as (very-) low-density viral particles immunoprecipitated with anti-β-lipoproteins antibodies are observed. This HCV-lipoprotein association has major implications with respect to our understanding of HCV assembly, secretion, and entry. However, cell culture-grown HCV (HCVcc) virions produced in Huh7 cells, which are deficient for very-low-density lipoprotein (VLDL) secretion, are only associated with and dependent on apolipoprotein E (apoE), not apolipoprotein B (apoB), for assembly and infectivity. In contrast to Huh7, HepG2 cells can be stimulated to produce VLDL by both oleic acid treatment and inhibition of the MEK/extracellular signal-regulated kinase (ERK) pathway but are not permissive for persistent HCV replication. Here, we developed a new HCV cell culture model to study the interaction between HCV and lipoproteins, based on engineered HepG2 cells stably replicating a blasticidin-tagged HCV JFH1 strain (JB). Control Huh7.5-JB as well as HepG2-JB cell lines persistently replicated viral RNA and expressed viral proteins with a subcellular colocalization of double-stranded RNA (dsRNA), core, gpE2, and NS5A compatible with virion assembly. The intracellular RNA replication level was increased in HepG2-JB cells upon dimethyl sulfoxide (DMSO) treatment, MEK/ERK inhibition, and NS5A overexpression to a level similar to that observed in Huh7.5-JB cells. Both cell culture systems produced infectious virions, which were surprisingly biophysically and biochemically similar. They floated at similar densities on gradients, contained mainly apoE but not apoB, and were not neutralized by anti-apoB antibodies. This suggests that there is no correlation between the ability of cells to simultaneously replicate HCV as well as secrete VLDL and their capacity to produce LVPs.

  4. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus.

    PubMed

    Mutso, Margit; Morro, Ainhoa Moliner; Smedberg, Cecilia; Kasvandik, Sergo; Aquilimeba, Muriel; Teppor, Mona; Tarve, Liisi; Lulla, Aleksei; Lulla, Valeria; Saul, Sirle; Thaa, Bastian; McInerney, Gerald M; Merits, Andres; Varjak, Margus

    2018-04-27

    Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  5. Emergence of drug resistance-associated variants and changes in serum lipid profiles in sofosbuvir plus ledipasvir-treated chronic hepatitis C patients.

    PubMed

    Kan, Hiromi; Imamura, Michio; Kawakami, Yoshiiku; Daijo, Kana; Teraoka, Yuji; Honda, Fumi; Nakamura, Yuki; Morio, Kei; Kobayashi, Tomoki; Nakahara, Takashi; Nagaoki, Yuko; Kawaoka, Tomokazu; Tsuge, Masataka; Aikata, Hiroshi; Hayes, Clair Nelson; Miki, Daiki; Ochi, Hidenori; Honda, Yoji; Mori, Nami; Takaki, Shintaro; Tsuji, Keiji; Chayama, Kazuaki

    2017-11-01

    Combination of sofosbuvir plus ledipasvir therapy has been expected to enhance sustained virological response (SVR) rates in hepatitis C virus (HCV) genotype 1 chronic infected patients. We analyzed the emergence of drug resistance-associated variants (RAVs) in treatment failure and changes in lipid profiles in sofosbuvir/ledipasvir-treated patients. A total of 176 patients with chronic HCV genotype 1 infection without decompensated liver cirrhosis were treated with sofosbuvir/ledipasvir for 12 weeks. NS5A and NS5B RAVs were determined by either Invader assay or direct sequencing. Serum lipid-related markers were measured at the start of treatment and at week 4 in patients who received sofosbuvir/ledipasvir and ombitasvir/paritaprevir/ritonavir therapies. SVR was achieved in 94.9% (167 out of 176) of patients. SVR12 rate was 97.1% for patietns with low frequncy (<25%) of baseline NS5A RAVs, but 82.8% for patients with high frequency (>75%) of NS5A RAVs. In multivariate regression analysis, higher albumin (odds ratio [OR] = 0.020 for presence; P = 0.007), and NS5A-L31/Y93 RAVs with a population frequency <75% (OR = 29.860 for presence; P = 0.023) were identified as significant independent predictors for SVR12. NS5A-Y93H substitutions were detected in all nine treatment failures at HCV relapse, and three out of six patients with NS5A inhibitor-naïve patients achieved additional NS5A RAVs. Serum low-density lipoprotein cholesterol and apolipoprotein B levels were significantly elevated at week 4 in sofosbuvir/ledipasvir-treated patients. These elevations were greater than in ombitasvir/paritaprevir/ritonavir-treated patients. In conclusion, NS5A multi-RAVs are likely to develop in patients who fail to respond to sofosbuvir/ledipasvir therapy. Inhibition of HCV replication with sofosbuvir might affect lipid metabolism. © 2017 Wiley Periodicals, Inc.

  6. The neurovirulence and neuroinvasiveness of chimeric tick-borne encephalitis/dengue virus can be attenuated by introducing defined mutations into the envelope and NS5 protein genes and the 3' non-coding region of the genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Amber R., E-mail: engelam@mail.nih.go; Rumyantsev, Alexander A., E-mail: alexander.rumyantsev@sanofipasteur.co; Maximova, Olga A., E-mail: maximovao@mail.nih.go

    Tick-borne encephalitis (TBE) is a severe disease affecting thousands of people throughout Eurasia. Despite the use of formalin-inactivated vaccines in endemic areas, an increasing incidence of TBE emphasizes the need for an alternative vaccine that will induce a more durable immunity against TBE virus (TBEV). The chimeric attenuated virus vaccine candidate containing the structural protein genes of TBEV on a dengue virus genetic background (TBEV/DEN4) retains a high level of neurovirulence in both mice and monkeys. Therefore, attenuating mutations were introduced into the envelope (E{sub 315}) and NS5 (NS5{sub 654,655}) proteins, and into the 3' non-coding region ({Delta}30) of TBEV/DEN4.more » The variant that contained all three mutations (v{Delta}30/E{sub 315}/NS5{sub 654,655}) was significantly attenuated for neuroinvasiveness and neurovirulence and displayed a reduced level of replication and virus-induced histopathology in the brains of mice. The high level of safety in the central nervous system indicates that v{Delta}30/E{sub 315}/NS5{sub 654,655} should be further evaluated as a TBEV vaccine.« less

  7. Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors by fragment-based drug design.

    PubMed

    Benmansour, Fatiha; Trist, Iuni; Coutard, Bruno; Decroly, Etienne; Querat, Gilles; Brancale, Andrea; Barral, Karine

    2017-01-05

    With the aim to help drug discovery against dengue virus (DENV), a fragment-based drug design approach was applied to identify ligands targeting a main component of DENV replication complex: the NS5 AdoMet-dependent mRNA methyltransferase (MTase) domain, playing an essential role in the RNA capping process. Herein, we describe the identification of new inhibitors developed using fragment-based, structure-guided linking and optimization techniques. Thermal-shift assay followed by a fragment-based X-ray crystallographic screening lead to the identification of three fragment hits binding DENV MTase. We considered linking two of them, which bind to proximal sites of the AdoMet binding pocket, in order to improve their potency. X-ray crystallographic structures and computational docking were used to guide the fragment linking, ultimately leading to novel series of non-nucleoside inhibitors of flavivirus MTase, respectively N-phenyl-[(phenylcarbamoyl)amino]benzene-1-sulfonamide and phenyl [(phenylcarbamoyl)amino]benzene-1-sulfonate derivatives, that show a 10-100-fold stronger inhibition of 2'-O-MTase activity compared to the initial fragments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. The NS5A-binding heat shock proteins HSC70 and HSP70 play distinct roles in the hepatitis C viral life cycle.

    PubMed

    Khachatoorian, Ronik; Ganapathy, Ekambaram; Ahmadieh, Yasaman; Wheatley, Nicole; Sundberg, Christopher; Jung, Chun-Ling; Arumugaswami, Vaithilingaraja; Raychaudhuri, Santanu; Dasgupta, Asim; French, Samuel W

    2014-04-01

    We previously identified HSP70 and HSC70 in complex with NS5A in a proteomic screen. Here, coimmunoprecipitation studies confirmed NS5A/HSC70 complex formation during infection, and immunofluorescence studies showed NS5A and HSC70 to colocalize. Unlike HSP70, HSC70 knockdown did not decrease viral protein levels. Rather, intracellular infectious virion assembly was significantly impaired by HSC70 knockdown. We also discovered that both HSC70 nucleotide binding and substrate binding domains directly bind NS5A whereas only the HSP70 nucleotide binding domain does. Knockdown of both HSC70 and HSP70 demonstrated an additive reduction in virus production. This data suggests that HSC70 and HSP70 play discrete roles in the viral life cycle. Investigation of these different functions may facilitate developing of novel strategies that target host proteins to treat HCV infection. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Novel dengue virus NS2B/NS3 protease inhibitors.

    PubMed

    Wu, Hongmei; Bock, Stefanie; Snitko, Mariya; Berger, Thilo; Weidner, Thomas; Holloway, Steven; Kanitz, Manuel; Diederich, Wibke E; Steuber, Holger; Walter, Christof; Hofmann, Daniela; Weißbrich, Benedikt; Spannaus, Ralf; Acosta, Eliana G; Bartenschlager, Ralf; Engels, Bernd; Schirmeister, Tanja; Bodem, Jochen

    2015-02-01

    Dengue fever is a severe, widespread, and neglected disease with more than 2 million diagnosed infections per year. The dengue virus NS2B/NS3 protease (PR) represents a prime target for rational drug design. At the moment, there are no clinical PR inhibitors (PIs) available. We have identified diaryl (thio)ethers as candidates for a novel class of PIs. Here, we report the selective and noncompetitive inhibition of the serotype 2 and 3 dengue virus PR in vitro and in cells by benzothiazole derivatives exhibiting 50% inhibitory concentrations (IC50s) in the low-micromolar range. Inhibition of replication of DENV serotypes 1 to 3 was specific, since all substances influenced neither hepatitis C virus (HCV) nor HIV-1 replication. Molecular docking suggests binding at a specific allosteric binding site. In addition to the in vitro assays, a cell-based PR assay was developed to test these substances in a replication-independent way. The new compounds inhibited the DENV PR with IC50s in the low-micromolar or submicromolar range in cells. Furthermore, these novel PIs inhibit viral replication at submicromolar concentrations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Phenotypic analysis of NS5A variant from liver transplant patient with increased cyclosporine susceptibility

    PubMed Central

    Ansari, Israr-ul H.; Allen, Todd; Berical, Andrew; Stock, Peter G.; Barin, Burc; Striker, Rob

    2013-01-01

    Hepatitis C virus (HCV) replication is limited by cyclophilin inhibitors but it remains unclear how viral genetic variations influence susceptibility to cyclosporine (cyclosporine A, CsA), a cyclophilin inhibitor. In this study HCV from liver transplant patients was sequenced before and after CsA exposure. Phenotypic analysis of NS5A sequence was performed by using HCV sub genomic replicon to determine CsA susceptibility. The data indicates an atypical proline at position 328 in NS5A causes increases CsA sensitivity both in the context of genotype 1a and 1b residues. Point mutants mimicking other naturally occurring residues at this position also increased (Ala) or decreased (Arg) replicon sensitivity to CsA relative to the typical threonine (genotype 1a) or serine (genotype 1b) at this position. This work has implications for treatment of HCV by cyclophilin inhibitors. PMID:23290631

  11. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens

    PubMed Central

    2014-01-01

    Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5–types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7–virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens. PMID:24460592

  12. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens.

    PubMed

    Vergara-Alert, Júlia; Busquets, Núria; Ballester, Maria; Chaves, Aida J; Rivas, Raquel; Dolz, Roser; Wang, Zhongfang; Pleschka, Stephan; Majó, Natàlia; Rodríguez, Fernando; Darji, Ayub

    2014-01-25

    Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5-types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7-virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.

  13. Hha has a defined regulatory role that is not dependent upon H-NS or StpA

    PubMed Central

    Solórzano, Carla; Srikumar, Shabarinath; Canals, Rocío; Juárez, Antonio; Paytubi, Sonia; Madrid, Cristina

    2015-01-01

    The Hha family of proteins is involved in the regulation of gene expression in enterobacteria by forming complexes with H-NS-like proteins. Whereas several amino acid residues of both proteins participate in the interaction, some of them play a key role. Residue D48 of Hha protein is essential for the interaction with H-NS, thus the D48N substitution in Hha protein abrogates H-NS/Hha interaction. Despite being a paralog of H-NS protein, StpA interacts with HhaD48N with higher affinity than with the wild type Hha protein. To analyze whether Hha is capable of acting independently of H-NS and StpA, we conducted transcriptomic analysis on the hha and stpA deletion strains and the hhaD48N substitution strain of Salmonella Typhimurium using a custom microarray. The results obtained allowed the identification of 120 genes regulated by Hha in an H-NS/StpA-independent manner, 38% of which are horizontally acquired genes. A significant number of the identified genes are involved in functions related to cell motility, iron uptake, and pathogenicity. Thus, motility assays, siderophore detection and intra-macrophage replication assays were performed to confirm the transcriptomic data. Our findings point out the importance of Hha protein as an independent regulator in S. Typhimurium, highlighting a regulatory role on virulence. PMID:26284052

  14. Stability of the resistance to the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone, a non-nucleoside polymerase inhibitor of bovine viral diarrhea virus.

    PubMed

    Castro, Eliana F; Campos, Rodolfo H; Cavallaro, Lucía V

    2014-01-01

    Bovine viral diarrhea virus (BVDV) is the prototype Pestivirus. BVDV infection is distributed worldwide and causes serious problems for the livestock industry. The thiosemicarbazone of 5,6-dimethoxy-1-indanone (TSC) is a non-nucleoside polymerase inhibitor (NNI) of BVDV. All TSC-resistant BVDV variants (BVDV-TSCr T1-5) present an N264D mutation in the NS5B gene (RdRp) whereas the variant BVDV-TSCr T1 also presents an NS5B A392E mutation. In the present study, we carried out twenty passages of BVDV-TSCr T1-5 in MDBK cells in the absence of TSC to evaluate the stability of the resistance. The viral populations obtained (BVDV R1-5) remained resistant to the antiviral compound and conserved the mutations in NS5B associated with this phenotype. Along the passages, BVDV R2, R3 and R5 presented a delay in the production of cytopathic effect that correlated with a decrease in cell apoptosis and intracellular accumulation of viral RNA. The complete genome sequences that encode for NS2 to NS5B, Npro and Erns were analyzed. Additional mutations were detected in the NS5B of BVDV R1, R3 and R4. In both BVDV R2 and R3, most of the mutations found were localized in NS5A, whereas in BVDV R5, the only mutation fixed was NS5A V177A. These results suggest that mutations in NS5A could alter BVDV cytopathogenicity. In conclusion, the stability of the resistance to TSC may be due to the fixation of different compensatory mutations in each BVDV-TSCr. During their replication in a TSC-free medium, some virus populations presented a kind of interaction with the host cell that resembled a persistent infection: decreased cytopathogenicity and viral genome synthesis. This is the first report on the stability of antiviral resistance and on the evolution of NNI-resistant BVDV variants. The results obtained for BVDV-TSCr could also be applied for other NNIs.

  15. Direct Acting Anti-hepatitis C Virus Drugs: Clinical Pharmacology and Future Direction

    PubMed Central

    Geddawy, Ayman; Ibrahim, Yasmine F.; Elbahie, Nabil M.; Ibrahim, Mohammad A.

    2017-01-01

    Abstract Chronic hepatitis C virus (HCV) infection is a leading cause of chronic liver disease. The introduction of direct acting antiviral agents (DAAs) for its treatment represents a major advance in terms of sustained virologic response (SVR) rates and adverse effect profiles. Mechanistically, DAAs inhibit specific HCV non-structural proteins (NS) that are vital for its replication. Boceprevir, telaprevir, simeprevir, asunaprevir, grazoprevir and paritaprevir are NS3/4A inhibitors. Ombitasvir, ledipasvir, daclatasvir, elbasvir and velpatasvir are NS5A inhibitors. Sofosbuvir and dasabuvir are NS5B inhibitors. Currently, a combination of two or more DAAs is the corner stone for the treatment of HCV infection. However, the success of DAA therapy is facing several challenges, including the potential of drug-drug interactions and resistant variance. Moreover, the shortage of relevant clinical pharmacological data and drug interaction regarding DAA is a clinical concern. The present review discusses the clinical pharmacology of DAAs with special emphasis on drug-drug interaction. PMID:28680834

  16. The Complement System in Flavivirus Infections

    PubMed Central

    Conde, Jonas N.; Silva, Emiliana M.; Barbosa, Angela S.; Mohana-Borges, Ronaldo

    2017-01-01

    The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical climates worldwide, affecting hundreds of millions of people each year. The Flaviviridae family includes dengue, West Nile, Zika, Japanese encephalitis, and yellow fever viruses that are typically transmitted by mosquitoes or ticks, and cause a wide range of symptoms, such as fever, shock, meningitis, paralysis, birth defects, and death. The flavivirus genome is composed of a single positive-sense RNA molecule encoding a single viral polyprotein. This polyprotein is further processed by viral and host proteases into three structural proteins (C, prM/M, E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) that are involved in viral replication and pathogenicity. The complement system has been described to play an important role in flavivirus infection either by protecting the host and/or by influencing disease pathogenesis. In this mini-review, we will explore the role of complement system inhibition and/or activation against infection by the Flavivirus genus, with an emphasis on dengue and West Nile viruses. PMID:28261172

  17. Discovery of Nanomolar Dengue and West Nile Virus Protease Inhibitors Containing a 4-Benzyloxyphenylglycine Residue.

    PubMed

    Behnam, Mira A M; Graf, Dominik; Bartenschlager, Ralf; Zlotos, Darius P; Klein, Christian D

    2015-12-10

    The dengue virus (DENV) and West Nile Virus (WNV) NS2B-NS3 proteases are attractive targets for the development of dual-acting therapeutics against these arboviral pathogens. We present the synthesis and extensive biological evaluation of inhibitors that contain benzyl ethers of 4-hydroxyphenylglycine as non-natural peptidic building blocks synthesized via a copper-complex intermediate. A three-step optimization strategy, beginning with fragment growth of the C-terminal 4-hydroxyphenylglycine to the benzyloxy ether, followed by C- and N-terminal optimization, and finally fragment merging generated compounds with in vitro affinities in the low nanomolar range. The most promising derivative reached Ki values of 12 nM at the DENV-2 and 39 nM at the WNV proteases. Several of the newly discovered protease inhibitors yielded a significant reduction of dengue and West Nile virus titers in cell-based assays of virus replication, with an EC50 value of 3.4 μM at DENV-2 and 15.5 μM at WNV for the most active analogue.

  18. Transfection of influenza A virus nuclear export protein induces the expression of tumor necrosis factor alpha.

    PubMed

    Lara-Sampablo, Alejandra; Flores-Alonso, Juan Carlos; De Jesús-Ortega, Nereyda; Santos-López, Gerardo; Vallejo-Ruiz, Verónica; Rosas-Murrieta, Nora; Reyes-Carmona, Sandra; Herrera-Camacho, Irma; Reyes-Leyva, Julio

    2014-06-24

    Influenza A virus genomic segments eight codes for non-structural 1 (NS1) protein that is involved in evasion of innate antiviral response, and nuclear export protein (NEP) that participates in the export of viral ribonucleoprotein (RNP) complexes, transcription and replication. Tumor necrosis factor alpha (TNF-α) is highly expressed during influenza virus infections and is considered an anti-infective cytokine. NS1 and NEP proteins were overexpressed and their role on TNF-α expression was evaluated. Both TNF-α mRNA and protein increased in cells transfected with NEP but not with NS1. We further investigate if NS1 or NEP regulates the activity of TNF-α promoter. In the presence of NEP the activity of TNF-α promoter increased significantly compared with the control (83.5±2.9 vs. 30.9±2.8, respectively; p=0.001). This effect decreased 15-fold when the TNF-α promoter distal region was deleted, suggesting the involvement of mitogen-activated protein kinases (MAPK) and NF-kB response elements. This was corroborated by testing the effect produced on TNF-α promoter by the treatment with Raf/MEK/ERK (U0126), NF-kB (Bay-11-7082) and PI3K (Ly294-002) cell signaling inhibitors. Treatment with U0126 and Bay-117082 reduced the activity of TNF-α promoter mediated by NEP (41.5±3.2, 70% inhibition; and 80.6±7.4, 35% inhibition, respectively) compared to mock-treated control. The results suggest a new role for NEP protein that participates in the transcriptional regulation of human TNF-α expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Comparative analysis of seven viral nuclear export signals (NESs) reveals the crucial role of nuclear export mediated by the third NES consensus sequence of nucleoprotein (NP) in influenza A virus replication.

    PubMed

    Chutiwitoonchai, Nopporn; Kakisaka, Michinori; Yamada, Kazunori; Aida, Yoko

    2014-01-01

    The assembly of influenza virus progeny virions requires machinery that exports viral genomic ribonucleoproteins from the cell nucleus. Currently, seven nuclear export signal (NES) consensus sequences have been identified in different viral proteins, including NS1, NS2, M1, and NP. The present study examined the roles of viral NES consensus sequences and their significance in terms of viral replication and nuclear export. Mutation of the NP-NES3 consensus sequence resulted in a failure to rescue viruses using a reverse genetics approach, whereas mutation of the NS2-NES1 and NS2-NES2 sequences led to a strong reduction in viral replication kinetics compared with the wild-type sequence. While the viral replication kinetics for other NES mutant viruses were also lower than those of the wild-type, the difference was not so marked. Immunofluorescence analysis after transient expression of NP-NES3, NS2-NES1, or NS2-NES2 proteins in host cells showed that they accumulated in the cell nucleus. These results suggest that the NP-NES3 consensus sequence is mostly required for viral replication. Therefore, each of the hydrophobic (Φ) residues within this NES consensus sequence (Φ1, Φ2, Φ3, or Φ4) was mutated, and its viral replication and nuclear export function were analyzed. No viruses harboring NP-NES3 Φ2 or Φ3 mutants could be rescued. Consistent with this, the NP-NES3 Φ2 and Φ3 mutants showed reduced binding affinity with CRM1 in a pull-down assay, and both accumulated in the cell nucleus. Indeed, a nuclear export assay revealed that these mutant proteins showed lower nuclear export activity than the wild-type protein. Moreover, the Φ2 and Φ3 residues (along with other Φ residues) within the NP-NES3 consensus were highly conserved among different influenza A viruses, including human, avian, and swine. Taken together, these results suggest that the Φ2 and Φ3 residues within the NP-NES3 protein are important for its nuclear export function during viral replication.

  20. HLA-B27 Selects for Rare Escape Mutations that Significantly Impair Hepatitis C Virus Replication and Require Compensatory Mutations

    PubMed Central

    Neumann-Haefelin, Christoph; Oniangue-Ndza, Cesar; Kuntzen, Thomas; Schmidt, Julia; Nitschke, Katja; Sidney, John; Caillet-Saguy, Célia; Binder, Marco; Kersting, Nadine; Kemper, Michael W.; Power, Karen A.; Ingber, Susan; Reyor, Laura L.; Hills-Evans, Kelsey; Kim, Arthur Y.; Lauer, Georg M.; Lohmann, Volker; Sette, Alessandro; Henn, Matthew R.; Bressanelli, Stéphane; Thimme, Robert; Allen, Todd M.

    2011-01-01

    HLA-B27 is associated with spontaneous viral clearance in hepatitis C virus (HCV) infection. Viral escape within the immunodominant HLA-B27 restricted HCV-specific CD8+ T cell epitope NS5B2841-2849 (ARMILMTHF) has been shown to be limited by viral fitness costs as well as broad T cell cross-recognition, suggesting a potential mechanism of protection by HLA-B27. Here, we studied the subdominant HLA-B27 restricted epitope NS5B2936-2944 (GRAAICGKY) in order to further define the mechanisms of protection by HLA-B27. We identified a unique pattern of escape mutations within this epitope in a large cohort of HCV genotype 1a infected patients. The predominant escape mutations represented conservative substitutions at the main HLA-B27 anchor residue or a T cell receptor contact site, neither of which impaired viral replication capacity as assessed in a subgenomic HCV replicon system. In contrast, however, in a subset of HLA-B27+ subjects rare escape mutations arose at the HLA-B27 anchor residue R2937, which nearly abolished viral replication. Notably, these rare mutations only occurred in conjunction with the selection of two equally rare, and structurally proximal, upstream mutations. Co-expression of these upstream mutations with the rare escape mutations dramatically restored viral replication capacity from <5% to ≥70% of wild-type levels. Conclusion The selection of rare CTL escape mutations in this HLA-B27 restricted epitope dramatically impairs viral replicative fitness unless properly compensated. These data support a role for the targeting of highly-constrained regions by HLA-B27 in its ability to assert immune control of HCV and other highly variable pathogens. PMID:22006856

  1. Identification of nucleotides in the 5'UTR and amino acids substitutions that are essential for the infectivity of 5'UTR-NS5A recombinant of hepatitis C virus genotype 1b (strain Con1).

    PubMed

    Li, Jinqian; Feng, Shengjun; Liu, Xi; Guo, Mingzhe; Chen, Mingxiao; Chen, Yiyi; Rong, Liang; Xia, Jinyu; Zhou, Yuanping; Zhong, Jin; Li, Yi-Ping

    2018-05-01

    Genotype 1b strain Con1 represents an important reference in the study of hepatitis C virus (HCV). Here, we aimed to develop an advanced infectious Con1 recombinant. We found that previously identified mutations A1226G/F1464L/A1672S/Q1773H permitted culture adaption of Con1 Core-NS5A (C-5A) recombinant containing 5'UTR and NS5B-3'UTR from JFH1 (genotype 2a), thus acquired additional mutations L725H/F886L/D2415G. C-5A containing all seven mutations (C-5A_7m) replicated efficiently in Huh7.5 and Huh7.5.1 cells and had an increased infectivity in SEC14L2-expressing Huh7.5.1 cells. Incorporation of Con1 NS5B was deleterious to C-5A_7m, however Con1 5'UTR was permissive but attenuated the virus. Nucleotides G1, A4, and G35 primarily accounted for the viral attenuation without affecting RNA translation. C-5A_7m was inhibited dose-dependently by simeprevir and daclatasvir, and substitutions at A4, A29, A34, and G35 conferred resistance to miR-122 antagonism. The novel Con1 5'UTR-NS5A recombinant, adaptive mutations, and critical nucleotides described here will facilitate future studies of HCV culture systems and virus-host interaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Nanosilver - does it have only one face?

    PubMed

    Likus, Wirginia; Bajor, Grzegorz; Siemianowicz, Krzysztof

    2013-01-01

    Silver nanoparticles (NPs) have at least one dimension of a particle smaller than 100 nm and contain 20-15,000 silver atoms. Due to its antibacterial activity nanosilver (NS) is used for medical purposes. NS particles can be obtained by various methods. Potentially, the best method of the NS synthesis for medical purposes is based on a brief flow of electric current between two silver electrodes placed in deionized water. It is accepted that the major antibacterial effect of silver is its partial oxidation and releasing silver ions, which interact with thiol groups of peptidoglicans of bacterial cell wall, and proteins of the cell membrane causing cell lysis. Silver ions can also bind to bacterial DNA preventing its replication and stopping synthesis of bacterial proteins. The rise in exposure to silver NPs has spurred interest into their toxicology. NS undergoes a set of biochemical transformations including accelerated oxidative dissolution in gastric acid, binding to thiol groups of serum and tissue proteins, exchange between thiol groups, sulfides and selenides, binding to selenoproroteins and photoreduction in skin to zerovalent metallic silver. Animal studies have shown that exposure to NS may lead to liver and spleen damage. NS can also stimulate an increased secretion of proinflammatory cytokines by monocytes. As a spectrum of NS applications is still growing, the complex evaluation of a safety of its use becomes an important task. This requires an elucidation of not only the influence of NS on human cells and organism, but also its biotransformation in organism and in environment.

  3. Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly.

    PubMed

    Senthilvel, Padmanaban; Lavanya, Pandian; Kumar, Kalavathi Murugan; Swetha, Rayapadi; Anitha, Parimelzaghan; Bag, Susmita; Sarveswari, Sundaramoorthy; Vijayakumar, Vijayaparthasarathi; Ramaiah, Sudha; Anbarasu, Anand

    2013-01-01

    Dengue virus belongs to the virus family Flaviviridae. Dengue hemorrhagic disease caused by dengue virus is a public health problem worldwide. The viral non structural 2B and 3 (NS2B-NS3) protease complex is crucial for virus replication and hence, it is considered to be a good anti-viral target. Leaf extracts from Carica papaya is generally prescribed for patients with dengue fever, but there are no scientific evidences for its anti-dengue activity; hence we intended to investigate the anti-viral activity of compounds present in the leaves of Carica papaya against dengue 2 virus (DENV-2). We analysed the anti-dengue activities of the extracts from Carica papaya by using bioinformatics tools. Interestingly, we find the flavonoid quercetin with highest binding energy against NS2B-NS3 protease which is evident by the formation of six hydrogen bonds with the amino acid residues at the binding site of the receptor. Our results suggest that the flavonoids from Carica papaya have significant anti-dengue activities. ADME - Absorption, distribution, metabolism and excretion, BBB - Blood brain barrier, CYP - Cytochrome P450, DENV - - Dengue virus, DHF - Dengue hemorrhagic fever, DSS - Dengue shock syndrome, GCMS - - Gas chromatography- Mass spectrometry, MOLCAD - Molecular Computer Aided Design, NS - Non structural, PDB - Protein data bank, PMF - Potential Mean Force.

  4. Dynamic Nucleolar Targeting of Dengue Virus Polymerase NS5 in Response to Extracellular pH

    PubMed Central

    Fraser, Johanna E.; Rawlinson, Stephen M.; Heaton, Steven M.

    2016-01-01

    ABSTRACT The nucleolar subcompartment of the nucleus is increasingly recognized as an important target of RNA viruses. Here we document for the first time the ability of dengue virus (DENV) polymerase, nonstructural protein 5 (NS5), to accumulate within the nucleolus of infected cells and to target green fluorescent protein (GFP) to the nucleolus of live transfected cells. Intriguingly, NS5 exchange between the nucleus and nucleolus is dynamically modulated by extracellular pH, responding rapidly and reversibly to pH change, in contrast to GFP alone or other nucleolar and non-nucleolar targeted protein controls. The minimal pH-sensitive nucleolar targeting region (pHNTR), sufficient to target GFP to the nucleolus in a pH-sensitive fashion, was mapped to NS5 residues 1 to 244, with mutation of key hydrophobic residues, Leu-165, Leu-167, and Val-168, abolishing pHNTR function in NS5-transfected cells, and severely attenuating DENV growth in infected cells. This is the first report of a viral protein whose nucleolar targeting ability is rapidly modulated by extracellular stimuli, suggesting that DENV has the ability to detect and respond dynamically to the extracellular environment. IMPORTANCE Infections by dengue virus (DENV) threaten 40% of the world's population yet there is no approved vaccine or antiviral therapeutic to treat infections. Understanding the molecular details that govern effective viral replication is key for the development of novel antiviral strategies. Here, we describe for the first time dynamic trafficking of DENV nonstructural protein 5 (NS5) to the subnuclear compartment, the nucleolus. We demonstrate that NS5's targeting to the nucleolus occurs in response to acidic pH, identify the key amino acid residues within NS5 that are responsible, and demonstrate that their mutation severely impairs production of infectious DENV. Overall, this study identifies a unique subcellular trafficking event and suggests that DENV is able to detect and respond dynamically to environmental changes. PMID:27076639

  5. Complementation for an essential ancillary nonstructural protein function across parvovirus genera

    PubMed Central

    Mihaylov, Ivailo S.; Cotmore, Susan F.; Tattersall, Peter

    2014-01-01

    Parvoviruses encode a small number of ancillary proteins that differ substantially between genera. Within the genus Protoparvovirus, minute virus of mice (MVM) encodes three isoforms of its ancillary protein NS2, while human bocavirus 1 (HBoV1), in the genus Bocaparvovirus, encodes an NP1 protein that is unrelated in primary sequence to MVM NS2. To search for functional overlap between NS2 and NP1, we generated murine A9 cell populations that inducibly express HBoV1 NP1. These were used to test whether NP1 expression could complement specific defects resulting from depletion of MVM NS2 isoforms. NP1 induction had little impact on cell viability or cell cycle progression in uninfected cells, and was unable to complement late defects in MVM virion production associated with low NS2 levels. However, NP1 did relocate to MVM replication centers, and supports both the normal expansion of these foci and overcomes the early paralysis of DNA replication in NS2-null infections. PMID:25194919

  6. Viperin Restricts Zika Virus and Tick-Borne Encephalitis Virus Replication by Targeting NS3 for Proteasomal Degradation.

    PubMed

    Panayiotou, Christakis; Lindqvist, Richard; Kurhade, Chaitanya; Vonderstein, Kirstin; Pasto, Jenny; Edlund, Karin; Upadhyay, Arunkumar S; Överby, Anna K

    2018-04-01

    Flaviviruses are arthropod-borne viruses that constitute a major global health problem, with millions of human infections annually. Their pathogenesis ranges from mild illness to severe manifestations such as hemorrhagic fever and fatal encephalitis. Type I interferons (IFNs) are induced in response to viral infection and stimulate the expression of interferon-stimulated genes (ISGs), including that encoding viperin (virus-inhibitory protein, endoplasmic reticulum associated, IFN inducible), which shows antiviral activity against a broad spectrum of viruses, including several flaviviruses. Here we describe a novel antiviral mechanism employed by viperin against two prominent flaviviruses, tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin was found to interact and colocalize with the structural proteins premembrane (prM) and envelope (E) of TBEV, as well as with nonstructural (NS) proteins NS2A, NS2B, and NS3. Interestingly, viperin expression reduced the NS3 protein level, and the stability of the other interacting viral proteins, but only in the presence of NS3. We also found that although viperin interacted with NS3 of mosquito-borne flaviviruses (ZIKV, Japanese encephalitis virus, and yellow fever virus), only ZIKV was sensitive to the antiviral effect of viperin. This sensitivity correlated with viperin's ability to induce proteasome-dependent degradation of NS3. ZIKV and TBEV replication was rescued completely when NS3 was overexpressed, suggesting that the viral NS3 is the specific target of viperin. In summary, we present here a novel antiviral mechanism of viperin that is selective for specific viruses in the genus Flavivirus , affording the possible availability of new drug targets that can be used for therapeutic intervention. IMPORTANCE Flaviviruses are a group of enveloped RNA viruses that cause severe diseases in humans and animals worldwide, but no antiviral treatment is yet available. Viperin, a host protein produced in response to infection, effectively restricts the replication of several flaviviruses, but the exact molecular mechanisms have not been elucidated. Here we have identified a novel mechanism employed by viperin to inhibit the replication of two flaviviruses: tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin induced selective degradation via the proteasome of TBEV and ZIKV nonstructural 3 (NS3) protein, which is involved in several steps of the viral life cycle. Furthermore, viperin also reduced the stability of several other viral proteins in a NS3-dependent manner, suggesting a central role of NS3 in viperin's antiflavivirus activity. Taking the results together, our work shows important similarities and differences among the members of the genus Flavivirus and could lead to the possibility of therapeutic intervention. Copyright © 2018 American Society for Microbiology.

  7. Parvoviral Left-End Hairpin Ears Are Essential during Infection for Establishing a Functional Intranuclear Transcription Template and for Efficient Progeny Genome Encapsidation

    PubMed Central

    Li, Lei; Cotmore, Susan F.

    2013-01-01

    The 121-nucleotide left-end telomere of Minute Virus of Mice (MVM) can be folded into a Y-shaped hairpin with short axial ears that are highly conserved within genus Parvovirus. To explore their potential role(s) during infection, we constructed infectious plasmid clones that lacked one or other ear. Although these were nonviable when transfected into A9 cells, excision of the viral genome and DNA amplification appeared normal, and viral transcripts and proteins were expressed, but progeny virion production was minimal, supporting the idea of a potential role for the ears in genome packaging. To circumvent the absence of progeny that confounded further analysis of these mutants, plasmids were transfected into 293T cells both with and without an adenovirus helper construct, generating single bursts of progeny. These virions bound to A9 cells and were internalized but failed to initiate viral transcription, protein expression, or DNA replication. No defects in mutant virion stability or function could be detected in vitro. Significantly, mutant capsid gene expression and DNA replication could be rescued by coinfection with wild-type virions carrying a replication-competent, capsid-gene-replacement vector. To pinpoint where such complementation occurred, prior transfection of plasmids expressing only MVM nonstructural proteins was explored. NS1 alone, but not NS2, rescued transcription and protein expression from both P4 and P38 promoters, whereas NS1 molecules deleted for their C-terminal transactivation domain did not. These results suggest that the mutant virions reach the nucleus, uncoat, and are converted to duplex DNA but require an intact left-end hairpin structure to form the initiating transcription complex. PMID:23903839

  8. The structure of Zika virus NS5 reveals a conserved domain conformation

    DOE PAGES

    Wang, Boxiao; Tan, Xiao -Feng; Thurmond, Stephanie; ...

    2017-03-27

    The recent outbreak of Zika virus (ZIKV) has imposed a serious threat to public health. Here we report the crystal structure of the ZIKV NS5 protein in complex with S-adenosyl-L-homocysteine, in which the tandem methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains stack into one of the two alternative conformations of flavivirus NS5 proteins. In conclusion, the activity of this NS5 protein is verified through a de novo RdRp assay on a subgenomic ZIKV RNA template. Importantly, our structural analysis leads to the identification of a potential drug-binding site of ZIKV NS5, which might facilitate the development of novel antiviralsmore » for ZIKV.« less

  9. [Low-molecular-weight regulators of biogenic polyamine metabolism affect cytokine production and expression of hepatitis С virus proteins in Huh7.5 human hepatocarcinoma cells].

    PubMed

    Masalova, O V; Lesnova, E I; Samokhvalov, E I; Permyakova, K Yu; Ivanov, A V; Kochetkov, S N; Kushch, A A

    2017-01-01

    Hepatitis C virus (HCV) induces the expression of the genes of proinflammatory cytokines, the excessive production of which may cause cell death, and contribute to development of liver fibrosis and hepatocarcinoma. The relationship between cytokine production and metabolic disorders in HCV-infected cells remains obscure. The levels of biogenic polyamines, spermine, spermidine, and their precursor putrescine, may be a potential regulator of these processes. The purpose of the present work was to study the effects of the compounds which modulate biogenic polyamines metabolism on cytokine production and HCV proteins expression. Human hepatocarcinoma Huh7.5 cells have been transfected with the plasmids that encode HCV proteins and further incubated with the following low-molecular compounds that affect different stages of polyamine metabolism: (1) difluoromethylornithine (DFMO), the inhibitor of ornithine decarboxylase, the enzyme that catalyzes the biosynthesis of polyamines; (2) N,N'-bis(2,3-butane dienyl)-1,4-diaminobutane (MDL72.527), the inhibitor of proteins involved in polyamine degradation; and (3) synthetic polyamine analog N^(I),N^(II)-diethylnorspermine (DENSpm), an inducer of polyamine degradation enzyme. The intracellular accumulation and secretion of cytokines (IL-6, IL-1β, TNF-α, and TGF-β) was assessed by immunocytochemistry and in the immunoenzyme assay, while the cytokine gene expression was studied using reverse transcription and PCR. The effects of the compounds under analysis on the expression of HCV proteins were analyzed using the indirect immunofluorescence with anti-HCV monoclonal antibodies. It has been demonstrated that, in cells transfected with HCV genes, DFMO reduces the production of three out of four tested cytokines, namely, TNF-α and TGF-β in cells that express HCV core, Е1Е2, NS3, NS5A, and NS5B proteins, and IL-1β in the cells that express HCV core, Е1Е2, and NS3 proteins. MDL72527 and DENSpm decreased cytokine production to a lesser extent. Incubation with DFMO led to a 28-32% decrease in the number of cells expressing NS5B or NS5A, both of which are key components of the HCV replication complex. The results obtained in the work indicate that a further detailed study of the antiviral activity of DFMO is required in order to assess its potential as an anti-hepatitis C therapeutic agent.

  10. Increased Phosphoenolpyruvate Carboxykinase (PEPCK) Gene Expression and Steatosis During Hepatitis C Virus (HCV) Subgenome Replication: Role of Nonstructural Component-5A (NS5A) and CCAAT/Enhancer Binding Protein ß (C/EBPß)

    USDA-ARS?s Scientific Manuscript database

    Chronic hepatitis C virus (HCV) infection greatly increases the risk for type 2 diabetes and nonalcoholic steatohepatitis; however, the pathogenic mechanisms remain incompletely understood. Here we report gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) transcription and associated tra...

  11. Crystal structure of a novel conformational state of the flavivirus NS3 protein: implications for polyprotein processing and viral replication.

    PubMed

    Assenberg, René; Mastrangelo, Eloise; Walter, Thomas S; Verma, Anil; Milani, Mario; Owens, Raymond J; Stuart, David I; Grimes, Jonathan M; Mancini, Erika J

    2009-12-01

    The flavivirus genome comprises a single strand of positive-sense RNA, which is translated into a polyprotein and cleaved by a combination of viral and host proteases to yield functional proteins. One of these, nonstructural protein 3 (NS3), is an enzyme with both serine protease and NTPase/helicase activities. NS3 plays a central role in the flavivirus life cycle: the NS3 N-terminal serine protease together with its essential cofactor NS2B is involved in the processing of the polyprotein, whereas the NS3 C-terminal NTPase/helicase is responsible for ATP-dependent RNA strand separation during replication. An unresolved question remains regarding why NS3 appears to encode two apparently disconnected functionalities within one protein. Here we report the 2.75-A-resolution crystal structure of full-length Murray Valley encephalitis virus NS3 fused with the protease activation peptide of NS2B. The biochemical characterization of this construct suggests that the protease has little influence on the helicase activity and vice versa. This finding is in agreement with the structural data, revealing a single protein with two essentially segregated globular domains. Comparison of the structure with that of dengue virus type 4 NS2B-NS3 reveals a relative orientation of the two domains that is radically different between the two structures. Our analysis suggests that the relative domain-domain orientation in NS3 is highly variable and dictated by a flexible interdomain linker. The possible implications of this conformational flexibility for the function of NS3 are discussed.

  12. Last 20 aa of the West Nile virus NS1' protein are responsible for its retention in cells and the formation of unique heat-stable dimers.

    PubMed

    Young, Lucy B; Melian, Ezequiel Balmori; Setoh, Yin Xiang; Young, Paul R; Khromykh, Alexander A

    2015-05-01

    West Nile virus (WNV), a mosquito-borne flavivirus, is the major cause of arboviral encephalitis in the USA. As with other members of the Japanese encephalitis virus serogroup, WNV produces an additional non-structural protein, NS1', a C-terminal extended product of NS1 generated as the result of a -1 programmed ribosomal frameshift (PRF). We have previously shown that mutations abolishing the PRF, and consequently NS1', resulted in reduced neuroinvasiveness. However, whether this was caused by the PRF event itself or by the lack of a PRF product, NS1', or a combination of both, remains undetermined. Here, we showed that WNV NS1' formed a unique subpopulation of heat- and low-pH-stable dimers. C-terminal truncations and mutational analysis employing an NS1'-expressing plasmid showed that stability of NS1' dimers was linked to the penultimate 10 aa. To examine the role of NS1' heat-stable dimers in virus replication and pathogenicity, a stop codon mutation was introduced into NS1' to create a WNV producing a truncated version of NS1' lacking the last 20 aa, but not affecting the PRF. NS1' protein produced by this mutant virus was secreted more efficiently than WT NS1', indicating that the sequence of the last 20 aa of NS1' was responsible for its cellular retention. Further analysis of this mutant showed growth kinetics in cells and virulence in weanling mice after peripheral infection similar to the WT WNVKUN, suggesting that full-length NS1' was not essential for virus replication in vitro and for virulence in mice. © 2015 The Authors.

  13. Inhibitor candidates's identification of HCV's RNA polymerase NS5B using virtual screening against iPPI-library

    NASA Astrophysics Data System (ADS)

    Sulistyawati, Indah; Sulistyo Dwi K., P.; Ichsan, Mochammad

    2016-03-01

    Hepatitis C is one of the major causes of chronic liver failure that caused by Hepatitis C Virus (HCV). Preventing the progression of HCV's replication through the inhibition of The RNA polymerase NS5B of Hepatitis C virus (NS5B) can be achieved via 4 binding regions: Site I (Thumb I), Site II (Thumb II), Site III (Palm I), and Site IV (Palm II). The aim of this research is to identify a candidate of NS5B inhibitor as an alternative for Hepatitis C treatment. An NS5B's 3D structure (PDB ID = 3D5M) used in this study has met some criteria of a good model to be used in virtual screening againts iPPI-lib using MTiOpenScreen webserver. The top two natural compounds resulted here then docked using Pyrix 0.8 and discovered trans-6-Benzamido-2-methyldecahydroisoquinoline (-9,1kcal/mol) and 2,4-dichloro-5-[4-(2 methoxyphenyl) piperazine-1-carbonyl]-N-[3-(trifluoromethyl)phenyl] benzenesulfonamide (9,4 kcal/mol) can bind to Tyr448 similar with all three established inhibitors, such as setrobuvir (-11,4 kcal/mol; site 3 inhibitor), CHEMBL379677 (-9,1 kcal/mol; site 1 inhibitor), and nesbuvir (-7,7 kcal/mol; site 4 inhibitor). The results of this study are relatively still needs to be tested, both in vitro and in vivo, in order to obtain more comprehensive knowledges as a follow-up of this predictive study.

  14. Structural Evidence for Regulation and Specificity of Flaviviral Proteases and Evolution of the Flaviviridae Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleshin,A.; Shiryaev, S.; Strongin, A.

    2007-01-01

    Pathogenic members of the flavivirus family, including West Nile Virus (WNV) and Dengue Virus (DV), are growing global threats for which there are no specific treatments. The two-component flaviviral enzyme NS2B-NS3 cleaves the viral polyprotein precursor within the host cell, a process that is required for viral replication. Here, we report the crystal structure of WNV NS2B-NS3pro both in a substrate-free form and in complex with the trypsin inhibitor aprotinin/BPTI. We show that aprotinin binds in a substrate-mimetic fashion in which the productive conformation of the protease is fully formed, providing evidence for an 'induced fit' mechanism of catalysis andmore » allowing us to rationalize the distinct substrate specificities of WNV and DV proteases. We also show that the NS2B cofactor of WNV can adopt two very distinct conformations and that this is likely to be a general feature of flaviviral proteases, providing further opportunities for regulation. Finally, by comparing the flaviviral proteases with the more distantly related Hepatitis C virus, we provide insights into the evolution of the Flaviviridae fold. Our work should expedite the design of protease inhibitors to treat a range of flaviviral infections.« less

  15. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paeshuyse, Jan; Coelmont, Lotte; Vliegen, Inge

    2006-09-15

    We report that the antimalarial drug artemisinin inhibits hepatitis C virus (HCV) replicon replication in a dose-dependent manner in two replicon constructs at concentrations that have no effect on the proliferation of the exponentially growing host cells. The 50% effective concentration (EC{sub 5}) for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by artemisinin was 78 {+-} 21 {mu}M. Hemin, an iron donor, was recently reported to inhibit HCV replicon replication [mediated by inhibition of the viral polymerase (C. Fillebeen, A.M. Rivas-Estilla, M. Bisaillon, P. Ponka, M. Muckenthaler, M.W. Hentze, A.E. Koromilas, K. Pantopoulos, Iron inactivatesmore » the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus, J. Biol. Chem. 280 (2005) 9049-9057.)] at a concentration that had no adverse effect on the host cells. When combined, artemisinin and hemin resulted, over a broad concentration range, in a pronounced synergistic antiviral activity. Also at a concentration (2 {mu}M) that alone had no effect on HCV replication, hemin still potentiated the anti-HCV activity of artemisinin.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Boxiao; Tan, Xiao -Feng; Thurmond, Stephanie

    The recent outbreak of Zika virus (ZIKV) has imposed a serious threat to public health. Here we report the crystal structure of the ZIKV NS5 protein in complex with S-adenosyl-L-homocysteine, in which the tandem methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains stack into one of the two alternative conformations of flavivirus NS5 proteins. In conclusion, the activity of this NS5 protein is verified through a de novo RdRp assay on a subgenomic ZIKV RNA template. Importantly, our structural analysis leads to the identification of a potential drug-binding site of ZIKV NS5, which might facilitate the development of novel antiviralsmore » for ZIKV.« less

  17. Sequencing the GRHL3 Coding Region Reveals Rare Truncating Mutations and a Common Susceptibility Variant for Nonsyndromic Cleft Palate

    PubMed Central

    Mangold, Elisabeth; Böhmer, Anne C.; Ishorst, Nina; Hoebel, Ann-Kathrin; Gültepe, Pinar; Schuenke, Hannah; Klamt, Johanna; Hofmann, Andrea; Gölz, Lina; Raff, Ruth; Tessmann, Peter; Nowak, Stefanie; Reutter, Heiko; Hemprich, Alexander; Kreusch, Thomas; Kramer, Franz-Josef; Braumann, Bert; Reich, Rudolf; Schmidt, Gül; Jäger, Andreas; Reiter, Rudolf; Brosch, Sibylle; Stavusis, Janis; Ishida, Miho; Seselgyte, Rimante; Moore, Gudrun E.; Nöthen, Markus M.; Borck, Guntram; Aldhorae, Khalid A.; Lace, Baiba; Stanier, Philip; Knapp, Michael; Ludwig, Kerstin U.

    2016-01-01

    Nonsyndromic cleft lip with/without cleft palate (nsCL/P) and nonsyndromic cleft palate only (nsCPO) are the most frequent subphenotypes of orofacial clefts. A common syndromic form of orofacial clefting is Van der Woude syndrome (VWS) where individuals have CL/P or CPO, often but not always associated with lower lip pits. Recently, ∼5% of VWS-affected individuals were identified with mutations in the grainy head-like 3 gene (GRHL3). To investigate GRHL3 in nonsyndromic clefting, we sequenced its coding region in 576 Europeans with nsCL/P and 96 with nsCPO. Most strikingly, nsCPO-affected individuals had a higher minor allele frequency for rs41268753 (0.099) than control subjects (0.049; p = 1.24 × 10−2). This association was replicated in nsCPO/control cohorts from Latvia, Yemen, and the UK (pcombined = 2.63 × 10−5; ORallelic = 2.46 [95% CI 1.6–3.7]) and reached genome-wide significance in combination with imputed data from a GWAS in nsCPO triads (p = 2.73 × 10−9). Notably, rs41268753 is not associated with nsCL/P (p = 0.45). rs41268753 encodes the highly conserved p.Thr454Met (c.1361C>T) (GERP = 5.3), which prediction programs denote as deleterious, has a CADD score of 29.6, and increases protein binding capacity in silico. Sequencing also revealed four novel truncating GRHL3 mutations including two that were de novo in four families, where all nine individuals harboring mutations had nsCPO. This is important for genetic counseling: given that VWS is rare compared to nsCPO, our data suggest that dominant GRHL3 mutations are more likely to cause nonsyndromic than syndromic CPO. Thus, with rare dominant mutations and a common risk variant in the coding region, we have identified an important contribution for GRHL3 in nsCPO. PMID:27018475

  18. Complementation for an essential ancillary non-structural protein function across parvovirus genera.

    PubMed

    Mihaylov, Ivailo S; Cotmore, Susan F; Tattersall, Peter

    2014-11-01

    Parvoviruses encode a small number of ancillary proteins that differ substantially between genera. Within the genus Protoparvovirus, minute virus of mice (MVM) encodes three isoforms of its ancillary protein NS2, while human bocavirus 1 (HBoV1), in the genus Bocaparvovirus, encodes an NP1 protein that is unrelated in primary sequence to MVM NS2. To search for functional overlap between NS2 and NP1, we generated murine A9 cell populations that inducibly express HBoV1 NP1. These were used to test whether NP1 expression could complement specific defects resulting from depletion of MVM NS2 isoforms. NP1 induction had little impact on cell viability or cell cycle progression in uninfected cells, and was unable to complement late defects in MVM virion production associated with low NS2 levels. However, NP1 did relocate to MVM replication centers, and supports both the normal expansion of these foci and overcomes the early paralysis of DNA replication in NS2-null infections. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The conformational changes of Zika virus methyltransferase upon converting SAM to SAH.

    PubMed

    Zhou, Han; Wang, Fenghua; Wang, Haofeng; Chen, Cheng; Zhang, Tianqing; Han, Xu; Wang, Deping; Chen, Chen; Wu, Chen; Xie, Wei; Wang, Zefang; Zhang, Lei; Wang, Lanfeng; Yang, Haitao

    2017-02-28

    An outbreak of Zika virus (ZIKV) infection has been reported in South and Central America and the Caribbean. Neonatal microcephaly potentially associated with ZIKV infection has already caused a public health emergency of international concern. Currently, there are no clinically effective vaccines or antiviral drugs available to treat ZIKV infection. The methyltransferase domain (MTase) of ZIKV nonstructural protein 5 (NS5) can sequentially methylate guanine N-7 and ribose 2'-O to form m7NGpppA2'Om cap structure in the new RNA transcripts. This methylation step is crucial for ZIKV replication cycle and evading the host immune system, making it a target for drug design. Here, we present the 1.76 Å crystal structure of ZIKV MTase in complex with the byproduct SAH, providing insight into the elegant methylation process, which will benefit the following antiviral drug development.

  20. Natural prevalence of resistance-associated variants in hepatitis C virus NS5A in genotype 3a-infected people who inject drugs in Germany.

    PubMed

    Walker, Andreas; Siemann, Holger; Groten, Svenja; Ross, R Stefan; Scherbaum, Norbert; Timm, Jörg

    2015-09-01

    People who inject drugs (PWID) are the most important risk group for incident Hepatitis C virus (HCV) infection. In PWID in Europe HCV genotype 3a is highly prevalent. Unfortunately, many of the recently developed directly acting antiviral drugs against HCV (DAAs) are suboptimal for treatment of this genotype. Detection of resistance-associated variants (RAV) in genotype 3a may help to optimize treatment decisions, however, robust protocols for amplification and sequencing of HCV NS5A as an important target for treatment of genotype 3a are currently lacking. The aim of this study was to establish a protocol for sequencing of HCV NS5A in genotype 3a and to determine the frequency of RAVs in treatment-naïve PWID living in Germany. The full NS5A region was amplified and sequenced from 110 HCV genotype 3a infected PWID using an in-house PCR protocol. With the established protocol the complete NS5A region was successfully amplified and sequenced from 110 out of 112 (98.2%) genotype 3a infected PWID. Phylogenetic analysis of sequences from PWID together with unrelated genotype 3a sequences from a public database showed a scattered distribution without geographic clustering. Viral polymorphisms A30K and Y93H known to confer resistance in a GT3a replication model were present in 8 subjects (7.2%). A protocol for amplification of nearly all GT3a samples was successfully established. Substitutions conferring resistance to NS5A inhibitors were detected in a few treatment-naive PWID. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins

    PubMed Central

    Foulk, Michael S.; Urban, John M.; Casella, Cinzia; Gerbi, Susan A.

