Educational Outreach by the NSF Polymers Program
NASA Astrophysics Data System (ADS)
Lovinger, Andrew J.
2002-03-01
Education and outreach have been NSF priority areas over the last few years. Reviewers of all proposals are explicitly asked to evaluate not only the "intellectual merit" of a research proposal but also its "broader impacts", including specifically "integration of research and education". The NSF Polymers Program has strongly emphasized these areas and has initiated and supported a wide variety of outreach activities designed to bring out the importance of polymeric materials to diverse communities and to encourage young students to develop interests in this area. Specific activities have included: Workshops and their broad dissemination through the media; press releases on important polymer-related developments; interviews to the scientific and popular press; outreach to Congress; establishment of widely publicized and broadly attended lecture series; funding and support of conferences, symposia, and workshops aimed at students and teachers from kindergarten to graduate school; support of web-based educational projects aimed at the general public and schoolchildren; participation in web-based "ask-the-experts" resources to answer science questions from children or the general public; and personal outreach to middle- and high-schools through talks and demonstrations on polymers and plastics, participation at science fairs, career days, etc.
Developments in the photonics program at OSC
NASA Astrophysics Data System (ADS)
Peyghambarian, N.
2014-10-01
The photonics program at the College of Optical Sciences started nearly 30 years ago. In 1984, the program was focused on development of femtosecond laser sources and their use in investigating semiconductor carrier dynamics. The program grew into polymer and organic optics in late 1989 and was strengthened by the winning of the CAMP MURI from ONR in 1995 that was focused on multifunctional polymers including photorefractive polymers, organic light emitting diodes and 3D direct laser writing. Also in 1995, the areas of glass waveguide and fiber optic materials and devices were added to the program. In 2008, the optical communication and future internet research was started through winning the CIAN NSF ERC. Expertise in thin films, optical storage and the fundamental aspects of light are elements of the overall research program. Holographic 3D display, autofocus lenses, bio-medical imaging and devices for vision have also been ongoing research areas.
Supramolecular Polymer Nanocomposites - Improvement of Mechanical Properties
NASA Astrophysics Data System (ADS)
Hinricher, Jesse; Neikirk, Colin; Priestley, Rodney
2015-03-01
Supramolecular polymers differ from traditional polymers in that their repeat units are connected by hydrogen bonds that can reversibly break and form under various stimuli. They can be more easily recycled than conventional materials, and their highly temperature dependent viscosities result in reduced energy consumption and processing costs. Furthermore, judicious selection of supramolecular polymer architecture and functionality allows the design of advanced materials including shape memory and self-healing materials. Supramolecular polymers have yet to see widespread use because they can't support much weight due to their inherent mechanical weakness. In order to address this issue, the mechanical strength of supramolecular polymer nanocomposites based on ureidopyrmidinone (UPy) telechelic poly(caprolactone) doped with surface activated silica nanoparticles was investigated by tensile testing and dynamic mechanical analysis. The effects of varying amounts and types of nanofiller surface functionality were investigated to glean insight into the contributions of filler-filler and filler-matrix interactions to mechanical reinforcement in supramolecular polymer nanocomposites. MRSEC NSF DMR 0819860 (PI: Prof. N. Phuan Ong) REU Site Grant: NSF DMR-1156422 (PI: Prof. Mikko Haataja)
NSF's Career-Life Balance Initiative and the NSF Astronomy and Astrophysics Postdoctoral Fellowships
NASA Astrophysics Data System (ADS)
Ajhar, Edward A.
2013-01-01
In the fall of 2011, the National Science Foundation (NSF) began the Career-Life Balance Initiative to support graduate students, postdoctoral students, and early-career researchers in STEM fields. NSF is focusing first on its most prestigious programs for early-career scientists---the CAREER program and the postdoctoral programs, including the NSF Astronomy and Astrophysics Postdoctoral Fellowships (AAPF)---where career-life balance opportunities can help retain a significant fraction of early career talent. Subject to budget constraints, NSF plans to further integrate and enhance career-life balance opportunities over time through other programs, like the Graduate Research Fellowships Program and ADVANCE, and subsequently through the broader portfolio of NSF activities. In addition, to comply with Title IX, NSF has regulations to ensure that educational programs that receive NSF funds are free of gender discrimination and harassment. A primary goal of this presentation is to put facts about NSF into the hands of students, faculty, staff, administrators and other policy makers to benefit the advancement of career-life balance in the astronomical community. The presentation focus areas will (1) address common misconceptions about NSF rules regarding parental leave; (2) discuss benefits already available through the AAPF program, Graduate Research Fellowships, and other programs; and (3) listen to community concerns and issues to bring these back to the foundation for consideration. Did you know that NSF allows paid parental leave under many circumstances? For example, the AAPF program currently allows two months of paid parental leave during the fellow's tenure. What are the rules for NSF Graduate Research Fellowships? Come to the session and find out; the answers to such questions might surprise you.
Folding dynamics of linear emulsion polymers into 3D architectures
NASA Astrophysics Data System (ADS)
McMullen, Angus; Bargteil, Dylan; Brujic, Jasna
Colloidal polymers have been limited to inflexible, solid colloids. Here we show that the fluidity of emulsion droplets allows for the self-assembly of flexible droplet chains, which can subsequently be folded into 3D structures via secondary interactions. We achieve this using DNA-guided interactions, to initially form the chain, and then program its folding pathways. When two emulsion droplets labeled with complementary DNA meet, the balance of hybridization energy and droplet deformation yields an equilibrium patch size. Therefore, the concentration of DNA on the surface determines the number of droplet-droplet bonds in the assembly. We find that 96 % of bound droplets successfully self-assemble into chains. Droplet binding is a stochastic process, following a Poisson distribution of lengths. Since the fluid droplets can rearrange, we compare the dynamics of emulsion chains to that of polymers. We also trigger secondary interactions along the chain, causing the formation of specific loops or compact clusters. This approach will allow us to fold our emulsion polymers into a wide array of soft structures, giving us a powerful biomimetic colloidal system to investigate protein folding on the mesoscopic scale. This work was supported by the NSF MRSEC Program (DMR-0820341).
Unravelling the zero-field-splitting parameters in Pt-rich polymers with tuned spin-orbit coupling
NASA Astrophysics Data System (ADS)
Peroncik, Peter; McLaughlin, Ryan; Sun, Dali; Vardeny, Z. Valy
2014-03-01
Recently pi-conjugated polymers that contain heavy metal Platinum (Pt-polymers, Scientific Reports 3, 2653, 2013) have attracted substantial interest due to their strong and tunable spin-orbit coupling (SOC). The magnetic field effect (MFE), such as magneto-photoluminescence (MPL) is considered to be a viable approach to address the SOC strength in the organics. Alas conventional MFE up to several hundred Gauss is unable to overcome the relative large spin splitting energies in Pt-polymers due to their strong SOC. To overcome this difficulty we study the MPL response in two Pt-polymers at high magnetic field (up to several Telsa). We found that the MPL response is dominated by triplet excitons that are generated in record time, and from the MPL(B) response width we could obtained the triplet zero-field splitting (ZFS) parameters. We found that the ZFS parameters in the Pt-polymers are proportional to the intrachain Pt atom concentration. Research sponsored by the NSF (Grant No. DMR-1104495) and NSF-MRSEC (DMR 1121252) at the University of Utah.
Dynamics in Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Clarke, Nigel
2015-03-01
Since nanoparticles are increasingly being added to polymers to impart mechanical and functional properties, we are exploring how nanoparticles impact polymer dynamics with a focus on the diffusion coefficients. In high molecular weight polymer melts, chain diffusion is well described by the reptation model. Motion proceeds as a snake-like diffusion of the chain as a whole, along the contour of a tube that mimics the role of physical entanglements, or topological constraints, with other chains. In polymer nanocomposites there are additional constraints due to the dispersed nanoparticles in the polymer matrix. Chain motion can be altered by nanoparticle size, shape , aspect ratio, surface area, loading and the nature of the interactions between the nanoparticles and the polymer matrix. We have observed a minimum in the diffusion coefficient as a function of nanoparticle concentration when the nanoparticles are rod-like and a collapse of the diffusion coefficient onto a master curve when the nanoparticles are spherical. We are simulating the dynamics using molecular and dissipative particle simulations in order to provide physical insight into the local structure and dynamics, and have also carried out highly coarse grained Monte Carlo simulations of entangled polymers to explore how reptation is affected by the presence of larger scale obstacles. We acknowledge support from the NSF/EPSRC Materials World Network Program.
Spin injection into Pt-polymers with large spin-orbit coupling
NASA Astrophysics Data System (ADS)
Sun, Dali; McLaughlin, Ryan; Siegel, Gene; Tiwari, Ashutosh; Vardeny, Z. Valy
2014-03-01
Organic spintronics has entered a new era of devices that integrate organic light-emitting diodes (OLED) in organic spin valve (OSV) geometry (dubbed bipolar organic spin valve, or spin-OLED), for actively manipulating the device electroluminescence via the spin alignment of two ferromagnetic electrodes (Science 337, 204-209, 2012; Appl. Phys. Lett. 103, 042411, 2013). Organic semiconductors that contain heavy metal elements have been widely used as phosphorescent dopants in white-OLEDs. However such active materials are detrimental for OSV operation due to their large spin-orbit coupling (SOC) that may limit the spin diffusion length and thus spin-OLED based on organics with large SOC is a challenge. We report the successful fabrication of OSVs based on pi-conjugated polymers which contain intrachain Platinum atoms (dubbed Pt-polymers). Spin injection into the Pt-polymers is investigated by the giant magnetoresistance (GMR) effect as a function of bias voltage, temperature and polymer layer thickness. From the GMR bias voltage dependence we infer that the ``impendence mismatch'' between ferromagnetic electrodes and Pt-polymer may be suppressed due to the large SOC. Research sponsored by the NSF (Grant No. DMR-1104495) and NSF-MRSEC (DMR 1121252) at the University of Utah.
NSF Factbook. Guide to National Science Foundation Programs and Activities.
ERIC Educational Resources Information Center
Renetzky, Alvin, Ed.; Flynn, Barbara J., Ed.
This publication is a thorough guide to National Science Foundation (NSF) programs and activities. Research activities and science education programs supported by NSF during the fiscal year 1970 are reviewed in part one of this volume. Comprehensive listings of NSF grants and awards are presented in the second section which includes a list of…
NASA Astrophysics Data System (ADS)
To increase its involvement in National Science Foundation (NSF) policy and program oversight, the National Science Board (NSB), which is the NSF governing body, has instituted a number of changes in its committee structure and operations.One reason for the changes, according to Roland Schmitt, senior vice president for corporate research and development at the General Electric Company and chairman of NSB, is to move away from approval of NSF awards as the primary mechanism for NSB oversight of NSF programs. By law, NSB must approve awards that are above a certain dollar value. Most awards above that limit come from only a few NSF programs. The new changes will allow NSB to review programs and projects throughout NSF earlier in the review process and to affect major program decisions when they are being made.
Information Technology Research and Education at NSF
NASA Astrophysics Data System (ADS)
Wink, Donald J.
2000-11-01
The NSF has been a leader in the development of new information technologies, including support for work in education and technology. Often, opportunities for educators are found in larger efforts. This is the case for the Information Technology Research (ITR) program. It has now been extended to education areas, as announced in NSF Publication 00-126. Links to the program announcement in multiple formats are found at http://www.nsf.gov/cgi-bin/getpub?nsf00126.
NASA Astrophysics Data System (ADS)
Fitzpatrick, Robert; Hauer, Cole; Kyrillos, Carl; McGorty, Ryan; Robertson-Anderson, Rae
Entangled polymers have complex viscoelastic properties that are tuned by polymer lengths and flexibilities. Entangled composites of distinct polymers offer added versatility and display nonlinear mechanics, serving as a platform for multifunctional materials. To determine the role of flexibility and length in polymer composites we use optical tweezers and confocal microscopy to measure mechanical and structural properties of co-entangled actin and DNA. Actin filaments have lengths of 5-20 μm, comparable to their persistence length, while DNA of similar lengths have hundreds of persistence lengths per chain. To characterize the nonlinear mechanics of actin-DNA composites, we optically drive a microsphere through the composite and measure the induced force during and following strain. We characterize viscoelasticity and relaxation timescales; and determine the dependence of these quantities on the actin:DNA ratio (0:1-1:0) and DNA length (4-100 μm). We use confocal microscopy to image distinctly labeled co-entangled actin and DNA and characterize network homogeneity and fluctuations. Initial results show actin and DNA are well-integrated and form structurally homogenous networks that exhibit stiffness and relaxation times that increase nonlinearly with increased actin. NSF Career Award (DMR-1254340), AFOSR Young Investigator Program Award (FA95550-12-1-0315), Scialog Collaborative Innovation Award funed by Research Corp. for Scientific Advancement (24192).
The NSF and the geosciences community: Rotating program officers
NASA Astrophysics Data System (ADS)
Batiza, Rodey; Rea, David K.; Rumble, Douglas, III
The National Science Foundation (NSF) is a federal agency charged with the care and feeding of basic scientific research in U.S. colleges and universities. NSF is a major contributor toward the support of research in Earth, ocean, and atmospheric sciences, disciplines of great importance to AGU members.NSF makes a regular practice of employing scientists from universities, nonprofit research organizations, industry, and state or local governments as temporary program officers (“rotators”) with terms of service from 1 to 2 years. There are several reasons for the use of rotators: It brings to NSF people who have firsthand, recent knowledge of "what it is really like" beyond the Washington, D.C. beltway. Knowledge of new ideas, recent graduates, and a fresh look at the system are worth considerably more than the problems that arise owing to inexperienced program officers.It sheds some sunshine on internal NSF procedures when the rotator returns with his tales to his home institution.It provides NSF management with considerable flexibility in coping with changing staff requirements.
Linking the GLOBE Program With NASA and NSF Large-Scale Experiments
NASA Astrophysics Data System (ADS)
Filmer, P. E.
2005-12-01
NASA and the NSF, the sponsoring Federal agencies for the GLOBE Program, are seeking the participation of science teams who are working at the cutting edge of Earth systems science in large integrated Earth systems science programs. Connecting the GLOBE concept and structure with NASA and NSF's leading Earth systems science programs will give GLOBE schools and students access to top scientists, and expose them to programs that have been designated as scientific priorities. Students, teachers, parents, and their communities will be able to see how scientists of many disciplines work together to learn about the Earth system. The GLOBE solicitation released by the NSF targets partnerships between GLOBE and NSF/NASA-funded integrated Earth systems science programs. This presentation will focus on the goals and requirements of the NSF solicitation. Proponents will be expected to provide ways for the GLOBE community to interact with a group of scientists from their science programs as part of a wider joint Earth systems science educational strategy (the sponsoring agencies', GLOBE's, and the proposing programs'). Teams proposing to this solicitation must demonstrate: - A focus on direct connections with major NSF Geosciences and/or Polar Programs and/or NASA Earth-Sun research programs that are related to Earth systems science; - A demonstrable benefit to GLOBE and to NSF Geosciences and/or Polar Programs or NASA Earth-Sun education goals (providing access to program researchers and data, working with GLOBE in setting up campaigns where possible, using tested GLOBE or non-GLOBE protocols to the greatest extent possible, actively participating in the wider GLOBE community including schools, among other goals); - An international component; - How the existing educational efforts of the large science program will coordinate with GLOBE; - An Earth systems science education focus, rather than a GLOBE protocol-support focus; - A rigorous evaluation and assessment component that will collaborate with the Geosciences Education assessment contractor and with the GLOBE Office's evaluation and assessment activities; and - Contact and discussions with the GLOBE Office regarding understandings of roles and responsibilities. The following link is a PDF document with full explanation of the GLOBE Program's new direction.
The NSF/RANN FY 1975 program for geothermal resources research and technology
NASA Technical Reports Server (NTRS)
Kruger, P.
1974-01-01
The specific goal of the NSF geothermal program is the rapid development by industry of the nation's geothermal resources that can be demonstrated to be commercially, environmentally and socially acceptable as alternate energy sources. NSF, as the lead agency for the federal geothermal energy research program, is expediting a program which encompasses the objectives necessary for significant utilization. These include: acceleration of exploration and assessment methods to identify commercial geothermal resources; development of innovative and improved technology to achieve economic feasibility; evaluation of policy options to resolve environmental, legal, and institutional problems; and support of experimental research facilities for each type of geothermal resource. Specific projects in each of these four objective areas are part of the NSF program for fiscal year 1975.
Polar advisory committee focuses on NSF realignment
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-11-01
With the U.S. National Science Foundation's (NSF) realignment that moves the agency's Office of Polar Programs (OPP) back to the Directorate for Geosciences (GEO), "the emphasis on the importance of the polar program at NSF doesn't change," NSF director Subra Suresh reassured members of the federal Advisory Committee on Polar Programs during a committee meeting on 5 November. "The polar program in its entirety stays as the same entity. Nothing changes," he told committee members, regarding the realignment that began on 1 October (see Eos, 93(43), 427, doi:10.1029/2012EO430003). "Nothing changes in terms of our commitment to the polar program. Nothing changes in terms of infrastructure support. Nothing changes in terms of people in the polar program speaking for the polar program to the external world and internally. And nothing changes in terms of how individual scientists interact with the polar program."
The Structures of Fibronectin Adsorbed on Polyelectrolyte Thin Films
NASA Astrophysics Data System (ADS)
Shin, Kwanwoo; Satija, Sushil; Fang, Xiao-Hua; Li, Bin-Quan; Nadine, Pernodet; Miriam, Rafailovich; Sokolov, Jonathan; Arach, Goldar; Roser, Steve
2002-03-01
We have shown that it is possible to form a fibrilar network of fibronectin on a polyelectrolyte polymer film whose dimensions are similar to those reported on the extra cellular matrix. The fibronectin network was observed to form only when the charge density of the polymer was in excess of the natural charge density of the cell wall. Furthermore, the self-organized fibronectin layer was much thicker than the polymer film, indicating that long ranged interaction may play a key role in the assembly process. It is therefore important to understand the structure of the polymer layer/protein interface. Here we report on a neutron reflectivity study where we explore the structure of the polyelectrolyte layer, in this case sulfonated polystyrene (PSS_x.), with varying degree of sulfonation (x<30%), as a function of sulfur content and counter ion concentration. These results are then correlated with systemic study of the adsorption and the multilayer formation of fibronectin as a function of incubation time for various sulfonation levels of PSS_x. Furthermore, the surface charge on the substrates can be strongly influenced by the presence of salt ions, it is important to understand changes due to electrostatic interactions occurring in the various salt conditions. Complementary X-ray reflection was used to determine the salt density profile associating with the internal ionic polymer matrix. This work was funded in part of the NSF-MRSEC program.
Research Funding Set for NSF, NASA, EPA.
ERIC Educational Resources Information Center
Chemical and Engineering News, 1982
1982-01-01
Funds (1983) for National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA) research programs include $1,092,200,000 (NSF), $5.5 billion (NASA), and $119 million (EPA). NSF's science education activities were raised to $30 million in spite of the Administration's plan to phase…
Nanotribology of charged polymer brushes
NASA Astrophysics Data System (ADS)
Klein, Jacob
Polymers at surfaces, whose modern understanding may be traced back to early work by Sam Edwards1, have become a paradigm for modification of surface properties, both as steric stabilizers and as remarkable boundary lubricants2. Charged polymer brushes are of particular interest, with both technological implications and especially biological relevance where most macromolecules are charged. In the context of biolubrication, relevant in areas from dry eye syndrome to osteoarthritis, charged polymer surface phases and their complexes with other macromolecules may play a central role. The hydration lubrication paradigm, where tenaciously-held yet fluid hydration shells surrounding ions or zwitterions serve as highly-efficient friction-reducing elements, has been invoked to understand the excellent lubrication provided both by ionized3 and by zwitterionic4 brushes. In this talk we describe recent advances in our understanding of the nanotribology of such charged brush systems. We consider interactions between charged end-grafted polymers, and how one may disentangle the steric from the electrostatic surface forces5. We examine the limits of lubrication by ionized brushes, both synthetic and of biological origins, and how highly-hydrated zwitterionic chains may provide extremely effective boundary lubrication6. Finally we describe how the lubrication of articular cartilage in the major joints, a tribosystem presenting some of the greatest challenges and opportunities, may be understood in terms of a supramolecular synergy between charged surface-attached polymers and zwitterionic groups7. Work supported by European Research Council (HydrationLube), Israel Science Foundation (ISF), Petroleum Research Fund of the American Chemical Society, ISF-NSF China Joint Program.
NASA Astrophysics Data System (ADS)
Tsige, Mesfin
While an extensive literature dealing with the structure and dynamics of polymers at surfaces and interfaces exist, there has been a paucity of information regarding the length scale of the influence of the surface on polymer mobility and its dependence on polymer-surface interaction. To address this issue, we have investigated using molecular dynamics simulations the dynamics of PMMA and PS films of similar system sizes on two different surfaces as a function of film thickness, polymer molecular weight, and temperature. The dynamics of the polymer chains in the film on two different surfaces will be discussed in the context of a three-layer model. This work was supported by NSF Grant DMR1410290.
College Faculty-Oriented Programs of the National Science Foundation.
ERIC Educational Resources Information Center
Kormondy, Edward J.
1979-01-01
Describes the contributions of the National Science Foundation (NSF) to the development of college faculty in 1958, 1968, and 1978. The described activities are NSF institutes, faculty research participation, and fellowship programs. (HM)
NASA Astrophysics Data System (ADS)
Kim, C. S.; Osborn, J.; Smith, M.
2014-12-01
Effectively recruiting and engaging community college students in STEM research experiences is an increasingly important goal of the NSF but has not historically been the primary focus of most NSF-REU Site programs. The Summer Undergraduate Research Fellowship in Earth and Environmental Sciences (SURFEES) program at Chapman University, a primarily undergraduate institution in Southern California, is the site of the first NSF-REU program in the NSF's Division of Earth Sciences that selects participants exclusively from local partnering community colleges. Building on and now running parallel with a successful internally-funded summer research program already in place and available only to Chapman undergraduates, the SURFEES program incorporates specific mentor and participant pre-experience training, pre-, mid-, and post-assessment instruments, and programming targeted to the earth and environmental sciences as well as to community college students. Perhaps most importantly, the application, selection and pairing of student participants with faculty mentors was conducted with specific goals of identifying those applicants with the greatest potential for a transformative experience while also meeting self-defined targets of under-represented minority, female, and low-income participants. Initial assessment results of the first participant cohort from summer 2014 and lessons learned for creating/adapting an NSF-REU site to involve community college students will be discussed.
POCA Update: An NSF PAARE Project
NASA Astrophysics Data System (ADS)
Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M., Jr.
2011-01-01
We report on the status of "A Partnership in Observational and Computational Astronomy (POCA)” under the NSF's "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. This partnership includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) and the National Optical Astronomy Observatory. We have reached the midpoint of this 5-year award and discuss the successes, challenges and obstacles encountered to date. Included is a summary of our summer REU program, the POCA graduate fellowship program, faculty research capacity building, outreach activities, increased use of NSF facilities and shared resources. Additional POCA research presentations by the authors are described elsewhere in these proceedings. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory.
International Opportunities and Programs at NSF
NASA Astrophysics Data System (ADS)
Wodarczyk, F.
2006-05-01
The National Science Foundation's Office of International Science and Engineering (OISE) promotes the development of an integrated, Foundation-wide international strategy for international science and engineering activities both inside and outside NSF and manages international programs that are innovative, catalytic, and responsive to a broad range of NSF interests. Specifically, OISE supports programs to expand and enhance leading-edge international research and education opportunities for U.S. scientists and engineers, especially at the early career stage. It works to build and strengthen effective institutional partnerships throughout the global science and engineering research and education community, and it supports international collaborations in NSF's priority research areas. This talk will highlight opportunities for international collaboration for individuals at all levels of their careers, from student to established researcher, with examples of supported programs. Some recent activities focus on bringing together researchers in scientific disciplines and experts in cyberinfrastructure to promote and enable international data collection, manipulation, storage, and sharing via high-speed networks.
Evaluation of NSF's International Research Fellowship Program: Final Report
ERIC Educational Resources Information Center
Martinez, Alina; Epstein, Carter; Parsad, Amanda; Whittaker, Karla
2012-01-01
Among the National Science Foundation's (NSF) postdoctoral programs, the International Research Fellowship Program (IRFP) is unique in its emphasis on providing postdoctoral fellows with international research experiences. Established in 1992, IRFP provides financial support to postdoctoral scientists for a research experience abroad lasting…
Scientific Applications of two U.S. Antarctic Program Projects at NSIDC
NASA Astrophysics Data System (ADS)
Scharfen, G. R.; Bauer, R. J.
2001-12-01
The National Snow and Ice Data Center maintains two Antarctic science data management programs supporting both the efforts of Principal Investigators (PIs), and the science that is funded by the NSF Office of Polar Programs. These programs directly relate to the OPP "Guidelines and Award Conditions for Scientific Data", which identify the conditions for awards and responsibilities of PIs regarding the archival of data, and submission of metadata, resulting from their NSF OPP grants. The U.S. Antarctic Data Coordination Center (USADCC) is funded by NSF to assist PIs as they meet these requirements, and to provide a U.S. focal point for the Antarctic Master Directory, a web-based searchable directory of Antarctic scientific data. The USADCC offers access to free, easy-to-use online tools that PIs can use to create the data descriptions that the NSF policy data requires. We provide advice to PIs on how to meet the data policy requirements, and can answer specific questions on related issues. Scientists can access data set descriptions submitted to the Antarctic Master Directory, by thousands of scientists around the world, from the USADCC web pages. The USADCC website is at http://nsidc.org/NSF/USADCC/. The Antarctic Glaciological Data Center (AGDC) is funded by NSF to archive and distribute data collected by the NSF Antarctic Glaciology Program and related cryospheric investigations. The AGDC contains data sets collected by individual investigators on specific grants, and compiled products assembled from many different PI data sets, published literature, and other sources. Data sets are available electronically and include access to the data, plus useful documentation, citation information about the PI(s), locator maps, derived images and references. The AGDC website is at http://nsidc.org/NSF/AGDC/. The utility of both of these projects for scientists is illustrated by a typical user-driven case study to research, obtain and use Antarctic data for a science application.
CAREER opportunities at the Condensed Matter Physics Program, NSF/DMR
NASA Astrophysics Data System (ADS)
Durakiewicz, Tomasz
The Faculty Early Career Development (CAREER) Program is a Foundation-wide activity, offering prestigious awards in support of junior faculty. Awards are expected to build the careers of teacher-scholars through outstanding research, excellent education and the integration of education and research. Condensed Matter Physics Program receives between 35 and 45 CAREER proposals each year, in areas related to fundamental research of phenomena exhibited by condensed matter systems. Proposal processing, merit review process, funding levels and success rates will be discussed in the presentation. NSF encourages submission of CAREER proposals from junior faculty members from CAREER-eligible organizations and encourages women, members of underrepresented minority groups, and persons with disabilities to apply. NSF/DMR/CMP homepage: https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5666
NASA Technical Reports Server (NTRS)
Boyce, Peter B.; Beichman, Charles A.; Abt, Helmut A.; Bauer, Wendy Hagen; Burbidge, Geoffrey; Cochran, Anita L.; Dorfman, Robert; Harris, Hugh; Havlen, Robert; Jones, Christine
1991-01-01
The number of astronomers has grown by about 40 percent over the past decade. The number of astronomers with jobs in industry, or with long-term, non-tenured, jobs has increased dramatically compared with traditional faculty positions. The increase in the number of astronomers and the declining share of the NSF budget going to astronomy has led to extreme difficulties in the NSF grant program and in support of the National Observatories. In 1989, direct NASA support of astronomers through the grants program exceeds that of NSF, although the total of the NSF grants program over decade far exceeds that of NASA. Access to major new telescopes will be important issue for the 1990s. US astronomers, who once had a monopoly on telescopes larger than 3 meters, will, by the year 2000, have access to just half of the world's optical telescope area.
ERIC Educational Resources Information Center
Abt Associates, Inc., Cambridge, MA.
The National Science Foundation (NSF) supported more than 600 inservice teacher training programs between 1984 and 1989 under its Teacher Enhancement Program (TEP). Two studies were undertaken of TEP: the first was a survey of the 600 Principal Investigators (PIs) who had operated inservice teacher enhancement projects and the second, a survey of…
ERIC Educational Resources Information Center
National Academies Press, 2009
2009-01-01
In 1998, the National Science Foundation (NSF) launched a program of Grants for Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE). These grants were designed for institutions with PhD-granting departments in the mathematical sciences, for the purpose of developing high-quality education programs, at all levels,…
National Science Foundation Grants and Awards for Fiscal Year 1982.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
Provided is a listing of all National Science Foundation (NSF) program grants and contracts awarded in Fiscal Year 1982. The listing is organized by specific NSF programs within these areas: (1) mathematical and physical sciences; (2) engineering; (3) biological, behavioral, and social sciences; (4) astronomical, earth, and ocean sciences…
National Science Foundation. Grants and Awards for Fiscal Year 1981.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
Provided is a listing of all National Science Foundation (NSF) program grants and contracts awarded in Fiscal Year 1981. The listing is organized by specific NSF programs within these areas: (1) mathematical and physical sciences; (2) engineering; (3) biological, behavioral, and social sciences; (4) astronomical, atmospheric, earth, and ocean…
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Directorate for Engineering.
This report presents results of a survey of participants in the National Science Foundation (NSF) Industry-University Cooperative Research Centers program. The program promotes more rapid technological innovation by creating linkages between industry and university scientists. The Centers function as university research groups, with partial…
The 1983-1984 NSF Chautauqua-Type Short Course Program.
ERIC Educational Resources Information Center
Zeitler, William R.; Ogletree, Owen, Jr.
1984-01-01
National Science Foundation (NSF) Chautauqua-type short courses offer undergraduate science teachers the opportunity to absorbe new ideas from highly respected scholars. A complete list of courses, course directors, locations, dates, and registration fees for the 1983-84 program is provided. Subject areas include: instructional composting, cells…
ERIC Educational Resources Information Center
Johnson, Kelli; Weiss, Iris R.
2011-01-01
In 1995, the National Science Foundation (NSF) contracted with principal investigator Iris Weiss and an evaluation team at Horizon Research, Inc. (HRI) to conduct a national evaluation of the Local Systemic Change for Teacher Enhancement program (LSC). HRI conducted the core evaluation under a $6.25 million contract with NSF. This program…
Servoss, Jonathan; Chang, Connie; Fay, Jonathan; Ward, Kevin
2017-04-01
Research produced by medical academicians holds promise for developing into biomedical innovations in therapeutics, devices, diagnostics, and health care information technology; however, the road to biomedical innovation is fraught with risk, including the challenge of moving from basic research insight onto a viable commercialization path. Compounding this challenge is the growing demand on medical academicians to be more productive in their clinical, teaching, and research duties within a resource-constrained environment. In 2014, the University of Michigan (UM) Medical School and College of Engineering codesigned and implemented an accelerated, biomedical-focused version of the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The UM Early Tech Development (ETD) Course, designed for medical academicians exploring the commercial potential of early-stage ideas, covers the NSF I-Corps concept; supports the formation of teams of faculty, graduate, and medical students; and accommodates medical academicians' schedules. From 2014 to 2015, the ETD Course graduated 39 project teams from UM and other institutions. One-third of the teams have continued to pursue their projects, receiving additional funding, engaging industry partners, or enrolling in the NSF I-Corps program. The ETD Course, a potential pipeline to the NSF I-Corps program, captures a target audience of medical academicians and others in academic medicine. To better understand the long-term effects of the course and its relationship to the NSF I-Corps program, the authors will conduct a study on the careers of all ETD Course graduates, including those who have enrolled in NSF I-Corps versus those who have not.
Chang, Connie; Fay, Jonathan; Ward, Kevin
2017-01-01
Problem Research produced by medical academicians holds promise for developing into biomedical innovations in therapeutics, devices, diagnostics, and health care information technology; however, the road to biomedical innovation is fraught with risk, including the challenge of moving from basic research insight onto a viable commercialization path. Compounding this challenge is the growing demand on medical academicians to be more productive in their clinical, teaching, and research duties within a resource-constrained environment. Approach In 2014, the University of Michigan (UM) Medical School and College of Engineering codesigned and implemented an accelerated, biomedical-focused version of the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The UM Early Tech Development (ETD) Course, designed for medical academicians exploring the commercial potential of early-stage ideas, covers the NSF I-Corps concept; supports the formation of teams of faculty, graduate, and medical students; and accommodates medical academicians’ schedules. Outcomes From 2014 to 2015, the ETD Course graduated 39 project teams from UM and other institutions. One-third of the teams have continued to pursue their projects, receiving additional funding, engaging industry partners, or enrolling in the NSF I-Corps program. Next Steps The ETD Course, a potential pipeline to the NSF I-Corps program, captures a target audience of medical academicians and others in academic medicine. To better understand the long-term effects of the course and its relationship to the NSF I-Corps program, the authors will conduct a study on the careers of all ETD Course graduates, including those who have enrolled in NSF I-Corps versus those who have not. PMID:28351064
National Science Foundation Fiscal Year 1986 Awards (by State and NSF Directorate).
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
Provided is a listing of National Science Foundation (NSF) program grants and contracts awarded in Fiscal Year 1986. Data, current as of Feburary 13, 1987, are arranged as follows: (1) by state, with totals for each state (foreign countries are alphabetized with states); (2) by NSF Directorate, with award and dollar totals for each NSF…
Polyethylene oxide hydration in grafted layers
NASA Astrophysics Data System (ADS)
Dormidontova, Elena; Wang, Zilu
Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).
Polymer Architecture Effects in Confined Geometry: Molecular Dynamics Simulation Study
NASA Astrophysics Data System (ADS)
Wijesinghe, Sidath; Perahia, Dvora; Grest, Gary
Luminescent rigid polymers confined into nanoparticles, or polydots, are emerging as a promising tool for nano medicine. The constrained architecture of a rigid backbone trapped in nano-dimensions results in photophysics that differs from that of spontaneously assembled rigid polymers. Incorporating ionizable functionalities in the polymers, often required for therapeutics, impacts the polymer conformation in solution. Here we report fully atomistic molecular dynamics simulations on the structure of dialkyl p-phenylene ethynylene confined into polydots. We find that the structure and thermal stability of polydots are sensitive to both the molecular weight n and the carboxylation fraction f. At room temperature , polydots remain confined regardless of n and f . However, as temperature is increased, polydots with lower n or f rearrange whereas polydots with higher n or fremain confined, though no direct clustering of the ionic groups was observed. NSF CHE 1308298 is acknowledged.
ERIC Educational Resources Information Center
Wilson, Zakiya S.; Iyengar, Sitharama S.; Pang, Su-Seng; Warner, Isiah M.; Luces, Candace A.
2012-01-01
Increasing college degree attainment for students from disadvantaged backgrounds is a prominent component of numerous state and federal legislation focused on higher education. In 1999, the National Science Foundation (NSF) instituted the "Computer Science, Engineering, and Mathematics Scholarships" (CSEMS) program; this initiative was designed to…
Gender Differences in Major Federal External Grant Programs. Technical Report Summary
ERIC Educational Resources Information Center
Hosek, Susan D.; Cox, Amy G.; Ghosh-Dastidar, Bonnie; Kofner, Aaron; Rampal, Nishal; Scott, Jon; Berry, Sandra H.
2005-01-01
The Wyden amendment to the National Science Foundation (NSF) Authorization Act of 2002 sought to determine whether federally funded educational programs other than sports comply with Title IX, which prohibits gender discrimination. At the request of NSF, this report analyzes administrative data from fiscal years 2001 through 2003 describing the…
Gender Differences in Major Federal External Grant Programs. Technical Report
ERIC Educational Resources Information Center
Hosek, Susan D.; Cox, Amy G.; Ghosh-Dastidar, Bonnie; Kofner, Aaron; Ramphal, Nishal; Scott, Jon; Berry, Sandra H.
2005-01-01
The Wyden amendment to the National Science Foundation (NSF) Authorization Act of 2002 sought to determine whether federally funded educational programs other than sports comply with Title IX, which prohibits gender discrimination. At the request of NSF, this report analyzes administrative data from fiscal years 2001 through 2003 describing the…
National Medal of Science nominations sought
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-03-01
The U.S. National Science Foundation (NSF) is accepting nominations for the 2013 National Medal of Science until 1 April 2013. Congress established the medal in 1959 as a presidential award for individuals "deserving of special recognition by reason of their outstanding contributions to knowledge in the physical, biological, mathematical, or engineering sciences." Later, Congress expanded the recognition to include the social and behavioral sciences. NSF notes, "We are especially interested in identifying women, members of minority groups, and persons with disabilities for consideration." More information is available at http://www.nsf.gov/od/nms/medal.jsp and http://www.nsf.gov/od/nms/nsf_2013nationalmedalofscience_callfornominations.pdf. For more details, contact the Medal of Science program manager at nms@nsf.gov or 703-292-8040.