    2015-01-01

    Nascent strand sequencing (NS-seq) is used to discover DNA replication origins genome-wide, allowing identification of features for their specification. NS-seq depends on the ability of lambda exonuclease (λ-exo) to efficiently digest parental DNA while leaving RNA-primer protected nascent strands intact. We used genomics and biochemical approaches to determine if λ-exo digests all parental DNA sequences equally. We report that λ-exo does not efficiently digest G-quadruplex (G4) structures in a plasmid. Moreover, λ-exo digestion of nonreplicating genomic DNA (LexoG0) enriches GC-rich DNA and G4 motifs genome-wide. We used LexoG0 data to control for nascent strand–independent λ-exo biases in NS-seq and validated this approach at the rDNA locus. The λ-exo–controlled NS-seq peaks are not GC-rich, and only 35.5% overlap with 6.8% of all G4s, suggesting that G4s are not general determinants for origin specification but may play a role for a subset. Interestingly, we observed a periodic spacing of G4 motifs and nucleosomes around the peak summits, suggesting that G4s may position nucleosomes at this subset of origins. Finally, we demonstrate that use of Na+ instead of K+ in the λ-exo digestion buffer reduced the effect of G4s on λ-exo digestion and discuss ways to increase both the sensitivity and specificity of NS-seq. PMID:25695952

  2. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins.

    PubMed

    Foulk, Michael S; Urban, John M; Casella, Cinzia; Gerbi, Susan A

    2015-05-01

    Nascent strand sequencing (NS-seq) is used to discover DNA replication origins genome-wide, allowing identification of features for their specification. NS-seq depends on the ability of lambda exonuclease (λ-exo) to efficiently digest parental DNA while leaving RNA-primer protected nascent strands intact. We used genomics and biochemical approaches to determine if λ-exo digests all parental DNA sequences equally. We report that λ-exo does not efficiently digest G-quadruplex (G4) structures in a plasmid. Moreover, λ-exo digestion of nonreplicating genomic DNA (LexoG0) enriches GC-rich DNA and G4 motifs genome-wide. We used LexoG0 data to control for nascent strand-independent λ-exo biases in NS-seq and validated this approach at the rDNA locus. The λ-exo-controlled NS-seq peaks are not GC-rich, and only 35.5% overlap with 6.8% of all G4s, suggesting that G4s are not general determinants for origin specification but may play a role for a subset. Interestingly, we observed a periodic spacing of G4 motifs and nucleosomes around the peak summits, suggesting that G4s may position nucleosomes at this subset of origins. Finally, we demonstrate that use of Na(+) instead of K(+) in the λ-exo digestion buffer reduced the effect of G4s on λ-exo digestion and discuss ways to increase both the sensitivity and specificity of NS-seq. © 2015 Foulk et al.; Published by Cold Spring Harbor Laboratory Press.

  3. The NS2 polypeptide of parvovirus MVM is required for capsid assembly in murine cells.

    PubMed

    Cotmore, S F; D'Abramo, A M; Carbonell, L F; Bratton, J; Tattersall, P

    1997-05-12

    Mutants of minute virus of mice (MVM) which express truncated forms of the NS2 polypeptide are known to exhibit a host range defect, replicating productively in transformed human cells but not in cells from their normal murine host. To explore this deficiency we generated viruses with translation termination codons at various positions in the second exon of NS2. In human cells these mutants were viable, but showed a late defect in progeny virion release which put them at a selective disadvantage compared to the wildtype. In murine cells, however, duplex viral DNA amplification was reduced to 5% of wildtype levels and single-strand DNA synthesis was undetectable. These deficiencies could not be attributed to a failure to initiate infection or to a generalized defect in viral gene expression, since the viral replicator protein NS1 was expressed to normal or elevated levels early in infection. In contrast, truncated NS2 gene products failed to accumulate, so that each mutant exhibited a similar NS2-null phenotype. Expression of the capsid polypeptides VP1 and VP2 and their subsequent assembly into intact particles were examined in detail. Synchronized infected cell populations labeled under pulse-chase conditions were analyzed by differential immunoprecipitation of native or denatured extracts using antibodies which discriminated between intact particles and isolated polypeptide chains. These analyses showed that at early times in infection, capsid protein synthesis and stability were normal, but particle assembly was impaired. Unassembled VP proteins were retained in the cell for several hours, but as the unprocessed material accumulated, capsid protein synthesis progressively diminished, so that at later times relatively few VP molecules were synthesized. Thus in NS2-null infections of mouse cells there is a major primary defect in the folding or assembly processes required for effective capsid production.

  4. Rad51 Interacts with Non-structural 3 Protein of Hepatitis C Virus and Regulates Viral Production

    PubMed Central

    Son, Kidong; Nguyen, Tram T. T.; Choi, Jae-Woong; Pham, Long V.; Luong, Trang T. D.; Lim, Yun-Sook; Hwang, Soon B.

    2017-01-01

    Hepatitis C virus (HCV) is a leading cause of chronic liver disease affecting over 170 million people worldwide. Chronic infection with HCV progresses to liver fibrosis, cirrhosis, and hepatocellular carcinoma. HCV exploits host cellular factors for viral propagation. To investigate the cellular factors required for HCV propagation, we screened a siRNA library targeting human cell cycle genes using cell culture grown HCV-infected cells. In the present study, we selected and characterized a gene encoding Rad51. Rad51, a member of a conserved recombinase family, is an essential factor for homologous recombination and repair of double-strand DNA breaks. We demonstrated that siRNA-mediated knockdown of Rad51 significantly inhibited HCV propagation without affecting HCV RNA replication. Silencing of Rad51 impaired secretion of infectious HCV particles and thus intracellular viruses were accumulated. We showed that HCV NS3 specifically interacted with Rad51 and accumulated Rad51 in the cytosol. Furthermore, Rad51 was coprecipitated with NS3 and HCV RNA. By employing membrane flotation and protease protection assays, we also demonstrated that Rad51 was co-fractionated with HCV NS3 on the lipid raft. These data indicate that Rad51 may be a component of the HCV RNA replication complex. Collectively, these data suggest that HCV may exploit cellular Rad51 to promote viral propagation and thus Rad51 may be a potential therapeutic target for HCV. PMID:28729862

  5. Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus.

    PubMed

    Rothan, Hussin A; Bahrani, Hirbod; Rahman, Noorsaadah Abd; Yusof, Rohana

    2014-05-31

    Although there have been considerable advances in the study of dengue virus, no vaccines or anti-dengue drugs are currently available for humans. Therefore, new approaches are necessary for the development of potent anti-dengue drugs. Natural antimicrobial peptides (AMPs) with potent antiviral activities are potential hits-to-leads for antiviral drug discovery. We performed this study to identify and characterise the inhibitory potential of the latarcin peptide (Ltc 1, SMWSGMWRRKLKKLRNALKKKLKGE) against dengue virus replication in infected cells. The Ltc 1 peptide showed a significantly inhibitory effect against the dengue protease NS2B-NS3pro at 37°C, a physiological human temperature, (IC50, 12.68 ± 3.2 μM), and greater inhibitory effect was observed at 40°C, a temperature similar to a high fever (IC50, 6.58 ± 4.1 μM). A greater reduction in viral load (p.f.u./ml) was observed at simultaneous (0.7 ± 0.3 vs. 7.2 ± 0.5 control) and post-treatment (1.8 ± 0.7 vs. 6.8 ± 0.6 control) compared to the pre-treatment (4.5 ± 0.6 vs. 6.9 ± 0.5 control). Treatment with the Ltc 1 peptide reduced the viral RNA in a dose-dependent manner with EC50 values of 8.3 ± 1.2, 7.6 ± 2.7 and 6.8 ± 2.5 μM at 24, 48 and 72 h, respectively. The Ltc 1 peptide exhibited significant inhibitory effects against dengue NS2B-NS3pro and virus replication in the infected cells. Therefore, further investigation is necessary to develop the Ltc 1 peptide as a new anti-dengue therapeutic.

  6. HIST1H1C Regulates Interferon-β and Inhibits Influenza Virus Replication by Interacting with IRF3

    PubMed Central

    Liu, Xiaokun; Yang, Cha; Hu, Yong; Lei, Erming; Lin, Xian; Zhao, Lianzhong; Zou, Zhong; Zhang, Anding; Zhou, Hongbo; Chen, Huanchun; Qian, Ping; Jin, Meilin

    2017-01-01

    Influenza virus NS2 is well known for its role in viral ribonucleoprotein nuclear export; however, its function has not been fully understood. A recent study showed that NS2 might interact with HIST1H1C (H1C, H1.2). Histones have been found to affect influenza virus replication, such as the H2A, H2B, H3, and H4, but H1 has not been detected. Here, we found that H1C interacts with NS2 via its C-terminal in the nucleus and that H1C affects influenza virus replication. The H1N1 influenza virus replicates better in H1C knockout A549 cells compared to wild-type A549 cells, primarily because of the regulation of H1C on interferon-β (IFN-β). Further studies showed that the H1C phosphorylation mutant (T146A) decreases IFN-β, while H1C methylation mutants (K34A, K187A) increases IFN-β by releasing the nucleosome and promoting IRF3 binding to the IFN-β promoter. Interestingly, NS2 interacts with H1C, which reduces H1C–IRF3 interaction and results in the inhibition of IFN-β enhanced by H1C. In summary, our study reveals a novel function of H1C to regulate IFN-β and uncovers an underlying mechanism, which suggests H1C plays a role in epigenetic regulation. Moreover, our results suggest a novel mechanism for the influenza virus to antagonize the innate immune response by NS2. PMID:28392790

  7. Generation and characterization of West Nile pseudo-infectious reporter virus for antiviral screening.

    PubMed

    Zhang, Hong-Lei; Ye, Han-Qing; Deng, Cheng-Lin; Liu, Si-Qing; Shi, Pei-Yong; Qin, Cheng-Feng; Yuan, Zhi-Ming; Zhang, Bo

    2017-05-01

    West Nile virus (WNV), a mosquito-borne flavivirus, is an important neurotropic human pathogen. As a biosafety level-3 (BSL-3) agent, WNV is strictly to BSL-3 laboratories for experimentations, thus greatly hindering the development of vaccine and antiviral drug. Here, we developed a novel pseudo-infectious WNV reporter virus expressing the Gaussia luciferase (Gluc). A stable 293T NS1 cell line expressing NS1 was selected for trans-supplying NS1 protein to support the replication of WNV-ΔNS1 virus and WNV-ΔNS1-Gluc reporter virus with large-fragment deletion of NS1. WNV-ΔNS1 virus and WNV-Gluc-ΔNS1 reporter virus were confined to complete their replication cycle in this 293T NS1 cell line, displaying nearly identical growth kinetics to WT WNV although the viral titers were lower than those of WT WNV. The reporter gene was stably maintained in virus genome at least within three rounds of passage in 293T NS1 cell line. Using a known flaviviruses inhibitor, NITD008, we demonstrated that the pseudo-infectious WNV-Gluc-ΔNS1 could be used for antiviral screening. Furthermore, a high-throughput screening (HTS) assay in a 96-well format was optimized and validated using several known WNV inhibitors, indicating that the optimized HTS assay was suitable for high-throughput screening WNV inhibitors. Our work provides a stable and safe tool to handle WNV outside of a BSL-3 facility and facilitates high throughput screening for anti-WNV drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the intracellular and the extracellular milieus. Despite the fact that NS1 has been commonly associated with DENV pathogenesis, it plays a pivotal but unknown role in the replication process. In an effort to understand the role of intracellular NS1, we demonstrate that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with NS1. Our results indicate that NS1 increases the glycolytic activity of GAPDH in vitro. Interestingly, the GAPDH activity was increased during DENV infection, and NS1 expression alone was sufficient to enhance intracellular GAPDH activity in BHK-21 cells. Overall, our findings suggest that NS1 is an important modulator of cellular energy metabolism by increasing glycolytic flux. PMID:26378175

  9. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity.

    PubMed

    Allonso, Diego; Andrade, Iamara S; Conde, Jonas N; Coelho, Diego R; Rocha, Daniele C P; da Silva, Manuela L; Ventura, Gustavo T; Silva, Emiliana M; Mohana-Borges, Ronaldo

    2015-12-01

    Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the intracellular and the extracellular milieus. Despite the fact that NS1 has been commonly associated with DENV pathogenesis, it plays a pivotal but unknown role in the replication process. In an effort to understand the role of intracellular NS1, we demonstrate that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with NS1. Our results indicate that NS1 increases the glycolytic activity of GAPDH in vitro. Interestingly, the GAPDH activity was increased during DENV infection, and NS1 expression alone was sufficient to enhance intracellular GAPDH activity in BHK-21 cells. Overall, our findings suggest that NS1 is an important modulator of cellular energy metabolism by increasing glycolytic flux. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Hepatitis C Virus Nucleotide Inhibitors PSI-352938 and PSI-353661 Exhibit a Novel Mechanism of Resistance Requiring Multiple Mutations within Replicon RNA▿†

    PubMed Central

    Lam, Angela M.; Espiritu, Christine; Bansal, Shalini; Micolochick Steuer, Holly M.; Zennou, Veronique; Otto, Michael J.; Furman, Phillip A.

    2011-01-01

    PSI-352938, a cyclic phosphate nucleotide, and PSI-353661, a phosphoramidate nucleotide, are prodrugs of β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methylguanosine-5′-monophosphate. Both compounds are metabolized to the same active 5′-triphosphate, PSI-352666, which serves as an alternative substrate inhibitor of the NS5B RNA-dependent RNA polymerase during HCV replication. PSI-352938 and PSI-353661 retained full activity against replicons containing the S282T substitution, which confers resistance to certain 2′-substituted nucleoside/nucleotide analogs. PSI-352666 was also similarly active against both wild-type and S282T NS5B polymerases. In order to identify mutations that confer resistance to these compounds, in vitro selection studies were performed using HCV replicon cells. While no resistant genotype 1a or 1b replicons could be selected, cells containing genotype 2a JFH-1 replicons cultured in the presence of PSI-352938 or PSI-353661 developed resistance to both compounds. Sequencing of the NS5B region identified a number of amino acid changes, including S15G, R222Q, C223Y/H, L320I, and V321I. Phenotypic evaluation of these mutations indicated that single amino acid changes were not sufficient to significantly reduce the activity of PSI-352938 and PSI-353661. Instead, a combination of three amino acid changes, S15G/C223H/V321I, was required to confer a high level of resistance. No cross-resistance exists between the 2′-F-2′-C-methylguanosine prodrugs and other classes of HCV inhibitors, including 2′-modified nucleoside/-tide analogs such as PSI-6130, PSI-7977, INX-08189, and IDX-184. Finally, we determined that in genotype 1b replicons, the C223Y/H mutation failed to support replication, and although the A15G/C223H/V321I triple mutation did confer resistance to PSI-352938 and PSI-353661, this mutant replicated at only about 10% efficiency compared to the wild type. PMID:21957306

  11. Infectious Bovine Viral Diarrhea Virus (Strain NADL) RNA from Stable cDNA Clones: a Cellular Insert Determines NS3 Production and Viral Cytopathogenicity

    PubMed Central

    Mendez, Ernesto; Ruggli, Nicolas; Collett, Marc S.; Rice, Charles M.

    1998-01-01

    Bovine viral diarrhea virus (BVDV), strain NADL, was originally isolated from an animal with fatal mucosal disease. This isolate is cytopathic in cell culture and produces two forms of NS3-containing proteins: uncleaved NS2-3 and mature NS3. For BVDV NADL, the production of NS3, a characteristic of cytopathic BVDV strains, is believed to be a consequence of an in-frame insertion of a 270-nucleotide cellular mRNA sequence (called cIns) in the NS2 coding region. In this study, we constructed a stable full-length cDNA copy of BVDV NADL in a low-copy-number plasmid vector. As assayed by transfection of MDBK cells, uncapped RNAs transcribed from this template were highly infectious (>105 PFU/μg). The recovered virus was similar in plaque morphology, growth properties, polyprotein processing, and cytopathogenicity to the BVDV NADL parent. Deletion of cIns abolished processing at the NS2/NS3 site and produced a virus that was no longer cytopathic for MDBK cells. This deletion did not affect the efficiency of infectious virus production or viral protein production, but it reduced the level of virus-specific RNA synthesis and accumulation. Thus, cIns not only modulates NS3 production but also upregulates RNA replication relative to an isogenic noncytopathic derivative lacking the insert. These results raise the possibility of a linkage between enhanced BVDV NADL RNA replication and virus-induced cytopathogenicity. PMID:9573238

  12. Objective measures of renal mass anatomic complexity predict rates of major complications following partial nephrectomy.

    PubMed

    Simhan, Jay; Smaldone, Marc C; Tsai, Kevin J; Canter, Daniel J; Li, Tianyu; Kutikov, Alexander; Viterbo, Rosalia; Chen, David Y T; Greenberg, Richard E; Uzzo, Robert G

    2011-10-01

    The association between tumor complexity and postoperative complications after partial nephrectomy (PN) has not been well characterized. We evaluated whether increasing renal tumor complexity, quantitated by nephrometry score (NS), is associated with increased complication rates following PN using the Clavien-Dindo classification system (CCS). We queried our prospectively maintained kidney cancer database for patients undergoing PN from 2007 to 2010 for whom NS was available. All patients underwent PN. Tumors were categorized into low- (NS: 4-6), moderate- (NS: 7-9), and high-complexity (NS: 10-12) lesions. Complication rates within 30 d were graded (CCS: I-5), stratified as minor (CCS: I or 2) or major (CCS: 3-5), and compared between groups. A total of 390 patients (mean age: 58.0 ± 11.9 yr; 66.9% male) undergoing PN (44.6% open, 55.4% robotic) for low- (28%), moderate- (55.6%), and high-complexity (16.4%) tumors (mean tumor size: 3.74 ± 2.4 cm; median: 3.2 cm) from 2007 to 2010 were identified. Tumor size, estimated blood loss, and ischemia time all significantly differed (p<0.0001) between groups; patient age, body mass index (BMI), and operative time were comparable. When stratified by CCS, minor and major complication rates for all patients were 26.7% and 11.5%, respectively. Minor complication rates were comparable (26.6 vs. 24.9 vs 32.8%; p=0.45), whereas major complication rates differed (6.4 vs. 11.1 vs. 21.9%; p=0.009) among tumor complexity groups. Controlling for age, gender, BMI, type of surgical approach, operative duration, and tumor complexity, prolonged operative time (odds ratio [OR]: 1.01; confidence interval [CI], 1.0-1.02) and high tumor complexity (OR: 5.4; CI, 1.2-24.2) were associated with the postoperative development of a major complication. Lack of external validation is a limitation of this study. Increasing tumor complexity is associated with the development of major complications after PN. This association should be validated externally and integrated into the decision-making process when counseling patients with complex renal tumors. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  13. Development of an ELISA assay for screening inhibitors against divalent metal ion dependent alphavirus capping enzyme.

    PubMed

    Kaur, Ramanjit; Mudgal, Rajat; Narwal, Manju; Tomar, Shailly

    2018-06-26

    Alphavirus non-structural protein, nsP1 has a distinct molecular mechanism of capping the viral RNAs than the conventional capping mechanism of host. Thus, alphavirus capping enzyme nsP1 is a potential drug target. nsP1 catalyzes the methylation of guanosine triphosphate (GTP) by transferring the methyl group from S-adenosylmethionine (SAM) to a GTP molecule at its N7 position with the help of nsP1 methyltransferase (MTase) followed by guanylylation (GT) reaction which involves the formation of m 7 GMP-nsP1 covalent complex by nsP1 guanylyltransferase (GTase). In subsequent reactions, m 7 GMP moiety is added to the 5' end of the viral ppRNA by nsP1 GTase resulting in the formation of cap0 structure. In the present study, chikungunya virus (CHIKV) nsP1 MTase and GT reactions were confirmed by an indirect non-radioactive colorimetric assay and western blot assay using an antibody specific for the m 7 G cap, respectively. The purified recombinant CHIKV nsP1 has been used for the development of a rapid and sensitive non-radioactive enzyme linked immunosorbent assay (ELISA) to identify the inhibitors of CHIKV nsP1. The MTase reaction is followed by GT reaction and resulted in m 7 GMP-nsP1 covalent complex formation. The developed ELISA nsP1 assay measures this m 7 GMP-nsP1 complex by utilizing anti-m 7 G cap monoclonal antibody. The mutation of a conserved residue Asp63 to Ala revealed its role in nsP1 enzyme reaction. Inductively coupled plasma mass spectroscopy (ICP-MS) was used to determine the presence of magnesium ions (Mg 2+ ) in the purified nsP1 protein. The divalent metal ion selectivity and investigation show preference for Mg 2+ ion by CHIKV nsP1. Additionally, using the developed ELISA nsP1 assay, the inhibitory effects of sinefungin, aurintricarboxylic acid (ATA) and ribavirin were determined and the IC 50 values were estimated to be 2.69 µM, 5.72 µM and 1.18 mM, respectively. Copyright © 2018. Published by Elsevier B.V.

  14. Anthracene-based Inhibitors of Dengue Virus NS2B-NS3 Protease†

    PubMed Central

    Tomlinson, Suzanne M.; Watowich, Stanley J.

    2010-01-01

    Summary Dengue virus (DENV) is a mosquito-borne flavivirus that has strained global healthcare systems throughout tropical and subtropical regions of the world. In addition to plaguing developing nations, it has re-emerged in several developed countries with recent outbreaks in the USA (CDC, 2010), Australia (Hanna et al., 2009), Taiwan (Kuan et al., 2010) and France (La Ruche et al., 2010). DENV infection can cause significant disease, including dengue fever, dengue hemorrhagic fever, dengue shock syndrome, and death. There are no approved vaccines or antiviral therapies to prevent or treat dengue-related illnesses. However, the viral NS2B-NS3 protease complex provides a strategic target for antiviral drug development since NS3 protease activity is required for virus replication. Recently, we reported two compounds with inhibitory activity against the DENV protease in vitro and antiviral activity against dengue 2 (DEN2V) in cell culture (Tomlinson et al., 2009a). Analogs of one of the lead compounds were purchased, tested in protease inhibition assays, and the data evaluated with detailed kinetic analyses. A structure activity relationship (SAR) identified key atomic determinants (i.e. functional groups) important for inhibitory activity. Four “second series” analogs were selected and tested to validate our SAR and structural models. Here, we report improvements to inhibitory activity ranging between ~2- and 60-fold, resulting in selective low micromolar dengue protease inhibitors. PMID:21185332

  15. Mechanisms of Hepatitis C Viral Resistance to Direct Acting Antivirals.

    PubMed

    Ahmed, Asma; Felmlee, Daniel J

    2015-12-18

    There has been a remarkable transformation in the treatment of chronic hepatitis C in recent years with the development of direct acting antiviral agents targeting virus encoded proteins important for viral replication including NS3/4A, NS5A and NS5B. These agents have shown high sustained viral response (SVR) rates of more than 90% in phase 2 and phase 3 clinical trials; however, this is slightly lower in real-life cohorts. Hepatitis C virus resistant variants are seen in most patients who do not achieve SVR due to selection and outgrowth of resistant hepatitis C virus variants within a given host. These resistance associated mutations depend on the class of direct-acting antiviral drugs used and also vary between hepatitis C virus genotypes and subtypes. The understanding of these mutations has a clear clinical implication in terms of choice and combination of drugs used. In this review, we describe mechanism of action of currently available drugs and summarize clinically relevant resistance data.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azarkh, Eugene; Robinson, Erin; Hirunkanokpun, Supanee

    Mosquito densonucleosis viruses synthesize two non-structural proteins, NS1 and NS2. While NS1 has been studied relatively well, little is known about NS2. Antiserum was raised against a peptide near the N-terminus of NS2, and used to conduct Western blot analysis and immuno-fluorescence assays. Western blots revealed a prominent band near the expected size (41 kDa). Immuno-fluorescence studies of mosquito cells transfected with AeDNV indicate that NS2 has a wider distribution pattern than does NS1, and the distribution pattern appears to be a function of time post-infection. Nuclear localization of NS2 requires intact C-terminus but does not require additional viral proteins.more » Mutations ranging from complete NS2 knock-out to a single missense amino acid substitution in NS2 can significantly reduce viral replication and production of viable progeny.« less

  17. Production of infectious chimeric hepatitis C virus genotype 2b harboring minimal regions of JFH-1.

    PubMed

    Murayama, Asako; Kato, Takanobu; Akazawa, Daisuke; Sugiyama, Nao; Date, Tomoko; Masaki, Takahiro; Nakamoto, Shingo; Tanaka, Yasuhito; Mizokami, Masashi; Yokosuka, Osamu; Nomoto, Akio; Wakita, Takaji

    2012-02-01

    To establish a cell culture system for chimeric hepatitis C virus (HCV) genotype 2b, we prepared a chimeric construct harboring the 5' untranslated region (UTR) to the E2 region of the MA strain (genotype 2b) and the region of p7 to the 3' UTR of the JFH-1 strain (genotype 2a). This chimeric RNA (MA/JFH-1.1) replicated and produced infectious virus in Huh7.5.1 cells. Replacement of the 5' UTR of this chimera with that from JFH-1 (MA/JFH-1.2) enhanced virus production, but infectivity remained low. In a long-term follow-up study, we identified a cell culture-adaptive mutation in the core region (R167G) and found that it enhanced virus assembly. We previously reported that the NS3 helicase (N3H) and the region of NS5B to 3' X (N5BX) of JFH-1 enabled replication of the J6CF strain (genotype 2a), which could not replicate in cells. To reduce JFH-1 content in MA/JFH-1.2, we produced a chimeric viral genome for MA harboring the N3H and N5BX regions of JFH-1, combined with a JFH-1 5' UTR replacement and the R167G mutation (MA/N3H+N5BX-JFH1/R167G). This chimeric RNA replicated efficiently, but virus production was low. After the introduction of four additional cell culture-adaptive mutations, MA/N3H+N5BX-JFH1/5am produced infectious virus efficiently. Using this chimeric virus harboring minimal regions of JFH-1, we analyzed interferon sensitivity and found that this chimeric virus was more sensitive to interferon than JFH-1 and another chimeric virus containing more regions from JFH-1 (MA/JFH-1.2/R167G). In conclusion, we established an HCV genotype 2b cell culture system using a chimeric genome harboring minimal regions of JFH-1. This cell culture system may be useful for characterizing genotype 2b viruses and developing antiviral strategies.

  18. η(4) -HBCC-σ,π-Borataallyl Complexes of Ruthenium Comprising an Agostic Interaction.

    PubMed

    Saha, Koushik; Joseph, Benson; Ramalakshmi, Rongala; Anju, R S; Varghese, Babu; Ghosh, Sundargopal

    2016-06-01

    Thermolysis of [Cp*Ru(PPh2 (CH2 )PPh2 )BH2 (L2 )] 1 (Cp*=η(5) -C5 Me5 ; L=C7 H4 NS2 ), with terminal alkynes led to the formation of η(4) -σ,π-borataallyl complexes [Cp*Ru(μ-H)B{R-C=CH2 }(L)2 ] (2 a-c) and η(2) -vinylborane complexes [Cp*Ru(R-C=CH2 )BH(L)2 ] (3 a-c) (2 a, 3 a: R=Ph; 2 b, 3 b: R=COOCH3 ; 2 c, 3 c: R=p-CH3 -C6 H4 ; L=C7 H4 NS2 ) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a-c are linked by a unique η(4) -interaction. Conversions of 1 into 3 a-c proceed through the formation of intermediates 2 a-c. Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ-borane complex [Cp*RuCO(μ-H)BH2 L] 4 (L=C7 H4 NS2 ) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η(4) -σ,π-borataallyl complexes [Cp*Ru(μ-H)BH{R-C=CH2 }(L)] 5 and [Cp*Ru(μ-H)BH{HC=CH-R}(L)] 6 (R=COOCH3 ; L=C7 H4 NS2 ) by Markovnikov and anti-Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η(4) -σ,π-borataallyl complex [Cp*Ru(μ-H)BH{R-C=CH-R}(L)] 7 (R=COOCH3 ; L=C7 H4 NS2 ). An agostic interaction was also found to be present in 2 a-c and 5-7, which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, (1) H, (11) B, (13) C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b, 3 a-c and 5-7. DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Identification and characterization of the host protein DNAJC14 as a broadly active flavivirus replication modulator.

    PubMed

    Yi, Zhigang; Sperzel, Lindsey; Nürnberger, Cindy; Bredenbeek, Peter J; Lubick, Kirk J; Best, Sonja M; Stoyanov, Cristina T; Law, Lok Man J; Yuan, Zhenghong; Rice, Charles M; MacDonald, Margaret R

    2011-01-13

    Viruses in the Flavivirus genus of the Flaviviridae family are arthropod-transmitted and contribute to staggering numbers of human infections and significant deaths annually across the globe. To identify cellular factors with antiviral activity against flaviviruses, we screened a cDNA library using an iterative approach. We identified a mammalian Hsp40 chaperone protein (DNAJC14) that when overexpressed was able to mediate protection from yellow fever virus (YFV)-induced cell death. Further studies revealed that DNAJC14 inhibits YFV at the step of viral RNA replication. Since replication of bovine viral diarrhea virus (BVDV), a member of the related Pestivirus genus, is also known to be modulated by DNAJC14, we tested the effect of this host factor on diverse Flaviviridae family members. Flaviviruses, including the pathogenic Asibi strain of YFV, Kunjin, and tick-borne Langat virus, as well as a Hepacivirus, hepatitis C virus (HCV), all were inhibited by overexpression of DNAJC14. Mutagenesis showed that both the J-domain and the C-terminal domain, which mediates self-interaction, are required for anti-YFV activity. We found that DNAJC14 does not block YFV nor HCV NS2-3 cleavage, and using non-inhibitory mutants demonstrate that DNAJC14 is recruited to YFV replication complexes. Immunofluorescence analysis demonstrated that endogenous DNAJC14 rearranges during infection and is found in replication complexes identified by dsRNA staining. Interestingly, silencing of endogenous DNAJC14 results in impaired YFV replication suggesting a requirement for DNAJC14 in YFV replication complex assembly. Finally, the antiviral activity of overexpressed DNAJC14 occurs in a time- and dose-dependent manner. DNAJC14 overexpression may disrupt the proper stoichiometry resulting in inhibition, which can be overcome upon restoration of the optimal ratios due to the accumulation of viral nonstructural proteins. Our findings, together with previously published work, suggest that the members of the Flaviviridae family have evolved in unique and important ways to interact with this host Hsp40 chaperone molecule.

  20. A Crystal Structure of the Dengue Virus Non-structural Protein 5 (NS5) Polymerase Delineates Interdomain Amino Acid Residues That Enhance Its Thermostability and de Novo Initiation Activities*

    PubMed Central

    Lim, Siew Pheng; Koh, Jolene Hong Kiew; Seh, Cheah Chen; Liew, Chong Wai; Davidson, Andrew D.; Chua, Leng Shiew; Chandrasekaran, Ramya; Cornvik, Tobias C.; Shi, Pei-Yong; Lescar, Julien

    2013-01-01

    The dengue virus (DENV) non-structural protein 5 (NS5) comprises an N-terminal methyltransferase and a C-terminal RNA-dependent RNA polymerase (RdRp) domain. Both enzymatic activities form attractive targets for antiviral development. Available crystal structures of NS5 fragments indicate that residues 263–271 (using the DENV serotype 3 numbering) located between the two globular domains of NS5 could be flexible. We observed that the addition of linker residues to the N-terminal end of the DENV RdRp core domain stabilizes DENV1–4 proteins and improves their de novo polymerase initiation activities by enhancing the turnover of the RNA and NTP substrates. Mutation studies of linker residues also indicate their importance for viral replication. We report the structure at 2.6-Å resolution of an RdRp fragment from DENV3 spanning residues 265–900 that has enhanced catalytic properties compared with the RdRp fragment (residues 272–900) reported previously. This new orthorhombic crystal form (space group P21212) comprises two polymerases molecules arranged as a dimer around a non-crystallographic dyad. The enzyme adopts a closed “preinitiation” conformation similar to the one that was captured previously in space group C2221 with one molecule per asymmetric unit. The structure reveals that residues 269–271 interact with the RdRp domain and suggests that residues 263–268 of the NS5 protein from DENV3 are the major contributors to the flexibility between its methyltransferase and RdRp domains. Together, these results should inform the screening and development of antiviral inhibitors directed against the DENV RdRp. PMID:24025331

  1. Synthesis, structural characterization, photo-physical and magnetic properties of cobalt salphen pseudo halide complexes showing meta-magnetic ordering

    NASA Astrophysics Data System (ADS)

    Nassief, A. R.; Abdel-Hafiez, M.; Hassen, A.; Khalil, A. S. G.; Saber, M. R.

    2018-04-01

    The solvo-thermal syntheses of [(CoSalphen)2Co (SCN)2]n (1), CoSalphen(NH3)(N3)(2), Na[CoIIIsalphen(N3)2](3), Na[CoIIIsalen(N3)2](4) and CoIIIsalen(NH3)(N3) (5) {salphen = N,N'-o-phenylene-bis(salicylideneimine)} are reported. The structural studies using X-ray diffraction measurements revealed that 1 crystalizes in a monoclinic C2/c space group. Two cobalt (II) metal centers in penta-coordinated and octahedral local coordination environments are bridged via alternating O and μ1,3 SCN bridges resulting in a novel 2D layered coordination polymer. Compound 2 is a trivalent mononuclear cobalt azido complex with an octahedral coordination environment. The magnetic investigations of 1 revealed ferromagnetic coupling (J = +49.1 cm-1) and meta-magnetic ordering. Time resolved photoluminescence studies of the complexes showed excited state lifetimes of (τ1 = 0.4675 ns, τ2 = 5.23 ns) for 1 and (τ1 = 0.5078 ns, τ2 = 6.79 ns) for 2.

  2. Genotypic and Phenotypic Analyses of Hepatitis C Virus Variants Observed in Clinical Studies of VX-222, a Nonnucleoside NS5B Polymerase Inhibitor

    PubMed Central

    Zhang, Eileen Z.; Ardzinski, Andrzej; Tigges, Ann; Davis, Andrew; Sullivan, James C.; Nelson, Michelle; Spanks, Joan; Dorrian, Jennifer; Nicolas, Olivier; Bartels, Doug J.; Rao, B. Govinda; Rijnbrand, Rene; Kieffer, Tara L.

    2014-01-01

    VX-222, a thiophene-2-carboxylic acid derivative, is a selective nonnucleoside inhibitor of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase. In phase 1 and 2 clinical studies, VX-222 demonstrated effective antiviral efficacy, with substantial reductions in plasma HCV RNA in patients chronically infected with genotype 1 HCV. To characterize the potential for selection of VX-222-resistant variants in HCV-infected patients, the HCV NS5B gene was sequenced at baseline and during and after 3 days of VX-222 dosing (monotherapy) in a phase 1 study. Variants with the substitutions L419C/I/M/P/S/V, R422K, M423I/T/V, I482L/N/T, A486S/T/V, and V494A were selected during VX-222 dosing, and their levels declined over time after the end of dosing. Phenotypic analysis of these variants was conducted using HCV replicons carrying site-directed mutations. Of the 17 variants, 14 showed reduced susceptibility to VX-222 compared with the wild type, with the L419C/S and R422K variants having higher levels of resistance (>200-fold) than the rest of the variants (6.8- to 76-fold). The M423I and A486S variants remained susceptible to VX-222. The 50% effective concentration (EC50) for the L419P variant could not be obtained due to the poor replication of this replicon. The majority of the variants (15/17) were less fit than the wild type. A subset of the variants, predominately the L419S and R422K variants, were observed when the efficacy and safety of VX-222- and telaprevir-based regimens given for 12 weeks were investigated in genotype 1 HCV-infected patients in a phase 2 study. The NS3 and NS5B variants selected during the dual combination therapy showed reduced susceptibility to both telaprevir and VX-222 and had a lower replication capacity than the wild type. The phase 1b study has the ClinicalTrials.gov identifier NCT00911963, and the phase 2a study has ClinicalTrials.gov identifier NCT01080222. PMID:24982088

  3. Genotypic and phenotypic analyses of hepatitis C virus variants observed in clinical studies of VX-222, a nonnucleoside NS5B polymerase inhibitor.

    PubMed

    Jiang, Min; Zhang, Eileen Z; Ardzinski, Andrzej; Tigges, Ann; Davis, Andrew; Sullivan, James C; Nelson, Michelle; Spanks, Joan; Dorrian, Jennifer; Nicolas, Olivier; Bartels, Doug J; Rao, B Govinda; Rijnbrand, Rene; Kieffer, Tara L

    2014-09-01

    VX-222, a thiophene-2-carboxylic acid derivative, is a selective nonnucleoside inhibitor of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase. In phase 1 and 2 clinical studies, VX-222 demonstrated effective antiviral efficacy, with substantial reductions in plasma HCV RNA in patients chronically infected with genotype 1 HCV. To characterize the potential for selection of VX-222-resistant variants in HCV-infected patients, the HCV NS5B gene was sequenced at baseline and during and after 3 days of VX-222 dosing (monotherapy) in a phase 1 study. Variants with the substitutions L419C/I/M/P/S/V, R422K, M423I/T/V, I482L/N/T, A486S/T/V, and V494A were selected during VX-222 dosing, and their levels declined over time after the end of dosing. Phenotypic analysis of these variants was conducted using HCV replicons carrying site-directed mutations. Of the 17 variants, 14 showed reduced susceptibility to VX-222 compared with the wild type, with the L419C/S and R422K variants having higher levels of resistance (>200-fold) than the rest of the variants (6.8- to 76-fold). The M423I and A486S variants remained susceptible to VX-222. The 50% effective concentration (EC50) for the L419P variant could not be obtained due to the poor replication of this replicon. The majority of the variants (15/17) were less fit than the wild type. A subset of the variants, predominately the L419S and R422K variants, were observed when the efficacy and safety of VX-222- and telaprevir-based regimens given for 12 weeks were investigated in genotype 1 HCV-infected patients in a phase 2 study. The NS3 and NS5B variants selected during the dual combination therapy showed reduced susceptibility to both telaprevir and VX-222 and had a lower replication capacity than the wild type. The phase 1b study has the ClinicalTrials.gov identifier NCT00911963, and the phase 2a study has ClinicalTrials.gov identifier NCT01080222. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Discovery of Dengue Virus NS4B Inhibitors

    PubMed Central

    Wang, Qing-Yin; Dong, Hongping; Zou, Bin; Karuna, Ratna; Wan, Kah Fei; Zou, Jing; Susila, Agatha; Yip, Andy; Shan, Chao; Yeo, Kim Long; Xu, Haoying; Ding, Mei; Chan, Wai Ling; Gu, Feng; Seah, Peck Gee; Liu, Wei; Lakshminarayana, Suresh B.; Kang, CongBao; Lescar, Julien; Blasco, Francesca; Smith, Paul W.

    2015-01-01

    ABSTRACT The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50, >20 μM). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. IMPORTANCE Dengue virus (DENV) threatens up to 2.5 billion people and is now spreading in many regions in the world where it was not previously endemic. While there are several promising vaccine candidates in clinical trials, approved vaccines or antivirals are not yet available. Here we describe the identification and characterization of a spiropyrazolopyridone as a novel inhibitor of DENV by targeting the viral NS4B protein. The compound potently inhibits two of the four serotypes of DENV (DENV-2 and -3) both in vitro and in vivo. Our results validate, for the first time, that NS4B inhibitors could potentially be developed for antiviral therapy for treatment of DENV infection in humans. PMID:26018165

  5. Molecular targets for flavivirus drug discovery

    PubMed Central

    Sampath, Aruna; Padmanabhan, R.

    2009-01-01

    Flaviviruses are a major cause of infectious disease in humans. Dengue virus causes an estimated 50 million cases of febrile illness each year, including an increasing number of cases of hemorrhagic fever. West Nile virus, which recently spread from the Mediterranean basin to the Western Hemisphere, now causes thousands of sporadic cases of encephalitis annually. Despite the existence of licensed vaccines, yellow fever, Japanese encephalitis and tick-borne encephalitis also claim many thousands of victims each year across their vast endemic areas. Antiviral therapy could potentially reduce morbidity and mortality from flavivirus infections, but no effective drugs are currently available. This article introduces a collection of papers in Antiviral Research on molecular targets for flavivirus antiviral drug design and murine models of dengue virus disease that aims to encourage drug development efforts. After reviewing the flavivirus replication cycle, we discuss the envelope glycoprotein, NS3 protease, NS3 helicase, NS5 methyltransferase and NS5 RNA-dependent RNA polymerase as potential drug targets, with special attention being given to the viral protease. The other viral proteins are the subject of individual articles in the journal. Together, these papers highlight current status of drug discovery efforts for flavivirus diseases and suggest promising areas for further research. PMID:18796313

  6. HCV NS5A Up-Regulates COX-2 Expression via IL-8-Mediated Activation of the ERK/JNK MAPK Pathway

    PubMed Central

    Chen, Wei-Chun; Tseng, Chin-Kai; Chen, Yen-Hsu; Lin, Chun-Kuang; Hsu, Shih-hsien; Wang, Shen-Nien; Lee, Jin-Ching

    2015-01-01

    Chronic hepatitis C virus (HCV) infection leads to intrahepatic inflammation and liver cell injury, which are considered a risk factor for virus-associated hepatitis, cirrhosis, and hepatocellular carcinoma worldwide. Inflammatory cytokines are critical components of the immune system and influence cellular signaling, and genetic imbalances. In this study, we found that cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) were significantly induced by HCV infection and HCV NS5A expression, and induction of COX-2 correlated with HCV-induced IL-8 production. We also found that the ERK and JNK signaling pathways were involved in the regulation of IL-8-mediated COX-2 induction in response to HCV infection. Using a promoter-linked reporter assay, we identified that the C/EBP regulatory element within the COX-2 promoter was the dominant factor responsible for the induction of COX-2 by HCV. Silencing C/EBP attenuated HCV-induced COX-2 expression. Our results revealed that HCV-induced inflammation promotes viral replication, providing new insights into the involvement of IL-8-mediated COX-2 induction in HCV replication. PMID:26231035

  7. Diverse Effects of Cyclosporine on Hepatitis C Virus Strain Replication

    PubMed Central

    Ishii, Naoto; Watashi, Koichi; Hishiki, Takayuki; Goto, Kaku; Inoue, Daisuke; Hijikata, Makoto; Wakita, Takaji; Kato, Nobuyuki; Shimotohno, Kunitada

    2006-01-01

    Recently, a production system for infectious particles of hepatitis C virus (HCV) utilizing the genotype 2a JFH1 strain has been developed. This strain has a high capacity for replication in the cells. Cyclosporine (CsA) has a suppressive effect on HCV replication. In this report, we characterize the anti-HCV effect of CsA. We observe that the presence of viral structural proteins does not influence the anti-HCV activity of CsA. Among HCV strains, the replication of genotype 1b replicons was strongly suppressed by treatment with CsA. In contrast, JFH1 replication was less sensitive to CsA and its analog, NIM811. Replication of JFH1 did not require the cellular replication cofactor, cyclophilin B (CyPB). CyPB stimulated the RNA binding activity of NS5B in the genotype 1b replicon but not the genotype 2a JFH1 strain. These findings provide an insight into the mechanisms of diversity governing virus-cell interactions and in the sensitivity of these strains to antiviral agents. PMID:16611911

  8. Mechanistic Characterization of GS-9190 (Tegobuvir), a Novel Nonnucleoside Inhibitor of Hepatitis C Virus NS5B Polymerase▿

    PubMed Central

    Shih, I-hung; Vliegen, Inge; Peng, Betty; Yang, Huiling; Hebner, Christy; Paeshuyse, Jan; Pürstinger, Gerhard; Fenaux, Martijn; Tian, Yang; Mabery, Eric; Qi, Xiaoping; Bahador, Gina; Paulson, Matthew; Lehman, Laura S.; Bondy, Steven; Tse, Winston; Reiser, Hans; Lee, William A.; Schmitz, Uli; Neyts, Johan; Zhong, Weidong

    2011-01-01

    GS-9190 (Tegobuvir) is a novel imidazopyridine inhibitor of hepatitis C virus (HCV) RNA replication in vitro and has demonstrated potent antiviral activity in patients chronically infected with genotype 1 (GT1) HCV. GS-9190 exhibits reduced activity against GT2a (JFH1) subgenomic replicons and GT2a (J6/JFH1) infectious virus, suggesting that the compound's mechanism of action involves a genotype-specific viral component. To further investigate the GS-9190 mechanism of action, we utilized the susceptibility differences between GT1b and GT2a by constructing a series of replicon chimeras where combinations of 1b and 2a nonstructural proteins were encoded within the same replicon. The antiviral activities of GS-9190 against the chimeric replicons were reduced to levels comparable to that of the wild-type GT2a replicon in chimeras expressing GT2a NS5B. GT1b replicons in which the β-hairpin region (amino acids 435 to 455) was replaced by the corresponding sequence of GT2a were markedly less susceptible to GS-9190, indicating the importance of the thumb subdomain of the polymerase in this effect. Resistance selection in GT1b replicon cells identified several mutations in NS5B (C316Y, Y448H, Y452H, and C445F) that contributed to the drug resistance phenotype. Reintroduction of these mutations into wild-type replicons conferred resistance to GS-9190, with the number of NS5B mutations correlating with the degree of resistance. Analysis of GS-9190 cross-resistance against previously reported NS5B drug-selected mutations showed that the resistance pattern of GS-9190 is different from other nonnucleoside inhibitors. Collectively, these data demonstrate that GS-9190 represents a novel class of nonnucleoside polymerase inhibitors that interact with NS5B likely through involvement of the β-hairpin in the thumb subdomain. PMID:21746939

  9. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    PubMed

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell endomembrane system to produce a membranous replication organelle (RO). The underlying mechanisms are far from being elucidated fully. In this report, we provide evidence that HCV RNA replication depends on functional lipid transport along the endosomal-lysosomal pathway that is mediated by several lipid transfer proteins, such as the Niemann-Pick type C1 (NPC1) protein. Pharmacological inhibition of NPC1 function reduced viral replication, impaired the transport of cholesterol to the viral replication organelle, and altered organelle morphology. Besides NPC1, our study reports the importance of additional endosomal and lysosomal lipid transfer proteins required for viral replication, thus contributing to our understanding of how HCV manipulates their function in order to generate a membranous replication organelle. These results might have implications for the biogenesis of replication organelles of other positive-strand RNA viruses. Copyright © 2017 American Society for Microbiology.

  10. Membrane alterations induced by nonstructural proteins of human norovirus

    PubMed Central

    White, Peter A.; Hansman, Grant S.

    2017-01-01

    Human noroviruses (huNoV) are the most frequent cause of non-bacterial acute gastroenteritis worldwide, particularly genogroup II genotype 4 (GII.4) variants. The viral nonstructural (NS) proteins encoded by the ORF1 polyprotein induce vesical clusters harboring the viral replication sites. Little is known so far about the ultrastructure of these replication organelles or the contribution of individual NS proteins to their biogenesis. We compared the ultrastructural changes induced by expression of norovirus ORF1 polyproteins with those induced upon infection with murine norovirus (MNV). Characteristic membrane alterations induced by ORF1 expression resembled those found in MNV infected cells, consisting of vesicle accumulations likely built from the endoplasmic reticulum (ER) which included single membrane vesicles (SMVs), double membrane vesicles (DMVs) and multi membrane vesicles (MMVs). In-depth analysis using electron tomography suggested that MMVs originate through the enwrapping of SMVs with tubular structures similar to mechanisms reported for picornaviruses. Expression of GII.4 NS1-2, NS3 and NS4 fused to GFP revealed distinct membrane alterations when analyzed by correlative light and electron microscopy. Expression of NS1-2 induced proliferation of smooth ER membranes forming long tubular structures that were affected by mutations in the active center of the putative NS1-2 hydrolase domain. NS3 was associated with ER membranes around lipid droplets (LDs) and induced the formation of convoluted membranes, which were even more pronounced in case of NS4. Interestingly, NS4 was the only GII.4 protein capable of inducing SMV and DMV formation when expressed individually. Our work provides the first ultrastructural analysis of norovirus GII.4 induced vesicle clusters and suggests that their morphology and biogenesis is most similar to picornaviruses. We further identified NS4 as a key factor in the formation of membrane alterations of huNoV and provide models of the putative membrane topologies of NS1-2, NS3 and NS4 to guide future studies. PMID:29077760

  11. Detergent-resistant membrane association of NS2 and E2 during hepatitis C virus replication.

    PubMed

    Shanmugam, Saravanabalaji; Saravanabalaji, Dhanaranjani; Yi, MinKyung

    2015-04-01

    Previously, we demonstrated that the efficiency of hepatitis C virus (HCV) E2-p7 processing regulates p7-dependent NS2 localization to putative virus assembly sites near lipid droplets (LD). In this study, we have employed subcellular fractionations and membrane flotation assays to demonstrate that NS2 associates with detergent-resistant membranes (DRM) in a p7-dependent manner. However, p7 likely plays an indirect role in this process, since only the background level of p7 was detectable in the DRM fractions. Our data also suggest that the p7-NS2 precursor is not involved in NS2 recruitment to the DRM, despite its apparent targeting to this location. Deletion of NS2 specifically inhibited E2 localization to the DRM, indicating that NS2 regulates this process. Treatment of cells with methyl-β-cyclodextrin (MβCD) significantly reduced the DRM association of Core, NS2, and E2 and reduced infectious HCV production. Since disruption of the DRM localization of NS2 and E2, either due to p7 and NS2 defects, respectively, or by MβCD treatment, inhibited infectious HCV production, these proteins' associations with the DRM likely play an important role during HCV assembly. Interestingly, we detected the HCV replication-dependent accumulation of ApoE in the DRM fractions. Taking into consideration the facts that ApoE was shown to be a major determinant for infectious HCV particle production at the postenvelopment step and that the HCV Core protein strongly associates with the DRM, recruitment of E2 and ApoE to the DRM may allow the efficient coordination of Core particle envelopment and postenvelopment events at the DRM to generate infectious HCV production. The biochemical nature of HCV assembly sites is currently unknown. In this study, we investigated the correlation between NS2 and E2 localization to the detergent-resistant membranes (DRM) and HCV particle assembly. We determined that although NS2's DRM localization is dependent on p7, p7 was not targeted to these membranes. We then showed that NS2 regulates E2 localization to the DRM, consistent with its role in recruiting E2 to the virus assembly sites. We also showed that short-term treatment with the cholesterol-extracting agent methyl-β-cyclodextrin (MβCD) not only disrupted the DRM localization of Core, NS2, and E2 but also specifically inhibited intracellular virus assembly without affecting HCV RNA replication. Thus, our data support the role of the DRM as a platform for particle assembly process. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Interplay of PA-X and NS1 Proteins in Replication and Pathogenesis of a Temperature-Sensitive 2009 Pandemic H1N1 Influenza A Virus.

    PubMed

    Nogales, Aitor; Rodriguez, Laura; DeDiego, Marta L; Topham, David J; Martínez-Sobrido, Luis

    2017-09-01

    Influenza A viruses (IAVs) cause seasonal epidemics and occasional pandemics, representing a serious public health concern. It has been described that one mechanism used by some IAV strains to escape the host innate immune responses and modulate virus pathogenicity involves the ability of the PA-X and NS1 proteins to inhibit the host protein synthesis in infected cells. It was reported that for the 2009 pandemic H1N1 IAV (pH1N1) only the PA-X protein had this inhibiting capability, while the NS1 protein did not. In this work, we have evaluated, for the first time, the combined effect of PA-X- and NS1-mediated inhibition of general gene expression on virus pathogenesis, using a temperature-sensitive, live-attenuated 2009 pandemic H1N1 IAV (pH1N1 LAIV). We found that viruses containing PA-X and NS1 proteins that simultaneously have (PA WT + /NS1 MUT + ) or do not have (PA MUT - /NS1 WT - ) the ability to block host gene expression showed reduced pathogenicity in vivo However, a virus where the ability to inhibit host protein expression was switched between PA-X and NS1 (PA MUT - /NS1 MUT + ) presented pathogenicity similar to that of a virus containing both wild-type proteins (PA WT + /NS1 WT - ). Our findings suggest that inhibition of host protein expression is subject to a strict balance, which can determine the successful progression of IAV infection. Importantly, knowledge obtained from our studies could be used for the development of new and more effective vaccine approaches against IAV. IMPORTANCE Influenza A viruses (IAVs) are one of the most common causes of respiratory infections in humans, resulting in thousands of deaths annually. Furthermore, IAVs can cause unpredictable pandemics of great consequence when viruses not previously circulating in humans are introduced into humans. The defense machinery provided by the host innate immune system limits IAV replication; however, to counteract host antiviral activities, IAVs have developed different inhibition mechanisms, including prevention of host gene expression mediated by the viral PA-X and NS1 proteins. Here, we provide evidence demonstrating that optimal control of host protein synthesis by IAV PA-X and/or NS1 proteins is required for efficient IAV replication in the host. Moreover, we demonstrate the feasibility of genetically controlling the ability of IAV PA-X and NS1 proteins to inhibit host immune responses, providing an approach to develop more effective vaccines to combat disease caused by this important respiratory pathogen. Copyright © 2017 American Society for Microbiology.

  13. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khunchai, Sasiprapa; Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok; Junking, Mutita

    Highlights: Black-Right-Pointing-Pointer For the first time how DENV NS5 increases RANTES production. Black-Right-Pointing-Pointer DENV NS5 physically interacts with human Daxx. Black-Right-Pointing-Pointer Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteinsmore » and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.« less

  14. RNA-dependent RNA polymerases from flaviviruses and Picornaviridae.

    PubMed

    Lescar, Julien; Canard, Bruno

    2009-12-01

    Flaviviruses and picornaviruses are positive-strand RNA viruses that encode the RNA-dependent RNA polymerase (RdRp) required for replicating the viral genome in infected cells. Because of their specific and essential role in the virus life cycle, RdRps are prime targets for antiviral drugs. Recent structural data have shed light on the different strategies used by RdRps from flaviviruses and Picornaviridae to initiate RNA polymerization. New details about the catalytic mechanism, the role of metal ions, how these RdRps interact with other nonstructural (NS) viral and host-cell proteins as well as with the viral RNA genome have also been published. These advances contribute to give a more complete picture of the 3D structure and mechanism of a membrane-bound viral replication complex for these two classes of medically important human pathogens.

  15. Extended Surface for Membrane Association in Zika Virus NS1 Structure

    PubMed Central

    Brown, W. Clay; Akey, David L.; Konwerski, Jamie; Tarrasch, Jeffrey T.; Skiniotis, Georgios; Kuhn, Richard J.; Smith, Janet L.

    2018-01-01

    The Zika virus, which is implicated in an increase in neonatal microcephaly and Guillain-Barré syndrome, has spread rapidly through tropical regions of the world. The virulence protein NS1 functions in genome replication and host immune system modulation. Here we report the crystal structure of full-length Zika virus NS1, revealing an elongated hydrophobic surface for membrane association and a polar surface that varies substantially among flaviviruses. PMID:27455458

  16. GINS complex protein Sld5 recruits SIK1 to activate MCM helicase during DNA replication.

    PubMed

    Joshi, Kiranmai; Shah, Varun Jayeshkumar; Maddika, Subbareddy

    2016-12-01

    In eukaryotes, proper loading and activation of MCM helicase at chromosomal origins plays a central role in DNA replication. Activation of MCM helicase requires its association with CDC45-GINS complex, but the mechanism of how this complex activates MCM helicase is poorly understood. Here we identified SIK1 (salt-inducible kinase 1), an AMPK related protein kinase, as a molecular link that connects GINS complex with MCM helicase activity. We demonstrated that Sld5 a component of GINS complex interacts with SIK1 and recruits it to the sites of DNA replication at the onset of S phase. Depletion of SIK1 leads to defective DNA replication. Further, we showed that SIK1 phosphorylates MCM2 at five conserved residues at its N-terminus, which is essential for the activation of MCM helicase. Collectively, our results suggest SIK1 as a novel integral component of CMG replicative helicase during eukaryotic DNA replication. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Drosophila melanogaster as a Model Organism for Bluetongue Virus Replication and Tropism

    PubMed Central

    Shaw, Andrew E.; Veronesi, Eva; Maurin, Guillemette; Ftaich, Najate; Guiguen, Francois; Rixon, Frazer; Ratinier, Maxime; Mertens, Peter; Carpenter, Simon; Palmarini, Massimo; Terzian, Christophe

    2012-01-01

    Bluetongue virus (BTV) is the etiological agent of bluetongue (BT), a hemorrhagic disease of ruminants that can cause high levels of morbidity and mortality. BTV is an arbovirus transmitted between its ruminant hosts by Culicoides biting midges (Diptera: Ceratopogonidae). Recently, Europe has experienced some of the largest BT outbreaks ever recorded, including areas with no known history of the disease, leading to unprecedented economic and animal welfare issues. The current lack of genomic resources and genetic tools for Culicoides restricts any detailed study of the mechanisms involved in the virus-insect interactions. In contrast, the genome of the fruit fly (Drosophila melanogaster) has been successfully sequenced, and it is used extensively as a model of molecular pathways due to the existence of powerful genetic technology. In this study, D. melanogaster is investigated as a model for the replication and tropism of BTV. Using reverse genetics, a modified BTV-1 that expresses the fluorescent mCherry protein fused to the viral nonstructural protein NS3 (BTV-1/NS3mCherry) was generated. We demonstrate that BTV-1/NS3mCherry is not only replication competent as it retains many characteristics of the wild-type virus but also replicates efficiently in D. melanogaster after removal of the bacterial endosymbiont Wolbachia pipientis by antibiotic treatment. Furthermore, confocal microscopy shows that the tissue tropism of BTV-1/NS3mCherry in D. melanogaster resembles that described previously for BTV in Culicoides. Overall, the data presented in this study demonstrate the feasibility of using D. melanogaster as a genetic model to investigate BTV-insect interactions that cannot be otherwise addressed in vector species. PMID:22674991

  18. Characterization of a novel flavivirus isolated from Culex (Melanoconion) ocossa mosquitoes from Iquitos, Peru.

    PubMed

    Evangelista, Julio; Cruz, Cristhopher; Guevara, Carolina; Astete, Helvio; Carey, Cristiam; Kochel, Tadeusz J; Morrison, Amy C; Williams, Maya; Halsey, Eric S; Forshey, Brett M

    2013-06-01

    We describe the isolation and characterization of a novel flavivirus, isolated from a pool of Culex (Melanoconion) ocossa Dyar and Knab mosquitoes collected in 2009 in an urban area of the Amazon basin city of Iquitos, Peru. Flavivirus infection was detected by indirect immunofluorescent assay of inoculated C6/36 cells using polyclonal flavivirus antibodies (St. Louis encephalitis virus, yellow fever virus and dengue virus type 1) and confirmed by RT-PCR. Based on partial sequencing of the E and NS5 gene regions, the virus isolate was most closely related to the mosquito-borne flaviviruses but divergent from known species, with less than 45 and 71 % pairwise amino acid identity in the E and NS5 gene products, respectively. Phylogenetic analysis of E and NS5 amino acid sequences demonstrated that this flavivirus grouped with mosquito-borne flaviviruses, forming a clade with Nounané virus (NOUV). Like NOUV, no replication was detected in a variety of mammalian cells (Vero-76, Vero-E6, BHK, LLCMK, MDCK, A549 and RD) or in intracerebrally inoculated newborn mice. We tentatively designate this genetically distinct flavivirus as representing a novel species, Nanay virus, after the river near where it was first detected.

  19. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme.

    PubMed

    Feibelman, Kristen M; Fuller, Benjamin P; Li, Linfeng; LaBarbera, Daniel V; Geiss, Brian J

    2018-06-01

    Chikungunya virus (CHIKV) is an arthropod-borne alphavirus. Alphaviruses are positive strand RNA viruses that require a 5' cap structure to direct translation of the viral polyprotein and prevent degradation of the viral RNA genome by host cell nucleases. Formation of the 5' RNA cap is orchestrated by the viral protein nsP1, which binds GTP and provides the N-7 methyltransferase and guanylyltransferase activities that are necessary for cap formation. Viruses with aberrant nsP1 activity are unable to replicate effectively suggesting that nsP1 is a promising target for antiviral drug discovery. Given the absence of commercially available antiviral therapies for CHIKV, it is imperative to identify compounds that could be developed as potential therapeutics. This study details a high-throughput screen of 3051 compounds from libraries containing FDA-approved drugs, natural products, and known bioactives against CHIKV nsP1 using a fluorescence polarization-based GTP competition assay. Several small molecule hits from this screen were able to compete with GTP for the CHIKV nsP1 GTP binding site at low molar concentrations. Compounds were also evaluated with an orthogonal assay that measured the ability of nsP1 to perform the guanylation step of the capping reaction in the presence of inhibitor. In addition, live virus assays with CHIKV and closely related alphavirus, Sindbis virus, were used in conjunction with cell toxicity assays to determine the antiviral activity of compounds in cell culture. The naturally derived compound lobaric acid was found to inhibit CHIKV nsP1 GTP binding and guanylation as well as attenuate viral growth in vitro at both 24 hpi and 48 hpi in hamster BHK21 and human Huh 7 cell lines. These data indicate that development of lobaric acid and further exploration of CHIKV nsP1 as a drug target may aid in the progress of anti-alphaviral drug development strategies. Copyright © 2018. Published by Elsevier B.V.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Shih-Ching; Lo, Shih-Yen; Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan

    Research highlights: {yields} Lipid rafts are known to play an important role in virus entry and virus assembly of many viruses. {yields} However, HCV is the first example of the association of lipid raft with viral RNA replication. {yields} Our results in this manuscript demonstrate that purified HCV RCs with associated lipid raft membrane appeared as distinct particles of around 0.7 um under EM and AFM. {yields} Knockdown of proteins associated with lipid raft suppressed the HCV replication and reduced the number of these particles. {yields} To our knowledge, structures of HCV RCs were demonstrated at its first time inmore » this manuscript. -- Abstract: Hepatitis C viral RNA synthesis has been demonstrated to occur on a lipid raft membrane structure. Lipid raft membrane fraction purified by membrane flotation analysis was observed using transmission electron microscopy and atomic force microscopy. Particles around 0.7 um in size were found in lipid raft membrane fraction purified from hepatitis C virus (HCV) replicon but not their parental HuH7 cells. HCV NS5A protein was associated with these specialized particles. After several cycles of freezing-thawing, these particles would fuse into larger sizes up to 10 um. Knockdown of seven proteins associated with lipid raft (VAPA, COPG, RAB18, COMT, CDC42, DPP4, and KDELR2) of HCV replicon cells reduced the observed number of these particles and suppressed the HCV replication. Results in this study indicated that HCV replication complexes with associated lipid raft membrane form distinct particle structures of around 0.7 um as observed from transmission electron microscopy and atomic force microscopy.« less

  1. Porcine deltacoronavirus accessory protein NS6 antagonizes IFN-β production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA.

    PubMed

    Fang, Puxian; Fang, Liurong; Ren, Jie; Hong, Yingying; Liu, Xiaorong; Zhao, Yunyang; Wang, Dang; Peng, Guiqing; Xiao, Shaobo

    2018-05-16

    Porcine deltacoronavirus (PDCoV) has recently emerged as an enteric pathogen that can cause serious vomiting and diarrhea in suckling piglets. The first outbreak of PDCoV occurred in the United States in 2014 and was followed by reports of PDCoV in South Korea, China, Thailand, Lao people's Democratic Republic, and Vietnam, leading to economic losses for pig farms and posing considerable threat to the swine industry worldwide. Our previous studies have shown that PDCoV encodes three accessory proteins, NS6, NS7, and NS7a, but the functions of these proteins in viral replication, pathogenesis, and immune regulation remain unclear. Here, we found that ectopic expression of accessory protein NS6 significantly inhibits Sendai virus-induced interferon-β (IFN-β) production, as well as the activation of transcription factors IRF3 and NF-κB. Interestingly, NS6 does not impede the IFN-β promoter activation mediated via key molecules in the RIG-I-like receptor (RLR) signaling pathway, specifically RIG-I, MDA5, and their downstream molecules MAVS, TBK1, IKKϵ, and IRF3. Further analyses revealed that NS6 is not a RNA-binding protein; however, it interacts with RIG-I/MDA5. This interaction attenuates the binding of double-stranded RNA by RIG-I/MDA5, resulting in the reduction of RLR-mediated IFN-β production. Taken together, our results demonstrate that ectopic expression of NS6 antagonizes IFN-β production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA, revealing a new strategy employed by PDCoV accessory proteins to counteract the host innate antiviral immune response. IMPORTANCE Coronavirus accessory proteins are species-specific, and they perform multiple functions in viral pathogenicity and immunity, such as acting as interferon (IFN) antagonists and cell death inducers. Our previous studies have shown that porcine deltacoronavirus (PDCoV) encodes three accessory proteins. Here, we demonstrated for the first time that PDCoV accessory protein NS6 antagonizes IFN-β production by interacting with RIG-I and MDA5 to impede their association with double-stranded RNA. This is an efficient strategy of antagonizing type I IFN production by disrupting the binding of host pattern recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs). These findings deepen our understanding of the function of accessory protein NS6 and may direct us toward novel therapeutic targets and lead to the development of more effective vaccines against PDCoV infection. Copyright © 2018 American Society for Microbiology.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, Keith P.; Laine, Jennifer M.; Deveau, Laura M.

    Hepatitis C NS3/4A protease is a prime therapeutic target that is responsible for cleaving the viral polyprotein at junctions 3-4A, 4A4B, 4B5A, and 5A5B and two host cell adaptor proteins of the innate immune response, TRIF and MAVS. In this study, NS3/4A crystal structures of both host cell cleavage sites were determined and compared to the crystal structures of viral substrates. Two distinct protease conformations were observed and correlated with substrate specificity: (i) 3-4A, 4A4B, 5A5B, and MAVS, which are processed more efficiently by the protease, form extensive electrostatic networks when in complex with the protease, and (ii) TRIF andmore » 4B5A, which contain polyproline motifs in their full-length sequences, do not form electrostatic networks in their crystal complexes. These findings provide mechanistic insights into NS3/4A substrate recognition, which may assist in a more rational approach to inhibitor design in the face of the rapid acquisition of resistance.« less

  3. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbier, Vincent; Lang, Diane; Valois, Sierra

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associatedmore » with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.« less

  4. Imputation of orofacial clefting data identifies novel risk loci and sheds light on the genetic background of cleft lip ± cleft palate and cleft palate only

    PubMed Central

    Böhmer, Anne C.; Bowes, John; Nikolić, Miloš; Ishorst, Nina; Wyatt, Niki; Hammond, Nigel L.; Gölz, Lina; Thieme, Frederic; Barth, Sandra; Schuenke, Hannah; Klamt, Johanna; Spielmann, Malte; Aldhorae, Khalid; Rojas-Martinez, Augusto; Nöthen, Markus M.; Rada-Iglesias, Alvaro; Dixon, Michael J.; Knapp, Michael; Mangold, Elisabeth

    2017-01-01

    Abstract Nonsyndromic cleft lip with or without cleft palate (nsCL/P) is among the most common human birth defects with multifactorial etiology. Here, we present results from a genome-wide imputation study of nsCL/P in which, after adding replication cohort data, four novel risk loci for nsCL/P are identified (at chromosomal regions 2p21, 14q22, 15q24 and 19p13). On a systematic level, we show that the association signals within this high-density dataset are enriched in functionally-relevant genomic regions that are active in both human neural crest cells (hNCC) and mouse embryonic craniofacial tissue. This enrichment is also detectable in hNCC regions primed for later activity. Using GCTA analyses, we suggest that 30% of the estimated variance in risk for nsCL/P in the European population can be attributed to common variants, with 25.5% contributed to by the 24 risk loci known to date. For each of these, we identify credible SNPs using a Bayesian refinement approach, with two loci harbouring only one probable causal variant. Finally, we demonstrate that there is no polygenic component of nsCL/P detectable that is shared with nonsyndromic cleft palate only (nsCPO). Our data suggest that, while common variants are strongly contributing to risk for nsCL/P, they do not seem to be involved in nsCPO which might be more often caused by rare deleterious variants. Our study generates novel insights into both nsCL/P and nsCPO etiology and provides a systematic framework for research into craniofacial development and malformation. PMID:28087736

  5. [Effect of Hepatitis C virus proteins on the production of proinflammatory and profibrotic cytokines in Huh7.5 human hepatoma cells].

    PubMed

    Masalova, O V; Lesnova, E I; Permyakova, K Yu; Samokhvalov, E I; Ivanov, A V; Kochetkov, S N; Kushch, A A

    2016-01-01

    Hepatitis C virus (HCV) is a widespread dangerous human pathogen. Up to 80% of HCV-infected individuals develop chronic infection, which is often accompanied by liver inflammation and fibrosis and, at terminal stages, liver cirrhosis and cancer. Treatment of patients with end-stage liver disease is often ineffective, and even patients with suppressed HCV replication have higher risk of death as compared with noninfected subjects. Therefore, investigating the mechanisms that underlie HCV pathogenesis and developing treatments for virus-associated liver dysfunction remain an important goal. The effect of individual HCV proteins on the production of proinflammatory and profibrotic cytokines in hepatocellular carcinoma Huh7.5 cells was analyzed in a systematic manner. Cells were transfected with plasmids encoding HCV proteins. Cytokine production and secretion was accessed by immunocytochemistry and ELISA of the culture medium, and transcription of the cytokine genes was assessed using reverse transcription and PCR. HCV proteins proved to differ in effect on cytokine production. Downregulation of interleukin 6 (IL-6) production was observed in cells expressing the HCV core, NS3, and NS5A proteins. Production of transforming growth factor β1 (TGF-β1) was lower in cells expressing the core proteins, NS3, or E1/E2 glycoproteins. A pronounced increase in production and secretion of tumor necrosis factor α (TNF-α) was observed in response to expression of the HCV E1/E2 glycoproteins. A higher biosynthesis, but a lower level in the cell culture medium, was detected for interleukin 1β (IL-1β) in cells harboring NS4 and IL-6 in cells expressing NS5В. The finding was possibly explained by protein-specific retention and consequent accumulation of the respective cytokines in the cell.

  6. Identification of Respiratory Syncytial Virus Nonstructural Protein 2 Residues Essential for Exploitation of the Host Ubiquitin System and Inhibition of Innate Immune Responses.

    PubMed

    Whelan, Jillian N; Tran, Kim C; van Rossum, Damian B; Teng, Michael N

    2016-07-15

    Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children worldwide. The RSV nonstructural protein 2 (NS2) is a multifunctional protein that primarily acts to antagonize the innate immune system by targeting STAT2 for proteasomal degradation. We investigated the structural determinants of NS2 important for interaction with the host ubiquitin system to degrade STAT2 during infection. We found that NS2 expression enhances ubiquitination of host proteins. Bioinformatics analysis provided a platform for identification of specific residues that limit NS2-induced ubiquitination. Combinations of multiple mutations displayed an additive effect on reducing NS2-induced ubiquitination. Using a reverse genetics system, we generated recombinant RSV (rRSV) containing NS2 ubiquitin mutations, which maintained their effect on ubiquitin expression during infection. Interestingly, STAT2 degradation activity was ablated in the NS2 ubiquitin mutant rRSV. In addition, NS2 ubiquitin mutations decreased rRSV replication, indicating a correlation between NS2's ubiquitin function and antagonism of innate immune signaling to enhance viral replication. Our approach of targeting NS2 residues required for NS2 inhibition of immune responses provides a mechanism for attenuating RSV for vaccine development. RSV has been circulating globally for more than 60 years, causing severe respiratory disease in pediatric, elderly, and immunocompromised populations. Production of a safe, effective vaccine against RSV is a public health priority. The NS2 protein is an effective target for prevention and treatment of RSV due to its antagonistic activity against the innate immune system. However, NS2-deleted RSV vaccine candidates rendered RSV overattenuated or poorly immunogenic. Alternatively, we can modify essential NS2 structural features to marginally limit viral growth while maintaining immune responses, providing the necessary balance between antigenicity and safety required for an effective vaccine. We coupled bioinformatics analysis with reverse genetics to introduce mutations into RSV's negative-sense genome. In this way we constructed rRSV NS2 ubiquitin mutants that limited NS2's ability to antagonize the innate immune system, thereby attenuating rRSV growth and increasing innate immune responses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Visualization and Measurement of ATP Levels in Living Cells Replicating Hepatitis C Virus Genome RNA

    PubMed Central

    Ando, Tomomi; Imamura, Hiromi; Suzuki, Ryosuke; Aizaki, Hideki; Watanabe, Toshiki; Wakita, Takaji; Suzuki, Tetsuro

    2012-01-01

    Adenosine 5′-triphosphate (ATP) is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energized by ATP is controlled. In this study, we investigated the fluctuation and distribution of ATP in cells during RNA replication of the hepatitis C virus (HCV), a member of the Flaviviridae family. We demonstrated that cells involved in viral RNA replication actively consumed ATP, thereby reducing cytoplasmic ATP levels. Subsequently, a method to measure ATP levels at putative subcellular sites of HCV RNA replication in living cells was developed by introducing a recently-established Förster resonance energy transfer (FRET)-based ATP indicator, called ATeam, into the NS5A coding region of the HCV replicon. Using this method, we were able to observe the formation of ATP-enriched dot-like structures, which co-localize with non-structural viral proteins, within the cytoplasm of HCV-replicating cells but not in non-replicating cells. The obtained FRET signals allowed us to estimate ATP concentrations within HCV replicating cells as ∼5 mM at possible replicating sites and ∼1 mM at peripheral sites that did not appear to be involved in HCV replication. In contrast, cytoplasmic ATP levels in non-replicating Huh-7 cells were estimated as ∼2 mM. To our knowledge, this is the first study to demonstrate changes in ATP concentration within cells during replication of the HCV genome and increased ATP levels at distinct sites within replicating cells. ATeam may be a powerful tool for the study of energy metabolism during replication of the viral genome. PMID:22396648

  8. Identification and Characterization of the Host Protein DNAJC14 as a Broadly Active Flavivirus Replication Modulator

    PubMed Central

    Yi, Zhigang; Sperzel, Lindsey; Nürnberger, Cindy; Bredenbeek, Peter J.; Lubick, Kirk J.; Best, Sonja M.; Stoyanov, Cristina T.; Law, Lok Man J.; Yuan, Zhenghong; Rice, Charles M.; MacDonald, Margaret R.

    2011-01-01

    Viruses in the Flavivirus genus of the Flaviviridae family are arthropod-transmitted and contribute to staggering numbers of human infections and significant deaths annually across the globe. To identify cellular factors with antiviral activity against flaviviruses, we screened a cDNA library using an iterative approach. We identified a mammalian Hsp40 chaperone protein (DNAJC14) that when overexpressed was able to mediate protection from yellow fever virus (YFV)-induced cell death. Further studies revealed that DNAJC14 inhibits YFV at the step of viral RNA replication. Since replication of bovine viral diarrhea virus (BVDV), a member of the related Pestivirus genus, is also known to be modulated by DNAJC14, we tested the effect of this host factor on diverse Flaviviridae family members. Flaviviruses, including the pathogenic Asibi strain of YFV, Kunjin, and tick-borne Langat virus, as well as a Hepacivirus, hepatitis C virus (HCV), all were inhibited by overexpression of DNAJC14. Mutagenesis showed that both the J-domain and the C-terminal domain, which mediates self-interaction, are required for anti-YFV activity. We found that DNAJC14 does not block YFV nor HCV NS2-3 cleavage, and using non-inhibitory mutants demonstrate that DNAJC14 is recruited to YFV replication complexes. Immunofluorescence analysis demonstrated that endogenous DNAJC14 rearranges during infection and is found in replication complexes identified by dsRNA staining. Interestingly, silencing of endogenous DNAJC14 results in impaired YFV replication suggesting a requirement for DNAJC14 in YFV replication complex assembly. Finally, the antiviral activity of overexpressed DNAJC14 occurs in a time- and dose-dependent manner. DNAJC14 overexpression may disrupt the proper stoichiometry resulting in inhibition, which can be overcome upon restoration of the optimal ratios due to the accumulation of viral nonstructural proteins. Our findings, together with previously published work, suggest that the members of the Flaviviridae family have evolved in unique and important ways to interact with this host Hsp40 chaperone molecule. PMID:21249176

  9. Stress reduction programs in patients with elevated blood pressure: a systematic review and meta-analysis.

    PubMed

    Rainforth, Maxwell V; Schneider, Robert H; Nidich, Sanford I; Gaylord-King, Carolyn; Salerno, John W; Anderson, James W

    2007-12-01

    Substantial evidence indicates that psychosocial stress contributes to hypertension and cardiovascular disease (CVD). Previous meta-analyses of stress reduction and high blood pressure (BP) were outdated and/or methodologically limited. Therefore, we conducted an updated systematic review of the published literature and identified 107 studies on stress reduction and BP. Seventeen trials with 23 treatment comparisons and 960 participants with elevated BP met criteria for well-designed randomized controlled trials and were replicated within intervention categories. Meta-analysis was used to calculate BP changes for biofeedback, -0.8/-2.0 mm Hg (P = NS); relaxation-assisted biofeedback, +4.3/+2.4 mm Hg (P = NS); progressive muscle relaxation, -1.9/-1.4 mm Hg (P = NS); stress management training, -2.3/-1.3 mm (P = NS); and the Transcendental Meditation program, -5.0/-2.8 mm Hg (P = 0.002/0.02). Available evidence indicates that among stress reduction approaches, the Transcendental Meditation program is associated with significant reductions in BP. Related data suggest improvements in other CVD risk factors and clinical outcomes.

  10. Stress Reduction Programs in Patients with Elevated Blood Pressure: A Systematic Review and Meta-analysis

    PubMed Central

    Rainforth, Maxwell V.; Schneider, Robert H.; Nidich, Sanford I.; Gaylord-King, Carolyn; Salerno, John W.; Anderson, James W.

    2007-01-01

    Substantial evidence indicates that psychosocial stress contributes to hypertension and cardiovascular disease (CVD). Previous meta-analyses of stress reduction and high blood pressure (BP) were outdated and/or methodologically limited. Therefore, we conducted an updated systematic review of the published literature and identified 107 studies on stress reduction and BP. Seventeen trials with 23 treatment comparisons and 960 participants with elevated BP met criteria for well-designed randomized controlled trials and were replicated within intervention categories. Meta-analysis was used to calculate BP changes for biofeedback, −0.8/−2.0 mm Hg (P = NS); relaxation-assisted biofeedback, +4.3/+2.4 mm Hg (P = NS); progressive muscle relaxation, −1.9/−1.4 mm Hg (P = NS); stress management training, −2.3/−1.3 mm (P = NS); and the Transcendental Meditation program, −5.0/−2.8 mm Hg (P = 0.002/0.02). Available evidence indicates that among stress reduction approaches, the Transcendental Meditation program is associated with significant reductions in BP. Related data suggest improvements in other CVD risk factors and clinical outcomes. PMID:18350109

  11. Interference of transcription across H-NS binding sites and repression by H-NS.

    PubMed

    Rangarajan, Aathmaja Anandhi; Schnetz, Karin

    2018-05-01

    Nucleoid-associated protein H-NS represses transcription by forming extended DNA-H-NS complexes. Repression by H-NS operates mostly at the level of transcription initiation. Less is known about how DNA-H-NS complexes interfere with transcription elongation. In vitro H-NS has been shown to enhance RNA polymerase pausing and to promote Rho-dependent termination, while in vivo inhibition of Rho resulted in a decrease of the genome occupancy by H-NS. Here we show that transcription directed across H-NS binding regions relieves H-NS (and H-NS/StpA) mediated repression of promoters in these regions. Further, we observed a correlation of transcription across the H-NS-bound region and de-repression. The data suggest that the transcribing RNA polymerase is able to remodel the H-NS complex and/or dislodge H-NS from the DNA and thus relieve repression. Such an interference of transcription and H-NS mediated repression may imply that poorly transcribed AT-rich loci are prone to be repressed by H-NS, while efficiently transcribed loci escape repression. © 2018 John Wiley & Sons Ltd.

  12. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase activemore » site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.« less

  13. Hepatitis C virus RNA elimination and development of resistance in replicon cells treated with BMS-790052.

    PubMed

    Wang, Chunfu; Huang, Haichang; Valera, Lourdes; Sun, Jin-Hua; O'Boyle, Donald R; Nower, Peter T; Jia, Lingling; Qiu, Dike; Huang, Xin; Altaf, Aneela; Gao, Min; Fridell, Robert A

    2012-03-01

    BMS-790052, a first-in-class hepatitis C virus (HCV) replication complex inhibitor, targeting nonstructural protein 5A (NS5A), displays picomolar to nanomolar potency against genotypes 1 to 5. This exceptional potency translated into robust anti-HCV activity in clinical studies with HCV genotype 1-infected subjects. To date, all BMS-790052-associated resistance mutations have mapped to the N-terminal region of NS5A. To further characterize the antiviral activity of BMS-790052, HCV replicon elimination and colony formation assays were performed. Replicon was cleared from genotype 1a and 1b replicon cells in a time- and dose-dependent manner. Elimination of the genotype 1a replicon required longer treatment durations and higher concentrations of BMS-790052 than those for the genotype1b replicon. Single amino acid substitutions that conferred relatively low levels of resistance were observed at early time points and at low doses. Higher doses and longer treatment durations yielded mutations that conferred greater levels of resistance, including linked amino acid substitutions. Replicon cells that survived inhibitor treatment remained fully sensitivity to pegylated alpha interferon (pegIFN-α) and other HCV inhibitors. Moreover, genotype 1a replicon elimination was markedly enhanced when pegIFN-α and BMS-790052 were combined. Resistant variants observed in this study were very similar to those observed in a multiple ascending dose (MAD) monotherapy trial of BMS-790052, validating replicon elimination studies as a model to predict clinical resistance. Insights gained from the in vitro anti-HCV activity and resistance profiles of BMS-790052 will be used to help guide the clinical development of this novel HCV inhibitor.

  14. STD-NMR experiments identify a structural motif with novel second-site activity against West Nile virus NS2B-NS3 protease.

    PubMed

    Schöne, Tobias; Grimm, Lena Lisbeth; Sakai, Naoki; Zhang, Linlin; Hilgenfeld, Rolf; Peters, Thomas

    2017-10-01

    West Nile virus (WNV) belongs to the genus Flavivirus of the family Flaviviridae. This mosquito-borne virus that is highly pathogenic to humans has been evolving into a global threat during the past two decades. Despite many efforts, neither antiviral drugs nor vaccines are available. The viral protease NS2B-NS3 pro is essential for viral replication, and therefore it is considered a prime drug target. However, success in the development of specific NS2B-NS3 pro inhibitors had been moderate so far. In the search for new structural motifs with binding affinity for NS2B-NS3 pro , we have screened a fragment library, the Maybridge Ro5 library, employing saturation transfer difference (STD) NMR experiments as readout. About 30% of 429 fragments showed binding to NS2B-NS3 pro . Subsequent STD-NMR competition experiments using the known active site fragment A as reporter ligand yielded 14 competitively binding fragments, and 22 fragments not competing with A. In a fluorophore-based protease assay, all of these fragments showed inhibition in the micromolar range. Interestingly, 10 of these 22 fragments showed a notable increase of STD intensities in the presence of compound A suggesting cooperative binding. The most promising non-competitive inhibitors 1 and 2 (IC 50 ∼ 500 μM) share a structural motif that may guide the development of novel second-site (potentially allosteric) inhibitors of NS2B-NS3 pro . To identify the matching protein binding site, chemical shift perturbation studies employing 1 H, 15 N-TROSY-HSQC experiments with uniformly 2 H, 15 N-labeled protease were performed in the presence of 1, and in the concomitant absence or presence of A. The data suggest that 1 interacts with Met 52* of NS2B, identifying a secondary site adjacent to the binding site of A. Therefore, our study paves the way for the synthesis of novel bidentate NS2B-NS3 pro inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity

    PubMed Central

    2013-01-01

    Background As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype. Methods To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed. Results We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process. Conclusion Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents. PMID:24298994

  16. pH-Dependent Conformational Changes in the HCV NS3 Protein Modulate Its ATPase and Helicase Activities

    PubMed Central

    Ventura, Gustavo Tavares; da Costa, Emmerson Corrêa Brasil; Capaccia, Anne Miranda; Mohana-Borges, Ronaldo

    2014-01-01

    The hepatitis C virus (HCV) infects 170 to 200 million people worldwide and is, therefore, a major health problem. The lack of efficient treatments that specifically target the viral proteins or RNA and its high chronicity rate make hepatitis C the cause of many deaths and hepatic transplants annually. The NS3 protein is considered an important target for the development of anti-HCV drugs because it is composed of two domains (a serine protease in the N-terminal portion and an RNA helicase/NTPase in the C-terminal portion), which are essential for viral replication and proliferation. We expressed and purified both the NS3 helicase domain (NS3hel) and the full-length NS3 protein (NS3FL) and characterized pH-dependent structural changes associated with the increase in their ATPase and helicase activities at acidic pH. Using intrinsic fluorescence experiments, we have observed that NS3hel was less stable at pH 6.4 than at pH 7.2. Moreover, binding curves using an extrinsic fluorescent probe (bis-ANS) and ATPase assays performed under different pH conditions demonstrated that the hydrophobic clefts of NS3 are significantly more exposed to the aqueous medium at acidic pH. Using fluorescence spectroscopy and anisotropy assays, we have also observed more protein interaction with DNA upon pH acidification, which suggests that the hydrophobic clefts exposure on NS3 might be related to a loss of stability that could lead it to adopt a more open conformation. This conformational change at acidic pH would stimulate both its ATPase and helicase activities, as well as its ability to bind DNA. Taken together, our results indicate that the NS3 protein adopts a more open conformation due to acidification from pH 7.2 to 6.4, resulting in a more active form at a pH that is found near Golgi-derived membranes. This increased activity could better allow NS3 to carry out its functions during HCV replication. PMID:25551442

  17. Polymorphisms and resistance mutations of hepatitis C virus on sequences in the European hepatitis C virus database

    PubMed Central

    Kliemann, Dimas Alexandre; Tovo, Cristiane Valle; da Veiga, Ana Beatriz Gorini; de Mattos, Angelo Alves; Wood, Charles

    2016-01-01

    AIM To evaluate the occurrence of resistant mutations in treatment-naïve hepatitis C virus (HCV) sequences deposited in the European hepatitis C virus database (euHCVdb). METHODS The sequences were downloaded from the euHCVdb (https://euhcvdb.ibcp.fr/euHCVdb/). The search was performed for full-length NS3 protease, NS5A and NS5B polymerase sequences of HCV, separated by genotypes 1a, 1b, 2a, 2b and 3a, and resulted in 798 NS3, 708 NS5A and 535 NS5B sequences from HCV genotypes 1a, 1b, 2a, 2b and 3a, after the exclusion of sequences containing errors and/or gaps or incomplete sequences, and sequences from patients previously treated with direct antiviral agents (DAA). The sequence alignment was performed with MEGA 6.06 MAC and the resulting protein sequences were then analyzed using the BioEdit 7.2.5. for mutations associated with resistance. Only positions that have been described as being associated with failure in treatment in in vivo studies, and/or as conferring a more than 2-fold change in replication in comparison to the wildtype reference strain in in vitro phenotypic assays were included in the analysis. RESULTS The Q80K variant in the NS3 gene was the most prevalent mutation, being found in 44.66% of subtype 1a and 0.25% of subtype 1b. Other frequent mutations observed in more than 2% of the NS3 sequences were: I170V (3.21%) in genotype 1a, and Y56F (15.93%), V132I (23.28%) and I170V (65.20%) in genotype 1b. For the NS5A, 2.21% of the genotype 1a sequences have the P58S mutation, 5.95% of genotype 1b sequences have the R30Q mutation, 15.79% of subtypes 2a sequences have the Q30R mutation, 23.08% of subtype 2b sequences have a L31M mutation, and in subtype 3a sequences, 23.08% have the M31L resistant variants. For the NS5B, the V321L RAV was identified in 0.60% of genotype 1a and in 0.32% of genotype 1b sequences, and the N142T variant was observed in 0.32% of subtype 1b sequences. The C316Y, S556G, D559N RAV were identified in 0.33%, 7.82% and 0.32% of genotype 1b sequences, respectively, and were not observed in other genotypes. CONCLUSION HCV mutants resistant to DAAs are found in low frequency, nevertheless they could be selected and therapy could fail due resistance substitutions in HCV genome. PMID:27833382

  18. Polymorphisms and resistance mutations of hepatitis C virus on sequences in the European hepatitis C virus database.

    PubMed

    Kliemann, Dimas Alexandre; Tovo, Cristiane Valle; da Veiga, Ana Beatriz Gorini; de Mattos, Angelo Alves; Wood, Charles

    2016-10-28

    To evaluate the occurrence of resistant mutations in treatment-naïve hepatitis C virus (HCV) sequences deposited in the European hepatitis C virus database (euHCVdb). The sequences were downloaded from the euHCVdb (https://euhcvdb.ibcp.fr/euHCVdb/). The search was performed for full-length NS3 protease, NS5A and NS5B polymerase sequences of HCV, separated by genotypes 1a, 1b, 2a, 2b and 3a, and resulted in 798 NS3, 708 NS5A and 535 NS5B sequences from HCV genotypes 1a, 1b, 2a, 2b and 3a, after the exclusion of sequences containing errors and/or gaps or incomplete sequences, and sequences from patients previously treated with direct antiviral agents (DAA). The sequence alignment was performed with MEGA 6.06 MAC and the resulting protein sequences were then analyzed using the BioEdit 7.2.5. for mutations associated with resistance. Only positions that have been described as being associated with failure in treatment in in vivo studies, and/or as conferring a more than 2-fold change in replication in comparison to the wildtype reference strain in in vitro phenotypic assays were included in the analysis. The Q80K variant in the NS3 gene was the most prevalent mutation, being found in 44.66% of subtype 1a and 0.25% of subtype 1b. Other frequent mutations observed in more than 2% of the NS3 sequences were: I170V (3.21%) in genotype 1a, and Y56F (15.93%), V132I (23.28%) and I170V (65.20%) in genotype 1b. For the NS5A, 2.21% of the genotype 1a sequences have the P58S mutation, 5.95% of genotype 1b sequences have the R30Q mutation, 15.79% of subtypes 2a sequences have the Q30R mutation, 23.08% of subtype 2b sequences have a L31M mutation, and in subtype 3a sequences, 23.08% have the M31L resistant variants. For the NS5B, the V321L RAV was identified in 0.60% of genotype 1a and in 0.32% of genotype 1b sequences, and the N142T variant was observed in 0.32% of subtype 1b sequences. The C316Y, S556G, D559N RAV were identified in 0.33%, 7.82% and 0.32% of genotype 1b sequences, respectively, and were not observed in other genotypes. HCV mutants resistant to DAAs are found in low frequency, nevertheless they could be selected and therapy could fail due resistance substitutions in HCV genome.

  19. In-silico identification and evaluation of plant flavonoids as dengue NS2B/NS3 protease inhibitors using molecular docking and simulation approach.

    PubMed

    Qamar, Muhammad Tahirul; Ashfaq, Usman Ali; Tusleem, Kishver; Mumtaz, Arooj; Tariq, Quratulain; Goheer, Alina; Ahmed, Bilal

    2017-11-01

    Dengue infection is prevailing among the people not only from the developing countries but also from the developed countries due to its high morbidity rate around the globe. Hence, due to the unavailability of any suitable vaccine for rigorous dengue virus (DENV), the only mode of its treatment is prevention. The circumstances require an urgent development of efficient and practical treatment to deal with these serotypes. The severe effects and cost of synthetic vaccines simulated researchers to find anti-viral agents from medicinal plants. Flavonoids present in medicinal plants, holds anti-viral activity and can be used as vaccine against viruses. Therefore, present study was planned to find anti-viral potential of 2500 flavonoids inhibitors against the DENVNS2B/NS3 protease through computational screening which can hinder the viral replication within the host cell. By using molecular docking, it was revealed that flavonoids showed strong and stable bonding in the binding pocket of DENV NS2B/NS3 protease and had strong interactions with catalytic triad. Drug capability and anti-dengue potential of the flavonoids was also evaluated by using different bioinformatics tools. Some flavonoids effectively blocked the catalytic triad of DENV NS2B/NS3 protease and also passed through drug ability evaluation. It can be concluded from this study that these flavonoids could act as potential inhibitors to stop the replication of DENV and there is a need to study the action of these molecules in-vitro to confirm their action and other properties.

  20. 2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase

    PubMed Central

    Dong, Hongping; Chang, David C.; Hua, Maggie Ho Chia; Lim, Siew Pheng; Chionh, Yok Hian; Hia, Fabian; Lee, Yie Hou; Kukkaro, Petra; Lok, Shee-Mei; Dedon, Peter C.; Shi, Pei-Yong

    2012-01-01

    RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro. PMID:22496660

  1. Efficient infectious cell culture systems of the hepatitis C virus (HCV) prototype strains HCV-1 and H77.

    PubMed

    Li, Yi-Ping; Ramirez, Santseharay; Mikkelsen, Lotte; Bukh, Jens

    2015-01-01

    The first discovered and sequenced hepatitis C virus (HCV) genome and the first in vivo infectious HCV clones originated from the HCV prototype strains HCV-1 and H77, respectively, both widely used in research of this important human pathogen. In the present study, we developed efficient infectious cell culture systems for these genotype 1a strains by using the HCV-1/SF9_A and H77C in vivo infectious clones. We initially adapted a genome with the HCV-1 5'UTR-NS5A (where UTR stands for untranslated region) and the JFH1 NS5B-3'UTR (5-5A recombinant), including the genotype 2a-derived mutations F1464L/A1672S/D2979G (LSG), to grow efficiently in Huh7.5 cells, thus identifying the E2 mutation S399F. The combination of LSG/S399F and reported TNcc(1a)-adaptive mutations A1226G/Q1773H/N1927T/Y2981F/F2994S promoted adaptation of the full-length HCV-1 clone. An HCV-1 recombinant with 17 mutations (HCV1cc) replicated efficiently in Huh7.5 cells and produced supernatant infectivity titers of 10(4.0) focus-forming units (FFU)/ml. Eight of these mutations were identified from passaged HCV-1 viruses, and the A970T/I1312V/C2419R/A2919T mutations were essential for infectious particle production. Using CD81-deficient Huh7 cells, we further demonstrated the importance of A970T/I1312V/A2919T or A970T/C2419R/A2919T for virus assembly and that the I1312V/C2419R combination played a major role in virus release. Using a similar approach, we found that NS5B mutation F2994R, identified here from culture-adapted full-length TN viruses and a common NS3 helicase mutation (S1368P) derived from viable H77C and HCV-1 5-5A recombinants, initiated replication and culture adaptation of H77C containing LSG and TNcc(1a)-adaptive mutations. An H77C recombinant harboring 19 mutations (H77Ccc) replicated and spread efficiently after transfection and subsequent infection of naive Huh7.5 cells, reaching titers of 10(3.5) and 10(4.4) FFU/ml, respectively. Hepatitis C virus (HCV) was discovered in 1989 with the cloning of the prototype strain HCV-1 genome. In 1997, two molecular clones of H77, the other HCV prototype strain, were shown to be infectious in chimpanzees, but not in vitro. HCV research was hampered by a lack of infectious cell culture systems, which became available only in 2005 with the discovery of JFH1 (genotype 2a), a genome that could establish infection in Huh7.5 cells. Recently, we developed in vitro infectious clones for genotype 1a (TN), 2a (J6), and 2b (J8, DH8, and DH10) strains by identifying key adaptive mutations. Globally, genotype 1 is the most prevalent. Studies using HCV-1 and H77 prototype sequences have generated important knowledge on HCV. Thus, the in vitro infectious clones developed here for these 1a strains will be of particular value in advancing HCV research. Moreover, our findings open new avenues for the culture adaptation of HCV isolates of different genotypes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. The history of hepatitis C virus (HCV): Basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control.

    PubMed

    Bukh, Jens

    2016-10-01

    The discovery of hepatitis C virus (HCV) in 1989 permitted basic research to unravel critical components of a complex life cycle for this important human pathogen. HCV is a highly divergent group of viruses classified in 7 major genotypes and a great number of subtypes, and circulating in infected individuals as a continuously evolving quasispecies destined to escape host immune responses and applied antivirals. Despite the inability to culture patient viruses directly in the laboratory, efforts to define the infectious genome of HCV resulted in development of experimental recombinant in vivo and in vitro systems, including replicons and infectious cultures in human hepatoma cell lines. And HCV has become a model virus defining new paradigms in virology, immunology and biology. For example, HCV research discovered that a virus could be completely dependent on microRNA for its replication since microRNA-122 is critical for the HCV life cycle. A number of other host molecules critical for HCV entry and replication have been identified. Thus, basic HCV research revealed important molecules for development of host targeting agents (HTA). The identification and characterization of HCV encoded proteins and their functional units contributed to the development of highly effective direct acting antivirals (DAA) against the NS3 protease, NS5A and the NS5B polymerase. In combination, these inhibitors have since 2014 permitted interferon-free therapy with cure rates above 90% among patients with chronic HCV infection; however, viral resistance represents a challenge. Worldwide control of HCV will most likely require the development of a prophylactic vaccine, and numerous candidates have been pursued. Research characterizing features critical for antibody-based virus neutralization and T cell based virus elimination from infected cells is essential for this effort. If the world community promotes an ambitious approach by applying current DAA broadly, continues to develop alternative viral- and host- targeted antivirals to combat resistant variants, and invests in the development of a vaccine, it would be possible to eradicate HCV. This would prevent about 500 thousand deaths annually. However, given the nature of HCV, the millions of new infections annually, a high chronicity rate, and with over 150 million individuals with chronic infection (which are frequently unidentified), this effort remains a major challenge for basic researchers, clinicians and communities. Copyright © 2016. Published by Elsevier B.V.

  3. A basic cluster in the N terminus of yellow fever virus NS2A contributes to infectious particle production.

    PubMed

    Voßmann, Stephanie; Wieseler, Janett; Kerber, Romy; Kümmerer, Beate Mareike

    2015-05-01

    The flavivirus NS2A protein is involved in the assembly of infectious particles. To further understand its role in this process, a charged-to-alanine scanning analysis was performed on NS2A encoded by an infectious cDNA clone of yellow fever virus (YFV). Fifteen mutants containing single, double, or triple charged-to-alanine changes were tested. Five of them did not produce infectious particles, whereas efficient RNA replication was detectable for two of the five NS2A mutants (R22A-K23A-R24A and R99A-E100A-R101A mutants). Prolonged cultivation of transfected cells resulted in the recovery of pseudorevertants. Besides suppressor mutants in NS2A, a compensating second-site mutation in NS3 (D343G) arose for the NS2A R22A-K23A-R24A mutant. We found this NS3 mutation previously to be suppressive for the NS2Aα cleavage site Q189S mutant, also deficient in virion assembly. In this study, the subsequently suggested interaction between NS2A and NS3 was proven by coimmunoprecipitation analyses. Using selectively permeabilized cells, we could demonstrate that the regions encompassing R22A-K23A-R24A and Q189S in NS2A are localized to the cytoplasm, where NS3 is also known to reside. However, the defect in particle production observed for the NS2A R22A-K23A-R24A and Q189S mutants was not due to a defect in physical interaction between NS2A and NS3, as the NS2A mutations did not interrupt NS3 interaction. In fact, a region just upstream of R22-K23-R24 was mapped to be critical for NS2A-NS3 interaction. Taken together, these data support a complex interplay between YFV NS2A and NS3 in virion assembly and identify a basic cluster in the NS2A N terminus to be critical in this process. Despite an available vaccine, yellow fever remains endemic in tropical areas of South America and Africa. To control the disease, antiviral drugs are required, and an understanding of the determinants of virion assembly is central to their development. In this study, we identified a basic cluster of amino acids in the N terminus of YFV NS2A which inhibited virion assembly upon mutation. The defect was rescued by a spontaneously occurring mutation in NS3. Our study proves an interaction between NS2A and NS3, which, remarkably, was maintained for the NS2A mutant in the presence and absence of the NS3 mutation. This suggests a role for other viral and/or cellular proteins in virion assembly. Residues important for YFV virion production reported here only partially coincided with those reported for other flaviviruses, suggesting that the determinants for particle production are virus specific. Reconstruction of a YFV encoding tagged NS2A paves the way to identify further NS2A interaction partners. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. A Basic Cluster in the N Terminus of Yellow Fever Virus NS2A Contributes to Infectious Particle Production

    PubMed Central

    Voßmann, Stephanie; Wieseler, Janett; Kerber, Romy

    2015-01-01

    ABSTRACT The flavivirus NS2A protein is involved in the assembly of infectious particles. To further understand its role in this process, a charged-to-alanine scanning analysis was performed on NS2A encoded by an infectious cDNA clone of yellow fever virus (YFV). Fifteen mutants containing single, double, or triple charged-to-alanine changes were tested. Five of them did not produce infectious particles, whereas efficient RNA replication was detectable for two of the five NS2A mutants (R22A-K23A-R24A and R99A-E100A-R101A mutants). Prolonged cultivation of transfected cells resulted in the recovery of pseudorevertants. Besides suppressor mutants in NS2A, a compensating second-site mutation in NS3 (D343G) arose for the NS2A R22A-K23A-R24A mutant. We found this NS3 mutation previously to be suppressive for the NS2Aα cleavage site Q189S mutant, also deficient in virion assembly. In this study, the subsequently suggested interaction between NS2A and NS3 was proven by coimmunoprecipitation analyses. Using selectively permeabilized cells, we could demonstrate that the regions encompassing R22A-K23A-R24A and Q189S in NS2A are localized to the cytoplasm, where NS3 is also known to reside. However, the defect in particle production observed for the NS2A R22A-K23A-R24A and Q189S mutants was not due to a defect in physical interaction between NS2A and NS3, as the NS2A mutations did not interrupt NS3 interaction. In fact, a region just upstream of R22-K23-R24 was mapped to be critical for NS2A-NS3 interaction. Taken together, these data support a complex interplay between YFV NS2A and NS3 in virion assembly and identify a basic cluster in the NS2A N terminus to be critical in this process. IMPORTANCE Despite an available vaccine, yellow fever remains endemic in tropical areas of South America and Africa. To control the disease, antiviral drugs are required, and an understanding of the determinants of virion assembly is central to their development. In this study, we identified a basic cluster of amino acids in the N terminus of YFV NS2A which inhibited virion assembly upon mutation. The defect was rescued by a spontaneously occurring mutation in NS3. Our study proves an interaction between NS2A and NS3, which, remarkably, was maintained for the NS2A mutant in the presence and absence of the NS3 mutation. This suggests a role for other viral and/or cellular proteins in virion assembly. Residues important for YFV virion production reported here only partially coincided with those reported for other flaviviruses, suggesting that the determinants for particle production are virus specific. Reconstruction of a YFV encoding tagged NS2A paves the way to identify further NS2A interaction partners. PMID:25694595

  5. 3D-QSAR and molecular docking studies on designing inhibitors of the hepatitis C virus NS5B polymerase

    NASA Astrophysics Data System (ADS)

    Li, Wenlian; Si, Hongzong; Li, Yang; Ge, Cuizhu; Song, Fucheng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin

    2016-08-01

    Viral hepatitis C infection is one of the main causes of the hepatitis after blood transfusion and hepatitis C virus (HCV) infection is a global health threat. The HCV NS5B polymerase, an RNA dependent RNA polymerase (RdRp) and an essential role in the replication of the virus, has no functional equivalent in mammalian cells. So the research and development of efficient NS5B polymerase inhibitors provides a great strategy for antiviral therapy against HCV. A combined three-dimensional quantitative structure-activity relationship (QSAR) modeling was accomplished to profoundly understand the structure-activity correlation of a train of indole-based inhibitors of the HCV NS5B polymerase to against HCV. A comparative molecular similarity indices analysis (COMSIA) model as the foundation of the maximum common substructure alignment was developed. The optimum model exhibited statistically significant results: the cross-validated correlation coefficient q2 was 0.627 and non-cross-validated r2 value was 0.943. In addition, the results of internal validations of bootstrapping and Y-randomization confirmed the rationality and good predictive ability of the model, as well as external validation (the external predictive correlation coefficient rext2 = 0.629). The information obtained from the COMSIA contour maps enables the interpretation of their structure-activity relationship. Furthermore, the molecular docking study of the compounds for 3TYV as the protein target revealed important interactions between active compounds and amino acids, and several new potential inhibitors with higher activity predicted were designed basis on our analyses and supported by the simulation of molecular docking. Meanwhile, the OSIRIS Property Explorer was introduced to help select more satisfactory compounds. The satisfactory results from this study may lay a reliable theoretical base for drug development of hepatitis C virus NS5B polymerase inhibitors.

  6. Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease.

    PubMed

    Qamar, Tahir Ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia

    2014-01-01

    Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy.

  7. Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease

    PubMed Central

    Qamar, Tahir ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia

    2014-01-01

    Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy. PMID:24748749

  8. Different mechanisms of hepatitis C virus RNA polymerase activation by cyclophilin A and B in vitro.

    PubMed

    Weng, Leiyun; Tian, Xiao; Gao, Yayi; Watashi, Koichi; Shimotohno, Kunitada; Wakita, Takaji; Kohara, Michinori; Toyoda, Tetsuya

    2012-12-01

    Cyclophilins (CyPs) are cellular proteins that are essential to hepatitis C virus (HCV) replication. Since cyclosporine A was discovered to inhibit HCV infection, the CyP pathway contributing to HCV replication is a potential attractive stratagem for controlling HCV infection. Among them, CyPA is accepted to interact with HCV nonstructural protein (NS) 5A, although interaction of CyPB and NS5B, an RNA-dependent RNA polymerase (RdRp), was proposed first. CyPA, CyPB, and HCV RdRp were expressed in bacteria and purified using combination column chromatography. HCV RdRp activity was analyzed in vitro with purified CyPA and CyPB. CyPA at a high concentration (50× higher than that of RdRp) but not at low concentration activated HCV RdRp. CyPB had an allosteric effect on genotype 1b RdRp activation. CyPB showed genotype specificity and activated genotype 1b and J6CF (2a) RdRps but not genotype 1a or JFH1 (2a) RdRps. CyPA activated RdRps of genotypes 1a, 1b, and 2a. CyPB may also support HCV genotype 1b replication within the infected cells, although its knockdown effect on HCV 1b replicon activity was controversial in earlier reports. CyPA activated HCV RdRp at the early stages of transcription, including template RNA binding. CyPB also activated genotype 1b RdRp. However, their activation mechanisms are different. These data suggest that both CyPA and CyPB are excellent targets for the treatment of HCV 1b, which shows the greatest resistance to interferon and ribavirin combination therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The Product of the Herpes Simplex Virus Type 1 UL25 Gene Is Required for Encapsidation but Not for Cleavage of Replicated Viral DNA

    PubMed Central

    McNab, Alistair R.; Desai, Prashant; Person, Stan; Roof, Lori L.; Thomsen, Darrell R.; Newcomb, William W.; Brown, Jay C.; Homa, Fred L.

    1998-01-01

    The herpes simplex virus type 1 (HSV-1) UL25 gene contains a 580-amino-acid open reading frame that codes for an essential protein. Previous studies have shown that the UL25 gene product is a virion component (M. A. Ali et al., Virology 216:278–283, 1996) involved in virus penetration and capsid assembly (C. Addison et al., Virology 138:246–259, 1984). In this study, we describe the isolation of a UL25 mutant (KUL25NS) that was constructed by insertion of an in-frame stop codon in the UL25 open reading frame and propagated on a complementing cell line. Although the mutant was capable of synthesis of viral DNA, it did not form plaques or produce infectious virus in noncomplementing cells. Antibodies specific for the UL25 protein were used to demonstrate that KUL25NS-infected Vero cells did not express the UL25 protein. Western immunoblotting showed that the UL25 protein was associated with purified, wild-type HSV A, B, and C capsids. Transmission electron microscopy indicated that the nucleus of Vero cells infected with KUL25NS contained large numbers of both A and B capsids but no C capsids. Analysis of infected cells by sucrose gradient sedimentation analysis confirmed that the ratio of A to B capsids was elevated in KUL25NS-infected Vero cells. Following restriction enzyme digestion, specific terminal fragments were observed in DNA isolated from KUL25NS-infected Vero cells, indicating that the UL25 gene was not required for cleavage of replicated viral DNA. The latter result was confirmed by pulsed-field gel electrophoresis (PFGE), which showed the presence of genome-size viral DNA in KUL25NS-infected Vero cells. DNase I treatment prior to PFGE demonstrated that monomeric HSV DNA was not packaged in the absence of the UL25 protein. Our results indicate that the product of the UL25 gene is required for packaging but not cleavage of replicated viral DNA. PMID:9445000

  10. Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins

    PubMed Central

    Conde, Jonas Nascimento; da Silva, Emiliana Mandarano; Allonso, Diego; Coelho, Diego Rodrigues; Andrade, Iamara da Silva; de Medeiros, Luciano Neves; Menezes, Joice Lima; Barbosa, Angela Silva

    2016-01-01

    ABSTRACT Dengue virus (DENV) infects millions of people worldwide and is a major public health problem. DENV nonstructural protein 1 (NS1) is a conserved glycoprotein that associates with membranes and is also secreted into the plasma in DENV-infected patients. The present study describes a novel mechanism by which NS1 inhibits the terminal complement pathway. We first identified the terminal complement regulator vitronectin (VN) as a novel DENV2 NS1 binding partner by using a yeast two-hybrid system. This interaction was further assessed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) assay. The NS1-VN complex was also detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the DENV2 NS1 protein, either by itself or by interacting with VN, hinders the formation of the membrane attack complex (MAC) and C9 polymerization. Finally, we showed that DENV2, West Nile virus (WNV), and Zika virus (ZIKV) NS1 proteins produced in mammalian cells inhibited C9 polymerization. Taken together, our results points to a role for NS1 as a terminal pathway inhibitor of the complement system. IMPORTANCE Dengue is the most important arthropod-borne viral disease nowadays and is caused by dengue virus (DENV). The flavivirus NS1 glycoprotein has been characterized functionally as a complement evasion protein that can attenuate the activation of the classical, lectin, and alternative pathways. The present study describes a novel mechanism by which DENV NS1 inhibits the terminal complement pathway. We identified the terminal complement regulator vitronectin (VN) as a novel DENV NS1 binding partner, and the NS1-VN complex was detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the NS1-VN complex inhibited membrane attack complex (MAC) formation, thus interfering with the complement terminal pathway. Interestingly, NS1 itself also inhibited MAC activity, suggesting a direct role of this protein in the inhibition process. Our findings imply a role for NS1 as a terminal pathway inhibitor of the complement system. PMID:27512066

  11. A Physical Interaction Network of Dengue Virus and Human Proteins*

    PubMed Central

    Khadka, Sudip; Vangeloff, Abbey D.; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S.; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J.; Perera, Rushika; LaCount, Douglas J.