A theory for protein dynamics: Global anisotropy and a normal mode approach to local complexity
NASA Astrophysics Data System (ADS)
Copperman, Jeremy; Romano, Pablo; Guenza, Marina
2014-03-01
We propose a novel Langevin equation description for the dynamics of biological macromolecules by projecting the solvent and all atomic degrees of freedom onto a set of coarse-grained sites at the single residue level. We utilize a multi-scale approach where molecular dynamic simulations are performed to obtain equilibrium structural correlations input to a modified Rouse-Zimm description which can be solved analytically. The normal mode solution provides a minimal basis set to account for important properties of biological polymers such as the anisotropic global structure, and internal motion on a complex free-energy surface. This multi-scale modeling method predicts the dynamics of both global rotational diffusion and constrained internal motion from the picosecond to the nanosecond regime, and is quantitative when compared to both simulation trajectory and NMR relaxation times. Utilizing non-equilibrium sampling techniques and an explicit treatment of the free-energy barriers in the mode coordinates, the model is extended to include biologically important fluctuations in the microsecond regime, such as bubble and fork formation in nucleic acids, and protein domain motion. This work supported by the NSF under the Graduate STEM Fellows in K-12 Education (GK-12) program, grant DGE-0742540 and NSF grant DMR-0804145, computational support from XSEDE and ACISS.
Astronomy education awards in the IUSE:EHR portfolio
NASA Astrophysics Data System (ADS)
Lee, Kevin M.
2017-01-01
Improving Undergraduate STEM Education (IUSE) is a National Science Foundation (NSF) program that addresses immediate challenges and opportunities facing undergraduate STEM education. IUSE endeavors to support faculty as they incorporate educational research results into the classroom and advance our understanding of effective teaching and learning. Note that IUSE is an NSF-wide framework. This paper will focus upon IUSE:EHR - the IUSE program administered from NSF's Education and Human Resources Directorate (EHR) through the Division of Undergraduate Education (DUE). Other branches of IUSE operating within this framework include IUSE:RED in the Engineering Directorate and IUSE:GEOPATHS in the Geosciences Directorate.
Effects of supercritical carbon dioxide on immobile bound polymer chains on solid substrates
NASA Astrophysics Data System (ADS)
Sen, Mani; Asada, Mitsunori; Jiang, Naisheng; Endoh, Maya K.; Akgun, Bulent; Satija, Sushil; Koga, Tadanori
2013-03-01
Adsorbed polymer layers formed on flat solid substrates have recently been the subject of extensive studies because it is postulated to control the dynamics of technologically relevant polymer thin films, for example, in lithography. Such adsorbed layers have been reported to hinder the mobility of polymer chains in thin films even at a large length scale. Consequently, this bound layer remains immobile regardless of processing techniques (i.e. thermal annealing, solvent dissolution, etc). Here, we investigate the use of supercritical carbon dioxide (scCO2) as a novel plasticizer for bound polystyrene layers formed on silicon substrates. In-situ swelling and interdiffusion experiments using neutron reflectivity were performed. As a result, we found the anomalous plasticization effects of scCO2 on the bound polymer layers near the critical point where the anomalous adsorption of CO2 molecules in polymer thin films has been reported previously. Acknowledgement: We acknowledge the financial support from NSF Grant No. CMMI-084626.
NAS Panel endorses science center concept
NASA Astrophysics Data System (ADS)
Science and technology centers, as proposed by President Ronald Reagan in his January 1987 State of the Union message, could make “significant contributions to science and to the nation's economic competitiveness,” according to a new report by a National Academy of Sciences (NAS) panel. What will be necessary to realize these contributions, the panel cautioned, are proper management, adequate resources, and, “above all, the selection of programs for which the centers are the most effective form of organization.”NSF plans to support science and technology centers, beginning October 1, 1988, which is the start of fiscal year 1988. NSF requested guidance from the NAS panel in implementing the program. Although other government agencies will participate in the program, NSF will play the primary role.
National Science Foundation proposed budget could see another increase
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-03-01
President Barack Obama's proposed budget for the U.S. National Science Foundation (NSF) for fiscal year (FY) 2013 would provide the agency with $7.37 billion, a $340 million increase, 4.8% above the FY 2012 estimated budget under which NSF has been operating. NSF has fared well during previous budget cycles, and the Obama administration's budget document for FY 2013 states that “NSF plays a critical role in the implementation of the President's Plan for Science and Technology.” With federal agencies operating under tighter budgets in a difficult financial climate, NSF director Subra Suresh said the budget includes substantial increases for core programs, frontier science, education, and human resources. “I am confident that NSF merits the $7.4 billion the president proposed. I'm optimistic Congress will approve the budget,” Suresh said at a 13 February NSF budget briefing.
NASA Astrophysics Data System (ADS)
Farsiani, Yasaman; Elbing, Brian
2017-11-01
High molecular weight polymer solutions in wall-bounded flows can reduce the local skin friction by as much as 80%. External flow studies have typical focused on injection of polymer within a developing turbulent boundary layer (TBL), allowing the concentration and drag reduction level to evolve with downstream distance. Modification of the log-law region of the TBL is directly related to drag reduction, but recent results suggest that the exact behavior is dependent on flow and polymer properties. Weissenberg number and the viscosity ratio (ratio of solvent viscosity to the zero-shear viscosity) are concentration dependent, thus the current study uses a polymer ocean (i.e. a homogenous concentration of polymer solution) with a developing TBL to eliminate uncertainty related to polymer properties. The near-wall modified TBL velocity profiles are acquired with particle image velocimetry. In the current presentation the mean velocity profiles and the corresponding flow (Reynolds number) and polymer (Weissenberg number, viscosity ratio, and length ratio) properties are reported. Note that the impact of polymer degradation on molecular weight will also be quantified and accounted for when estimating polymer properties This work was supported by NSF Grant 1604978.
NASA Astrophysics Data System (ADS)
Weller, R. A.; Bell, R. E.; Geller, L.
2015-12-01
A Committee convened by the National Academies of Sciences, Engineering, and Medicine carried out a study (at the request of NSF's Division of Polar Programs) to develop a strategic vision for the coming decade of NSF's investments in Antarctic and Southern Ocean research. The study was informed by extensive efforts to gather ideas from researchers across the United States. This presentation will provide an overview of the Committee's recommendations—regarding an overall strategic framework for a robust U.S. Antarctic program, regarding the specific areas of research recommended as highest priority for NSF support, and regarding the types of infrastructure, logistical support, data management, and other critical foundations for enabling and adding lasting value to the proposed research .
James, Sylvia M.; Singer, Susan R.
2016-01-01
The National Science Foundation (NSF) has a long history of investment in broadening participation (BP) in science, technology, engineering, and mathematics (STEM) education. A review of past NSF BP efforts provides insights into how the portfolio of programs and activities has evolved and the broad array of innovative strategies that has been used to increase the participation of groups underrepresented in STEM, including women, minorities, and persons with disabilities. While many are familiar with these long-standing programmatic efforts, BP is also a key component of NSF’s strategic plans, has been highlighted in National Science Board reports, and is the focus of ongoing outreach efforts. The majority of familiar BP programs, such as the Louis Stokes Alliances for Minority Participation (now 25 years old), are housed in the Directorate for Education and Human Resources. However, fellowship programs such as the Graduate Research Fellowships and Postdoctoral Research Fellowships under the Directorate for Biological Sciences (and parallel directorates in other STEM disciplines) are frequently used to address underrepresentation in STEM disciplines. The FY2016 and FY2017 budget requests incorporate funding for NSF INCLUDES, a new cross-agency BP initiative that will build on prior successes while addressing national BP challenges. NSF INCLUDES invites the use of innovative approaches for taking evidence-based best practices to scale, ushering in a new era in NSF BP advancement. PMID:27587853
Integrating Research and Education in NSF's Office of Polar Programs
NASA Astrophysics Data System (ADS)
Wharton, R. A.; Crain, R. D.
2003-12-01
The National Science Foundation invests in activities that integrate research and education, and that develop reward systems to support teaching, mentoring and outreach. Effective integration of research and education at all levels can infuse learning with the excitement of discovery. It can also ensure that the findings and methods of research are quickly and effectively communicated in a broader context and to a larger audience. This strategy is vital to the accomplishment of NSF's strategic goals of ensuring a world-class science and engineering workforce, new knowledge across the frontiers of science and engineering, and the tools to get the job done efficiently and effectively. The NSF's Office of Polar Programs sponsors educational projects at all levels of learning, making full use of the variety of disciplinary and interdisciplinary studies in the polar regions to attract and invigorate students. An array of efforts from the Arctic and Antarctic scientific communities link research activities with education. There has been an advance from the beneficial but isolated impacts of individual researcher visits to K-12 classrooms to large-scale developments, such as field research experiences for teachers and undergraduate students, online sharing of polar field experiences with rural classrooms, the institution of interdisciplinary graduate research programs through NSF initiatives, and opportunities for minority and underrepresented groups in polar sciences. The NSF's criterion for evaluating proposals based upon the broader impacts of the research activity has strengthened efforts to link research and education, resulting in partnerships and innovations that infuse research into education from kindergarten through postdoctoral studies and reaching out to the general public. In addition, the Office of Polar Programs partners with other directorates at NSF to broaden OPP's efforts and benefit from resources and experience in the Education and Human Resources Directorate, the Geosciences Education program, the Environmental Research and Education program and others. This presentation will provide an overview of the direction of science education in the Office of Polar Programs and highlight some important and long-lasting ventures. It is intended to encourage the Arctic and Antarctic scientific communities to look for additional avenues to bridge their research with education.
ERIC Educational Resources Information Center
James, Sylvia M.; Singer, Susan R.
2016-01-01
The National Science Foundation (NSF) has a long history of investment in broadening participation (BP) in science, technology, engineering, and mathematics (STEM) education. A review of past NSF BP efforts provides insights into how the portfolio of programs and activities has evolved and the broad array of innovative strategies that has been…
Report: NSF Instrumentation and Laboratory Improvement Grants in Chemistry
NASA Astrophysics Data System (ADS)
1997-01-01
The 1996 awards in chemistry under the Instrumentation and Laboratory Improvement Program (ILI) of the Division of Undergraduate Education (DUE) have been announced and are listed below. The ILI program provides matching funds in the range of 5,000 to 100,000 for purchasing equipment for laboratory improvement. Since the recipient institution must provide matching funds equaling or exceeding the NSF award, the supported projects range in cost from 10,000 to over 200,000. The 311 chemistry proposals requesting 13 million constituted 21% of the total number of proposals submitted to the ILI program. A total of 3.9 million was awarded in support of 110 projects in chemistry. The instruments requested most frequently were high field NMRs, GC/MS instruments, computers for data analysis, and FT-IRs; next most commonly requested were UV-vis spectrophotometers, followed by HPLCs, lasers, computers for molecular modeling, AAs, and GCs. In addition, one award was made this year in chemistry within the Leadership in Laboratory Development category. The next deadline for submission of ILI proposals is November 14, 1997. Guidelines for the preparation of proposals are found in the DUE Program Announcement (NSF 96-10), which may be obtained by calling (703) 306-1666 or by e-mail: undergrad@nsf.gov. Other information about DUE programs and activities and abstracts of the funded proposals can be found on the DUE Home Page at http://www.ehr.nsf.gov/EHR/DUE/start.htm. We thank Sandra D. Nelson, Science Education Analyst in DUE, for assistance in data gathering.
ERIC Educational Resources Information Center
Cutright, Teresa J.; Evans, Edward
2016-01-01
The last year of a National Science Foundation (NSF) funded scholarship program was used to provide pseudo-formal peer mentoring activities to engineering, mathematics, and science undergraduates. A one-credit class was used to afford time for peer mentors and mentees to interact. During the fall semester, seniors augmented each week's topics with…
Why fibers are better turbulent drag reducing agents than polymers
NASA Astrophysics Data System (ADS)
Boelens, Arnout; Muthukumar, Murugappan
2016-11-01
It is typically found in literature that fibers are not as effective as drag reducing agents as polymers. However, for low concentrations, when adding charged polymers to either distilled or salt water, it is found that polymers showing rod-like behavior are better drag reducing agents than polymers showing coil-like behavior. In this study, using hybrid Direct Numerical Simulation with Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we are able to explain why charged polymers showing rod-like behavior are better drag reducing agents than polymers showing coil-like behavior. Additionally, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers. This research was supported by NSF Grant No. DMR-1404940 and AFOSR Grant No. FA9550-14-1-0164.
Polymer Nanocomposite Films: Dispersion of Polymer Grafted Nanorods and Optical Properties
NASA Astrophysics Data System (ADS)
Composto, Russell
2013-03-01
The thermodynamic factors that affect the dispersion of polymer-brush grafted gold nanorods (NR) in polymer matrix films have been studied by experiment and theory. When brush and matrix have a favorable interaction, such as poly(ethylene oxide) (PEO)-NR/ poly(methyl methacrylate) (PMMA) and polystyrene (PS)-NR / poly(2,6-dimethyl-p-phenylene oxide) (PPO), nanorods are uniformly dispersed. For PEO-NRs in PMMA, the NRs are regularly spaced and well dispersed, independent of the ratio of the degree of polymerization of the matrix (P) to that of the brush (N), namely P/N. As the NR volume fraction increases, the local orientation of the nanorods increases, whereas the macroscopic orientation remains isotropic. When the brush and matrix are similar (i.e., PS-NR / PS and PEO-NR / PEO), the nanorods randomly disperse for P/N < 2 (i.e., wet brush), but align side-by-side in aggregates for P/N > 2. UV-visible spectroscopy and discrete dipole approximation (DDA) calculations demonstrate that surface plasmon coupling leads to a blue shift in the longitudinal surface plasmon resonance (LSPR) as P/N increases. For P/N > 2, self-consistent field theory (SCFT) calculations and Monte Carlo (MC) simulations indicate that nanorod aggregation is caused by depletion-attraction forces. Starting with a dry brush system, namely, a PS matrix where P/N = 30, these attractive forces can be mediated by adding a compatibilizing agent (e.g., PPO) that drives the NRs to disperse. Finally, dry and wet brush behavior is observed for NR aspect ratios varying from 2.5 to 7. However, compared at the same volume fraction, long rods for the dry case exhibit much better local order than lower aspect ratio nanorods, suggesting that long rods may exhibit nematic-like ordering at higher loadings. NSF Polymer and CEMRI Programs.
NASA Astrophysics Data System (ADS)
1999-07-01
New Source of Information from Advertisers The Journal has a new feature effective with the June 1999 issue. If you would like additional information about our advertisers or their products, the quickest and easiest way to get it is via JCE Online: go to http://jchemed.chem.wisc.edu click on Ad Index This will take you to the list of advertisers, each conveniently linked to their home page. When you do contact our advertisers, be sure to tell them that you saw their ad in the Journal of Chemical Education. This is important to them, and to us. JCE Software Receives Award The Journal recently received notice that JCE Software portion of JCE Online has been selected as a Links2Go Key Resource for the topic of chemistry software. According to Links2Go (www.links2go.com), JCE Software's home page is one of the top fifty most accessed online resources in the area of chemistry software (currently ranked 45). Thanks to all of you who have visited JCE Online and the JCE Software area to make this possible. If you haven't visited the site yet, you can go there directly (http://jchemed.chem.wisc.edu/JCESoft/index.html ) as well as via our JCE Online home page. You will be greeted with a short video of nitrogen triiodide exploding and be able to get a wealth of information about our latest releases, software, CD-ROMs/Video, student resources, materials for authors and software developers. You can see color graphics from our CD-ROMs, video, and software,... Actually, if you are familiar with our Catalog, this is much better. 1999 Welch Chemistry Prize Richard N. Zare, the Marguerite Blake Wilbur Professor of Natural Science at Stanford University, has been named the 1999 recipient of the Welch Award in Chemistry for his lifetime achievements in physical and analytical chemistry. Zare's interests focus on the development and application of lasers and other novel instruments to explore chemical frontiers, ranging from molecules to chemical processes, from the inside of cells to the inside of meteorites. Zare and colleague Andrew Alexander are contributors to the Journal's Viewpoints series, sponsored by the Camille and Henry Dreyfus Foundation: "Anatomy of Elementary Chemical Reactions", JCE, 1998, 75, 1105. The Welch Award in Chemistry has been given by the Welch Foundation since 1972 to honor lifetime achievements in the field. Zare will be honored and presented with a $300,000 prize and gold medallion during the Foundation's annual award banquet held in Houston in October. NEACT Conference: Chemistry of Materials and Material Science The 61st Summer Conference of NEACT, the New England Association of Chemistry Teachers, will be held from Monday, August 9, through Thursday, August 12, at Massachusetts Institute of Technology in Cambridge, MA. The four-day conference will feature an exploration of the chemistry of materials and material science and effective methods of presenting these in the classroom and laboratory. The keynote address is "Teaching Solid State Chemistry at MIT" by Ron Latanision of MIT's Department of Material Science. Other presentations include "Driving Force", James Livingston; "The Colorful Nanoworld", Moungi Bawendi; "Molecular Wire-Based Amplification in Chemical Sensors", Timothy Swager; "Putting Solids in the Foundation", Arthur Ellis, George Lisensky, and Karen Nordell; "Miracle Materials", Valerie Wilcox; "Teaching About Polymers to Chemistry Students", Richard Stein; and "Using Software in Teaching About Polymers to Chemistry Students", William Vining. There will be a selection of workshops on the conference theme as well. The conference is open to all. The program chairperson is Peter J. Nassiff, Science Department Chairperson at Burlington High School. For further information contact Nassiff at 80 Gregory Road, Framingham, MA 01701; email: pnassiff@massed.net. Call for Symposia, Papers, & Workshops: 16th BCCE The Web site for the 16th Biennial Conference on Chemical Education, July 30-August 3, 2000, at the University of Michigan in Ann Arbor, is up and running at http://www.umich.edu/ bcce. Organizers of symposia and workshops as well as proposers of papers are invited to submit their ideas over the Web or in writing to the Program Chair, Brian Coppola; phone: 734/764-7329; email: bcoppola@umich.edu, or to the Workshop Coordinator, Evelyn Jackson; phone: 517/355-9715 ext 204; email: ejackson@argus.cem.msu.edu. For general information please contact Seyhan Ege, phone: 734/764-7340, email: snege@umich.edu. ChemCareers Debuts on ChemCenter The ACS ChemCenter website has recently launched a moderated career forum where chemists, chemical engineers, scientists in related fields, students, and other interested persons pose their questions related to career development in the chemical sciences. At the site you can hear what your peers think about preparing for, launching, maintaining, and advancing a career in chemistry. You can bring questions, share experiences, or offer advice. The forum is moderated by ACS career consultants who offer their expert opinions as a part of the discussion. The address is http://www.chemcenter.org. Click on the "discussions" hypertext link under "Discover Chemistry." Green Chemistry The closing date for grant funding from the EPA/NSF Technologies for a Sustainable Environment Solicitation is July 26, 1999. For specific grant information, visit the Web site www.nsf.gov/pubs/1999/nsf99108/nsf99108.txt. For general grant information about green chemistry, go to www.epa.gov/greenchemistry, es.epa.gov/ncerqa/grants, and www.nsf.gov; phone: 202/260-2659. Grad Resources Hotline A national crisis hotline sponsored by Grad Resources was set up effective April 1999. Graduate students who face overwhelming stress or despair may call 1/877-GRAD-HLP, toll-free, 24 hours a day, every day, to speak anonymously with a counselor specially trained in graduate issues. Grad Resources is a non-profit organization serving graduate students. For further references and information, visit the Grad Resources Website at www.gradresources.org or contact Nick Repak at 1-800/867-0188. Proposal Deadlines National Science Foundation Division of Undergraduate Education (DUE)
ERIC Educational Resources Information Center
American Chemical Society, Columbus, OH. Chemical Abstracts Service.
This Annual Report describes in detail the work performed during the first year of Task III of Contract NSF-C414 and the present status of Task III work. The programs and achievements described constitute the first significant efforts to develop a user-oriented, cooperative program between major secondary scientific and technical information…
Structure and Dynamics Ionic Block co-Polymer Melts: Computational Study
NASA Astrophysics Data System (ADS)
Aryal, Dipak; Perahia, Dvora; Grest, Gary S.
Tethering ionomer blocks into co-polymers enables engineering of polymeric systems designed to encompass transport while controlling structure. Here the structure and dynamics of symmetric pentablock copolymers melts are probed by fully atomistic molecular dynamics simulations. The center block consists of randomly sulfonated polystyrene with sulfonation fractions f = 0 to 0.55 tethered to a hydrogenated polyisoprene (PI), end caped with poly(t-butyl styrene). We find that melts with f = 0.15 and 0.30 consist of isolated ionic clusters whereas melts with f = 0.55 exhibit a long-range percolating ionic network. Similar to polystyrene sulfonate, a small number of ionic clusters slow the mobility of the center of mass of the co-polymer, however, formation of the ionic clusters is slower and they are often intertwined with PI segments. Surprisingly, the segmental dynamics of the other blocks are also affected. NSF DMR-1611136; NERSC; Palmetto Cluster Clemson University; Kraton Polymers US, LLC.
NSF Geosciences Committee Focuses on Program and Budget Issues
NASA Astrophysics Data System (ADS)
Showstack, Randy
2014-04-01
The spring meeting of the National Science Foundation's (NSF) Advisory Committee for the Geosciences (AC GEO), held on 3-4 April, was filled with firsts. It was the first time that AC GEO met as a body after merging with NSF's polar advisory committee in 2012. In addition, it was the first time that France Córdova, sworn in as the new NSF director on 31 March and sworn in again during a special ceremony in the atrium at NSF headquarters on 3 April, met with AC GEO in her new capacity. Córdova, who is president emerita of Purdue University, previously was a distinguished professor of physics and astronomy at the University of California, Riverside, and NASA chief scientist.
NASA Astrophysics Data System (ADS)
Wells, Craig; Hulings, Zachery; Melnikov, Dmitriy; Gracheva, Maria
We study a nanopore inside a silicon dioxide membrane submerged in a KCl solution with a negatively charged polymer chain of varying lengths whose movement is described using Brownian dynamics. The polymer is attached to a molecule with a radius larger than that of the nanopore's which acts as a molecular stop, allowing the chain to thread the nanopore but preventing it from translocating. We found that the polymer chain's variation of movement along the nanopore decreased when increasing applied biases and chain lengths for portions of the chain closest to the molecular stop. The chain displacement within the pore is also compared to a freely translocating polymer where preliminary results show the free polymer having a greater variation in the radial direction. Overall, our preliminary results indicate that the radial direction of the polymer chain is dominated by the confinement in the narrow nanopore with restrictions imposed by the molecular stop and bias playing a lesser role. Understanding the interaction behavior of the polymer chain-stop molecule may lead to methods that decrease movement variation, facilitating an improvement on characterizing and identification of molecules. NSF DMR and CBET Grant No. 1352218.
Nanostructures and nanosecond dynamics at the polymer/filler interface
NASA Astrophysics Data System (ADS)
Koga, Tad; Barkley, Deborah; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Taniguchi, Takashi
We report in-situ nanostructures and nanosecond dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in polymer solutions (from dilute to concentrated solutions). The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene (a good solvent) to label the BPL for ``contrast-matching'' small-angle neutron scattering (SANS) and neutron spin echo (NSE) techniques. The SANS results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. In addition, the NSE results show that the dynamics of the swollen bound chains in the polymer solutions can be explained by the collective dynamics, the so-called ``breathing mode''. Intriguingly, it was also indicative that the collective dynamics is independent of the polymer concentrations and is much faster than that predicted from the solution viscosity. We will discuss the mechanism at the bound polymer-free polymer interface at the nanometer scale. T.K. acknowledges the financial support from NSF Grant (CMMI-1332499).
Band-edge enhancement of magneto-optical rotation in a 1-d polymer lattice
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Andrews, James; Mao, Guilin; Bishop, Aaron; Comeau, Kyle; Livingston, Ryan; Shakya, Bijayandra
2010-04-01
Faraday rotation, the rotation of the polarization of light propagating along an applied magnetic field, can be enhanced by modifying the dispersion relationship. We develop the theory and computational tools necessary to understand the enhancement measured in recent experiments conducted at YSU using a multilayer of polystyrene and PMMA prepared by the CLiPS NSF Center at CWRU.
Thickness Dependence of Failure in Ultra-thin Glassy Polymer Films
NASA Astrophysics Data System (ADS)
Bay, Reed; Shimomura, Shinichiro; Liu, Yujie; Ilton, Mark; Crosby, Alfred
The physical properties of polymer thin films change as the polymer chains become confined. Similar changes in mechanical properties have been observed, though these critical properties have only been explored a limited extent and with indirect methods. Here, we use a recently developed method to measure the complete uniaxial stress strain relationship of polymer thin films of polystyrene films (PS, Mw =130kg/mol, 490kg/mol, and 853kg/mol) as a function of thickness (20 nm-220nm). In this method, we hold a `dog-bone' shaped film on water between a flexible cantilever and a movable rigid boundary, measuring force-displacement from the cantilever deflection. From our measurements, we find that the modulus decreases as the PS chains become confined. The PS thin films exhibit ``ideal perfectly plastic'' behavior due to crazing, which differs from the typical brittle response of bulk PS. The draw stress due to crazing decreases with film thickness. These results provide new fundamental insight into how polymer behavior is altered due to structural changes in the entangled polymer network upon confinement. NSF DMR 1608614.
Fabrication and Theoretical Evaluation of Microlens Arrays on Layered Polymers
NASA Astrophysics Data System (ADS)
Oder, Tom; McMaster, Michael; Merlo, Corey; Bagheri, Camron; Reakes, Clayton; Petrus, Joshua; Li, Dingqiang; Crescimanno, Michael; Andrews, James
2014-03-01
Arrays of microlens were fabricated on nano-layered polymers using reactive ion etching. Semi hemispherical patterns with diameters ranging from 20 to 80 micrometers were first formed on a thick photoresist film that was spin-coated on the layered polymers using standard photolithographic process employing a gray scale glass mask. These patterns were then transferred to the polymers using dry etching in a reactive ion etching system. The optimized etch condition included a mixture of sulfur hexafluoride and oxygen, which resulted in an etch depth of 5 micrometers and successfully exposed the individual sub-micron thick layers in the polymers. Physical characterization of the microlens arrays was done using atomic force microscope and scanning electron microscope. We combine basic physical optics theory with the transfer matrix analysis of optical transport in nano-layered polymers to address subtleties in the chromatic response of microlenses made from these materials. In particular this method explains the len's behavior in and around the reflection band of the materials. We wish to acknowledge support of funds from NSF through its Center for Layered Polymeric Systems (CLiPS) at Case Western Reserve University.
Compatibilizing Bulk Polymer Blends by Using Organoclays
NASA Astrophysics Data System (ADS)
Si, Mayu; Gersappe, Dilip; Zhang, Wenhua; Ade, Harald; Rafailovich, Miriam; Sokolov, Jonathan; Rudomen, Gregory; Schwartz, Bradley; Fisher, Robert
2004-03-01
We investigated the compatiblizing performance of organoclays on melt mixed binary and tertiary polymer blends, such as, PS/PMMA, PC/SAN, PS/PMMA/PVC and PS/PMMA/PE. These polymer blends were characterized by TEM, STXM, DSC and DMA. TEM and STXM photographs show that the addition of organoclays into polymer blends drastically reduces the average domain size of the component phases. And the organoclay goes to the interfacial region between the different polymers and effectively slows down the domain size increasing during high temperature annealing. DMA and DSC results show the effect of organoclays on the mechanical properties and glass transitions temperature, which indicates the compatibilization on the molecular level. The generalized compatibilization induced by the nanoscale fillers for blends can be explained in terms of mean field models where the reduction of interfacial tension induced by in-situ grafting is counterbalanced by the increased bending energy due to the rigidity of the filler. This in turn can be shown to be a function of the degree of exfoliation, aspect ratio, and polymer filler interactions. Supported by NSF funded MRSEC at Stony Brook
Applications of Molecular and Materials Modeling
2002-01-01
MSI, GdR 12090). In principle, the NSF GOALI program facilitates exchanges of people, although the paperwork and difficulty of moving people with...industrial, and national-laboratory collaborations. The NSF GOALI program was seen as a step in the right direction, limited mostly by the difficulty...cyclododecane); methyl aluminoxane models (Simeral GOALI project at LSU with Randall Hall and NIST ATP project) Drs. Gary Zhao and Larry S. Simeral http
James, Sylvia M; Singer, Susan R
The National Science Foundation (NSF) has a long history of investment in broadening participation (BP) in science, technology, engineering, and mathematics (STEM) education. A review of past NSF BP efforts provides insights into how the portfolio of programs and activities has evolved and the broad array of innovative strategies that has been used to increase the participation of groups underrepresented in STEM, including women, minorities, and persons with disabilities. While many are familiar with these long-standing programmatic efforts, BP is also a key component of NSF's strategic plans, has been highlighted in National Science Board reports, and is the focus of ongoing outreach efforts. The majority of familiar BP programs, such as the Louis Stokes Alliances for Minority Participation (now 25 years old), are housed in the Directorate for Education and Human Resources. However, fellowship programs such as the Graduate Research Fellowships and Postdoctoral Research Fellowships under the Directorate for Biological Sciences (and parallel directorates in other STEM disciplines) are frequently used to address underrepresentation in STEM disciplines. The FY2016 and FY2017 budget requests incorporate funding for NSF INCLUDES, a new cross-agency BP initiative that will build on prior successes while addressing national BP challenges. NSF INCLUDES invites the use of innovative approaches for taking evidence-based best practices to scale, ushering in a new era in NSF BP advancement. © 2016 S. M. James and S. R. Singer. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
The Scientific and Engineering Student Internship (SESI) Program at NASA's GSFC
NASA Astrophysics Data System (ADS)
Bruhweiler, F.; Verner, E.; Rabin, D. M.
2011-12-01
Through our Scientific and Engineering Student Internship (SESI) program we have provided exceptional research opportunities for undergraduate and graduate students in one of the world's premier research centers dedicated to the Sun and its heliosphere, the Heliophysics Science Division at NASA/Goddard Space Flight Center. NASA/GSFC and the NSF/REU program have funded this activity jointly. These opportunities combine the advantages of the stimulating, multi-disciplinary, environment of a NASA laboratory with the guidance provided by researchers who are, in addition, committed to education and the encouragement of women, under-represented minorities, and students with disabilities. Opportunities also exist for non-U.S. citizens as well. Moreover, the surrounding Washington, DC area provides a variety of social and educational activities for our participating students. Our 19 years of experience has served as an effective catalyst, enabling us to establish a formal program for students interested in Solar and Space Physics at NASA and to develop more NASA-funded opportunities for students, in addition to those funded by NSF/REU awards. This has allowed us to present a combined NSF/REU and NASA-funded program for undergraduates at NASA/GSFC. This synergistic program exposes our student interns to a very wide range of projects and ideas, normally unavailable in other programs. We have had roughly 300 students (about 1/2 being supported by NSF) actively participate in over 200 different research opportunities. These research projects have spanned the spectrum, ranging from theoretical modeling associated with space weather, developing instrumentation for space missions, analysis of spacecraft data, including 'hands-on' experience with sounding rockets and working in the clean environs of GSFC's Detector Development Laboratory. Although SESI is largely a summer program, a number of students, often through other funding sources, continue their research projects during subsequent summers or in the academic year. Further information can be obtained at http://iacs.cua.edu and http://sesi.gsfc.nasa.gov/ This program is funded through NSF grant AGS-1062729 and NASA/GSFC grant NNX11AJ04G.
NASA Astrophysics Data System (ADS)
Rosser, Sue V.; Lane, Eliesh O'neil
The biennial reports on women, minorities, and persons with disabilities produced by the National Science Foundation (NSF) because of congressional mandate laid the statistical foundation for NSF initiatives to redress the underrepresentation of these groups. Programs established in the 1980s such as Research Opportunities for Women, Visiting Professorships for Women, Graduate Fellowships for Women, and Career Advancement Awards provided support to individual women for their research. In the 1990s, the NSF also began to focus on systemic initiatives, creating the Program for Women and Girls, although it continued to address the problem through support of individual researchers in the newly created Professional Opportunities for Women in Research and Education (POWRE) initiative. The responses from more than 400 awardees during the 4 years of POWRE provide insights into the current issues these women perceive surrounding their grants, funding, and interactions with NSF bureaucracy and staff members. The results of the POWRE survey support the institutional, systemic thrust of the NSF’s new ADVANCE initiative to attempt to solve problems such as balancing career and family that cannot be addressed solely by supporting research projects of individual female scientists and engineers.
76 FR 6829 - National Science Board; Sunshine Act Meetings; Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-08
... the National Science Board website www.nsf.gov/nsb for additional information and schedule updates... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Committee on Programs and Plans, pursuant to NSF regulations (45 CFR part 614), the...
Reagan: Maintain Antarctic program
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
President Ronald Reagan has decided that the United States should maintain an ‘active and influential presence’ in Antarctica to support the nation's interests. Following a review of a study by the Antarctica Policy Group, Reagan issued a memorandum, dated February 5, to the heads of 14 government agencies, including the National Science Foundation (NSF), the Office of Science and Technology Policy, and the Office of Management and Budget.The U.S. presence in Antarctica ‘shall include the conduct of scientific activities in major disciplines; year-round occupation of the South Pole and two coastal stations; and availability of related necessary logistics support,’ wrote the President. In addition, NSF should continue to budget for the entire U.S. program in Antarctica. Short-term programs by other agencies require the recommendation of the Antarctica Policy Group and should be coordinated within the framework of NSF logistics support.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Directorate for Science and Engineering Education.
The National Science Foundation (NSF) provides awards for education and research in the sciences, mathematics, and engineering. This publication contains information on fiscal year 1986 awards. An introductory section reviews the goals of NSF's education program and the long-range goals of the Directorate for Science and Engineering Education.…
45 CFR 617.4 - General duties of recipients.
Code of Federal Regulations, 2010 CFR
2010-10-01
... subrecipients, and the instrument under which the Federal financial assistance is passed to the subrecipient... NONDISCRIMINATION ON THE BASIS OF AGE IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE FROM NSF § 617.4 General duties of recipients. Each recipient of Federal financial assistance from NSF shall...
Directory of Awards. Fiscal Years 1987 and 1988.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Directorate for Science and Engineering Education.
The National Science Foundation (NSF) provides awards for education and research in the sciences, mathematics, and engineering. This publication contains information about awards for the 1987 and 1988 fiscal years. An introductory section reviews the goals of NSF's education program and the long-range goals of the Directorate for Science and…
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 3 2010-10-01 2010-10-01 false Mediation. 617.10 Section 617.10 Public Welfare... OF AGE IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE FROM NSF § 617.10 Mediation. (a) NSF will refer to the Federal Mediation and Conciliation Service all complaints that fall within...
Modeling the enhancement of the swimming speed of flagellated bacteria in polymer solutions
NASA Astrophysics Data System (ADS)
Tang, Jay X.; Zhang, Xuejun; Ye, Fangfu; Klimpert, William; Pelcovits, Robert
The swimming speed of many species of flagellated bacteria initially increases and then decreases as a function of the viscosity of the medium, which is varied by the addition of high molecular weight polymers. An earlier model accounts for such a peaked distribution, but it was recently shown to give rise to incorrect predictions for the cell body rotation rate. The authors of the latter work suggested that low-molecular weight impurities from the added polymers account for the peaked speed-viscosity curves in some cases. We measured the swimming speed of a uni-flagellated bacterium, caulobacter crescentus, in solutions of a number of polymers of several different sizes. Our findings confirm the peaked speed-viscosity curve for each of several distinct polymers added, suggesting that the general behavior is highly unlikely due to impurities. We propose a modification of the models used by the previous investigators in order to better explain our new experimental results. We have also performed numerical calculations based on the modified model to show that it properly accounts for the experimental results. NSF CBET 1438033 and Institute of Theoretical Physics, CAS.
Coarse-grained simulation of polymer-filler blends
NASA Astrophysics Data System (ADS)
Legters, Gregg; Kuppa, Vikram; Beaucage, Gregory; Univ of Dayton Collaboration; Univ of Cincinnati Collaboration
The practical use of polymers often relies on additives that improve the property of the mixture. Examples of such complex blends include tires, pigments, blowing agents and other reactive additives in thermoplastics, and recycled polymers. Such systems usually exhibit a complex partitioning of the components. Most prior work has either focused on fine-grained details such as molecular modeling of chains at interfaces, or on coarse, heuristic, trial-and-error approaches to compounding (eg: tire industry). Thus, there is a significant gap in our understanding of how complex hierarchical structure (across several decades in length) develops in these multicomponent systems. This research employs dissipative particle thermodynamics in conjunction with a pseudo-thermodynamic parameter derived from scattering experiments to represent polymer-filler interactions. DPD simulations will probe how filler dispersion and hierarchical morphology develops in these complex blends, and are validated against experimental (scattering) data. The outcome of our approach is a practical solution to compounding issues, based on a mutually validating experimental and simulation methodology. Support from the NSF (CMMI-1636036/1635865) is gratefully acknowledged.
The Evolving Evaluation Process for NSF Broader Impacts
NASA Astrophysics Data System (ADS)
Straub, J. A.; Lawrence, J. E.