    2011-01-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection. PMID:21911577

  12. Changing the face of hepatitis C management – the design and development of sofosbuvir

    PubMed Central

    Noell, Bennett C; Besur, Siddesh V; deLemos, Andrew S

    2015-01-01

    The availability of direct-acting antiviral (DAA) therapy has launched a new era in the management of chronic hepatitis C. Sofosbuvir, a uridine nucleotide analog that inhibits the hepatitis C RNA-dependent RNA polymerase, is the backbone of chronic hepatitis C therapy. Acting at the catalytic site of the polymerase, sofosbuvir is highly potent in suppressing viral replication and has a high genetic barrier to resistance. Sofosbuvir is effective across all hepatitis C genotypes, and is a mainstay of interferon-free combination therapy. In Phase II and III studies, genotype 1 patients who took sofosbuvir in combination with another DAA such as the NS3-4A protease inhibitor, simeprevir, or the NS5A replication complex inhibitors, ledipasvir or daclatasvir, achieved a sustained virologic response rate of over 90%. Harvoni®, a combination tablet of sofosbuvir and ledipasvir, dosed once daily is recommended for 24 weeks for treatment-experienced genotype 1 patients with cirrhosis, but 12 weeks of therapy is sufficient for all other populations. While genotype 2 (12 weeks or 16 weeks) and treatment-naïve genotype 3 patients (24 weeks) have excellent response rates with sofosbuvir and ribavirin, treatment-experienced cirrhotic genotype 3 patients may need the addition of another DAA such as daclatasvir. Sofosbuvir is efficacious in special populations such as HIV–hepatitis C virus-coinfected patients and liver transplant recipients and has already made a profound impact in these groups. Since it is renally eliminated, patients with advanced kidney disease or on dialysis must await dosing recommendations. Sofosbuvir-based regimens appear to be well tolerated with headache and fatigue being the most common side effects. The opportunity to cure patients with hepatitis C with sofosbuvir combination therapy is likely to change the future for our patients, particularly if the emphasis shifts to identifying those patients unaware that they are infected and providing affordable access to treatment. PMID:25987834

  13. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    PubMed

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  14. 2-Ferrocenyl-2-thiazoline as a building block of novel phosphine-free ligands.

    PubMed

    Corona-Sánchez, Ricardo; Toscano, Rubén A; Ortega-Alfaro, M Carmen; Sandoval-Chávez, César; López-Cortés, José G

    2013-09-07

    New 1,2-disubstituted ferrocenes [5(b-j), in which R = -SMe, -SPh, -SiPr, -SiMe3, -SePh, -SnBu3, -B(OH)2, -Me, -I] with a thiazoline ring in the ferrocene backbone using as key intermediate a ferrocenyl Fischer carbene complex were synthesized. The capability of the 2-thiazoline moiety as an ortho-directed metalation group was demonstrated by subsequent quenching of lithium intermediate with several electrophiles, proving to be an excellent method for synthesizing bidentate ligands. The catalytic scope of the [N,S] ligand 5b as the corresponding palladium complex 5b-PdCl(2) in a microwave-promoted Heck reaction was also tested. Results obtained showed better catalytic activity of 5b-PdCl(2) compared to other catalytic systems based on a [N,S] ferrocenyl ligand.

  15. Hepatitis C Virus Genotype 1 to 6 Protease Inhibitor Escape Variants: In Vitro Selection, Fitness, and Resistance Patterns in the Context of the Infectious Viral Life Cycle

    PubMed Central

    Serre, Stéphanie B. N.; Jensen, Sanne B.; Ghanem, Lubna; Humes, Daryl G.; Ramirez, Santseharay; Li, Yi-Ping; Krarup, Henrik; Bukh, Jens

    2016-01-01

    Hepatitis C virus (HCV) NS3 protease inhibitors (PIs) are important components of novel HCV therapy regimens. Studies of PI resistance initially focused on genotype 1. Therefore, knowledge about the determinants of PI resistance for the highly prevalent genotypes 2 to 6 remains limited. Using Huh7.5 cell culture-infectious HCV recombinants with genotype 1 to 6 NS3 protease, we identified protease positions 54, 155, and 156 as hot spots for the selection of resistance substitutions under treatment with the first licensed PIs, telaprevir and boceprevir. Treatment of a genotype 2 isolate with the newer PIs vaniprevir, faldaprevir, simeprevir, grazoprevir, paritaprevir, and deldeprevir identified positions 156 and 168 as hot spots for resistance; the Y56H substitution emerged for three newer PIs. Substitution selection also depended on the specific recombinant. The substitutions identified conferred cross-resistance to several PIs; however, most substitutions selected under telaprevir or boceprevir treatment conferred less resistance to certain newer PIs. In a single-cycle production assay, across genotypes, PI treatment primarily decreased viral replication, which was rescued by PI resistance substitutions. The substitutions identified resulted in differential effects on viral fitness, depending on the original recombinant and the substitution. Across genotypes, fitness impairment induced by resistance substitutions was due primarily to decreased replication. Most combinations of substitutions that were identified increased resistance or fitness. Combinations of resistance substitutions with fitness-compensating substitutions either rescued replication or compensated for decreased replication by increasing assembly. This comprehensive study provides insight into the selection patterns and effects of PI resistance substitutions for HCV genotypes 1 to 6 in the context of the infectious viral life cycle, which is of interest for clinical and virological HCV research. PMID:27021330

  16. Human influenza is more effective than avian influenza at antiviral suppression in airway cells.

    PubMed

    Hsu, Alan Chen-Yu; Barr, Ian; Hansbro, Philip M; Wark, Peter A

    2011-06-01

    Airway epithelial cells are the initial site of infection with influenza viruses. The innate immune responses of airway epithelial cells to infection are important in limiting virus replication and spread. However, relatively little is known about the importance of this innate antiviral response to infection. Avian influenza viruses are a potential source of future pandemics; therefore, it is critical to examine the effectiveness of the host antiviral system to different influenza viruses. We used a human influenza (H3N2) and a low-pathogenic avian influenza (H11N9) to assess and compare the antiviral responses of Calu-3 cells. After infection, H3N2 replicated more effectively than the H11N9 in Calu-3 cells. This was not due to differential expression of sialic acid residues on Calu-3 cells, but was attributed to the interference of host antiviral responses by H3N2. H3N2 induced a delayed antiviral signaling and impaired type I and type III IFN induction compared with the H11N9. The gene encoding for nonstructural (NS) 1 protein was transfected into the bronchial epithelial cells (BECs), and the H3N2 NS1 induced a greater inhibition of antiviral responses compared with the H11N9 NS1. Although the low-pathogenic avian influenza virus was capable of infecting BECs, the human influenza virus replicated more effectively than avian influenza virus in BECs, and this was due to a differential ability of the two NS1 proteins to inhibit antiviral responses. This suggests that the subversion of human antiviral responses may be an important requirement for influenza viruses to adapt to the human host and cause disease.

  17. Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins.

    PubMed

    Conde, Jonas Nascimento; da Silva, Emiliana Mandarano; Allonso, Diego; Coelho, Diego Rodrigues; Andrade, Iamara da Silva; de Medeiros, Luciano Neves; Menezes, Joice Lima; Barbosa, Angela Silva; Mohana-Borges, Ronaldo

    2016-11-01

    Dengue virus (DENV) infects millions of people worldwide and is a major public health problem. DENV nonstructural protein 1 (NS1) is a conserved glycoprotein that associates with membranes and is also secreted into the plasma in DENV-infected patients. The present study describes a novel mechanism by which NS1 inhibits the terminal complement pathway. We first identified the terminal complement regulator vitronectin (VN) as a novel DENV2 NS1 binding partner by using a yeast two-hybrid system. This interaction was further assessed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) assay. The NS1-VN complex was also detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the DENV2 NS1 protein, either by itself or by interacting with VN, hinders the formation of the membrane attack complex (MAC) and C9 polymerization. Finally, we showed that DENV2, West Nile virus (WNV), and Zika virus (ZIKV) NS1 proteins produced in mammalian cells inhibited C9 polymerization. Taken together, our results points to a role for NS1 as a terminal pathway inhibitor of the complement system. Dengue is the most important arthropod-borne viral disease nowadays and is caused by dengue virus (DENV). The flavivirus NS1 glycoprotein has been characterized functionally as a complement evasion protein that can attenuate the activation of the classical, lectin, and alternative pathways. The present study describes a novel mechanism by which DENV NS1 inhibits the terminal complement pathway. We identified the terminal complement regulator vitronectin (VN) as a novel DENV NS1 binding partner, and the NS1-VN complex was detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the NS1-VN complex inhibited membrane attack complex (MAC) formation, thus interfering with the complement terminal pathway. Interestingly, NS1 itself also inhibited MAC activity, suggesting a direct role of this protein in the inhibition process. Our findings imply a role for NS1 as a terminal pathway inhibitor of the complement system. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. A novel cell-based assay to measure activity of Venezuelan equine encephalitis virus nsP2 protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos-Gomez, Javier; Ahmad, Fahim; Rodriguez, Efrain

    2016-09-15

    The encephalitic alphaviruses encode nsP2 protease (nsP2pro), which because of its vital role in virus replication, represents an attractive target for therapeutic intervention. To facilitate the discovery of nsP2 inhibitors we have developed a novel assay for quantitative measurement of nsP2pro activity in a cell-based format. The assay is based on a substrate fusion protein consisting of eGFP and Gaussia luciferase (Gluc) linked together by a small peptide containing a VEEV nsp2pro cleavage sequence. The expression of the substrate protein in cells along with recombinant nsP2pro results in cleavage of the substrate protein resulting in extracellular release of free Gluc.more » The Gluc activity in supernatants corresponds to intracellular nsP2pro-mediated substrate cleavage; thus, providing a simple and convenient way to quantify nsP2pro activity. Here, we demonstrate potential utility of the assay in identification of nsP2pro inhibitors, as well as in investigations related to molecular characterization of nsP2pro. - Highlights: • A novel cell-based assay to measure VEEV nsP2 protease activity was developed. • Assay utility was demonstrated for antiviral screening. • .The assay also proved to be useful in basic mechanistic studies of nsP2 protease.« less

  19. PSI-7851, a pronucleotide of beta-D-2'-deoxy-2'-fluoro-2'-C-methyluridine monophosphate, is a potent and pan-genotype inhibitor of hepatitis C virus replication.

    PubMed

    Lam, Angela M; Murakami, Eisuke; Espiritu, Christine; Steuer, Holly M Micolochick; Niu, Congrong; Keilman, Meg; Bao, Haiying; Zennou, Veronique; Bourne, Nigel; Julander, Justin G; Morrey, John D; Smee, Donald F; Frick, David N; Heck, Julie A; Wang, Peiyuan; Nagarathnam, Dhanapalan; Ross, Bruce S; Sofia, Michael J; Otto, Michael J; Furman, Phillip A

    2010-08-01

    The hepatitis C virus (HCV) NS5B RNA polymerase facilitates the RNA synthesis step during the HCV replication cycle. Nucleoside analogs targeting the NS5B provide an attractive approach to treating HCV infections because of their high barrier to resistance and pan-genotype activity. PSI-7851, a pronucleotide of beta-D-2'-deoxy-2'-fluoro-2'-C-methyluridine-5'-monophosphate, is a highly active nucleotide analog inhibitor of HCV for which a phase 1b multiple ascending dose study of genotype 1-infected individuals was recently completed (M. Rodriguez-Torres, E. Lawitz, S. Flach, J. M. Denning, E. Albanis, W. T. Symonds, and M. M. Berry, Abstr. 60th Annu. Meet. Am. Assoc. Study Liver Dis., abstr. LB17, 2009). The studies described here characterize the in vitro antiviral activity and cytotoxicity profile of PSI-7851. The 50% effective concentration for PSI-7851 against the genotype 1b replicon was determined to be 0.075+/-0.050 microM (mean+/-standard deviation). PSI-7851 was similarly effective against replicons derived from genotypes 1a, 1b, and 2a and the genotype 1a and 2a infectious virus systems. The active triphosphate, PSI-7409, inhibited recombinant NS5B polymerases from genotypes 1 to 4 with comparable 50% inhibitory concentrations. PSI-7851 is a specific HCV inhibitor, as it lacks antiviral activity against other closely related and unrelated viruses. PSI-7409 also lacked any significant activity against cellular DNA and RNA polymerases. No cytotoxicity, mitochondrial toxicity, or bone marrow toxicity was associated with PSI-7851 at the highest concentration tested (100 microM). Cross-resistance studies using replicon mutants conferring resistance to modified nucleoside analogs showed that PSI-7851 was less active against the S282T replicon mutant, whereas cells expressing a replicon containing the S96T/N142T mutation remained fully susceptible to PSI-7851. Clearance studies using replicon cells demonstrated that PSI-7851 was able to clear cells of HCV replicon RNA and prevent viral rebound.

  20. Mechanism of Acetylcholinesterase Inhibition by Fasciculin: A 5-ns Molecular Dynamics Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Kaihsu; Shen, T Y.; Henchman, Richard H.

    Our previous molecular dynamics simulation (10 ns) of mouse acetylcholinesterase (EC 3.1.1.7) revealed complex fluctuation of the enzyme active site gorge. Now we report a 5-ns simulation of acetylcholinesterase complexed with fasciculin 2. Fasciculin 2 binds to the gorge entrance of acetylcholinesterase with excellent complementarity and many polar and hydrophobic interactions. In this simulation of the protein-protein complex, where fasciculin 2 appears to sterically block access of ligands to the gorge, again we observe a two-peaked probability distribution of the gorge width. When fasciculin is present, the gorge width distribution is altered such that the gorge is more likely tomore » be narrow. Moreover, there are large increases in the opening of alternative passages, namely, the side door (near Thr 75) and the back door (near Tyr 449). Finally, the catalytic triad arrangement in the acetylcholinesterase active site is disrupted with fasciculin bound. These data support that, in addition to the steric obstruction seen in the crystal structure, fasciculin may inhibit acetylcholinesterase by combined allosteric and dynamical means. Additional data from these simulations can be found at http://mccammon.ucsd.edu/.« less

  1. Helicase Domain of West Nile Virus NS3 Protein Plays a Role in Inhibition of Type I Interferon Signalling.

    PubMed

    Setoh, Yin Xiang; Periasamy, Parthiban; Peng, Nias Yong Gao; Amarilla, Alberto A; Slonchak, Andrii; Khromykh, Alexander A

    2017-11-02

    West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in humans) caused by NSW2011 strain. Using chimeric viruses between NY99 and NSW2011 strains we previously identified a role for the non-structural proteins of NY99 strain and especially the NS3 protein, in enhanced virus replication in type I interferon response-competent cells and increased virulence in mice. To further define the role of NY99 NS3 protein in inhibition of type I interferon response, we have generated and characterised additional chimeric viruses containing the protease or the helicase domains of NY99 NS3 on the background of the NSW2011 strain. The results identified the role for the helicase but not the protease domain of NS3 protein in the inhibition of type I interferon signalling and showed that helicase domain of the more virulent NY99 strain performs this function more efficiently than helicase domain of the less virulent NSW2011 strain. Further analysis with individual amino acid mutants identified two amino acid residues in the helicase domain primarily responsible for this difference. Using chimeric replicons, we also showed that the inhibition of type I interferon (IFN) signalling was independent of other known functions of NS3 in RNA replication and assembly of virus particles.

  2. Helicase Domain of West Nile Virus NS3 Protein Plays a Role in Inhibition of Type I Interferon Signalling

    PubMed Central

    Periasamy, Parthiban; Peng, Nias Yong Gao; Amarilla, Alberto A.; Slonchak, Andrii; Khromykh, Alexander A.

    2017-01-01

    West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in humans) caused by NSW2011 strain. Using chimeric viruses between NY99 and NSW2011 strains we previously identified a role for the non-structural proteins of NY99 strain and especially the NS3 protein, in enhanced virus replication in type I interferon response-competent cells and increased virulence in mice. To further define the role of NY99 NS3 protein in inhibition of type I interferon response, we have generated and characterised additional chimeric viruses containing the protease or the helicase domains of NY99 NS3 on the background of the NSW2011 strain. The results identified the role for the helicase but not the protease domain of NS3 protein in the inhibition of type I interferon signalling and showed that helicase domain of the more virulent NY99 strain performs this function more efficiently than helicase domain of the less virulent NSW2011 strain. Further analysis with individual amino acid mutants identified two amino acid residues in the helicase domain primarily responsible for this difference. Using chimeric replicons, we also showed that the inhibition of type I interferon (IFN) signalling was independent of other known functions of NS3 in RNA replication and assembly of virus particles. PMID:29099073

  3. Flaviviridae virus nonstructural proteins 5 and 5A mediate viral immune evasion and are promising targets in drug development.

    PubMed

    Chen, Shun; Yang, Chao; Zhang, Wei; Mahalingam, Suresh; Wang, Mingshu; Cheng, Anchun

    2018-05-06

    Infections with viruses in the Flaviviridae family have a vast global and economic impact because of the high morbidity and mortality. The pathogenesis of Flaviviridae infections is very complex and not fully understood because these viruses can inhibit multiple immune pathways including the complement system, NK cells, and IFN induction and signalling pathways. The non-structural (NS) 5 and 5A proteins of Flaviviridae viruses are highly conserved and play an important role in resisting host immunity through various evasion mechanisms. This review summarizes the strategies used by the NS5 and 5A proteins of Flaviviridae viruses for evading the innate immune response by inhibiting pattern recognition receptor (PRR) signalling pathways (TLR/MyD88, IRF7), suppressing interferon (IFN) signalling pathways (IFN-γRs, STAT1, STAT2), and impairing the function of IFN-stimulated genes (ISGs) (e.g. protein kinase R [PKR], oligoadenylate synthase [OAS]). All of these immune evasion mechanisms depend on the interaction of NS5 or NS5A with cellular proteins, such as MyD88 and IRF7, IFN-αRs, IFN-γRs, STAT1, STAT2, PKR and OAS. NS5 is the most attractive target for the discovery of broad spectrum compounds against Flaviviridae virus infection. The methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities of NS5 are the main therapeutic targets for antiviral drugs against Flaviviridae virus infection. Based on our site mapping, the sites involved in immune evasion provide some potential and promising targets for further novel antiviral therapeutics. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Absence of protection from West Nile virus disease and adverse effects in red legged partridges after non-structural NS1 protein administration.

    PubMed

    Rebollo, Belén; Llorente, Francisco; Pérez-Ramírez, Elisa; Sarraseca, Javier; Gallardo, Carmina; Risalde, María Ángeles; Höfle, Ursula; Figuerola, Jordi; Soriguer, Ramón C; Venteo, Ángel; Jiménez-Clavero, Miguel Ángel

    2018-02-01

    The red-legged partridge (Alectoris rufa) is a competent host for West Nile virus (WNV) replication and highly susceptible to WNV disease. With the aim to assess in this species whether the inoculation of non-structural protein NS1 from WNV elicits a protective immune response against WNV infection, groups of partridges were inoculated with recombinant NS1 (NS1 group) or an unrelated recombinant protein (mock group), and challenged with infectious WNV. A third group received no inoculation prior to challenge (challenge group). The NS1 group failed to elicit detectable antibodies to NS1 while in the mock group a specific antibody response was observed. Moreover, no protection against WNV disease was observed in the NS1 group, but rather, it showed significantly higher viral RNA load and delayed neutralizing antibody response, and suffered a more severe clinical disease, which resulted in higher mortality. This adverse effect has not been observed before and warrants further investigations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Nuclear TRIM25 Specifically Targets Influenza Virus Ribonucleoproteins to Block the Onset of RNA Chain Elongation.

    PubMed

    Meyerson, Nicholas R; Zhou, Ligang; Guo, Yusong R; Zhao, Chen; Tao, Yizhi J; Krug, Robert M; Sawyer, Sara L

    2017-11-08

    TRIM25 is an E3 ubiquitin ligase that activates RIG-I to promote the antiviral interferon response. The NS1 protein from all strains of influenza A virus binds TRIM25, although not all virus strains block the interferon response, suggesting alternative mechanisms for TRIM25 action. Here we present a nuclear role for TRIM25 in specifically restricting influenza A virus replication. TRIM25 inhibits viral RNA synthesis through a direct mechanism that is independent of its ubiquitin ligase activity and the interferon pathway. This activity can be inhibited by the viral NS1 protein. TRIM25 inhibition of viral RNA synthesis results from its binding to viral ribonucleoproteins (vRNPs), the structures containing individual viral RNA segments, the viral polymerase, and multiple viral nucleoproteins. TRIM25 binding does not inhibit initiation of capped-RNA-primed viral mRNA synthesis by the viral polymerase. Rather, the onset of RNA chain elongation is inhibited because TRIM25 prohibits the movement of RNA into the polymerase complex. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A Point Mutation in the N-Terminal Amphipathic Helix α0 in NS3 Promotes Hepatitis C Virus Assembly by Altering Core Localization to the Endoplasmic Reticulum and Facilitating Virus Budding

    PubMed Central

    Yan, Yu; He, Ying; Boson, Bertrand; Wang, Xuesong; Cosset, François-Loïc

    2017-01-01

    ABSTRACT The assembly of hepatitis C virus (HCV), a complicated process in which many viral and cellular factors are involved, has not been thoroughly deciphered. NS3 is a multifunctional protein that contains an N-terminal amphipathic α helix (designated helix α0), which is crucial for the membrane association and stability of NS3 protein, followed by a serine protease domain and a C-terminal helicase/NTPase domain. NS3 participates in HCV assembly likely through its C-terminal helicase domain, in which all reported adaptive mutations enhancing virion assembly reside. In this study, we determined that the N-terminal helix α0 of NS3 may contribute to HCV assembly. We identified a single mutation from methionine to threonine at amino acid position 21 (M21T) in helix α0, which significantly promoted viral production while having no apparent effect on the membrane association and protease activity of NS3. Subsequent analyses demonstrated that the M21T mutation did not affect HCV genome replication but rather promoted virion assembly. Further study revealed a shift in the subcellular localization of core protein from lipid droplets (LD) to the endoplasmic reticulum (ER). Finally, we showed that the M21T mutation increased the colocalization of core proteins and viral envelope proteins, leading to a more efficient envelopment of viral nucleocapsids. Collectively, the results of our study revealed a new function of NS3 helix α0 and aid understanding of the role of NS3 in HCV virion morphogenesis. IMPORTANCE HCV NS3 protein possesses the protease activity in its N-terminal domain and the helicase activity in its C-terminal domain. The role of NS3 in virus assembly has been mainly attributed to its helicase domain, because all adaptive mutations enhancing progeny virus production are found to be within this domain. Our study identified, for the first time to our knowledge, an adaptive mutation within the N-terminal helix α0 domain of NS3 that significantly enhanced virus assembly while having no effect on viral genome replication. The mechanistic studies suggested that this mutation promoted the relocation of core proteins from LD to the ER, leading to a more efficient envelopment of viral nucleocapsids. Our results revealed a possible new function of helix α0 in the HCV life cycle and provided new clues to understanding the molecular mechanisms for the action of NS3 in HCV assembly. PMID:28053108

  7. Resistance to cyclosporin A derives from mutations in hepatitis C virus nonstructural proteins.

    PubMed

    Arai, Masaaki; Tsukiyama-Kohara, Kyoko; Takagi, Asako; Tobita, Yoshimi; Inoue, Kazuaki; Kohara, Michinori

    2014-05-23

    Cyclosporine A (CsA) is an immunosuppressive drug that targets cyclophilins, cellular cofactors that regulate the immune system. Replication of hepatitis C virus (HCV) is suppressed by CsA, but the molecular basis of this suppression is still not fully understood. To investigate this suppression, we cultured HCV replicon cells (Con1, HCV genotype 1b, FLR-N cell) in the presence of CsA and obtained nine CsA-resistant FLR-N cell lines. We determined full-length HCV sequences for all nine clones, and chose two (clones #6 and #7) of the nine clones that have high replication activity in the presence of CsA for further analysis. Both clones showed two consensus mutations, one in NS3 (T1280V) and the other in NS5A (D2292E). Characterization of various mutants indicated that the D2292E mutation conferred resistance to high concentrations of CsA (up to 2 μM). In addition, the missense mutation T1280V contributed to the recovery of colony formation activity. The effects of these mutations are also evident in two established HCV replicon cell lines-HCV-RMT ([1], genotype 1a) and JFH1 (genotype 2a). Moreover, three other missense mutations in NS5A-D2303H, S2362G, and E2414K-enhanced the resistance to CsA conferred by D2292E; these double or all quadruple mutants could resist approximately 8- to 25-fold higher concentrations of CsA than could wild-type Con1. These four mutations, either as single or combinations, also made Con1 strain resistant to two other cyclophilin inhibitors, N-methyl-4-isoleucine-cyclosporin (NIM811) or Debio-025. Interestingly, the changes in IC50 values that resulted from each of these mutations were the lowest in the Debio-025-treated cells, indicating its highest resistant activity against the adaptive mutation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Discovery of Novel Hepatitis C Virus NS5B Polymerase Inhibitors by Combining Random Forest, Multiple e-Pharmacophore Modeling and Docking

    PubMed Central

    Wei, Yu; Li, Jinlong; Qing, Jie; Huang, Mingjie; Wu, Ming; Gao, Fenghua; Li, Dongmei; Hong, Zhangyong; Kong, Lingbao; Huang, Weiqiang; Lin, Jianping

    2016-01-01

    The NS5B polymerase is one of the most attractive targets for developing new drugs to block Hepatitis C virus (HCV) infection. We describe the discovery of novel potent HCV NS5B polymerase inhibitors by employing a virtual screening (VS) approach, which is based on random forest (RB-VS), e-pharmacophore (PB-VS), and docking (DB-VS) methods. In the RB-VS stage, after feature selection, a model with 16 descriptors was used. In the PB-VS stage, six energy-based pharmacophore (e-pharmacophore) models from different crystal structures of the NS5B polymerase with ligands binding at the palm I, thumb I and thumb II regions were used. In the DB-VS stage, the Glide SP and XP docking protocols with default parameters were employed. In the virtual screening approach, the RB-VS, PB-VS and DB-VS methods were applied in increasing order of complexity to screen the InterBioScreen database. From the final hits, we selected 5 compounds for further anti-HCV activity and cellular cytotoxicity assay. All 5 compounds were found to inhibit NS5B polymerase with IC50 values of 2.01–23.84 μM and displayed anti-HCV activities with EC50 values ranging from 1.61 to 21.88 μM, and all compounds displayed no cellular cytotoxicity (CC50 > 100 μM) except compound N2, which displayed weak cytotoxicity with a CC50 value of 51.3 μM. The hit compound N2 had the best antiviral activity against HCV, with a selective index of 32.1. The 5 hit compounds with new scaffolds could potentially serve as NS5B polymerase inhibitors through further optimization and development. PMID:26845440

  9. Generation of an Adenovirus-Parvovirus Chimera with Enhanced Oncolytic Potential

    PubMed Central

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K.; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M.; Rommelaere, Jean

    2012-01-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells. PMID:22787235

  10. Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential.

    PubMed

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M; Rommelaere, Jean; Marchini, Antonio

    2012-10-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.

  11. Influenza A Virus Virulence Depends on Two Amino Acids in the N-Terminal Domain of Its NS1 Protein To Facilitate Inhibition of the RNA-Dependent Protein Kinase PKR

    PubMed Central

    Schierhorn, Kristina L.; Jolmes, Fabian; Bespalowa, Julia; Saenger, Sandra; Peteranderl, Christin; Dzieciolowski, Julia; Mielke, Maja; Budt, Matthias; Pleschka, Stephan; Herrmann, Andreas; Herold, Susanne

    2017-01-01

    ABSTRACT The RNA-dependent protein kinase (PKR) has broad antiviral activity inducing translational shutdown of viral and cellular genes and is therefore targeted by various viral proteins to facilitate pathogen propagation. The pleiotropic NS1 protein of influenza A virus acts as silencer of PKR activation and ensures high-level viral replication and virulence. However, the exact manner of this inhibition remains controversial. To elucidate the structural requirements within the NS1 protein for PKR inhibition, we generated a set of mutant viruses, identifying highly conserved arginine residues 35 and 46 within the NS1 N terminus as being most critical not only for binding to and blocking activation of PKR but also for efficient virus propagation. Biochemical and Förster resonance energy transfer (FRET)-based interaction studies showed that mutation of R35 or R46 allowed formation of NS1 dimers but eliminated any detectable binding to PKR as well as to double-stranded RNA (dsRNA). Using in vitro and in vivo approaches to phenotypic restoration, we demonstrated the essential role of the NS1 N terminus for blocking PKR. The strong attenuation conferred by NS1 mutation R35A or R46A was substantially alleviated by stable knockdown of PKR in human cells. Intriguingly, both NS1 mutant viruses did not trigger any signs of disease in PKR+/+ mice, but replicated to high titers in lungs of PKR−/− mice and caused lethal infections. These data not only establish the NS1 N terminus as highly critical for neutralization of PKR's antiviral activity but also identify this blockade as an indispensable contribution of NS1 to the viral life cycle. IMPORTANCE Influenza A virus inhibits activation of the RNA-dependent protein kinase (PKR) by means of its nonstructural NS1 protein, but the underlying mode of inhibition is debated. Using mutational analysis, we identified arginine residues 35 and 46 within the N-terminal NS1 domain as highly critical for binding to and functional silencing of PKR. In addition, our data show that this is a main activity of amino acids 35 and 46, as the strong attenuation of corresponding mutant viruses in human cells was rescued to a large extent by lowering of PKR expression levels. Significantly, this corresponded with restoration of viral virulence for NS1 R35A and R46A mutant viruses in PKR−/− mice. Therefore, our data establish a model in which the NS1 N-terminal domain engages in a binding interaction to inhibit activation of PKR and ensure efficient viral propagation and virulence. PMID:28250123

  12. Upon Infection the Cellular WD Repeat-containing Protein 5 (WDR5) Localizes to Cytoplasmic Inclusion Bodies and Enhances Measles Virus Replication.

    PubMed

    Ma, Dzwokai; George, Cyril X; Nomburg, Jason; Pfaller, Christian K; Cattaneo, Roberto; Samuel, Charles E

    2017-12-13

    Replication of negative-strand RNA viruses occurs in association with discrete cytoplasmic foci called inclusion bodies. Whereas inclusion bodies represent a prominent subcellular structure induced by viral infection, our knowledge of the cellular protein components involved in inclusion body formation and function is limited. Using measles virus-infected HeLa cells, we found that the WD repeat-containing protein 5 (WDR5), a subunit of histone H3 lysine 4 methyltransferases, was selectively recruited to virus-induced inclusion bodies. Furthermore, WDR5 was found in complexes containing viral proteins associated with RNA replication. WDR5 was not detected with mitochondria, stress granules, or other known secretory or endocytic compartments of infected cells. WDR5 deficiency decreased both viral protein production and infectious virus yields. Interferon production was modestly increased in WDR5 deficient cells. Thus, our study identifies WDR5 as a novel viral inclusion body-associated cellular protein and suggests a role for WDR5 in promoting viral replication. IMPORTANCE Measles virus is a human pathogen that remains a global concern with more than 100,000 measles-related deaths annually despite the availability of an effective vaccine. As measles continues to cause significant morbidity and mortality, understanding the virus-host interactions at the molecular level that affect virus replication efficiency is important for development and optimization of treatment procedures. Measles virus is an RNA virus that encodes six genes and replicates in the cytoplasm of infected cells in discrete cytoplasmic replication bodies, though little is known of the biochemical nature of these structures. Here we show that the cellular protein WDR5 is enriched in the cytoplasmic viral replication factories and enhances virus growth. WDR5-containing protein complex includes viral proteins responsible for viral RNA replication. Thus, we have identified WDR5 as a host factor that enhances the replication of measles virus. Copyright © 2017 American Society for Microbiology.

  13. Comparative in vivo assessment of some adverse bioeffects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver's effects with a complex of innocuous bioprotectors.

    PubMed

    Katsnelson, Boris A; Privalova, Larisa I; Gurvich, Vladimir B; Makeyev, Oleg H; Shur, Vladimir Ya; Beikin, Yakov B; Sutunkova, Marina P; Kireyeva, Ekaterina P; Minigalieva, Ilzira A; Loginova, Nadezhda V; Vasilyeva, Marina S; Korotkov, Artem V; Shuman, Eugene A; Vlasova, Larisa A; Shishkina, Ekaterina V; Tyurnina, Anastasia E; Kozin, Roman V; Valamina, Irene E; Pichugova, Svetlana V; Tulakina, Ludmila G

    2013-01-25

    Stable suspensions of nanogold (NG) and nanosilver (NS) with mean particle diameter 50 and 49 nm, respectively, were prepared by laser ablation of metals in water. To assess rat's pulmonary phagocytosis response to a single intratracheal instillation of these suspensions, we used optical, transmission electron, and semi-contact atomic force microscopy. NG and NS were also repeatedly injected intraperitoneally into rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water) three times a week, up to 20 injections. A group of rats was thus injected with NS after oral administration of a "bioprotective complex" (BPC) comprised of pectin, multivitamins, some amino acids, calcium, selenium, and omega-3 PUFA. After the termination of the injections, many functional and biochemical indices and histopathological features of the spleen, kidneys and liver were evaluated for signs of toxicity, and accumulation of NG or NS in these organs was measured. From the same rats, we obtained cell suspensions of different tissues for performing the RAPD test. It was demonstrated that, although both nanometals were adversely bioactive in all respects considered in this study, NS was more noxious as compared with NG, and that the BPC tested by us attenuated both the toxicity and genotoxicity of NS.

  14. Measuring antiviral activity of benzimidazole molecules that alter IRES RNA structure with an infectious hepatitis C virus chimera expressing Renilla luciferase.

    PubMed

    Liu, Shuanghu; Nelson, Cassie A; Xiao, Li; Lu, Ling; Seth, Punit P; Davis, Darrell R; Hagedorn, Curt H

    2011-01-01

    Major progress has been made in developing infectious HCV cell culture systems and these systems have been useful in identifying novel HCV antivirals. However, more rapid and sensitive assays using infectious cell based HCV systems would facilitate the development of additional antivirals, including small molecules directed at unique targets such as the HCV RNA internal ribosomal entry site (IRES). We have found that the V3 region (28 aa) of NS5A of HCV JFH1 can be deleted from the genome with only modest effects on the titer of infectious virus produced in cell culture. Moreover, the V3 region can be replaced with the Renilla reniformis luciferase (Rluc) gene resulting in an infectious virus that stably expresses an NS5A-Rluc fusion protein. Infected cells cultured in 96-well plates provided a robust luciferase signal that accurately reflected the production of infectious virus. This infectious HCV reporter system was used to test the activity of three benzimidazole compounds that bind the HCV RNA IRES. Compounds in this chemical class of small molecules bind and alter the IRES RNA structure at low to sub-micromolar concentrations and interfere with viral replication. The current study shows that these compounds inhibit HCV replication in an infectious HCV cell culture system, defines their IC(50) in this system, and provides a platform for the rapid testing of next generation inhibitors. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Measuring Antiviral Activity of Benzimidazole Molecules that Alter IRES RNA Structure with an Infectious Hepatitis C Virus Chimera Expressing Renilla Luciferase

    PubMed Central

    Liu, Shuanghu; Nelson, Cassie A.; Xiao, Li; Lu, Ling; Seth, Punit P.; Davis, Darrell R.; Hagedorn, Curt H.

    2010-01-01

    Major progress has been made in developing infectious HCV cell culture systems and these systems have been useful in identifying novel HCV antivirals. However, more rapid and sensitive assays using infectious cell based HCV systems would facilitate the development of additional antivirals, including small molecules directed at unique targets such as the HCV RNA internal ribosomal entry site (IRES). We have found that the V3 region (28 aa) of NS5A of HCV JFH1 can be deleted from the genome with only modest effects on the titer of infectious virus produced in cell culture. Moreover, the V3 region can be replaced with the Renilla reniformis luciferase (Rluc) gene resulting in an infectious virus that stably expresses an NS5A-Rluc fusion protein. Infected cells cultured in 96-well plates provided a robust luciferase signal that accurately reflected the production of infectious virus. This infectious HCV reporter system was used to test the activity of three benzimidazole compounds that bind the HCV RNA IRES. Compounds in this chemical class of small molecules bind and alter the IRES RNA structure at low to sub-micromolar concentrations and interfere with viral replication. The current study shows that these compounds inhibit HCV replication in an infectious HCV cell culture system, defines their IC50 in this system, and provides a platform for the rapid testing of next generation inhibitors. PMID:21075143

  16. Involvement of cyclophilin B in the replication of Japanese encephalitis virus.

    PubMed

    Kambara, Hiroto; Tani, Hideki; Mori, Yoshio; Abe, Takayuki; Katoh, Hiroshi; Fukuhara, Takasuke; Taguwa, Shuhei; Moriishi, Kohji; Matsuura, Yoshiharu

    2011-03-30

    Japanese encephalitis virus (JEV) is a mosquito-borne RNA virus that belongs to the Flaviviridae family. In this study, we have examined the effect of cyclosporin A (CsA) on the propagation of JEV. CsA exhibited potent anti-JEV activity in various mammalian cell lines through the inhibition of CypB. The propagation of JEV was impaired in the CypB-knockdown cells and this reduction was cancelled by the expression of wild-type but not of peptidylprolyl cis-trans isomerase (PPIase)-deficient CypB, indicating that PPIase activity of CypB is critical for JEV propagation. Infection of pseudotype viruses bearing JEV envelope proteins was not impaired by the knockdown of CypB, suggesting that CypB participates in the replication but not in the entry of JEV. CypB was colocalized and immunoprecipitated with JEV NS4A in infected cells. These results suggest that CypB plays a crucial role in the replication of JEV through an interaction with NS4A. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Treatment of Chronic Hepatitis C in the Aged - Does It Impact Life Expectancy? A Decision Analysis.

    PubMed

    Maor, Yaakov; Malnick, Stephen D H; Melzer, Ehud; Leshno, Moshe

    2016-01-01

    Recent studies have demonstrated that the efficacy of interferon-free direct-acting antiviral agents (DAAs) in patients over 70 is similar to that of younger age groups. Evidence continues to mount that life expectancy (LE) increases with successful treatment of hepatitis C (HCV) patients with advanced fibrosis. The evidence in older people is more limited. Our aim was to estimate the life year (LY) and quality-adjusted life year (QALY) gained by treatment of naïve patients with HCV as a function of patient's age and fibrosis stage. We constructed a Markov model of HCV progression toward advanced liver disease. The primary outcome was LY and QALY saved. The model and the sustained virological response of HCV infected subjects treated with a fixed-dose combination of the NS5B polymerase inhibitor Sofosbuvir and the NS5A replication complex inhibitor Ledipasvir were based on the published literature and expert opinion. Generally, both the number of LY gained and QALY gained gradually decreased with advancing age but the rate of decline was slower with more advanced fibrosis stage. For patients with fibrosis stage F1, F2 and F3, LY gained dropped below six months if treated by the age of 55, 65 or 70 years, respectively, while for a patient with fibrosis stage F4, the gain was one LY if treated by the age of 75. The QALY gained for treated over untreated elderly were reasonably high even for those treated at early fibrosis stage. There is a significant life expectancy benefit to HCV treatment in patients up to age 75 with advanced-stage fibrosis.

  18. Treatment of Chronic Hepatitis C in the Aged – Does It Impact Life Expectancy? A Decision Analysis

    PubMed Central

    Maor, Yaakov; Malnick, Stephen D. H.; Melzer, Ehud; Leshno, Moshe

    2016-01-01

    Background and Aims Recent studies have demonstrated that the efficacy of interferon-free direct-acting antiviral agents (DAAs) in patients over 70 is similar to that of younger age groups. Evidence continues to mount that life expectancy (LE) increases with successful treatment of hepatitis C (HCV) patients with advanced fibrosis. The evidence in older people is more limited. Our aim was to estimate the life year (LY) and quality-adjusted life year (QALY) gained by treatment of naïve patients with HCV as a function of patient's age and fibrosis stage. Methods We constructed a Markov model of HCV progression toward advanced liver disease. The primary outcome was LY and QALY saved. The model and the sustained virological response of HCV infected subjects treated with a fixed-dose combination of the NS5B polymerase inhibitor Sofosbuvir and the NS5A replication complex inhibitor Ledipasvir were based on the published literature and expert opinion. Results Generally, both the number of LY gained and QALY gained gradually decreased with advancing age but the rate of decline was slower with more advanced fibrosis stage. For patients with fibrosis stage F1, F2 and F3, LY gained dropped below six months if treated by the age of 55, 65 or 70 years, respectively, while for a patient with fibrosis stage F4, the gain was one LY if treated by the age of 75. The QALY gained for treated over untreated elderly were reasonably high even for those treated at early fibrosis stage. Conclusions There is a significant life expectancy benefit to HCV treatment in patients up to age 75 with advanced-stage fibrosis. PMID:27410963

  19. Recombinant dengue 2 virus NS3 protein conserves structural antigenic and immunological properties relevant for dengue vaccine design.

    PubMed

    Ramírez, Rosa; Falcón, Rosabel; Izquierdo, Alienys; García, Angélica; Alvarez, Mayling; Pérez, Ana Beatriz; Soto, Yudira; Muné, Mayra; da Silva, Emiliana Mandarano; Ortega, Oney; Mohana-Borges, Ronaldo; Guzmán, María G

    2014-10-01

    The NS3 protein is a multifunctional non-structural protein of flaviviruses implicated in the polyprotein processing. The predominance of cytotoxic T cell lymphocytes epitopes on the NS3 protein suggests a protective role of this protein in limiting virus replication. In this work, we studied the antigenicity and immunogenicity of a recombinant NS3 protein of the Dengue virus 2. The full-length NS3 gene was cloned and expressed as a His-tagged fusion protein in Escherichia coli. The pNS3 protein was purified by two chromatography steps. The recombinant NS3 protein was recognized by anti-protease NS3 polyclonal antibody and anti-DENV2 HMAF by Western Blot. This purified protein was able to stimulate the secretion of high levels of gamma interferon and low levels of interleukin-10 and tumor necrosis factor-α in mice splenocytes, suggesting a predominantly Th-1-type T cell response. Immunized BALB/c mice with the purified NS3 protein showed a strong induction of anti-NS3 IgG antibodies, essentially IgG2b, as determined by ELISA. Immunized mice sera with recombinant NS3 protein showed specific recognition of native dengue protein by Western blotting and immunofluorescence techniques. The successfully purified recombinant protein was able to preserv the structural and antigenic determinants of the native dengue protein. The antigenicity shown by the recombinant NS3 protein suggests its possible inclusion into future DENV vaccine preparations.

  20. Interaction between the bacterial nucleoid associated proteins Hha and H-NS involves a conformational change of Hha.

    PubMed

    García, Jesús; Cordeiro, Tiago N; Nieto, José M; Pons, Ignacio; Juárez, Antonio; Pons, Miquel

    2005-06-15

    The H-NS family of proteins has been shown to participate in the regulation of a large number of genes in Gram-negative bacteria in response to environmental factors. In recent years, it has become apparent that proteins of the Hha family are essential elements for H-NS-regulated gene expression. Hha has been shown to bind H-NS, although the details for this interaction are still unknown. In the present paper, we report fluorescence anisotropy and NMR studies of the interaction between Hha and H-NS64, a truncated form of H-NS containing only its N-terminal dimerization domain. We demonstrate the initial formation of a complex between one Hha and two H-NS64 monomers in 150 mM NaCl. This complex seems to act as a nucleation unit for higher-molecular-mass complexes. NMR studies suggest that Hha is in equilibrium between two different conformations, one of which is stabilized by binding to H-NS64. A similar exchange is also observed for Hha in the absence of H-NS when temperature is increased to 37 degrees C, suggesting a key role for intrinsic conformational changes of Hha in modulating its interaction with H-NS.

  1. Interaction between the bacterial nucleoid associated proteins Hha and H-NS involves a conformational change of Hha

    PubMed Central

    2005-01-01

    The H-NS family of proteins has been shown to participate in the regulation of a large number of genes in Gram-negative bacteria in response to environmental factors. In recent years, it has become apparent that proteins of the Hha family are essential elements for H-NS-regulated gene expression. Hha has been shown to bind H-NS, although the details for this interaction are still unknown. In the present paper, we report fluorescence anisotropy and NMR studies of the interaction between Hha and H-NS64, a truncated form of H-NS containing only its N-terminal dimerization domain. We demonstrate the initial formation of a complex between one Hha and two H-NS64 monomers in 150 mM NaCl. This complex seems to act as a nucleation unit for higher-molecular-mass complexes. NMR studies suggest that Hha is in equilibrium between two different conformations, one of which is stabilized by binding to H-NS64. A similar exchange is also observed for Hha in the absence of H-NS when temperature is increased to 37 °C, suggesting a key role for intrinsic conformational changes of Hha in modulating its interaction with H-NS. PMID:15720293

  2. In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium.

    PubMed

    Zidan, Mohamed F; Ibrahim, Hany M; Afouna, Mohsen I; Ibrahim, Elsherbeny A

    2018-08-01

    The aim of this study was to explore the feasibility of complexing the poorly water-soluble drug atorvastatin calcium (AC) with β-cyclodextrin (β-CD) based nanosponges (NS), which offer advantages of improving dissolution rate and eventually oral bioavailability. Blank NS were fabricated at first by reacting β-CD with the cross-linker carbonyldiimidazole at different molar ratios (1:2, 1:4, and 1:8), then NS of highest solubilization extent for AC were complexed with AC. AC loaded NS (AC-NS) were characterized for various physicochemical properties. Pharmacokinetic, pharmacodynamics and histological finding of AC-NS were performed in rats. The prepared AC-NS showed particles size ranged from 408.7 ± 12.9 to 423 ± 15.9 nm while zeta potential values varied from -21.7 ± 0.90 to -22.7 ± 0.85 mV. The loading capacity varied from 17.9 ± 1.21 to 34.1 ± 1.16%. DSC, FT-IR, and PXRD studies confirmed the complexation of AC with NS and amorphous state of the drug in the complex. AC-NS displayed a biphasic release pattern with increase in the dissolution rate of AC as compared to plain AC. Oral administration of AC-NS (1:4 w/w, drug: NS) to rats led to 2.13-folds increase in the bioavailability as compared to AC suspension. Pharmacodynamics studies in rats with fatty liver revealed significant reduction (p < .05) in total cholesterol, triglyceride, LDL-C and increased level of beneficial HDL-C along with improvement in the associated liver steatosis as confirmed through photomicrographs of liver sections. In this study, we confirmed that complexation of AC with NS would be a viable approach for improving oral bioavailability and in vivo performance of AC.

  3. Analysis of hepatitis C NS5A resistance associated polymorphisms using ultra deep single molecule real time (SMRT) sequencing.

    PubMed

    Bergfors, Assar; Leenheer, Daniël; Bergqvist, Anders; Ameur, Adam; Lennerstrand, Johan

    2016-02-01

    Development of Hepatitis C virus (HCV) resistance against direct-acting antivirals (DAAs), including NS5A inhibitors, is an obstacle to successful treatment of HCV when DAAs are used in sub-optimal combinations. Furthermore, it has been shown that baseline (pre-existing) resistance against DAAs is present in treatment naïve-patients and this will potentially complicate future treatment strategies in different HCV genotypes (GTs). Thus the aim was to detect low levels of NS5A resistant associated variants (RAVs) in a limited sample set of treatment-naïve patients of HCV GT1a and 3a, since such polymorphisms can display in vitro resistance as high as 60000 fold. Ultra-deep single molecule real time (SMRT) sequencing with the Pacific Biosciences (PacBio) RSII instrument was used to detect these RAVs. The SMRT sequencing was conducted on ten samples; three of them positive with Sanger sequencing (GT1a Q30H and Y93N, and GT3a Y93H), five GT1a samples, and two GT3a non-positive samples. The same methods were applied to the HCV GT1a H77-plasmid in a dilution series, in order to determine the error rates of replication, which in turn was used to determine the limit of detection (LOD), as defined by mean + 3SD, of minority variants down to 0.24%. We found important baseline NS5A RAVs at levels between 0.24 and 0.5%, which could potentially have clinical relevance. This new method with low level detection of baseline RAVs could be useful in predicting the most cost-efficient combination of DAA treatment, and reduce the treatment duration for an HCV infected individual. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B.

    PubMed

    Lennemann, Nicholas J; Coyne, Carolyn B

    2017-02-01

    The endoplasmic reticulum (ER) is exploited by several diverse viruses during their infectious life cycles. Flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), utilize the ER as a source of membranes to establish their replication organelles and to facilitate their assembly and eventual maturation along the secretory pathway. To maintain normal homeostasis, host cells have evolved highly efficient processes to dynamically regulate the ER, such as through reticulophagy, a selective form of autophagy that leads to ER degradation. Here, we identify the ER-localized reticulophagy receptor FAM134B as a host cell restriction factor for both DENV and ZIKV. We show that RNAi-mediated depletion of FAM134B significantly enhances both DENV and ZIKV replication at an early stage of the viral life cycle. Consistent with its role as an antiviral host factor, we found that several flaviviruses including DENV, ZIKV, and West Nile virus (WNV), utilize their NS3 virally-encoded proteases to directly cleave FAM134B at a single site within its reticulon homology domain (RHD). Mechanistically, we show that NS3-mediated cleavage of FAM134B blocks the formation of ER and viral protein-enriched autophagosomes, suggesting that the cleavage of FAM134B serves to specifically suppress the reticulophagy pathway. These findings thus point to an important role for FAM134B and reticulophagy in the regulation of flavivirus infection and suggest that these viruses specifically target these pathways to promote viral replication.

  5. The Short Form of the Zinc Finger Antiviral Protein Inhibits Influenza A Virus Protein Expression and Is Antagonized by the Virus-Encoded NS1.

    PubMed

    Tang, Qiannan; Wang, Xinlu; Gao, Guangxia

    2017-01-15

    Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses. There are two ZAP isoforms arising from alternative splicing, which differ only at the C termini. It was recently reported that the long isoform (ZAPL) promotes proteasomal degradation of influenza A virus (IAV) proteins PA and PB2 through the C-terminal poly(ADP-ribose) polymerase (PARP) domain, which is missing in the short form (ZAPS), and that this antiviral activity is antagonized by the viral protein PB1. Here, we report that ZAP inhibits IAV protein expression in a PARP domain-independent manner. Overexpression of ZAPS inhibited the expression of PA, PB2, and neuraminidase (NA), and downregulation of the endogenous ZAPS enhanced their expression. We show that ZAPS inhibited PB2 protein expression by reducing the encoding viral mRNA levels and repressing its translation. However, downregulation of ZAPS only modestly enhanced the early stage of viral replication. We provide evidence showing that the antiviral activity of ZAPS is antagonized by the viral protein NS1. A recombinant IAV carrying an NS1 mutant that lost the ZAPS-antagonizing activity replicated better in ZAPS-deficient cells. We further provide evidence suggesting that NS1 antagonizes ZAPS by inhibiting its binding to target mRNA. These results uncover a distinct mechanism underlying the interactions between ZAP and IAV. ZAP is a host antiviral factor that has been extensively reported to inhibit the replication of certain viruses by repressing the translation and promoting the degradation of the viral mRNAs. There are two ZAP isoforms, ZAPL and ZAPS. ZAPL was recently reported to promote IAV protein degradation through the PARP domain. Whether ZAPS, which lacks the PARP domain, inhibits IAV and the underlying mechanisms remained to be determined. Here, we show that ZAPS posttranscriptionally inhibits IAV protein expression. This antiviral activity of ZAP is antagonized by the viral protein NS1. The fact that ZAP uses two distinct mechanisms to inhibit IAV infection and that the virus evolved different antagonists suggests an important role of ZAP in the host effort to control IAV infection and the importance of the threat of ZAP to the virus. The results reported here help us to comprehensively understand the interactions between ZAP and IAV. Copyright © 2017 American Society for Microbiology.

  6. Protochlorophyll complexes with similar steady-state fluorescence characteristics can differ in fluorescence lifetimes. A model study in Triton X-100.

    PubMed

    Myśliwa-Kurdziel, Beata; Solymosi, Katalin; Kruk, Jerzy; Böddi, Béla; Strzałka, Kazimierz

    2007-03-01

    The steady-state and time-resolved fluorescence characteristics of protochlorophyll (Pchl) dissolved in neat Triton X-100 and in Triton X-100 micelles were investigated, and the fluorescence lifetimes of different Pchl spectral forms were studied. Varying the concentration of Pchl or diluting the micellar solutions either with a buffer or with a micellar solution, 631-634, 645-655, 680-692 and above 700 nm emitting Pchl complexes were prepared, the ratios of which varied from one another. The fluorescence decay of the 631-634 nm emitting (monomeric) form had a mono-exponential character with a 5.4-ns fluorescence lifetime. The long-wavelength Pchl complexes (aggregates) had two fluorescence lifetime values within a range of 1.4-3.9 ns and 0.15-0.84 ns, which showed high variability in different environments. Depending on the conditions, either mono- or double-exponential fluorescence decay was found for a fluorescence band at 680-685 nm. These data show that despite their very similar steady-state fluorescence properties, Pchl complexes can differ in fluorescence lifetimes, which may reflect different molecular structures, intrinsic geometries or different molecular interactions. This underlines the importance of complex spectroscopic analysis for a precise description of native and artificial chlorophyllous pigment forms.