2016-12-01
The National Science Foundation (NSF) supports basic research in all non-medical fields of fundamental science that benefit society. To pursue this goal, NSF uses two merit review criteria: intellectual merit and broader impacts. As defined by NSF, intellectual merit "encompasses the potential to advance knowledge," while broader impacts "encompasses the potential to benefit society and contribute to the achievement of specific, desired societal outcomes." Articulating compelling broader impacts is increasingly critical as limited available funding means that both sets of criteria will impact the final proposal outcome. Although societal relevance has been valued by NSF since the foundation was established, recent events have placed increased emphasis on its importance: the America COMPETES Act encouraged increased efforts across agencies in educating the future STEM workforce (2007); NSF prioritized broader STEM participation (2008); the Obama administration issued a memo on transparency and open government (2009); and the National Science Board revised the NSF merit review criteria to emphasize that the same five elements should be considered for both merit review criteria (2012). Principal Investigators, reviewers (including panelists), and Program Officers are being asked to justify how the broader impacts contribute significantly to the project. As broader impacts become increasingly emphasized in the merit review process, it is important to understand not only how Principal Investigators are responding, but how reviewers are evaluating this aspect of proposals. To examine how reviewers are responding to this change in NSF's evaluation policy, an assessment of broader impacts in the Division of Earth Sciences is being conducted. The data were analyzed to see how reviewers have shifted their feedback in the last ten years. Data so far suggest that policy changes to the Grant Proposal Guide in 2012 have caused a notable shift to reviewers being more evaluative of broader impacts, rather than descriptive, in their review of proposals in the core research programs.
NASA Astrophysics Data System (ADS)
Applications are now being accepted for the National Science Foundation (NSF) Visiting Professorships for Women Program. Under this program, women scientists and engineers from industry, government, and academia can be visiting professors at academic institutions in the United States.The program's objectives are to provide opportunities for women to advance their careers in the disciplines of science and engineering that are supported by NSF to provide greater visibility and wider opportunities for women scientists and engineers employed in industry, government, and academic institutions, and to provide encouragement for other women to pursue careers in science and engineering through the awardees' research, lecturing, counseling, and mentoring activities.
Stabilization of miscible viscous fingering by a step-growth polymerization reaction
NASA Astrophysics Data System (ADS)
Bunton, Patrick; Stewart, Simone; Marin, Daniela; Tullier, Michael; Meiburg, Eckart; Pojman, John
2017-11-01
Viscous fingering is a hydrodynamic instability that occurs when a more mobile fluid displaces a fluid of lower mobility. Viscous fingering is often undesirable in industrial processes such as secondary petroleum recovery where it limits resource recovery. Linear stability analysis by Hejazi et al. (2010) has predicted that a non-monotonic viscosity profile at an otherwise unstable interface can in some instances stabilize the flow. We use step-growth polymerization at the interface between two miscible monomers as a model system. A dithiol monomer displacing a diacrylate react to form a linear polymer that behaves as a Newtonian fluid. Viscous fingering was imaged in a horizontal Hele-Shaw cell via Schlieren, which is sensitive to polymer conversion. By varying reaction rate via initiator concentration along with flow rate, we demonstrated increasing stabilization of the flow with increasing Damkohler number (ratio of the reaction rate to the flow rate). Results were compared with regions of predicted stability from the results of Hejazi et al. (2010). When the advection outran the reaction, viscous fingering occurred as usual. However, when the reaction was able to keep pace with the advection, the increased viscosity at the interface stabilized the flow. We acknowledge support from NSF CBET-1335739 and NSF CBET 1511653.
NASA Astrophysics Data System (ADS)
White, Ronald; Lipson, Jane
Free volume has a storied history in polymer physics. To introduce our own results, we consider how free volume has been defined in the past, e.g. in the works of Fox and Flory, Doolittle, and the equation of Williams, Landel, and Ferry. We contrast these perspectives with our own analysis using our Locally Correlated Lattice (LCL) model where we have found a striking connection between polymer free volume (analyzed using PVT data) and the polymer's corresponding glass transition temperature, Tg. The pattern, covering over 50 different polymers, is robust enough to be reasonably predictive based on melt properties alone; when a melt hits this T-dependent boundary of critical minimum free volume it becomes glassy. We will present a broad selection of results from our thermodynamic analysis, and make connections with historical treatments. We will discuss patterns that have emerged across the polymers in the energy and entropy when quantified as ''per LCL theoretical segment''. Finally we will relate the latter trend to the point of view popularized in the theory of Adam and Gibbs. The authors gratefully acknowledge support from NSF DMR-1403757.
NASA Astrophysics Data System (ADS)
The National Science Foundation (NSF) is accepting proposals for its Visiting Professorships for Women (VPW) program. Under this program, female scientists and engineers who are experienced in independent research can undertake advanced research as visiting professors at universities or research institutions that have the necessary facilities. In addition to research, each visiting professor takes on lecturing, counseling, and “other interactive activities” intended to increase the visibility of female scientists at the host institution and to encourage other women to pursue careers in science and engineering, according to NSF.
Professional Development in Remote Sensing for Community College Instructors
NASA Astrophysics Data System (ADS)
Allen, J. E.; Cruz, C.
2014-11-01
The ingredients for the highly successful, ongoing educator professional development program, "Integrated Geospatial Education and Technology Training-Remote Sensing (iGETT-RS)" came into place in 2006 when representatives of public and private organizations convened a two-day workshop at the National Science Foundation (NSF) to explore issues around integrating remote sensing with Geographic Information Systems (GIS) instruction at two-year (community and Tribal) colleges. The results of that 2006 workshop informed the shape of a grant proposal, and two phases of iGETT-RS were funded by NSF's Advanced Technological Education Program (NSF DUE #0703185, 2007-2011, and NSF DUE #1205069, 2012-2015). 76 GIS instructors from all over the country have been served. Each of them has spent 18 months on the project, participating in monthly webinars and two Summer Institutes, and creating their own integrated geospatial exercises for the classroom. The project will be completed in June 2015. As the external evaluator for iGETT expressed it, the impact on participating instructors "can only be described as transformative." This paper describes how iGETT came about, how it was designed and implemented, how it affected participants and their programs, and what has been learned by the project staff about delivering professional development in geospatial technologies for workforce preparedness.
Gorman, Michael E
2011-12-01
The author describes his efforts to become a participant observer while he was a Program Director at the NSF. He describes his plans for keeping track of his reflections and his goals before he arrived at NSF, then includes sections from his reflective diary and comments after he had completed his two-year rotation. The influx of rotators means the NSF has to be an adaptive, learning organization but there are bureaucratic obstacles in the way.
Current trends on 2D materials for photonics devices: an NSF perspective (Conference Presentation)
NASA Astrophysics Data System (ADS)
Fallahi, Mahmoud
2017-05-01
Recent advancements in two-dimensional (2D) materials have opened significant research opportunities in optics and photonics. While the initial focus on 2D materials was on Graphene, new generation of 2D materials such as hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMDCs), monolayer black phosphorous (BP) and other monolayer structures have shown unique electrical and optical properties. For example, h-BN is an insulator, while monolayers of some TMDCs such as MoS2 and WSe2 are direct band-gap semiconductors. Depending on the choice of material compositional and layer variations their optical properties can be engineered, making them particularly attractive as novel light sources, photodetectors, modulators and photovoltaic components, in particular for few photon applications. Plasmonic properties of 2D materials make them suitable for nanophotonics and monolithic integration with other conventional materials. The National Science Foundation (NSF) is a US federal agency dedicated to promote progress of science and engineering. NSF is the funding source for approximately 24 percent of all federally supported basic research conducted by America's colleges and universities. NSF has recently supported several initiatives related to novel 2D material and device research. In this talk, I will first give an overview of the NSF programs and funding opportunities. The second part of the talk will be focused on the programs related to 2D materials for photonic devices and program specific initiatives. Several highlights of the recent achievements and awards in the field of 2D materials for photonic devices will be presented.
NASA Astrophysics Data System (ADS)
Karsten, J. L.; Patino, L. C.; Rom, E. L.; Weiler, C. S.
2010-12-01
The National Science Foundation (NSF) is an independent federal agency created 60 years ago by the U.S. Congress "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" NSF is the primary funding agency in the U.S. to support basic, frontier research across all fields in science, engineering, and education, except for medical sciences. With a FY 2011 budget request of more than $955 million, the NSF Directorate for Geosciences (GEO) is the principle source of federal funding for university-based fundamental research in the geosciences and preparation of the next generation of geoscientists. Since its inception, GEO has supported the education and training of a diverse and talented pool of future scientists, engineers, and technicians in the Earth, Ocean, Atmospheric and Geospatial Sciences sub-fields, through support of graduate research assistants, post-doctoral fellows, and undergraduate research experiences. In the late 1990’s and early 2000’s, GEO initiated several programs that expanded these investments to also support improvements in pre-college and undergraduate geoscience education through a variety of mechanisms (e.g., professional development support for K-12 teachers, development of innovative undergraduate curricula, and scientist-mentored research experiences for elementary and secondary students). In addition to GEO’s Geoscience Education (GeoEd), Opportunities for Enhancing Diversity in the Geosciences (OEDG), Global Learning and Observations to Benefit the Environment (GLOBE), and Geoscience Teacher Training (GEO-Teach) programs, GEO participates in a number of cross-Foundation programs, including the Research Experiences for Undergraduates (REU), Integrative Graduate Education and Research Traineeship (IGERT), Ethics Education in Science and Engineering (EESE), NSF Graduate STEM Fellows in K-12 Education (GK-12), and Partnerships for International Research and Education (PIRE) programs, and the new Climate Change Education Partnership (CCEP) program. Many broader impact activities associated with individual research grants supported by GEO contribute to the mix, through integration of research and education. Improving access to high quality geoscience education, developing educational resources and pedagogies that reflect current understandings based on cognitive research on how people learn science in formal and informal settings, cultivating a diverse talent pool for the future, and developing robust mechanisms to evaluate the quality of these various approaches and tools are challenges faced by the entire geosciences research and education community, not just NSF/GEO. In the past two years, GEO has worked collaboratively with the Education and Human Resources (EHR) Directorate, and sister agencies NOAA and NASA, to establish a new GEO Education and Diversity Strategic Framework, that will guide our investments in the future, and identify opportunities for a more cohesive, collaborative, and synergistic approach across NSF and the federal government. Details of this new strategic framework, results of recent program evaluations, and their implications for future NSF/GEO education program funding will be discussed.
Plasma Physics at the National Science Foundation
NASA Astrophysics Data System (ADS)
Lukin, Vyacheslav
2017-10-01
The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.
Creation of a Multidisciplinary Curriculum for Hydrologic Literacy: An Applied Ethnography.
ERIC Educational Resources Information Center
Hancock, Elizabeth S.; Uyeda, Steven
Science programs funded by the National Science Foundation (NSF) are increasingly involved in science education reform. Such entities are funded for science research and are expected to pursue educational activities with K-12 students and teachers. These efforts are often guided by ideas from current science education reform. The NSF Science and…
Community Colleges and Appropriate Technology.
ERIC Educational Resources Information Center
American Association of Community and Junior Colleges, Washington, DC.
A roundtable on Appropriate Technology (AT) was sponsored by the American Association of Community and Junior Colleges (AACJC) and supported by the National Science Foundation (NSF) as a result of a mandate from Congress to develop an AT program. The roundtable report first discusses the role of the NSF in including community colleges in the…
ERIC Educational Resources Information Center
Ahn, June; Asbell-Clarke, Jodi; Berland, Matthew; Chase, Catherine; Enyedy, Noel; Fusco, Judith; Gardner, Shari; Grover, Shuchi; Halverson, Erica; Jona, Kemi; Lane, H. Chad; Martin, Wendy; Mercier, Emma; Moher, Tom; Ogan, Amy; Pinkard, Nichole; Polman, Joseph; Roschelle, Jeremy; Schank, Patricia; Taylor, Katie Headrick; Wilkerson, Michelle; Worsley, Marcelo
2017-01-01
Cyberlearning researchers envision and investigate the future of learning with technology. As of summer 2017, the Cyberlearning and Future Learning Technologies (CFTL) program of the National Science Foundation (NSF) had made 279 research grant awards. In addition, several hundred other NSF research projects have cyberlearning themes. Many of…
Void collapse under distributed dynamic loading near material interfaces
NASA Astrophysics Data System (ADS)
Shpuntova, Galina; Austin, Joanna
2012-11-01
Collapsing voids cause significant damage in diverse applications from biomedicine to underwater propulsion to explosives. While shock-induced void collapse has been studied extensively, less attention has been devoted to stress wave loading, which will occur instead if there are mechanisms for wave attenuation or if the impact velocity is relatively low. A set of dynamic experiments was carried out in a model experimental setup to investigate the effect of acoustic heterogeneities in the surrounding medium on void collapse. Two tissue-surrogate polymer materials of varying acoustic properties were used to create flowfield geometries involving a boundary and a void. A stress wave, generated by projectile impact, triggered void collapse in the gelatinous polymer medium. When the length scales of features in the flow field were on the same order of magnitude as the stress wave length scale, the presence of the boundary was found to affect the void collapse process relative to collapse in the absence of a boundary. This effect was quantified for a range of geometries and impact conditions using a two-color, single-frame particle image velocimetry technique. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading'' with Prof. Henning Winter as Program Manager.
Town Meeting on Plasma Physics at the National Science Foundation
NASA Astrophysics Data System (ADS)
2015-11-01
We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.
Exploring ultrastability in nanostructured glassy polymer films by fast-scanning calorimetry.
NASA Astrophysics Data System (ADS)
Chowdhury, Mithun; Wang, Yucheng; Jeong, Hyuncheol; Cangialosi, Daniele; Priestley, Rodney
A decade ago ultra-stable small molecule glass formers were discovered. Since then a significant amount of research has been devoted to traverse down the energy landscape of such glass formers via physical vapor deposition (PVD). Matrix assisted pulsed laser evaporation (MAPLE) has the known ability to produce vapour deposited nanostructured polymer glass with exceptional kinetic stability. We explored the role of deposition temperature/ growth rate on thermodynamic and kinetic stabilities of poly (methyl methacrylate) (PMMA) films, deposited over a fast-scanning calorimetry sensor. We found in general any MAPLE deposited glass is kinetically more stable than bulk polymer and its spin-coated film. Moreover slow growth rate and optimum temperature during MAPLE deposition can additionally lead to thermodynamically stable (low-energy) glass. The role of interfaces formed through dramatic nanostructuring and packing of nanoglobules (removal of void space) may have additional role on such ultrastability. NSF-MRSEC through PCCM (Grant: DMR-1420541).
NASA Technical Reports Server (NTRS)
1981-01-01
The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.
Inciting High-School interest in physics.
NASA Astrophysics Data System (ADS)
Zhang, Jiandi
2008-03-01
We report on our outreach effort on material-physics education program as one part of my NSF Career award project. This is a program incorporated with the NSF funded Physics Learning Center at FIU, focusing on the material physics enrichment both high school students and teachers. We particularly pay attention to minority students by taking the advantage of FIU's composition and location. The program offers a special/session-style workshop, demonstrations, research lab touring, as well as summer research activities. The goal is to enrich teacher's ability of instruction to their students and inspire students to pursue scientific careers. The detailed outreach activities will be discussed.
ERIC Educational Resources Information Center
Bickel, Robert; Tomasek, Terry; Eagle, Teresa Hardman
2000-01-01
Describes and evaluates the Appalachian Rural Systemic Initiative, a six-state consortium for academic improvement supported by the National Science Foundation (NSF), that focuses on low-income rural schools. The 1-day, one-school site visits that constitute program reviews in this initiative are unlikely to enhance achievement in either science…
Presenting Bionic: Broader Impacts and Outreach Network for Institutional Collaboration
NASA Astrophysics Data System (ADS)
Storm, K.
2014-12-01
Broader Impact plans are required of all NSF proposals. In 2011 the National Science Board, which oversees NSF, reconfirmed NSF's commitment to Broader Impacts in its task force report on the merit review system. At many institutions there are professionals that focus their work on supporting the Broader Impact work of researchers. This session will share the Broader Impacts and Outreach Network for Institutional Collaboration (BIONIC) plan to create a professional network of individuals and offices committed to planning and carrying out effective Broader Impact programming. BIONIC is an NSF Research Coordination Network that is recommended for funding through the Biology Directorate. In this session we will share the goals of BIONIC, and the progress to date in reaching those goals (of which one aspect is the curating of effective Broader Impact initiatives).
ERIC Educational Resources Information Center
O'Donnell, James J.; Zia, Lee L.; Baker, Thomas; Montgomery, Carol Hansen; Granger, Stewart
2000-01-01
Includes five articles: (1) discusses Library of Congress efforts to include digital materials; (2) describes the National Science Foundation (NSF) digital library program to improve science, math, engineering, and technology education; (3) explains Dublin Core grammar; (4) measures the impact of electronic journals on library costs; and (5)…
Wakimoto discusses role as NSF's incoming assistant director of geosciences
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-12-01
Roger Wakimoto's adrenaline “is starting to pump,” the incoming assistant director for geosciences (GEO) at the U.S. National Science Foundation (NSF) told Eos during an exclusive interview at this month's AGU Fall Meeting in San Francisco. Wakimoto, whose scientific expertise is in extreme weather, is scheduled to take charge as head of the NSF directorate for geosciences starting in February 2013. During his 4-year appointment at NSF, Wakimoto, 59 and an avowed workaholic, will head up the GEO directorate, which has about an $880 million annual funding portfolio and provides about 55% of federal funding for geosciences basic research at U.S. academic institutions. The directorate currently includes the divisions of atmospheric and geospace sciences, Earth sciences, and ocean sciences. In addition, NSF's Office of Polar Programs is slated to become a GEO division under a realignment plan announced on 7 September; Wakimoto said that shift had “no bearing” on his decision to accept the position.
Polymer stability and function for electrolyte and mixed conductor applications
NASA Astrophysics Data System (ADS)
Hammond, Paula; Davis, Nicole; Liu, David; Amanchukwu, Chibueze; Lewis, Nate; Shao-Horn, Yang
2015-03-01
Polymers exhibit a number of attractive properties as solid state electrolytes for electrochemical energy devices, including the light weight, flexibility, low cost and adaptive transport properties that polymeric materials can exhibit. For a number of applications, mixed ionic and electronic conducting materials are of interest to achieve transport of electrons and holes or ions within an electrode or at the electrode-electrolyte interface (e.g. aqueous batteries, solar water splitting, lithium battery electrode). Using layer-by-layer assembly, a mode of alternating adsorption of charged or complementary hydrogen bonding group, we can design composite thin films that contain bicontinuous networks of electronically and ionically conducting polymers. We have found that manipulation of salt concentration and the use of divalent ions during assembly can significantly enhance the number of free acid anions available for ion hopping. Unfortunately, for certain electrochemical applications, polymer stability is a true challenge. In separate studies, we have been investigating macromolecular systems that may provide acceptable ion transport properties, but withstand the harsh oxidative environment of lithium air systems. An investigation of different polymeric materials commonly examined for electrochemical applications provides insight into polymer design for these kinds of environments. NSF Center for Chemical Innovation, NDSEG Fellowship and Samsung Corporation.
The Wet-Weather Flow Technologies Pilot of the EPA's Environmental Technology Verification (ETV) Program under a partnership with NSF International has verified the performance of the GAS MASTRRR Series 32 Submersible Chemical Induction Mixers used for disinfection of wet-weather...
ERIC Educational Resources Information Center
National Science Foundation, Arlington, VA. Div. of Science Resources Studies.
The National Science Foundation (NSF) Act of 1950 stipulates that NSF must maintain a program for determining the total amount of money for scientific and engineering research received from federal agencies by each educational institution and appropriate nonprofit organization and to report these data annually to Congress and the President. NSF…
ERIC Educational Resources Information Center
Strobel, Johannes; Mendoza Díaz, Noemi V.
2012-01-01
Access to post-secondary education, specifically in the technical, two-year institution area, is a topic of growing interest in the country. Funding agencies, such as NSF, via the Advanced Technological Education Program (ATE), are supporting initiatives and research aimed at increasing the number of technicians and engineers and improving…
ERIC Educational Resources Information Center
Friel, Susan N.; Bright, George W.
The National Science Foundation (NSF) has supported a wide variety of teacher enhancement projects in order to identify and explore strategies that are effective in bringing genuine, long-term teacher change, and, ultimately, long-term systemic change in schools. In November 1994, with funding provided from NSF (Grant Number ESI-9452859), a small,…
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Div. of Science Resources Studies.
This National Science Foundation (NSF) bulletin summarizes the NSF program of energy manpower studies that assessed the impact of past energy developments and future options for scientific and technical manpower. This document summarizes the utilization of scientific personnel in energy-related activities in private industry in 1975 and shortages…
Dilute and Semidilute Solutions of a Nonionic, Rigid, Water-soluble Polymer
NASA Astrophysics Data System (ADS)
Russo, Paul; Huberty, Wayne; Zhang, Donghui; Water-Soluble Rodlike Polymer Team Collaboration
2014-03-01
The solution physics of random polymer chains was established largely on the behavior of commercial polymers such as polystyrene for organic solvents or nonionic poly(ethyleneoxide) for aqueous solvents. Not only are these materials widely available for industrial use, they can be synthesized to be essentially monodisperse. When it comes to stiff polymers, good choices are few and less prone to be used in industrial applications. Much was learned from polypeptides such as poly(benzylglutamate) or poly(stearylglutamate) in polar organic solvents and nonpolar organic solvents, respectively, but aqueous systems generally require charge. Poly(Nɛ-2-[2-(2-Methoxyethoxy) ethoxy]acetyl-L-Lysine) a.k.a. PEGL was pioneered by Deming and coworkers. In principle, PEGL provides a convenient platform from which to study stiff polymer behavior--phase relations, dynamics, liquid crystal formation and gelation--all with good molecular weight control and uniformity and without electrical charge. Still, a large gap in knowledge exists between PEGL and traditional rodlike polymer systems. To narrow this gap, dynamic and static scattering, circular dichroism, and viscosity measurements have been made in dilute and semidilute solutions as necessary preliminaries for lyotropic liquid crystalline and gel phases. Supported by NSF DMR 1306262. Department of Chemistry and Macromolecular Studies Group. Current address: Georgia Institute of Technology, School of Materials Science and Engineering.
Hopping Diffusion of Nanoparticles Subjected to Topological Constraints
NASA Astrophysics Data System (ADS)
Cai, Li-Heng; Panyukov, Sergey; Rubinstein, Michael
2013-03-01
We describe a novel hopping mechanism for diffusion of large non-sticky nanoparticles subjected to topological constraints in polymer solids (networks and gels) and entangled polymer liquids (melts and solutions). Probe particles with size larger than the mesh size of unentangled polymer networks (tube diameter of entangled polymer liquids) are trapped by the network (entanglement) cages at time scales longer than the relaxation time of the network (entanglement) strand. At long time scales, however, these particles can move further by hopping between neighboring confinement cages. This hopping is controlled by fluctuations of surrounding confinement cages, which could be large enough to allow particles to slip through. The terminal particle diffusion coefficient dominated by this hopping diffusion is appreciable for particles with size slightly larger than the network mesh size (tube diameter). Very large particles in polymer solids will be permanently trapped by local network cages, whereas they can still move in polymer liquids by waiting for entanglement cages to rearrange on the relaxation time scale of the liquids. We would like to acknowledge the financial support of NSF CHE-0911588, DMR-0907515, DMR-1121107, DMR-1122483, and CBET-0609087, NIH R01HL077546 and P50HL107168, and Cystic Fibrosis Foundation under grant RUBIN09XX0.
Myths in funding ocean research at the National Science Foundation
NASA Astrophysics Data System (ADS)
Duce, Robert A.; Benoit-Bird, Kelly J.; Ortiz, Joseph; Woodgate, Rebecca A.; Bontempi, Paula; Delaney, Margaret; Gaines, Steven D.; Harper, Scott; Jones, Brandon; White, Lisa D.
2012-12-01
Every 3 years the U.S. National Science Foundation (NSF), through its Advisory Committee on Geosciences, forms a Committee of Visitors (COV) to review different aspects of the Directorate for Geosciences (GEO). This year a COV was formed to review the Biological Oceanography (BO), Chemical Oceanography (CO), and Physical Oceanography (PO) programs in the Ocean Section; the Marine Geology and Geophysics (MGG) and Integrated Ocean Drilling Program (IODP) science programs in the Marine Geosciences Section; and the Ocean Education and Ocean Technology and Interdisciplinary Coordination (OTIC) programs in the Integrative Programs Section of the Ocean Sciences Division (OCE). The 2012 COV assessed the proposal review process for fiscal year (FY) 2009-2011, when 3843 proposal actions were considered, resulting in 1141 awards. To do this, COV evaluated the documents associated with 206 projects that were randomly selected from the following categories: low-rated proposals that were funded, high-rated proposals that were funded, low-rated proposals that were declined, high-rated proposals that were declined, some in the middle (53 awarded, 106 declined), and all (47) proposals submitted to the Rapid Response Research (RAPID) funding mechanism. NSF provided additional data as requested by the COV in the form of graphs and tables. The full COV report, including graphs and tables, is available at http://www.nsf.gov/geo/acgeo_cov.jsp.
Baglioni, Michele; Montis, Costanza; Chelazzi, David; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero
2018-06-18
Aqueous nanostructured fluids (NSFs) have been proposed to remove polymer coatings from the surface of works of art; this process usually involves film dewetting. The NSF cleaning mechanism was studied using several techniques that were employed to obtain mechanistic insight on the interaction of a methacrylic/acrylic copolymer (Paraloid B72) film laid on glass surfaces and several NSFs, based on two solvents and two surfactants. The experimental results provide a detailed picture of the dewetting process. The gyration radius and the reduction of the T g of Paraloid B72 fully swollen in the two solvents is larger for propylene carbonate than for methyl ethyl ketone, suggesting higher mobility of polymer chains for the former, while a nonionic alcohol ethoxylate surfactant was more effective than sodium dodecylsulfate in favoring the dewetting process. FTIR 2D imaging showed that the dewetting patterns observed on model samples are also present on polymer-coated mortar tiles when exposed to NSFs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-Assembly and Responsiveness of Polypeptide-Based Star and Triblock Copolymers
NASA Astrophysics Data System (ADS)
Savin, Daniel
This study involves the bottom-up design and tunability of responsive, peptide-based block polymers. The self-assembly of amphiphilic block polymers is dictated primarily by the balance between the hydrophobic core volume and the hydrophilic corona. In these studies, amphiphilic triblock and star copolymers containing poly(lysine) (PK), poly(leucine) (PL) and poly(glutamic acid) (PE) were synthesized and their solution properties studied using dynamic light scattering, circular dichroism spectroscopy and transmission electron microscopy. The peptide block in these structures can serve to introduce pH responsiveness (in the case of PK and PE), or can facilitate the formation of elongated or kinetically-trapped structures (in the case of PL.) This talk will present some recent studies in solution morphology transitions that occur in these materials under varying solution conditions. As the topological complexity of the polymers increases from diblock to linear triblock or star polymers, the solution morphology and response becomes much more complex. We present a systematic series of structures, with increasing complexity, that have applications as passive and active delivery vehicles, hydrogels, and responsive viscosity modifiers. NSF CHE-1539347.
NASA Astrophysics Data System (ADS)
Liu, Jinglin; Ouyang, Liangqi; Wu, Jinghang; Kuo, Chin-Chen; Wei, Bin; Martin, David
2013-03-01
Conjugated polymers are widely used in organic solar cells, biomedical devices, and chemical sensors. Both chemical and electrochemical methods have been developed for preparing conducting polymers, but the extent of crystalline order is usually modest. Here we synthesized highly-ordered brominated (3,4-ethylenedioxythiophene) (EDOT-Br) monomer crystals via electrochemical methods. The kinetics of the synthesis was studied with a Quartz Crystal Microbalance (QCM) and Cyclic Voltammetry (CV). The chemical structure of the EDOT-Br monomer has been confirmed by Nuclear Magnetic Resonance (NMR), Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and Mass Spectrometry (MS). The EDOT-Br monomer crystals can be in-situ polymerized into highly ordered PEDOT conjugated polymer crystals by annealing at temperatures below the EDOT-Br melting point. The crystalline structure was studied by optical microscopy, electron microscopy and X-Ray analysis. The conductivity and electrochemical properties of both the EDOT-Br monomer and corresponding PEDOT polymer crystals were examined with electrochemical impedance spectroscopy (EIS) and CV. This work was supported by NSF, DMR- 1103027.
Characterization of an atmospheric pressure air plasma source for polymer surface modification
NASA Astrophysics Data System (ADS)
Yang, Shujun; Tang, Jiansheng
2013-10-01
An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU
Microscale synthesis and characterization of polystyrene: NSF-POLYED scholars project
NASA Technical Reports Server (NTRS)
Quaal, Karen S.; Wu, Chang-Ning
1994-01-01
Polystyrene is a familiar polymer with many commercial uses. Its applications range from the clear, high index of refraction, brittle plastic used to form audio cassette and CD cases to the foamed material used in insulated drink cups and packaging material. Polystyrene constitutes 11 percent of the plastics used in packaging with only High Density Polyethylene (HDPE) and Low Density Polyethylene (LDPE) contributing a larger share: so much polystyrene is used today, it is one of six common plastics that manufacturers have assigned an identification code. The code helps recycling efforts. Polystyrene's code is (PS code 6). During the summer and fall of 1992 several new polymeric experiments were developed by the NSF POLYED Scholars for introduction into the chemistry core curriculum. In this presentation, one such project will be discussed. This laboratory project is recommended for a first or second year laboratory course allowing the introduction of polymeric science to undergraduates at the earliest opportunity. The reliability of the experiments which make up this project and the recognition factor of polystyrene, a material we come in contact with everyday, makes the synthesis and characterization of polystyrene a good choice for the introduction of polymerization to undergraduates. This laboratory project appeals to the varied interests of students enrolled in the typical first year chemistry course and becomes an ideal way to introduce polymers to a wide variety of science and engineering students.
NASA Astrophysics Data System (ADS)
Wilson, Zakiya S.; Iyengar, Sitharama S.; Pang, Su-Seng; Warner, Isiah M.; Luces, Candace A.
2012-10-01
Increasing college degree attainment for students from disadvantaged backgrounds is a prominent component of numerous state and federal legislation focused on higher education. In 1999, the National Science Foundation (NSF) instituted the "Computer Science, Engineering, and Mathematics Scholarships" (CSEMS) program; this initiative was designed to provide greater access and support to academically talented students from economically disadvantaged backgrounds. Originally intended to provide financial support to lower income students, this NSF program also advocated that additional professional development and advising would be strategies to increase undergraduate persistence to graduation. This innovative program for economically disadvantaged students was extended in 2004 to include students from other disciplines including the physical and life sciences as well as the technology fields, and the new name of the program was Scholarships for Science, Technology, Engineering and Mathematics (S-STEM). The implementation of these two programs in Louisiana State University (LSU) has shown significant and measurable success since 2000, making LSU a Model University in providing support to economically disadvantaged students within the STEM disciplines. The achievement of these programs is evidenced by the graduation rates of its participants. This report provides details on the educational model employed through the CSEMS/S-STEM projects at LSU and provides a path to success for increasing student retention rates in STEM disciplines. While the LSU's experience is presented as a case study, the potential relevance of this innovative mentoring program in conjunction with the financial support system is discussed in detail.
On Determination of the Equation of State of Colloidal Suspensions
NASA Astrophysics Data System (ADS)
Sirorattanakul, Krittanon; Huang, Hao; Uhl, Christopher; Ou-Yang, Daniel
Colloidal suspensions are the main ingredients for a variety of materials in our daily life, e.g., milk, salad dressing, skin lotions and paint for wall coatings. Material properties of these systems require an understanding of the equation of state of these materials. Our project aims to experimentally determine the equation of state of colloidal suspensions by microfluidics, dielectrophoresis (DEP) and optical imaging. We use fluorescent polystyrene latexes as a model system for this study. Placing semi-permeable membranes between microfluidics channels, which made from PDMS, we control the particle concentration and ionic strengths of the suspension. We use osmotic equilibrium equation to analyze the particle concentration distribution in a potential force field created by DEP. We use confocal optical imaging to measure the spatial distribution of the particle concentration. We compare the results of our experimental study with data obtained by computer simulation of osmotic equilibrium of interacting colloids. NSF DMR-0923299, Emulsion Polymer Institute, Department of Physics, Bioengineering Program of Lehigh University.
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-10-01
Looking for an Internet radio station focusing on programing about science, technology, engineering, and math (STEM)? The U.S. National Science Foundation (NSF) announced on 26 September the launch of Science360 Radio, which it says is the first Internet radio stream dedicated to STEM programing. Science360 includes more than 100 radio shows and podcasts that are available on the Web as well as on iPhone and Android devices. The shows originate from a variety of sources, including NSF, other U.S. government agencies, science organizations, universities, and media outlets. For more information, see http://science360.gov/files/.
ERIC Educational Resources Information Center
Kang, Kelly
2012-01-01
Approximately 632,700 graduate students were enrolled in science, engineering, and health (SEH) programs in the United States as of fall 2010, a 30% increase from approximately 493,300 students in 2000, according to the National Science Foundation's (NSF's) Survey of Graduate Students and Postdoctorates in Science and Engineering (GSS). The growth…
Vertical Temperature Simulation of Pegasus Runway, McMurdo Station, Antarctica
2015-01-01
Report Approved for public release; distribution is unlimited. Prepared for National Science Foundation , Division of Polar Programs, Antarctic...45 ERDC/CRREL TR-15-2 vii Preface This study was conducted for the National Science Foundation (NSF), Di- vision of Polar...Development Center GPR Ground-Penetrating Radar MIS McMurdo Ice Self NSF National Science Foundation PIR Precision Infrared Radiometer PLR Division of
ERIC Educational Resources Information Center
Martinez, Alina; Epstein, Carter; Parsad, Amanda; Whittaker, Karla
2012-01-01
Over a decade ago, the National Science Board (NSB) highlighted the importance of international collaboration in its call for increased government commitment to promoting international science and engineering (S&E) research and education. The NSB also identified the National Science Foundation (NSF) as having an important leadership role in…
THE EPA and NSF verified the performance of the ClorTec Model MC100 System under the EPA's ETV program. The concentrated hypochlorite generator stream from the treatment system underwent a twice-daily analysis from 3/8-4/6/00. The chlorine analyses were conducted onsite in United...
The Wet-Weather Flow Technologies Pilot of the EPA's Technology Verification (ETV) Program under a partnership with NSF International has verified the performawnce of the USFilter/Stranco Products chemical induction mixer used for disinfection of wet-weather flows. The USFilter t...
ERIC Educational Resources Information Center
Harmon, Hobart L.; Smith, Keith
2007-01-01
This report pays tribute to the National Science Foundation's (NSF) Rural Systemic Initiatives (RSIs), an investment of more than $140 million to improve mathematics and science education in some of rural America's most impoverished communities. The report illustrates the impact of NSF's RSI program on a national scale. Each RSI planned a project…
Master's Degree Programs for the Preparation of Secondary Earth Science Teachers.
ERIC Educational Resources Information Center
Passero, Richard Nicholas
Investigated were master's degree programs for the preparation of secondary school earth science teachers. Programs studied were classified as: (1) noninstitute college programs, and (2) National Science Foundation (NSF) institute programs. A total of 289 students enrolled in noninstitute programs contributed data by personal visits and…
Conference OKs science budgets
NASA Astrophysics Data System (ADS)
With the budget process all but complete for next fiscal year, the National Science Foundation and the National Aeronautics and Space Administration observers were saying that science had not done that badly in Congress, for an election year. NSF got half the budget increase it requested, NASA two-thirds. The Space Station did well, at the expense of environmental and social programs, which are funded by Congress from the same pot of money as NASA and NSF.A House-Senate conference finished work on a $59 billion appropriations bill for the Department of Housing and Urban Development and independent agencies, including EPA, NASA, and NSF, in early August. The House and Senate then quickly passed the measure before their recess; the President is expected to sign it soon. Included in the Fiscal Year 1989 spending bill are $1,885 billion for NSF, a 9.8% increase over FY 1988, and $10.7 billion for NASA, 18.5% more than the year before.
Acquisition of a Circular Dichroism Spectrometer to Study Biological Molecules at Interfaces
2016-02-10
H133C double mutant) was immobilized by itself and co-immobilized with poly- sorbitol methacrylate on maleimide SAM surfaces. The purpose of this...work is to see whether the hydromimetic poly- sorbitol methacrylate can protect protein secondary structure when the co-immobilized protein-polymer...partially lost its secondary structure after the sample was exposed to air for 1 day. The co-immobilized NsfB-H360C-H133C double mutant and poly- sorbitol
Coherent X-ray Scattering from Liquid-Air Interfaces
NASA Astrophysics Data System (ADS)
Shpyrko, Oleg
Advances in synchrotron x-ray scattering techniques allow studies of structure and dynamics of liquid surfaces with unprecedented resolution. I will review x-ray scattering measurements of thermally excited capillary fluctuations in liquids, thin polymer liquid films and polymer surfaces in confined geometry. X-ray Diffuse scattering profile due to Debye-Waller like roughening of the surface allows to probe the distribution of capillary fluctuations over a wide range of length scales, while using X-ray Photon Correlation Spectroscopy (XPCS) one is able to directly couple to nanoscale dynamics of these surface fluctuations, over a wide range of temporal and spacial scales. I will also discuss recent XPCS measurements of lateral diffusion dynamics in Langmuir monolayers assembled at the liquid-air interface. This research was supported by NSF CAREER Grant 0956131.
Epoxy thermoset networks derived from vegetable oils and their blends
NASA Astrophysics Data System (ADS)
Ryu, Chang; Ravalli, Matthew
2015-03-01
Epoxidized vegetable oils (EVOs), such as epoxidized soybean oil and linseed oils were prepared by the partial oxidation of the unsaturated double bonds in vegetable oils and used as monomers for preparing epoxy thermoset materials based on the cationic polymerization. These EVOs have been used to prepare epoxy thermosets of different network densities by cationic polymerization using onium salt catalyst. The crosslinked epoxy thermosets provide an ideal platform to study the structure-property-relationships of networked polymers. In particular, rheological studies on the epoxidized vegetable oil thermosets have been performed to measure the molecular weights between crosslinks (Mx) in the epoxy thermosets and to ultimately elucidate the role of functionality of epoxy groups in EVO on the mechanical and thermophysical properties of the epoxy thermoset materials. NSF DMR POLYMERS 1308617.
Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes
NASA Astrophysics Data System (ADS)
Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao
2014-03-01
Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.
NASA Astrophysics Data System (ADS)
Shen, Lu; Decker, Caitlin; Maynard, Heather; Levine, Alex
Cells interact with a number of extracellular proteins including growth factors, which are essential for e.g., wound healing and development. Some of these growth factors must form dimers on the cell surface to initiate their signaling pathway. This suggests one can more efficiently induce signaling via polymer-linked proteins. Motivated by experiments on a family of fibroblast growth factors linked by polymers of varying molecular weight we investigate theoretically the effect of the length of the linking polymer on the binding kinetics of the dimers to a receptor-covered surface. We show, through a first-passage time calculation, how the number of bound dimers in chemical equilibrium depends on the linker molecular weight. We discuss more broadly the implications for a variety of signaling molecules. This work was supported by the NSF-DMR-1309188. HDM thanks the NIH NIBIB (R01EB013674) for support of the cell assay data.
NASA Astrophysics Data System (ADS)
The Ocean Research Institute of the University of Tokyo and the National Science Foundation (NSF) have signed a Memorandum of Understanding for cooperation in the Ocean Drilling Program (ODP). The agreement calls for Japanese participation in ODP and an annual contribution of $2.5 million in U.S. currency for the project's 9 remaining years, according to NSF.ODP is an international project whose mission is to learn more about the formation and development of the earth through the collection and examination of core samples from beneath the ocean. The program uses the drillship JOIDES Resolution, which is equipped with laboratories and computer facilities. The Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), an international group of scientists, provides overall science planning and program advice regarding ODP's science goals and objectives.
Highlighting Successful Strategies for Engaging Minority Students in the Geosciences
NASA Astrophysics Data System (ADS)
Liou-Mark, J.; Blake, R.; Norouzi, H.; Vladutescu, D. V.; Yuen-Lau, L.
2017-12-01
Igniting interest and creativity in students for the geosciences oftentimes require innovation, bold `outside-the-box' thinking, and perseverance, particularly for minority students for whom the preparation for the discipline and its lucrative pathways to the geoscience workforce are regrettably unfamiliar and woefully inadequate. The enrollment, retention, participation, and graduation rates of minority students in STEM generally and in the geosciences particularly remain dismally low. However, a coupled, strategic geoscience model initiative at the New York City College of Technology (City Tech) of the City University of New York has been making steady in-roads of progress, and it offers practical solutions to improve minority student engagement in the geosciences. Aided by funding from the National Science Foundation (NSF), two geoscience-centric programs were created from NSF REU and NSF IUSE grants, and these programs have been successfully implemented and administered at City Tech. This presentation shares the hybrid geoscience research initiatives, the multi-tiered mentoring structures, the transformative geoscience workforce preparation, and a plethora of other vital bastions of support that made the overall program successful. Minority undergraduate scholars of the program have either moved on to graduate school, to the geoscience workforce, or they persist with greater levels of success in their STEM disciplines.
The National Science Foundation and the History of Science
NASA Astrophysics Data System (ADS)
Rothenberg, Marc
2014-01-01
The National Science Foundation (NSF) is the major funder of the history of science in the United States. Between 1958 and 2010, the NSF program for the history of science has given 89 awards in the history of astronomy. This paper analyzes the award recipients and subject areas of the awards and notes significant shifts in the concentration of award recipients and the chronological focus of the research being funded.
76 FR 19793 - Advisory Committee for Polar Programs; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-08
... presentations and discussion on opportunities and challenges for polar research, education and infrastructure; discussion of OPP Strategic Vision development; transformative research, ad hoc proposals & program... advise NSF on the impact of its policies, programs, and [[Page 19794
78 FR 37590 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
...: Program Evaluation of the Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM... Mathematics (S-STEM) Program, which operates within NSF's Division of Undergraduate Education. The evaluation...
NASA Astrophysics Data System (ADS)
Farsiani, Yasaman; Baade, Jacquelyne; Elbing, Brian
2016-11-01
Recent numerical and experimental data have shown that the classical view of how drag-reducing polymer solutions modify the mean turbulent velocity profile is incorrect. The classical view is that the log-region is unmodified from the traditional law-of-the-wall for Newtonian fluids, though shifted outward. Thus the current study reexamines the modified velocity distribution and its dependence on flow and polymer properties. Based on previous work it is expected that the behavior will depend on the Reynolds number, Weissenberg number, ratio of solvent viscosity to the zero-shear viscosity, and the ratio between the coiled and fully extended polymer chain lengths. The long-term objective for this study includes a parametric study to assess the velocity profile sensitivity to each of these parameters. This study will be performed using a custom design water tunnel, which has a test section that is 1 m long with a 15.2 cm square cross section and a nominal speed range of 1 to 10 m/s. The current presentation focuses on baseline (non-polymeric) measurements of the velocity distribution using PIV, which will be used for comparison of the polymer modified results. Preliminary polymeric results will also be presented. This work was supported by NSF Grant 1604978.
NASA Astrophysics Data System (ADS)
Warriner, Heidi E.; Safinya, Cyrus R.
1997-03-01
Using two complimentary techniques, we have measured repulsive interactions in the L_α phase of very flexible membranes composed of the surfactant C12E5 and small amounts of polymer-lipids derived from polyethylene glycol (PEG-DMPE 5000, PEG-DMPE 2000 and PEG-DMPE 550). In the first method, the lamellar repeat distance of samples in equilibrium with a dextran solution of known osmotic pressure is determined, yielding a direct measurement of pressure versus distance. These data immediately differentiate the repulsive interaction between flexible polymer-decorated membranes from polymer-brush forces found in rigid lamellar systems. In the second method, fits to high-resolution x-ray data yield the η parameter, proportional to (κB)-1\\over2, where B is the layer compressional modulus and κ is the bending rigidity of a single membrane. Combining the two types of data to eliminate B, one can quantitatively determine the κ of a decorated membrane as a function of polymer-lipid concentration. For the bare C12E5 membrane, where κ is known , a direct comparison of the compressibility modulus values derived via the two methods is also possible. This work supported by NSF-DMR-9624091; PRF-31352-AC7 CULAR-STB/UC:96-118.
Developing a molecular picture for polymer glasses under large deformation
NASA Astrophysics Data System (ADS)
Wang, Shi-Qing; Cheng, Shiwang; Wang, Panpan
2014-03-01
Polymer glasses differ from most other types of glassy materials because they can be ductile under tensile extension. Remarkably, a ductile polymer can turn brittle and vice versa. For example, upon cooling, the glass changes from ductile to brittle at a temperature known as the brittle-ductile transition temperature (BDT). Aging causes the ductile glass to be brittle. Mechanical ``rejuvenation'' or pressurization brings a brittle glass into a ductile state. Finally, one glass can be ductile 100 degrees below Tg while another polymer is already brittle even just 10 degree below Tg. Polystyrene and bisphenol A polycarbonate are at the two extremes in the family of polymer glasses. How to rationale such a wide range of behavior in terms of a molecular picture has been a challenging task. What is the role of ``chain entanglement''? Since many of the procedures including the temperature change do not alter the ``chain entanglement'', it is clearly insufficient to explain the nature of the BDT in terms of the entanglement density. Our work attempts to answer the question of what then is the role of chain networking. We have formulated a molecular picture that presents a unifying and coherent explanation for all the known phenomenology concerning the BDT and condition for crazing. This work is supported, in part, by NSF (CMMI-0926522 and DMR-1105135).
NASA Astrophysics Data System (ADS)
Fine, Rana A.; Walker, Dan
In June 1996, the National Research Council (NRC) formed the Committee on Major U.S. Oceanographic Research Programs to foster coordination among the large programs (e.g., World Ocean Circulation Experiment, Ocean Drilling Program, Ridge Interdisciplinary Global Experiment, and others) and examine their role in ocean research. In particular, the committee is charged with (1) enhancing information sharing and the coordinated implementation of the research plans of the major ongoing and future programs; (2) assisting the federal agencies and ocean sciences community in identifying gaps, as well as appropriate followon activities to existing programs; (3) making recommendations on how future major ocean programs should be planned, structured and organized; and (4) evaluating the impact of major ocean programs on the understanding of the oceans, development of research facilities, education, and collegiality in the academic community. The activity was initiated at the request of the National Science Foundation (NSF) Division of Ocean Sciences, is overseen by the NRC's Ocean Studies Board (OSB), and is funded by both NSF and the Office of Naval Research.
ERIC Educational Resources Information Center
National Inst. for Science Education, Madison, WI.
The National Institute for Science Education's (NISE) focused mission is to improve mathematics and science education from kindergarten through college. This document reports on NISE's research programs, dissemination programs, and organizational process programs. Contents include: (1) "Systemic Reform: Policy and Evaluation" (William H. Clune and…
The Biological and Chemical Oceanography Data Management Office
NASA Astrophysics Data System (ADS)
Allison, M. D.; Chandler, C. L.; Groman, R. C.; Wiebe, P. H.; Glover, D. M.; Gegg, S. R.
2011-12-01
Oceanography and marine ecosystem research are inherently interdisciplinary fields of study that generate and require access to a wide variety of measurements. In late 2006 the Biological and Chemical Oceanography Sections of the National Science Foundation (NSF) Geosciences Directorate Division of Ocean Sciences (OCE) funded the Biological and Chemical Oceanography Data Management Office (BCO-DMO). In late 2010 additional funding was contributed to support management of research data from the NSF Office of Polar Programs Antarctic Organisms & Ecosystems Program. The BCO-DMO is recognized in the 2011 Division of Ocean Sciences Sample and Data Policy as one of several program specific data offices that support NSF OCE funded researchers. BCO-DMO staff members offer data management support throughout the project life cycle to investigators from large national programs and medium-sized collaborative research projects, as well as researchers from single investigator awards. The office manages and serves all types of oceanographic data and information generated during the research process and contributed by the originating investigators. BCO-DMO has built a data system that includes the legacy data from several large ocean research programs (e.g. United States Joint Global Ocean Flux Study and United States GLOBal Ocean ECosystems Dynamics), to which data have been contributed from recently granted NSF OCE and OPP awards. The BCO-DMO data system can accommodate many different types of data including: in situ and experimental biological, chemical, and physical measurements; modeling results and synthesis data products. The system enables reuse of oceanographic data for new research endeavors, supports synthesis and modeling activities, provides availability of "real data" for K-12 and college level use, and provides decision-support field data for policy-relevant investigations. We will present an overview of the data management system capabilities including: map-based and text-based data discovery and access systems; recent enhancements to data search tools; data export and download utilities; and strategic use of controlled vocabularies to facilitate data integration and to improve data system interoperability.
The National Science Foundation and the philosophy of chemistry.
Seely, Bruce E
2003-05-01
Since its founding in 1950, the National Science Foundation has provided support for a variety of studies in history, philosophy, and social studies of science. The fact that a relatively small number of projects dealing with the philosophy of chemistry have received NSF support is due to the small number of such proposals that have been submitted. The NSF Science and Technology Studies Program (STS) welcomes proposals dealing with philosophy of chemistry.
NASA Astrophysics Data System (ADS)
Singer, J.; Ryan, J. G.
2014-12-01
For the past three decades, the National Science Foundation's (NSF) Division of Undergraduate Education (DUE) has administered a succession of programs intended to improve undergraduate STEM education for all students. The IUSE (Improving Undergraduate STEM Education) program is the latest program in this succession, and reflects an expanded, NSF-wide effort to make sustainable improvements in STEM education on a national scale. The origins and thinking behind IUSE can be in part traced back to precursor programs including: ILI (Instrumentation and Laboratory Improvement), CCD (Course and Curriculum Development), UFE (Undergraduate Faculty Enhancement), CCLI (Course, Curriculum and Laboratory Improvement), and TUES (Transforming Undergraduate Education in STEM), all of which sought to support faculty efforts to investigate and improve curriculum and instructional practice in undergraduate STEM education, and to disseminate effective STEM educational practices for broad adoption. IUSE, like its predecessor programs, is open to all STEM fields, and as such is intended to support improvements in geoscience education, spanning the atmospheric, ocean, and Earth sciences, as well as in environmental science, GIS science, climate change and sustainability/resilience. An emphasis on discipline-based research on learning that had origins in the CCLI and TUES programs is a new priority area in IUSE, with the ambition that projects will take advantage of the integrated expertise of domain scientists, educational practioners, and experts in learning science. We trace and describe the history of undergraduate education efforts with an emphasis placed on the recently introduced IUSE program. Understanding the origin of DUE's IUSE program can provide insights for faculty interested in developing proposals for submission and gain a greater appreciation of trends and priorities within the division.
NASA Astrophysics Data System (ADS)
Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer; Gayme, Dennice
2017-11-01
We develop a new framework to quantify the fluctuating behaviour of the conformation tensor in viscoelastic turbulent flows. This framework addresses two shortcomings of the classical approach based on Reynolds decomposition: the fluctuating part of the conformation tensor is not guaranteed to be positive definite and it does not consistently represent polymer expansions and contractions about the mean. Our approach employs a geometric decomposition that yields a positive-definite fluctuating conformation tensor with a clear physical interpretation as a deformation to the mean conformation. We propose three scalar measures of this fluctuating conformation tensor, which respect the non-Euclidean Riemannian geometry of the manifold of positive-definite tensors: fluctuating polymer volume, geodesic distance from the mean, and an anisotropy measure. We use these scalar quantities to investigate drag-reduced viscoelastic turbulent channel flow. Our approach establishes a systematic method to study viscoelastic turbulence. It also uncovers interesting phenomena that are not apparent using traditional analysis tools, including a logarithmic decrease in anisotropy of the mean conformation tensor away from the wall and polymer fluctuations peaking beyond the buffer layer. This work has been partially funded by the following NSF Grants: CBET-1652244, OCE-1633124, CBET-1511937.
Nanostructures and dynamics of macromolecules bound to attractive filler surfaces
NASA Astrophysics Data System (ADS)
Koga, Tad; Barkley, Deborah; Jiang, Naisheng; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Satija, Sushil; Taniguchi, Takashi
We report in-situ nanostructures and dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in a good solvent. The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene to label the BPL for small-angle neutron scattering and neutron spin echo techniques. Intriguingly, the results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of ~ 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. This two-layer formation on the filler surface is similar to that reported for polymer chains adsorbed on planar substrates from melts. In addition, the results show that the dynamics of the swollen bound chains can be explained by the so-called ``breathing mode'' and is generalized with the thickness of the swollen BPL. Furthermore, we will discuss how the breathing collective dynamics is affected by the presence of polymer chains in a matrix solution. We acknowledge the financial support from NSF Grant No. CMMI-1332499.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhle, Maria
These funds were transferred from DOE to NSF as DOE's contribution to the U.S. Global Change Research Program in support of 4 internationalnactivities/programs as approved by the U.S. Global Change Research Program on 14 March 2014. The programs are the International Geosphere-Biosphere Programme, the DIVERSITAS programme, and the World Climate Research Program. All program awards ended as of 09-23-2015.
NASA Astrophysics Data System (ADS)
Hagen, S. C.
2017-12-01
Multiple federal initiatives aim to evaluate and enhance sustainability and resilience at the coastal-land margin. Progressive efforts undertaken in the northern Gulf of Mexico for more than ten years have resulted in synergistic research with multiple means of federal support. Major grants include the FEMA Flood Insurance Studies, the NOAA / NOS Ecological Effects of Sea Level Rise Program, as well as the NSF Coastal SEES Program. Through a careful development of a collective enterprise the results from these and other individual programs (e.g., NOAA Sea Grant College, DHS Center of Excellence, NSF Rapid Response) have been elevated to achieve transdisciplinary outcomes. A direct product of the synergy is a system of systems approach to bio-geophysical science with the inclusion of socioeconomic processes.
Improving Science Teacher Preparation through the APS PhysTEC and NSF Noyce Programs
NASA Astrophysics Data System (ADS)
Williams, Tasha; Tyler, Micheal; van Duzor, Andrea; Sabella, Mel
2013-03-01
Central to the recruitment of students into science teaching at a school like CSU, is a focus on the professional nature of teaching. The purpose of this focus is twofold: it serves to change student perceptions about teaching and it prepares students to become teachers who value continued professional development and value the science education research literature. The Noyce and PhysTEC programs at CSU place the professional nature of teaching front and center by involving students in education research projects, paid internships, attendance at conferences, and participation in a new Teacher Immersion Institute and a Science Education Journal Reading Class. This poster will focus on specific components of our teacher preparation program that were developed through these two programs. In addition we will describe how these new components provide students with diverse experiences in the teaching of science to students in the urban school district. Supported by the NSF Noyce Program (0833251) and the APS PhysTEC Program.
Electrostatic Interactions and Self-Assembly in Polymeric Systems
NASA Astrophysics Data System (ADS)
Dobrynin, Andrey
Electrostatic interactions between macroions play an important role in different areas ranging from materials science to biophysics. They are main driving forces behind layer-by-layer assembly technique that allows self-assembly of multilayer films from synthetic polyelectrolytes, DNA, proteins and nanoparticles. They are responsible for complexation and reversible gelation between polyelectrolytes and proteins. In this talk, using results of the molecular dynamics simulations and analytical calculations, I will demonstrate what effect electrostatic interactions, counterion condensation and polymer solvent affinity have on a collapse of polyelectrolyte chain in a poor solvent conditions for the polymer backbone, on complexations and reversible gelation between polyelectrolytes and polyamholytes (unstructured proteins), on microphase separation transitions in spherical and planar charged brushes, and on a layer-by-layer assembly of charged nanoparticles and linear polyelectrolytes on charged surfaces. NSF DMR-1004576 DMR-1409710.
Molecular dynamics simulations of poly (ethylene oxide) hydration and conformation in solutions
NASA Astrophysics Data System (ADS)
Dahal, Udaya; Dormidontova, Elena
Polyethylene oxide (PEO) is one of the most actively used polymers, especially in biomedical applications due to its high hydrophilicity, biocompatibility and potency to inhibit protein adsorption. PEO solubility and conformation in water depends on its capability to form hydrogen bonds. Using atomistic molecular dynamics simulations we investigated the details of water packing around PEO chain and characterized the type and lifetime of hydrogen bonds in aqueous and mixed solvent solutions. The observed polymer chain conformation varies from an extended coil in pure water to collapsed globule in hexane and a helical-like conformation in pure isobutyric acid or isobutyric acid -water mixture in agreement with experimental observations. We'll discuss the implications of protic solvent arrangement and stability of hydrogen bonds on PEO chain conformation and mobility. This research is supported by NSF (DMR-1410928).
76 FR 61757 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-05
... become K-12 mathematics and science teachers. The program provides funds to institutions of higher... Foundation's (NSF) Robert Noyce Teacher Scholarship (Noyce) Program. Title of Collection: Evaluation of the Robert Noyce Teacher Scholarship Program. OMB Control No.: 3145-0217. Expiration Date of Approval: June...
Advancing Research in the National Science Foundation's Advanced Technological Education Program
ERIC Educational Resources Information Center
Wingate, Lori A.
2017-01-01
Advanced Technological Education is distinct from typical National Science Foundation programs in that it is essentially a training--not research--program, and most grantees are located at technical and two-year colleges. This article presents empirical data on the status of research in the program, discusses the program's role in supporting NSF's…
Developing the Preparation in STEM Leadership Programs for Undergraduate Academic Peer Leaders
ERIC Educational Resources Information Center
Blackwell, Stacey; Katzen, Sari; Patel, Nipa; Sun, Yan; Emenike, Mary
2017-01-01
The authors introduce the Preparation in STEM Leadership Program at Rutgers, The State University of New Jersey. This NSF-Funded program and research study creates a centralized training program for peer leaders that includes a battery of assessments to evaluate peer leaders' content knowledge, pedagogical knowledge, communication skills, and…
Elucidating the correlation between morphology and ion dynamics in polymerized ionic liquids.
NASA Astrophysics Data System (ADS)
Heres, Maximilian; Cosby, Tyler; Iacob, Ciprian; Runt, James; Benson, Roberto; Liu, Hongjun; Paddison, Stephen; Sangoro, Joshua
Charge transport and dynamics are investigated for a series of poly-ammonium and poly-imidazolium-based polymerized ionic liquids (polyIL) with a common bis(trifluoromethylsulfonyl)imide anion using broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry. A significant enhancement of the Tg independent ionic conductivity is observed for ammonium based polyIL with shorter pendant groups, in comparison to imidazolium based systems. These results emphasize the importance of polymer backbone spacing as well as counter-ion size on ionic conductivity in polymerized ionic liquids. NSF DMR 1508394.
Knowledge Engineering for Young Scholars. Evaluation Report.
ERIC Educational Resources Information Center
Nye, Gloria T.
The Knowledge Engineering for Young Scholars (KEYS) Program was a National Science Foundation (NSF) program conducted at Louisiana State University during 1989 and 1990. The program's goals were to increase 8th-12th grade students' exposure to science, acquaint them with university research, stimulate interest in science, and build their…
NEWPATH: An Innovative Program to Nurture IT Entrepreneurs
ERIC Educational Resources Information Center
Soundarajan, Neelam; Camp, Stephen M.; Lee, David; Ramnath, Rajiv; Weide, Bruce W.
2016-01-01
The number of freshmen interested in entrepreneurship has grown dramatically in the last few years. In response, many universities have created entrepreneurship programs, including ones focused on engineering entrepreneurship. In this paper, we report on NEWPATH, an innovative NSF-supported program at Ohio State, designed to nurture students to…
Advanced Technological Education Program Fact Sheet, June 2007
ERIC Educational Resources Information Center
Ritchie, Liesel A.; Gullickson, Arlen R.; Wygant, Barbara
2007-01-01
This fact sheet summarizes data gathered in the 2007 annual survey for the National Science Foundation's (NSF) Advanced Technological Education (ATE) program. This was the eighth annual survey of ATE projects and centers conducted by The Evaluation Center at Western Michigan University. Included here are statistics about the program's grantees and…
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science and Technology.
These hearings focused on the National Science Foundation's (NSF) proposed program and budget. Testimony of witnesses, prepared statements, discussions, and supporting documentation (including hearings summary) are provided. Among the issues, areas, and topics addressed were: (1) relevance of NSF's mission to presidential goals; (2) science and…
Order and Disorder in Short Block Polymers
NASA Astrophysics Data System (ADS)
Bates, Frank S.
2015-03-01
Block polymers have captivated the interest of scientists and engineers for more than half a century. The phase behavior of this class of self-assembling soft material is well understood in the limit of infinite molecular weight, based on the self-consistent mean-field theory pioneered by Leibler. At practical molecular sizes, typically around N ~ 1000 repeat units, fluctuation effects become highly significant in the vicinity of the order disorder transition. One-loop corrections to mean-field theory, first described by Brazovski and applied to block polymers by Fredrickson and Helfand, are not expected to be applicable in this limit. Moreover, the drive towards ever smaller domain dimensions, and the opportunity to circumvent transport limitations associated with entanglements, have motivated experiments with yet lower molecular weight block polymers, N less than 100. This presentation will describe the consequences of fluctuations and the equilibrium structural properties of short model AB diblock polymers in the symmetric (f = 1/2) and asymmetric (f --> 0) regimes above and below the order-disorder transition. The consequences of fluctuations and access to equilibrium states will be described in the 1-dimensional stripped (lamellar) phase and the ordering of point particles in 3-dimensions, respectively. As N --> 1 computer simulation with realistic molecular detail becomes feasible presenting exciting opportunities to compliment the associated theoretical challenges. Research in collaboration with Sangwoo Lee, Chris Leighton and Timothy Gillard and Supported by NSF-DMR-1104368.
NanTroSEIZE in 3-D: Creating a Virtual Research Experience in Undergraduate Geoscience Courses
NASA Astrophysics Data System (ADS)
Reed, D. L.; Bangs, N. L.; Moore, G. F.; Tobin, H.
2009-12-01
Marine research programs, both large and small, have increasingly added a web-based component to facilitate outreach to K-12 and the public, in general. These efforts have included, among other activities, information-rich websites, ship-to-shore communication with scientists during expeditions, blogs at sea, clips on YouTube, and information about daily shipboard activities. Our objective was to leverage a portion of the vast collection of data acquired through the NSF-MARGINS program to create a learning tool with a long lifespan for use in undergraduate geoscience courses. We have developed a web-based virtual expedition, NanTroSEIZE in 3-D, based on a seismic survey associated with the NanTroSEIZE program of NSF-MARGINS and IODP to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan. The virtual voyage can be used in undergraduate classes at anytime, since it is not directly tied to the finite duration of a specific seagoing project. The website combines text, graphics, audio and video to place learning in an experiential framework as students participate on the expedition and carry out research. Students learn about the scientific background of the program, especially the critical role of international collaboration, and meet the chief scientists before joining the sea-going expedition. Students are presented with the principles of 3-D seismic imaging, data processing and interpretation while mapping and identifying the active faults that were the likely sources of devastating earthquakes and tsunamis in Japan in 1944 and 1948. They also learn about IODP drilling that began in 2007 and will extend through much of the next decade. The website is being tested in undergraduate classes in fall 2009 and will be distributed through the NSF-MARGINS website (http://www.nsf-margins.org/) and the MARGINS Mini-lesson section of the Science Education Resource Center (SERC) (http://serc.carleton.edu/margins/collection.html) in early 2010.
CHEMICAL INDUCTION MIXER VERIFICATION - ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM
The Wet-Weather Flow Technologies Pilot of the Environmental Technology Verification (ETV) Program, which is supported by the U.S. Environmental Protection Agency and facilitated by NSF International, has recently evaluated the performance of chemical induction mixers used for di...
Improved Access to NSF Funded Ocean Research Data
NASA Astrophysics Data System (ADS)
Chandler, C. L.; Groman, R. C.; Kinkade, D.; Shepherd, A.; Rauch, S.; Allison, M. D.; Gegg, S. R.; Wiebe, P. H.; Glover, D. M.
2015-12-01
Data from NSF-funded, hypothesis-driven research comprise an essential part of the research results upon which we base our knowledge and improved understanding of the impacts of climate change. Initially funded in 2006, the Biological and Chemical Oceanography Data Management Office (BCO-DMO) works with marine scientists to ensure that data from NSF-funded ocean research programs are fully documented and freely available for future use. BCO-DMO works in partnership with information technology professionals, other marine data repositories and national data archive centers to ensure long-term preservation of these valuable environmental research data. Data contributed to BCO-DMO by the original investigators are enhanced with sufficient discipline-specific documentation and published in a variety of standards-compliant forms designed to enable discovery and support accurate re-use.
ERIC Educational Resources Information Center
Reider, David; Knestis, Kirk; Malyn-Smith, Joyce
2016-01-01
This article proposes a STEM workforce education logic model, tailored to the particular context of the National Science Foundation's Innovative Technology Experiences for Students and Teachers (ITEST) program. This model aims to help program designers and researchers address challenges particular to designing, implementing, and studying education…
ERIC Educational Resources Information Center
Paprzycki, Peter; Tuttle, Nicole; Czerniak, Charlene M.; Molitor, Scott; Kadervaek, Joan; Mendenhall, Robert
2017-01-01
This study investigates the effect of a Framework-aligned professional development program at the PreK-3 level. The NSF funded program integrated science with literacy and mathematics learning and provided teacher professional development, along with materials and programming for parents to encourage science investigations and discourse around…
ERIC Educational Resources Information Center
Liu, Wei
2012-01-01
This is an evaluative research study of a NSF-funded, DRK-12 cyber-enabled teacher professional development program in elementary engineering education. The finding shows the significant impact of the program on students' science and engineering knowledge in the second year of the program's implementation. However, student learning gain…
Impact of the Siena College Tech Valley Scholars Program on Student Outcomes
ERIC Educational Resources Information Center
Medsker, Larry; Allard, Lee; Tucker, Lucas J.; O'Donnell, Jodi L.; Sterne-Marr, Rachel; Bannon, Jon; Finn, Rose; Weatherwax, Allan
2016-01-01
The Tech Valley Scholars (TVS) program included 38 students who joined this program over the course of three academic years, from 2009 to 2012. These students comprise the experimental group for this study to determine if participating in the NSF-funded Tech Valley Scholars program improved academic outcomes. The experimental group was compared to…
ERIC Educational Resources Information Center
Singer, Jill
2009-01-01
The Course, Curriculum, and Laboratory Improvement (CCLI) program recently released the program guidelines (NSF 09-529) for the next round of the program. There are several changes to the CCLI program and a new program opportunity that invites proposals for projects that would provide leadership and contribute to transforming undergraduate STEM…
NASA Astrophysics Data System (ADS)
Lagowski, J. J.
1996-06-01
Fifty years ago Vannevar Bush, with the aid of the Federal Government, released the academic research genie. It was argued at the time, and it still may be true, that only academic laboratories could provide the research and trained personnel needed to sustain American's scientific and technological needs. As history has shown, Bush's instinctive distrust of industrial laboratories as a potential training ground was basically correct. In those days, the country's needs were associated with warfare-the end of WWII and the collective hostile activities historically described as the "cold war." Today the country's needs derive from attempts to stay globally competitive. The government's decision to have universities turning out the bulk of the nation's basic research and to use those universities as a venue for developing research talent has created a network of more than 100 research-intensive universities, the output of which is the envy of the world. But, now there is another growing national need-improving the quality of science, mathematics, engineering, and technology (SMET) education throughout the educational system. The genie released 50 years ago, either has to go back into the bottle, or it needs to be re-purposed. The former is highly unlikely, which leaves only the latter as a viable strategy. Indeed, the National Science Foundation, which could be described as the master of the genie, is attempting to do just that. In the past several years, the budget for NSF's suite of "undergraduate" programs has grown to the point where the Foundation currently spends about $180 million on such projects. These programs represent initiatives at the pre-college and undergraduate college levels that are focused on instructional activities (teacher preparation, curriculum development, faculty enhancement, etc.) and research-oriented activities to compliment undergraduate education in a variety of traditional nonresearch environments. These programs are an attempt by NSF to start redressing the imbalance between research and teaching that the Foundation has actively promoted during most of its 50 years of existence. Now, the NSF strategy is to tell the scientists it has supported in the past, and those who will be supported in the future, that what they do in the classroom is as important as what they do in the laboratory; indeed, some would argue it is the most important activity that NSF has to sustain in the current environment. Since NSF is part of the problem, it has an obligation to be part of the solution, which is the essence of a report of an advisory panel. The draft report also has suggestions to universities on how to revise their approach to SMET teaching. It recommends that departments should set goals for what their students should learn, hold faculty members accountable for students' performance, change the academic reward system to incorporate good teaching, and give science faculty members a bigger role in the education of K-12 teachers. The basic problem is that 65% of all undergraduates, including many who will become the nation's precollege teachers, do not attend the more than 100 research intensive institutions that are so heavily supported by NSF's research efforts. In effect, those students have no access to SMET education in a world of growing technical complexity. The report suggests that NSF would do well to redress this imbalance by shifting more of its resources into undergraduate and precollege programs that focus on teaching. This point of view grows out of a 1986 review which centered on how NSF could help science majors. Now, the Foundation is being asked to address the SMET-related problems of all undergraduate students. Clearly, there is danger in attempting to use a system, the relatively meager resources of which have been aimed at about 10% of the population of undergraduates, to serve the entire population. Still, NSF can send a clear message that teaching is important in research-intensive universities. A message that might have a catalytic effect on all institutions. JJL
National Science Foundation Postdoctoral Research Mentoring Plan Requirement
NASA Astrophysics Data System (ADS)
Lehr, Dana
2010-01-01
The National Science Foundation (NSF) Grant Proposal Guide (NSF 09-29) contains new guidance regarding compliance with the mentoring requirement of the America COMPETES Act. NSF Program Staff will review the Postdoctoral Researcher Mentoring Plan Requirement with regard to NSF proposal submissions. Each NSF proposal that requests funding to support postdoctoral researchers must include, as a supplementary document, a description of the mentoring activities that will be provided for such individuals. In no more than one page, the mentoring plan must describe the mentoring that will be provided to all postdoctoral researchers supported by the project, irrespective of whether they reside at the submitting organization, any subawardee organization, or at any organization participating in a simultaneously submitted collaborative project. Examples of mentoring activities include, but are not limited to: career counseling; training in preparation of grant proposals, publications and presentations; guidance on ways to improve teaching and mentoring skills; guidance on how to effectively collaborate with researchers from diverse backgrounds and disciplinary areas; and training in responsible professional practices. The proposed mentoring activities will be evaluated as part of the merit review process under the Foundation's broader impacts merit review criterion. Proposals that include funding to support postdoctoral researchers, and, do not include the requisite mentoring plan will be returned without review.
NASA Astrophysics Data System (ADS)
Payne, Molly; Jarand, Curtis; Grayson, Scott; Reed, Wayne
While living systems spontaneously heal injuries, most man made materials cannot recover from damage. Incorporating self-healing properties into synthetic polymers could significantly extend product lifetime, safety, and applications. Most reported approaches to incorporate healing into synthetic materials, however, require external stimuli such as chemical additives, heat, and light exposure. Although dynamic bonds have been explored, particularly using a hydrogen bond motif, this has not been fully investigated in an aqueous environment. To address this, hosts and guests that dynamically associate in water have been investigated to build aqueous self-healing materials. These association values were probed for various host/guest complexes using Simultaneous Multiple Sample Light Scattering (SMSLS), a technique that measures the size of aggregates via light scattering while varying concentration and other environmental factors. NSF EPSCoR IIA1430280.
NASA Astrophysics Data System (ADS)
Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket
2011-03-01
Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.
NASA Astrophysics Data System (ADS)
Dogic, Z.; Didonna, B.; Bryning, M.; Lubensky, T. C.; Yodh, A. G.; Janmey, P. A.
2003-03-01
We are investigating the behavior of mixtures of monodisperse fd-virus rods and non-adsorbing polymer. We observe the formation of isolated smectic disks. The single smectic disk is of a monolayer of aligned rods while its thickness equal to the length of a single rod. As disks coalesce they undergo shape transformations from flat structures to elongated twisted ribbons. A theoretical model is formulated wherein the chirality of the molecule favors the formation of the elongated ribbon structure while the line tension favors formation of untwisted disks. To check the validity of the theoretical model line tension and twist constants are experimentally measured. The line tension is deduced from thermal fluctuations of the interface. The twist constant is determined by unwinding the twisted ribbons using optical tweezers. This work is partially supported by NSF grants DMR-0203378, the PENN MRSEC, DMR-0079909, and NASA grant NAG8-2172.
NSF Support for Physics at the Undergraduate Level: A View from Inside
NASA Astrophysics Data System (ADS)
McBride, Duncan
2015-03-01
NSF has supported a wide range of projects in physics that involve undergraduate students. These projects include NSF research grants in which undergraduates participate; Research Experiences for Undergraduates (REU) centers and supplements; and education grants that range from upper-division labs that may include research, to curriculum development for upper- and lower-level courses and labs, to courses for non-majors, to Physics Education Research (PER). The NSF Divisions of Physics, Materials Research, and Astronomy provide most of the disciplinary research support, with some from other parts of NSF. I recently retired as the permanent physicist in NSF's Division of Undergraduate Education (DUE), which supports the education grants. I was responsible for a majority of DUE's physics grants and was involved with others overseen by a series of physics rotators. There I worked in programs entitled Instrumentation and Laboratory Improvement (ILI); Course and Curriculum Development (CCD); Course, Curriculum, and Laboratory Improvement (CCLI); Transforming Undergraduate STEM Education (TUES); and Improving Undergraduate STEM Education (IUSE). NSF support has enabled physics Principal Investigators to change and improve substantially the way physics is taught and the way students learn physics. The most important changes are increased undergraduate participation in physics research; more teaching using interactive engagement methods in classes; and growth of PER as a legitimate field of physics research as well as outcomes from PER that guide physics teaching. In turn these have led, along with other factors, to students who are better-prepared for graduate school and work, and to increases in the number of undergraduate physics majors. In addition, students in disciplines that physics directly supports, notably engineering and chemistry, and increasingly biology, are better and more broadly prepared to use their physics education in these fields. I will describe NSF support for undergraduate physics with both statistics and examples. In addition I will talk about trends in support for undergraduate physics at NSF and speculate about directions such support might go. Contents of this paper reflect the opinions of the author and do not necessarily reflect those of the National Science Foundation.
ERIC Educational Resources Information Center
Bailey, Thomas R.; Matsuzuka, Yukari; Jacobs, James; Morest, Vanessa Smith; Hughes, Katherine L.