  7. WDR5 Facilitates Human Cytomegalovirus Replication by Promoting Capsid Nuclear Egress.

    PubMed

    Yang, Bo; Liu, Xi-Juan; Yao, Yongxuan; Jiang, Xuan; Wang, Xian-Zhang; Yang, Hong; Sun, Jin-Yan; Miao, Yun; Wang, Wei; Huang, Zhen-Li; Wang, Yanyi; Tang, Qiyi; Rayner, Simon; Britt, William J; McVoy, Michael A; Luo, Min-Hua; Zhao, Fei

    2018-05-01

    WD repeat-containing protein 5 (WDR5) is essential for assembling the VISA-associated complex to induce a type I interferon antiviral response to Sendai virus infection. However, the roles of WDR5 in DNA virus infections are not well described. Here, we report that human cytomegalovirus exploits WDR5 to facilitate capsid nuclear egress. Overexpression of WDR5 in fibroblasts slightly enhanced the infectious virus yield. However, WDR5 knockdown dramatically reduced infectious virus titers with only a small decrease in viral genome replication or gene expression. Further investigation of late steps of viral replication found that WDR5 knockdown significantly impaired formation of the viral nuclear egress complex and induced substantially fewer infoldings of the inner nuclear membrane. In addition, fewer capsids were associated with these infoldings, and there were fewer capsids in the cytoplasm. Restoration of WDR5 partially reversed these effects. These results suggest that WDR5 knockdown impairs the nuclear egress of capsids, which in turn decreases virus titers. These findings reveal an important role for a host factor whose function(s) is usurped by a viral pathogen to promote efficient replication. Thus, WDR5 represents an interesting regulatory mechanism and a potential antiviral target. IMPORTANCE Human cytomegalovirus (HCMV) has a large (∼235-kb) genome with over 170 open reading frames and exploits numerous cellular factors to facilitate its replication. HCMV infection increases protein levels of WD repeat-containing protein 5 (WDR5) during infection, overexpression of WDR5 enhances viral replication, and knockdown of WDR5 dramatically attenuates viral replication. Our results indicate that WDR5 promotes the nuclear egress of viral capsids, the depletion of WDR5 resulting in a significant decrease in production of infectious virions. This is the first report that WDR5 favors HCMV, a DNA virus, replication and highlights a novel target for antiviral therapy. Copyright © 2018 American Society for Microbiology.

  8. Protective immunity to Japanese encephalitis virus associated with anti-NS1 antibodies in a mouse model.

    PubMed

    Li, Yize; Counor, Dorian; Lu, Peng; Duong, Veasna; Yu, Yongxin; Deubel, Vincent

    2012-07-24

    Japanese encephalitis virus (JEV) is a major mosquito-borne pathogen that causes viral encephalitis throughout Asia. Vaccination with an inactive JEV particle or attenuated virus is an efficient preventative measure for controlling infection. Flavivirus NS1 protein is a glycoprotein secreted during viral replication that plays multiple roles in the viral life cycle and pathogenesis. Utilizing JEV NS1 as an antigen in viral vectors induces a limited protective immune response against infection. Previous studies using E. coli-expressed JEV NS1 to immunize mice induced protection against lethal challenge; however, the protection mechanism through cellular and humoral immune responses was not described. JEV NS1 was expressed in and purified from Drosophila S2 cells in a native glycosylated multimeric form, which induced T-cell and antibody responses in immunized C3H/HeN mice. Mice vaccinated with 1 μg NS1 with or without water-in-oil adjuvant were partially protected against viral challenge and higher protection was observed in mice with higher antibody titers. IgG1 was preferentially elicited by an adjuvanted NS1 protein, whereas a larger load of IFN-γ was produced in splenocytes from mice immunized with aqueous NS1. Mice that passively received anti-NS1 mouse polyclonal immune sera were protected, and this phenomenon was dose-dependent, whereas protection was low or delayed after the passive transfer of anti-NS1 MAbs. The purified NS1 subunit induced protective immunity in relation with anti-NS1 IgG1 antibodies. NS1 protein efficiently stimulated Th1-cell proliferation and IFN-γ production. Protection against lethal challenge was elicited by passive transfer of anti-NS1 antisera, suggesting that anti-NS1 antibodies play a substantial role in anti-viral immunity.

  9. Zika Virus Attenuation by Codon Pair Deoptimization Induces Sterilizing Immunity in Mouse Models.

    PubMed

    Li, Penghui; Ke, Xianliang; Wang, Ting; Tan, Zhongyuan; Luo, Dan; Miao, Yuanjiu; Sun, Jianhong; Zhang, Yuan; Liu, Yan; Hu, Qinxue; Xu, Fuqiang; Wang, Hanzhong; Zheng, Zhenhua

    2018-06-20

    Zika virus (ZIKV) infection during the large epidemics in the Americas is related to congenital abnormities or fetal demise. To date, there is no vaccine, antiviral drug, or other modality available to prevent or treat Zika virus infection. Here we designed novel live attenuated ZIKV vaccine candidates using a codon pair deoptimization strategy. Three codon pair-deoptimized ZIKVs (Min E, Min NS1, and Min E+NS1) were de novo synthesized, and recovered by reverse genetics, containing large amounts of underrepresented codon pairs in E gene and/or NS1 gene. Amino acid sequence was 100% unchanged. The codon pair-deoptimized variants had decreased replication fitness in Vero cells (Min NS1 ≫ Min E > Min E+NS1), replicated more efficiently in insect cells than in mammalian cells, and demonstrated diminished virulence in a mouse model. In particular, Min E+NS1, the most restrictive variant, induced sterilizing immunity with a robust neutralizing antibody titer, and a single immunization achieved complete protection against lethal challenge and vertical ZIKV transmission during pregnancy. More importantly, due to the numerous synonymous substitutions in the codon pair-deoptimized strains, reversion to wild-type virulence through gradual nucleotide sequence mutations is unlikely. Our results collectively demonstrate that ZIKV can be effectively attenuated by codon pair deoptimization, highlighting the potential of Min E+NS1 as a safe vaccine candidate to prevent ZIKV infections. IMPORTANCE Due to unprecedented epidemics of Zika virus (ZIKV) across the Americas and the unexpected clinical symptoms including Guillain-Barré syndrome, microcephaly and other birth defects in human, there is an urgent need for ZIKV vaccine development. Here, we provided the first attenuated versions of ZIKV with two important genes (E and/or NS1) that were subjected to codon pair deoptimization. Compared to parental ZIKV, the codon pair-deoptimized ZIKVs were mammalian-attenuated, and preferred insect to mammalian Cells. Min E+NS1, the most restrictive variant, induced sterilizing immunity with a robust neutralizing antibody titer, and achieved complete protection against lethal challenge and vertical virus transmission during pregnancy. More importantly, the massive synonymous mutational approach made it impossible to revert to wild-type virulence. Our results have proven the feasibility of codon pair deoptimization as a strategy to develop live-attenuated vaccine candidates against flavivirues like ZIKV, Japanese encephalitis virus and West Nile virus. Copyright © 2018 American Society for Microbiology.

  10. The Role of IKKβ in Venezuelan Equine Encephalitis Virus Infection

    PubMed Central

    Amaya, Moushimi; Voss, Kelsey; Sampey, Gavin; Senina, Svetlana; de la Fuente, Cynthia; Mueller, Claudius; Calvert, Valerie; Kehn-Hall, Kylene; Carpenter, Calvin; Kashanchi, Fatah; Bailey, Charles; Mogelsvang, Soren; Petricoin, Emanuel; Narayanan, Aarthi

    2014-01-01

    Venezuelan equine encephalitis virus (VEEV) belongs to the genus Alphavirus, family Togaviridae. VEEV infection is characterized by extensive inflammation and studies from other laboratories implicated an involvement of the NF-κB cascade in the in vivo pathology. Initial studies indicated that at early time points of VEEV infection, the NF-κB complex was activated in cells infected with the TC-83 strain of VEEV. One upstream kinase that contributes to the phosphorylation of p65 is the IKKβ component of the IKK complex. Our previous studies with Rift valley fever virus, which exhibited early activation of the NF-κB cascade in infected cells, had indicated that the IKKβ component underwent macromolecular reorganization to form a novel low molecular weight form unique to infected cells. This prompted us to investigate if the IKK complex undergoes a comparable macromolecular reorganization in VEEV infection. Size-fractionated VEEV infected cell extracts indicated a macromolecular reorganization of IKKβ in VEEV infected cells that resulted in formation of lower molecular weight complexes. Well-documented inhibitors of IKKβ function, BAY-11-7082, BAY-11-7085 and IKK2 compound IV, were employed to determine whether IKKβ function was required for the production of infectious progeny virus. A decrease in infectious viral particles and viral RNA copies was observed with inhibitor treatment in the attenuated and virulent strains of VEEV infection. In order to further validate the requirement of IKKβ for VEEV replication, we over-expressed IKKβ in cells and observed an increase in viral titers. In contrast, studies carried out using IKKβ−/− cells demonstrated a decrease in VEEV replication. In vivo studies demonstrated that inhibitor treatment of TC-83 infected mice increased their survival. Finally, proteomics studies have revealed that IKKβ may interact with the viral protein nsP3. In conclusion, our studies have revealed that the host IKKβ protein may be critically involved in VEEV replication. PMID:24586253

  11. Thin film assembly of nanosized cobalt(II) bis(5-phenyl-azo-8-hydroxyquinolate) using static step-by-step soft surface reaction technique: Structural characterization and optical properties.

    PubMed

    Seleim, S M; Hamdalla, Taymour A; Mahmoud, Mohamed E

    2017-09-05

    Nanosized (NS) cobalt (II) bis(5-phenyl-azo-8-hydroxyquinolate) (NS Co(II)-(5PA-8HQ) 2 ) thin films have been synthesized using static step-by-step soft surface reaction (SS-b-SSR) technique. Structural and optical characterizations of these thin films have been carried out using thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD). The HR-TEM results revealed that the assembled Co(II)-complex exhibited a uniformly NS structure particles in the form of nanorods with width and length up to 16.90nm and 506.38nm, respectively. The linear and nonlinear optical properties have been investigated. The identified energy gap of the designed thin film materials was found 4.01eV. The refractive index of deposited Co(II)-complex thin film was identified by thickness-dependence and found as 1.9 at wavelength 1100nm. In addition, the refractive index was varied by about 0.15 due to an increase in the thickness by 19nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Antiviral activity of silymarin against chikungunya virus

    PubMed Central

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection. PMID:26078201

  13. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noisakran, Sansanee; Medical Molecular Biology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Adulyadejvikrom Building; Sengsai, Suchada

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometrymore » (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells.« less

  14. Productive Homologous and Non-homologous Recombination of Hepatitis C Virus in Cell Culture

    PubMed Central

    Li, Yi-Ping; Mikkelsen, Lotte S.; Gottwein, Judith M.; Bukh, Jens

    2013-01-01

    Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13–36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5′ end to the NS2–NS3 region followed by JFH1 sequence from Core to the 3′ end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural recombinants and thereby lead to improved therapy. Our findings suggest mechanisms for occurrence of recombinants observed in patients. PMID:23555245

  15. Synthesis, Characterization, and Bioactivity of Schiff Bases and Their Cd2+, Zn2+, Cu2+, and Ni2+ Complexes Derived from Chloroacetophenone Isomers with S-Benzyldithiocarbazate and the X-Ray Crystal Structure of S-Benzyl-β-N-(4-chlorophenyl)methylenedithiocarbazate

    PubMed Central

    Break, Mohammed Khaled bin; Tahir, M. Ibrahim M.; Crouse, Karen A.; Khoo, Teng-Jin

    2013-01-01

    Two bidentate Schiff base ligands having nitrogen sulphur donor sequence were derived from the condensation of S-benzyldithiocarbazate (SBDTC) with 2-chloroacetophenone and 4-chloroacetophenone to give S-benzyl-β-N-(2-chlorophenyl)methylenedithiocarbazate (NS2) and S-benzyl-β-N-(4-chlorophenyl)methylenedithiocarbazate (NS4) isomers. Each of the ligands was then chelated with Cd2+, Zn2+, Cu2+, and Ni2+. The compounds were characterized via IR spectroscopy and melting point while the structure of NS4 was revealed via X-ray crystallography. Finally, the compounds were screened for antimicrobial activity to investigate the effect that is brought by the introduction of the chlorine atom to the benzene ring. X-ray crystallographic analysis showed that the structure of NS4 is planar with a phenyl ring that is nearly perpendicular to the rest of the molecules. The qualitative antimicrobial assay results showed that NS4 and its complexes lacked antifungal activity while Gram-positive bacteria were generally inhibited more strongly than Gram-negative bacteria. Furthermore, NS4 metal complexes were inhibited more strongly than the ligand while the opposite was seen with NS2 ligand and its complexes due to the partial solubility in dimethyl sulfoxide (DMSO). It was concluded that generally NS2 derivatives have higher bioactivity than that of NS4 derivatives and that the Cd complexes of both ligands have pronounced activity specifically on K. rhizophila. PMID:24319401

  16. A Point Mutation in the N-Terminal Amphipathic Helix α0 in NS3 Promotes Hepatitis C Virus Assembly by Altering Core Localization to the Endoplasmic Reticulum and Facilitating Virus Budding.

    PubMed

    Yan, Yu; He, Ying; Boson, Bertrand; Wang, Xuesong; Cosset, François-Loïc; Zhong, Jin

    2017-03-15

    The assembly of hepatitis C virus (HCV), a complicated process in which many viral and cellular factors are involved, has not been thoroughly deciphered. NS3 is a multifunctional protein that contains an N-terminal amphipathic α helix (designated helix α 0 ), which is crucial for the membrane association and stability of NS3 protein, followed by a serine protease domain and a C-terminal helicase/NTPase domain. NS3 participates in HCV assembly likely through its C-terminal helicase domain, in which all reported adaptive mutations enhancing virion assembly reside. In this study, we determined that the N-terminal helix α 0 of NS3 may contribute to HCV assembly. We identified a single mutation from methionine to threonine at amino acid position 21 (M21T) in helix α 0 , which significantly promoted viral production while having no apparent effect on the membrane association and protease activity of NS3. Subsequent analyses demonstrated that the M21T mutation did not affect HCV genome replication but rather promoted virion assembly. Further study revealed a shift in the subcellular localization of core protein from lipid droplets (LD) to the endoplasmic reticulum (ER). Finally, we showed that the M21T mutation increased the colocalization of core proteins and viral envelope proteins, leading to a more efficient envelopment of viral nucleocapsids. Collectively, the results of our study revealed a new function of NS3 helix α 0 and aid understanding of the role of NS3 in HCV virion morphogenesis. IMPORTANCE HCV NS3 protein possesses the protease activity in its N-terminal domain and the helicase activity in its C-terminal domain. The role of NS3 in virus assembly has been mainly attributed to its helicase domain, because all adaptive mutations enhancing progeny virus production are found to be within this domain. Our study identified, for the first time to our knowledge, an adaptive mutation within the N-terminal helix α 0 domain of NS3 that significantly enhanced virus assembly while having no effect on viral genome replication. The mechanistic studies suggested that this mutation promoted the relocation of core proteins from LD to the ER, leading to a more efficient envelopment of viral nucleocapsids. Our results revealed a possible new function of helix α 0 in the HCV life cycle and provided new clues to understanding the molecular mechanisms for the action of NS3 in HCV assembly. Copyright © 2017 American Society for Microbiology.

  17. The NS1 Glycoprotein Can Generate Dramatic Antibody-Enhanced Dengue Viral Replication in Normal Out-Bred Mice Resulting in Lethal Multi-Organ Disease

    PubMed Central

    Falconar, Andrew K. I.; Martinez, Fernando

    2011-01-01

    Antibody-enhanced replication (AER) of dengue type-2 virus (DENV-2) strains and production of antibody-enhanced disease (AED) was tested in out-bred mice. Polyclonal antibodies (PAbs) generated against the nonstructural-1 (NS1) glycoprotein candidate vaccine of the New Guinea-C (NG-C) or NSx strains reacted strongly and weakly with these antigens, respectively. These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E) glycoprotein of the DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcγ-receptor classes. Indeed, when these mice were challenged with a low dose (<0.5 LD50) of the DENV-2 NSx strain, but not the NG-C strain, they all generated dramatic and lethal DENV-2 AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS), displayed by diffuse alveolar damage (DAD) resulting from i) dramatic interstitial alveolar septa-thickening with mononuclear cells, ii) some hyperplasia of alveolar type-II pneumocytes, iii) copious intra-alveolar protein secretion, iv) some hyaline membrane-covered alveolar walls, and v) DENV-2 antigen-positive alveolar macrophages. These mice also developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis, apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal human “severe dengue” cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1 glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines, particularly against DENV strains that contain multiple mutations or genetic recombination within or between their DENV E and NS1 glycoprotein-encoding genes. The model provides potential for assessing DENV strain pathogenicity and anti-DENV therapies in normal mice. PMID:21731643

  18. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, Thai Leong; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551; Chen, Yen Liang

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents anmore » interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration.« less

  19. Gelatin nanoparticles enhance delivery of hepatitis C virus recombinant NS2 gene

    PubMed Central

    George, Marina A.; El-Shorbagy, Haidan M.; Bassiony, Heba; Farroh, Khaled Y.; Youssef, Tareq; Salaheldin, Taher A.

    2017-01-01

    Background Development of an effective non-viral vaccine against hepatitis C virus infection is of a great importance. Gelatin nanoparticles (Gel.NPs) have an attention and promising approach as a viable carrier for delivery of vaccine, gene, drug and other biomolecules in the body. Aim of work The present study aimed to develop stable Gel.NPs conjugated with nonstructural protein 2 (NS2) gene of Hepatitis C Virus genotype 4a (HCV4a) as a safe and an efficient vaccine delivery system. Methods and results Gel.NPs were synthesized and characterized (size: 150±2 nm and zeta potential +17.6 mv). NS2 gene was successfully cloned and expressed into E. coli M15 using pQE-30 vector. Antigenicity of the recombinant NS2 protein was confirmed by Western blotting to verify the efficiency of NS2 as a possible vaccine. Then NS2 gene was conjugated to gelatin nanoparticles and a successful conjugation was confirmed by labeling and imaging using Confocal Laser Scanning Microscope (CLSM). Interestingly, the transformation of the conjugated NS2/Gel.NPs complex into E. coli DH5-α was 50% more efficient than transformation with the gene alone. In addition, conjugated NS2/Gel.NPs with ratio 1:100 (w/w) showed higher transformation efficiency into E. coli DH5-α than the other ratios (1:50 and 2:50). Conclusion Gel.NPs effectively enhanced the gene delivery in bacterial cells without affecting the structure of NS2 gene and could be used as a safe, easy, rapid, cost-effective and non-viral vaccine delivery system for HCV. PMID:28746382

  20. Virtual ligand screening of the National Cancer Institute (NCI) compound library leads to the allosteric inhibitory scaffolds of the West Nile Virus NS3 proteinase.

    PubMed

    Shiryaev, Sergey A; Cheltsov, Anton V; Gawlik, Katarzyna; Ratnikov, Boris I; Strongin, Alex Y

    2011-02-01

    Viruses of the genus Flavivirus are responsible for significant human disease and mortality. The N-terminal domain of the flaviviral nonstructural (NS)3 protein codes for the serine, chymotrypsin-fold proteinase (NS3pro). The presence of the nonstructural (NS)2B cofactor, which is encoded by the upstream gene in the flaviviral genome, is necessary for NS3pro to exhibit its proteolytic activity. The two-component NS2B-NS3pro functional activity is essential for the viral polyprotein processing and replication. Both the structure and the function of NS2B-NS3pro are conserved in the Flavivirus family. Because of its essential function in the posttranslational processing of the viral polyprotein precursor, NS2B-NS3pro is a promising target for anti-flavivirus drugs. To identify selective inhibitors with the reduced cross-reactivity and off-target effects, we focused our strategy on the allosteric inhibitors capable of targeting the NS2B-NS3pro interface rather than the NS3pro active site. Using virtual ligand screening of the diverse, ∼275,000-compound library and the catalytic domain of the two-component West Nile virus (WNV) NS2B-NS3pro as a receptor, we identified a limited subset of the novel inhibitory scaffolds. Several of the discovered compounds performed as allosteric inhibitors and exhibited a nanomolar range potency in the in vitro cleavage assays. The inhibitors were also potent in cell-based assays employing the sub-genomic, luciferase-tagged WNV and Dengue viral replicons. The selectivity of the inhibitors was confirmed using the in vitro cleavage assays with furin, a human serine proteinase, the substrate preferences of which are similar to those of WNV NS2B-NS3pro. Conceptually, the similar in silico drug discovery strategy may be readily employed for the identification of inhibitors of other flaviviruses.

  1. Nodding syndrome in Tanzania may not be associated with circulating anti-NMDA-and anti-VGKC receptor antibodies or decreased pyridoxal phosphate serum levels-a pilot study.

    PubMed

    Dietmann, Anelia; Wallner, Bernd; König, Rebekka; Friedrich, Katrin; Pfausler, Bettina; Deisenhammer, Florian; Griesmacher, Andrea; Seger, Christoph; Matuja, William; JilekAall, Louise; Winkler, Andrea S; Schmutzhard, Erich

    2014-06-01

    Nodding syndrome (NS) is a seemingly progressive epilepsy disorder of unknown underlying cause. We investigated association of pyridoxal-phosphate serum levels and occurrence of anti-neuronal antibodies against N-methyl-D-aspartate (NMDA) receptor and voltage gated potassium channel (VGKC) complex in NS patients. Sera of a Tanzanian cohort of epilepsy and NS patients and community controls were tested for the presence of anti-NMDA-receptor and anti-VGKC complex antibodies by indirect immunofluorescence assay. Furthermore pyridoxal-phosphate levels were measured. Auto-antibodies against NMDA receptor or VGKC (LG1 or Caspr2) complex were not detected in sera of patients suffering from NS (n=6), NS plus other seizure types (n=16), primary generalized epilepsy (n=1) and community controls without epilepsy (n=7). Median Pyridoxal-phosphate levels in patients with NS compared to patients with primary generalized seizures and community controls were not significantly different. However, these median pyridoxal-phosphate levels are significantly lower compared to the range considered normal in Europeans. In this pilot study NS was not associated with serum anti-NMDA receptor or anti-VGKC complex antibodies and no association to pyridoxal-phosphate serum levels was found.

  2. Hepatitis C Virus Genotype 1 to 6 Protease Inhibitor Escape Variants: In Vitro Selection, Fitness, and Resistance Patterns in the Context of the Infectious Viral Life Cycle.

    PubMed

    Serre, Stéphanie B N; Jensen, Sanne B; Ghanem, Lubna; Humes, Daryl G; Ramirez, Santseharay; Li, Yi-Ping; Krarup, Henrik; Bukh, Jens; Gottwein, Judith M

    2016-06-01

    Hepatitis C virus (HCV) NS3 protease inhibitors (PIs) are important components of novel HCV therapy regimens. Studies of PI resistance initially focused on genotype 1. Therefore, knowledge about the determinants of PI resistance for the highly prevalent genotypes 2 to 6 remains limited. Using Huh7.5 cell culture-infectious HCV recombinants with genotype 1 to 6 NS3 protease, we identified protease positions 54, 155, and 156 as hot spots for the selection of resistance substitutions under treatment with the first licensed PIs, telaprevir and boceprevir. Treatment of a genotype 2 isolate with the newer PIs vaniprevir, faldaprevir, simeprevir, grazoprevir, paritaprevir, and deldeprevir identified positions 156 and 168 as hot spots for resistance; the Y56H substitution emerged for three newer PIs. Substitution selection also depended on the specific recombinant. The substitutions identified conferred cross-resistance to several PIs; however, most substitutions selected under telaprevir or boceprevir treatment conferred less resistance to certain newer PIs. In a single-cycle production assay, across genotypes, PI treatment primarily decreased viral replication, which was rescued by PI resistance substitutions. The substitutions identified resulted in differential effects on viral fitness, depending on the original recombinant and the substitution. Across genotypes, fitness impairment induced by resistance substitutions was due primarily to decreased replication. Most combinations of substitutions that were identified increased resistance or fitness. Combinations of resistance substitutions with fitness-compensating substitutions either rescued replication or compensated for decreased replication by increasing assembly. This comprehensive study provides insight into the selection patterns and effects of PI resistance substitutions for HCV genotypes 1 to 6 in the context of the infectious viral life cycle, which is of interest for clinical and virological HCV research. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Empirical fitness models for hepatitis C virus immunogen design

    NASA Astrophysics Data System (ADS)

    Hart, Gregory R.; Ferguson, Andrew L.

    2015-12-01

    Hepatitis C virus (HCV) afflicts 170 million people worldwide, 2%-3% of the global population, and kills 350 000 each year. Prophylactic vaccination offers the most realistic and cost effective hope of controlling this epidemic in the developing world where expensive drug therapies are not available. Despite 20 years of research, the high mutability of the virus and lack of knowledge of what constitutes effective immune responses have impeded development of an effective vaccine. Coupling data mining of sequence databases with spin glass models from statistical physics, we have developed a computational approach to translate clinical sequence databases into empirical fitness landscapes quantifying the replicative capacity of the virus as a function of its amino acid sequence. These landscapes explicitly connect viral genotype to phenotypic fitness, and reveal vulnerable immunological targets within the viral proteome that can be exploited to rationally design vaccine immunogens. We have recovered the empirical fitness landscape for the HCV RNA-dependent RNA polymerase (protein NS5B) responsible for viral genome replication, and validated the predictions of our model by demonstrating excellent accord with experimental measurements and clinical observations. We have used our landscapes to perform exhaustive in silico screening of 16.8 million T-cell immunogen candidates to identify 86 optimal formulations. By reducing the search space of immunogen candidates by over five orders of magnitude, our approach can offer valuable savings in time, expense, and labor for experimental vaccine development and accelerate the search for a HCV vaccine. Abbreviations: HCV—hepatitis C virus, HLA—human leukocyte antigen, CTL—cytotoxic T lymphocyte, NS5B—nonstructural protein 5B, MSA—multiple sequence alignment, PEG-IFN—pegylated interferon.

  4. Construction of plasmid, bacterial expression, purification, and assay of dengue virus type 2 NS5 methyltransferase.

    PubMed

    Boonyasuppayakorn, Siwaporn; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus (DENV), a member of mosquito-borne flavivirus, causes self-limiting dengue fever as well as life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its positive sense RNA genome has a cap at the 5'-end and no poly(A) tail at the 3'-end. The viral RNA encodes a single polyprotein, C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5. The polyprotein is processed into 3 structural proteins (C, prM, and E) and 7 nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5). NS3 and NS5 are multifunctional enzymes performing various tasks in viral life cycle. The N-terminal domain of NS5 has distinct GTP and S-adenosylmethionine (SAM) binding sites. The role of GTP binding site is implicated in guanylyltransferase (GTase) activity of NS5. The SAM binding site is involved in both N-7 and 2'-O-methyltransferase (MTase) activities involved in formation of type I cap. The C-terminal domain of NS5 catalyzes RNA-dependent RNA polymerase (RdRp) activity involved in RNA synthesis. We describe the construction of the MTase domain of NS5 in an E. coli expression vector, purification of the enzyme, and conditions for enzymatic assays of N7- and 2'O-methyltransferase activities that yield the final type I 5'-capped RNA ((7Me)GpppA2'OMe-RNA).

  5. Adaptive Diversification Between Yellow Fever Virus West African and South American Lineages: A Genome-Wide Study.

    PubMed

    Li, Yan; Yang, Zexiao

    2017-03-01

    AbstractYellow fever virus (YFV) has emerged as the causative agent of a vector-borne disease with devastating mortality in the tropics of Africa and the Americas. YFV phylogenies indicate that the isolates collected from West Africa, East and Central Africa, and South America cluster into different lineages and the virus spread into the Americas from Africa. To determine the nature of genetic variation accompanying the intercontinental epidemic, we performed a genome-wide evolutionary study on the West African and South American lineages of YFV. Our results reveal that adaptive genetic diversification has occurred on viral nonstructural protein 5 (NS5), which is crucially required for viral genome replication, in the early epidemic phase of these currently circulating lineages. Furthermore, major amino acid changes relevant to the adaptive diversification generally cluster in different structural regions of NS5 in a lineage-specific manner. These results suggest that YFV has experienced adaptive diversification in the epidemic spread between the continents and shed insights into the genetic determinants of such diversification, which might be beneficial for understanding the emergence and re-emergence of yellow fever as an important global public health issue.

  6. Anti-hepatitis C virus activity and synergistic effect of Nymphaea alba extracts and bioactive constituents in liver infected cells.

    PubMed

    Rehman, Sidra; Ashfaq, Usman Ali; Ijaz, Bushra; Riazuddin, Sheikh

    2018-05-28

    Without an effective vaccine, hepatitis C virus (HCV) remains a global threat, inflicting 170-300 million carriers worldwide at risk of cirrhosis and hepatocellular carcinoma (HCC). Though various direct acting antivirals have been redeemed the hepatitis C treatment, a few restraints persist including possible side effects, viral resistance emergence, excessive cost which restricts its availability to a common person. There is no preventive HCV vaccine available today so the discovery of potent antiviral natural flora and their bioactive constituents may help to develop preventive cures against HCV infection. In current study, we aim to clarify anti-HCV activity of methanol and acetone extracts along with the purified fractions of Pakistani local plant, Nymphaea alba L (N. alba) using Huh-7 cell line as transfection model. Synergistic study of purified fractions with interferon was performed using MDBK cell line (expressing interferon receptors) as transfection model. Recent study by our research group has observed potent anti-HCV NS3 protease activity of methanol and acetone extracts of N. alba. Effect of N. alba extracts, its fractions precisely, the N1 and N8 fractions on HCV replication was demonstrated by analyzing viral gene expression using in vitro transfection model. Considering NS3 protease as a dynamic drug target, fourteen phytochemicals of N. alba were selected as ligands for interaction with NS3 protein using Molecular Operating Environment (MOE) software. Boceprevir, FDA approved NS3 protease inhibitor, was used as standard for comparative study in docking screening. Herein we report 84% and 94% reduction of 3a genotype of HCV NS3/4A gene expression at mRNA level at non-toxic concentration. Specifically, two fractions 'N1' & 'N8' isolated from acetone extract suppressed HCV NS3 gene expression in transfected target cells with an EC 50 value of 37 ± 0.03 μg/ml and 20 ± 0.02 μg/ml respectively. Similarly, viral genotype 1a replication is strongly suppressed in target cells by N. alba flower extracts and purified fractions. Moreover, combination of fractions with standard antiviral drug displayed synergistic effects for inhibition of HCV replication. Phytochemicals including Isoquercetin, Hyperoside, Quercetin, Reynoutrin, Apigenin and Isokaempferide displayed minimum binding energies as compared to standard protease inhibitor. N. alba and its purified phytochemicals with new scaffolds might significantly serve as valuable and alternative regimen against HCV either alone or in combination with other potential anti-HCV agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    PubMed

    Henderson, Brittney R; Saeedi, Bejan J; Campagnola, Grace; Geiss, Brian J

    2011-01-01

    Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D) for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  8. Assessment of Dengue virus helicase and methyltransferase as targets for fragment-based drug discovery.

    PubMed

    Coutard, Bruno; Decroly, Etienne; Li, Changqing; Sharff, Andrew; Lescar, Julien; Bricogne, Gérard; Barral, Karine

    2014-06-01

    Seasonal and pandemic flaviviruses continue to be leading global health concerns. With the view to help drug discovery against Dengue virus (DENV), a fragment-based experimental approach was applied to identify small molecule ligands targeting two main components of the flavivirus replication complex: the NS3 helicase (Hel) and the NS5 mRNA methyltransferase (MTase) domains. A library of 500 drug-like fragments was first screened by thermal-shift assay (TSA) leading to the identification of 36 and 32 fragment hits binding Hel and MTase from DENV, respectively. In a second stage, we set up a fragment-based X-ray crystallographic screening (FBS-X) in order to provide both validated fragment hits and structural binding information. No fragment hit was confirmed for DENV Hel. In contrast, a total of seven fragments were identified as DENV MTase binders and structures of MTase-fragment hit complexes were solved at resolution at least 2.0Å or better. All fragment hits identified contain either a five- or six-membered aromatic ring or both, and three novel binding sites were located on the MTase. To further characterize the fragment hits identified by TSA and FBS-X, we performed enzymatic assays to assess their inhibition effect on the N7- and 2'-O-MTase enzymatic activities: five of these fragment hits inhibit at least one of the two activities with IC50 ranging from 180μM to 9mM. This work validates the FBS-X strategy for identifying new anti-flaviviral hits targeting MTase, while Hel might not be an amenable target for fragment-based drug discovery (FBDD). This approach proved to be a fast and efficient screening method for FBDD target validation and discovery of starting hits for the development of higher affinity molecules that bind to novel allosteric sites. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Transactivation of a cellular promoter by the NS1 protein of the parvovirus minute virus of mice through a putative hormone-responsive element.

    PubMed Central

    Vanacker, J M; Corbau, R; Adelmant, G; Perros, M; Laudet, V; Rommelaere, J

    1996-01-01

    The promoter of the thyroid hormone receptor alpha gene (c-erbA-1) is activated by the nonstructural protein 1 (NS1) of parvovirus minute virus of mice (prototype strain [MVMp]) in ras-transformed FREJ4 cells that are permissive for lytic MVMp replication. This stimulation may be related to the sensitivity of host cells to MVMp, as it does not take place in parental FR3T3 cells, which are resistant to the parvovirus killing effect. The analysis of a series of deletion and point mutants of the c-erbA-1 promoter led to the identification of an upstream region that is necessary for NS1-driven transactivation. This sequence harbors a putative hormone-responsive element and is sufficient to render a minimal promoter NS1 inducible in FREJ4 but not in FR3T3 cells, and it is involved in distinct interactions with proteins from the respective cell lines. The NS1-responsive element of the c-erbA-1 promoter bears no homology with sequences that were previously reported to be necessary for NS1 DNA binding and transactivation. Altogether, our data point to a novel, cell-specific mechanism of promoter activation by NS1. PMID:8642664

  10. Betulinic acid exerts anti-hepatitis C virus activity via the suppression of NF-κB- and MAPK-ERK1/2-mediated COX-2 expression.

    PubMed

    Lin, Chun-Kuang; Tseng, Chin-Kai; Chen, Kai-Hsun; Wu, Shih-Hsiung; Liaw, Chih-Chuang; Lee, Jin-Ching

    2015-06-23

    This study was designed to evaluate the effect of betulinic acid (BA), extracted from Avicennia marina, on the replication of hepatitis C virus (HCV) and to investigate the mechanism of this BA-mediated anti-HCV activity. HCV replicon and infectious systems were used to evaluate the anti-HCV activity of BA. Exogenous COX-2 or knock-down of COX-2 expression was used to investigate the role of COX-2 in the anti-HCV activity of BA. The effects of BA on the phosphorylation of NF-κB and on kinases in the MAPK signalling pathway were determined. The anti-HCV activity of BA in combination with other HCV inhibitors was also determined to assess its use as an anti-HCV supplement. BA inhibited HCV replication in both Ava5 replicon cells and in a cell culture-derived infectious HCV particle system. Treatment with a combination of BA and IFN-α, the protease inhibitor telaprevir or the NS5B polymerase inhibitor sofosbuvir resulted in the synergistic suppression of HCV RNA replication. Exogenous overexpression of COX-2 gradually attenuated the inhibitory effect of BA on HCV replication, suggesting that BA reduces HCV replication by suppressing the expression of COX-2. In particular, BA down-regulated HCV-induced COX-2 expression by reducing the phosphorylation of NF-κB and ERK1/2 of the MAPK signalling pathway. BA inhibits HCV replication by suppressing the NF-κB- and ERK1/2-mediated COX-2 pathway and may serve as a promising compound for drug development or as a potential supplement for use in the treatment of HCV-infected patients. © 2015 The British Pharmacological Society.

  11. Suppression of Reserve MCM Complexes Chemosensitizes to Gemcitabine and 5-Fluorouracil

    PubMed Central

    Bryant, Victoria L.; Elias, Roy M.; McCarthy, Susan M.; Yeatman, Timothy J.; Alexandrow, Mark G.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer and is very difficult to treat with conventional chemotherapeutic regimens. Gemcitabine and 5-fluorouracil (5-FU) are used in the management of PDAC and act by indirectly blocking replicative forks. However, these drugs are not highly effective at suppressing disease progression, indicating a need for the development of innovative therapeutic approaches. Recent studies indicate that suppression of the MCM helicase may provide a novel means to sensitize cancer cells to chemotherapeutic agents that inhibit replicative fork progression. Mammalian cells assemble more MCM complexes on DNA than are required to start S-phase. The excess MCM complexes function as back-up initiation sites under conditions of replicative stress. The current study provides definitive evidence that co-suppression of the excess/back-up MCM complexes sensitizes PDAC tumor lines to both gemcitabine and 5-FU, leading to increased loss of proliferative capacity compared to drugs alone. This occurs because reduced MCM levels prevent efficient recovery of DNA replication in tumor cells exposed to drug. PDAC tumor cells are more sensitive to MCM loss in the presence of gemcitabine than are non-tumor, immortalized epithelial cells. Similarly, colon tumor cells are rendered less viable when co-suppression of MCM complexes occurs during exposure to the crosslinking agent oxaliplatin or topoisomerase inhibitor etoposide. Implications These studies demonstrate that suppressing the back-up complement of MCM complexes provides an effective sensitizing approach with the potential to increase the therapeutic index of drugs used in the clinical management of PDAC and other cancers. PMID:26063742

  12. Elevated serum β₂-GPI-Lp(a) complexes levels in children with nephrotic syndrome.

    PubMed

    Zhang, Chunni; Luo, Yang; Huang, Zhongwei; Xia, Zhengkun; Cai, Xiaoyi; Yang, Yuhua; Niu, Dongmei; Wang, Junjun

    2012-10-09

    The complexes of β₂-glycoprotein I (β₂-GPI) with lipoprotein(a) [β₂-GPI-Lp(a)] exist in human circulation and are increased in serum from patients with some autoimmune diseases. This study aims to investigate the concentration of β₂-GPI-Lp(a) in serum of children with idiopathic nephrotic syndrome (NS) and its relationship with serum lipids, oxidized lipoprotein and renal function parameters to explore the potential of the complexes as an additional marker for evaluating pediatric NS. Serum concentrations of β₂-GPI-Lp(a) complexes and oxidized Lp(a) [ox-Lp(a)] were measured by "Sandwich" ELISAs in 80 NS children and 82 age/sex-matched healthy controls. The levels of serum lipids and kidney parameters were also determined. Multivariate logistic regression analysis was performed to identify correlate of β₂-GPI-Lp(a) and NS. The serum concentrations of β₂-GPI-Lp(a) complexes in children with NS were significantly higher than those in controls (median 0.95 U/ml vs 0.28 U/ml, P<0.0001). Ox-Lp(a) levels were also markedly elevated (median 14.55 mg/l vs 2.60 mg/l, P<0.0001] in NS children. The concentrations of β₂-GPI-Lp(a) were positively correlated with ox-Lp(a) (r=0.246, P=0.028), but not with Lp(a) level, and the concentrations of ox-Lp(a) were positively related with Lp(a) (r=0.301, P=0.007) in NS children. Multivariate logistic regression analysis identified a positive association between NS and β₂-GPI-Lp(a) (OR=13.694, 95% CI 6.400-29.299, P<0.0001), after adjusting for kidney function parameters, serum lipids and ox-Lp(a). Elevated β₂-GPI-Lp(a) level was an independent and significant risk factor for pediatric NS and, enhanced Lp(a) oxidation partly contributes to the formation of β₂-GPI-Lp(a) complexes. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Robust translocation along a molecular monorail: the NS3 helicase from hepatitis C virus traverses unusually large disruptions in its track.

    PubMed

    Beran, Rudolf K F; Bruno, Michael M; Bowers, Heath A; Jankowsky, Eckhard; Pyle, Anna Marie

    2006-05-12

    The NS3 helicase is essential for replication of the hepatitis C virus. This multifunctional Superfamily 2 helicase protein unwinds nucleic acid duplexes in a stepwise, ATP-dependent manner. Although kinetic features of its mechanism are beginning to emerge, little is known about the physical determinants for NS3 translocation along a strand of nucleic acid. For example, it is not known whether NS3 can traverse covalent or physical discontinuities on the tracking strand. Here we provide evidence that NS3 translocates with a mechanism that is different from its well-studied relative, the Vaccinia helicase NPH-II. Like NPH-II, NS3 translocates along the loading strand (the strand bearing the 3'-overhang) and it fails to unwind substrates that contain nicks, or covalent discontinuities in the loading strand. However, unlike NPH-II, NS3 readily unwinds RNA duplexes that contain long stretches of polyglycol, which are moieties that bear no resemblance to nucleic acid. Whether located on the tracking strand, the top strand, or both, long polyglycol regions fail to disrupt the function of NS3. This suggests that NS3 does not require the continuous formation of specific contacts with the ribose-phosphate backbone as it translocates along an RNA duplex, which is an observation consistent with the large NS3 kinetic step size (18 base-pairs). Rather, once NS3 loads onto a substrate, the helicase can translocate along the loading strand of an RNA duplex like a monorail train following a track. Bumps in the track do not significantly disturb NS3 unwinding, but a break in the track de-rails the helicase.

  14. Resistance analysis and characterization of NITD008 as an adenosine analog inhibitor against hepatitis C virus.

    PubMed

    Qing, Jie; Luo, Rui; Wang, Yaxin; Nong, Junxiu; Wu, Ming; Shao, Yan; Tang, Ruoyi; Yu, Xi; Yin, Zheng; Sun, Yuna

    2016-02-01

    Hepatitis disease caused by hepatitis C virus (HCV) is a severe threat to global public health, affecting approximately 3% of the world's population. Sofosbuvir (PSI-7977), a uridine nucleotide analog inhibitor targeting the HCV NS5B polymerase, was approved by FDA at the end of 2013 and represents a key step towards a new era in the management of HCV infection. Previous study identified NITD008, an adenosine nucleoside analog, as the specific inhibitor against dengue virus and showed good antiviral effect on other flaviviruses or enteroviruses. In this report, we systematically analyzed the anti-HCV profile of NITD008, which was discovered to effectively suppress the replication of different strains of HCV in human hepatoma cells with a low nanomolar activity. On genotype 2a virus, or 2a, 1a, and 1b replicon cells, EC50 values were 8.7 nM, 93.3 nM, 60.0 nM and 67.2 nM, and selective index values were >2298.9, >214.4, >333.3, >298.5 respectively. We demonstrated that resistance to NITD008 was conferred by mutation in NS5B (S282T) in the HCV infectious virus genotype 2a (JFH-1). Then, we compared the resistant profiles of NITD008 and PSI-7977, and found that the folds change of EC50 of NITD008 to full replicon cells containing mutation S282T was much bigger than PSI-7977(folds 76.50 vs. 4.52). Analysis of NITD008 cross-resistance against previously reported NS5B drug-selected mutations showed that the resistance pattern of NITD008 was not completely similar to PSI-7977, and meanwhile, S282T resistant mutation to NITD008 emerge more easily in cell culture than PSI-7977. Interestingly, NITD008 displayed significant synergistic effects with the NS5B polymerase inhibitor PSI-7977, however, only additive effects with alpha interferon (IFNα-2b), ribavirin, and an NS3 protease inhibitor. These results verify that NITD008 is an effective analog inhibitor against hepatitis C virus and a good research tool as a supplement to other types of nucleoside analogs. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Nonstructural proteins of respiratory syncytial virus suppress premature apoptosis by an NF-kappaB-dependent, interferon-independent mechanism and facilitate virus growth.

    PubMed

    Bitko, Vira; Shulyayeva, Olena; Mazumder, Barsanjit; Musiyenko, Alla; Ramaswamy, Murali; Look, Dwight C; Barik, Sailen

    2007-02-01

    The two nonstructural (NS) proteins NS1 and NS2 of respiratory syncytial virus (RSV) are abundantly expressed in the infected cell but are not packaged in mature progeny virions. We found that both proteins were expressed early in infection, whereas the infected cells underwent apoptosis much later. Coincident with NS protein expression, a number of cellular antiapoptotic factors were expressed or activated at early stages, which included NF-kappaB and phosphorylated forms of protein kinases AKT, phosphoinositide-dependent protein kinase, and glycogen synthase kinase. Using specific short interfering RNAs (siRNAs), we achieved significant knockdown of one or both NS proteins in the infected cell, which resulted in abrogation of the antiapoptotic functions and led to early apoptosis. NS-dependent suppression of apoptosis was observed in Vero cells that are naturally devoid of type I interferons (IFN). The siRNA-based results were confirmed by the use of NS-deleted RSV mutants. Early activation of epidermal growth factor receptor (EGFR) in the RSV-infected cell did not require NS proteins. Premature apoptosis triggered by the loss of NS or by apoptosis-promoting drugs caused a severe reduction of RSV growth. Finally, recombinantly expressed NS1 and NS2, individually and together, reduced apoptosis by tumor necrosis factor alpha, suggesting an intrinsic antiapoptotic property of both. We conclude that the early-expressed nonstructural proteins of RSV boost viral replication by delaying the apoptosis of the infected cell via a novel IFN- and EGFR-independent pathway.

  16. Nonstructural Proteins of Respiratory Syncytial Virus Suppress Premature Apoptosis by an NF-κB-Dependent, Interferon-Independent Mechanism and Facilitate Virus Growth▿

    PubMed Central

    Bitko, Vira; Shulyayeva, Olena; Mazumder, Barsanjit; Musiyenko, Alla; Ramaswamy, Murali; Look, Dwight C.; Barik, Sailen

    2007-01-01

    The two nonstructural (NS) proteins NS1 and NS2 of respiratory syncytial virus (RSV) are abundantly expressed in the infected cell but are not packaged in mature progeny virions. We found that both proteins were expressed early in infection, whereas the infected cells underwent apoptosis much later. Coincident with NS protein expression, a number of cellular antiapoptotic factors were expressed or activated at early stages, which included NF-κB and phosphorylated forms of protein kinases AKT, phosphoinositide-dependent protein kinase, and glycogen synthase kinase. Using specific short interfering RNAs (siRNAs), we achieved significant knockdown of one or both NS proteins in the infected cell, which resulted in abrogation of the antiapoptotic functions and led to early apoptosis. NS-dependent suppression of apoptosis was observed in Vero cells that are naturally devoid of type I interferons (IFN). The siRNA-based results were confirmed by the use of NS-deleted RSV mutants. Early activation of epidermal growth factor receptor (EGFR) in the RSV-infected cell did not require NS proteins. Premature apoptosis triggered by the loss of NS or by apoptosis-promoting drugs caused a severe reduction of RSV growth. Finally, recombinantly expressed NS1 and NS2, individually and together, reduced apoptosis by tumor necrosis factor alpha, suggesting an intrinsic antiapoptotic property of both. We conclude that the early-expressed nonstructural proteins of RSV boost viral replication by delaying the apoptosis of the infected cell via a novel IFN- and EGFR-independent pathway. PMID:17151097

  17. Identification of cellular and viral factors related to anti-hepatitis C virus activity of cyclophilin inhibitor.

    PubMed

    Goto, Kaku; Watashi, Koichi; Inoue, Daisuke; Hijikata, Makoto; Shimotohno, Kunitada

    2009-10-01

    We have so far reported that an immunosuppressant cyclosporin A (CsA), a well-known cyclophilin (CyP) inhibitor (CPI), strongly suppressed hepatitis C virus (HCV) replication in cell culture, and that CyPB was a cellular cofactor for viral replication. To further investigate antiviral mechanisms of CPI, we here developed cells carrying CsA-resistant HCV replicons, by culturing the HCV subgenomic replicon cells for 4 weeks in the presence of CsA with G418. Transfection of total RNA from the isolated CsA-resistant cells to naïve Huh7 cells conferred CsA resistance, suggesting that the replicon RNA itself was responsible for the resistant phenotype. Of the identified amino acid mutations, D320E in NS5A conferred the CsA resistance. The replicon carrying the D320E mutation was sensitive to interferon-alpha, but was resistant to CsA and other CPIs including NIM811 and sanglifehrin A. Knockdown of individual CyP subtypes revealed CyP40, in addition to CyPA and CyPB, contributed to viral replication, and CsA-resistant replicons acquired independence from CyPA for efficient replication. These data provide important evidence on the mechanisms underlying the regulation of HCV replication by CyP and for designing novel and specific anti-HCV strategies with CPIs.

  18. Identification of potential hit compounds for Dengue virus NS2B/NS3 protease inhibitors by combining virtual screening and binding free energy calculations.

    PubMed

    Wichapong, K; Nueangaudom, A; Pianwanit, S; Sippl, W; Kokpol, S

    2013-09-01

    Dengue virus (DV) infections are a serious public health problem and there is currently no vaccine or drug treatment. NS2B/NS3 protease, an essential enzyme for viral replication, is one of the promising targets in the search for drugs against DV. In this research work, virtual screening (VS) was carried out on four multi-conformational databases using several criteria. Firstly, molecular dynamics simulations of the NS2B/NS3 protease and four known inhibitors, which reveal an importance of both electrostatic and van der Waals interactions in stabilizing the ligand-enzyme interaction, were used to generate three different pharmacophore models (a structure-based, a static and a dynamic). Subsequently, these three models were employed for pharmacophore search in the VS. Secondly, compounds passing the first criterion were further reduced using the Lipinski's rule of five to keep only compounds with drug-like properties. Thirdly, molecular docking calculations were performed to remove compounds with unsuitable ligand-enzyme interactions. Finally, binding free energy of each compound was calculated. Compounds having better energy than the known inhibitors were selected and thus 20 potential hits were obtained.

  19. Molecular modeling and residue interaction network studies on the mechanism of binding and resistance of the HCV NS5B polymerase mutants to VX-222 and ANA598.

    PubMed

    Xue, Weiwei; Jiao, Pingzu; Liu, Huanxiang; Yao, Xiaojun

    2014-04-01

    Hepatitis C virus (HCV) NS5B protein is an RNA-dependent RNA polymerase (RdRp) with essential functions in viral genome replication and represents a promising therapeutic target to develop direct-acting antivirals (DAAs). Multiple nonnucleoside inhibitors (NNIs) binding sites have been identified within the polymerase. VX-222 and ANA598 are two NNIs targeting thumb II site and palm I site of HCV NS5B polymerase, respectively. These two molecules have been shown to be very effective in phase II clinical trials. However, the emergence of resistant HCV replicon variants (L419M, M423T, I482L mutants to VX-222 and M414T, M414L, G554D mutants to ANA598) has significantly decreased their efficacy. To elucidate the molecular mechanism about how these mutations influenced the drug binding mode and decreased drug efficacy, we studied the binding modes of VX-222 and ANA598 to wild-type and mutant polymerase by molecular modeling approach. Molecular dynamics (MD) simulations results combined with binding free energy calculations indicated that the mutations significantly altered the binding free energy and the interaction for the drugs to polymerase. The further per-residue binding free energy decomposition analysis revealed that the mutations decreased the interactions with several key residues, such as L419, M423, L474, S476, I482, L497, for VX-222 and L384, N411, M414, Y415, Q446, S556, G557 for ANA598. These were the major origins for the resistance to these two drugs. In addition, by analyzing the residue interaction network (RIN) of the complexes between the drugs with wild-type and the mutant polymerase, we found that the mutation residues in the networks involved in the drug resistance possessed a relatively lower size of topology centralities. The shift of betweenness and closeness values of binding site residues in the mutant polymerase is relevant to the mechanism of drug resistance of VX-222 and ANA598. These results can provide an atomic-level understanding about the mechanisms of drug resistance conferred by the studied mutations and will be helpful to design more potent inhibitors which could effectively overcome drug resistance of antivirus agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The effect of wide swathing on wilting times and nutritive value of alfalfa haylage.

    PubMed

    Kung, L; Stough, E C; McDonell, E E; Schmidt, R J; Hofherr, M W; Reich, L J; Klingerman, C M

    2010-04-01

    On 3 consecutive cuttings, alfalfa from a single field was mowed with a John Deere 946 mower-conditioner (4-m cut width; Moline, IL) to leave narrow swaths (NS) ranging from 1.2 to 1.52 m wide (30-37% of cutter bar width) and wide swaths (WS) ranging from 2.44 to 2.74 m wide (62-67% of cutter bar width). Samples were collected from windrows and dry matter (DM) was monitored during wilting until a target of 43 to 45% DM was obtained. Forage from random windrows (n=4-6) was harvested by hand, chopped through a forage harvester before being packed in replicated vacuum-sealed bags, and allowed to ensile for 65 d. There was no swath width x cutting interaction for any parameter tested. Over all cuttings, the resulting silage DM was not different between the NS silage (43.8%) and the WS silage (44.9%). However, wide swathing greatly reduced the time of wilting before making silage. The hours of wilting time needed to reach the targeted DM for the NS silage compared with the WS silage at cuttings 1, 2, and 3 were 50 versus 29, 54 versus 28, and 25 versus 6, respectively. At the time of ensiling, the WS silage had more water-soluble carbohydrates (5.1%) than did the NS silage (3.7%). The WS silage had a lower pH (4.58) than did the NS silage (4.66), but swath width did not affect fermentation end products (lactic acid, acetic acid, and ethanol). The NS silage had more NH(3)-N (0.26%) than did the WS silage (0.21%). Wide swathing did not affect the concentration of ash or the digestibility of NDF, but it lowered the N content (NS=3.45%; WS=3.23%) and increased the ADF content (NS=39.7%; WS=40.9%) of the resulting silage. Wide swathing can markedly reduce the time that alfalfa must wilt before it can be chopped for silage, but under good conditions, as in this study, the resulting silage quality was generally not improved. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. FASTPM: a new scheme for fast simulations of dark matter and haloes

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Chu, Man-Yat; Seljak, Uroš; McDonald, Patrick

    2016-12-01

    We introduce FASTPM, a highly scalable approximated particle mesh (PM) N-body solver, which implements the PM scheme enforcing correct linear displacement (1LPT) evolution via modified kick and drift factors. Employing a two-dimensional domain decomposing scheme, FASTPM scales extremely well with a very large number of CPUs. In contrast to Comoving-Lagrangian (COLA) approach, we do not require to split the force or track separately the 2LPT solution, reducing the code complexity and memory requirements. We compare FASTPM with different number of steps (Ns) and force resolution factor (B) against three benchmarks: halo mass function from friends-of-friends halo finder; halo and dark matter power spectrum; and cross-correlation coefficient (or stochasticity), relative to a high-resolution TREEPM simulation. We show that the modified time stepping scheme reduces the halo stochasticity when compared to COLA with the same number of steps and force resolution. While increasing Ns and B improves the transfer function and cross-correlation coefficient, for many applications FASTPM achieves sufficient accuracy at low Ns and B. For example, Ns = 10 and B = 2 simulation provides a substantial saving (a factor of 10) of computing time relative to Ns = 40, B = 3 simulation, yet the halo benchmarks are very similar at z = 0. We find that for abundance matched haloes the stochasticity remains low even for Ns = 5. FASTPM compares well against less expensive schemes, being only 7 (4) times more expensive than 2LPT initial condition generator for Ns = 10 (Ns = 5). Some of the applications where FASTPM can be useful are generating a large number of mocks, producing non-linear statistics where one varies a large number of nuisance or cosmological parameters, or serving as part of an initial conditions solver.

  2. The minute virus of mice (MVM) nonstructural protein NS1 induces nicking of MVM DNA at a unique site of the right-end telomere in both hairpin and duplex conformations in vitro.