This document reports on a study conducted by the National Science Foundation (NSF) that examines the Advanced Technological Education (ATE) program. ATE aims to promote systemic reform of the nation's science, technology, engineering, and mathematics (STEM) education. The study analyzed the influence of the ATE program on the nature of STEM…
ERIC Educational Resources Information Center
Bailey, Thomas R.; Matsuzuka, Yukari
A study examined the impact of the Advanced Technological Education (ATE) program on efforts in academic and vocational integration. A case study of 10 community colleges housing ATE-funded projects collected data through interviews with administrators, faculty, ATE program practitioners, and faculty and administrators at collaborating high…
ERIC Educational Resources Information Center
Patton, Madeline
2014-01-01
With the leadership of community college educators and their industry partners, the National Science Foundation's Advanced Technological Education (ATE) program has achieved an impressive record of incubating innovative science, technology, engineering, and mathematics (STEM) programs. ATE's mission to increase the quality of technicians working…
The United States Antarctic Program Data Center (USAP-DC): Recent Developments
NASA Astrophysics Data System (ADS)
Nitsche, F. O.; Bauer, R.; Arko, R. A.; Shane, N.; Carbotte, S. M.; Scambos, T.
2017-12-01
Antarctic earth and environmental science data are highly valuable, often unique research assets. They are acquired with substantial and expensive logistical effort, frequently in areas that will not be re-visited for many years. The data acquired in support of Antarctic research span a wide range of disciplines. Historically, data management for the US Antarctic Program (USAP) has made use of existing disciplinary data centers, and the international Antarctic Master Directory (AMD) has served as a central metadata catalog linking to data files hosted in these external repositories. However, disciplinary repositories do not exist for all USAP-generated data types and often it is unclear what repositories are appropriate, leading to many datasets being served locally from scientist's websites or not available at all. The USAP Data Center (USAP-DC; www.usap-dc.org), operated as part of the Interdisciplinary Earth Data Alliance (IEDA), contributes to the broader preservation of research data acquired with funding from NSF's Office of Polar Programs by providing a repository for diverse data from the Antarctic region. USAP-DC hosts data that spans the range of Antarctic research from snow radar to volcano observatory imagery to penguin counts to meteorological model outputs. Data services include data documentation, long-term preservation, and web publication, as well as scientist support for registration of data descriptions into the AMD in fulfillment of US obligations under the International Antarctic Treaty. In Spring 2016, USAP-DC and the NSIDC began a new collaboration to consolidate data services for Antarctic investigators and to integrate the NSF-funded glaciology collection at NSIDC with the collection hosted by USAP-DC. Investigator submissions for NSF's Glaciology program now make use of USAP-DC's web submission tools, providing a uniform interface for Antarctic investigators. The tools have been redesigned to collect a broader range of metadata. Each data submission is reviewed and verified by a specialist from the USAP-DC/NSIDC team depending on disciplinary focus of the submission. A recently updated web search interface is available to search data by title, NSF program, award, dataset contributor, large scale project (e.g. WAIS Divide Ice Core) or by specifying an area in map view.
Sputnik and United States K-12 science education
NASA Astrophysics Data System (ADS)
Hare, Donna Leigh
The intention of this study was to examine the relationships of the United States space program, education (especially science education), politics, and the National Science Foundation (NSF) to each other and the effects set in motion by the Russian's launch of Sputnik I upon those entities and their relationships. It provides a preliminary assessment of developments in United States rocket science as well as science education to the early 1950s. The scope of this investigation was confined to the historical development of four distinct yet related entities; (1) U.S. science education, (2) space exploration, (3) government and politics, and (4) the National Science Foundation. Its focus was on the years 1957 to 1966. The launch of Sputnik I in 1957, the passage of the National Defense Education Act (NDEA) in 1958, the Secondary Education Act in 1965 and the end of the Gemini program in 1966 represent the defining benchmarks for this study. 169 The most significant and durable outcomes of the Sputnik crisis in relation to science education were: (1) a formalized linkage between science education and national defense; (2) federal funding to education; (3) the passage of the NDEA with its entitlements; (4) the alignment of the NSF with precollege science education issues; (5) NSF Summer Institutes for Science Teachers and NSF Science Course Improvement Projects; and (6) the establishment of response to perceived threat to national defense as a legislative and funding support mechanism for science education.
Escape of a knot from a DNA molecule in flow
NASA Astrophysics Data System (ADS)
Renner, Benjamin; Doyle, Patrick
2014-03-01
Macroscale knots are an everyday occurrence when trying to unravel an unorganized flexible string (e.g. an iPhone cord taken out of your pocket). In nature, knots are found in proteins and viral capsid DNA, and the properties imbued by their topologies are thought to have biological significance. Unlike their macroscale counterparts, thermal fluctuations greatly influence the dynamics of polymer knots. Here, we use Brownian Dynamics simulations to study knot diffusion along a linear polymer chain. The model is parameterized to dsDNA, a model polymer used in previous simulation and experimental studies of knot dynamics. We have used this model to study the process of knot escape and transport along a dsDNA strand extended by an elongational flow. For a range of knot topologies and flow strengths, we show scalings that result in collapse of the data onto a master curve. We show a topologically mediated mode of transport coincides with observed differences in rates of knot transport, and we provide a simple mechanistic explanation for its effect. We anticipate these results will build on the growing body of fundamental studies of knotted polymers and inform future experimental study. This work is supported by the Singapore-MIT Alliance for Research and Technology (SMART) and National Science Foundation (NSF) grant CBET-0852235.
NASA Astrophysics Data System (ADS)
Hubenthal, M.; Kelly, M.
2017-12-01
The Directorate for Geosciences (GEO) at the National Science Foundation (NSF) is currently funding 60 Research Experiences for Undergraduate (REU) sites. Each site offers opportunities for 8 to 12 undergraduates to participate in research within solid earth, oceans, atmospheric and cryosphere sciences. Because applicant data is collected at individual REU sites, the exact number of unique applicants to all REU sites, and the demographics of this national applicant pool has not been previously reported. While some sites do provide some of this information to NSF in annual reports, obtaining and combining such data is problematic because the percentage of individuals that apply to multiple programs is unknown and generally believed anecdotally to be high, especially for students traditionally underrepresented in the geosciences. Understanding both the scale and makeup of the national applicant pool is important for several reasons. First, very little is known about how the supply and geographic location of slots in REU programs compares to the demand from undergraduate STEM majors interested in research experiences. Second, research into internship programs and their role in the career development process are limited by a lack of baseline data that includes both successful and unsuccessful internship applicants across the various sub-disciplines of the Earth sciences. Finally, designing and refining efforts to engage underrepresented populations in STEM research, and measuring the impact of such efforts is difficult without baseline data for comparison. We will present aggregate application data from up to 20 GEO REU funded programs. These programs represent Oceans, Atmospheres and Earth Science research areas and includes over a thousand applicants. Preliminary analysis suggests the number of unique applicants in the pool is higher than anecdotally predicted. Similarly, unique applicants from underrepresented communities also appears higher than anticipated.
Geoscience Workforce Development at UNAVCO: Leveraging the NSF GAGE Facility
NASA Astrophysics Data System (ADS)
Morris, A. R.; Charlevoix, D. J.; Miller, M.
2013-12-01
Global economic development demands that the United States remain competitive in the STEM fields, and developing a forward-looking and well-trained geoscience workforce is imperative. According to the Bureau of Labor Statistics, the geosciences will experience a growth of 19% by 2016. Fifty percent of the current geoscience workforce is within 10-15 years of retirement, and as a result, the U.S. is facing a gap between the supply of prepared geoscientists and the demand for well-trained labor. Barring aggressive intervention, the imbalance in the geoscience workforce will continue to grow, leaving the increased demand unmet. UNAVCO, Inc. is well situated to prepare undergraduate students for placement in geoscience technical positions and advanced graduate study. UNAVCO is a university-governed consortium facilitating research and education in the geosciences and in addition UNAVCO manages the NSF Geodesy Advancing Geosciences and EarthScope (GAGE) facility. The GAGE facility supports many facets of geoscience research including instrumentation and infrastructure, data analysis, cyberinfrastructure, and broader impacts. UNAVCO supports the Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering graduate school in the geosciences. RESESS has met with high success in the first 9 years of the program, as more than 75% of RESESS alumni are currently in Master's and PhD programs across the U.S. Building upon the successes of RESESS, UNAVCO is launching a comprehensive workforce development program that will network underrepresented groups in the geosciences to research and opportunities throughout the geosciences. This presentation will focus on the successes of the RESESS program and plans to expand on this success with broader workforce development efforts.
Ten years of Developing International Volcanology Graduate Study Programs
NASA Astrophysics Data System (ADS)
Rose, W. I.
2010-12-01
In 2000 I reported at this symposium about multi-institutional graduate field trips to IAVCEI events, such as the Bali meeting and its importance in building international collegiality and awareness among the volcanology doctoral students. NSF was an enthusiastic supporter of these field sessions and this support has continued through the highly successful Pucon and Reykjavik sessions. International volcanology graduate program development began with several exchange programs. EHaz was a highly successful program (McGill, Simon Fraser, Michigan Tech, Buffalo, UNAM and Universidad de Colima) funded by the Department of Education (FIPSE) that moved students across North America where dozens of graduate students spent semesters of their study abroad and shared annual field trips and online student led graduate seminar classes. Michigan Tech’s volcanology graduate program started a Masters International program that combined Peace Corps service with hazards mitigation graduate study and students were placed by Peace Corps in countries with prominent natural hazards. The new program funded 2 year residences in foreign environments, principally in Pacific Latin America. NSF strongly supported this program from its inception, and eventually it gained NSF PIRE support. Dozens of students have initiated the 3 year program (15 completed) to date. A similar PIRE developed at UAF with a link to volcanology in the Russian Far East. One gain is the development of many socially-conscious research selections. Beginning this year transatlantic dual degree masters programs in volcanology are being offered by a consortium of US and European volcanology programs (Michigan Tech, Buffalo, Clermont Ferrand and University of Milan Bicocca), again aided by FIPSE funding. Students have dual advisors on both sides of the Atlantic and spend about half of their two year programs in Europe and half in US. Faculty also travel in the program and the four campuses are increasingly linked by coursework and research networks. Because the international developments of volcanology programs address the need for more robust coursework and research choices for students than are possible on one campus, and because they lead to a diverse network of professional contacts , we think the next decade will bring many more multi-university volcanology programs linked to field sites all over the world.
Stiff Filamentous Viruses Probe the Mobility of Counterions During Nanopore Translocations
NASA Astrophysics Data System (ADS)
McMullen, Angus; Tang, Jay; Stein, Derek
2015-03-01
We study the electrophoresis of two different filamentous viruses and double-stranded DNA through solid-state nanopores. The two viruses we examine, fd and M13, are both 880 nm in length, 6.6 nm in diameter, very stiff, and monodisperse. They only differ in their linear charge density, which is 30 % lower for M13 than for fd. Filamentous viruses are therefore ideal for testing transport models and for comparisons with DNA dynamics. We find that the mean translocation speed of fd virus is related to the nanopore diameter, D, and the virus diameter, d, as ln(D / d) - 1 , in agreement with the conventional electrokinetic model of translocations. In order to obtain quantitative agreement between that electrokinetic model and the measured translocation dynamics, however, one must conclude that the mobility of counterions within a few Angstroms of the polymer surface is strongly reduced from the bulk value. Similar reductions in counterion mobility near fd, M13, and dsDNA explain their dynamics over a wide range of ionic strengths. This work was supported by NSF Grant CBET0846505, NSF Grant PHYS1058375 and Oxford Nanopore Technologies.
ERIC Educational Resources Information Center
National Science Foundation, Arlington, VA. Directorate for Education and Human Resources.
The National Science Foundation's (NSF) Research Careers for Minority Scholars (RCMS) program was initiated to encourage individuals from underrepresented groups in science, mathematics, engineering and technology (SMET) disciplines to complete undergraduate degree programs and matriculate to SMET graduate degree programs. This report describes…
ERIC Educational Resources Information Center
Carney, Jennifer; Chawla, Deepika; Wiley, Autumn; Young, Denise
2006-01-01
This report summarizes findings from an evaluation of the impacts of the National Science Foundation's (NSF) Integrative Graduate Education and Research Traineeships (IGERT) program. Through support of interdisciplinary graduate education programs in Science, Technology, Engineering, and Mathematics, the IGERT program aims to educate U.S.…
NASA Astrophysics Data System (ADS)
Singer, J.; Ryan, J. G.
2012-12-01
The Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics (TUES) program seeks to improve the quality of science, technology, engineering, and mathematics (STEM) education for all undergraduate students. Activities supported by the TUES program include the creation, adaptation, and dissemination of learning materials and teaching strategies, development of faculty expertise, implementation of educational innovations, and research on STEM teaching and learning. The TUES program especially encourages projects that have the potential to transform undergraduate STEM education and active dissemination and building a community of users are critical components of TUES projects. To raise awareness about the TUES program and increase both the quality and quantity of proposals submitted by geoscientists to the program, information sessions and proposal writing retreats are being conducted. Digital resources developed especially for the geosciences community are available at www.buffalostate.edu/RTUGeoEd to share information about the TUES program and the many ways this NSF program supports innovation in geoscience education. This presentation also addresses identified impediments to submitting a TUES proposal and strategies for overcoming reasons discouraging geoscientists from preparing a proposal and/or resubmitting a declined proposal.
Evaluation Report III: The Robert Noyce Scholarship Program at CSUB
ERIC Educational Resources Information Center
Wang, Jianjun
2013-01-01
California State University, Bakersfield (CSUB) received funding from National Science Foundation's (NSF) Robert Noyce Teacher Scholarship Program to recruit Noyce Scholars from upper-division science, technology, engineering, and mathematics (STEM) majors, graduate students, and professionals switched to STEM teaching from other fields (NSF…
Resource Guide to Federal Funding for Technology in Education.
ERIC Educational Resources Information Center
Department of Education, Washington, DC.
This guide provides information about funding resources available from the Federal government for programs involving educational technology. Funding programs are included for the following government agencies: U.S. Department of Education; Department of Commerce; National Science Foundation (NSF); Department of Energy (DOE); National Aeronautics…
NSF's Perspective on Space Weather Research for Building Forecasting Capabilities
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.
2017-12-01
Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.
(3) He Spin Filter for Neutrons.
Batz, M; Baeßler, S; Heil, W; Otten, E W; Rudersdorf, D; Schmiedeskamp, J; Sobolev, Y; Wolf, M
2005-01-01
The strongly spin-dependent absorption of neutrons in nuclear spin-polarized (3)He opens up the possibility of polarizing neutrons from reactors and spallation sources over the full kinematical range of cold, thermal and hot neutrons. This paper gives a report on the neutron spin filter (NSF) development program at Mainz. The polarization technique is based on direct optical pumping of metastable (3)He atoms combined with a polarization preserving mechanical compression of the gas up to a pressure of several bar, necessary to run a NSF. The concept of a remote type of operation using detachable NSF cells is presented which requires long nuclear spin relaxation times of order 100 hours. A short survey of their use under experimental conditions, e.g. large solid-angle polarization analysis, is given. In neutron particle physics NSFs are used in precision measurements to test fundamental symmetry concepts.
Recruiting and Supporting Diverse Geoscience and Environmental Science Students
NASA Astrophysics Data System (ADS)
Doser, Diane I.; Manduca, Cathy; Rhodes, Dallas
2014-08-01
Producing a workforce that will be successful in meeting global environmental and resource challenges requires that we attract diverse students into the geosciences, support them fully in our programs, and assist them as they move into the profession. However, geoscience has the lowest ethnic and racial diversity of any of the science, technology, engineering, and mathematics (STEM) disciplines (National Science Foundation (NSF), "Women, Minorities, and Persons with Disabilities in Science and Engineering," http://www.nsf.gov/statistics/wmpd/2013/start.cfm) and is often viewed as a difficult choice for students with physical disabilities.
Conformal Solid T-spline Construction from Boundary T-spline Representations
2012-07-01
TITLE AND SUBTITLE Conformal Solid T-spline Construction from Boundary T-spline Representations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Zhang’s ONR-YIP award N00014-10-1-0698 and an ONR Grant N00014-08-1-0653. The work of T. J.R. Hughes was supported by ONR Grant N00014-08-1-0992, NSF...GOALI CMI-0700807/0700204, NSF CMMI-1101007 and a SINTEF grant UTA10-000374. References 1. M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B
Volumetric T-spline Construction Using Boolean Operations
2013-07-01
SUBTITLE Volumetric T-spline Construction Using Boolean Operations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Acknowledgements The work of L. Liu and Y. Zhang was supported by ONR-YIP award N00014- 10-1-0698 and an ONR Grant N00014-08-1-0653. T. J.R. Hughes was sup- 16...T-spline Construction Using Boolean Operations 17 ported by ONR Grant N00014-08-1-0992, NSF GOALI CMI-0700807/0700204, NSF CMMI-1101007 and a SINTEF
Solid T-spline Construction from Boundary Triangulations with Arbitrary Genus Topology
2012-04-01
Topology 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...Acknowledgements Y. Zhang, W. Wang and L. Liu were supported in part by ONR Grant N00014-08-1-0653. T. J.R. Hughes was sup- ported by ONR Grant N00014-08-1-0992, NSF...blue) and one pillowed layer (magenta); and (h) the isogeometric analysis result. 11 0700807/0700204, NSF CMMI-1101007 and a grant from SINTEF. The
1991-06-30
AND TITLES: 0. Arikan , Research Assistant I W. Chuang, Research Assistant A. Krone, Research Assistant M, Leung, Research Assistant I Y. Liu, Research...P. Willis and Y. Bresler, "Norm invariance of minimax-optimal interpolation," submitted to3 IEEE Trans. Inform. Theory. (JSEP/NSF) [5] 0. Arikan and...imaging of time varying distributions," in Proc. Int. Syrup. Circuits and Syst., Singapore, Jun. 1991 (to appear). (JSEP/NSF) [101 0. Arikan and 1). C
Female Participation in ATE-Funded Programs: A Ten-Year Trend
ERIC Educational Resources Information Center
Westine, Carl D.; Gullickson, Arlen R.; Wingate, Lori A.
2010-01-01
It is widely known that women are generally underrepresented in STEM disciplines (science, technology, engineering, and mathematics). The National Science Foundation (NSF) Advanced Technological Education (ATE) program has persistently worked to reduce this disparity. For example, the 2000 solicitation specified "increasing the participation of…
Diversifying the STEM Pipeline: The Model Replication Institutions Program
ERIC Educational Resources Information Center
Cullinane, Jenna
2009-01-01
In 2006, the National Science Foundation (NSF) began funding the Model Replication Institutions (MRI) program, which sought to improve the quality, availability, and diversity of science, technology, engineering, and mathematics (STEM) education. Faced with pressing national priorities in the STEM fields and chronic gaps in postsecondary…
Leadership Education for Advancement and Promotion (LEAP)
NASA Astrophysics Data System (ADS)
Rankin, Patricia
2004-05-01
A NSF ADVANCE Institutional Transformation award funds the Leadership Education for Advancement and Promotion (LEAP) project at the University of Colorado, Boulder (UCB). LEAP is the third year of a five-year program. The purpose of LEAP is to increase the number of women in leadership positions in the sciences and engineering. The author, who is PI of the project, will discuss what approaches the LEAP project is taking at UCB to improve faculty retention and to help faculty be more successful. Questions that will be addressed include 1) Is this a historic problem? 2) Is the playing field level? 3) Why are LEAP programs not aimed solely at women faculty? 4) What helps? 5) What is needed to change an institution? (The NSF (SBE-0123636) funds this work.)
Steps toward a Formative Evaluation of NSDL. Technical Report
ERIC Educational Resources Information Center
Bikson, Tora K.; Kalra, Nidhi; Galway, Lionel A.; Agnew, Grace
2011-01-01
The National Science Foundation's (NSF) National Science Digital Library/Distributed Learning (NSDL) program turned 10 years old in 2010. This report presents results of a preliminary program evaluation carried out by RAND and is organized around three principal goals: (1) Provide an initial evaluation of NSDL based on existing information…
Advanced Technological Education Program 2008 Survey Fact Sheet
ERIC Educational Resources Information Center
Gullickson, Arlen R.; Wingate, Lori A.
2008-01-01
This fact sheet summarizes data gathered in the 2008 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by The Evaluation Center at Western Michigan University, this was the ninth annual survey of ATE projects and centers. Included here are statistics about the program's grantees and…
Seeking Teachers for Underwater Robotics PD Program
ERIC Educational Resources Information Center
McGrath, Beth; Sayres, Jason
2012-01-01
With funding from the National Science Foundation (NSF), ITEEA members will contribute to the development of a hybrid professional development program designed to facilitate the scale-up of an innovative underwater robotics curriculum. WaterBotics[TM] is an underwater robotics curriculum that targets students in middle and high school classrooms…
Advanced Technological Education: An Overview and Profile of 11 National Centers.
ERIC Educational Resources Information Center
Maricopa County Community Coll. District, Phoenix, AZ.
This booklet describes the Advanced Technological Education (ATE) program sponsored by the National Science Foundation (NSF). The ATE encourages improvements in advanced technological education at the national and regional levels using curriculum development and program improvement at the undergraduate and secondary school levels. The ATE not only…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-14
... assistance from the Foundation for science and engineering research or education describe in its grant... Research Program AGENCY: National Science Foundation. ACTION: Notice. SUMMARY: The National Science... NSF's Requirement for a Responsible Conduct of Research Program. OMB Approval Number: 3145-NEW...
76 FR 5841 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
... renewal of program accountability and communication data collections (e.g., surveys, face-to-face and... Performance and Results Acts (GPRA) of 1993. Under this generic survey clearance (OMB 3145-0136), data from... descriptive information gathered from education and training projects that are funded by NSF. Most programs...
Broadening Awareness and Participation in the Geosciences Among Underrepresented Minorities in STEM
NASA Astrophysics Data System (ADS)
Blake, R.; Liou-Mark, J.
2012-12-01
An acute STEM crisis exists nationally, and the problem is even more dire among the geosciences. Since about the middle of the last century, fewer undergraduate and graduate degrees have been granted in the geosciences than in any other STEM fields. To help in ameliorating this geoscience plight, particularly from among members of racial and ethnic groups that are underrepresented in STEM fields, the New York City College of Technology (City Tech) launched a vibrant geoscience program and convened a community of STEM students who are interested in learning about the geosciences. This program creates and introduces geoscience knowledge and opportunities to a diverse undergraduate student population that was never before exposed to geoscience courses at City Tech. This geoscience project is funded by the NSF OEDG program, and it brings awareness, knowledge, and geoscience opportunities to City Tech's students in a variety of ways. Firstly, two new geoscience courses have been created and introduced. One course is on Environmental Remote Sensing, and the other course is an Introduction to the Physics of Natural Disasters. The Remote Sensing course highlights the physical and mathematical principles underlying remote sensing techniques. It covers the radiative transfer equation, atmospheric sounding techniques, interferometric and lidar systems, and an introduction to image processing. Guest lecturers are invited to present their expertise on various geoscience topics. These sessions are open to all City Tech students, not just to those students who enroll in the course. The Introduction to the Physics of Natural Disasters course is expected to be offered in Spring 2013. This highly relevant, fundamental course will be open to all students, especially to non-science majors. The course focuses on natural disasters, the processes that control them, and their devastating impacts to human life and structures. Students will be introduced to the nature, causes, risks, effects, and prediction of natural disasters including earthquakes, volcanoes, tsunamis, landslides, subsidence, global climate change, severe weather, coastal erosion, floods, mass extinctions, wildfires, and meteoroid impacts. In addition to the brand new geoscience course offerings, City Tech students participate in geoscience - seminars, guest lectures, lecture series, and geoscience internship and fellowship workshops. The students also participate in geoscience exposure trips to NASA/GISS Columbia University, NOAA-CREST, and the Brookhaven National Laboratory. Moreover, the undergrads are provided opportunities for paid research internships via two NSF grants - NSF REU and NSF STEP. Geoscience projects are also integrated into course work, and students make geoscience group project presentations in class. Students also participate in geoscience career and graduate school workshops. The program also creates geoscience articulation agreements with the City College of New York so that students at City Tech may pursue Bachelor's and advanced degrees in the geosciences. This program is supported by NSF OEDG grant #1108281.
76 FR 77559 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
... system. The Noyce Program encourages talented science, technology, engineering, and mathematics (STEM... introduction to a possible career in teaching. Under the NSF Teaching Fellowship and Master Teaching Fellowship...
Year 4 Of The NSF-funded PAARE Project At SC State
NASA Astrophysics Data System (ADS)
Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M.
2012-01-01
We summarize the progress made through Year 4 of "A Partnership in Observational and Computational Astronomy (POCA)". This NSF-funded project is part of the "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. Our partnership includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) and the National Optical Astronomy Observatory. Fellowships provided by POCA as well as recruitment efforts on the national level have resulted in enrolling a total of four underrepresented minorities into the Ph.D. program in astronomy at Clemson. We report on the success and challenges to recruiting students into the undergraduate physics major with astronomy option at SC State. Our summer REU program under POCA includes underrepresented students from across the country conducting research at each of our three institutions. Examples are given of our inquiry-based, laboratory exercises and web- based activities related to cosmology that have been developed with PAARE funding. We discuss our ground-based photometric and spectroscopic study of RV Tauri and Semi-Regular variables which has been expanded to include successful Cycle 2 Kepler observations of a dozen of these objects reported elsewhere at this conference (see D.K. Walter, et.al.). Support for the POCA project is provided by the NSF PAARE program to South Carolina State University under award AST-0750814 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory. Support for the Kepler observations is provided by NASA to South Carolina State University under award NNX11AB82G.
Opportunities in cosmic-ray physics and astrophysics
NASA Technical Reports Server (NTRS)
1995-01-01
The Board on Physics and Astronomy of the National Research Council established the Committee on Cosmic-Ray Physics to prepare a review of the field that addresses both experimental and theoretical aspects of the origin of cosmic radiation from outside the heliosphere. The following recommendations are made: NASA should provide the opportunity to measure cosmic-ray electrons, positrons, ultraheavy nuclei, isotopes, and antiparticles in space; NASA, the National Science Foundation (NSF), and the Department of Energy (DOE) should facilitate direct and indirect measurement of the elemental composition to as high an energy as possible, for which the support of long-duration ballooning and hybrid ground arrays will be needed; NSF and DOE should support the new Fly's Eye and provide for U.S. participation in the big projects on the horizon, which include giant arrays, ground-based gamma-ray astronomy, and neutrino telescopes; and NASA, NSF, and DOE should support a strong program of relevant theoretical investigations.
Batz, M.; Baeßler, S.; Heil, W.; Otten, E. W.; Rudersdorf, D.; Schmiedeskamp, J.; Sobolev, Y.; Wolf, M.
2005-01-01
The strongly spin-dependent absorption of neutrons in nuclear spin-polarized 3He opens up the possibility of polarizing neutrons from reactors and spallation sources over the full kinematical range of cold, thermal and hot neutrons. This paper gives a report on the neutron spin filter (NSF) development program at Mainz. The polarization technique is based on direct optical pumping of metastable 3He atoms combined with a polarization preserving mechanical compression of the gas up to a pressure of several bar, necessary to run a NSF. The concept of a remote type of operation using detachable NSF cells is presented which requires long nuclear spin relaxation times of order 100 hours. A short survey of their use under experimental conditions, e.g. large solid-angle polarization analysis, is given. In neutron particle physics NSFs are used in precision measurements to test fundamental symmetry concepts. PMID:27308139
Detection of ionized gas molecules in air by graphene and carbon nanotube networks
NASA Astrophysics Data System (ADS)
Hao, Ji; Li, Bo; Yung, Hyun Young; Liu, Fangze; Hong, Sanghyung; Jung, Yung Joon; Kar, Swastik
The liquid phase ions sensing by graphene and carbon nanotube has been demonstrated in many publications due to the minimum gate voltage easily shift induced by ionic gating effect, but it is still unclear for vapor phase ions sensing. Here we want to report that the ionized gas molecules in air can be also very sensitively detected by graphene and carbon nanotube networks under very low applied voltage, which shows the very high charge to current amplification factor, the value can be up to 108 A/C, and the direction of current-change can be used to differentiate the positive and negative ions. In further, the field effect of graphene device induced by vapor phase ions was discussed. NSF ECCS 1202376, NSF ECCS CAREER 1351424 and NSF DMREF 1434824, a Northeastern University Provost's Tier-1 seed Grant for interdisciplinary research, Technology Innovation Program (10050481) from Ministry of Trade, Industry & Energy of Republic of Korea.
Measuring the change in hydration of a polypeptide-based block polymer vesicle as a function of pH
NASA Astrophysics Data System (ADS)
Smith, Ian; Charlier, Alban; Shishlov, Alexander; Savin, Daniel
Amphiphilic AB2 star polymers undergo directed self-assembly into vesicles in aqueous solution. The overall structure of the assembly is responsive to a change in solution pH by incorporating an ionizable polypeptide as the A-block and two lipid-like tails for the B-blocks. Herein, we present some recent results in the solution characterization of polyglutamate-octadecanethiol2 (PE-DDT2) star polymers using static and dynamic light scattering, as well as transmission electron microscopy. An increase in pH will induce a transition in secondary structure of the PE block from an α-helix to an extended coil, thereby perturbing the morphological structure and resulting in an expansion of the vesicle. The magnitude of this response is much larger than what is expected based on the conformational transition of the peptide. The mechanism of this process can be probed by measuring the change in hydration at the surface of the hydrophobic bilayer. Towards this end, we utilize 2,4,6-trichloro-1,3,5-triazine (TCT) as a modular linker to install spin labels into the assembly as a mechanism to directly interrogate local hydrophobicity using electron paramagnetic resonance (EPR). NSF 1539347.
ERIC Educational Resources Information Center
Weeks, Faith; Gong, Ruiyang; Harbor, Jon
2015-01-01
Programs that connect higher and K-12 education provide benefits to K-12 students, teachers, and higher education. The National Science Foundation (NSF) invested in programs connecting domestic STEM graduate students with K-12 education for over a decade (GK-12), intending that such engagement would help achieve graduate student learning outcomes…
Educational outreach at the NSF Engineering Research Center for Data Storage Systems
NASA Astrophysics Data System (ADS)
Williams, James E., Jr.
1996-07-01
An aspect of the National Science Foundation Engineering Research Center in Data Storage Systems (DSSC) program that is valued by our sponsors is the way we use our different educational programs to impact the data storage industry in a positive fashion. The most common way to teach data storage materials is in classes that are offered as part of the Carnegie Mellon curriculum. Another way the DSSC attempts to educate students is through outreach programs such as the NSF Research Experiences for Undergraduates and Young Scholars programs, both of which have been very successful and place emphasis and including women, under represented minorities and disable d students. The Center has also established cooperative outreach partnerships which serve to both educate students and benefit the industry. One example is the cooperative program we have had with the Magnetics Technology Centre at the National University of Singapore to help strengthen their research and educational efforts to benefit U.S. data storage companies with plants in Singapore. In addition, the Center has started a program that will help train outstanding students from technical institutes to increase their value as technicians to the data storage industry when they graduate.
NASA Astrophysics Data System (ADS)
Steinberg, D.; Black, K.; Schultz, S.
2010-08-01
NASA, NSF and other funding organizations support science education and outreach to achieve their broader impact goals. Organizations like ASP and the NSF Research Centers Educators Network (NRCEN) are building networks of education and public outreach (EPO) professionals to enhance programmatic success in reaching these goals. As the professionals who provide these programs to the various scientific communities, we are often the key connectors between investigators at cutting-edge research centers, the education world and the public. However, our profession does not have strong ties for sharing best practices across the different scientific disciplines. To develop those ties, we need to identify our common interests and build on them by sharing lessons learned and best practices. We will use the technique of concept mapping to develop a schematic of how each of us addresses our broader impact goals and discuss the common and divergent features. We will also present the education and outreach logic model that was recently developed by the 27 Education Directors of NSF-funded Materials Research Science and Engineering Centers (MRSEC). Building on this information, we will collaboratively develop a list of key areas of similar interest between ASP and NRCEN EPO professionals.
In Referees We Trust? Controversies over Grant Peer Review in the Late Twentieth Century
NASA Astrophysics Data System (ADS)
Baldwin, Melinda
While many accounts of external refereeing assume that it has been a consistent part of science since the seventeenth century, the practice developed far more slowly and haphazardly than many observers realize, and it was not until after the Second World War that ''peer review'' became considered an essential part of scientific publishing or grant-making. This talk will explore refereeing procedures at American grant-giving organizations in the twentieth century, focusing especially on the National Science Foundation and the National Institutes of Health. The creators of the NSF and the NIH put refereeing systems in place at their foundation. However, the form and function of these systems differed from modern ''peer review'' in several important ways. At the NSF the initial purpose of the referee process was to advise the NSF program directors, not to dictate funding decisions. At the NIH, small ''study sections'' devoted to particular subjects made recommendations to the NIH leadership, which rendered final judgments. However, beginning in the 1960s a series of controversies about NIH and NSF grants placed refereeing procedures at these organizations under more intense scrutiny. These debates culminated in six days of Special Oversight Hearings into the NSF's peer review process in the summer of 1975. Following the hearings, both the NSF and NIH reformed their review processes to place more emphasis on referees' opinions about grant proposals, making peer review increasingly responsible for decision-making. These controversies illustrate that refereeing continued to undergo significant changes in form and purpose throughout the twentieth century, and further suggest that both the scientific community and the public placed increased emphasis on the role of the referee during the late twentieth century.
NASA Astrophysics Data System (ADS)
Zhang, Lanhe; Elupula, Ravinder; Grayson, Scott; Torkelson, John
Cyclic or ring polymers represent an exciting class of topologically distinctive polymers. The influence of ``end-to-end'' tethering and the unusual conformational properties associated with cyclic topologies have led to polymer dynamics significantly different from the linear counterpart. Bulk cyclic polystyrene (c-PS) exhibits very weak Tg- and fragility-molecular weight (MW) dependences compared to linear PS. In stark contrast to the substantial Tg-confinement effects in linear PS, a nearly completely suppressed confinement effect is discovered in low MW c-PS. The cyclic topology strongly restricts polymer-substrate interactions. Therefore, the near elimination of the Tg-confinement effect in c-PS originates mainly from a very weak perturbation to Tg near the free surface. Upon nanoscale confinement, linear PS films have been shown to have significantly reduced fragility compared to bulk. Despite having similar bulk fragility as high MW linear PS, low MW c-PS films show major suppression in fragility reduction with decreasing thickness. Due to a lack of chain ends, properties associated with the ring structure are not prone to be perturbed by either MW reduction or confinement. This result indicates a strong correlation between the susceptibility of fragility perturbation and the susceptibility of Tg perturbation, caused by chain topology and/or by confinement. This work was supported by The Dow Chemical Company, a McCormick School of Engineering Fellowship, and the NSF.
NASA Astrophysics Data System (ADS)
Hou, Chang-Yu; Shtengel, Kirill; Refael, Gil
2014-03-01
Can one transfer information encoded in Majorana modes between two distinct platforms? Or must one read out the information before transferring it to a new medium? We explore this question, and find that not only can information be transfered, but in some cases a fermionic occupation number can be stored non-locally by Majorana modes localized in two distinct p-wave superconductors with opposite chirality, as long as some tunneling contact between the two exists. This work is supported in part by the DARPA- QuEST program, NSF award DMR-0748925, the Packard foundation and the IQIM, an NSF center supported in part by the Moore fundation.
Coordination of Programs on Domestic Animal Genomics: The Federal Framework
2004-06-01
National Institutes of Health (NIH), National Science Foundation (NSF), Office of Science and Technology Policy (OSTP), Office of Management and Budget (OMB), and U.S. Agency for International Development (USAID).
NASA Astrophysics Data System (ADS)
1997-10-01
NSF-Course and Curriculum Development Program Call for Award Nominations Gordon Conference- Innocations in College Chemistry Teaching Summer Opportunity for Students High School Chemistry Day ACS Satellite TV Seminars Wanted - Newletter Editor ACS Abstract Deadline Call for Award Nominations
Reformulating General Engineering and Biological Systems Engineering Programs at Virginia Tech
ERIC Educational Resources Information Center
Lohani, Vinod K.; Wolfe, Mary Leigh; Wildman, Terry; Mallikarjunan, Kumar; Connor, Jeffrey
2011-01-01
In 2004, a group of engineering and education faculty at Virginia Tech received a major curriculum reform and engineering education research grant under the department-level reform (DLR) program of the NSF. This DLR project laid the foundation of sponsored research in engineering education in the Department of Engineering Education. The DLR…
ERIC Educational Resources Information Center
Heck, Daniel J.; Weiss, Iris R.
2005-01-01
In 1990, the National Science Foundation (NSF) created the Statewide Systemic Initiative Program. The solicitation issued by the Directorate for Science and Engineering Education sought proposals "for projects intended to broaden the impact, accelerate the pace, and increase the effectiveness of improvements in science, mathematics, and…
Attracting and Retaining Women in Science and Engineering
ERIC Educational Resources Information Center
Rosser, Sue V.