    PubMed

    Willwand, K; Baldauf, A Q; Deleu, L; Mumtsidu, E; Costello, E; Beard, P; Rommelaere, J

    1997-10-01

    The right-end telomere of replicative form (RF) DNA of the autonomous parvovirus minute virus of mice (MVM) consists of a sequence that is self-complementary except for a three nucleotide loop around the axis of symmetry and an interior bulge of three unpaired nucleotides on one strand (designated the right-end 'bubble'). This right-end inverted repeat can exist in the form of a folded-back strand (hairpin conformation) or in an extended form, base-paired to a copy strand (duplex conformation). We recently reported that the right-end telomere is processed in an A9 cell extract supplemented with the MVM nonstructural protein NS1. This processing is shown here to result from the NS1-dependent nicking of the complementary strand at a unique position 21 nt inboard of the folded-back genomic 5' end. DNA species terminating in duplex or hairpin configurations, or in a mutated structure that has lost the right-end bulge, are all cleaved in the presence of NS1, indicating that features distinguishing these structures are not prerequisites for nicking under the in vitro conditions tested. Cleavage of the hairpin structure is followed by strand-displacement synthesis, generating the right-end duplex conformation, while processing of the duplex structure leads to the release of free right-end telomeres. In the majority of molecules, displacement synthesis at the right terminus stops a few nucleotides before reaching the end of the template strand, possibly due to NS1 which is covalently bound to this end. A fraction of the right-end duplex product undergoes melting and re-folding into hairpin structures (formation of a 'rabbit-ear' structure).

  3. Novel Cell Culture-Adapted Genotype 2a Hepatitis C Virus Infectious Clone

    PubMed Central

    Date, Tomoko; Kato, Takanobu; Kato, Junko; Takahashi, Hitoshi; Morikawa, Kenichi; Akazawa, Daisuke; Murayama, Asako; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi

    2012-01-01

    Although the recently developed infectious hepatitis C virus system that uses the JFH-1 clone enables the study of whole HCV viral life cycles, limited particular HCV strains have been available with the system. In this study, we isolated another genotype 2a HCV cDNA, the JFH-2 strain, from a patient with fulminant hepatitis. JFH-2 subgenomic replicons were constructed. HuH-7 cells transfected with in vitro transcribed replicon RNAs were cultured with G418, and selected colonies were isolated and expanded. From sequencing analysis of the replicon genome, several mutations were found. Some of the mutations enhanced JFH-2 replication; the 2217AS mutation in the NS5A interferon sensitivity-determining region exhibited the strongest adaptive effect. Interestingly, a full-length chimeric or wild-type JFH-2 genome with the adaptive mutation could replicate in Huh-7.5.1 cells and produce infectious virus after extensive passages of the virus genome-replicating cells. Virus infection efficiency was sufficient for autonomous virus propagation in cultured cells. Additional mutations were identified in the infectious virus genome. Interestingly, full-length viral RNA synthesized from the cDNA clone with these adaptive mutations was infectious for cultured cells. This approach may be applicable for the establishment of new infectious HCV clones. PMID:22787209

  4. Cell fusing agent virus and dengue virus mutually interact in Aedes aegypti cell lines.

    PubMed

    Zhang, Guangmei; Asad, Sultan; Khromykh, Alexander A; Asgari, Sassan

    2017-07-31

    The genus Flavivirus contains more than 70 single-stranded, positive-sense arthropod-borne RNA viruses. Some flaviviruses are particularly medically important to humans and other vertebrates including dengue virus (DENV), West Nile virus, and yellow fever virus. These viruses are transmitted to vertebrates by mosquitoes and other arthropod species. Mosquitoes are also infected by insect-specific flaviviruses (ISFs) that do not appear to be infective to vertebrates. Cell fusing agent virus (CFAV) was the first described ISF, which was discovered in an Aedes aegypti cell culture. We found that while CFAV infection could be significantly reduced by application of RNAi against the NS5 gene, removal of the treatment led to quick restoration of CFAV replication. Interestingly, we found that CFAV infection significantly enhanced replication of DENV, and vice versa, DENV infection significantly enhanced replication of CFAV in mosquito cells. We have shown that CFAV infection leads to increase in the expression of ribonuclease kappa (RNASEK), which is known to promote infection of viruses that rely on endocytosis and pH-dependent entry. Knockdown of RNASEK by dsRNA resulted in reduced DENV replication. Thus, increased expression of RNASEK induced by CFAV is likely to contribute to enhanced DENV replication in CFAV-infected cells.

  5. Uracil DNA glycosylase BKRF3 contributes to Epstein-Barr virus DNA replication through physical interactions with proteins in viral DNA replication complex.

    PubMed

    Su, Mei-Tzu; Liu, I-Hua; Wu, Chia-Wei; Chang, Shu-Ming; Tsai, Ching-Hwa; Yang, Pei-Wen; Chuang, Yu-Chia; Lee, Chung-Pei; Chen, Mei-Ru

    2014-08-01

    Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmuno-precipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme activity executes at the right time and the right place in DNA replication forks, complex formation with other components in the DNA replication machinery provides an important regulation for UDG function. In this study, we provide the mechanism for EBV UDG BKRF3 nuclear targeting and the interacting domains of BKRF3 with viral DNA replication proteins. Through knockout and complementation approaches, we further demonstrate that in addition to UDG activity, the interaction of BKRF3 with viral proteins in the replication compartment is crucial for efficient viral DNA replication. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Laboratory findings in neurosyphilis patients with epileptic seizures alone as the initial presenting symptom.

    PubMed

    Tong, Man-Li; Liu, Li-Li; Zeng, Yan-Li; Zhang, Hui-Lin; Liu, Gui-Li; Zheng, Wei-Hong; Dong, Jie; Wu, Jing-Yi; Su, Yuan-Hui; Lin, Li-Rong; Yang, Tian-Ci

    2013-04-01

    A retrospective chart review was performed to characterize the clinical presentation, the characteristic combination of serologic and cerebrospinal fluid (CSF) abnormalities, and the neuroimaging findings of neurosyphilis (NS) patients who had epileptic seizures alone as an initial presenting symptom. In a 6.75-year period, 169 inpatients with NS were identified at Zhongshan Hospital (from June 2005 to February 2012). We demonstrated that 13 (7.7%) of the 169 NS patients had epileptic seizures alone as an initial presenting feature. Epileptic seizures occurred in NS patients with syphilitic meningitis (2 cases), meningovascular NS (5 cases), and general paresis (6 cases). The types of epileptic seizures included simple partial, complex partial with secondary generalization (including status epilepticus), and generalized seizures (no focal onset reported). Nine of NS patients with only epileptic seizures as primary symptom were misdiagnosed, and the original misdiagnosis was 69.23% (9/13). Ten (10/13, 76.9%) patients had an abnormal magnetic resonance imaging, and 7 (7/13 53.8%) patients had abnormal electroencephalogram recordings. In addition, the sera rapid plasma reagin (RPR) and Treponema pallidum particle agglutination (TPPA) from all 13 patients were positive. The overall positive rates of the CSF-RPR and CSF-TPPA were 61.5% and 69.2%, respectively. Three patients demonstrated CSF pleocytosis, and 9 patients exhibited elevated CSF protein levels. Therefore, NS with only epileptic seizures at the initial presentation exhibits a lack of specificity. It is recommended that every patient with clinically evident symptoms of epileptic seizures should have a blood test performed for syphilis. When the serology results are positive, all of the patients should undergo a CSF examination to diagnose NS. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Mapping of Chikungunya Virus Interactions with Host Proteins Identified nsP2 as a Highly Connected Viral Component

    PubMed Central

    Bouraï, Mehdi; Lucas-Hourani, Marianne; Gad, Hans Henrik; Drosten, Christian; Jacob, Yves; Tafforeau, Lionel; Cassonnet, Patricia; Jones, Louis M.; Judith, Delphine; Couderc, Thérèse; Lecuit, Marc; André, Patrice; Kümmerer, Beate Mareike; Lotteau, Vincent; Desprès, Philippe; Vidalain, Pierre-Olivier

    2012-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus. PMID:22258240

  8. Influence of genome-scale RNA structure disruption on the replication of murine norovirus—similar replication kinetics in cell culture but attenuation of viral fitness in vivo

    PubMed Central

    McFadden, Nora; Arias, Armando; Dry, Inga; Bailey, Dalan; Witteveldt, Jeroen; Evans, David J.; Goodfellow, Ian; Simmonds, Peter

    2013-01-01

    Mechanisms by which certain RNA viruses, such as hepatitis C virus, establish persistent infections and cause chronic disease are of fundamental importance in viral pathogenesis. Mammalian positive-stranded RNA viruses establishing persistence typically possess genome-scale ordered RNA secondary structure (GORS) in their genomes. Murine norovirus (MNV) persists in immunocompetent mice and provides an experimental model to functionally characterize GORS. Substitution mutants were constructed with coding sequences in NS3/4- and NS6/7-coding regions replaced with sequences with identical coding and (di-)nucleotide composition but disrupted RNA secondary structure (F1, F2, F1/F2 mutants). Mutants replicated with similar kinetics to wild-type (WT) MNV3 in RAW264.7 cells and primary macrophages, exhibited similar (highly restricted) induction and susceptibility to interferon-coupled cellular responses and equal replication fitness by serial passaging of co-cultures. In vivo, both WT and F1/F2 mutant viruses persistently infected mice, although F1, F2 and F1/F2 mutant viruses were rapidly eliminated 1–7 days post-inoculation in competition experiments with WT. F1/F2 mutants recovered from tissues at 9 months showed higher synonymous substitution rates than WT and nucleotide substitutions that potentially restored of RNA secondary structure. GORS plays no role in basic replication of MNV but potentially contributes to viral fitness and persistence in vivo. PMID:23630317

  9. Dietary glutamine supplementation improves growth performance, meat quality and colour stability of broilers under heat stress.

    PubMed

    Dai, S F; Wang, L K; Wen, A Y; Wang, L X; Jin, G M

    2009-05-01

    1. The present study was conducted to investigate the effects of dietary glutamine (Gln) supplementation on growth performance, carcase characteristics and meat quality in broilers exposed to high ambient temperature. 2. A total of 240 35-d-old male Arbor Acres broilers were randomly assigned to 4 treatment groups (three replicates of 20 birds per cage). The broilers were kept in a temperature-controlled room at either 23 degrees C (no-stress groups, NS) or 28 degrees C (heat stress groups, HS). The broilers were fed either on a basal diet (control, NS) or on the basal diet supplemented with 0, 0.5 or 1.0% Gln (HS). 3. Compared with the NS, the HS (0% Gln) group gained less weight and consumed less feed, had lower final body weight, gain-to-feed ratio, and abdominal fat yield. Breast meat in HS (0% Gln) had lower pH, water-holding capacity (WHC), a* value, ether extract (EE) content and crude protein (CP) content, and had higher shear force (SF) and L* value. 4. Linear increase were found in groups supplemented with Gln (0, 0.5% and 1.0%) for final body weight, weight gain, feed consumption, gain-to-feed ratio and abdominal fat yield. Supplementation with Gln improved breast meat pH, WHC, SF, L* value, a* value, EE content and CP content in broilers exposed to heat stress. No significant difference was observed in all the indices determined between the HS (1% Gln) and the NS. 5. Heat stress caused obvious breast meat discoloration in L*, a* and b* values. However, dietary supplementation with Gln gave a better colour stability. 6. The results indicated that dietary supplementation with Gln may alleviate heat stress-caused deterioration in growth performance, carcase characteristics, meat quality and meat colour stability of broilers.

  10. Selection of Classical Swine Fever Virus with Enhanced Pathogenicity Reveals Synergistic Virulence Determinants in E2 and NS4B

    PubMed Central

    Tamura, Tomokazu; Yoshino, Fumi; Nomura, Takushi; Yamamoto, Naoki; Sato, Yuka; Okamatsu, Masatoshi; Ruggli, Nicolas; Kida, Hiroshi

    2012-01-01

    Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious disease of pigs. There are numerous CSFV strains that differ in virulence, resulting in clinical disease with different degrees of severity. Low-virulent and moderately virulent isolates cause a mild and often chronic disease, while highly virulent isolates cause an acute and mostly lethal hemorrhagic fever. The live attenuated vaccine strain GPE− was produced by multiple passages of the virulent ALD strain in cells of swine, bovine, and guinea pig origin. With the aim of identifying the determinants responsible for the attenuation, the GPE− vaccine virus was readapted to pigs by serial passages of infected tonsil homogenates until prolonged viremia and typical signs of CSF were observed. The GPE−/P-11 virus isolated from the tonsils after the 11th passage in vivo had acquired 3 amino acid substitutions in E2 (T830A) and NS4B (V2475A and A2563V) compared with the virus before passages. Experimental infection of pigs with the mutants reconstructed by reverse genetics confirmed that these amino acid substitutions were responsible for the acquisition of pathogenicity. Studies in vitro indicated that the substitution in E2 influenced virus spreading and that the changes in NS4B enhanced the viral RNA replication. In conclusion, the present study identified residues in E2 and NS4B of CSFV that can act synergistically to influence virus replication efficiency in vitro and pathogenicity in pigs. PMID:22674973

  11. Replicated Composite Optics Development

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell

    1997-01-01

    Advanced optical systems for applications such as grazing incidence Wolter I x-ray mirror assemblies require extraordinary mirror surfaces in ten-ns of fine surface finish and figure. The impeccable mirror surface is on the inside of the rotational mirror form. One practical method of producing devices with these requirements is to first fabricate an exterior surface for the optical device then replicate that surface to have the inverse component with lightweight characteristics. The replicate optic is not better than the master or mandrel from which it is made. This task is a continuance of previous studies to identify methods and materials for forming these extremely low roughness optical components.

  12. An asymmetric structure of the Bacillus subtilis replication terminator protein in complex with DNA.

    PubMed

    Vivian, J P; Porter, C J; Wilce, J A; Wilce, M C J

    2007-07-13

    In Bacillus subtilis, the termination of DNA replication via polar fork arrest is effected by a specific protein:DNA complex formed between the replication terminator protein (RTP) and DNA terminator sites. We report the crystal structure of a replication terminator protein homologue (RTP.C110S) of B. subtilis in complex with the high affinity component of one of its cognate DNA termination sites, known as the TerI B-site, refined at 2.5 A resolution. The 21 bp RTP:DNA complex displays marked structural asymmetry in both the homodimeric protein and the DNA. This is in contrast to the previously reported complex formed with a symmetrical TerI B-site homologue. The induced asymmetry is consistent with the complex's solution properties as determined using NMR spectroscopy. Concomitant with this asymmetry is variation in the protein:DNA binding pattern for each of the subunits of the RTP homodimer. It is proposed that the asymmetric "wing" positions, as well as other asymmetrical features of the RTP:DNA complex, are critical for the cooperative binding that underlies the mechanism of polar fork arrest at the complete terminator site.

  13. Suppression of Reserve MCM Complexes Chemosensitizes to Gemcitabine and 5-Fluorouracil.

    PubMed

    Bryant, Victoria L; Elias, Roy M; McCarthy, Susan M; Yeatman, Timothy J; Alexandrow, Mark G

    2015-09-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer and is very difficult to treat with conventional chemotherapeutic regimens. Gemcitabine and 5-fluorouracil are used in the management of PDAC and act by indirectly blocking replicative forks. However, these drugs are not highly effective at suppressing disease progression, indicating a need for the development of innovative therapeutic approaches. Recent studies indicate that suppression of the MCM helicase may provide a novel means to sensitize cancer cells to chemotherapeutic agents that inhibit replicative fork progression. Mammalian cells assemble more MCM complexes on DNA than are required to start S-phase. The excess MCM complexes function as backup initiation sites under conditions of replicative stress. The current study provides definitive evidence that cosuppression of the excess/backup MCM complexes sensitizes PDAC tumor lines to both gemcitabine and 5-FU, leading to increased loss of proliferative capacity compared with drugs alone. This occurs because reduced MCM levels prevent efficient recovery of DNA replication in tumor cells exposed to drug. PDAC tumor cells are more sensitive to MCM loss in the presence of gemcitabine than are nontumor, immortalized epithelial cells. Similarly, colon tumor cells are rendered less viable when cosuppression of MCM complexes occurs during exposure to the crosslinking agent oxaliplatin or topoisomerase inhibitor etoposide. These studies demonstrate that suppressing the backup complement of MCM complexes provides an effective sensitizing approach with the potential to increase the therapeutic index of drugs used in the clinical management of PDAC and other cancers. ©2015 American Association for Cancer Research.

  14. West Nile Virus Temperature Sensitivity and Avian Virulence Are Modulated by NS1-2B Polymorphisms.

    PubMed

    Dietrich, Elizabeth A; Langevin, Stanley A; Huang, Claire Y-H; Maharaj, Payal D; Delorey, Mark J; Bowen, Richard A; Kinney, Richard M; Brault, Aaron C

    2016-08-01

    West Nile virus (WNV) replicates in a wide variety of avian species, which serve as reservoir and amplification hosts. WNV strains isolated in North America, such as the prototype strain NY99, elicit a highly pathogenic response in certain avian species, notably American crows (AMCRs; Corvus brachyrhynchos). In contrast, a closely related strain, KN3829, isolated in Kenya, exhibits a low viremic response with limited mortality in AMCRs. Previous work has associated the difference in pathogenicity primarily with a single amino acid mutation at position 249 in the helicase domain of the NS3 protein. The NY99 strain encodes a proline residue at this position, while KN3829 encodes a threonine. Introduction of an NS3-T249P mutation in the KN3829 genetic background significantly increased virulence and mortality; however, peak viremia and mortality were lower than those of NY99. In order to elucidate the viral genetic basis for phenotype variations exclusive of the NS3-249 polymorphism, chimeric NY99/KN3829 viruses were created. We show herein that differences in the NS1-2B region contribute to avian pathogenicity in a manner that is independent of and additive with the NS3-249 mutation. Additionally, NS1-2B residues were found to alter temperature sensitivity when grown in avian cells.

  15. Structural Insights into the Regulation of Foreign Genes in Salmonella by the Hha/H-NS Complex*

    PubMed Central

    Ali, Sabrina S.; Whitney, John C.; Stevenson, James; Robinson, Howard; Howell, P. Lynne; Navarre, William Wiley

    2013-01-01

    The bacterial nucleoid-associated proteins Hha and H-NS jointly repress horizontally acquired genes in Salmonella, including essential virulence loci encoded within Salmonella pathogenicity islands. Hha is known to interact with the N-terminal dimerization domain of H-NS; however, the manner in which this interaction enhances transcriptional silencing is not understood. To further understand this process, we solved the x-ray crystal structure of Hha in complex with the N-terminal dimerization domain of H-NS (H-NS(1–46)) to 3.2 Å resolution. Two monomers of Hha bind to symmetrical sites on either side of the H-NS(1–46) dimer. Disruption of the Hha/H-NS interaction by the H-NS site-specific mutation I11A results in increased expression of the Hha/H-NS co-regulated gene hilA without affecting the expression levels of proV, a target gene repressed by H-NS in an Hha-independent fashion. Examination of the structure revealed a cluster of conserved basic amino acids that protrude from the surface of Hha on the opposite side of the Hha/H-NS(1–46) interface. Hha mutants with a diminished positively charged surface maintain the ability to interact with H-NS but can no longer regulate hilA. Increased expression of the hilA locus did not correspond to significant depletion of H-NS at the promoter region in chromatin immunoprecipitation assays. However, in vitro, we find Hha improves H-NS binding to target DNA fragments. Taken together, our results show for the first time how Hha and H-NS interact to direct transcriptional repression and reveal that a positively charged surface of Hha enhances the silencing activity of H-NS nucleoprotein filaments. PMID:23515315

  16. In-Situ Immobilization of Ni Complex on Amine-Grafted SiO₂ for Ethylene Polymerization.

    PubMed

    Lee, Sang Yun; Ko, Young Soo

    2018-02-01

    The results on the In-Situ synthesis of Ni complex on amine-grafted SiO2 and its ethylene polymerization were explained. SiO2/2NS/(DME)NiBr2 and SiO2/3NS/(DME)NiBr2(Ni(II) bromide ethylene glycol dimethyl ether) catalysts were active for ethylene polymerization. The highest activity was shown at the polymerization temperature of 25 °C, and SiO2/2NS/(DME)NiBr2 exhibited higher activity than SiO2/3NS/(DME)NiBr2. The PDI values of SiO2/2NS/(DME)NiBr2 were in the range of 8~18. The aminosilane compounds and Ni were evenly grafted and distributed in the silica. It was proposed that DME ligand was mostly removed during the supporting process, and only NiBr2 was complexed with the amine group of 2NS based on the results of FT-IR and ethylene polymerization.

  17. Distinguishing Secondary Dengue Virus Infection From Zika Virus Infection With Previous Dengue by a Combination of 3 Simple Serological Tests.

    PubMed

    Tsai, Wen-Yang; Youn, Han Ha; Brites, Carlos; Tsai, Jih-Jin; Tyson, Jasmine; Pedroso, Celia; Drexler, Jan Felix; Stone, Mars; Simmons, Graham; Busch, Michael P; Lanteri, Marion; Stramer, Susan L; Balmaseda, Angel; Harris, Eva; Wang, Wei-Kung

    2017-11-13

    The explosive spread of Zika virus (ZIKV) and associated microcephaly present an urgent need for sensitive and specific serodiagnostic tests, particularly for pregnant women in dengue virus (DENV)-endemic regions. Recent reports of enhanced ZIKV replication by dengue-immune sera have raised concerns about the role of previous DENV infection on the risk and severity of microcephaly and other ZIKV complications. Enzyme-linked immunosorbent assays (ELISAs) based on ZIKV and DENV nonstructural protein 1 (NS1) were established to test acute, convalescent phase, and post-convalescent phase serum/plasma samples from reverse-transcription polymerase chain reaction-confirmed cases including 20 primary ZIKV, 25 ZIKV with previous DENV, 58 secondary DENV, and 16 primary DENV1 infections. ZIKV-NS1 immunoglobulin M (IgM) and immunoglobulin G (IgG) ELISAs combined can detect ZIKV infection with a sensitivity of 95% and specificity of 66.7%. The ZIKV-NS1 IgG cross-reactivity by samples from secondary DENV infection cases ranged from 66.7% to 28.1% (within 1 month to 1-2 years post-illness, respectively). Addition of DENV1-NS1 IgG ELISA can distinguish primary ZIKV infection; the ratio of absorbance of ZIKV-NS1 to DENV1-NS1 IgG ELISA can distinguish ZIKV with previous DENV and secondary DENV infections with a sensitivity of 87.5% and specificity of 81.3%. These findings were supported by analysis of sequential samples. An algorithm for ZIKV serodiagnosis based on 3 simple ELISAs is proposed to distinguish primary ZIKV, ZIKV with previous DENV, and secondary DENV infections; this could be applied to serodiagnosis for ZIKV, serosurveillance, and monitoring ZIKV infection during pregnancy to understand the epidemiology, pathogenesis, and complications of ZIKV in dengue-endemic regions. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  18. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein

    PubMed Central

    Guo, Fang; Wu, Shuo; Julander, Justin; Ma, Julia; Zhang, Xuexiang; Kulp, John; Cuconati, Andrea; Block, Timothy M.; Du, Yanming; Guo, Ju-Tao

    2016-01-01

    ABSTRACT Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past 2 decades, which highlights the pressing need for antiviral therapeutics. In a high-throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV-infected cultures with 2 μM BDAA reduced the virion production by greater than 2 logs, the compound was not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug-resistant viruses revealed that replacement of the proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine, or alanine conferred YFV with resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, replacement of P219 with glycine conferred BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 amino acid is localized at the endoplasmic reticulum lumen side of the fifth putative transmembrane domain of NS4B, and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed an important role and the structural basis for the NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs, and attenuated virus infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever. IMPORTANCE Yellow fever is an acute viral hemorrhagic disease which threatens approximately 1 billion people living in tropical areas of Africa and Latin America. Although a highly effective yellow fever vaccine has been available for more than 7 decades, the low vaccination rate fails to prevent outbreaks in at-risk regions. It has been estimated that up to 1.7 million YFV infections occur in Africa each year, resulting in 29,000 to 60,000 deaths. Thus far, there is no specific antiviral treatment for yellow fever. To cope with this medical challenge, we identified a benzodiazepine compound that selectively inhibits YFV by targeting the viral NS4B protein. To our knowledge, this is the first report demonstrating in vivo safety and antiviral efficacy of a YFV NS4B inhibitor in an animal model. We have thus reached a critical milestone toward the development of specific antiviral therapeutics for clinical management of yellow fever. PMID:27654301

  19. The efficient packaging of Venezuelan equine encephalitis virus-specific RNAs into viral particles is determined by nsP1–3 synthesis

    PubMed Central

    Volkova, Eugenia; Gorchakov, Rodion; Frolov, Ilya

    2008-01-01

    Alphaviruses are regarded as attractive systems for expression of heterologous genes and development of recombinant vaccines. Venezuelan equine encephalitis virus (VEE)-based vectors are particularly promising because of their specificity to lymphoid tissues and strong resistance to interferon. To improve understanding of the VEE genome packaging and optimize application of this virus as a vector, we analyzed in more detail the mechanism of packaging of the VEE-specific RNAs. The presence of the RNAs in the VEE particles during serial passaging in tissue culture was found to depend not only on the presence of packaging signal(s), but also on the ability of these RNAs to express in cis nsP1, nsP2 and nsP3 in the form of a P123 precursor. Packaging of VEE genomes into infectious virions was also found to be more efficient compared to that of Sindbis virus, in spite of lower levels of RNA replication and structural protein production. PMID:16239019

  20. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein.

    PubMed

    Guo, Fang; Wu, Shuo; Julander, Justin; Ma, Julia; Zhang, Xuexiang; Kulp, John; Cuconati, Andrea; Block, Timothy M; Du, Yanming; Guo, Ju-Tao; Chang, Jinhong

    2016-09-21

    Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past two decades, which highlights the pressing need for antiviral therapeutics. In a high throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound, which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV infected cultures with 2 μM of BDAA reduced the virion production by greater than 2 logs, the compound is not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug resistant viruses revealed that substitution of proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine or alanine confers YFV resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, substitution of P219 with glycine confers BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 localizes at the endoplasmic reticulum lumen side of the fifth putative trans-membrane domain of NS4B and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed important role and structural basis for NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs and attenuated viral infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever. Yellow fever is an acute viral hemorrhagic disease which threatens approximately one billion people living in tropical areas of Africa and Latin America. Although a highly effective yellow fever vaccine has been available for more than seven decades, the low vaccination rate fails to prevent outbreaks in at-risk regions. It has been estimated that up to 1.7 million YFV infections occur in Africa each year, resulting in 29,000 to 60,000 death. Thus far, there is no specific antiviral treatment for yellow fever. To cope with this medical challenge, we identified a benzodiazepine compound that selectively inhibits YFV by targeting the viral NS4B protein. To our knowledge, this is the first report demonstrating in vivo safety and antiviral efficacy of an YFV NS4B inhibitor in an animal model. We have thus reached a critical milestone toward the development of specific antiviral therapeutics for clinical management of yellow fever. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks*

    PubMed Central

    Kim, Hyun-Suk; Nickoloff, Jac A.; Wu, Yuehan; Williamson, Elizabeth A.; Sidhu, Gurjit Singh; Reinert, Brian L.; Jaiswal, Aruna S.; Srinivasan, Gayathri; Patel, Bhavita; Kong, Kimi; Burma, Sandeep; Lee, Suk-Hee; Hromas, Robert A.

    2017-01-01

    Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5′ end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5′-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5′ end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5′-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5′ end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks. PMID:28049724

  2. Effects of multiple pathways on excited-state energy flow in self-assembled wheel-and-spoke light-harvesting architectures.

    PubMed

    Song, Hee-eun; Kirmaier, Christine; Schwartz, Jennifer K; Hindin, Eve; Yu, Lianhe; Bocian, David F; Lindsey, Jonathan S; Holten, Dewey

    2006-10-05

    Static and time-resolved optical measurements are reported for three cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0, 1, or 2 free base (Fb) porphyrins (denoted Zn(6), Zn(5)Fb, or Zn(4)Fb(2), respectively). The guest is a core-modified (O replacing one of the four N atoms) dipyridyl-substituted Fb porphyrin (DPFbO) that coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have a gradient of excited-state energies for excitation funneling among the weakly coupled constituents of the host to the guest. Energy transfer to the lowest-energy chromophore(s) (coordinated zinc porphyrins or Fb porphyrins) within a hexameric host occurs primarily via a through-bond (TB) mechanism, is rapid ( approximately 40 ps), and is essentially quantitative (>or=98%). Energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the guest in the Zn(6)*DPFbO complex has a yield of approximately 75%, a rate constant of approximately (0.7 ns)(-1), and significant Förster through-space (TS) character. In the case of Zn(5)Fb*DPFbO, which has an additional TS route via the Fb porphyrin with a rate constant of approximately (20 ns)(-1), the yield of energy transfer to the guest is somewhat lower ( approximately 50%) than that for Zn(6)*DPFbO. Complex Zn(4)Fb(2)*DPFbO has an identical TS pathway via the Fb porphyrin plus an additional TS pathway involving the second Fb porphyrin (closer to the guest) with a rate constant of approximately (0.5 ns)(-1). This complex exhibits an energy-transfer yield to the guest that is significantly enhanced over that for Zn(5)Fb*DPFbO and comparable to that for Zn(6)*DPFbO. Collectively, the results for the various arrays suggest designs for similar host-guest complexes that are expected to exhibit much more efficient light harvesting and excitation trapping at the central guest chromophore.

  3. Redox non-innocence of thioether crowns: spectroelectrochemistry and electronic structure of formal nickel(III) complexes of aza-thioether macrocycles.

    PubMed

    Stephen, Emma; Huang, Deguang; Shaw, Jennifer L; Blake, Alexander J; Collison, David; Davies, E Stephen; Edge, Ruth; Howard, Judith A K; McInnes, Eric J L; Wilson, Claire; Wolowska, Joanna; McMaster, Jonathan; Schröder, Martin

    2011-09-05

    The Ni(II) complexes [Ni([9]aneNS(2)-CH(3))(2)](2+) ([9]aneNS(2)-CH(3)=N-methyl-1-aza-4,7-dithiacyclononane), [Ni(bis[9]aneNS(2)-C(2)H(4))](2+) (bis[9]aneNS(2)-C(2)H(4)=1,2-bis-(1-aza-4,7-dithiacyclononylethane) and [Ni([9]aneS(3))(2)](2+) ([9]aneS(3)=1,4,7-trithiacyclononane) have been prepared and can be electrochemically and chemically oxidized to give the formal Ni(III) products, which have been characterized by X-ray crystallography, UV/Vis and multi-frequency EPR spectroscopy. The single-crystal X-ray structure of [Ni(III)([9]aneNS(2)-CH(3))(2)](ClO(4))(6)·(H(5)O(2))(3) reveals an octahedral co-ordination at the Ni centre, while the crystal structure of [Ni(III)(bis[9]aneNS(2)-C(2)H(4))](ClO(4))(6)·(H(3)O)(3)·3H(2)O exhibits a more distorted co-ordination. In the homoleptic analogue, [Ni(III)([9]aneS(3))(2)](ClO(4))(3), structurally characterized at 30 K, the Ni-S distances [2.249(6), 2.251(5) and 2.437(2) Å] are consistent with a Jahn-Teller distorted octahedral stereochemistry. [Ni([9]aneNS(2)-CH(3))(2)](PF(6))(2) shows a one-electron oxidation process in MeCN (0.2 M NBu(4)PF(6), 293 K) at E(½)=+1.10 V versus Fc(+)/Fc assigned to a formal Ni(III)/Ni(II) couple. [Ni(bis[9]aneNS(2)-C(2)H(4))](PF(6))(2) exhibits a one-electron oxidation process at E(½)=+0.98 V and a reduction process at E(½)=-1.25 V assigned to Ni(II)/Ni(III) and Ni(II)/Ni(I) couples, respectively. The multi-frequency X-, L-, S-, K-band EPR spectra of the 3+ cations and their 86.2% (61)Ni-enriched analogues were simulated. Treatment of the spin Hamiltonian parameters by perturbation theory reveals that the SOMO has 50.6%, 42.8% and 37.2% Ni character in [Ni([9]aneNS(2)-CH(3))(2)](3+), [Ni(bis[9]aneNS(2)-C(2)H(4))](3+) and [Ni([9]aneS(3))(2)](3+), respectively, consistent with DFT calculations, and reflecting delocalisation of charge onto the S-thioether centres. EPR spectra for [(61)Ni([9]aneS(3))(2)](3+) are consistent with a dynamic Jahn-Teller distortion in this compound. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparison of low-abundance biomarker levels in capillary-collected nonstimulated tears and washout tears of aqueous-deficient and normal patients.

    PubMed

    Guyette, Nicole; Williams, Larezia; Tran, My-Tho; Than, Tammy; Bradley, John; Kehinde, Lucy; Edwards, Clara; Beasley, Mark; Fullard, Roderick

    2013-05-01

    Low tear volume limits the use of nonstimulated (NS) microcapillary tear collection in aqueous-deficient (AD) patients. Adding a small amount of "washout" fluid to the eye prior to tear collection is a potentially viable alternative method for abundant proteins, but is relatively untested for low-abundance biomarkers. This study determined the feasibility of the washout (WO) method as an NS alternative for low-abundance biomarkers. NS and WO biomarker profiles were compared between AD patients and non-AD controls to determine if the two methods identify the same intergroup differences. Matching NS and WO tears were collected from 48 patients by micropipette, the WO sample after instillation of 10 μL saline. Tear cytokine levels were measured by 27-Plex Bio-Rad assay. Bland-Altman analyses for each biomarker determined the agreement between tear sample types. Patients were grouped as AD or non-AD based on Schirmer score to determine if NS profile between-group differences were preserved in WO tears. Bland-Altman plots showed good biomarker level agreement between NS and WO tears for most cytokines. Five biomarkers, among those most often cited as differing in AD dry eye, differed significantly between non-AD and AD groups in both tear types. Additional biomarker differences were seen in NS tears only. The WO tear collection method is a viable alternative to NS tears for many low-abundance biomarkers and is able to replicate major NS tear differences between dry eye groups. More subtle intergroup differences are lost in WO samples because of reduced statistical power.

  5. Reinjection laser oscillator and method

    DOEpatents

    McLellan, Edward J.

    1984-01-01

    A uv preionized CO.sub.2 oscillator with integral four-pass amplifier capable of providing 1 to 5 GW laser pulses with pulse widths from 0.1 to 0.5 ns full width at half-maximum (FWHM) is described. The apparatus is operated at any pressure from 1 atm to 10 atm without the necessity of complex high voltage electronics. The reinjection technique employed gives rise to a compact, efficient system that is particularly immune to alignment instabilities with a minimal amount of hardware and complexity.

  6. MCM5: a new actor in the link between DNA replication and Meier-Gorlin syndrome.

    PubMed

    Vetro, Annalisa; Savasta, Salvatore; Russo Raucci, Annalisa; Cerqua, Cristina; Sartori, Geppo; Limongelli, Ivan; Forlino, Antonella; Maruelli, Silvia; Perucca, Paola; Vergani, Debora; Mazzini, Giuliano; Mattevi, Andrea; Stivala, Lucia Anna; Salviati, Leonardo; Zuffardi, Orsetta

    2017-05-01

    Meier-Gorlin syndrome (MGORS) is a rare disorder characterized by primordial dwarfism, microtia, and patellar aplasia/hypoplasia. Recessive mutations in ORC1, ORC4, ORC6, CDT1, CDC6, and CDC45, encoding members of the pre-replication (pre-RC) and pre-initiation (pre-IC) complexes, and heterozygous mutations in GMNN, a regulator of cell-cycle progression and DNA replication, have already been associated with this condition. We performed whole-exome sequencing (WES) in a patient with a clinical diagnosis of MGORS and identified biallelic variants in MCM5. This gene encodes a subunit of the replicative helicase complex, which represents a component of the pre-RC. Both variants, a missense substitution within a conserved domain critical for the helicase activity, and a single base deletion causing a frameshift and a premature stop codon, were predicted to be detrimental for the MCM5 function. Although variants of MCM5 have never been reported in specific human diseases, defect of this gene in zebrafish causes a phenotype of growth restriction overlapping the one associated with orc1 depletion. Complementation experiments in yeast showed that the plasmid carrying the missense variant was unable to rescue the lethal phenotype caused by mcm5 deletion. Moreover cell-cycle progression was delayed in patient's cells, as already shown for mutations in the ORC1 gene. Altogether our findings support the role of MCM5 as a novel gene involved in MGORS, further emphasizing that this condition is caused by impaired DNA replication.

  7. Use of a Recombinant Gamma-2 Herpesvirus Vaccine Vector against Dengue Virus in Rhesus Monkeys.

    PubMed

    Bischof, Georg F; Magnani, Diogo M; Ricciardi, Michael; Shin, Young C; Domingues, Aline; Bailey, Varian K; Gonzalez-Nieto, Lucas; Rakasz, Eva G; Watkins, David I; Desrosiers, Ronald C

    2017-08-15

    Research on vaccine approaches that can provide long-term protection against dengue virus infection is needed. Here we describe the construction, immunogenicity, and preliminary information on the protective capacity of recombinant, replication-competent rhesus monkey rhadinovirus (RRV), a persisting herpesvirus. One RRV construct expressed nonstructural protein 5 (NS5), while a second recombinant expressed a soluble variant of the E protein (E85) of dengue virus 2 (DENV2). Four rhesus macaques received a single vaccination with a mixture of both recombinant RRVs and were subsequently challenged 19 weeks later with 1 × 10 5 PFU of DENV2. During the vaccine phase, plasma of all vaccinated monkeys showed neutralizing activity against DENV2. Cellular immune responses against NS5 were also elicited, as evidenced by major histocompatibility complex class I (MHC-I) tetramer staining in the one vaccinated monkey that was Mamu-A*01 positive. Unlike two of two unvaccinated controls, two of the four vaccinated monkeys showed no detectable viral RNA sequences in plasma after challenge. One of these two monkeys also showed no anamnestic increases in antibody levels following challenge and thus appeared to be protected against the acquisition of DENV2 following high-dose challenge. Continued study will be needed to evaluate the performance of herpesviral and other persisting vectors for achieving long-term protection against dengue virus infection. IMPORTANCE Continuing studies of vaccine approaches against dengue virus (DENV) infection are warranted, particularly ones that may provide long-term immunity against all four serotypes. Here we investigated whether recombinant rhesus monkey rhadinovirus (RRV) could be used as a vaccine against DENV2 infection in rhesus monkeys. Upon vaccination, all animals generated antibodies capable of neutralizing DENV2. Two of four vaccinated monkeys showed no detectable viral RNA after subsequent high-dose DENV2 challenge at 19 weeks postvaccination. Furthermore, one of these vaccinated monkeys appeared to be protected against the acquisition of DENV2 infection on the basis of undetectable viral loads and the lack of an anamnestic antibody response. These findings underscore the potential utility of recombinant herpesviruses as vaccine vectors. Copyright © 2017 American Society for Microbiology.

  8. The nonstructural proteins of Pneumoviruses are remarkably distinct in substrate diversity and specificity.

    PubMed

    Ribaudo, Michael; Barik, Sailen

    2017-11-06

    Interferon (IFN) inhibits viruses by inducing several hundred cellular genes, aptly named 'interferon (IFN)-stimulated genes' (ISGs). The only two RNA viruses of the Pneumovirus genus of the Paramyxoviridae family, namely Respiratory Syncytial Virus (RSV) and Pneumonia Virus of Mice (PVM), each encode two nonstructural (NS) proteins that share no sequence similarity but yet suppress IFN. Since suppression of IFN underlies the ability of these viruses to replicate in the host cells, the mechanism of such suppression has become an important area of research. This Short Report is an important extension of our previous efforts in defining this mechanism. We show that, like their PVM counterparts, the RSV NS proteins also target multiple members of the ISG family. While significantly extending the substrate repertoire of the RSV NS proteins, these results, unexpectedly, also reveal that the target preferences of the NS proteins of the two viruses are entirely different. This is surprising since the two Pneumoviruses are phylogenetically close with similar genome organization and gene function, and the NS proteins of both also serve as suppressors of host IFN response. The finding that the NS proteins of the two highly similar viruses suppress entirely different members of the ISG family raises intriguing questions of pneumoviral NS evolution and mechanism of action.

  9. The interaction between NOLC1 and IAV NS1 protein promotes host cell apoptosis and reduces virus replication.

    PubMed

    Zhu, Chunyu; Zheng, Fangliang; Zhu, Junfeng; Liu, Meichen; Liu, Na; Li, Xue; Zhang, Li; Deng, Zaidong; Zhao, Qi; Liu, Hongsheng

    2017-11-07

    NS1 of the influenza virus plays an important role in the infection ability of the influenza virus. Our previous research found that NS1 protein interacts with the NOLC1 protein of host cells, however, the function of the interaction is unknown. In the present study, the role of the interaction between the two proteins in infection was further studied. Several analyses, including the use of a pull-down assay, Co-IP, western blot analysis, overexpression, RNAi, flow cytometry, etc., were used to demonstrate that the NS1 protein of H3N2 influenza virus interacts with host protein NOLC1 and reduces the quantity of NOLC1. The interaction also promotes apoptosis in A549 host cells, while the suppression of NOLC1 protein reduces the proliferation of the H3N2 virus. Based on these data, it was concluded that during the process of infection, NS1 protein interacts with NOLC1 protein, reducing the level of NOLC1, and that the interaction between the two proteins promotes apoptosis of host cells, thus reducing the proliferation of the virus. These findings provide new information on the biological function of the interaction between NS1 and NOLC1.

  10. Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export

    PubMed Central

    Zhang, Liang; Das, Priyabrata; Schmolke, Mirco; Manicassamy, Balaji; Wang, Yaming; Deng, Xiaoyi; Cai, Ling; Tu, Benjamin P.; Forst, Christian V.; Roth, Michael G.; Levy, David E.; García-Sastre, Adolfo; de Brabander, Jef; Phillips, Margaret A.

    2012-01-01

    The NS1 protein of influenza virus is a major virulence factor essential for virus replication, as it redirects the host cell to promote viral protein expression. NS1 inhibits cellular messenger ribonucleic acid (mRNA) processing and export, down-regulating host gene expression and enhancing viral gene expression. We report in this paper the identification of a nontoxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of the virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for de novo pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of vesicular stomatitis virus M (matrix) protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. PMID:22312003

  11. Avian reovirus microNS protein forms homo-oligomeric inclusions in a microtubule-independent fashion, which involves specific regions of its C-terminal domain.

    PubMed

    Brandariz-Nuñez, Alberto; Menaya-Vargas, Rebeca; Benavente, Javier; Martinez-Costas, Jose

    2010-05-01

    Members of the genus Orthoreovirus replicate in cytoplasmic inclusions termed viral factories. Compelling evidence suggests that the nonstructural protein microNS forms the matrix of the factories and recruits specific viral proteins to these structures. In the first part of this study, we analyzed the properties of avian reovirus factories and microNS-derived inclusions and found that they are nonaggresome cytoplasmic globular structures not associated with the cytoskeleton which do not require an intact microtubule network for formation and maturation. We next investigated the capacity of avian reovirus microNS to form inclusions in transfected and baculovirus-infected cells. Our results showed that microNS is the main component of the inclusions formed by recombinant baculovirus expression. This, and the fact that microNS is able to self-associate inside the cell, suggests that microNS monomers contain all the interacting domains required for inclusion formation. Examination of the inclusion-forming capacities of truncated microNS versions allowed us to identify the region spanning residues 448 to 635 of microNS as the smallest that was inclusion competent, although residues within the region 140 to 380 seem to be involved in inclusion maturation. Finally, we investigated the roles that four different motifs present in microNS(448-635) play in inclusion formation, and the results suggest that the C-terminal tail domain is a key determinant in dictating the initial orientation of monomer-to-monomer contacts to form basal oligomers that control inclusion shape and inclusion-forming efficiency. Our results contribute to an understanding of the generation of structured protein aggregates that escape the cellular mechanisms of protein recycling.

  12. Characterization and modification of phage T7 DNA polymerase for use in DNA sequencing; Progress report, June 1, 1990--May 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, C.C.

    1993-12-31

    This project focuses on the DNA polymerase (gene 5 protein) of phage T7 for use in DNA sequence analysis. Gene 5 protein interacts with accessory proteins to acquire properties essential for DNA replication. One goal is to understand these interactions in order to modify the proteins for use in DNA sequencing. E. coli thioredoxin, binds to gene 5 protein and clamps it to a primer-template. They have analyzed the binding of gene 5 protein-thioredoxin to primer-templates and have defined the optimal conditions to form an extremely stable complex with a dNTP in the polymerase catalytic site. The spatial proximity ofmore » these components has been determined using fluorescence emission anisotropy. The T7 DNA binding protein, the gene 2.5 protein, interacts with gene 5 protein and gene 4 protein to increase processivity and primer synthesis, respectively. Mutant gene 2.5 proteins have been isolated that do not interact with T7 DNA polymerase and can not support T7 growth. The nucleotide binding site of the T7 helicase has been identified and mutations affecting the site provide information on how the hydrolysis of NTPs fuel its unidirectional translocation. The sequence, GTC, has been shown to be necessary and sufficient for recognition by the T7 primase. The T7 gene 5.5 protein interacts with the E. coli nucleoid protein, H-NS, and also overcomes the phage {lambda} rex restriction system.« less

  13. Purification, stability, and immunogenicity analyses of five bluetongue virus proteins for use in development of a subunit vaccine that allows differentiation of infected from vaccinated animals.

    PubMed

    Anderson, Jenna; Bréard, Emmanuel; Lövgren Bengtsson, Karin; Grönvik, Kjell-Olov; Zientara, Stéphan; Valarcher, Jean-Francois; Hägglund, Sara

    2014-03-01

    Bluetongue virus (BTV) causes bluetongue disease, a vector-borne disease of ruminants. The recent northerly spread of BTV serotype 8 in Europe resulted in outbreaks characterized by clinical signs in cattle, including unusual teratogenic effects. Vaccination has been shown to be crucial for controlling the spread of vector-borne diseases such as BTV. With the aim of developing a novel subunit vaccine targeting BTV-8 that allows differentiation of infected from vaccinated animals, five His-tagged recombinant proteins, VP2 and VP5 of BTV-8 and NS1, NS2, and NS3 of BTV-2, were expressed in baculovirus or Escherichia coli expression systems for further study. Optimized purification protocols were determined for VP2, NS1, NS2, and NS3, which remained stable for detection for at least 560 to 610 days of storage at +4°C or -80°C, and Western blotting using sera from vaccinated or experimentally infected cattle indicated that VP2 and NS2 were recognized by BTV-specific antibodies. To characterize murine immune responses to the four proteins, mice were subcutaneously immunized twice at a 4-week interval with one of three protein combinations plus immunostimulating complex ISCOM-Matrix adjuvant or with ISCOM-Matrix alone (n = 6 per group). Significantly higher serum IgG antibody titers specific for VP2 and NS2 were detected in immunized mice than were detected in controls. VP2, NS1, and NS2 but not NS3 induced specific lymphocyte proliferative responses upon restimulation of spleen cells from immunized mice. The data suggest that these recombinant purified proteins, VP2, NS1, and NS2, could be an important part of a novel vaccine design against BTV-8.

  14. Genetic Compatibility and Virulence of Reassortants Derived from Contemporary Avian H5N1 and Human H3N2 Influenza A Viruses

    PubMed Central

    Zhou, Hong; Cox, Nancy J.; Donis, Ruben O.

    2008-01-01

    The segmented structure of the influenza virus genome plays a pivotal role in its adaptation to new hosts and the emergence of pandemics. Despite concerns about the pandemic threat posed by highly pathogenic avian influenza H5N1 viruses, little is known about the biological properties of H5N1 viruses that may emerge following reassortment with contemporary human influenza viruses. In this study, we used reverse genetics to generate the 63 possible virus reassortants derived from H5N1 and H3N2 viruses, containing the H5N1 surface protein genes, and analyzed their viability, replication efficiency, and mouse virulence. Specific constellations of avian–human viral genes proved deleterious for viral replication in cell culture, possibly due to disruption of molecular interaction networks. In particular, striking phenotypes were noted with heterologous polymerase subunits, as well as NP and M, or NS. However, nearly one-half of the reassortants replicated with high efficiency in vitro, revealing a high degree of compatibility between avian and human virus genes. Thirteen reassortants displayed virulent phenotypes in mice and may pose the greatest threat for mammalian hosts. Interestingly, one of the most pathogenic reassortants contained avian PB1, resembling the 1957 and 1968 pandemic viruses. Our results reveal the broad spectrum of phenotypes associated with H5N1/H3N2 reassortment and a possible role for the avian PB1 in the emergence of pandemic influenza. These observations have important implications for risk assessment of H5N1 reassortant viruses detected in surveillance programs. PMID:18497857

  15. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin.

    PubMed

    Pan, Ankita; Saw, Wuan Geok; Subramanian Manimekalai, Malathy Sony; Grüber, Ardina; Joon, Shin; Matsui, Tsutomu; Weiss, Thomas M; Grüber, Gerhard

    2017-05-01

    Dengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution. The DENV-2 and DENV-4 NS3 forms are elongated and flexible in solution. The importance of the linker residues in flexibility and domain-domain arrangement was shown by the compactness of the individual protease and helicase domains. Swapping of the 174 PPAVP 179 linker stretch of the related Hepatitis C virus (HCV) NS3 into DENV-2 NS3 did not alter the elongated shape of the engineered mutant. Conformational alterations owing to RNA binding are described in the protease domain, which undergoes substantial conformational alterations that are required for the optimal catalysis of bound RNA. Finally, the effects of ATPase inhibitors on the enzymatically active DENV-2 and DENV-4 NS3 and the individual helicases are presented, and insight into the allosteric effect of the inhibitor quercetin is provided.

  16. Unique nonstructural proteins of Pneumonia Virus of Mice (PVM) promote degradation of interferon (IFN) pathway components and IFN-stimulated gene proteins.

    PubMed

    Dhar, Jayeeta; Barik, Sailen

    2016-12-01

    Pneumonia Virus of Mice (PVM) is the only virus that shares the Pneumovirus genus of the Paramyxoviridae family with Respiratory Syncytial Virus (RSV). A deadly mouse pathogen, PVM has the potential to serve as a robust animal model of RSV infection, since human RSV does not fully replicate the human pathology in mice. Like RSV, PVM also encodes two nonstructural proteins that have been implicated to suppress the IFN pathway, but surprisingly, they exhibit no sequence similarity with their RSV equivalents. The molecular mechanism of PVM NS function, therefore, remains unknown. Here, we show that recombinant PVM NS proteins degrade the mouse counterparts of the IFN pathway components. Proteasomal degradation appears to be mediated by ubiquitination promoted by PVM NS proteins. Interestingly, NS proteins of PVM lowered the levels of several ISG (IFN-stimulated gene) proteins as well. These results provide a molecular foundation for the mechanisms by which PVM efficiently subverts the IFN response of the murine cell. They also reveal that in spite of their high sequence dissimilarity, the two pneumoviral NS proteins are functionally and mechanistically similar.

  17. Hippocampal A-type current and Kv4.2 channel modulation by the sulfonylurea compound NS5806.

    PubMed

    Witzel, Katrin; Fischer, Paul; Bähring, Robert

    2012-12-01

    We examined the effects of the sulfonylurea compound NS5806 on neuronal A-type channel function. Using whole-cell patch-clamp we studied the effects of NS5806 on the somatodendritic A-type current (I(SA)) in cultured hippocampal neurons and the currents mediated by Kv4.2 channels coexpressed with different auxiliary β-subunits, including both Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-related proteins (DPPs), in HEK 293 cells. The amplitude of the I(SA) component in hippocampal neurons was reduced in the presence of 20 μM NS5806. I(SA) decay kinetics were slowed and the recovery kinetics accelerated, but the voltage dependence of steady-state inactivation was shifted to more negative potentials by NS5806. The peak amplitudes of currents mediated by ternary Kv4.2 channel complexes, associated with DPP6-S (short splice-variant) and either KChIP2, KChIP3 or KChIP4, were potentiated and their macroscopic inactivation slowed by NS5806, whereas the currents mediated by binary Kv4.2 channels, associated only with DPP6-S, were suppressed, and the NS5806-mediated slowing of macroscopic inactivation was less pronounced. Neither potentiation nor suppression and no effect on current decay kinetics in the presence of NS5806 were observed for Kv4.2 channels associated with KChIP3 and the N-type inactivation-conferring DPP6a splice-variant. For all recombinant channel complexes, NS5806 slowed the recovery from inactivation and shifted the voltage dependence of steady-state inactivation to more negative potentials. Our results demonstrate the activity of NS5806 on native I(SA) and possible molecular correlates in the form of recombinant Kv4.2 channels complexed with different KChIPs and DPPs, and they shed some light on the mechanism of NS5806 action. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Novel Insights into the Molecular Interaction of a Panduratin A Derivative with the Non Structural Protein (NS3) of Dengue Serotypes: A Molecular Dynamics Study.

    PubMed

    Parida, Pratap; Yadav, Raj Narain Singh; Dehury, Budheswar; Ghosh, Debosree; Mahapatra, Namita; Mitra, Analava; Mohanta, Tapan Kumar

    2017-01-01

    The ligand PKP10 having substitution of Cl- at R2 and R3 positions of ring A of Panduratin A i.e., ((1R,2S,5S)-5-(2,3-dichlorophenyl)-3-methyl-2-(3-methylbut-2-nyl)cyclohex-3- enyl)(2,6-dihydroxy-4-methylphenyl)methanone hydrate) has been observed to block the Nuclear Receptor Binding Protein binding site of Non Structural protein 3 in all dengue serotypes. In continuation with our earlier study, we have reported sixty novel Panduratin A derivatives compounds where substitution was done in positions 2 and 3 position of the benzyl ring A of Panduratin A with various substituents. We selected ((1R,2S,5S)-5-(2,3-dichlorophenyl)-3-methyl-2-(3-methylbut-2-nyl)cyclohex-3- nyl) (2,6-dihydroxy-4-methylphenyl) methanone hydrate) (PKP10) for molecular dynamics (MD) simulations as it constantly produced lowest CDocker interaction energy of among all the sixty five derivatives. The CDocker interaction energy was predicted to be -140.804, -79.807, -78.217 and -84.073 Kcalmol-1 respectively against NS3 protein of dengue serotypes (DENV1-4). To understand the dynamics of the PKP10 with NS3 protein, each complex was subjected to molecular dynamics simulations of 50 ns in aqueous solution. MD (Molecular Dynamics) simulation study revealed that the binding of ligand PKP10 at the active site of NS3 induces a conformational change in all serotypes which was well supported by principal component analysis. To the best of our knowledge, this is first ever study which provided atomistic insights into the interaction of PKP10 with NS3 protein of dengue serotypes. The result from our study along with in vitro studies is expected to open up better avenues to develop inhibitors for dengue virus in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. A Simulation Program with Latency Exploitation for the Transient Analysis of Digital Circuits.

    DTIC Science & Technology

    1983-08-01

    PW PER) Examples: VIN 3 0 PULSE(-5 5 iNS iNS iNS 50NS lOONS) parameters default values units Vi (initial value) volts or amps V2 (pulsed value) volts...TAUl TD2 TAU2)mU Examples: VIN 3 0 EXP(-5 0 2NS 30NS 60NS 40NS) parameters default values units V1 (initial value) volts or amps V2 (pulsed value

  20. Sequential structures provide insights into the fidelity of RNA replication.

    PubMed

    Ferrer-Orta, Cristina; Arias, Armando; Pérez-Luque, Rosa; Escarmís, Cristina; Domingo, Esteban; Verdaguer, Nuria

    2007-05-29

    RNA virus replication is an error-prone event caused by the low fidelity of viral RNA-dependent RNA polymerases. Replication fidelity can be decreased further by the use of mutagenic ribonucleoside analogs to a point where viral genetic information can no longer be maintained. For foot-and-mouth disease virus, the antiviral analogs ribavirin and 5-fluorouracil have been shown to be mutagenic, contributing to virus extinction through lethal mutagenesis. Here, we report the x-ray structure of four elongation complexes of foot-and-mouth disease virus polymerase 3D obtained in presence of natural substrates, ATP and UTP, or mutagenic nucleotides, ribavirin triphosphate and 5-fluorouridine triphosphate with different RNAs as template-primer molecules. The ability of these complexes to synthesize RNA in crystals allowed us to capture different successive replication events and to define the critical amino acids involved in (i) the recognition and positioning of the incoming nucleotide or analog; (ii) the positioning of the acceptor base of the template strand; and (iii) the positioning of the 3'-OH group of the primer nucleotide during RNA replication. The structures identify key interactions involved in viral RNA replication and provide insights into the molecular basis of the low fidelity of viral RNA polymerases.

  1. Identification of various cell culture models for the study of Zika virus

    PubMed Central

    Himmelsbach, Kiyoshi; Hildt, Eberhard

    2018-01-01

    AIM To identify cell culture models supportive for Zika virus (ZIKV) replication. METHODS Various human and non-human cell lines were infected with a defined amount of ZIKV Polynesia strain. Cells were analyzed 48 h post infection for the amount of intracellular and extracellular viral genomes and infectious viral particles by quantitative real-time PCR and virus titration assay. The extent of replication was monitored by immunofluorescence and western blot analysis by using Env and NS1 specific antibodies. Innate immunity was assayed by luciferase reporter assay and immunofluorescence analysis. RESULTS All investigated cell lines except CHO cells supported infection, replication and release of ZIKV. While in infected A549 and Vero cells a pronounced cytopathic effect was observed COS7, 293T and Huh7.5 cells were most resistant. Although the analyzed cell lines released comparable amounts of viral genomes to the supernatant significant differences were found for the number of infectious viral particles. The neuronal cell lines N29.1 and SH-SY5Y released 100 times less infectious viral particles than Vero-, A549- or 293T-cells. However there is no strict correlation between the amount of produced viral particles and the induction of an interferon response in the analyzed cell lines. CONCLUSION The investigated cell lines with their different tissue origins and diverging ZIKV susceptibility display a toolbox for ZIKV research. PMID:29468137

  2. A gustatory second-order neuron that connects sucrose-sensitive primary neurons and a distinct region of the gnathal ganglion in the Drosophila brain.

    PubMed

    Miyazaki, Takaaki; Lin, Tzu-Yang; Ito, Kei; Lee, Chi-Hon; Stopfer, Mark

    2015-01-01

    Although the gustatory system provides animals with sensory cues important for food choice and other critical behaviors, little is known about neural circuitry immediately following gustatory sensory neurons (GSNs). Here, we identify and characterize a bilateral pair of gustatory second-order neurons (G2Ns) in Drosophila. Previous studies identified GSNs that relay taste information to distinct subregions of the primary gustatory center (PGC) in the gnathal ganglia (GNG). To identify candidate G2Ns, we screened ∼5,000 GAL4 driver strains for lines that label neural fibers innervating the PGC. We then combined GRASP (GFP reconstitution across synaptic partners) with presynaptic labeling to visualize potential synaptic contacts between the dendrites of the candidate G2Ns and the axonal terminals of Gr5a-expressing GSNs, which are known to respond to sucrose. Results of the GRASP analysis, followed by a single-cell analysis by FLP-out recombination, revealed a pair of neurons that contact Gr5a axon terminals in both brain hemispheres and send axonal arborizations to a distinct region outside the PGC but within the GNG. To characterize the input and output branches, respectively, we expressed fluorescence-tagged acetylcholine receptor subunit (Dα7) and active-zone marker (Brp) in the G2Ns. We found that G2N input sites overlaid GRASP-labeled synaptic contacts to Gr5a neurons, while presynaptic sites were broadly distributed throughout the neurons' arborizations. GRASP analysis and further tests with the Syb-GRASP method suggested that the identified G2Ns receive synaptic inputs from Gr5a-expressing GSNs, but not Gr66a-expressing GSNs, which respond to caffeine. The identified G2Ns relay information from Gr5a-expressing GSNs to distinct regions in the GNG, and are distinct from other, recently identified gustatory projection neurons, which relay information about sugars to a brain region called the antennal mechanosensory and motor center (AMMC). Our findings suggest unexpected complexity for taste information processing in the first relay of the gustatory system.

  3. Nuclear Export Factor CRM1 Interacts with Nonstructural Proteins NS2 from Parvovirus Minute Virus of Mice

    PubMed Central

    Bodendorf, Ursula; Cziepluch, Celina; Jauniaux, Jean-Claude; Rommelaere, Jean; Salomé, Nathalie

    1999-01-01

    The nonstructural NS2 proteins of autonomous parvoviruses are known to act in a host cell-dependent manner and to play a role in viral DNA replication, efficient translation of viral mRNA, and/or encapsidation. Their exact function during the parvovirus life cycle remains, however, still obscure. We report here the characterization of the interaction with the NS2 proteins from the parvovirus minute virus of mice (MVM) and rat as well as mouse homologues of the human CRM1 protein, a member of the importin-beta family recently identified as an essential nuclear export factor. Using the two-hybrid system, we could detect the interaction between the carboxy-terminal region of rat CRM1 and each of the three isoforms of NS2 (P [or major], Y [or minor], and L [or rare]). NS2 proteins were further shown to interact with the full-length CRM1 by coimmunoprecipitation experiments using extracts from both mouse and rat cell lines. Our data show that CRM1 preferentially binds to the nonphosphorylated isoforms of NS2. Moreover, we observed that the treatment of MVM-infected cells with leptomycin B, a drug that specifically inhibits the CRM1-dependent nuclear export pathway, leads to a drastic accumulation of NS2 proteins in the nucleus. Both NS2 interaction with CRM1 and nuclear accumulation upon leptomycin B treatment strongly suggest that these nonstructural viral proteins are actively exported out of the nuclei of infected cells via a CRM1-mediated nuclear export pathway. PMID:10438867

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that themore » nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.« less

  5. Indirect DNA Readout by an H-NS Related Protein: Structure of the DNA Complex of the C-Terminal Domain of Ler

    PubMed Central

    Cordeiro, Tiago N.; Schmidt, Holger; Madrid, Cristina; Juárez, Antonio; Bernadó, Pau; Griesinger, Christian; García, Jesús; Pons, Miquel

    2011-01-01

    Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family. PMID:22114557

  6. Indirect DNA readout by an H-NS related protein: structure of the DNA complex of the C-terminal domain of Ler.

    PubMed

    Cordeiro, Tiago N; Schmidt, Holger; Madrid, Cristina; Juárez, Antonio; Bernadó, Pau; Griesinger, Christian; García, Jesús; Pons, Miquel

    2011-11-01

    Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family.

  7. Further Evaluation of the Outcome Questionnaire-45.2

    ERIC Educational Resources Information Center

    Rice, Kenneth G.; Suh, Hanna; Ege, Engin

    2014-01-01

    Data from clinical and nonclinical samples ("Ns" = 2,096, 618) were used to evaluate and replicate the measurement structure of the Outcome Questionnaire-45.2. Different measurement models and invariance tests were evaluated and the best psychometric support was found for a shortened measure of two factors: overall maladjustment and…

  8. [The specific enzyme inhibitors for potential therapeutic use].

    PubMed

    Bretner, Maria

    2015-01-01

    Therapy for hepatitis C virus (HCV) initially consisted on administering ribavirin - having a broad spectrum of action - and pegylated interferon, and was only effective in 40-50% of patients. Appropriate was to find effective inhibitors of viral replication e.g. by inhibition of a viral enzyme, NTPase/helicase required in the process of translation and RNA replication of the HCV. We developed methods of synthesis of many compounds belonging to different groups - derivatives of nucleosides, benzotriazole, benzimidazole, tropolone and epirubicine. Some of the derivatives inhibit HCV helicase activity at low concentrations and reduces replication of the viral RNA in subgenomic replicon system. In the process of HCV replication casein kinase CK2 plays an important role. It regulates the level of phosphorylation of HCV protein NS5A, which affects the production of infectious virions of HCV. Effective and selective inhibitors of kinase CK2 could be of use in the treatment of HCV in combination with other drugs. CK2 kinase phosphorylates approximately 300 proteins that affect the growth, differentiation, proliferation or apoptosis. Elevated CK2 kinase activity has been observed in several types of cancer and other diseases, therefore, inhibitors of this enzyme are potential therapeutic importance, particularly for anti-cancer treatment. Research carried out in collaboration with prof. Shugar led to the synthesis of one of the most selective inhibitors of this enzyme which is 4,5,6,7-tetrabromo-1H-benzotriazole, used for the study of the role of kinase CK2 in a number of metabolic processes in tumor cells.

  9. Hot spots based gold nanostar@SiO2@CdSe/ZnS quantum dots complex with strong fluorescence enhancement

    NASA Astrophysics Data System (ADS)

    Shan, Feng; Su, Dan; Li, Wei; Hu, Wei; Zhang, Tong

    2018-02-01

    In this paper, a novel gold nanostar (NS)@SiO2@CdSe/ZnS quantum dots (QDs) complex with plasmon-enhanced fluorescence synthesized using a step-by-step surface linkage method was presented. The gold NS was synthesized by the seed growth method. The synthesized gold NS with the apexes structure has a hot-spot effect due to the strong electric field distributed at its sharp apexes, which leads to a plasmon resonance enhancement. Because the distance between QDs and metal nanostructures can be precisely controlled by this method, the relationship between enhancement and distance was revealed. The thickness of SiO2 shell was also optimized and the optimum distance of about 21 nm was obtained. The highest fluorescence enhancement of 4.8-fold accompanied by a minimum fluorescence lifetime of 2.3 ns were achieved. This strong enhancement comes from the hot spots distributed at the sharp tip of our constructed nanostructure. Through the finite element method, we calculated the field distribution on the surface of NS and found that gold NS with the sharpest apexes exhibited the highest field enhancement, which matches well with our experiment result. This complex shows tremendous potential applications for liquid-dependent biometric imaging systems.

  10. Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12

    PubMed Central

    Lithgow, James K; Haider, Fouzia; Roberts, Ian S; Green, Jeffrey

    2007-01-01

    Haemolysin E is a cytolytic pore-forming toxin found in several Escherichia coli and Salmonella enterica strains. Expression of hlyE is repressed by the global regulator H-NS (histone-like nucleoid structuring protein), but can be activated by the regulator SlyA. Expression of a chromosomal hlyE–lacZ fusion in an E. coli slyA mutant was reduced to 60% of the wild-type level confirming a positive role for SlyA. DNase I footprint analysis revealed the presence of two separate SlyA binding sites, one located upstream, the other downstream of the hlyE transcriptional start site. These sites overlap AT-rich H-NS binding sites. Footprint and gel shift data showed that whereas H-NS prevented binding of RNA polymerase (RNAP) at the hlyE promoter (PhlyE), SlyA allowed binding of RNAP, but inhibited binding of H-NS. Accordingly, in vitro transcription analyses showed that addition of SlyA protein relieved H-NS-mediated repression of hlyE. Based on these observations a model for SlyA/H-NS regulation of hlyE expression is proposed in which the relative concentrations of SlyA and H-NS govern the nature of the nucleoprotein complexes formed at PhlyE. When H-NS is dominant RNAP binding is inhibited and hlyE expression is silenced; when SlyA is dominant H-NS binding is inhibited allowing RNAP access to the promoter facilitating hlyE transcription. PMID:17892462

  11. The mechanism by which P250L mutation impairs flavivirus-NS1 dimerization: an investigation based on molecular dynamics simulations.

    PubMed

    Oliveira, Edson R A; de Alencastro, Ricardo B; Horta, Bruno A C

    2016-09-01

    The flavivirus non-structural protein 1 (NS1) is a conserved glycoprotein with as yet undefined biological function. This protein dimerizes when inside infected cells or associated to cell membranes but also forms lipid-associated hexamers when secreted to the extracellular space. A single amino acid substitution (P250L) is capable of preventing the dimerization of NS1 resulting in lower virulence and slower virus replication. In this work, based on molecular dynamics simulations of the dengue-2 virus NS1 [Formula: see text]-ladder monomer as a core model, we found that this mutation can induce several conformational changes that importantly affect critical monomer-monomer interactions. Based on additional simulations, we suggest a mechanism by which a highly orchestrated sequence of events propagate the local perturbations around the mutation site towards the dimer interface. The elucidation of such a mechanism could potentially support new strategies for rational production of live-attenuated vaccines and highlights a step forward in the development of novel anti-flavivirus measures.

  12. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    PubMed

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  13. Synthesis, characterization of Ag(I), Pd(II) and Pt(II) complexes of a triazine-3-thione and their interactions with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuying; Li, Shuyan; Yang, Lin; Fan, Changqing

    2007-11-01

    Ag(I), Pd(II) and Pt(II) complexes of 5-methoxy-5,6-diphenyl-4,5-dihydro-2H-[1,2,4]triazine-3-thione (LH 2OCH 3) have been synthesized and characterized by elemental analysis, molar conductance, 1H NMR, IR spectra, UV spectra and thermal analysis (TG-DTA). The components of the three complexes are [Ag(C 15H 10N 3S)] 6, Pd(C 15H 10N 3S) 2 and Pt(C 15H 10N 3S) 2·C 3H 6O·2H 2O, respectively. All the complexes are nonelectrolyte and have high thermodynamic stability. The ligand may act as bidentate NS donor for Pd(II) and Pt(II) complexes, while it seems to be bidentate NS bridging via sulphur atom for Ag(I) complex. A planar quadrangular structure is proposed for Pd(II) and Pt(II) complexes and Ag(I) complex may be a hexanuclear cluster. Their interactions with bovine serum albumin (BSA) are investigated using steady state fluorescence technology. It is observed that all of them can quench the intrinsic fluorescence of BSA through static quenching procedure. The binding constants ( KA) at different temperatures, thermodynamic parameters enthalpy changes (Δ H) and entropy changes (Δ S) between BSA and the compounds are calculated. Based on the values of Δ H and Δ S, it is judged that the main acting force of PtL 2·C 3H 6O·2H 2O with BSA may be electrostatic interaction, and for the LH 2OCH 3, Ag 6L 6 and PdL 2, hydrophobic and electrostatic interactions may be involved in their binding processes.

  14. Selective turn-off phosphorescent and colorimetric detection of mercury(II) in water by half-lantern platinum(II) complexes.

    PubMed

    Sicilia, Violeta; Borja, Pilar; Baya, Miguel; Casas, José M

    2015-04-21

    The platinum(ii) half-lantern dinuclear complexes [{Pt(bzq)(μ-C7H4NS2-κN,S)}2] () and [{Pt(bzq)(μ-C7H4NOS-κN,S)}2] () [bzq = benzo[h]quinolinate, C7H4NS2 = 2-mercaptobenzothiazolate, C7H4NOS = 2-mercaptobenzoxazolate] in solution of DMSO-H2O undergo a dramatic color change from yellowish-orange to purple and turn-off phosphorescence in the presence of a small amount of Hg(2+), being discernible by the naked-eye and by spectroscopic methods. Other metal ions as Ag(+), Li(+), Na(+), K(+), Ca(2+), Mg(2+), Ba(2+), Pb(2+), Cd(2+), Zn(2+) and Tl(+) were tested and, even in a big excess, showed no interference in the selective detection of Hg(2+) in water. Job's plot analysis indicated a 1 : 1 stoichiometry in the complexation mode of Hg(2+) by /. The phosphorescence quenching attributed to the formation of [/ : Hg(2+)] complexes showed binding constants of K = 1.13 × 10(5) M(-1) () and K = 1.99 × 10(4) M(-1) (). The limit of detection has been also evaluated. In addition, dried paper test strips impregnated in DMSO solutions of and can detect concentration of Hg(2+) in water as low as 1 × 10(-5) M for and 5 × 10(-5) M for , making these complexes good candidates to be used as real-time Hg(2+) detectors. The nature of the interaction of the Pt2 half-lantern complex with the Hg(2+) cation, has been investigated by theoretical calculations.

  15. Molecular Mechanism by Which a Potent Hepatitis C Virus NS3-NS4A Protease Inhibitor Overcomes Emergence of Resistance

    PubMed Central

    O'Meara, Jeff A.; Lemke, Christopher T.; Godbout, Cédrickx; Kukolj, George; Lagacé, Lisette; Moreau, Benoît; Thibeault, Diane; White, Peter W.; Llinàs-Brunet, Montse

    2013-01-01

    Although optimizing the resistance profile of an inhibitor can be challenging, it is potentially important for improving the long term effectiveness of antiviral therapy. This work describes our rational approach toward the identification of a macrocyclic acylsulfonamide that is a potent inhibitor of the NS3-NS4A proteases of all hepatitis C virus genotypes and of a panel of genotype 1-resistant variants. The enhanced potency of this compound versus variants D168V and R155K facilitated x-ray determination of the inhibitor-variant complexes. In turn, these structural studies revealed a complex molecular basis of resistance and rationalized how such compounds are able to circumvent these mechanisms. PMID:23271737

  16. Possible roles of two quinone molecules in direct and indirect proton pumps of bovine heart NADH-quinone oxidoreductase (complex I).

    PubMed

    Ohnishi, S Tsuyoshi; Salerno, John C; Ohnishi, Tomoko

    2010-12-01

    In many energy transducing systems which couple electron and proton transport, for example, bacterial photosynthetic reaction center, cytochrome bc(1)-complex (complex III) and E. coli quinol oxidase (cytochrome bo(3) complex), two protein-associated quinone molecules are known to work together. T. Ohnishi and her collaborators reported that two distinct semiquinone species also play important roles in NADH-ubiquinone oxidoreductase (complex I). They were called SQ(Nf) (fast relaxing semiquinone) and SQ(Ns) (slow relaxing semiquinone). It was proposed that Q(Nf) serves as a "direct" proton carrier in the semiquinone-gated proton pump (Ohnishi and Salerno, FEBS Letters 579 (2005) 4555), while Q(Ns) works as a converter between one-electron and two-electron transport processes. This communication presents a revised hypothesis in which Q(Nf) plays a role in a "direct" redox-driven proton pump, while Q(Ns) triggers an "indirect" conformation-driven proton pump. Q(Nf) and Q(Ns) together serve as (1e(-)/2e(-)) converter, for the transfer of reducing equivalent to the Q-pool. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Identification of Poxvirus Genome Uncoating and DNA Replication Factors with Mutually Redundant Roles.

    PubMed

    Liu, Baoming; Panda, Debasis; Mendez-Rios, Jorge D; Ganesan, Sundar; Wyatt, Linda S; Moss, Bernard

    2018-04-01

    Genome uncoating is essential for replication of most viruses. For poxviruses, the process is divided into two stages: removal of the envelope, allowing early gene expression, and breaching of the core wall, allowing DNA release, replication, and late gene expression. Subsequent studies showed that the host proteasome and the viral D5 protein, which has an essential role in DNA replication, are required for vaccinia virus (VACV) genome uncoating. In a search for additional VACV uncoating proteins, we noted a report that described a defect in DNA replication and late expression when the gene encoding a 68-kDa ankyrin repeat/F-box protein (68k-ank), associated with the cellular SCF (Skp1, cullin1, F-box-containing complex) ubiquitin ligase complex, was deleted from the attenuated modified vaccinia virus Ankara (MVA). Here we showed that the 68k-ank deletion mutant exhibited diminished genome uncoating, formation of DNA prereplication sites, and degradation of viral cores as well as an additional, independent defect in DNA synthesis. Deletion of the 68k-ank homolog of VACV strain WR, however, was without effect, suggesting the existence of compensating genes. By inserting VACV genes into an MVA 68k-ank deletion mutant, we discovered that M2, a member of the poxvirus immune evasion (PIE) domain superfamily and a regulator of NF-κB, and C5, a member of the BTB/Kelch superfamily associated with cullin-3-based ligase complexes, independently rescued the 68k-ank deletion phenotype. Thus, poxvirus uncoating and DNA replication are intertwined processes involving at least three viral proteins with mutually redundant functions in addition to D5. IMPORTANCE Poxviruses comprise a family of large DNA viruses that infect vertebrates and invertebrates and cause diseases of medical and zoological importance. Poxviruses, unlike most other DNA viruses, replicate in the cytoplasm, and their large genomes usually encode 200 or more proteins with diverse functions. About 90 genes may be essential for chordopoxvirus replication based either on their conservation or individual gene deletion studies. However, this number may underestimate the true number of essential functions because of redundancy. Here we show that any one of three seemingly unrelated and individually nonessential proteins is required for the incompletely understood processes of genome uncoating and DNA replication, an example of synthetic lethality. Thus, poxviruses appear to have a complex genetic interaction network that has not been fully appreciated and which will require multifactor deletion screens to assess. Copyright © 2018 American Society for Microbiology.

  18. Consideration of Viral Resistance for Optimization of Direct Antiviral Therapy of Hepatitis C Virus Genotype 1-Infected Patients.

    PubMed

    Dietz, Julia; Susser, Simone; Berkowski, Caterina; Perner, Dany; Zeuzem, Stefan; Sarrazin, Christoph

    2015-01-01

    Different highly effective interferon-free treatment options for chronic hepatitis C virus (HCV) infection are currently available. Pre-existence of resistance associated variants (RAVs) to direct antiviral agents (DAAs) reduces sustained virologic response (SVR) rates by 3-53% in hepatitis C virus (HCV) genotype 1 infected patients depending on different predictors and the DAA regimen used. Frequencies of single and combined resistance to NS3, NS5A and NS5B inhibitors and consequences for the applicability of different treatment regimens are unknown. Parallel population based sequencing of HCV NS3, NS5A and NS5B genes in 312 treatment-naïve Caucasian HCV genotype 1 infected patients showed the presence of major resistant variants in 20.5% (NS3), 11.9% (NS5A), and 22.1% (NS5B) with important differences for HCV subtypes. In NS3, Q80K was observed in 34.7% and 2.1% of subtype 1a and 1b patients, respectively while other RAVs to second generation protease inhibitors were detected rarely (1.4%). Within NS5A RAVs were observed in 7.1% of subtype 1a and 17.6% in subtype 1b infected patients. RAVs to non-nucleoside NS5B inhibitors were observed in 3.5% and 44.4% of subtype 1a and 1b patients, respectively. Considering all three DAA targets all subtype 1a and 98.6% of subtype 1b infected patients were wildtype for at least one interferon free DAA regimen currently available. In conclusion, baseline resistance testing allows the selection of at least one RAVs-free treatment option for nearly all patients enabling a potentially cost- and efficacy-optimized treatment of chronic hepatitis C.

  19. The effect of classical swine fever virus NS5A and NS5A mutants on oxidative stress and inflammatory response in swine testicular cells.

    PubMed

    Dong, Wang; Lv, Huifang; Wang, Yifan; Li, Xiaomeng; Li, Cheng; Wang, Lu; Wang, Chengbao; Guo, Kangkang; Zhang, Yanming

    2017-06-01

    Infection with classical swine fever virus (CSFV) results in highly significant economic losses; this infection is characterized by being highly contagious and accompanied by hyperthermia and systemic bleeding. Oxidative stress (OS) plays a critical role in the pathological process of viral infection. The function of the nonstructural protein 5A (NS5A) in the pathogenesis of CSFV has not been completely understood. Here, OS and the inflammatory response were studied with NS5A and substitution mutants in swine testicular (ST) cells. ST cell lines stably expressing CSFV NS5A or substitution mutants were established. Reactive oxygen species (ROS) production, antioxidant protein expression and inflammatory response were analyzed by quantitative real-time PCR (qRT-PCR), ELISA and flow cytometry analysis. The results showed that CSFV NS5A did not increase ROS production or the antioxidant protein (Trx, HO-1 and PRDX-6) expression in ST cells. However, NS5A inhibited cyclooxygenase-2 (COX-2) expression, a pro-inflammatory protein related to OS. Further studies have shown that NS5A mutants S15A and S92A increased ROS production and inhibited antioxidant protein expression. S15A, S81A and T274A affected the inflammatory response. This study suggested that CSFV NS5A did not induce OS, and amino acids Ser15 and Ser92 of CSFV NS5A were essential for inhibiting OS. Additionally, Ser15, Ser81 and Thr274 played important roles in the inflammatory response in ST cells. These observations provided insight into the function of CSFV NS5A and the mechanism of CSFV persistent infection in ST cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    PubMed

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  1. Enhanced Cellulose Degradation Using Cellulase-Nanosphere Complexes

    PubMed Central

    Blanchette, Craig; Lacayo, Catherine I.; Fischer, Nicholas O.; Hwang, Mona; Thelen, Michael P.

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production. PMID:22870287

  2. Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation.

    PubMed

    Nishimura, Kazuho; Kumazawa, Takuya; Kuroda, Takao; Katagiri, Naohiro; Tsuchiya, Mai; Goto, Natsuka; Furumai, Ryohei; Murayama, Akiko; Yanagisawa, Junn; Kimura, Keiji

    2015-03-03

    The 5S ribonucleoprotein particle (RNP) complex, consisting of RPL11, RPL5, and 5S rRNA, is implicated in p53 regulation under ribotoxic stress. Here, we show that the 5S RNP contributes to p53 activation and promotes cellular senescence in response to oncogenic or replicative stress. Oncogenic stress accelerates rRNA transcription and replicative stress delays rRNA processing, resulting in RPL11 and RPL5 accumulation in the ribosome-free fraction, where they bind MDM2. Experimental upregulation of rRNA transcription or downregulation of rRNA processing, mimicking the nucleolus under oncogenic or replicative stress, respectively, also induces RPL11-mediated p53 activation and cellular senescence. We demonstrate that exogenous expression of certain rRNA-processing factors rescues the processing defect, attenuates p53 accumulation, and increases replicative lifespan. To summarize, the nucleolar-5S RNP-p53 pathway functions as a senescence inducer in response to oncogenic and replicative stresses. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT) Machinery via Ubiquitination To Facilitate Viral Envelopment

    PubMed Central

    Barouch-Bentov, Rina; Neveu, Gregory; Xiao, Fei; Beer, Melanie; Bekerman, Elena; Schor, Stanford; Campbell, Joseph; Boonyaratanakornkit, Jim; Lindenbach, Brett; Lu, Albert; Jacob, Yves

    2016-01-01

    ABSTRACT Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT) machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV) protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate), an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS) proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses. PMID:27803188

  4. HCV NS5A protein containing potential ligands for both Src homology 2 and 3 domains enhances autophosphorylation of Src family kinase Fyn in B cells.

    PubMed

    Nakashima, Kenji; Takeuchi, Kenji; Chihara, Kazuyasu; Horiguchi, Tomoko; Sun, Xuedong; Deng, Lin; Shoji, Ikuo; Hotta, Hak; Sada, Kiyonao

    2012-01-01

    Hepatitis C virus (HCV) infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin's lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A) protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV) implied that NS5A was tyrosine phosphorylated by pervanadate (PV) treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST)-fusion proteins of various Src homology 2 (SH2) domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3) domain. Substitution of Arg(176) to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr(334) was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.

  5. Crystal Structure of the Eukaryotic Origin Recognition Complex

    PubMed Central

    Bleichert, Franziska; Botchan, Michael R.; Berger, James M.

    2015-01-01

    Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. The 3.5 Å resolution crystal structure of Drosophila ORC reveals that the 270 kDa initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ ATPase folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident, including highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighboring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate a ~20 Å wide channel in the center of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the MCM2-7 complex during replicative helicase loading; however, an observed >90° out-of-plane rotation for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions. PMID:25762138

  6. Eilat virus host range restriction is present at multiple levels of the virus life cycle.

    PubMed

    Nasar, Farooq; Gorchakov, Rodion V; Tesh, Robert B; Weaver, Scott C

    2015-01-15

    Most alphaviruses are mosquito-borne and exhibit a broad host range, infecting many different vertebrates, including birds, rodents, equids, humans, and nonhuman primates. This ability of most alphaviruses to infect arthropods and vertebrates is essential for their maintenance in nature. Recently, a new alphavirus, Eilat virus (EILV), was described, and in contrast to all other mosquito-borne viruses, it is unable to replicate in vertebrate cell lines. Investigations into the nature of its host range restriction showed the inability of genomic EILV RNA to replicate in vertebrate cells. Here, we investigated whether the EILV host range restriction is present at the entry level and further explored the viral factors responsible for the lack of genomic RNA replication. Utilizing Sindbis virus (SINV) and EILV chimeras, we show that the EILV vertebrate host range restriction is also manifested at the entry level. Furthermore, the EILV RNA replication restriction is independent of the 3' untranslated genome region (UTR). Complementation experiments with SINV suggested that RNA replication is restricted by the inability of the EILV nonstructural proteins to form functional replicative complexes. These data demonstrate that the EILV host range restriction is multigenic, involving at least one gene from both nonstructural protein (nsP) and structural protein (sP) open reading frames (ORFs). As EILV groups phylogenetically within the mosquito-borne virus clade of pathogenic alphaviruses, our findings have important evolutionary implications for arboviruses. Our work explores the nature of host range restriction of the first "mosquito-only alphavirus," EILV. EILV is related to pathogenic mosquito-borne viruses (Eastern equine encephalitis virus [EEEV], Western equine encephalitis virus [WEEV], Venezuelan equine encephalitis virus [VEEV], and Chikungunya virus [CHIKV]) that cause severe disease in humans. Our data demonstrate that EILV is restricted both at entry and genomic RNA replication levels in vertebrate cells. These findings have important implications for arbovirus evolution and will help elucidate the viral factors responsible for the broad host range of pathogenic mosquito-borne alphaviruses, facilitate vaccine development, and inform potential strategies to reduce/prevent alphavirus transmission. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Comparative in Vivo Assessment of Some Adverse Bioeffects of Equidimensional Gold and Silver Nanoparticles and the Attenuation of Nanosilver’s Effects with a Complex of Innocuous Bioprotectors

    PubMed Central

    Katsnelson, Boris A.; Privalova, Larisa I.; Gurvich, Vladimir B.; Makeyev, Oleg H.; Shur, Vladimir Ya.; Beikin, Yakov B.; Sutunkova, Marina P.; Kireyeva, Ekaterina P.; Minigalieva, Ilzira A.; Loginova, Nadezhda V.; Vasilyeva, Marina S.; Korotkov, Artem V.; Shuman, Eugene A.; Vlasova, Larisa A.; Shishkina, Ekaterina V.; Tyurnina, Anastasia E.; Kozin, Roman V.; Valamina, Irene E.; Pichugova, Svetlana V.; Tulakina, Ludmila G.

    2013-01-01

    Stable suspensions of nanogold (NG) and nanosilver (NS) with mean particle diameter 50 and 49 nm, respectively, were prepared by laser ablation of metals in water. To assess rat’s pulmonary phagocytosis response to a single intratracheal instillation of these suspensions, we used optical, transmission electron, and semi-contact atomic force microscopy. NG and NS were also repeatedly injected intraperitoneally into rats at a dose of 10 mg/kg (0.5 mg per mL of deionized water) three times a week, up to 20 injections. A group of rats was thus injected with NS after oral administration of a “bioprotective complex” (BPC) comprised of pectin, multivitamins, some amino acids, calcium, selenium, and omega-3 PUFA. After the termination of the injections, many functional and biochemical indices and histopathological features of the spleen, kidneys and liver were evaluated for signs of toxicity, and accumulation of NG or NS in these organs was measured. From the same rats, we obtained cell suspensions of different tissues for performing the RAPD test. It was demonstrated that, although both nanometals were adversely bioactive in all respects considered in this study, NS was more noxious as compared with NG, and that the BPC tested by us attenuated both the toxicity and genotoxicity of NS. PMID:23354478

  8. An assessment of the information content of likelihood ratios derived from complex mixtures.

    PubMed

    Marsden, Clare D; Rudin, Norah; Inman, Keith; Lohmueller, Kirk E

    2016-05-01

    With the increasing sensitivity of DNA typing methodologies, as well as increasing awareness by law enforcement of the perceived capabilities of DNA typing, complex mixtures consisting of DNA from two or more contributors are increasingly being encountered. However, insufficient research has been conducted to characterize the ability to distinguish a true contributor (TC) from a known non-contributor (KNC) in these complex samples, and under what specific conditions. In order to investigate this question, sets of six 15-locus Caucasian genotype profiles were simulated and used to create mixtures containing 2-5 contributors. Likelihood ratios were computed for various situations, including varying numbers of contributors and unknowns in the evidence profile, as well as comparisons of the evidence profile to TCs and KNCs. This work was intended to illustrate the best-case scenario, in which all alleles from the TC were detected in the simulated evidence samples. Therefore the possibility of drop-out was not modeled in this study. The computer program DNAMIX was then used to compute LRs comparing the evidence profile to TCs and KNCs. This resulted in 140,000 LRs for each of the two scenarios. These complex mixture simulations show that, even when all alleles are detected (i.e. no drop-out), TCs can generate LRs less than 1 across a 15-locus profile. However, this outcome was rare, 7 of 140,000 replicates (0.005%), and associated only with mixtures comprising 5 contributors in which the numerator hypothesis includes one or more unknown contributors. For KNCs, LRs were found to be greater than 1 in a small number of replicates (75 of 140,000 replicates, or 0.05%). These replicates were limited to 4 and 5 person mixtures with 1 or more unknowns in the numerator. Only 5 of these 75 replicates (0.004%) yielded an LR greater than 1,000. Thus, overall, these results imply that the weight of evidence that can be derived from complex mixtures containing up to 5 contributors, under a scenario in which no drop-out is required to explain any of the contributors, is remarkably high. This is a useful benchmark result on top of which to layer the effects of additional factors, such as drop-out, peak height, and other variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Resistance Analyses of Japanese Hepatitis C-Infected Patients Receiving Sofosbuvir or Ledipasvir/Sofosbuvir Containing Regimens in Phase 3 Studies.

    PubMed

    Mizokami, M; Dvory-Sobol, H; Izumi, N; Nishiguchi, S; Doehle, B; Svarovskaia, E S; De-Oertel, S; Knox, S; Brainard, D M; Miller, M D; Mo, H; Sakamoto, N; Takehara, T; Omata, M

    2016-10-01

    High rates of sustained virologic response (SVR) has been achieved in Japanese patients with chronic hepatitis C virus (HCV) genotype (GT)1 and GT2 infection treated with ledipasvir/sofosbuvir (LDV/SOF) ±ribavirin (RBV) and SOF+RBV, respectively. We evaluated the effect of baseline HCV NS5A and NS5B resistance-associated variants (RAVs) on treatment outcome and characterized variants at virologic failure. Baseline deep sequencing for NS5A and NS5B genes was performed for all GT1 patients. Deep sequencing of NS5A (GT1 only) and NS5B (GT1 and GT2) was performed for patients who failed treatment or discontinued early with detectable HCV RNA (i.e., >25 IU/mL). In patients with HCV GT1 infection, 22.3% (GT1a: 2/11; GT1b: 74/330) had ≥1 baseline NS5A RAV. The most frequent NS5A RAVs in GT1b were Y93H (17.9%, 59/330) and L31M (2.4%, 8/330). Despite the presence of NS5A RAVs at baseline, 100% and 97% of patients achieved SVR12, compared with 100% and 99% for those with no NS5A RAVs with LDV/SOF and LDV/SOF+RBV, respectively. All patients with NS5B RAVs at baseline achieved SVR12. Of the 153 patients with GT2 infection (GT2a 60.1%, GT2b 39.9%), 3.3% (5/153) experienced viral relapse. No S282T or other NS5B RAVs were detected at baseline or relapse; no change in susceptibility to SOF or RBV was observed at relapse. In conclusion, LDV/SOF and SOF+RBV demonstrate a high barrier to resistance in Japanese patients with HCV GT1 and GT2 infection. The presence of baseline NS5A RAVs did not impact treatment outcome in GT1 Japanese patients treated with LDV/SOF for 12 weeks. © 2016 John Wiley & Sons Ltd.

  10. Pharmacophoric characteristics of dengue virus NS2B/NS3pro inhibitors: a systematic review of the most promising compounds.

    PubMed

    Leonel, Camyla Alves; Lima, William Gustavo; Dos Santos, Michelli; Ferraz, Ariane Coelho; Taranto, Alex Gutterres; de Magalhães, José Carlos; Dos Santos, Luciana Lara; Ferreira, Jaqueline Maria Siqueira

    2018-03-01

    Dengue virus (DENV) infection can lead to a wide range of clinical manifestations, including fatal hemorrhagic complications. There is a need to find effective pharmacotherapies to treat this disease due to the lack of specific immunotherapies and antiviral drugs. That said, the DENV NS2B/NS3pro protease complex is essential in both the viral multiplication cycle and in disease pathogenesis, and is considered a promising target for new antiviral therapies. Here, we performed a systematic review to evaluate the pharmacophoric characteristics of promising compounds against NS2B/NS3pro reported in the past 10 years. Online searches in the PUBMED/MEDLINE and SCOPUS databases resulted in 165 articles. Eight studies, which evaluated 3,384,268 molecules exhibiting protease inhibition activity, were included in this review. These studies evaluated anti-dengue activity in vitro and the IC 50 and EC 50 values were provided. Most compounds exhibited non-competitive inhibition. Cytotoxicity was evaluated in BHK-21, Vero, and LLC-MK2 cells, and the CC 50 values obtained ranged from < 1.0 to 780.5 µM. Several groups were associated with biological activity against dengue, including nitro, catechol, halogen and ammonium quaternaries. Thus, these groups seem to be potential pharmacophores that can be further investigated to treat dengue infections.

  11. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family.

    PubMed

    Ulasli, Mustafa; Gurses, Serdar A; Bayraktar, Recep; Yumrutas, Onder; Oztuzcu, Serdar; Igci, Mehri; Igci, Yusuf Ziya; Cakmak, Ecir Ali; Arslan, Ahmet

    2014-03-01

    Extracts of Anthemis hyalina (Ah), Nigella sativa (Ns) and peels of Citrus sinensis (Cs) have been used as folk medicine to fight antimicrobial diseases. To evaluate the effect of extracts of Ah, Ns and Cs on the replication of coronavirus (CoV) and on the expression of TRP genes during coronavirus infection, HeLa-CEACAM1a (HeLa-epithelial carcinoembryonic antigen-related cell adhesion molecule 1a) cells were inoculated with MHV-A59 (mouse hepatitis virus-A59) at moi of 30. 1/50 dilution of the extracts was found to be the safe active dose. ELISA kits were used to detect the human IL-8 levels. Total RNA was isolated from the infected cells and cDNA was synthesized. Fluidigm Dynamic Array nanofluidic chip 96.96 was used to analyze the mRNA expression of 21 TRP genes and two control genes. Data was analyzed using the BioMark digital array software. Determinations of relative gene expression values were carried out by using the 2(-∆∆Ct) method (normalized threshold cycle (Ct) value of sample minus normalized Ct value of control). TCID50/ml (tissue culture infectious dose that will produce cytopathic effect in 50% of the inoculated tissue culture cells) was found for treatments to determine the viral loads. The inflammatory cytokine IL-8 level was found to increase for both 24 and 48 h time points following Ns extract treatment. TRPA1, TRPC4, TRPM6, TRPM7, TRPM8 and TRPV4 were the genes which expression levels changed significantly after Ah, Ns or Cs extract treatments. The virus load decreased when any of the Ah, Ns or Cs extracts was added to the CoV infected cells with Ah extract treatment leading to undetectable virus load for both 6 and 8 hpi. Although all the extract treatments had an effect on IL-8 secretion, TRP gene expression and virus load after CoV infection, it was the Ah extract treatment that showed the biggest difference in virus load. Therefore Ah extract is the best candidate in our hands that contains potential treatment molecule(s).

  12. Saccharomyces cerevisiae CTF18 and CTF4 Are Required for Sister Chromatid Cohesion

    PubMed Central

    Hanna, Joseph S.; Kroll, Evgueny S.; Lundblad, Victoria; Spencer, Forrest A.

    2001-01-01

    CTF4 and CTF18 are required for high-fidelity chromosome segregation. Both exhibit genetic and physical ties to replication fork constituents. We find that absence of either CTF4 or CTF18 causes sister chromatid cohesion failure and leads to a preanaphase accumulation of cells that depends on the spindle assembly checkpoint. The physical and genetic interactions between CTF4, CTF18, and core components of replication fork complexes observed in this study and others suggest that both gene products act in association with the replication fork to facilitate sister chromatid cohesion. We find that Ctf18p, an RFC1-like protein, directly interacts with Rfc2p, Rfc3p, Rfc4p, and Rfc5p. However, Ctf18p is not a component of biochemically purified proliferating cell nuclear antigen loading RF-C, suggesting the presence of a discrete complex containing Ctf18p, Rfc2p, Rfc3p, Rfc4p, and Rfc5p. Recent identification and characterization of the budding yeast polymerase κ, encoded by TRF4, strongly supports a hypothesis that the DNA replication machinery is required for proper sister chromatid cohesion. Analogous to the polymerase switching role of the bacterial and human RF-C complexes, we propose that budding yeast RF-CCTF18 may be involved in a polymerase switch event that facilities sister chromatid cohesion. The requirement for CTF4 and CTF18 in robust cohesion identifies novel roles for replication accessory proteins in this process. PMID:11287619

  13. Binding of influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel mechanism for phosphoinositide 3-kinase activation.

    PubMed

    Hale, Benjamin G; Batty, Ian H; Downes, C Peter; Randall, Richard E

    2008-01-18

    Influenza A virus NS1 protein stimulates host-cell phosphoinositide 3-kinase (PI3K) signaling by binding to the p85beta regulatory subunit of PI3K. Here, in an attempt to establish a mechanism for this activation, we report further on the functional interaction between NS1 and p85beta. Complex formation was found to be independent of NS1 RNA binding activity and is mediated by the C-terminal effector domain of NS1. Intriguingly, the primary direct binding site for NS1 on p85beta is the inter-SH2 domain, a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. In vitro kinase activity assays, together with protein binding competition studies, reveal that NS1 does not displace p110 from the inter-SH2 domain, and indicate that NS1 can form an active heterotrimeric complex with PI3K. In addition, it was established that residues at the C terminus of the inter-SH2 domain are essential for mediating the interaction between p85beta and NS1. Equivalent residues in p85alpha have previously been implicated in the basal inhibition of p110. However, such p85alpha residues were unable to substitute for those in p85beta with regards NS1 binding. Overall, these data suggest a model by which NS1 activates PI3K catalytic activity by masking a normal regulatory element specific to the p85beta inter-SH2 domain.

  14. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling

    PubMed Central

    Lim, Siew Pheng; Noble, Christian Guy; Seh, Cheah Chen; Soh, Tingjin Sherryl; El Sahili, Abbas; Chan, Grace Kar Yarn; Lescar, Julien; Arora, Rishi; Benson, Timothy; Nilar, Shahul; Manjunatha, Ujjini; Wan, Kah Fei; Dong, Hongping; Xie, Xuping; Yokokawa, Fumiaki

    2016-01-01

    Flaviviruses comprise major emerging pathogens such as dengue virus (DENV) or Zika virus (ZIKV). The flavivirus RNA genome is replicated by the RNA-dependent-RNA polymerase (RdRp) domain of non-structural protein 5 (NS5). This essential enzymatic activity renders the RdRp attractive for antiviral therapy. NS5 synthesizes viral RNA via a “de novo” initiation mechanism. Crystal structures of the flavivirus RdRp revealed a “closed” conformation reminiscent of a pre-initiation state, with a well ordered priming loop that extrudes from the thumb subdomain into the dsRNA exit tunnel, close to the “GDD” active site. To-date, no allosteric pockets have been identified for the RdRp, and compound screening campaigns did not yield suitable drug candidates. Using fragment-based screening via X-ray crystallography, we found a fragment that bound to a pocket of the apo-DENV RdRp close to its active site (termed “N pocket”). Structure-guided improvements yielded DENV pan-serotype inhibitors of the RdRp de novo initiation activity with nano-molar potency that also impeded elongation activity at micro-molar concentrations. Inhibitors exhibited mixed inhibition kinetics with respect to competition with the RNA or GTP substrate. The best compounds have EC50 values of 1–2 μM against all four DENV serotypes in cell culture assays. Genome-sequencing of compound-resistant DENV replicons, identified amino acid changes that mapped to the N pocket. Since inhibitors bind at the thumb/palm interface of the RdRp, this class of compounds is proposed to hinder RdRp conformational changes during its transition from initiation to elongation. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors. Given the evolutionary conservation of residues lining the N pocket, these molecules offer insights to treat other serious conditions caused by flaviviruses. PMID:27500641

  15. Evaluation and identification of damaged single nucleotide polymorphisms in COL1A1 gene involved in osteoporosis

    PubMed Central

    Alsaif, Mohammed A.; Al Shammari, Sulaiman A.; Alhamdan, Adel A.

    2012-01-01

    Introduction Single-nucleotide polymorphisms (SNPs) are biomarkers for exploring the genetic basis of many complex human diseases. The prediction of SNPs is promising in modern genetic analysis but it is still a great challenge to identify the functional SNPs in a disease-related gene. The computational approach has overcome this challenge and an increase in the successful rate of genetic association studies and reduced cost of genotyping have been achieved. The objective of this study is to identify deleterious non-synonymous SNPs (nsSNPs) associated with the COL1A1 gene. Material and methods The SNPs were retrieved from the Single Nucleotide Polymorphism Database (dbSNP). Using I-Mutant, protein stability change was calculated. The potentially functional nsSNPs and their effect on proteins were predicted by PolyPhen and SIFT respectively. FASTSNP was used for estimation of risk score. Results Our analysis revealed 247 SNPs as non-synonymous, out of which 5 nsSNPs were found to be least stable by I-Mutant 2.0 with a DDG value of > –1.0. Four nsSNPs, namely rs17853657, rs17857117, rs57377812 and rs1059454, showed a highly deleterious tolerance index score of 0.00 with a change in their physicochemical properties by the SIFT server. Seven nsSNPs, namely rs1059454, rs8179178, rs17853657, rs17857117, rs72656340, rs72656344 and rs72656351, were found to be probably damaging with a PSIC score difference between 2.0 and 3.5 by the PolyPhen server. Three nsSNPs, namely rs1059454, rs17853657 and rs17857117, were found to be highly polymorphic with a risk score of 3-4 with a possible effect of non-conservative change and splicing regulation by FASTSNP. Conclusions Three nsSNPs, namely rs1059454, rs17853657 and rs17857117, are potential functional polymorphisms that are likely to have a functional impact on the COL1A1 gene. PMID:24273577

  16. [Suppression of replication of swine parvoviral antisense RNA against the NS PPV gene in swine thyroid gland cells].

    PubMed

    Voskresenskaia, E P; Miroshnichenko, O I; Ponamareva, T I; Savich, O M; Tikhonenko, T I

    1993-01-01

    The possibility of suppression of porcine parvovirus (PPV) reproduction in the culture of thyroid gland cells of a swine that contain the integrated genes for asRNA against the nonstructural proteins of the virus has been studied. 10 cell lines with the asRNA genes have been obtained. The line with the maximal number of integrated gene copies was used to inflict with the parvovirus. The expression of asRNA in this cell line was shown to lead to 95% suppression of PPV replication as compared with the control cell line.

  17. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug.

    PubMed

    Mastrangelo, Eloise; Pezzullo, Margherita; De Burghgraeve, Tine; Kaptein, Suzanne; Pastorino, Boris; Dallmeier, Kai; de Lamballerie, Xavier; Neyts, Johan; Hanson, Alicia M; Frick, David N; Bolognesi, Martino; Milani, Mario

    2012-08-01

    Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC₅₀ values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV.

  18. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug

    PubMed Central

    Mastrangelo, Eloise; Pezzullo, Margherita; De Burghgraeve, Tine; Kaptein, Suzanne; Pastorino, Boris; Dallmeier, Kai; de Lamballerie, Xavier; Neyts, Johan; Hanson, Alicia M.; Frick, David N.; Bolognesi, Martino; Milani, Mario

    2012-01-01

    Objectives Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. Methods Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. Results Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC50 values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. Conclusions The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV. PMID:22535622

  19. Alternative Lengthening of Telomeres Mediated by Mitotic DNA Synthesis Engages Break-Induced Replication Processes

    PubMed Central

    Min, Jaewon; Wright, Woodring E.

    2017-01-01

    ABSTRACT Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae. Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer. PMID:28760773

  20. Vesicular Egress of Non-Enveloped Lytic Parvoviruses Depends on Gelsolin Functioning

    PubMed Central

    Bär, Séverine; Daeffler, Laurent; Rommelaere, Jean; Nüesch, Jürg P. F.

    2008-01-01

    The autonomous parvovirus Minute Virus of Mice (MVM) induces specific changes in the cytoskeleton filaments of infected permissive cells, causing in particular the degradation of actin fibers and the generation of “actin patches.” This is attributed to a virus-induced imbalance between the polymerization factor N-WASP (Wiscott-Aldrich syndrome protein) and gelsolin, a multifunctional protein cleaving actin filaments. Here, the focus is on the involvement of gelsolin in parvovirus propagation and virus-induced actin processing. Gelsolin activity was knocked-down, and consequences thereof were determined for virus replication and egress and for actin network integrity. Though not required for virus replication or progeny particle assembly, gelsolin was found to control MVM (and related H1-PV) transport from the nucleus to the cell periphery and release into the culture medium. Gelsolin-dependent actin degradation and progeny virus release were both controlled by (NS1)/CKIIα, a recently identified complex between a cellular protein kinase and a MVM non-structural protein. Furthermore, the export of newly synthesized virions through the cytoplasm appeared to be mediated by (virus-modified) lysomal/late endosomal vesicles. By showing that MVM release, like entry, is guided by the cytoskeleton and mediated by vesicles, these results challenge the current view that egress of non-enveloped lytic viruses is a passive process. PMID:18704167

  1. Human replication protein Cdc6 is selectively cleaved by caspase 3 during apoptosis

    PubMed Central

    Pelizon, Cristina; d’Adda di Fagagna, Fabrizio; Farrace, Lorena; Laskey, Ronald A.

    2002-01-01

    In eukaryotes, the initiation of DNA replication involves the ordered assembly on chromatin of pre-replicative complexes (pre-RCs), including the origin recognition complex (ORC), Cdc6, Cdt1 and the minichromosome maintenance proteins (MCMs). In light of its indispensable role in the formation of pre-RCs, Cdc6 binding to chromatin represents a key step in the regulation of DNA replication and cell proliferation. Here, we study the human Cdc6 (HuCdc6) protein during programmed cell death (apoptosis). We find that HuCdc6, but not HuOrc2 (a member of the ORC) or HuMcm5 (one of the MCMs), is specifically cleaved in several human cell lines induced to undergo apoptosis by a variety of stimuli. Expression of caspase-uncleavable mutant HuCdc6 attenuates apoptosis, delaying cell death. Therefore, an important function for cleavage of HuCdc6 is to prevent a wounded cell from replicating and to facilitate death. PMID:12151338

  2. Fine-structure mapping of the complex locus Odc-rs5 relative to Igk and distal loci.

    PubMed

    Richards-Smith, B A; Elliott, R W

    1992-01-01

    Odc-rs5 was previously identified as a complex locus closely linked to the Igk complex on mouse Chromosome (Chr) 6 and comprising at least five copies of a sequence related to the mRNA encoding ornithine decarboxylase (ODC) in the genomes of mice of some inbred strains and at least seven copies in others (Richards-Smith and Elliott, Mammalian Genome 2: 215, 1992). In the present study, Odc-rs5 was shown to be composed of at least seven copies of the ODC sequence in both the Odc-rs5a and Odc-rs5b haplotypes. Based upon the distribution of DNA restriction fragments (RFs) that had previously been associated with Odc-rs5a or Odc-rs5b among 42 mice of inbred laboratory strains having various haplotypes at Igk and in mice of two congenic strains [B6.PL-Ly-2a, Ly-3a(75NS)/Cy and B6.PL-Ly-2a,Ly-3a(85NS)/Cy] and a backcross-derived stock (NAK) known to be recombinant within Igk, a fine structure map of Odc-rs5 was deduced relative to Igk and more distal loci. Odc-rs5-derived RFs were located to three distinct regions within and/or distal to Igk and to a fourth site between (Ly-3, Ly-2) and Raf-1. Additionally, DNAs from 19 mice of inbred strains and random-bred stocks derived from wild progenitors trapped at various locations were analyzed and found to exhibit an unexpected variety of combinations of RFs associated with the two Odc-rs5 haplotypes most frequently observed among inbred laboratory strains of mice.