2003-01-01
Fiscal year 2001 marked an important milestone in policies to attract and retain women in science and engineering. That year, the National Science Foundation (NSF) initiated an awards program called ADVANCE at a funding level of $19 million. The program supports efforts by institutions and individuals to empower women to participate fully in…
ERIC Educational Resources Information Center
Ononye, Lawretta C.; Bong, Sabel
2018-01-01
This paper investigates the effectiveness of a National Science Foundation Scholarship in Science, Technology, Engineering, and Mathematics (NSF S-STEM) program named "Scholarship for Engineering Technology (SET)" at the State University of New York in Canton (SUNY Canton). The authors seek to answer the following question: To what…
ERIC Educational Resources Information Center
D'Souza, Malcolm J.; Shuman, Kevin E.; Wentzien, Derald E.; Roeske, Kristopher P.
2018-01-01
Wesley College secured a five-year National Science Foundation (NSF) S-STEM (scholarships in science, technology, engineering, and mathematics) grant (1355554) to provide affordability and access to its robust STEM programs. With these funds, the college initiated a freshman to senior level, mixed-cohort, Cannon Scholar (CS) learning community…
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Div. of Science Resources Studies.
Reviewed are the highlights of the president's 1981 budget proposal as they pertain to research and development (R&D) funds. Examined are research and development funding trends; 1981 program changes; performers; and proposed budgets for NASA, DOE, HHS NSF, and USDA. (CO)
75 FR 47030 - National Science Board; Sunshine Act Meetings; Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-04
... Committee on Programs and Plans. STATUS: Open. LOCATION: This meeting will be held by teleconference... Programs and Plans, pursuant to NSF regulations (45 CFR part 614), the National Science Foundation Act, as... business and other matters specified, as follows: DATE AND TIME: August 12, 2010 at 3 p.m. EDT. SUBJECT...
IGERT Implementation and Early Outcomes. Final Report
ERIC Educational Resources Information Center
Giancola, Jennifer; Chase, Anne; Koepnick, Rebecca
2001-01-01
Responding to changes in the demands on the country's science and engineering research community since the end of the Cold War, the National Science Foundation (NSF) introduced the Integrative Graduate Education and Research Traineeship (IGERT) program in 1997 to encourage science and engineering Ph.D. programs to provide their students with…
Collaboration at the Nanoscale: Exploring Viral Genetics with Electron Microscopy
ERIC Educational Resources Information Center
Duboise, S. Monroe; Moulton, Karen D.; Jamison, Jennifer L.
2009-01-01
The Maine Science Corps is a project sponsored by the National Science Foundation's (NSF) Graduate Teaching Fellows in K-12 Education (GK-12 ) program. Through this program, the University of Southern Maine's (USM) virology and transmission electron microscopy (TEM) research group provides high school teachers and students in rural areas with…
A Combined Research/Educational Curriculum in Smart Sensors and Integrated Devices.
ERIC Educational Resources Information Center
Auner, G. W.; Siy, P.; Naik, R.; Wenger, L.; Liu, G-Y.; Schwiebert, L. J.
The researchers are developing a new curriculum which integrates ongoing research efforts in the Center for Smart Sensors and Integrated Devices into a cooperative educational and traineeship program. A forerunner to this program was initiated with funding by a National Science Foundation (NSF) Combined Research and Curriculum Development (CRCD)…
NASA Technical Reports Server (NTRS)
Hamburger, Michael W.; Reilinger, Robert E.; Hager, Bradford H.; Molnar, Peter
1997-01-01
In this report, we summarize what we have accomplished with five years of funding from NASA under its DOSE program, and with a comparable level of funding from NSF. We describe the development of a GPS network in the Tien Shan of Kyrgyzstan and Kazakhstan of the former Soviet Union, the analysis of data, and the main results. This discussion presents the state of the current network, which has grown significantly since the termination of our DOSE grants, with continued support both from NSF through its continental dynamics program and from NASA's SENH program. Although grants from NASA's DOSE program did not support this growth not directly, it did so indirectly by building the infrastructure that has enabled further expansion in an area where otherwise there would be only a small GPS presence. We note how the network has grown over time, but the emphasis of this discussion is on the quantity and quality of measurements that we have made.
Reaching the Students: A New Approach to Enhancing Science Literacy
NASA Astrophysics Data System (ADS)
McNamara, B. J.; Burnham, C. C.
2002-05-01
Most NSF supported programs directed at improving science literacy among university students who are not majoring in SMET normally target instruction in introductory science or math classes. Unfortunately these efforts seldom reach the vast majority of students at a university because students can fulfil their science requirement by taking several other classes or class sections that are not impacted by the NSF program. Ideally it would be desirable to address the issues of science literacy and science anxiety among non-science majors in a single class that is required of essentially all undergraduates. We describe such a program which is being tested at NMSU. The targeted class is the university's freshman level English class. The idea behind this effort is to provide students with the skills they will need to be successful in their science classes in a less threatening humanities environment. We describe the problems that this approach raises, suggest solutions to these problems, and then discuss the overall status of this effort.
ERIC Educational Resources Information Center
Toal, Stacie A.; Gullickson, Arlen R.
2011-01-01
In 1999, the National Science Foundation (NSF) awarded funds to the Evaluation Center at Western Michigan University to conduct an external evaluation of the Advanced Technological Education (ATE) program. ATE, a federally mandated program designed to increase the number and quality of skilled technicians in the U.S. workforce, has funded over 346…
Undergraduates study climate change science, philosophy, and public policy
NASA Astrophysics Data System (ADS)
Bullock, Mark A.; Frodeman, Robert L.
The National Science Foundation's (NSF) Research Experience for Undergraduates (REU) program provides undergraduate students with the opportunity to participate in ongoing scientific research. Existing either as stand-alone summer programs or as supplementary components to existing NSF research grants, the REU program focuses on introducing aspiring young scientists to the delights and complexities of science. Global Climate Change and Society (GCCS) is an intensive, 8-week REU program that began a 3-year run in the summer of 2001.Developed by a philosopher at the Colorado School of Mines, and a planetary scientist at Southwest Research Institute in Boulder, Colrado, GCCS is a unique experiment in research and pedagogy that introduces students to science by using a distinctive approach. Choosing as its topic the questions surrounding global climate change, the program explores the interwoven scientific, philosophical, and public policy issues that make the climate change debate such a volatile topic in contemporary society. Last summer, the program selected 12 undergraduates through a nationally advertised competition. Student interns came from diverse academic and cultural backgrounds and included physics, philosophy and public policy majors from elite liberal arts schools, major research institutions, and mainstream state universities. The program was held at the University of Colorado and the National Center for Atmospheric Research (NCAR), in Boulder, Colorado (Figure 1).
Evidence for a universal localization transition underlying the glass transition
NASA Astrophysics Data System (ADS)
Simmons, David; Hung, Jui-Hsiang; Patra, Tarak; Meenakshisundaram, Venkatesh; Mangalara, Jayachandra Hari
The glass transition is a ubiquitous pathway to the development of solid-like character, occurring in materials ranging from polymers to metals. Despite its technological and fundamental importance across diverse materials, the underlying nature of the glass transition remains a durable open question. Here we describe results from high-throughput simulations of the glass transition in metals, polymers, small organic molecules, and organics, indicating that a universal particle localization transition underlies the dynamic glass transition. We find that a single adjustable parameter is sufficient to describe the nonuniversal growth in relaxation time resulting from this localization event. These results point to an opportunity to advance the modern understanding of the glass transition by refocusing attention on the onset of localization rather than the growth in relaxation time as the key experimental observable. This work was made possible by generous support from the W. M. Keck Foundation. This material is based in part on work sup-ported by the National Science Foundation NSF Career Award Grant Number DMR1554920.
Using Polymer Confinement for Stem Cell Differentiation: 3D Printed vs Molded Scaffolds
NASA Astrophysics Data System (ADS)
Rafailovich, Miriam
Additive manufacturing technologies are increasingly being used to replace standard extrusion or molding methods in engineering polymeric biomedical implants, which can be further seeded with cells for tissue regeneration. The principal advantage of this new technology is the ability to print directly from a scan and hence produce parts which are an ideal fit for an individual, eliminating much of the sizing and fitting associated with standard manufacturing methods. The question though arises whether devices which may be macroscopically similar, serve identical functions and are produced from the same material, interact in the same manner with cells and living tissue. Here we show that fundamental differences can exist between 3-D printed and extruded scaffolds which can impact stem cell differentiation and lineage selection. We will show how polymer confinement inherent in these methods affect the printed features on multiple length scales. We will also and how the differentiation of stem cells is affected by substrate heterogeneity in both morphological and mechanical features. NSF-Inspire award # 1344267.
Polymer-induced DNA Condensation in the Lamellar Phase of DNA-Lipid Complexes
NASA Astrophysics Data System (ADS)
Martin, Ana; Lin, Alison J.; Schulze, Uwe; Safinya, Cyrus R.; Schmidt, Hans-Werner
2000-03-01
The lamellar phase of cationic lipid-DNA complexes (CL-DNA)[1,2] is a model system for the study of a polymer induced condensation in two dimensions. Measurements of X-ray diffraction show DNA condensation with the addition of cationic poly(ethylene glycol) PEG-lipid to the membrane of the CL-DNA complexes, revealing the existence of two different behaviors as a function of the PEG length. For shorter PEG the DNA condensation can be described by considering the charge increase on the membrane due to the incorporation of the cationic polymeric chains. For longer PEG a deviation from the predicted electrostatic distance between DNA chains is observed. This higher condensation is caused by a novel depletion-attraction interaction between DNA chains in two dimensions. This work is supported by NSF-DMR9972246 and a fellowship of the Education Ministry of Spain. [1] Rädler, JO; Koltover, I; Salditt, T; Safinya, CR., Science 275, 810 (1997). [2] Koltover, I; Salditt, T; Safinya, CR., Biophys. J. 77, 915 (1999).
Conformation and hydration of surface grafted and free polyethylene oxide chains in solutions
NASA Astrophysics Data System (ADS)
Dahal, Udaya; Wang, Zilu; Dormidontova, Elena
Due to the wide application of polyethylene oxide (PEO), ranging from biomedicine to fuel cells, it is one of the most studied polymers in the scientific world. In order to elucidate detailed molecular-level insights on the impact of surface grafting on PEO conformation, we performed atomistic molecular dynamics simulations of PEO chains in solution and grafted to a flat gold surface in different solvents. We examined the hydration as well as conformation of the free chain compared to the grafted polymer in pure water and mixed solvents. We find that grafted chains are stiffer and have a stronger tendency to form helical structures in isobutyric acid or mixture of isobutyric acid and water solution than the free chains in corresponding solutions. For grafted chains exposed to pure water the random coil conformation is retained at low grafting density, but becomes stretched and more dehydrated as the grafting density or temperature increases. This research is supported by NSF (DMR-1410928).
Photothermal heating as a methodology for post processing of polymeric nanofibers
NASA Astrophysics Data System (ADS)
Gorga, Russell; Clarke, Laura; Bochinski, Jason; Viswanath, Vidya; Maity, Somsubhra; Dong, Ju; Firestone, Gabriel
2015-03-01
Metal nanoparticles embedded within polymeric systems can be made to act as localized heat sources thereby aiding in-situ polymer processing. This is made possible by the surface plasmon resonance (SPR) mediated photothermal effect of metal (in this case gold) nanoparticles, wherein incident light absorbed by the nanoparticle generates a non-equilibrium electron distribution which subsequently transfers this energy into the surrounding medium, resulting in a temperature increase in the immediate region around the particle. Here we demonstrate this effect in polymer nanocomposite systems, specifically electrospun polyethylene oxide nanofibrous mats, which have been annealed at temperatures above the glass transition. A non-contact temperature measurement technique utilizing embedded fluorophores (perylene) has been used to monitor the average temperature within samples. The effect of annealing methods (conventional and photothermal) and annealing conditions (temperature and time) on the fiber morphology, overall crystallinity, and mechanical properties is discussed. This methodology is further utilized in core-sheath nanofibers to crosslink the core material, which is a pre-cured epoxy thermoset. NSF Grant CMMI-1069108.
78 FR 59727 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-27
... descriptive and may include, for example, the characteristics of personnel and students; sources of financial...: NSF will use the information to continue funding of PREMs, and to evaluate the progress of the program...
76 FR 8359 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... of Energy and National Science Foundation's Nuclear Physics Office. Status of the Isotopes Program... available on the U.S. Department of Energy's Office of Nuclear Physics Web site for viewing at: http://www...
NSF ADVANCE: Institutional Transformation to Achieve Faculty Diversity
NASA Astrophysics Data System (ADS)
Anthony, E. Y.
2004-12-01
The NSF ADVANCE initiative is designed to enhance gender equity in academic science and engineering faculty. One of its components - Institutional Transformation - has the goal of establishing strategies and policies that will revolutionize institutional climate so that diverse faculty flourish. The University of Texas at El Paso is one of 19 institutions to currently hold a 5-year grant under the Institutional Transformation program. This poster presentation highlights practices from the participating institutions. Two general aspects of the program are: 1) co-principal investigators are a blend of administrators and active researchers. This blend ensures a bottom-up, top-down approach to presenting gender equity to faculty. 2) Many of the investigators have diversity as their research focus, which is intended to result in rigorous, peer-reviewed dissemination of institutional results. Specific effors for all institutions relate to recruitment, retention, and advancement of female faculty and, by establishing equitable conditions, to improvement of the workplace for all faculty. To aid recruitment, institutions have committed faculty involved in the search process, including training of search committees in diversity strategies and interaction with candidates. A close working relationship with the campus EO officer is essential. Retention strategies center on mentoring, monetary support for research, and policy implementation. Policies focus on work-family balance. Advancement of females to important administrative and non-administrative leadership roles is the third focus. Workshops and seminars on leadership skills are common in the various institutions. Finally, a central theme of the program is that, in addition to specific strategies, institutions must articulate diversity as a core value and reflect on the means to actualize this value. More information on the NSF ADVANCE program, including links to the Institutional Transformation grantees, may be found on its webpage.
NASA Astrophysics Data System (ADS)
Wiggins, H. V.; Schlosser, P.; Loring, A. J.; Warnick, W. K.; Committee, S. S.
2008-12-01
The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to observe, understand, and guide responses to changes in the arctic system. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities and economic activities. Under the SEARCH program, guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and the Observing, Understanding, and Responding to Change panels, scientists with a variety of expertise--atmosphere, ocean and sea ice, hydrology and cryosphere, terrestrial ecosystems, human dimensions, and paleoclimatology--work together to achieve goals of the program. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through National Science Foundation's (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts, including the EU- sponsored Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) Program. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF's Arctic System Synthesis (ARCSS) Program. The Responding to Change element is driven by stakeholder research and applications addressing social and economic concerns. As a national program under the International Study of Arctic Change (ISAC), SEARCH is also working to expand international connections in an effort to better understand the global arctic system. SEARCH is sponsored by eight (8) U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian Institution, and the U.S. Department of Agriculture (USDA). The U.S. Arctic Research Commission participates as an IPMC observer. For further information, please visit the website: http://www.arcus.org/search or contact: Helen V. Wiggins: helen@arcus.org, SEARCH Project Office, Arctic Research Consortium of the U.S. (ARCUS); or Peter Schlosser, schlosser@ldeo.columbia.edu, SEARCH SSC Chair.
ERIC Educational Resources Information Center
Castles, R. T.; Zephirin, T.; Lohani, V. K.; Kachroo, P.
2010-01-01
Since 2005, the first-year engineering program at Virginia Tech, Blacksburg, has been significantly restructured to include more hands-on learning. A major grant (2004-2009) under the department level reform (DLR) program of the National Science Foundation (NSF) facilitated this restructuring. A number of hands-on learning modules were developed…
NASA/NSF Antarctic Science Working Group
NASA Technical Reports Server (NTRS)
Stoklosa, Janis H.
1990-01-01
A collection of viewgraphs on NASA's Life Sciences Biomedical Programs is presented. They show the structure of the Life Sciences Division; the tentative space exploration schedule from the present to 2018; the biomedical programs with their objectives, research elements, and methodological approaches; validation models; proposed Antarctic research as an analog for space exploration; and the Science Working Group's schedule of events.
Advanced Technological Education (ATE) Program: Building a Pipeline of Skilled Workers. Policy Brief
ERIC Educational Resources Information Center
American Youth Policy Forum, 2010
2010-01-01
In the Fall of 2008, the American Youth Policy Forum hosted a series of three Capitol Hill forums showcasing the Advanced Technological Education (ATE) program supported by the National Science Foundation (NSF). The goal of these forums was to educate national policymakers about the importance of: (1) improving the science and math competencies of…
ERIC Educational Resources Information Center
Salmun, Haydee; Buonaiuto, Frank
2016-01-01
The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships to 40 academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics…
ERIC Educational Resources Information Center
Allan, Walter C.; Erickson, Jeryl L.; Brookhouse, Phil; Johnson, Judith L.
2010-01-01
Maine's one-to-one laptop program provides an ideal opportunity to explore conditions that optimize teacher integration of technology-focused curriculum into the classroom. EcoScienceWorks (ESW) is an ecology curriculum that includes targeted simulations and a code block programming challenge developed through an NSF-ITEST grant. The project was…
Transforming Research Data into Resource Data
NASA Astrophysics Data System (ADS)
Chandler, C. L.; Shepherd, A.; Groman, R. C.; Kinkade, D.; Rauch, S.; Allison, M. D.; Copley, N. J.; Ake, H.; York, A.; Wiebe, P. H.; Glover, D. M.
2016-12-01
Many of the Grand Challenge science questions are of interest to the marine science research community funded by the United States National Science Foundation (NSF). The highly diverse range of environmental data from the oceans, coastal regions, and Great Lakes are collected using a variety of platforms, instrument systems and sensors and are complemented by experimental results including sequence data, and model results. The data are often collected with a particular research purpose in mind. Such data are costly to acquire and environmental data, temporally and geographically unique, cannot be acquired again. The NSF-funded research community comprising funded investigators and their research teams, operators of the US academic research fleet, data managers, marine librarians, and NSF program managers are working together to transform `research data' into `resource data'. The objective is to ensure that the original research data become available to a much wider community, and have potential to be used as `resource data' for new and different types of research well beyond the initial focus of the NSF research grant. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) manages a community-driven data repository that serves some of these data: the data and results from research funded by NSF Ocean Sciences and Polar Programs. Individually such data sets are typically small in size, but when integrated these data become a valuable resource for the global research effort. The data are analyzed, quality controlled, finalized by the original investigators and their research teams, and then contributed to BCO-DMO. The BCO-DMO data managers reformat the data if they were submitted in proprietary formats, perform quality assessment review, augment the data sets with additional documentation, and create structured, machine-actionable metadata. The BCO-DMO data system allows researchers to make connections between related data sets within the BCO-DMO catalog, and also to follow links to complementary data sets curated at other research data repositories. The key is to expose, in standards compliant ways, essential elements of domain-specific metadata that enable discovery of related data, results, products, and publications from scientific research activities.
Chemotaxis in Microfluidic Devices
NASA Astrophysics Data System (ADS)
Wyatt, Danica; Nadkarni, Sharvari; Song, Loling; Voeltz, Camilla; Bodenschatz, Eberhard
2004-03-01
Dictyostelium amoebae use chemical signaling to begin starvation-induced aggregation. Cells generate a complex and dynamic pattern of cyclic AMP that drives their migration toward a central point. While this phenomenon is unique to social amoebae, the signaling pathways of chemotaxis are similar in all eukaryotic cells. Dicty serves as a model organism for imaging these intracellular protein dynamics. To date, chemotaxis has been primarily studied in diffusion-generated gradients in chambers many orders of magnitude larger than a cell. To better quantify which aspects of a gradient trigger a response, we have designed a microfluidic channel that confines cells in an environment where spatiotemporal cAMP concentration can be precisely manipulated. We report results on an early event in the signaling cascade, the translocation of PH domain-containing proteins, which test current models of chemotaxis. This work was supported by the NSF Biocomplexity program and the Nanobiotechnology Center, an STC Program of the NSF under Agreement No. ECS-9876771.
High Field Magnetic Circular Dichroism in Ferromagnetic InMnSb and InMnAs
NASA Astrophysics Data System (ADS)
Meeker, M. A.; Magill, B. A.; Khodaparast, G. A.; Saha, D.; Stanton, C. J.; McGill, S.; Wessels, B. W.
An understanding of the fundamental interactions in narrow gap ferromagnetic semiconductors such as InMnAs and InMnSb has been developed primarily from static magnetization and electrical transport measurements. In this study, to provide a better understanding of the coupling of the Mn impurities to the conduction and valence bands through the sp-d exchange interactions, we have performed magnetic circular dichroism measurements (MCD) on MOVPE grown InMnAs and InMnSb. In our samples, the Mn content varies from 2% to 10.7% and all the samples have Curie temperatures above 300 K. The samples were photo-excited using a Quartz Tungsten Halogen lamp with energies ranging between 0.92-1.45 eV, and in magnetic fields up to 31 T. The temperatures ranged from 15-190 K. Comparison of the observed MCD with theoretical calculations provides a direct method to probe the band structure including the temperature dependence of the spin-orbit split-off bandgap and g-factors, as well as a means to estimate the sp-d coupling constants. Supported by the AFOSR through grant FA9550-14-1-0376, NSF-Career Award DMR-0846834 , NSF-DMR-60035274 , NSF-DMR-1305666, NSF MRI program (DMR-1229217).
Education: Firms Offer Academics Polymer Science Training.
ERIC Educational Resources Information Center
Chemical and Engineering News, 1983
1983-01-01
Provides information on industry-sponsored programs for college faculty and advanced undergraduate students designed to improve polymer science training: these include residency programs for professors available at industrial laboratories, establishment of a Polymer Education Award, newsletter on course materials/sources in polymer science,…
NASA Astrophysics Data System (ADS)
Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.
2015-12-01
The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.
Self-Consistent Field Theories for the Role of Large Length-Scale Architecture in Polymers
NASA Astrophysics Data System (ADS)
Wu, David
At large length-scales, the architecture of polymers can be described by a coarse-grained specification of the distribution of branch points and monomer types within a molecule. This includes molecular topology (e.g., cyclic or branched) as well as distances between branch points or chain ends. Design of large length-scale molecular architecture is appealing because it offers a universal strategy, independent of monomer chemistry, to tune properties. Non-linear analogs of linear chains differ in molecular-scale properties, such as mobility, entanglements, and surface segregation in blends that are well-known to impact rheological, dynamical, thermodynamic and surface properties including adhesion and wetting. We have used Self-Consistent Field (SCF) theories to describe a number of phenomena associated with large length-scale polymer architecture. We have predicted the surface composition profiles of non-linear chains in blends with linear chains. These predictions are in good agreement with experimental results, including from neutron scattering, on a range of well-controlled branched (star, pom-pom and end-branched) and cyclic polymer architectures. Moreover, the theory allows explanation of the segregation and conformations of branched polymers in terms of effective surface potentials acting on the end and branch groups. However, for cyclic chains, which have no end or junction points, a qualitatively different topological mechanism based on conformational entropy drives cyclic chains to a surface, consistent with recent neutron reflectivity experiments. We have also used SCF theory to calculate intramolecular and intermolecular correlations for polymer chains in the bulk, dilute solution, and trapped at a liquid-liquid interface. Predictions of chain swelling in dilute star polymer solutions compare favorably with existing PRISM theory and swelling at an interface helps explain recent measurements of chain mobility at an oil-water interface. In collaboration with: Renfeng Hu, Colorado School of Mines, and Mark Foster, University of Akron. This work was supported by NSF Grants No. CBET- 0730692 and No. CBET-0731319.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inigo, Gil San; Servilla, Mark; Brunt, James
2008-06-01
The Genomic Standards Consortium (GSC) invited a representative of the Long-Term Ecological Research (LTER) to its fifth workshop to present the Ecological Metadata Language (EML) metadata standard and its relationship to the Minimum Information about a Genome/Metagenome Sequence (MIGS/MIMS) and its implementation, the Genomic Contextual Data Markup Language (GCDML). The LTER is one of the top National Science Foundation (NSF) programs in biology since 1980, representing diverse ecosystems and creating long-term, interdisciplinary research, synthesis of information, and theory. The adoption of EML as the LTER network standard has been key to build network synthesis architectures based on high-quality standardized metadata.more » EML is the NSF-recognized metadata standard for LTER, and EML is a criteria used to review the LTER program progress. At the workshop, a potential crosswalk between the GCDML and EML was explored. Also, collaboration between the LTER and GSC developers was proposed to join efforts toward a common metadata cataloging designer's tool. The community adoption success of a metadata standard depends, among other factors, on the tools and trainings developed to use the standard. LTER's experience in embracing EML may help GSC to achieve similar success. A possible collaboration between LTER and GSC to provide training opportunities for GCDML and the associated tools is being explored. Finally, LTER is investigating EML enhancements to better accommodate genomics data, possibly integrating the GCDML schema into EML. All these action items have been accepted by the LTER contingent, and further collaboration between the GSC and LTER is expected.« less
Gil, Inigo San; Sheldon, Wade; Schmidt, Tom; Servilla, Mark; Aguilar, Raul; Gries, Corinna; Gray, Tanya; Field, Dawn; Cole, James; Pan, Jerry Yun; Palanisamy, Giri; Henshaw, Donald; O'Brien, Margaret; Kinkel, Linda; McMahon, Katherine; Kottmann, Renzo; Amaral-Zettler, Linda; Hobbie, John; Goldstein, Philip; Guralnick, Robert P; Brunt, James; Michener, William K
2008-06-01
The Genomic Standards Consortium (GSC) invited a representative of the Long-Term Ecological Research (LTER) to its fifth workshop to present the Ecological Metadata Language (EML) metadata standard and its relationship to the Minimum Information about a Genome/Metagenome Sequence (MIGS/MIMS) and its implementation, the Genomic Contextual Data Markup Language (GCDML). The LTER is one of the top National Science Foundation (NSF) programs in biology since 1980, representing diverse ecosystems and creating long-term, interdisciplinary research, synthesis of information, and theory. The adoption of EML as the LTER network standard has been key to build network synthesis architectures based on high-quality standardized metadata. EML is the NSF-recognized metadata standard for LTER, and EML is a criteria used to review the LTER program progress. At the workshop, a potential crosswalk between the GCDML and EML was explored. Also, collaboration between the LTER and GSC developers was proposed to join efforts toward a common metadata cataloging designer's tool. The community adoption success of a metadata standard depends, among other factors, on the tools and trainings developed to use the standard. LTER's experience in embracing EML may help GSC to achieve similar success. A possible collaboration between LTER and GSC to provide training opportunities for GCDML and the associated tools is being explored. Finally, LTER is investigating EML enhancements to better accommodate genomics data, possibly integrating the GCDML schema into EML. All these action items have been accepted by the LTER contingent, and further collaboration between the GSC and LTER is expected.
Polymer-Based Nanocomposites: An Internship Program for Deaf and Hard of Hearing Students
NASA Astrophysics Data System (ADS)
Cebe, Peggy; Cherdack, Daniel; Seyhan Ince-Gunduz, B.; Guertin, Robert; Haas, Terry; Valluzzi, Regina
2007-03-01
We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.
NASA Astrophysics Data System (ADS)
Fox, L. K.; Guertin, L. A.
2013-12-01
The Geosciences Division of the Council of Undergraduate Research (GeoCUR, http://curgeoscience.wordpress.com/) has a long history of supporting faculty who engage in undergraduate research. The division has held faculty development workshops at national meetings of the GSA and AGU for over 15 years. These workshops serve faculty at all career stages and cover multiple aspects of the enterprise of engaging students in undergraduate research. Topics covered include: getting a job (particularly at a primarily undergraduate institution), incorporating research into classes, mentoring independent research projects and identifying sources of internal and external funding. Originally, these workshops were funded through CUR and registration income. When the administrative costs to run the workshops increased, we successfully sought funding from the NSF Course, Curriculum, and Laboratory Improvement (CCLI) program. This CCLI Type 1 special project allowed the expansion of the GSA workshops from half-day to full-day and the offering of workshops to other venues, including the annual meeting of the Association of American Geographers and sectional GSA meetings. The workshops are organized and led by GeoCUR councilors, some of whom attended workshops as graduate students or new faculty. Current and past Geoscience program officers in the NSF Division of Undergraduate Education (DUE) have presented on NSF funding opportunities. Based on participant surveys, the content of the workshops has evolved over time. Workshop content is also tailored to the particular audience; for example, AGU workshops enroll more graduate students and post-docs and thus the focus is on the job ';search' and getting started in undergraduate research. To date, this CCLI Type 1 project has supported 15 workshops and a variety of print and digital resources shared with workshop participants. This presentation will highlight the goals of this workshop proposal and also provide insights about strategies for funding professional development, impact of workshops on initiating and sustaining undergraduate research programs, and future directions of this program.
NASA Astrophysics Data System (ADS)
Charlevoix, D. J.; Dutilly, E.
2017-12-01
In 2013, UNAVCO, a facility co-sponsored by the NSF and NASA, received a five-year award from the NSF: Geodesy Advancing Geosciences and EarthScope (GAGE). Under GAGE, UNAVCO's Education and Community Engagement (ECE) program conducts outreach and education activities, in essence broader impacts for the scientific community and public. One major challenge of this evaluation was the breadth and depth of the dozens of projects conducted by the ECE program under the GAGE award. To efficiently solve this problem of a large-scale program evaluation, we adopted a deliberative democratic (DD) approach that afforded UNAVCO ECE staff a prominent voice in the process. The evaluator directed staff members to chose the projects they wished to highlight as case studies of their finest broader impacts work. The DD approach prizes inclusion, dialogue, and deliberation. The evaluator invited ECE staff to articulate qualities of great programs and develop a case study of their most valuable broader impacts work. To anchor the staff's opinion in more objectivity than opinion, the evaluator asked each staff member to articulate exemplary qualities of their chosen project, discuss how these qualities fit their case study, and helped staff to develop data collection systems that lead to an evidence-based argument in support of their project's unique value. The results of this evaluation show that the individual ECE work areas specialized in certain kinds of projects. However, when viewed at the aggregate level, ECE projects spanned almost the entire gamut of NSF broader impacts categories. Longitudinal analyses show that since the beginning of the GAGE award, many projects grew in impact from year 1 to year 5. While roughly half of the ECE projects were prior work projects, by year five at least 33% of projects were newly developed under GAGE. All selected case studies exemplified how education and outreach work can be productively tied to UNAVCO's core mission of promoting geodesy.
Electrical detection of proton-spin motion in a polymer device at room temperature
NASA Astrophysics Data System (ADS)
Boehme, Christoph
With the emergence of spintronics concepts based on organic semiconductors there has been renewed interest in the role of both, electron as well as nuclear spin states for the magneto-optoelectronic properties of these materials. In spite of decades of research on these molecular systems, there is still much need for an understanding of some of the fundamental properties of spin-controlled charge carrier transport and recombination processes. This presentation focuses on mechanisms that allow proton spin states to influence electronic transition rates in organic semiconductors. Remarkably, even at low-magnetic field conditions and room temperature, nuclear spin states with energy splittings orders of magnitude below thermal energies are able to influence observables like magnetoresistance and fluorescence. While proton spins couple to charge carrier spins via hyperfine interaction, there has been considerable debate about the nature of the electronic processes that are highly susceptible to these weak hyperfine fields. Here, experiments are presented which show how the magnetic resonant manipulation of electron and nuclear spin states in a π-conjugated polymer device causes changes of the device current. The experiments confirm the extraordinary sensitivity of electronic transitions to very weak magnetic field changes and underscore the potential significance of spin-selection rules for highly sensitive absolute magnetic fields sensor concepts. However, the relevance of these magnetic-field sensitive spin-dependent electron transitions is not just limited to semiconductor materials but also radical pair chemistry and even avian magnetoreceptors This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0000909. The Utah NSF - MRSEC program #DMR 1121252 is acknowledged for instrumentation support.
2-d and 1-d Nanomaterials Construction through Peptide Computational Design and Solution Assembly
NASA Astrophysics Data System (ADS)
Pochan, Darrin
Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic/H-bonding/hydrophobic interactions to define hierarchical material structure and consequent properties. Importantly, while biomimicry has been a successful strategy for the design of new peptide molecules for intermolecular assembly, computational tools have been developed to de novo design peptide molecules required for construction of pre-determined, desired nanostructures and materials. A new system comprised of coiled coil bundle motifs theoretically designed to assemble into designed, one and two-dimensional nanostructures will be introduced. The strategy provides the opportunity for arbitrary nanostructure formation, i.e. structures not observed in nature, with peptide molecules. Importantly, the desired nanostructure was chosen first while the peptides needed for coiled coil formation and subsequent nanomaterial formation were determined computationally. Different interbundle, two-dimensional nanostructures are stabilized by differences in amino acid composition exposed on the exterior of the coiled coil bundles. Computation was able to determine molecules required for different interbundle symmetries within two-dimensional sheets stabilized by subtle differences in amino acid composition of the inherent peptides. Finally, polymers were also created through covalent interactions between bundles that allowed formation of architectures spanning flexible network forming chains to ultra-stiff polymers, all with the same building block peptides. The success of the computational design strategy is manifested in the nanomaterial results as characterized by electron microscopy, scattering methods, and biophysical techniques. Support from NSF DMREF program under awards DMR-1234161 and DMR-1235084.
Solid State Sciences Committee Forum
1993-08-01
Forum was provided by the Air Force Office of Scientific Research (AFOSR), the Department of Energy (DOE), and the National Science Foundation (NSF...Program in Materials Engineering Laboratory, NIST, and Science and Technology Chair, COMAT 1000 National Science Foundation William Harris, Asst
NSF Director Bloch Stresses Effectiveness and Efficiency.
ERIC Educational Resources Information Center
Lepkowski, Wil
1985-01-01
The text of an interview with Erich Bloch, National Science Foundation (NSF) director, is provided. Among the topics/issues explored are NSF's role in policy research, mission and goals of NSF, establishment of NSF Engineering Research Centers, and national security issues involving access to supercomputers in universities that NSF is funding. (JN)
ERIC Educational Resources Information Center
Bauer, Stephen M.; Arthanat, Sajay
2010-01-01
The purpose of this paper was to evaluate the impact of Small Business Innovation Research (SBIR) and Small Business Technology Transfer Research (STTR) grant programs of 5 federal agencies National Institutes of Health (NIH), National Science Foundation (NSF), U.S. Department of Education (USDE), U.S. Department of Agriculture (USDA), and…
ERIC Educational Resources Information Center
Goldsmith, Sharon S.; Presley, Jennifer B.
This report results from an evaluation of the National Research Foundation's Graduate Research Fellowship program. The study sought to determine: (1) whether NSF fellows show evidence of more timely degree completion and early career success; (2) whether graduate fellows and minority graduate fellows experience similar education and career…
ERIC Educational Resources Information Center
Calhoun, Dave
Systemic reform of mathematics and science education in K-12 schools, sponsored by the National Science Foundation (NSF), was instituted in 1991. Built into the initiatives were guidelines for local (internal) evaluation of programs. This paper is a summary of the evaluation conceptualizations and efforts of one evaluator at the Fresno Unified…
A Retrospective Study of a Scientist in the Classroom Partnership Program
ERIC Educational Resources Information Center
Ufnar, Jennifer A.; Bolger, Molly; Shepherd, Virginia L.
2017-01-01
The Scientist in the Classroom Partnership (SCP) is a unique, long-term program that partners STEM fellows with K-12 teachers. The SCP was adapted from the original NSF GK-12 model, with fellows and teachers working in the summer and academic year to build their partnership and design and coteach inquiry-based STEM curricula. The current study is…
ERIC Educational Resources Information Center
Brown, Pamela; Borrego, Maura
2013-01-01
The National Science Foundation's Math and Science Partnership (MSP) program (NSF, 2012) supports partnerships between K-12 school districts and institutions of higher education (IHEs) and has been funding projects to improve STEM education in K-12 since 2002. As of 2011, a total of 178 MSP projects have received support as part of a STEM…
SPIN-UP and Preparing Undergraduate Physics Majors for Careers in Industry
NASA Astrophysics Data System (ADS)
Howes, Ruth
2011-03-01
Seven years ago, the Strategic Programs for Innovations in Undergraduate Physics (SPIN-UP) Report produced by the National Task Force on Undergraduate Physics identified several key characteristics of thriving undergraduate physics departments including steps these departments had taken to prepare students better for careers in industry. Today statistical data from AIP shows that almost 40% of students graduating with a degree in physics seek employment as soon as they graduate. Successful undergraduate physics programs have taken steps to adapt their rigorous physics programs to ensure that graduating seniors have the skills they need to enter the industrial workplace as well as to go on to graduate school in physics. Typical strategies noted during a series of SPIN-UP workshops funded by a grant from NSF to APS, AAPT, and AIP include flexible curricula, early introduction of undergraduates to research techniques, revised laboratory experiences that provide students with skills they need to move directly into jobs, and increased emphasis on ``soft'' skills such as communication and team work. Despite significant success, undergraduate programs face continuing challenges in preparing students to work in industry, most significantly the fact that there is no job called ``physicist'' at the undergraduate level. supported by grant NSF DUE-0741560.
Personnel and Cargo Transport in Antarctica: Analysis of Current U.S. Transport System
1991-03-01
George L. Blaisdell March 1991 ,i . . 1 U - I I Prepared for DIVISION OF DOLAR PROGRAMS NATIONAL SCIENCE FOUNDATION Approved for public release...Engineering Division, U.S. Army Cold Regions Research and Engineering Laboratory. Funding was provided by the Division of Polar Programs, National Science Foundation . A...Current U.S. Transport System GEORGE L. BLAISDELL INTRODUCTION The National Science Foundation (NSF), operator of the U.S. Antarctic program, has
NASA Astrophysics Data System (ADS)
Lawrenz, Frances; McCreath, Heather
Qualitative and quantitative evaluation procedures were used to compare two physical-science teacher inservice training programs. The two programs followed the master teacher training model espoused by NSF but used different types of master teachers and types of activities. The two evaluation procedures produced different results and together they provided a much clearer picture of the strengths and weaknesses of the two programs. Using only one approach or the other would have substantially altered the conclusions.
Individuals and Institutions : How to Advance Women in Science
NASA Astrophysics Data System (ADS)
Valian, Virginia
2015-01-01
The inception of the NSF ADVANCE program marked a change in NSF's efforts to improve the advancement of women in the sciences. Previous efforts had focused on providing women with funding to pursue their research. ADVANCE focuses on changing the institutions in which women do their research. Evidence of ADVANCE's successes can be seen both in the careers of individual women and in hiring and retention figures at the institutions that received funding. In Part 1, I will review interventions that help women to succeed, with a focus on the Sponsorship Program and the Workshop Series for Junior Faculty that the Gender Equity Project at Hunter College developed. In Part 2, I will review successes in changing hiring practices, with a focus on ADVANCE programs from the University of Michigan and the University of Wisconsin. In Part 3, I will analyze the costs and benefits of the two types of intervention, including the long time course of institutional change, the helpful or hurtful role that leaders can play, the need for intervention at the departmental level, and the potential for individuals to change institutions.
NASA Astrophysics Data System (ADS)
Tedesche, M. E.; Conner, L.
2015-12-01
Well rounded scientific researchers are not only experts in their field, but can also communicate their work to a multitude of various audiences, including the general public and undergraduate university students. Training in these areas should ideally start during graduate school, but many programs are not preparing students to effectively communicate their work. Here, we present results from the NSF-funded CASE (Changing Alaska Science Education) program, which was funded by NSF under the auspices of the GK-12 program. CASE placed science graduate students (fellows) in K-12 classrooms to teach alongside of K-12 teachers with the goal of enhancing communication and teaching skills among graduate students. CASE trained fellows in inquiry-based and experiential techniques and emphasized the integration of art, writing, and traditional Alaska Native knowledge in the classroom. Such techniques are especially effective in engaging students from underrepresented groups. As a result of participation, many CASE fellows have reported increased skills in communication and teaching, as well as in time management. These skills may prove directly applicable to higher education when teaching undergraduate students.
Helping Scientists Become Effective Partners in Education and Outreach
NASA Astrophysics Data System (ADS)
Laursen, Sandra L.; Smith, Lesley K.
2009-01-01
How does a scientist find herself standing before a group of lively third-graders? She may be personally motivated-seeking to improve public understanding of scientific issues and the nature of science, or to see her own children receive a good science education-or perhaps she simply enjoys this kind of work [Andrews et al., 2005; Kim and Fortner, 2008]. In addition to internal motivating factors, federal funding agencies have begun to encourage scientists to participate in education and outreach (E/O) related to their research, through NASA program requirements for such activities (see ``Implementing the Office of Space Science Education/Public Outreach Strategy,'' at http://spacescience.nasa.gov/admin/pubs/edu/imp_plan.htm) and the U.S. National Science Foundation's increased emphasis on ``broader impacts'' in merit review of research proposals (see http://www.nsf.gov/pubs/2003/nsf032/bicexamples.pdf). Universities, laboratories, and large collaboratives have responded by developing E/O programs that include interaction between students, teachers, and the public in schools; after-school and summer programs; and work through science centers, planetaria, aquaria, and museums.
X-ray photoelectron spectroscopic study of sulfur-nitrogen-fluorine compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beach, D.B.; Jolly, W.L.; Mews, R.
1984-11-21
The gas-phase core binding energies of NSF, NSF/sub 3/, and several compounds of the types NSF/sub 2/R and F/sub 2/SNR have been determined. Qualitative interpretation of the data shows that N(p..pi..) ..-->.. S(d..pi..) bonding is probably important in the NSF/sub 2/R compounds and in NSF/sub 3/, that the bonding of the sulfur atom in NSF is similar to that in SO/sub 2/, and that the nitrogen atom of NSF/sub 3/ is more negatively charged than that of NSF (in spite of a stronger N-S bond in NSF/sub 3/). Quantitative interpretation of the data for NSF and NSF/sub 3/, together withmore » literature valence ionization potentials, shows that the HOMO of each molecule has principally nitrogen 2p character and is stabilized by interaction with a higher lying sulfur 3d orbital. The approximate atomic orbital contributions to the other molecuar orbitals of these molecules are deduced.« less
The Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Cline, J. Donald; Castelaz, M.; Whitworth, C.; Clavier, D.; Owen, L.; Barker, T.
2012-01-01
Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the NC Space Grant Consortium, NSF awards for public science education, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 7 funded students participated in 2011. Mentors for the interns include PARI's Science, Education, and Information Technology Directors and visiting faculty who are members of the PARI Research Affiliate Faculty program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and software for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors, the logistics for hosting the PARI undergraduate internship program, and plans for growth based on the impact of an NSF supported renovation to the Research Building on the PARI campus.
The Summer Undergraduate Research Internship Program at the Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Castelaz, Michael W.; Cline, J.; Whitworth, C.; Clavier, D.
2011-01-01
Pisgah Astronomical Research Institute (PARI) offers summer undergraduate research internships. PARI has received support for the internships from the NC Space Grant Consortium, NSF awards for public science education, private donations, private foundations, and through a collaboration with the Pisgah Astronomical Research and Education Center of the University of North Carolina - Asheville. The internship program began in 2001 with 4 students. This year 9 funded students participated in 2010. Mentors for the interns include PARI's Directors of Science, Education, and Information Technology and visiting faculty who are members of the PARI Research Affiliate Faculty program. Students work with mentors on radio and optical astronomy research, electrical engineering for robotic control of instruments, software development for instrument control and applets for citizen science projects, and science education by developing curricula and multimedia and teaching high school students in summer programs at PARI. At the end of the summer interns write a paper about their research which is published in the PARI Summer Student Proceedings. Several of the students have presented their results at AAS Meetings. We will present a summary of specific research conducted by the students with their mentors, the logistics for hosting the PARI undergraduate internship program, and plans for growth based on the impact of an NSF supported renovation to the Research Building on the PARI campus.
ERIC Educational Resources Information Center
Journal of College Science Teaching, 1976
1976-01-01
Presents information on storage of radioactive wastes, the AAAS February meeting, an NSF publication on doctoral scientists and engineers, the Research Associateship programs of the National Research Council, the international congress on cybernetics, the effects of nuclear war on noncombatants, radioactivity in drinking water, and computer based…
NASA Astrophysics Data System (ADS)
Stewart, Gay; Prival, Joan
2012-02-01
The NSF Robert Noyce Teacher Scholarship Program seeks to encourage talented STEM majors and STEM professionals to become mathematics and science teachers. The program also supports the development of Master Teachers in science and mathematics. There are key features in managing a Noyce program that often present difficulty and are vital to successful, sustainable, teacher preparation programs: mentoring, advising and recruiting, and working with school partners. In this workshop, we will help participants consider ways to alleviate existing difficulties or how to set up a program to reduce them. A sample proposal will be available for a mock review.
Birth of the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL)
NASA Astrophysics Data System (ADS)
James, D. E.; Sacks, I. S.
2002-05-01
As recently as 1984 institutions doing portable seismology depended upon their own complement of instruments, almost all designed and built in-house, and all of limited recording capability and flexibility. No data standards existed. Around 1980 the National Research Council (NRC) of the National Academy of Sciences (NAS), with National Science Foundation (NSF) support, empanelled a committee to study a major new initiative in Seismic Studies of the Continental Lithosphere (SSCL). The SSCL report in 1983 recommended that substantial numbers (1000 or more) of new generation digital seismographs be acquired for 3-D high resolution imaging of the continental lithosphere. Recommendations of the SSCL committee dovetailed with other NRC/NAS and NSF reports that highlighted imaging of the continental lithosphere as an area of highest priority. For the first time in the history of portable seismology the question asked was "What do seismologists need to do the job right?" A grassroots effort was undertaken to define instrumentation and data standards for a powerful new set of modern seismic research tools to serve the national seismological community. In the spring and fall of 1983 NSF and IASPEI sponsored workshops were convened to develop specifications for the design of a new generation of portable instrumentation. PASSCAL was the outgrowth of these seminal studies and workshops. The first step toward the formal formation of PASSCAL began with an ad-hoc organizing committee, comprised largely of the members of the NAS lithospheric seismology panel, convened by the authors at Carnegie Institution in Washington in November 1983. From that meeting emerged plans and promises of NSF support for an open organizational meeting to be held in January 1984, in Madison, Wisconsin. By the end of the two-day Madison meeting PASSCAL and an official consortium of seismological institutions for portable seismology were realities. Shortly after, PASSCAL merged with the complementary Global Seismic Network (GSN) under the overall umbrella of the Incorporated Research Institutions for Seismology (IRIS) consortium. Pre-startup funding for PASSCAL was provided by NSF via a so-called "Phase Zero" grant to the Carnegie Institution in June, 1984, to initiate design of new digital instrumentation and to facilitate preparation of the PASSCAL Program Plan. A working group met at Princeton in July 1984 to draft the PASSCAL Program Plan for the IRIS 10-year proposal to NSF, submitted in December 1984. PASSCAL functions as a national facility for seismological research, acquiring and maintaining a large complement of state-of-the-art portable instrumentation for scientists in member institutions. Within a year of its formation, PASSCAL had retained an engineer/program manager and begun the specification process for the manufacture and acquisition of a national instrumentation facility of broadband and short period seismographs. Instrument centers staffed by hardware and software engineers were established to maintain and distribute equipment, and to assist in field installations. By the late 1980s substantial volumes of standardized digital data were flowing from portable experiments to the archives of the newly formed Data Management Center (DMC). Portable broadband sensors built to PASSCAL specifications came on the market in 1989 and transformed the nature of portable experiments by expanding the technical capabilities of portable stations almost to the level of permanent global stations. Today PASSCAL through the instrument center at New Mexico Tech supports dozens of experiments worldwide for high resolution imaging of the earth's interior on all scales.
An Internship Program for Deaf and Hard of Hearing Students in Polymer-Based Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebe,P.; Cherdack, D.; Guertin, R.
2006-01-01
We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanicalmore » properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.« less
Spatially and time resolved kinetics of indirect magnetoexcitons
NASA Astrophysics Data System (ADS)
Hasling, Matthew; Dorow, Chelsey; Calman, Erica; Butov, Leonid; Wilkes, Joe; Campman, Kenneth; Gossard, Arthur
The small exciton mass and binding energy give the opportunity to realize the high magnetic field regime for excitons in magnetic fields of few Tesla achievable in lab Long lifetimes of indirect exciton give the opportunity to study kinetics of magnetoexciton transport by time-resolved optical imaging of exciton emission. We present spatially and time resolved measurements showing the effect of increased magnetic field on transport of magnetoexcitons. We observe that increased magnetic field leads to slowing down of magnetoexciton transport. Supported by NSF Grant No. 1407277. J.W. was supported by the EPSRC (Grant EP/L022990/1). C.J.D. was supported by the NSF Graduate Research Fellowship Program under Grant No. DGE-1144086.
Single Particle Jumps in Sheared SiO2
NASA Astrophysics Data System (ADS)
McMahon, Sean; Vollmayr-Lee, Katharina; Cookmeyer, Jonathan; Horbach, Juergen
We study the dynamics of a sheared glass via molecular dynamics simulations. Using the BKS potential we simulate the strong glass former SiO2. The system is initially well equilibrated at a high temperature, then quenched to a temperature below the glass transition, and, after a waiting time at the desired low temperature, sheared with constant strain rate. We present preliminary results of an analysis of single particle trajectories of the sheared glass. We acknowledge the support via NSF REU Grant #PHY-1156964, DoD ASSURE program, and NSF-MRI CHE-1229354 as part of the MERCURY high-performance computer consortium. We thank G.P. Shrivastav, Ch. Scherer and B. Temelso.
NSF Policies on Software and Data Sharing and their Implementation
NASA Astrophysics Data System (ADS)
Katz, Daniel
2014-01-01
Since January 2011, the National Science Foundation has required a Data Management plan to be submitted with all proposals. This plan should include a description of how the proposers will share the products of the research (http://www.nsf.gov/bfa/dias/policy/dmp.jsp). What constitutes such data will be determined by the community of interest through the process of peer review and program management. This may include, but is not limited to: data, publications, samples, physical collections, software and models. In particular, “investigators and grantees are encouraged to share software and inventions created under an award or otherwise make them or their products widely available and usable.”
The Large Synoptic Survey Telescope project management control system
NASA Astrophysics Data System (ADS)
Kantor, Jeffrey P.
2012-09-01
The Large Synoptic Survey Telescope (LSST) program is jointly funded by the NSF, the DOE, and private institutions and donors. From an NSF funding standpoint, the LSST is a Major Research Equipment and Facilities (MREFC) project. The NSF funding process requires proposals and D&D reviews to include activity-based budgets and schedules; documented basis of estimates; risk-based contingency analysis; cost escalation and categorization. "Out-of-the box," the commercial tool Primavera P6 contains approximately 90% of the planning and estimating capability needed to satisfy R&D phase requirements, and it is customizable/configurable for remainder with relatively little effort. We describe the customization/configuration and use of Primavera for the LSST Project Management Control System (PMCS), assess our experience to date, and describe future directions. Examples in this paper are drawn from the LSST Data Management System (DMS), which is one of three main subsystems of the LSST and is funded by the NSF. By astronomy standards the LSST DMS is a large data management project, processing and archiving over 70 petabyes of image data, producing over 20 petabytes of catalogs annually, and generating 2 million transient alerts per night. Over the 6-year construction and commissioning phase, the DM project is estimated to require 600,000 hours of engineering effort. In total, the DMS cost is approximately 60% hardware/system software and 40% labor.
Microtubule defects influence kinesin-based transport in vitro.
NASA Astrophysics Data System (ADS)
Xu, Jing
Microtubules are protein polymers that form ``molecular highways'' for long-range transport within living cells. Molecular motors actively step along microtubules to shuttle cellular materials between the nucleus and the cell periphery; this transport is critical for the survival and health of all eukaryotic cells. Structural defects in microtubules exist, but whether these defects impact molecular motor-based transport remains unknown. Here, we report a new, to our knowledge, approach that allowed us to directly investigate the impact of such defects. Using a modified optical-trapping method, we examined the group function of a major molecular motor, conventional kinesin, when transporting cargos along individual microtubules. We found that microtubule defects influence kinesin-based transport in vitro. The effects depend on motor number: cargos driven by a few motors tended to unbind prematurely from the microtubule, whereas cargos driven by more motors tended to pause. To our knowledge, our study provides the first direct link between microtubule defects and kinesin function. The effects uncovered in our study may have physiological relevance in vivo. Supported by the UC Merced (to J.X.), NIH (NS048501 to S.J.K.), NSF (EF-1038697 to A.G.), and the James S. McDonnell Foundation (to A.G.). Work carried out at the Aspen Center for Physics was supported by NSF Grant PHY-1066293.
REU program in Solar Physics at Montana State University
NASA Astrophysics Data System (ADS)
Martens, P. C.; Canfield, R. C.; McKenzie, D. M.
2005-12-01
I will present an overview of the REU program in Solar Physics and Space Weather that has existed since 1999 at Montana State University, since 2003 with NSF support. I will briefly describe the goals, organization, scientific contents and results, and present statistics on applications, participants, gender balance, and diversity. This will be concluded by an overview of our plans for the future,
48 CFR 2509.407-3 - Procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Procedures. 2509.407-3 Section 2509.407-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...
48 CFR 2509.406-3 - Procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Procedures. 2509.406-3 Section 2509.406-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...
45 CFR 617.14 - Remedial action by recipients.
Code of Federal Regulations, 2010 CFR
2010-10-01
....14 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION NONDISCRIMINATION ON THE BASIS OF AGE IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE FROM NSF... the effects of the discrimination. If another recipient exercises control over the recipient that has...
45 CFR 617.14 - Remedial action by recipients.
Code of Federal Regulations, 2011 CFR
2011-10-01
....14 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION NONDISCRIMINATION ON THE BASIS OF AGE IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE FROM NSF... the effects of the discrimination. If another recipient exercises control over the recipient that has...
48 CFR 2509.406-3 - Procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Procedures. 2509.406-3 Section 2509.406-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...
48 CFR 2509.406-3 - Procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Procedures. 2509.406-3 Section 2509.406-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...
48 CFR 2509.407-3 - Procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Procedures. 2509.407-3 Section 2509.407-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...
48 CFR 2509.406-3 - Procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Procedures. 2509.406-3 Section 2509.406-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...
48 CFR 2509.407-3 - Procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Procedures. 2509.407-3 Section 2509.407-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...
48 CFR 2509.407-3 - Procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Procedures. 2509.407-3 Section 2509.407-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...
48 CFR 2509.406-3 - Procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Procedures. 2509.406-3 Section 2509.406-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...
48 CFR 2509.407-3 - Procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Procedures. 2509.407-3 Section 2509.407-3 Federal Acquisition Regulations System NATIONAL SCIENCE FOUNDATION ACQUISITION PLANNING... Counsel, the NSF Procurement Executive, and program officials, what additional steps are necessary and...
NASA Astrophysics Data System (ADS)
Penniston-Dorland, S.; Stern, R. J.; Edwards, B. R.; Kincaid, C. R.
2014-12-01
The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate fundamental results from the MARGINS program into open-source college-level curriculum. Three Subduction Factory (SubFac) mini-lessons were developed as part of this project. These include hands-on examinations of data sets representing 3 key components of the subduction zone system: 1) Heat transfer in the subducted slab; 2) Metamorphic processes happening at the plate interface; and 3) Typical magmatic products of arc systems above subduction zones. Module 1: "Slab Temperatures Control Melting in Subduction Zones, What Controls Slab Temperature?" allows students to work in groups using beads rolling down slopes as an analog for the mathematics of heat flow. Using this hands-on, exploration-based approach, students develop an intuition for the mathematics of heatflow and learn about heat conduction and advection in the subduction zone environment. Module 2: "Subduction zone metamorphism" introduces students to the metamorphic rocks that form as the subducted slab descends and the mineral reactions that characterize subduction-related metamorphism. This module includes a suite of metamorphic rocks available for instructors to use in a lab, and exercises in which students compare pressure-temperature estimates obtained from metamorphic rocks to predictions from thermal models. Module 3: "Central American Arc Volcanoes, Petrology and Geochemistry" introduces students to basic concepts in igneous petrology using the Central American volcanic arc, a MARGINS Subduction Factory focus site, as an example. The module relates data from two different volcanoes - basaltic Cerro Negro (Nicaragua) and andesitic Ilopango (El Salvador) including hand sample observations and major element geochemistry - to explore processes of mantle and crustal melting and differentiation in arc volcanism.
The SC State NSF PAARE Program
NASA Astrophysics Data System (ADS)
Walter, Donald; Ajello, Marco; Brittain, Sean; Cash, Jennifer; Fogle, Bryan; Hartmann, Dieter; Ho, Shirley; Howell, Steve; King, Jeremy; Leising, Mark; Smith, Daniel
2018-01-01
We report on the activities of our NSF PAARE program during Year 3 of the project. Our partnership under this award includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) and individual investigators at NASA Ames and elsewhere. Our partnership with the Citizen CATE Experiment and involvement in the total solar eclipse which passed through our campus on August 21, 2017, will be discussed. The PAARE project continues to strengthen our partnership with Clemson. We are close to completing a memorandum of agreement between the two institutions that will allow for the seamless transfer of an undergraduate from SC State to Clemson’s graduate program in physics and astronomy. Additionally, we have worked together under the Citizen CATE project and through other research activities. SC State is a member of the National Astronomy Consortium (NAC) and participates through its faculty and undergraduates, one of whom (Wesley Red) is reporting on his summer internship at this conference. We also served as the state coordinator for South Carolina for the Citizen CATE Experiment. The August 21st path of totality crossed through our campus and the campus of our partner Clemson University. Additional colleges, universities and citizen scientist groups partnered with us to provide 7 sites of coverage across South Carolina from the foothills of the Appalachian mountains to the Atlantic Ocean near the site of departure of the shadow from the continental U.S. Support for this work includes our NSF PAARE award AST-1358913 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory. CATE work has been supported by NASA SMD award NNX16AB92A to the National Solar Observatory. Additional details can be found at: http://physics.scsu.edu
Brownian dynamics simulations of insulin microspheres formation
NASA Astrophysics Data System (ADS)
Li, Wei; Chakrabarti, Amit; Gunton, James
2010-03-01
Recent experiments have indicated a novel, aqueous process of microsphere insulin fabrication based on controlled phase separation of protein from water-soluble polymers. We investigate the insulin microsphere crystal formation from insulin-PEG-water systems via 3D Brownian Dynamics simulations. We use the two component Asakura-Oosawa model to simulate the kinetics of this colloid polymer mixture. We first perform a deep quench below the liquid-crystal boundary that leads to fractal formation. We next heat the system to obtain a break-up of the fractal clusters and subsequently cool the system to obtain a spherical aggregation of droplets with a relatively narrow size distribution. We analyze the structure factor S(q) to identify the cluster dimension. S(q) crosses over from a power law q dependence of 1.8 (in agreement with DLCA) to 4 as q increases, which shows the evolution from fractal to spherical clusters. By studying the bond-order parameters, we find the phase transition from liquid-like droplets to crystals which exhibit local HCP and FCC order. This work is supported by grants from the NSF and Mathers Foundation.
Highly Conductive, Stretchable, and Transparent Solid Polymer Electrolyte Membrane
NASA Astrophysics Data System (ADS)
He, Ruixuan; Echeverri, Mauricio; Kyu, Thein
2014-03-01
With the guidance of ternary phase diagrams, completely amorphous polymer electrolyte membranes (PEM) were successfully prepared by melt processing for lithium-ion battery. The PEM under consideration consisted of poly (ethylene glycol diacrylate) (PEGDA), succinonitrile (SCN) and Lithium bis(trifluoro-methane)sulfonamide (LiTFSI). After UV-crosslinking, the PEM is transparent and light-weight. Addition of SCN plastic crystal affords not only dissociation of the lithium salt, but also plasticization to the crosslinked PEGDA network. Of particular importance is the achievement of room-temperature ionic conductivity of ~10-3 S/cm, which is comparable to that of commercial liquid electrolyte. Higher ionic conductivities were achieved at elevated temperatures or with use of a moderately higher molecular weight of PEGDA. In terms of electrochemical and chemical stability, the PEM exhibited oxidative stability up to 5 V against lithium reference electrode. Stable interface behavior between the PEM and lithium electrode is also seen with ageing time. In the tensile tests, samples containing low molecular weight PEGDA are stiffer, whereas the high molecular weight PEGDA is stretchable up to 80% elongation. Supported by NSF-DMR 1161070.
Clustering Effects on Dynamics in Ionomer Solutions: A Neutron Spin Echo Insight
NASA Astrophysics Data System (ADS)
Perahia, Dvora; Wijesinghe, Sidath; Senanayake, Manjula; Wickramasinghe, Anuradhi; Mohottalalage, Supun S.; Ohl, Michael
Ionizable blocks in ionomers associate into aggregates serving as physical cross-links and concurrently form transport pathways. The dynamics of ionomers underline their functionality. Incorporating small numbers of ionic groups into polymers significantly constraint their dynamics. Recent computational studies demonstrated a direct correlation between ionic cluster morphology and polymer dynamics. Here using neutron spin echo, we probe the segmental dynamics of polystyrene sulfonate (PSS) as the degree of sulfonation of the PSS and the solution dielectrics are varied. Specifically, 20Wt% PSS of 11,000 g/mol with polydispersity of 1.02 with 3% and 9% sulfonation were studies in toluene (dielectric constant ɛ = 2.8), a good solvent for polystyrene, and with 5Wt% of ethanol (ɛ = 24.3l) added. The dynamic structure factor S(q,t) was analyzed with a single exponential except for a limited q range where two time constants associated with constraint and mobile segments were detected. S(q,t) exhibits several distinctive time and length scales for the dynamics with a crossover appearing at the length scale of the ionic clusters. NSF DMR 1611136.
Formation of Heterogeneous Toroidal-Spiral Particles -- by Drop Sedimentation and Interaction
NASA Astrophysics Data System (ADS)
Liu, Ying; Nitsche, Ludwig; Gemeinhart, Richard; Sharma, Vishal; Szymusiak, Magdalena; Shen, Hao
2013-03-01
We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (TS) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form TS channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the TS shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. Within the critical separation distance, interaction of multiple drops generates similar structure with more flexibility. Furthermore, the understanding of multiple drop interaction is essential for mass production of TS particles by using parallel and sequential arrays of drops. This work was supported by NSF CBET Grant CBET-1039531.
The NSF IUSE-EHR Program: What's New (and Old) About It, and Resources for Geoscience Proposers
NASA Astrophysics Data System (ADS)
Singer, J.; Ryan, J. G.
2015-12-01
The NSF Division of Undergraduate Education recently released a new solicitation for the IUSE program -- the latest iteration in a succession of funding programs dating back over 30 years (including the Instrumentation and Laboratory Improvement Program (ILI), the Course and Curriculum Development Program (CCD), the Course Curriculum and Laboratory Improvement Program (CCLI), and the Transforming Undergraduate STEM Education Program (TUES). All of these programs sought/seek to support high quality STEM education for majors and non-majors in lower- and upper-division undergraduate courses. The current IUSE-EHR program is described in a 2-year solicitation that includes two tracks: Engaged Student Learning, and Institutional & Community Transformation. Each track has several options for funding level and project duration. A wide range of activities can be proposed for funding, and the program recognizes the varying needs across STEM disciplines. Geoscientists and other potential IUSE proposers are strongly encouraged to form collaborations with colleagues that conduct educational research and to propose projects that build upon the educational knowledge base in the discipline as well as contribute to it. Achieving this may not be immediately obvious to many geoscientists who have interests in improving student learning in their courses, but are not fluent in the scholarship of education in their field. To lower the barriers that have historically prevented larger numbers of geoscientists from developing their ideas into competitive education-related proposals, we have explored strategies for building and leveraging partnerships, sought to identify available resources for proposers, and explored a range of strategies for engaging and supporting larger numbers of potential geoscience proposers.
Polymer brushes on nanoparticles: their positioning in and influence on block copolymer morphology.
NASA Astrophysics Data System (ADS)
Kim, Bumjoon
2007-03-01
Polymers brushes grafted to the nanoparticle surface enable the precise positioning of particles within a block copolymer matrix by determining the compatibility of nanoparticles within a polymeric matrix and modifying the interfacial properties between polymers and inorganic nanoparticle. Short thiol terminated polystyrene (PS-SH), poly(2-vinylpyridine) (P2VP-SH) and PS-r-P2VP with the molecular weight (Mn) of 3 kg/mol were used to control the location of Au nanoparticles over PS-b-P2VP diblock copolymer template. We will discuss further the approach of varying the areal chain density (σ) of PS-SH brushes on the PS coated particles, which utilizes the preferential wetting of one block of a copolymer (P2VP) on the Au substrate. Such favorable interaction provides the strong binding of Au particles to the PS/P2VP interface as σ of PS chains on the Au particle decreases. We find that at σ above a certain value, the nanoparticles are segregated to the center of the PS domains while below this value they are segregated to the interface. The transition σ for PS-SH chains (Mn = 3.4 kg/mol) is 1.3 chains/nm^2 but unexpectedly scales as Mn-0.55 as Mn is varied from 1.5 to 13 kg/mol. In addition, we will discuss changes in block copolymer morphology that occur as the nanoparticle volume fraction (φ) is increased for nanoparticles that segregate to the domain center as well as those that segregate to the interface, the latter behaving as nanoparticle surfactants. Small φ of such surfactants added to lamellar diblock copolymers lead initially to a decrease in lamellar thickness, a consequence of decreasing interfacial tension, up to a critical value of φ beyond which the block copolymer adopts a bicontinuous morphology. I thank my collaborators G. H. Fredrickson, J. Bang, C. J. Hawker, and E. J. Kramer as well as funding by the MRL as UCSB from the NSF-MRSEC-Program Award DMR05-20418.
Controlling Valence of DNA-Coated Emulsion Droplets with Multiple Flavors of DNA
NASA Astrophysics Data System (ADS)
McMullen, Angus; Bargteil, Dylan; Pine, David; Brujic, Jasna
We explore the control of valence of DNA-coated emulsion droplets as a first step in developing DNA-directed self-assembly of emulsions. Emulsion droplets differ from solid colloids in that they are deformable and the DNA strands attached to them are free to move along the emulsion surface. The balance of binding energy and droplet deformation provides control over a droplet's valence via its ligand density. After binding, some DNA often remains unbound due to the entropic cost of DNA recruitment. In practice, therefore, the assembly kinetics yield a distribution in valence. Our goal is to control valence by altering the binding kinetics with multiple flavors of DNA. We coat one set of droplets with two DNA types, A and B, and two other sets with one complementary strand, A' or B'. When an AB droplet binds to an A' droplet, the adhesion patch depletes A strands, leaving the rest of the droplet coated with more B than A strands. This increases the chance that the next droplet to bind will be a B' rather than an A'. Controlling valence will allow us to build a wide array of soft structures, such as emulsion polymers or networks with a determined coordination number. This work was supported by the NSF MRSEC Program (DMR-0820341).
NSF Geosciences Initiatives and Plans Reviewed at Advisory Committee Meeting
NASA Astrophysics Data System (ADS)
Showstack, Randy
2010-10-01
In its semiannual meeting on 6-7 October, the U.S. National Science Foundation's (NSF) Advisory Committee for Geosciences (GEO) reviewed GEO initiatives, programs, and plans, including the GEO directorate's fast and significant response to support research related to various aspects of the Deepwater Horizon oil spill in the Gulf of Mexico through Rapid Response Research (RAPID) awards and other measures. An undercurrent during the meeting was concern about workload stress among GEO staff. Assistant director of geosciences Tim Killeen noted that the proposed budget for fiscal year (FY) 2011, which began on 1 October, would increase directorate funding 7.4% over FY 2010, if the budget is approved by Congress. A continuing resolution in Congress maintains FY 2010 funding levels until at least 3 December. Killeen said NSF's budget request for FY 2012 has been submitted to the White House Office of Management and Budget, adding that although he cannot discuss details of that budget yet, GEO Vision, a longrange strategy document for the directorate released in October 2009, “is reflected in our thinking going forward.”
A Framework for Comparing Groups of Documents
2015-09-21
Science Foundation (NSF), the National Institutes of Health (NIH), and the Department of Defense (DoD), are of- ten in the position of reviewing...documents. Here, we provide two motivating examples. 1. Program Reviews. To better direct research efforts, funding organizations such as the National
News and Comment: Knapp Reinterprets Excellence at NSF.
ERIC Educational Resources Information Center
Walsh, John
1983-01-01
Examines changes at the National Science Foundation since Edward Knapp was appointed director, including relations with National Science Board, vacancies in deputy directorship and four assistant directorships, relations with Office of Science and Technology Policy, research grant administration, budget control, policy analysis, programs outside…
Ocean Drilling Program: Related Sites
) 306-0390 Web site: www.nsf.gov Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) US Members: Columbia University, Lamont-Doherty Earth Observatory Florida State University Oregon State University, College of Oceanic and Atmospheric Sciences Pennsylvania State University, College of Earth and
77 FR 31044 - Permits Issued Under the Antarctic Conservation Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-24
... NATIONAL SCIENCE FOUNDATION Permits Issued Under the Antarctic Conservation Act AGENCY: National... 95-541. SUMMARY: The National Science Foundation (NSF) is required to publish notice of permits... CONTACT: Nadene G. Kennedy, Permit Office, Office of Polar Programs, Rm. 755, National Science Foundation...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 3 2010-10-01 2010-10-01 false Definitions. 617.2 Section 617.2 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION NONDISCRIMINATION ON THE BASIS OF AGE IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE FROM NSF § 617.2 Definitions...
Candidates for office 2004-2006
NASA Astrophysics Data System (ADS)
Timothy L. Killeen. AGU member since 1981. Director of the National Center for Atmospheric Research (NCAR); Senior Scientist, High Altitude Observatory; Adjunct Professor, University of Michigan. Major areas of interest include space physics and aeronomy remote sensing, and interdisciplinary science education. B.S., Physics and Astronomy (first class honors), 1972, University College London; Ph.D., Atomic and Molecular Physics, 1975, University College London. University of Michigan: Researcher and Professor of Atmospheric, Oceanic, and Space Sciences, 1978-2000 Director of the Space Physics Research Laboratory 1993-1998 Associate Vice-President for Research, 1997-2000. Visiting senior scientist at NASA Goddard Space Flight Center, 1992. Program Committee, American Association for the Advancement of Science; Council Member, American Meteorological Society; Editor-in-Chief, Journal of Atmospheric and Solar-Terrestrial Physics; Chair, Jerome K.Weisner National Policy Symposium on the Integration of Research and Education, 1999. Authored over 140 publications, 57 in AGU journals. Significant publications include: Interaction of low energy positrons with gaseous atoms and molecules, Atomic Physics, 4, 1975; Energetics and dynamics of the thermosphere, Reviews of Geophysics, 1987; The upper mesosphere and lower thermosphere, AGU Geophysical Monograph, 1995, Excellence in Teaching and Research awards, College of Engineering, University of Michigan; recipient of two NASA Achievement Awards; former chair, NASA Space Physics Subcommittee; former chair, National Science Foundation (NSF) Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) program; former member, NSF Advisory Committee for Geosciences, and chair of NSF's Atmospheric Sciences Subcommittee, 1999-2002 member, NASA Earth Science Enterprise Advisory Committee; member of various National Academy of Science/National Research Council Committees; cochair, American Association for the Advancement of Science National Meeting, 2003. AGU service includes: term as associate editor of Journal of Geophysical Research-Space Physics; chair, Panel on International Space Station; Global Climate Change Panel; Federal Budget Review Committee; member of AGU Program, Public Information, Awards, and Public Affairs committees; Chapman Conference Convener and Monograph editor; Section Secretary and Program Chair, Space and Planetary Relations Section; President of Space Physics and Aeronomy Section; AGU Council Member.
Increasing Diversity in Geosciences: Geospatial Initiatives at North Carolina Central University
NASA Astrophysics Data System (ADS)
Vlahovic, G.; Malhotra, R.; Renslow, M.; Harris, J.; Barnett, A.
2006-12-01
Two new initiatives funded by the NSF-GEO and NSF-HRD directorates have potential to advance the geospatial program at the North Carolina Central University (NCCU). As one of only two Historically Black Colleges and Universities (HBCUs) in the southeast offering Geography as a major, NCCU is establishing a GIS Research, Innovative Teaching, and Service (GRITS) Laboratory and has partnered with American Society for Photogrammetry and Remote Sensing (ASPRS) to offer GIS certification to Geography graduates. This presentation will focus on the role that GRITS and GIS certification will play in attracting students to the geoscience majors, the planned curriculum changes, and the emerging partnership with ASPRS to develop and offer "provisional certification" to NCCU students. In addition, authors would also like to describe plans to promote geospatial education in partnership with other educational institutions. NCCUs high minority enrollment (at the present approximately 90%) and quality and tradition of geoscience program make it an ideal incubator for accreditation and certification activities and possible role model for other HBCUs.
Experimental Evaluation and Workload Characterization for High-Performance Computer Architectures
NASA Technical Reports Server (NTRS)
El-Ghazawi, Tarek A.
1995-01-01
This research is conducted in the context of the Joint NSF/NASA Initiative on Evaluation (JNNIE). JNNIE is an inter-agency research program that goes beyond typical.bencbking to provide and in-depth evaluations and understanding of the factors that limit the scalability of high-performance computing systems. Many NSF and NASA centers have participated in the effort. Our research effort was an integral part of implementing JNNIE in the NASA ESS grand challenge applications context. Our research work under this program was composed of three distinct, but related activities. They include the evaluation of NASA ESS high- performance computing testbeds using the wavelet decomposition application; evaluation of NASA ESS testbeds using astrophysical simulation applications; and developing an experimental model for workload characterization for understanding workload requirements. In this report, we provide a summary of findings that covers all three parts, a list of the publications that resulted from this effort, and three appendices with the details of each of the studies using a key publication developed under the respective work.
Solar-system Education for the 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2017-10-01
I describe an extensive outreach program about the Sun, the silhouette of the Moon, and the circumstances both celestial and terrestrial of the August 21, 2017, total solar eclipse. Publications included a summary of the last decade of solar-eclipse research for Nature Astronomy, a Resource Letter on Observing Solar Eclipses for the American Journal of Physics, and book reviews for Nature and for Phi Beta Kappa's Key Reporter. Symposia arranged include sessions at AAS, APS, AGU, and AAAS. Lectures include all ages from pre-school through elementary school to high school to senior-citizen residences. The work, including the scientific research about the solar corona that is not part of this abstract, was supported by grants from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of NSF and from the Committee for Research and Exploration of the National Geographic Society. Additional student support was received from NSF, NASA's Massachusetts Space Grant Consortium, the Honorary Research Society Sigma Xi, the Clare Booth Luce Foundation, and funds at Williams College.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orr, L.A.