  3. A Concerted Action of Hepatitis C Virus P7 and Nonstructural Protein 2 Regulates Core Localization at the Endoplasmic Reticulum and Virus Assembly

    PubMed Central

    Boson, Bertrand; Granio, Ophélia; Bartenschlager, Ralf; Cosset, François-Loïc

    2011-01-01

    Hepatitis C virus (HCV) assembly remains a poorly understood process. Lipid droplets (LDs) are thought to act as platforms for the assembly of viral components. The JFH1 HCV strain replicates and assembles in association with LD-associated membranes, around which viral core protein is predominantly detected. In contrast, despite its intrinsic capacity to localize to LDs when expressed individually, we found that the core protein of the high-titer Jc1 recombinant virus was hardly detected on LDs of cell culture-grown HCV (HCVcc)-infected cells, but was mainly localized at endoplasmic reticulum (ER) membranes where it colocalized with the HCV envelope glycoproteins. Furthermore, high-titer cell culture-adapted JFH1 virus, obtained after long-term culture in Huh7.5 cells, exhibited an ER-localized core in contrast to non-adapted JFH1 virus, strengthening the hypothesis that ER localization of core is required for efficient HCV assembly. Our results further indicate that p7 and NS2 are HCV strain-specific factors that govern the recruitment of core protein from LDs to ER assembly sites. Indeed, using expression constructs and HCVcc recombinant genomes, we found that p7 is sufficient to induce core localization at the ER, independently of its ion-channel activity. Importantly, the combined expression of JFH1 or Jc1 p7 and NS2 induced the same differential core subcellular localization detected in JFH1- vs. Jc1-infected cells. Finally, results obtained by expressing p7-NS2 chimeras between either virus type indicated that compatibilities between the p7 and the first NS2 trans-membrane domains is required to induce core-ER localization and assembly of extra- and intra-cellular infectious viral particles. In conclusion, we identified p7 and NS2 as key determinants governing the subcellular localization of HCV core to LDs vs. ER and required for initiation of the early steps of virus assembly. PMID:21814513

  4. NS1 codon usage adaptation to humans in pandemic Zika virus.

    PubMed

    Freire, Caio César de Melo; Palmisano, Giuseppe; Braconi, Carla T; Cugola, Fernanda R; Russo, Fabiele B; Beltrão-Braga, Patricia Cb; Iamarino, Atila; Lima Neto, Daniel Ferreira de; Sall, Amadou Alpha; Rosa-Fernandes, Livia; Larsen, Martin R; Zanotto, Paolo Marinho de Andrade

    2018-05-10

    Zika virus (ZIKV) was recognised as a zoonotic pathogen in Africa and southeastern Asia. Human infections were infrequently reported until 2007, when the first known epidemic occurred in Micronesia. After 2013, the Asian lineage of ZIKV spread along the Pacific Islands and Americas, causing severe outbreaks with millions of human infections. The recent human infections of ZIKV were also associated with severe complications, such as an increase in cases of Guillain-Barre syndrome and the emergence of congenital Zika syndrome. To better understand the recent and rapid expansion of ZIKV, as well as the presentation of novel complications, we compared the genetic differences between the African sylvatic lineage and the Asian epidemic lineage that caused the recent massive outbreaks. The epidemic lineages have significant codon adaptation in NS1 gene to translate these proteins in human and Aedes aegypti mosquito cells compared to the African zoonotic lineage. Accordingly, a Brazilian epidemic isolate (ZBR) produced more NS1 protein than the MR766 African lineage (ZAF) did, as indicated by proteomic data from infections of neuron progenitor cells-derived neurospheres. Although ZBR replicated more efficiently in these cells, the differences observed in the stoichiometry of ZIKV proteins were not exclusively explained by the differences in viral replication between the lineages. Our findings suggest that natural, silent translational selection in the second half of 20th century could have improved the fitness of Asian ZIKV lineage in human and mosquito cells.

  5. The stress granule component G3BP is a novel interaction partner for the nuclear shuttle proteins of the nanovirus pea necrotic yellow dwarf virus and geminivirus abutilon mosaic virus.

    PubMed

    Krapp, Susanna; Greiner, Eva; Amin, Bushra; Sonnewald, Uwe; Krenz, Björn

    2017-01-02

    Stress granules (SGs) are structures within cells that regulate gene expression during stress response, e.g. viral infection. In mammalian cells assembly of SGs is dependent on the Ras-GAP SH3-domain-binding protein (G3BP). The C-terminal domain of the viral nonstructural protein 3 (nsP3) of Semliki Forest virus (SFV) forms a complex with mammalian G3BP and sequesters it into viral RNA replication complexes in a manner that inhibits the formation of SGs. The binding domain of nsP3 to HsG3BP was mapped to two tandem 'FGDF' repeat motifs close to the C-terminus of the viral proteins. It was speculated that plant viruses employ a similar strategy to inhibit SG function. This study identifies an Arabidopsis thaliana NTF2-RRM domain-containing protein as a G3BP-like protein (AtG3BP), which localizes to plant SGs. Moreover, the nuclear shuttle protein (NSP) of the begomovirus abutilon mosaic virus (AbMV), which harbors a 'FVSF'-motif at its C-terminal end, interacts with the AtG3BP-like protein, as does the 'FNGSF'-motif containing NSP of pea necrotic yellow dwarf virus (PNYDV), a member of the Nanoviridae family. We therefore propose that SG formation upon stress is conserved between mammalian and plant cells and that plant viruses may follow a similar strategy to inhibit plant SG function as it has been shown for their mammalian counterparts. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Silanones and silanethiones from the reactions of transient silylenes with oxiranes and thiiranes in solution. The direct detection of diphenylsilanethione.

    PubMed

    Kostina, Svetlana S; Leigh, William J

    2011-03-30

    The transient silylenes SiMe(2) and SiPh(2) react with cyclohexene oxide (CHO), propylene oxide (PrO), and propylene sulfide (PrS) in hydrocarbon solvents to form products consistent with the formation of the corresponding transient silanones and silanethiones, respectively. Laser flash photolysis studies show that these reactions proceed via multistep sequences involving the intermediacy of the corresponding silylene-oxirane or -thiirane complexes, which are formed with rate constants close to the diffusion limit in all cases and exhibit UV absorption spectra similar to those of the corresponding complexes with the nonreactive O- and S-donors, tetrahydrofuran and tetrahydrothiophene. The SiMe(2)-PrO and SiPh(2)-PrO complexes both exhibit lifetimes of ca. 300 ns, and are longer-lived than the corresponding complexes with CHO, which are both in the range of 230-240 ns. On the other hand, the silylene-PrS complexes are considerably shorter-lived and vary with silyl substituent; the SiMe(2)-PrS complex decays with the excitation laser pulse (i.e., τ ≤ 25 ns), while the SiPh(2)-PrS complex exhibits τ = 48 ± 3 ns. The decay of the SiPh(2)-PrS complex affords a long-lived transient product exhibiting λ(max) ≈ 275 nm, which has been assigned to diphenylsilanethione (Ph(2)Si═S) on the basis of its second order decay kinetics and absolute rate constants for reaction with methanol, tert-butanol, acetic acid, and n-butyl amine, for which values in the range of 1.4 × 10(8) to 3.2 × 10(9) M(-1) s(-1) are reported. The experimental rate constants for decay of the SiMe(2)-epoxide and -PrS complexes indicate free energy barriers (ΔG(‡)) of ca. 8.5 and ≤7.1 kcal mol(-1) for the rate-determining steps leading to dimethylsilanone and -silanethione, respectively, which are compared to the results of DFT (B3LYP/6-311+G(d,p)) calculations of the reactions of SiH(2) and SiMe(2) with oxirane and thiirane. The calculations predict a stepwise C-O cleavage mechanism involving singlet biradical intermediates for the silylene-oxirane complexes, and a concerted mechanism for silanethione formation from the silylene-thiirane complexes, in agreement with earlier ab initio studies of the SiH(2)-oxirane and -thiirane systems.

  7. Host cell interactome of PA protein of H5N1 influenza A virus in chicken cells.

    PubMed

    Wang, Qiao; Li, Qinghe; Liu, Ranran; Zheng, Maiqing; Wen, Jie; Zhao, Guiping

    2016-03-16

    Influenza A virus (IAV) heavily depends on viral-host protein interactions in order to replicate and spread. Identification of host factors that interact with viral proteins plays crucial roles in understanding the mechanism of IAV infection. Here we report the interaction landscape of H5N1 IAV PA protein in chicken cells through the use of affinity purification and mass spectrometry. PA protein was expressed in chicken cells and PA interacting complexes were captured by co-immunoprecipitation and analyzed by mass spectrometry. A total of 134 proteins were identified as PA-host interacting factors. Protein complexes including the minichromosome maintenance complex (MCM), 26S proteasome and the coat protein I (COPI) complex associated with PA in chicken cells, indicating the essential roles of these functional protein complexes during the course of IAV infection. Gene Ontology and pathway enrichment analysis both showed strong enrichment of PA interacting proteins in the category of DNA replication, covering genes such as PCNA, MCM2, MCM3, MCM4, MCM5 and MCM7. This study has uncovered the comprehensive interactome of H5N1 IAV PA protein in its chicken host and helps to establish the foundation for further investigation into the newly identified viral-host interactions. Influenza A virus (IAV) is a great threat to public health and avian production. However, the manner in which avian IAV recruits the host cellular machinery for replication and how the host antagonizes the IAV infection was previously poorly understood. Here we present the viral-host interactome of the H5N1 IAV PA protein and reveal the comprehensive association of host factors with PA. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Parvovirus Minute Virus of Mice Induces a DNA Damage Response That Facilitates Viral Replication

    PubMed Central

    Adeyemi, Richard O.; Landry, Sebastien; Davis, Meredith E.; Weitzman, Matthew D.; Pintel, David J.

    2010-01-01

    Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells. PMID:20949077

  9. A translational study of resistance emergence using sequential direct-acting antiviral agents for hepatitis C using ultra-deep sequencing.

    PubMed

    Abe, Hiromi; Hayes, C Nelson; Hiraga, Nobuhiko; Imamura, Michio; Tsuge, Masataka; Miki, Daiki; Takahashi, Shoichi; Ochi, Hidenori; Chayama, Kazuaki

    2013-09-01

    Direct-acting antiviral agents (DAAs) against hepatitis C virus (HCV) have recently been developed and are ultimately hoped to replace interferon-based therapy. However, DAA monotherapy results in rapid emergence of resistant strains and DAAs must be used in combinations that present a high genetic barrier to resistance, although viral kinetics of multidrug-resistant strains remain poorly characterized. The aim of this study is to track the emergence and fitness of resistance using combinations of telaprevir and NS5A or NS5B inhibitors with genotype 1b clones. HCV-infected chimeric mice were treated with DAAs, and resistance was monitored using direct and ultra-deep sequencing. Combination therapy with telaprevir and BMS-788329 (NS5A inhibitor) reduced serum HCV RNA to undetectable levels. The presence of an NS3-V36A telaprevir resistance mutation resulted in poor response to telaprevir monotherapy but showed significant HCV reduction when telaprevir was combined with BMS-788329. However, a BMS-788329-resistant strain emerged at low frequency. Infection with a BMS-788329-resistant NS5A-L31V mutation rapidly resulted in gain of an additional NS5A-Y93A mutation that conferred telaprevir resistance during combination therapy. Infection with dual NS5AL31V/NS5AY93H mutations resulted in poor response to combination therapy and development of telaprevir resistance. Although HCV RNA became undetectable soon after the beginning of combination therapy with BMS-788329 and BMS-821095 (NS5B inhibitor), rebound with emergence of resistance against all three drugs occurred. Triple resistance also occurred following infection with the NS3V36A/NS5AL31V/NS5AY93H triple mutation. Resistant strains easily develop from cloned virus strains. Sequential use of DAAs should be avoided to prevent emergence of multidrug-resistant strains.

  10. The interdependencies of viral load, the innate immune response, and clinical outcome in children presenting to the emergency department with respiratory syncytial virus-associated bronchiolitis

    PubMed Central

    Mei, Minghua; Mehta, Reena

    2017-01-01

    Respiratory syncytial virus (RSV) causes significant infant morbidity and mortality. For decades severe RSV-induced disease was thought to result from an uncontrolled host response to viral replication, but recent work suggests that a strong innate immune response early in infection is protective. To shed light on host-virus interactions and the viral determinants of disease, copy numbers of five RSV genes (NS1, NS2, N, G, F) were measured by quantitative real-time polymerase chain reaction (qPCR) in nasal wash samples from children with RSV-associated bronchiolitis. Correlations were sought with host cytokines/chemokines and biomarkers. Associations with disposition from the emergency department (hospitalized or sent home) and pulse oximetry O2 saturation levels were also sought. Additionally, RNase P copy number was measured and used to normalize nasal wash data. RSV gene copy numbers were found to significantly correlate with both cytokine/chemokine and biomarker levels; and RNase P-normalized viral gene copy numbers (NS1, NS2, N and G) were significantly higher in infants with less severe disease. Moreover, three of the normalized viral gene copy numbers (NS1, NS2, and N) correlated significantly with arterial O2 saturation levels. The data support a model where a higher viral load early in infection can promote a robust innate immune response that protects against progression into hypoxic RSV-induced lower respiratory tract illness. PMID:28267794

  11. The interdependencies of viral load, the innate immune response, and clinical outcome in children presenting to the emergency department with respiratory syncytial virus-associated bronchiolitis.

    PubMed

    Piedra, Felipe-Andrés; Mei, Minghua; Avadhanula, Vasanthi; Mehta, Reena; Aideyan, Letisha; Garofalo, Roberto P; Piedra, Pedro A

    2017-01-01

    Respiratory syncytial virus (RSV) causes significant infant morbidity and mortality. For decades severe RSV-induced disease was thought to result from an uncontrolled host response to viral replication, but recent work suggests that a strong innate immune response early in infection is protective. To shed light on host-virus interactions and the viral determinants of disease, copy numbers of five RSV genes (NS1, NS2, N, G, F) were measured by quantitative real-time polymerase chain reaction (qPCR) in nasal wash samples from children with RSV-associated bronchiolitis. Correlations were sought with host cytokines/chemokines and biomarkers. Associations with disposition from the emergency department (hospitalized or sent home) and pulse oximetry O2 saturation levels were also sought. Additionally, RNase P copy number was measured and used to normalize nasal wash data. RSV gene copy numbers were found to significantly correlate with both cytokine/chemokine and biomarker levels; and RNase P-normalized viral gene copy numbers (NS1, NS2, N and G) were significantly higher in infants with less severe disease. Moreover, three of the normalized viral gene copy numbers (NS1, NS2, and N) correlated significantly with arterial O2 saturation levels. The data support a model where a higher viral load early in infection can promote a robust innate immune response that protects against progression into hypoxic RSV-induced lower respiratory tract illness.

  12. Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis.

    PubMed

    Bansal, Namita; Janveja, Chetna; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2014-01-01

    Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9 ± 20.1 U/g, FPase 101.1 ± 3.5 U/g and β-glucosidase 99 ± 4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0-9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92-98 %.

  13. Effects of nanosecond pulsed electrical fields (nsPEFs) on the cell cycle of CHO and Jurkat cells

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.; Navara, Christopher; Ibey, Bennett L.

    2014-03-01

    Exposure to nano-second pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. Variations between cell lines in membrane and cytoskeletal structure as well as in survival of nsPEF exposure should correspond to unique line-dependent cell cycle effects. Additionally, phase of cell cycle during exposure may be linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate role of cell cycle phase in survival of nsPEFs. CHO populations recovered similarly to sham populations postnsPEF exposure and did not exhibit a phase-specific change in response. Jurkat cells exhibited considerable apoptosis/necrosis in response to nsPEF exposure and were unable to recover and proliferate in a manner similar to sham exposed cells. Additionally, Jurkat cells appear to be more sensitive to nsPEFs in G2/M phases than in G1/S phases. Recovery of CHO populations suggests that nsPEFs do not inhibit proliferation in CHO cells; however, inhibition of Jurkat cells post-nsPEF exposure coupled with preferential cell death in G2/M phases suggest that cell cycle phase during exposure may be an important factor in determining nsPEF toxicity in certain cell lines. Interestingly, CHO cells have a more robust and rigid cytoskeleton than Jurkat cells which is thought to contribute to their ability to survive nsPEFs. The ability of the CHO cytoskeleton to recover and complete mitosis after nsPEF-induced damage in G2/M phase may be integral to the cell line's higher tolerance of nsPEF exposure.

  14. [Complex ventricular arrhythmias and carvedilol: efficacy in hemodialyzed uremic patients].

    PubMed

    Cice, G; Tagliamonte, E; Ferrara, L; Di Benedetto, A; Iacono, A

    1998-06-01

    Carvedilol has been shown to be effective in systemic hypertension and coronary artery disease in patients with end-stage renal disease, on maintenance hemodialysis. The aim of our study was to assess the effects of carvedilol on ventricular arrhythmias in these patients. Ninety-eight uremic patients maintained on hemodialysis, with complex ventricular arrhythmias (class III, IV and V of Lown's classification), not only during dialysis, were included in the study. They were divided into two groups, with mild-to-moderate hypertension or coronary artery disease. The efficacy and safety of carvedilol (50 mg/day) was compared to placebo in a 6-week randomized, double-blind study. Carvedilol significantly reduced, in both hypertensive and ischemic patients, total ventricular premature contractions (82.7 +/- 11.3 vs 358.1 +/- 73.9, p < 0.001; 88.3 +/- 24.4 vs 369.9 +/- 77.8, p < 0.001), repetitive ventricular premature contractions (1.3 +/- 1.3 vs 6.3 +/- 3.5, p < 0.001; 1.2 +/- 0.7 vs 6.9 +/- 2.6, p < 0.001) and episodes of ventricular tachycardia (1.1 +/- 1.2 vs 11.8 +/- 7.5, p < 0.001; 1.4 +/- 1.2 vs 14.0 +/- 8.3, p < 0.001). In placebo-treated patients, instead, these parameters were not significantly changed (329.1 +/- 76.5 vs 361.7 +/- 71.7, NS, and 324.6 +/- 79.7 vs 359.3 +/- 58.1, NS; 6.2 +/- 3.7 vs 7.3 +/- 3.7, NS, and 4.9 +/- 2.2 vs 6.1 +/- 3.2, NS; 9.8 +/- 6.3 vs 13.3 +/- 8.0, NS, and 9.0 +/- 6.2 vs 12.4 +/- 7.8, NS). Carvedilol confirmed a significant effect on myocardial ischemia and systemic hypertension. No significant side effects were reported. Ventricular arrhythmias are frequent in patients with end-stage renal disease maintained on hemodialysis. They are often due to an underlying cardiac disease, namely systemic hypertension with left ventricular hypertrophy and coronary artery disease. The results of our study show that the antiarrhythmic effect of carvedilol is linked, at least partly, to an improvement of the underlying cardiac disease. Uremic patients have a chronic increase in adrenergic tone, with a direct correlation between norepinephrine plasmatic concentration and frequence of premature ventricular contractions. Beta-blockers are very important in these patients because of their modulation on the adrenergic system. They also reduce potassium flow, from extracellular to intracellular fluid. Therefore carvedilol can affect the sudden hypokalemia occurring in the first phase of hemodialysis treatment, that may be an important cause of intradialytic arrhythmias.

  15. The inhibition of cAMP-dependent protein kinase by full-length hepatitis C virus NS3/4A complex is due to ATP hydrolysis.

    PubMed

    Aoubala, M; Holt, J; Clegg, R A; Rowlands, D J; Harris, M

    2001-07-01

    Hepatitis C virus (HCV) is an important cause of chronic liver disease, but the molecular mechanisms of viral pathogenesis remain to be established. The HCV non-structural protein NS3 complexes with NS4A and has three enzymatic activities: a proteinase and a helicase/NTPase. Recently, catalytically inactive NS3 fragments containing an arginine-rich motif have been reported to interact with, and inhibit, the catalytic subunit of cAMP-dependent protein kinase (PKA C-subunit). Here we demonstrate that full-length, catalytically active NS3/4A, purified from recombinant baculovirus-infected insect cells, is also able to inhibit PKA C-subunit in vitro. This inhibition was abrogated by mutation of either the arginine-rich motif or the conserved helicase motif II, both of which also abolished NTPase activity. As PKA C-subunit inhibition was also enhanced by poly(U) (an activator of NS3 NTPase activity), we hypothesized that PKA C-subunit inhibition could be due to NS3/4A-mediated ATP hydrolysis. This was confirmed by experiments in which a constant ATP concentration was maintained by addition of an ATP regeneration system--under these conditions PKA C-subunit inhibition was not observed. Interestingly, the mutations also abrogated the ability of wild-type NS3/4A to inhibit the PKA-regulated transcription factor CREB in transiently transfected hepatoma cells. Our data are thus not consistent with the previously proposed model in which the arginine-rich motif of NS3 was suggested to act as a pseudosubstrate inhibitor of PKA C-subunit. However, in vivo effects of NS3/4A suggest that ATPase activity may play a role in viral pathology in the infected liver.

  16. Substrate inhibition kinetic model for West Nile virus NS2B-NS3 protease.

    PubMed

    Tomlinson, Suzanne M; Watowich, Stanley J

    2008-11-11

    West Nile virus (WNV) has recently emerged in North America as a significant disease threat to humans and animals. Unfortunately, no approved antiviral drugs exist to combat WNV or other members of the genus Flavivirus in humans. The WNV NS2B-NS3 protease has been one of the primary targets for anti-WNV drug discovery and design since it is required for virus replication. As part of our efforts to develop effective WNV inhibitors, we reexamined the reaction kinetics of the NS2B-NS3 protease and the inhibition mechanisms of newly discovered inhibitors. The WNV protease showed substrate inhibition in assays utilizing fluorophore-linked peptide substrates GRR, GKR, and DFASGKR. Moreover, a substrate inhibition reaction step was required to accurately model kinetic data generated from protease assays with a peptide inhibitor. The substrate inhibition model suggested that peptide substrates could bind to two binding sites on the protease. Reaction product analogues also showed inhibition of the protease, demonstrating product inhibition in addition to and distinct from substrate inhibition. We propose that small peptide substrates and inhibitors may interact with protease residues that form either the P3-P1 binding surface (i.e., the S3-S1 sites) or the P1'-P3' interaction surface (i.e., the S1'-S3' sites). Optimization of substrate analogue inhibitors that target these two independent sites may lead to novel anti-WNV drugs.

  17. Risk Factors and Neuropsychological Recovery in Clients with Alcohol Use Disorders Who Were Exposed to Different Treatments

    ERIC Educational Resources Information Center

    Bates, Marsha E.; Barry, Danielle; Labouvie, Erich W.; Fals-Stewart, William; Voelbel, Gerald; Buckman, Jennifer F.

    2004-01-01

    Risk covariates of neuropsychological ability (NA) at treatment entry and neuropsychological recovery (NR) across 15 months were examined and replicated in 2 samples (Ns = 952 and 774) from Project MATCH, a multisite study of alcoholism treatments. NA at treatment entry was associated with age, education, and other covariates. Statistically…

  18. Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation.

    PubMed

    Yamanaka, Yuki; Winardhi, Ricksen S; Yamauchi, Erika; Nishiyama, So-Ichiro; Sowa, Yoshiyuki; Yan, Jie; Kawagishi, Ikuro; Ishihama, Akira; Yamamoto, Kaneyoshi

    2018-06-15

    The bacterial nucleoid-associated protein H-NS is a DNA-binding protein, playing a major role in gene regulation. To regulate transcription, H-NS silences genes, including horizontally acquired foreign genes. Escherichia coli H-NS is 137 residues long and consists of two discrete and independent structural domains: an N-terminal oligomerization domain and a C-terminal DNA-binding domain, joined by a flexible linker. The N-terminal oligomerization domain is composed of two dimerization sites, dimerization sites 1 and 2, which are both required for H-NS oligomerization, but the exact role of dimerization site 2 in gene silencing is unclear. To this end, we constructed a whole set of single amino acid substitution variants spanning residues 2 to 137. Using a well-characterized H-NS target, the slp promoter of the glutamic acid-dependent acid resistance (GAD) cluster promoters, we screened for any variants defective in gene silencing. Focusing on the function of dimerization site 2, we analyzed four variants, I70C/I70A and L75C/L75A, which all could actively bind DNA but are defective in gene silencing. Atomic force microscopy analysis of DNA-H-NS complexes revealed that all of these four variants formed condensed complexes on DNA, whereas WT H-NS formed rigid and extended nucleoprotein filaments, a conformation required for gene silencing. Single-molecule stretching experiments confirmed that the four variants had lost the ability to form stiffened filaments. We conclude that dimerization site 2 of H-NS plays a key role in the formation of rigid H-NS nucleoprotein filament structures required for gene silencing. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Protection of Nonhuman Primates Against Two Species of Ebola Virus Infection With a Single Complex Adenovirus Vector

    DTIC Science & Technology

    2010-04-01

    glycoproteins of Zaire ebolavirus (ZEBOV) and Sudan ebolavirus (SEBOV) in a single complex adenovirus -based vector (CAdVax). We evaluated our vaccine ...recombinant complex adenovirus vaccine (CAdVax) system, which provides multivalent protection of NHPs against multiple species of filoviruses (33). The...CAdVax vaccine platform is based on a complex, replication-defective adenovirus 5 (Ad5) vector (28–30, 37, 38) that allows for the incorporation of

  20. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication.

    PubMed

    Mukherjee, Sourav; Weiner, Warren S; Schroeder, Chad E; Simpson, Denise S; Hanson, Alicia M; Sweeney, Noreena L; Marvin, Rachel K; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J; Frick, David N

    2014-10-17

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.

  1. The Fission Yeast Minichromosome Maintenance (MCM)-binding Protein (MCM-BP), Mcb1, Regulates MCM Function during Prereplicative Complex Formation in DNA Replication*

    PubMed Central

    Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori

    2013-01-01

    The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1+, two temperature-sensitive mcb1 gene mutants (mcb1ts) were isolated. Extensive genetic analysis showed that the mcb1ts mutants were suppressed by a mcm5+ multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1ts mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1ts mutants. Furthermore, the mcb1ts mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex. PMID:23322785

  2. The fission yeast minichromosome maintenance (MCM)-binding protein (MCM-BP), Mcb1, regulates MCM function during prereplicative complex formation in DNA replication.

    PubMed

    Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori

    2013-03-08

    The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1(+), two temperature-sensitive mcb1 gene mutants (mcb1(ts)) were isolated. Extensive genetic analysis showed that the mcb1(ts) mutants were suppressed by a mcm5(+) multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1(ts) mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1(ts) mutants. Furthermore, the mcb1(ts) mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex.

  3. Assembly of Slx4 signaling complexes behind DNA replication forks.

    PubMed

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-08-13

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress. © 2015 The Authors.

  4. Role of the B Allele of Influenza A Virus Segment 8 in Setting Mammalian Host Range and Pathogenicity

    PubMed Central

    Turnbull, Matthew L.; Wise, Helen M.; Nicol, Marlynne Q.; Smith, Nikki; Dunfee, Rebecca L.; Beard, Philippa M.; Jagger, Brett W.; Ligertwood, Yvonne; Hardisty, Gareth R.; Xiao, Haixia; Benton, Donald J.; Coburn, Alice M.; Paulo, Joao A.; Gygi, Steven P.; McCauley, John W.; Taubenberger, Jeffery K.; Lycett, Samantha J.; Weekes, Michael P.; Dutia, Bernadette M.

    2016-01-01

    ABSTRACT Two alleles of segment 8 (NS) circulate in nonchiropteran influenza A viruses. The A allele is found in avian and mammalian viruses, but the B allele is viewed as being almost exclusively found in avian viruses. This might reflect the fact that one or both of its encoded proteins (NS1 and NEP) are maladapted for replication in mammalian hosts. To test this, a number of clade A and B avian virus-derived NS segments were introduced into human H1N1 and H3N2 viruses. In no case was the peak virus titer substantially reduced following infection of various mammalian cell types. Exemplar reassortant viruses also replicated to similar titers in mice, although mice infected with viruses with the avian virus-derived segment 8s had reduced weight loss compared to that achieved in mice infected with the A/Puerto Rico/8/1934 (H1N1) parent. In vitro, the viruses coped similarly with type I interferons. Temporal proteomics analysis of cellular responses to infection showed that the avian virus-derived NS segments provoked lower levels of expression of interferon-stimulated genes in cells than wild type-derived NS segments. Thus, neither the A nor the B allele of avian virus-derived NS segments necessarily attenuates virus replication in a mammalian host, although the alleles can attenuate disease. Phylogenetic analyses identified 32 independent incursions of an avian virus-derived A allele into mammals, whereas 6 introductions of a B allele were identified. However, A-allele isolates from birds outnumbered B-allele isolates, and the relative rates of Aves-to-Mammalia transmission were not significantly different. We conclude that while the introduction of an avian virus segment 8 into mammals is a relatively rare event, the dogma of the B allele being especially restricted is misleading, with implications in the assessment of the pandemic potential of avian influenza viruses. IMPORTANCE Influenza A virus (IAV) can adapt to poultry and mammalian species, inflicting a great socioeconomic burden on farming and health care sectors. Host adaptation likely involves multiple viral factors. Here, we investigated the role of IAV segment 8. Segment 8 has evolved into two distinct clades: the A and B alleles. The B-allele genes have previously been suggested to be restricted to avian virus species. We introduced a selection of avian virus A- and B-allele segment 8s into human H1N1 and H3N2 virus backgrounds and found that these reassortant viruses were fully competent in mammalian host systems. We also analyzed the currently available public data on the segment 8 gene distribution and found surprisingly little evidence for specific avian host restriction of the B-clade segment. We conclude that B-allele segment 8 genes are, in fact, capable of supporting infection in mammals and that they should be considered during the assessment of the pandemic risk of zoonotic influenza A viruses. PMID:27489273

  5. Role of the B Allele of Influenza A Virus Segment 8 in Setting Mammalian Host Range and Pathogenicity.

    PubMed

    Turnbull, Matthew L; Wise, Helen M; Nicol, Marlynne Q; Smith, Nikki; Dunfee, Rebecca L; Beard, Philippa M; Jagger, Brett W; Ligertwood, Yvonne; Hardisty, Gareth R; Xiao, Haixia; Benton, Donald J; Coburn, Alice M; Paulo, Joao A; Gygi, Steven P; McCauley, John W; Taubenberger, Jeffery K; Lycett, Samantha J; Weekes, Michael P; Dutia, Bernadette M; Digard, Paul

    2016-10-15

    Two alleles of segment 8 (NS) circulate in nonchiropteran influenza A viruses. The A allele is found in avian and mammalian viruses, but the B allele is viewed as being almost exclusively found in avian viruses. This might reflect the fact that one or both of its encoded proteins (NS1 and NEP) are maladapted for replication in mammalian hosts. To test this, a number of clade A and B avian virus-derived NS segments were introduced into human H1N1 and H3N2 viruses. In no case was the peak virus titer substantially reduced following infection of various mammalian cell types. Exemplar reassortant viruses also replicated to similar titers in mice, although mice infected with viruses with the avian virus-derived segment 8s had reduced weight loss compared to that achieved in mice infected with the A/Puerto Rico/8/1934 (H1N1) parent. In vitro, the viruses coped similarly with type I interferons. Temporal proteomics analysis of cellular responses to infection showed that the avian virus-derived NS segments provoked lower levels of expression of interferon-stimulated genes in cells than wild type-derived NS segments. Thus, neither the A nor the B allele of avian virus-derived NS segments necessarily attenuates virus replication in a mammalian host, although the alleles can attenuate disease. Phylogenetic analyses identified 32 independent incursions of an avian virus-derived A allele into mammals, whereas 6 introductions of a B allele were identified. However, A-allele isolates from birds outnumbered B-allele isolates, and the relative rates of Aves-to-Mammalia transmission were not significantly different. We conclude that while the introduction of an avian virus segment 8 into mammals is a relatively rare event, the dogma of the B allele being especially restricted is misleading, with implications in the assessment of the pandemic potential of avian influenza viruses. Influenza A virus (IAV) can adapt to poultry and mammalian species, inflicting a great socioeconomic burden on farming and health care sectors. Host adaptation likely involves multiple viral factors. Here, we investigated the role of IAV segment 8. Segment 8 has evolved into two distinct clades: the A and B alleles. The B-allele genes have previously been suggested to be restricted to avian virus species. We introduced a selection of avian virus A- and B-allele segment 8s into human H1N1 and H3N2 virus backgrounds and found that these reassortant viruses were fully competent in mammalian host systems. We also analyzed the currently available public data on the segment 8 gene distribution and found surprisingly little evidence for specific avian host restriction of the B-clade segment. We conclude that B-allele segment 8 genes are, in fact, capable of supporting infection in mammals and that they should be considered during the assessment of the pandemic risk of zoonotic influenza A viruses. Copyright © 2016 Turnbull et al.

  6. [Control of postoperative hemorrhage in isolated coronary bypass surgery: comparison of tranexamic acid effects in off-pump surgery with aprotinin effects in conventional surgery].

    PubMed

    Bordalo, Alvaro D B; Nobre, Angelo L; Silva, Fernanda; Serpa, Carlos; Cravino, João

    2011-01-01

    In spite of the strong criticism elicited thereafter, the results of a multicentric study on the consequences of several perioperative anti-hemorrhagic strategies in cardiac surgery, published five years ago, led to the aprotinin (Aprot) withdrawal from the market and its progressive replacement by tranexamic acid (TrAc) in many surgical departments. To evaluate the hemostatic effects and clinical consequences of TrAc use or non-use in off-pump coronary bypass surgery (CABG) and compare them with those of Aprot use or non-use in conventional (conv) CABG. Retrospective analysis of 2 groups (Gr) of patients (pts): GrA - 252 pts undergoing isolated conv CABG (GrA1 - 185 pts submitted to an intra-operative full-dose Aprot protocol; GrA2 - 67 pts operated without Aprot); GrB - 383 pts undergoing isolated off-pump CABG (GrB1 - 136 pts submitted to an intra-operative low-dose TrAc protocol; GrB2 - 247 pts operated in absence of TrAc). Pre-operative clinical characteristics (GrA1 vs GrA2, GrB1 vs GrB2): mean age (years) - 65 vs 64 (NS), 64 vs 64; female gender - 20% vs 21% (NS), 23% vs 20% (NS); logistic Euroscore - 5.1% vs 6.2% (NS), 6.3% vs 5.5% (NS); chronic renal failure - 21% vs 27% (NS), 27% vs 25% (NS); diffuse coronary artery disease - 34% vs 42% (NS), 36% vs 30% (NS); pre-operative betablocker treatment - 64% vs 55% (NS), 74% vs 71% (NS); statin therapy for > 3 months - 78% vs 82% (NS), 81% vs 85% (NS). Pts have been operated by 4 surgeons largely experienced in both CABG modalities. Antiplatelet therapy was stopped => 4 days prior to surgery (but aspirin was maintained in high-risk pts). Results (GrA1 vs GrA2, GrB1 vs GrB2): 1) Bleeding (mL/pt - mean): 783 vs 1375 (p < 0.001), 1061 vs 1368 (p < 0.001); blood loss > 1500 mL (%pts) - 5.4% vs 34% (p < 0.0001), 12% vs 28% (p < 0.001); surgical re-exploration for bleeding - 1.1% vs 3.0% (NS), 2.2% vs 2.0% (NS). 2) Transfusion of blood products (U/pt - mean): plasma - 0.56 vs 2.19 (p < 0.001), 1.45 vs 1.03 (p < 0.05); platelets - 0.09 vs 0.22 (p < 0.02), 0.24 vs 0.15 (NS). 3) Renal function (%pts): increased serum cre- atinine - 56% vs 56%, 55% vs 38% (p < 0.001); hemofiltration use - 1.1% vs 1.5% (NS), 1.5% vs 0.4% (NS). 4) Perioperative myocardial infarction - 21.6% vs 17.9% (NS), 17.6% vs 14.6% (NS); other ischemic events - 3.2% vs 3.0% (NS), 1.5% vs 1.2% (NS). 5) Hospital mortality: 4.8% vs 4.5% (NS), 4.4% vs 1.6% (NS). 1) TrAc does not reduce the risk of surgical re-exploration for bleeding. 2) Taking into account the differences between conv CABG and off-pump CABG, TrAc hemostatic effect seems to be inferior to that of Aprot, without offering a better safety profile in terms of lesser renal or ischemic risk as a counterpart.

  7. Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins.

    PubMed

    Chen, Shun; Wu, Zhen; Wang, Mingshu; Cheng, Anchun

    2017-10-07

    Flaviviridae-caused diseases are a critical, emerging public health problem worldwide. Flaviviridae infections usually cause severe, acute or chronic diseases, such as liver damage and liver cancer resulting from a hepatitis C virus (HCV) infection and high fever and shock caused by yellow fever. Many researchers worldwide are investigating the mechanisms by which Flaviviridae cause severe diseases. Flaviviridae can interfere with the host's innate immunity to achieve their purpose of proliferation. For instance, dengue virus (DENV) NS2A, NS2B3, NS4A, NS4B and NS5; HCV NS2, NS3, NS3/4A, NS4B and NS5A; and West Nile virus (WNV) NS1 and NS4B proteins are involved in immune evasion. This review discusses the interplay between viral non-structural Flaviviridae proteins and relevant host proteins, which leads to the suppression of the host's innate antiviral immunity.

  8. RNase L targets distinct sites in influenza A virus RNAs.

    PubMed

    Cooper, Daphne A; Banerjee, Shuvojit; Chakrabarti, Arindam; García-Sastre, Adolfo; Hesselberth, Jay R; Silverman, Robert H; Barton, David J

    2015-03-01

    Influenza A virus (IAV) infections are influenced by type 1 interferon-mediated antiviral defenses and by viral countermeasures to these defenses. When IAV NS1 protein is disabled, RNase L restricts virus replication; however, the RNAs targeted for cleavage by RNase L under these conditions have not been defined. In this study, we used deep-sequencing methods to identify RNase L cleavage sites within host and viral RNAs from IAV PR8ΔNS1-infected A549 cells. Short hairpin RNA knockdown of RNase L allowed us to distinguish between RNase L-dependent and RNase L-independent cleavage sites. RNase L-dependent cleavage sites were evident at discrete locations in IAV RNA segments (both positive and negative strands). Cleavage in PB2, PB1, and PA genomic RNAs suggests that viral RNPs are susceptible to cleavage by RNase L. Prominent amounts of cleavage mapped to specific regions within IAV RNAs, including some areas of increased synonymous-site conservation. Among cellular RNAs, RNase L-dependent cleavage was most frequent at precise locations in rRNAs. Our data show that RNase L targets specific sites in both host and viral RNAs to restrict influenza virus replication when NS1 protein is disabled. RNase L is a critical component of interferon-regulated and double-stranded-RNA-activated antiviral host responses. We sought to determine how RNase L exerts its antiviral activity during influenza virus infection. We enhanced the antiviral activity of RNase L by disabling a viral protein, NS1, that inhibits the activation of RNase L. Then, using deep-sequencing methods, we identified the host and viral RNAs targeted by RNase L. We found that RNase L cleaved viral RNAs and rRNAs at very precise locations. The direct cleavage of IAV RNAs by RNase L highlights an intimate battle between viral RNAs and an antiviral endonuclease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Structural Study of the C-Terminal Domain of Nonstructural Protein 1 from Japanese Encephalitis Virus.

    PubMed

    Poonsiri, Thanalai; Wright, Gareth S A; Diamond, Michael S; Turtle, Lance; Solomon, Tom; Antonyuk, Svetlana V

    2018-04-01

    Japanese encephalitis virus (JEV) is a mosquito-transmitted flavivirus that is closely related to other emerging viral pathogens, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV). JEV infection can result in meningitis and encephalitis, which in severe cases cause permanent brain damage and death. JEV occurs predominantly in rural areas throughout Southeast Asia, the Pacific Islands, and the Far East, causing around 68,000 cases of infection worldwide each year. In this report, we present a 2.1-Å-resolution crystal structure of the C-terminal β-ladder domain of JEV nonstructural protein 1 (NS1-C). The surface charge distribution of JEV NS1-C is similar to those of WNV and ZIKV but differs from that of DENV. Analysis of the JEV NS1-C structure, with in silico molecular dynamics simulation and experimental solution small-angle X-ray scattering, indicates extensive loop flexibility on the exterior of the protein. This, together with the surface charge distribution, indicates that flexibility influences the protein-protein interactions that govern pathogenicity. These factors also affect the interaction of NS1 with the 22NS1 monoclonal antibody, which is protective against West Nile virus infection. Liposome and heparin binding assays indicate that only the N-terminal region of NS1 mediates interaction with membranes and that sulfate binding sites common to NS1 structures are not glycosaminoglycan binding interfaces. This report highlights several differences between flavivirus NS1 proteins and contributes to our understanding of their structure-pathogenic function relationships. IMPORTANCE JEV is a major cause of viral encephalitis in Asia. Despite extensive vaccination, epidemics still occur. Nonstructural protein 1 (NS1) plays a role in viral replication, and, because it is secreted, it can exhibit a wide range of interactions with host proteins. NS1 sequence and protein folds are conserved within the Flavivirus genus, but variations in NS1 protein-protein interactions among viruses likely contribute to differences in pathogenesis. Here, we compared characteristics of the C-terminal β-ladder domain of NS1 between flaviviruses, including surface charge, loop flexibility, epitope cross-reactivity, membrane adherence, and glycosaminoglycan binding. These structural features are central to NS1 functionality and may provide insight into the development of diagnostic tests and therapeutics. Copyright © 2018 American Society for Microbiology.

  10. Evolution of a Cell Culture-Derived Genotype 1a Hepatitis C Virus (H77S.2) during Persistent Infection with Chronic Hepatitis in a Chimpanzee

    PubMed Central

    Yi, MinKyung; Hu, Fengyu; Joyce, Michael; Saxena, Vikas; Welsch, Christoph; Chavez, Deborah; Guerra, Bernadette; Yamane, Daisuke; Veselenak, Ronald; Pyles, Rick; Walker, Christopher M.; Tyrrell, Lorne; Bourne, Nigel; Lanford, Robert E.

    2014-01-01

    ABSTRACT Persistent infection is a key feature of hepatitis C virus (HCV). However, chimpanzee infections with cell culture-derived viruses (JFH1 or related chimeric viruses that replicate efficiently in cell culture) have been limited to acute-transient infections with no pathogenicity. Here, we report persistent infection with chronic hepatitis in a chimpanzee challenged with cell culture-derived genotype 1a virus (H77S.2) containing 6 cell culture-adaptive mutations. Following acute-transient infection with a chimeric H77/JFH1 virus (HJ3-5), intravenous (i.v.) challenge with 106 FFU H77S.2 virus resulted in immediate seroconversion and, following an unusual 4- to 6-week delay, persistent viremia accompanied by alanine aminotransferase (ALT) elevation, intrahepatic innate immune responses, and diffuse hepatopathy. This first persistent infection with cell culture-produced HCV provided a unique opportunity to assess evolution of cell culture-adapted virus in vivo. Synonymous and nonsynonymous nucleotide substitution rates were greatest during the first 8 weeks of infection. Of 6 cell culture-adaptive mutations in H77S.2, Q1067R (NS3) had reverted to Q1067 and S2204I (NS5A) was replaced by T2204 within 8 weeks of infection. By 62 weeks, 4 of 6 mutations had reverted to the wild-type sequence, and all reverted to the wild-type sequence by 194 weeks. The data suggest H77S.2 virus has greater potential for persistence and pathogenicity than JFH1 and demonstrate both the capacity of a nonfit virus to persist for weeks in the liver in the absence of detectable viremia as well as strong selective pressure against cell culture-adaptive mutations in vivo. IMPORTANCE This study shows that mutations promoting the production of infectious genotype 1a HCV in cell culture have the opposite effect and attenuate replication in the liver of the only fully permissive animal species other than humans. It provides the only example to date of persistent infection in a chimpanzee challenged with cell culture-produced virus and provides novel insight into the forces shaping molecular evolution of that virus during 5 years of persistent infection. It demonstrates that a poorly fit virus can replicate for weeks within the liver in the absence of detectable viremia, an observation that expands current concepts of HCV pathogenesis and that is relevant to relapses observed with direct-acting antiviral therapies. PMID:24429362

  11. A gustatory second-order neuron that connects sucrose-sensitive primary neurons and a distinct region of the gnathal ganglion in the Drosophila brain

    PubMed Central

    Miyazaki, Takaaki; Lin, Tzu-Yang; Ito, Kei; Lee, Chi-Hon; Stopfer, Mark

    2016-01-01

    Although the gustatory system provides animals with sensory cues important for food choice and other critical behaviors, little is known about neural circuitry immediately following gustatory sensory neurons (GSNs). Here, we identify and characterize a bilateral pair of gustatory second-order neurons in Drosophila. Previous studies identified GSNs that relay taste information to distinct subregions of the primary gustatory center (PGC) in the gnathal ganglia (GNG). To identify candidate gustatory second-order neurons (G2Ns) we screened ~5,000 GAL4 driver strains for lines that label neural fibers innervating the PGC. We then combined GRASP (GFP reconstitution across synaptic partners) with presynaptic labeling to visualize potential synaptic contacts between the dendrites of the candidate G2Ns and the axonal terminals of Gr5a-expressing GSNs, which are known to respond to sucrose. Results of the GRASP analysis, followed by a single cell analysis by FLPout recombination, revealed a pair of neurons that contact Gr5a axon terminals in both brain hemispheres, and send axonal arborizations to a distinct region outside the PGC but within the GNG. To characterize the input and output branches, respectively, we expressed fluorescence-tagged acetylcholine receptor subunit (Dα7) and active-zone marker (Brp) in the G2Ns. We found that G2N input sites overlaid GRASP-labeled synaptic contacts to Gr5a neurons, while presynaptic sites were broadly distributed throughout the neurons’ arborizations. GRASP analysis and further tests with the Syb-GRASP method suggested that the identified G2Ns receive synaptic inputs from Gr5a-expressing GSNs, but not Gr66a-expressing GSNs, which respond to caffeine. The identified G2Ns relay information from Gr5a-expressing GSNs to distinct regions in the GNG, and are distinct from other, recently identified gustatory projection neurons, which relay information about sugars to a brain region called the antennal mechanosensory and motor center (AMMC). Our findings suggest unexpected complexity for taste information processing in the first relay of the gustatory system. PMID:26004543

  12. Application of bluetongue Disabled Infectious Single Animal (DISA) vaccine for different serotypes by VP2 exchange or incorporation of chimeric VP2.

    PubMed

    Feenstra, Femke; Pap, Janny S; van Rijn, Piet A

    2015-02-04

    Bluetongue is a disease of ruminants caused by the bluetongue virus (BTV). Bluetongue outbreaks can be controlled by vaccination, however, currently available vaccines have several drawbacks. Further, there are at least 26 BTV serotypes, with low cross protection. A next-generation vaccine based on live-attenuated BTV without expression of non-structural proteins NS3/NS3a, named Disabled Infectious Single Animal (DISA) vaccine, was recently developed for serotype 8 by exchange of the serotype determining outer capsid protein VP2. DISA vaccines are replicating vaccines but do not cause detectable viremia, and induce serotype specific protection. Here, we exchanged VP2 of laboratory strain BTV1 for VP2 of European serotypes 2, 4, 8 and 9 using reverse genetics, without observing large effects on virus growth. Exchange of VP2 from serotype 16 and 25 was however not possible. Therefore, chimeric VP2 proteins of BTV1 containing possible immunogenic regions of these serotypes were studied. BTV1, expressing 1/16 chimeric VP2 proteins was functional in virus replication in vitro and contained neutralizing epitopes of both serotype 1 and 16. For serotype 25 this approach failed. We combined VP2 exchange with the NS3/NS3a negative phenotype in BTV1 as previously described for serotype 8 DISA vaccine. DISA vaccine with 1/16 chimeric VP2 containing amino acid region 249-398 of serotype 16 raised antibodies in sheep neutralizing both BTV1 and BTV16. This suggests that DISA vaccine could be protective for both parental serotypes present in chimeric VP2. We here demonstrate the application of the BT DISA vaccine platform for several serotypes and further extend the application for serotypes that are unsuccessful in single VP2 exchange. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Diode-pumped laser altimeter

    NASA Technical Reports Server (NTRS)

    Welford, D.; Isyanova, Y.

    1993-01-01

    TEM(sub 00)-mode output energies up to 22.5 mJ with 23 percent slope efficiencies were generated at 1.064 microns in a diode-laser pumped Nd:YAG laser using a transverse-pumping geometry. 1.32-micron performance was equally impressive at 10.2 mJ output energy with 15 percent slope efficiency. The same pumping geometry was successfully carried forward to several complex Q-switched laser resonator designs with no noticeable degradation of beam quality. Output beam profiles were consistently shown to have greater than 90 percent correlation with the ideal TEM(sub 00)-order Gaussian profile. A comparison study on pulse-reflection-mode (PRM), pulse-transmission-mode (PTM), and passive Q-switching techniques was undertaken. The PRM Q-switched laser generated 8.3 mJ pulses with durations as short as 10 ns. The PTM Q-switch laser generated 5 mJ pulses with durations as short as 5 ns. The passively Q-switched laser generated 5 mJ pulses with durations as short as 2.4 ns. Frequency doubling of both 1.064 microns and 1.32 microns with conversion efficiencies of 56 percent in lithium triborate and 10 percent in rubidium titanyl arsenate, respectively, was shown. Sum-frequency generation of the 1.064 microns and 1.32 microns radiations was demonstrated in KTP to generate 1.1 mJ of 0.589 micron output with 11.5 percent conversion efficiency.

  14. Lineage II of Southeast Asian/American DENV-2 Is Associated with a Severe Dengue Outbreak in the Peruvian Amazon

    PubMed Central

    Williams, Maya; Mayer, Sandra V.; Johnson, William L.; Chen, Rubing; Volkova, Evgeniya; Vilcarromero, Stalin; Widen, Steven G.; Wood, Thomas G.; Suarez-Ognio, Luis; Long, Kanya C.; Hanley, Kathryn A.; Morrison, Amy C.; Vasilakis, Nikos; Halsey, Eric S.

    2014-01-01

    During 2010 and 2011, the Loreto region of Peru experienced a dengue outbreak of unprecedented magnitude and severity for the region. This outbreak coincided with the reappearance of dengue virus-2 (DENV-2) in Loreto after almost 8 years. Whole-genome sequence indicated that DENV-2 from the outbreak belonged to lineage II of the southeast Asian/American genotype and was most closely related to viruses circulating in Brazil during 2007 and 2008, whereas DENV-2 previously circulating in Loreto grouped with lineage I (DENV-2 strains circulating in South America since 1990). One amino acid substitution (NS5 A811V) in the 2010 and 2011 isolates resulted from positive selection. However, the 2010 and 2011 DENV-2 did not replicate to higher titers in monocyte-derived dendritic cells and did not infect or disseminate in a higher proportion of Aedes aegypti than DENV-2 isolates previously circulating in Loreto. These results suggest that factors other than enhanced viral replication played a role in the severity of this outbreak. PMID:25002298

  15. PriC-mediated DNA replication restart requires PriC complex formation with the single-stranded DNA-binding protein.

    PubMed

    Wessel, Sarah R; Marceau, Aimee H; Massoni, Shawn C; Zhou, Ruobo; Ha, Taekjip; Sandler, Steven J; Keck, James L

    2013-06-14

    Frequent collisions between cellular DNA replication complexes (replisomes) and obstacles such as damaged DNA or frozen protein complexes make DNA replication fork progression surprisingly sporadic. These collisions can lead to the ejection of replisomes prior to completion of replication, which, if left unrepaired, results in bacterial cell death. As such, bacteria have evolved DNA replication restart mechanisms that function to reload replisomes onto abandoned DNA replication forks. Here, we define a direct interaction between PriC, a key Escherichia coli DNA replication restart protein, and the single-stranded DNA-binding protein (SSB), a protein that is ubiquitously associated with DNA replication forks. PriC/SSB complex formation requires evolutionarily conserved residues from both proteins, including a pair of Arg residues from PriC and the C terminus of SSB. In vitro, disruption of the PriC/SSB interface by sequence changes in either protein blocks the first step of DNA replication restart, reloading of the replicative DnaB helicase onto an abandoned replication fork. Consistent with the critical role of PriC/SSB complex formation in DNA replication restart, PriC variants that cannot bind SSB are non-functional in vivo. Single-molecule experiments demonstrate that PriC binding to SSB alters SSB/DNA complexes, exposing single-stranded DNA and creating a platform for other proteins to bind. These data lead to a model in which PriC interaction with SSB remodels SSB/DNA structures at abandoned DNA replication forks to create a DNA structure that is competent for DnaB loading.

  16. The Changing Face of Hepatitis C: Recent Advances on HCV Inhibitors Targeting NS5A

    PubMed

    Rai, Diwakar; Wang, Liu; Jiang, Xuemei; Zhan, Peng; Jia, Haiyong; De Clercq, Erik; Liu, Xinyong

    2015-05-05

    Current treatment for HCV infections consists of approved direct acting antivirals (DAAs), viz. the protease inhibitors (boceprevir, telaprevir, and simeprevir), NS5B polymerase inhibitors (sofosbuvir) and NS5A inhibitor (ledipasvir) in combination with pegylated interferon α and ribavirin). These treatments have made a great improvement in the treatment of chronic HCV infections in recent years, but their adverse side effects, emergence of resistant mutants, high cost, and increased pill burden have limited their clinical use. Recently, with the increasing knowledge in understanding the HCV life cycle, more targets have been recognized. NS5A protein plays a critical role in assembly of infectious HCV particles and offering potential for HCV therapies. Therefore, discovery and development of novel DAAs targeting NS5A with novel mechanisms of action, is of great necessity to improve the quality of existing HCV treatments. In the present review, we discuss recent advances with NS5A inhibitors with potent anti-HCV activity, and the potential for the development of HCV NS5A inhibitors to combat HCV infections.

  17. Modeling, docking and dynamics simulations of a non-specific lipid transfer protein from Peganum harmala L.

    PubMed

    Shi, Zheng; Wang, Zi-jie; Xu, Huai-long; Tian, Yang; Li, Xin; Bao, Jin-ku; Sun, Su-rong; Yue, Bi-song

    2013-12-01

    Non-specific lipid transfer proteins (ns-LTPs), ubiquitously found in various types of plants, have been well-known to transfer amphiphilic lipids and promote the lipid exchange between mitochondria and microbody. In this study, an in silico analysis was proposed to study ns-LTP in Peganum harmala L., which may belong to ns-LTP1 family, aiming at constructing its three-dimensional structure. Moreover, we adopted MEGA to analyze ns-LTPs and other species phylogenetically, which brought out an initial sequence alignment of ns-LTPs. In addition, we used molecular docking and molecular dynamics simulations to further investigate the affinities and stabilities of ns-LTP with several ligands complexes. Taken together, our results about ns-LTPs and their ligand-binding activities can provide a better understanding of the lipid-protein interactions, indicating some future applications of ns-LTP-mediated transport. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Open-ringed structure of the Cdt1-Mcm2-7 complex as a precursor of the MCM double hexamer.

    PubMed

    Zhai, Yuanliang; Cheng, Erchao; Wu, Hao; Li, Ningning; Yung, Philip Yuk Kwong; Gao, Ning; Tye, Bik-Kwoon

    2017-03-01

    The minichromosome maintenance complex (MCM) hexameric complex (Mcm2-7) forms the core of the eukaryotic replicative helicase. During G1 phase, two Cdt1-Mcm2-7 heptamers are loaded onto each replication origin by the origin-recognition complex (ORC) and Cdc6 to form an inactive MCM double hexamer (DH), but the detailed loading mechanism remains unclear. Here we examine the structures of the yeast MCM hexamer and Cdt1-MCM heptamer from Saccharomyces cerevisiae. Both complexes form left-handed coil structures with a 10-15-Å gap between Mcm5 and Mcm2, and a central channel that is occluded by the C-terminal domain winged-helix motif of Mcm5. Cdt1 wraps around the N-terminal regions of Mcm2, Mcm6 and Mcm4 to stabilize the whole complex. The intrinsic coiled structures of the precursors provide insights into the DH formation, and suggest a spring-action model for the MCM during the initial origin melting and the subsequent DNA unwinding.

  19. Mechanisms and regulation of DNA replication initiation in eukaryotes

    PubMed Central

    Parker, Matthew W.; Botchan, Michael R.; Berger, James M.

    2017-01-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a given cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the Origin Recognition Complex (ORC), and subsequent activation of the helicase by incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here we review the molecular mechanisms that underpin eukaryotic DNA replication initiation – from selecting replication start sites to replicative helicase loading and activation – and describe how these events are often distinctly regulated across different eukaryotic model organisms. PMID:28094588

  20. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    PubMed

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

Top