The ASU Center for the Study of Early Events in Photosynthesis was established in 1988 with funding through a five-year grant from the USDA/DOE/NSF Plant Science Center program and a grant from the NSF Biological Facilities program. Its scientific objective is to elucidate the basic principles that govern photosynthetic energy collection and storage. Understanding these principles is vital to mankind, as photosynthesis provides most of our food, fiber and energy needs. The Center attempts to fulfill this objective through research of the highest standard, coupled inextricably with quality education at the undergraduate, graduate and postdoctoral levels. These goals are metmore » via a network of collaborative, interdisciplinary research groups comprising 100 personnel within the Department of Chemistry and Biochemistry, the Department of Botany, and the Department of Physics and Astronomy. The work of these research groups is facilitated by the Center through a variety of important infrastructural functions.« less
2008-05-01
Pilot Program for Fiscal Year 2006 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...production risk and maximize life-cycle performance and affordability. This report is in response to Public Law 109-163 (January 6 , 2006), Subtitle D, High...NSF), and the Department of Homeland Security (DHS). 1.3 PURPOSE OF REPORT This report is provided in response to Public Law 109-163 (January 6
Industry-University SBIR NDT Projects — A Critical Assessment
NASA Astrophysics Data System (ADS)
Reinhart, Eugene R.
2007-03-01
The Small Business Innovative Research (SBIR) program, funded by various United States government agencies (DOD, DOE, NSF, etc.), provides funds for Research and Development (R&D) of nondestructive testing (NDT) techniques and equipment, thereby supplying valuable money for NDT development by small businesses and stimulating cooperative university programs. A review and critical assessment of the SBIR program as related to NDT is presented and should provide insight into reasons for or against pursuing this source of R&D funding.
Soft X-ray Spectromicroscopy of Polymers
NASA Astrophysics Data System (ADS)
Ade, Harald
1997-03-01
The development of Near Edge X-ray Absorption Fine Structure (NEXAFS) microscopy^1 and linear dichroism microscopy^2 over the last few years utilizing the X1-Scanning Transmission X-ray Microscope (X1-STXM) at the National Synchrotron Light Source provides excellent specificity to various functional groups and moieties in organic molecules and polymeric materials at a spatial resolution of 50 nm. This chemical specificity can be utilized to map the distribution of various compounds in a material, or to micro-chemically analyze small sample areas. Examples of applications include the study of various phase-separated polymers (polyurethanes, liquid crystalline polyesters), multicomponent polymer blends, polymer laminates, and other organic materials such as coal^3. Linear dichroism microscopy furthermore explores the polarization dependence of NEXAFS in (partially) oriented materials, and can determine the orientation of specific functional groups. Applications of linear dichroism microscopy have focused so far on determining the relative degree of radial orientation in Kevlar fibers^3. ^1 H. Ade, X. Zhang, S. Cameron, C. Costello, J. Kirz, and S. Williams, Science 258, 972 (1992). ^2 H. Ade and B. Hsiao, Science 262, 1427 (1993). ^3 Acknowledgement: My callaborators are B. Hsiao, S. Subramoney, B. Wood, I. Plotzker, E. Rightor, G. Mitchell, C. Sloop, D.-J. Liu, S.-C. Liu, J. Marti, C. Zimba, A. P. Smith, R. Spontak, R. Fornes, R. Gilbert, C. Cody, A. Hitchcock and S. Urquhart. The X1-STXM is built and maintained by J. Kirz and C. Jacobsen and their groups. Work supported by: NSF Young Investigator Award (DMR-9458060), DuPont Young Professor Grant, and Dow Chemical.
Interested in Pelagic Food Webs? BCO-DMO has your Data.
NASA Astrophysics Data System (ADS)
Chandler, C. L.; Groman, R. C.; Kinkade, D.; Rauch, S.; Allison, M. D.; Gegg, S. R.; Shepherd, A.; Wiebe, P. H.; Glover, D. M.
2016-02-01
Interdisciplinary research collaborations that address complex, global research themes such as the interactive effects of global warming and studies of pelagic food webs require access to a broad range of data types from all disciplines of oceanography, from all platforms (e.g. ships, gliders, floats, moorings), with the in situ observations complementing and being complemented by laboratory and model results. In an effort to build a comprehensive database of marine ecosystem research data, the National Science Foundation (NSF) funded the Biological and Chemical Oceanography Data Management Office (BCO-DMO; bco-dmo.org) to support the data management requirements of investigators funded by the NSF's Polar Programs (PLR) and Biological and Chemical Oceanography Sections (OCE). Since 2006, investigators funded by NSF PLR and OCE have been working with support from BCO-DMO data scientists, to build a data system that now includes the full range of ocean biogeochemistry data resulting from decades of research. In addition to data from recently funded PIs, the BCO-DMO data system also serves data from legacy programs (e.g. US Joint Global Ocean Flux Study and US Global Ocean Ecosystem Dynamics). The data are open-access, available for download in a variety of user-selectable formats, and accompanied by sufficient documentation to enable re-use. This presentation will highlight the diversity of data available from the BCO-DMO system and demonstrate some of the features that enable discovery, access and download of data relevant to studies of pelagic food webs.
ERIC Educational Resources Information Center
Smith, Anita; Helms, Jenifer V.; St. John, Mark
2007-01-01
Inverness Research Associates served as external evaluators for the Center for Informal Learning and Schools (CILS) from its inception in 2002 as a National Science Foundation (NSF)-funded Center for Learning and Teaching. One of the programs that CILS developed was the Informal Learning Certificate (ILC) for informal science educators (mostly…
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House.
The hearing reported in this document focuses on the Sea Grant College Program and evaluates the President's fiscal year 2003 budget proposal for the transfer of the Sea Grant program to the National Science Foundation (NSF). The hearing includes opening statements by Representative Vernon J. Ehlers, Chairman, Subcommittee on Environment,…
From Comb-like Polymers to Bottle-Brushes
NASA Astrophysics Data System (ADS)
Liang, Heyi; Cao, Zhen; Dobrynin, Andrey; Sheiko, Sergei
We use a combination of the coarse-grained molecular dynamics simulations and scaling analysis to study conformations of bottle-brushes and comb-like polymers in a melt. Our analysis show that bottle-brushes and comb-like polymers can be in four different conformation regimes depending on the number of monomers between grafted side chains and side chain degree of polymerization. In loosely-grafted comb regime (LC) the degree of polymerization between side chains is longer than side chain degree of polymerization, such that the side chains belonging to the same macromolecule do not overlap. Crossover to a new densely-grafted comb regime (DC) takes place when side chains begin to overlap reducing interpenetration of side chains belonging to different macromolecules. In these two regimes both side-chains and backbone behave as unperturbed linear chains with the effective Kuhn length of the backbone being close to that of linear chain. Further decrease spacer degree of polymerization results in crossover to loosely-grafted bottle-brush regime (LB). In this regime, the bottle-brush backbone is stretched while the side-chains still maintain ideal chain conformation. Finally, for even shorter spacer between grafted side chains, which corresponds to densely-grafted bottle-brush regime (DB), the backbone adopts a fully extended chain conformation, and side-chains begin to stretch to maintain a constant monomer density. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.
NASA Astrophysics Data System (ADS)
Jackson, Jane
2014-03-01
The landscape for high school physics is changing rapidly, especially with the need to merge physics into a coherent STEM curriculum that smoothly integrates it with chemistry and biology. Accordingly, there is an urgent need for graduate professional development programs to help in-service teachers cope with these changes. One such program was created in 2001 by the physics department at Arizona State University after a decade of NSF funding for the Modeling Instruction Program. We discuss what has been learned from that experience with recommendations for creating similar programs at other universities.
In Brief: Nominations requested for U.S. science medals
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-02-01
Scientists can help recognize the contributions of colleagues by submitting nominations for the National Medal of Science and the National Medal of Technology and Innovation, which are the highest honors the president bestows in science, technology, and innovation. The National Medal of Science, the nation's highest honor for American scientists and engineers, is given to individuals deserving special recognition for outstanding contributions to knowledge, or the total impact of their work, in the chemical, physical, biological, mathematical, engineering, or behavioral sciences. Nominations and three letters of support must be submitted by 31 March. For more information, contact program manager Mayra Montrose at nms@nsf.gov or +1-703-292-8040, or visit http://www.nsf.gov/od/nms/medal.jsp.
Nominations sought for U.S. National Medal of Science
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-01-01
Nominations are now being accepted for the 2012 U.S. National Medal of Science, which is the nation's highest honor for American scientists and engineers, presented annually by the president. The award is given to individuals “deserving of special recognition by reason of their outstanding cumulative contributions to knowledge” in the physical, biological, chemical, mathematical, engineering, or behavioral or social sciences, in combination with exemplary service to the nation, according to the program, which is administered by the National Science Foundation (NSF) on behalf of the White House Office of Science and Technology Policy. A note in NSF's call for nominations states, “We are especially interested in identifying women, members of minority groups, and persons with disabilities for consideration.”
McDonald Observatory Visitor Center Education Programs
NASA Astrophysics Data System (ADS)
Hemenway, M. K.; Armosky, B. J.; Wetzel, M.; Preston, S.
2002-12-01
The opening of the new Visitor Center at McDonald Observatory in Fort Davis, Texas provided an opportunity to greatly expand the Observatory's outreach efforts to students and teachers. In addition to a theater, outdoor telescope park, and amphitheater, the facility contains a classroom and an exhibit entitled ``Decoding Starlight." In preparation for the opening, new teacher-friendly materials were written to provide standards aligned (both state and national) classroom activities for students. These activities form the core for both the multi-day Professional Development Program for teachers and the Student Field Experience Program. Student Field Experiences often begin with a tour specifically designed for student groups to emphasize careers and life at the Observatory. The group then interacts with the exhibit using Exhibit Guides that were developed for various grade levels. When their schedule allows, student groups may also participate in nighttime observing activities. Smaller groups (under 30 members) may choose from a menu of hands-on activities offered within the classroom. The positive reception of these activities has led to their inclusion in the existing Elderhostel program for senior citizens. We gratefully acknowledge the support of NSF 96-26965 ``Fingerprinting the Universe - An Interactive, Bilingual Exhibit on Spectroscopy," NSF 97-05340 ``Universo, Hispanic Heritage Month Programs, and StarDate in the Classroom," and NASA IDEAS HST-ED-90234-.01 ``Enriching the Experience at McDonald Observatory: Pre/Post Visit Materials for Teachers and Students."
Professional development and teacher impacts: The NSF GK-12 experience
NASA Astrophysics Data System (ADS)
Camasta, Susan Fullett
Professional development is a central piece in the continuing education of teachers. The purpose of this study was to examine professional development for teachers, in particular, the impact of one program that has the potential to positively influence educators as their careers evolve. Twenty-seven teachers who served as participants in the National Science Foundation (NSF) Graduate STEM (science, technology, engineering and mathematics) Fellows in K-12 Education Program (GK-12) volunteered to be interviewed about their experiences as teacher partners with graduate student Fellows who were considered experts in their content area and research methods. The teachers taught 1st through 12th grades in 22 different schools, and represented nine GK-12 programs in six states. The data collected in this qualitative study indicate enduring impacts on teachers and those included: affective impacts, as well as impacts on their practice, their colleagues and their professional involvement. In addition, Fellow and student impacts were reported. The teacher reports indicate that the design and goals of the GK-12 program---which is meant to impact graduate student Fellows, teachers and students---are consistent with the literature on best-practice professional development including facilitating teacher change. Thus, this program can serve as a model for designing effective professional development. A limitation of this study is that most of the data collected were from teacher reports.
The Pulsar Search Collaboratory
ERIC Educational Resources Information Center
Rosen, R.; Heatherly, S.; McLaughlin, M. A.; Kondratiev, V. I.; Boyles, J. R.; Wilson, M.; Lorimer, D. R.; Lynch, R.; Ransom, S.
2010-01-01
The Pulsar Search Collaboratory (PSC) (NSF #0737641) is a joint project between the National Radio Astronomy Observatory and West Virginia University designed to interest high school students in science, technology, engineering, and mathematics related career paths by helping them to conduct authentic scientific research. The 3 year PSC program,…
Models for Information Assurance Education and Outreach: Year 3 and Summative Report
ERIC Educational Resources Information Center
Wang, Jianjun
2015-01-01
Over the past three years, California State University, Bakersfield received NSF funding to support hands-on explorations in "network security" and "cryptography" through Research Experience Vitalizing Science-University Program (REVS-UP). In addition to the summer bridge component, the grant included development of…
Models for Information Assurance Education and Outreach: A Report on Year 2 Implementation
ERIC Educational Resources Information Center
Wang, Jianjun
2014-01-01
"Models for Information Assurance Education and Outreach" (MIAEO) is an NSF-funded, three-year project to support hands-on explorations in "network security" and "cryptography" through Research Experience Vitalizing Science-University Program (REVS-UP) at California State University, Bakersfield. In addition, the…
Confronting Myths about Teacher Leadership
ERIC Educational Resources Information Center
Sinha, Somnath; Hanuscin, Deborah; Rebello, Carina; Muslu, Nilay; Cheng, Ya-Wen
2012-01-01
"Leadership in Freshman Physics" is an NSF-funded professional development program designed to support 9th grade teacher leaders in the successful implementation of a "Physics First" or curriculum sequence that places physics prior to biology and chemistry. Leadership is viewed as an essential component in the initial success…
77 FR 42341 - Proposal Review Panel for Chemistry; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-18
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... announces the following meeting: Name: ChemMatCARS Site Visit, 2011 Awardees by NSF Division of Chemistry.... Carlos Murillo, Program Director, Division of Chemistry, Room 1055, National Science Foundation, 4201...
The Environmental Technology Verification Program (ETV) was established in 1995 by the U.S. Environmental Protection Agency to encourage the development and commercialization of new environmental technologies through third part testing and reporting of performance data. By ensur...
Nasoseptal flap necrosis: a rare complication of endoscopic endonasal surgery.
Chabot, Joseph D; Patel, Chirag R; Hughes, Marion A; Wang, Eric W; Snyderman, Carl H; Gardner, Paul A; Fernandez-Miranda, Juan C
2018-05-01
OBJECTIVE The vascularized nasoseptal flap (NSF) has become the workhorse for skull base reconstruction during endoscopic endonasal surgery (EES) of the ventral skull base. Although infrequently reported, as with any vascularized flap the NSF may undergo ischemic necrosis and become a nidus for infection. The University of Pittsburgh Medical Center's experience with NSF was reviewed to determine the incidence of necrotic NSF in patients following EES and describe the clinical presentation, imaging characteristics, and risk factors associated with this complication. METHODS The electronic medical records of 1285 consecutive patients who underwent EES at the University of Pittsburgh Medical Center between January 2010 and December 2014 were retrospectively reviewed. From this first group, a list of all patients in whom NSF was used for reconstruction was generated and further refined to determine if the patient returned to the operating room and the cause of this reexploration. Patients were included in the final analysis if they underwent endoscopic reexploration for suspected CSF leak or meningitis. Those patients who returned to the operating room for staged surgery or hematoma were excluded. Two neurosurgeons and a neuroradiologist, who were blinded to each other's results, assessed the MRI characteristics of the included patients. RESULTS In total, 601 patients underwent NSF reconstruction during the study period, and 49 patients met the criteria for inclusion in the final analysis. On endoscopic exploration, 8 patients had a necrotic, nonviable NSF, while 41 patients had a viable NSF with a CSF leak. The group of patients with a necrotic, nonviable NSF was then compared with the group with viable NSF. All 8 patients with a necrotic NSF had clinical and laboratory evidence indicative of meningitis compared with 9 of 41 patients with a viable NSF (p < 0.001). Four patients with necrotic flaps developed epidural empyema compared with 2 of 41 patients in the viable NSF group (p = 0.02). The lack of NSF enhancement on MR (p < 0.001), prior surgery (p = 0.043), and the use of a fat graft (p = 0.004) were associated with necrotic NSF. CONCLUSIONS The signs of meningitis after EES in the absence of a clear CSF leak with the lack of NSF enhancement on MRI should raise the suspicion of necrotic NSF. These patients should undergo prompt exploration and debridement of nonviable tissue with revision of skull base reconstruction.
The Undergraduate ALFALFA Team
NASA Astrophysics Data System (ADS)
Koopmann, Rebecca A.; Higdon, S.; Balonek, T. J.; Haynes, M. P.; Giovanelli, R.
2010-01-01
The Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team is a consortium of 16 institutions engaged in an NSF-sponsored program to promote undergraduate research within the extragalactic ALFALFA HI blind survey project. In the first two years of the program, more than three dozen undergraduate students have been closely involved in ALFALFA science, observing, and data analysis. A total of 34 students have attended the annual undergraduate workshops at Arecibo Observatory, interacting with faculty, their peers, ALFALFA experts, and Arecibo staff in lectures, group activities, tours, and observing runs. Team faculty have supervised 26 summer research projects and 14 academic year (e.g., senior thesis) projects. Students and faculty have traveled to Arecibo Observatory for observing runs and to national meetings to present their results. Eight Team schools have joined to work collaboratively to analyze HI properties of galaxy groups within the ALFALFA volume. (See O'Brien et al., O'Malley et al., and Odekon et al. posters, this meeting.) Students involved in this program are learning how science is accomplished in a large collaboration while contributing to the scientific goals of a major legacy survey. This work has been supported by NSF grants AST-0724918, AST-0725267, and AST-0725380.
Okumura, Kazuhiro
2009-05-01
The demand for environmentally preferable products is increasing in the area of Institutional and Industrial (I&I) cleaners. The GreenBlue Institute (GreenBlue) and U.S. Environmental Protection Agency's (U.S. EPA's) Design for Environment (DfE) launched two programs to review surfactant ingredients and final cleaning products, with the National Sanitation Foundation (NSF) conducting third-party reviews. The Local Hazardous Waste Management Program (LHWMP) in King County, Washington, has a strategic goal to reduce the risk of exposure of hazardous chemicals to vulnerable populations such as janitorial workers. This report summarizes the NSF partnership with GreenBlue, CleanGredients, and U.S. EPA's DfE to perform third-party reviews of cleaning product ingredients and its relevance to LHWMP's interest in reducing risks to workers in the janitorial industry. Due to information barriers, workers in the janitorial industry are at risk daily to these hazardous chemicals. The surfactant and formulator review program will make positive contributions towards the reduction of toxic chemical exposure to the employees of the janitorial industry. With proper communication and an increased use of less toxic cleaners, exposures to vulnerable populations can be reduced.
Variability of Massive Young Stellar Objects in Cygnus-X
NASA Astrophysics Data System (ADS)
Thomas, Nancy H.; Hora, J. L.; Smith, H. A.
2013-01-01
Young stellar objects (YSOs) are stars in the process of formation. Several recent investigations have shown a high rate of photometric variability in YSOs at near- and mid-infrared wavelengths. Theoretical models for the formation of massive stars (1-10 solar masses) remain highly idealized, and little is known about the mechanisms that produce the variability. An ongoing Spitzer Space Telescope program is studying massive star formation in the Cygnus-X region. In conjunction with the Spitzer observations, we have conducted a ground-based near-infrared observing program of the Cygnus-X DR21 field using PAIRITEL, the automated infrared telescope at Whipple Observatory. Using the Stetson index for variability, we identified variable objects and a number of variable YSOs in our time-series PAIRITEL data of DR21. We have searched for periodicity among our variable objects using the Lomb-Scargle algorithm, and identified periodic variable objects with an average period of 8.07 days. Characterization of these variable and periodic objects will help constrain models of star formation present. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.
Community-Wide Education Outreach for the Ridge2000 Research Program
NASA Astrophysics Data System (ADS)
Goehring, E.
2004-12-01
Ridge2000 is a multidisciplinary NSF sponsored research initiative to explore Earth's spreading ridge system as an integrated whole. The Ridge2000 community is comprised of scientists from universities and research institutions across the country. Building on existing exemplary outreach efforts (e.g., REVEL, Dive&Discover, Volcanoes of the Deep Sea IMAX), Ridge2000 education outreach has begun to develop community-wide education offerings - programs to which Ridge2000 scientists and others may contribute. Community-wide efforts offer the advantages of serving larger audiences of scientists as well as educators and students and providing avenues for scientists interested in education outreach but with limited time or experience. Coordination of researchers' educational efforts also better leverages the resources of the funding agency - NSF. Here we discuss an exciting Ridge2000 pilot program called SEAS - Student Experiments At Sea. SEAS is a web-based program for middle and high school students to learn science by doing science. SEAS students study the exciting, relatively unexplored world of hydrothermal vents and learn to ask questions about this environment just as researchers do. SEAS goes beyond "follow-along" outreach by inviting students to participate in research through formal proposal and report competitions. The program was concept-tested during the 2003-2004 academic year, with 14 pilot teachers and approximately 800 students. Five student experiments were conducted at sea, with data posted to the website during the cruise. Student reports as well as scientist comments are posted there as well (http://www.ridge2000.org/SEAS/). It was an exciting year! Over 20 Ridge2000 scientists contributed their time and expertise to the SEAS program in its first year. Scientists are invited to contribute in a variety of ways, all of which help satisfy the requirement's of NSF's Broader Impacts Criterion. They may help develop curriculum topics, consult on experimental design, review student proposals and final reports, and/or host student experiments during a research cruise. Many contributions require less than a day's effort. By sharing the load, no one scientist is burdened, nor expected to contribute additional funding. Even better, the Ridge2000 office assumes responsibility for the program development, funding, evaluation and dissemination. When we work together, the possibilities are endless.
NASA Astrophysics Data System (ADS)
Snow, E.; Jones, E.; Patino, L. C.; Wasserman, E.; Isern, A. R.; Davies, T.
2016-12-01
In 2013 the White House initiated an effort to coordinate STEM education initiatives across federal agencies. This idea spawned several important collaborations, one of which is a set of National Science Foundation programs designed to place graduate students in federal labs for 2-12 months of their Ph.D. training. The Graduate Research Internship Program (GRIP) and the Graduate Student Preparedness program (GSP) each have the goal of exposing PhD students to the federal work environment while expanding their research tools and mentoring networks. Students apply for supplementary support to their Graduate Research Fellowship (GRIP) or their advisor's NSF award (GSP). These programs are available at several federal agencies; the USGS is one partner. At the U.S. Geological Survey, scientists propose projects, which students can find online by searching USGS GRIP, or students and USGS scientists can work together to develop a research project. At NSF, projects are evaluated on both the scientific merit and the professional development opportunities they afford the student. The career development extends beyond the science (new techniques, data, mentors) into the professional activity of writing the proposal, managing the budget, and working in a new and different environment. The USGS currently has 18 GRIP scholars, including Madeline Foster-Martinez, a UC Berkeley student who spent her summer as a GRIP fellow at the USGS Pacific Coastal and Marine Science Center working with USGS scientist Jessica Lacy. Madeline's Ph.D. work is on salt marshes and she has studied geomorphology, accretion, and gas transport using a variety of research methods. Her GRIP fellowship allowed her to apply new data-gathering tools to the question of sediment delivery to the marsh, and build and test a model for sediment delivery along marsh edges. In addition, she gained professional skills by collaborating with a new team of scientists, running a large-scale field deployment, and experiencing a new work environment. The program is succeeding in mentoring the next generation of geoscientists. At the USGS, we hope that some of these scientists will look for their first full-time job here.
NASA Astrophysics Data System (ADS)
Rom, E. L.; Patino, L. C.; Weiler, S.; Sanchez, S. C.; Colon, Y.; Antell, L.
2011-12-01
The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides U.S. undergraduate students from any college or university the opportunity to conduct research at a different institution and gain a better understanding of research career pathways. The Geosciences REU Sites foster research opportunities in areas closely aligned with geoscience programs, particularly those related to earth, atmospheric and ocean sciences. The aim of this paper is to provide an overview of the Geosciences REU Site programs run in 2009 through 2011. A survey requesting information on recruitment methods, student demographics, enrichment activities, and fields of research was sent to the Principal Investigators of each of the active REU Sites. Over 70% of the surveys were returned with the requested information from about 50 to 60 sites each year. The internet is the most widely used mechanism to recruit participants, with personal communication as the second most important recruiting tool. The admissions rate for REU Sites in Geosciences varies from less than 10% to 50%, with the majority of participants being rising seniors and juniors. Many of the participants come from non-PhD granting institutions. Among the participants, gender distribution varies by discipline, with ocean sciences having a large majority of women and earth sciences having a majority of men. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; a large majority of participants are Caucasian and Asian students. Furthermore, participants from minority-serving institutions and community colleges constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. The results from this survey will be used to examine strengths in the REU Sites in the Geosciences, opportunities that may be under utilized, and community needs to enhance this NSF wide program.
O2(b1Σg+, v = 0, 1) Relative Yield in O(1D) + O2 Energy Transfer
NASA Astrophysics Data System (ADS)
Kostko, O.; Raj, S.; Campbell, K. M.; Pejakovic, D. A.; Slanger, T. G.; Kalogerakis, K. S.
2012-04-01
Energy transfer from excited O(1D) atoms to ground-state O2(X3Σg-) leads to production of O2 in the first two vibrational levels of the O2(b1Σg+) state: O(1D) + O2 → O(3P ) + O2(b1Σg+, v = 0, 1). Subsequent radiative decay of O2(b1Σg+, v = 0, 1) to the ground state results in the Atmospheric Band emission, a prominent feature of the terrestrial airglow. The relative yield for production of O2(b1Σg+, v = 0, 1) in the above process, k1/k0, is an important parameter in modeling of the observed O2 Atmospheric Band emission intensities. In the laboratory experiments, the output of a pulsed fluorine laser at 157 nm is used to photodissociate molecular oxygen in an O2/N2 mixture flowing through a heated gas cell. Photodissociation of O2 produces a ground-state O(3P ) atom and an excited O(1D) atom. O(1D) rapidly transfers energy to the remaining O2 to produce O2(b1Σg+, v = 0, 1). The populations of O2(b1Σg+, v = 0, 1) are monitored by observing emissions in the O2(b-X) 0-0 and 1-0 bands at 762 and 688 nm, respectively. The value of k1/k0 is extracted from the time-dependent O2(b1Σg+, v = 0, 1) fluorescence signals using computer simulations. We find that production of v = 1 is substantially larger than that of v = 0. We will present measurements on k1/k0 and its temperature dependence, and discuss the significance of these and other relevant laboratory measurements on the interpretation of the O2 Atmospheric Band emission. This work was supported by the US National Science Foundation (NSF) Aeronomy Program under grant AGS-0937317. The fluorine laser was purchased under grant ATM-0216583 from the NSF Major Research Instrumentation Program. The participation of Sumana Raj and Kendrick M. Campbell was supported by a Research Experiences for Undergraduates (REU) site, co-funded by the Division of Physics of the NSF and the Department of Defense in partnership with the NSF REU program (PHY-1002892).
NASA Astrophysics Data System (ADS)
Saldivar, Hector; McCarthy, D.; Rudolph, A. L.
2012-01-01
The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) is an NSF-funded partnership between the Astronomy Program at Cal Poly Pomona and the University of Arizona Steward Observatory designed to promote participation of underrepresented minorities, including women, in astronomy research and education. By means of this program, Cal Poly Pomona undergraduates that are either Physics majors or minors are qualified to participate in the program alongside graduate students from the University of Arizona as a camp counselor at the University of Arizona's Astronomy Camp, one of the elite astronomy programs worldwide. Students that participate in the CAMPARE program are granted an opportunity to work in a hands-on environment by teaching astronomy to students from all over the world in a highly structured environment. The CAMPARE student selected for this program in Summer 2011 worked under the supervision of Dr. Don McCarthy, professor at the University of Arizona and Astronomy Camp director for over 20 years, learning to lead a group of students through daily activities and ensure that the students are learning to their maximum potential. Through this experience, the CAMPARE student learned to capture students’ interest in astronomy and was introduced to real life teaching, which has helped prepare him for future experiences to come. We acknowledge the NSF for funding under Award No. AST-0847170, a PAARE Grant for the Calfornia-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE).
Nephrogenic systemic fibrosis is associated with hypophosphataemia: a case-control study.
Bernstein, Elana J; Isakova, Tamara; Sullivan, Mary E; Chibnik, Lori B; Wolf, Myles; Kay, Jonathan
2014-09-01
Nephrogenic systemic fibrosis (NSF) is an iatrogenic fibrosing disorder that primarily affects individuals with chronic kidney disease (CKD) following exposure to gadolinium-based contrast agents (GBCAs). Derangements of calcium and phosphorus have been reported in patients with NSF. The aim of this study was to investigate potential factors in addition to GBCA exposure that may be involved in the pathogenesis of NSF. We hypothesized that patients with stage 5 CKD and NSF would manifest greater alterations in calcium, phosphorus and fibroblast growth factor 23 (FGF23) levels than those who do not have NSF. Levels of phosphorus, calcium, FGF23 and 25-hydroxy-vitamin D were measured in 10 patients with stage 5 CKD and biopsy-proven NSF and in 19 patients with stage 5 CKD without NSF. Statistical analyses were performed using Fisher's exact test for categorical variables and the Kruskal-Wallis test for continuous variables. Patients with NSF had significantly lower phosphorus levels compared with controls (P = 0.01). There were no significant differences between NSF patients and controls in calcium, 25-hydroxy-vitamin D, intact parathyroid hormone or FGF23 levels. Differences in phosphorus metabolism may exist between patients with stage 5 CKD and NSF compared with patients with stage 5 CKD without NSF. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Yougoubare, Y. Quentin; Pang, Su-Seng
2014-02-01
In previous work, a biomimetic close-then-heal (CTH) healing mechanism was proposed and validated to repeatedly heal wide-open cracks in load carrying engineering structures by using constrained expansion of compression programmed thermoset shape memory polymers (SMPs). In this study, the effects on healing efficiencies of variation of temperature during both thermomechanical programming and shape recovery (healing) under three-dimensional (3D) confinement are evaluated. The polymer considered is a polystyrene shape memory polymer with 6% by volume of thermoplastic particle additives (copolyester) dispersed in the matrix. In addition to the programming and healing temperatures, some of the parameters investigated include the flexural strength, crack width and elemental composition at the crack interface. It is observed that while increase of the programming temperature is slightly beneficial to strength recovery, most of the strength recovered and damage repair are strongly dependent on the healing temperature. The best healing efficiency (63%) is achieved by a combination of a programming temperature above the glass transition temperature of the polymer and a healing temperature above the bonding point of the copolyester.
ERIC Educational Resources Information Center
Fowler, Kathleen; Luttman, Aaron; Mondal, Sumona
2013-01-01
The US National Science Foundation's (NSF's) Undergraduate Biology and Mathematics (UBM) program significantly increased undergraduate research in the biomathematical sciences. We discuss three UBM-funded student research projects at Clarkson University that lie at the intersection of not just mathematics and biology, but also other fields. The…
Shaking up Pre-Calculus: Incorporating Engineering into K-12 Curricula
ERIC Educational Resources Information Center
Sabo, Chelsea; Burrows, Andrea; Childers, Lois
2014-01-01
Projects highlighting Science, Technology, Engineering, and Mathematics (STEM) education in high schools have promoted student interest in engineering-related fields and enhanced student understanding of mathematics and science concepts. The Science and Technology Enhancement Program (Project STEP), funded by a NSF GK-12 grant at the University of…
Advanced Technological Education Survey 2012 Fact Sheet
ERIC Educational Resources Information Center
Wingate, Lori; Smith, Corey; Westine, Carl; Gullickson, Arlen
2012-01-01
This fact sheet summarizes data gathered in the 2012 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the thirteenth annual survey of ATE projects…
Undergraduate Education in Science: A Rationale for Program Structure.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
This publication encompasses the central core of the National Science Foundation's (NSF) explicit science education activities at the undergraduate level of the Nation's education enterprise. It is an outline of the character of the Foundation's educational constituency. A table is presented showing the Carnegie Commission's Classification Scheme…
Testing the Double Bind Hypothesis: Faculty Recommendations of Minority Women Fellowship Applicants.
ERIC Educational Resources Information Center
Brown, Shirley Vining
1995-01-01
Examines faculty and scientist recommendations of applicants to the National Science Foundation's (NSF) Graduate Fellowship Program, 1976-91. Data from the Cumulative Index on National Science Foundation Fellowships Applicants and Awardees are used. Data analysis supports the double bind hypothesis that minority women are doubly disadvantaged…
76 FR 12996 - Proposal Review Panel for Chemistry; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-09
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... Awardees by NSF Division of Chemistry (CHE), 1191. Dates and Times: March 31, 2011; 8 a.m.-5:30 p.m. April... Director, Chemistry Centers Program, Division of Chemistry, Room 1055, National Science Foundation, 4201...
76 FR 6499 - Proposal Review Panel for Chemistry; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-04
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... Awardees by NSF Division of Chemistry (1191). Dates and Times: February 17, 2011; 8 a.m.-6 p.m. February 18... Director, Chemistry Centers Program, Division of Chemistry, Room 1055, National Science Foundation, 4201...
Managing an NSF-Funded Information Technology Scholarship Program
ERIC Educational Resources Information Center
Mahatanankoon, Pruthikrai; Hunter, William; El-Zanati, Saad
2018-01-01
Our nation's competitive edge is highly dependent on the success of STEM education and the ability of information technology (IT) graduates to find jobs. The School of Information Technology at Illinois State University (ISU) is strategically positioned to offer S-STEM scholarships to talented, financially disadvantaged students in the IT…
NSF Says It Will Support Supercomputer Centers in California and Illinois.
ERIC Educational Resources Information Center
Strosnider, Kim; Young, Jeffrey R.
1997-01-01
The National Science Foundation will increase support for supercomputer centers at the University of California, San Diego and the University of Illinois, Urbana-Champaign, while leaving unclear the status of the program at Cornell University (New York) and a cooperative Carnegie-Mellon University (Pennsylvania) and University of Pittsburgh…
Bridging the Gap between Classrooms and Research Laboratories
ERIC Educational Resources Information Center
Dempsey, Brian; Hibbett, David; Binder, Manfred
2007-01-01
In the ever-expanding realm of science, educators struggle to share new discoveries and techniques with their students. Keeping abreast of recent advances can be daunting, even for the most motivated teacher. Fortunately, the National Science Foundation's (NSF) Research Experiences for Teachers (RET) program helps educators keep up with the…
Advanced Technological Education Survey 2009 Fact Sheet
ERIC Educational Resources Information Center
Wingate, Lori; Gullickson, Arlen
2009-01-01
This fact sheet summarizes data gathered in the 2009 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by The Evaluation Center at Western Michigan University, this was the tenth annual survey of ATE projects and centers. Included here are statistics about the program's grantees and…
Advanced Technological Education Survey 2011 Fact Sheet
ERIC Educational Resources Information Center
Wingate, Lori; Westine, Carl; Gullickson, Arlen
2011-01-01
This fact sheet summarizes data gathered in the 2011 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the twelfth annual survey of ATE projects and…
Dissemination: Handmaiden to Evaluation Use
ERIC Educational Resources Information Center
Lawrenz, Frances; Gullickson, Arlen; Toal, Stacie
2007-01-01
Use of evaluation findings is a valued outcome for most evaluators. However, to optimize use, the findings need to be disseminated to potential users in formats that facilitate use of the information. This reflective case narrative uses a national evaluation of a multisite National Science Foundation (NSF) program as the setting for describing the…
Advanced Technological Education Survey 2010 Fact Sheet
ERIC Educational Resources Information Center
Wingate, Lori; Westine, Carl; Gullickson, Arlen
2010-01-01
This fact sheet summarizes data gathered in the 2010 survey of National Science Foundation (NSF) Advanced Technological Education (ATE) grant recipients. Conducted by EvaluATE, the evaluation resource center for the ATE program located at The Evaluation Center at Western Michigan University, this was the eleventh annual survey of ATE projects and…
76 FR 20720 - National Science Board; Sunshine Act Meetings; Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... AND POINT OF CONTACT: Please refer to the National Science Board website http://www.nsf.gov/nsb for... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meetings; Notice The National Science Board's Committee on Programs and Plans (CPP) Task Force on Unsolicited Mid-Scale Research (MS...
78 FR 61400 - Advisory Committee for Education and Human Resources; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-03
... NATIONAL SCIENCE FOUNDATION Advisory Committee for Education and Human Resources; Notice of...) education and human resources programming. Agenda November 6, 2013 Remarks by the Committee Chair and NSF Assistant Director for Education and Human Resources (EHR) Brief updates on EHR and Committee of Visitor...
A Relationship with Great Chemistry
ERIC Educational Resources Information Center
Gibbs, Hope J.
2005-01-01
More than a decade ago, the United States Congress passed the Scientific and Advanced Technology Act, which authorized the Advanced Technological Education program (ATE). Through ATE, the National Science Foundation (NSF) was directed to develop models aimed at two-year colleges of advanced technological education in order to expand the nation's…
Interagency Collaboration in Support of Climate Change Education
NASA Astrophysics Data System (ADS)
Schoedinger, S. E.; Chambers, L. H.; Karsten, J. L.; McDougall, C.; Campbell, D.
2011-12-01
NASA, NOAA and NSF support climate change education (CCE) through their grant programs. As the agencies' investment in CCE has grown, coordination among the agencies has become increasingly important. Although the political landscape and budgets continue to change, the agencies are committed to continued coordination and collaboration. To date, this has taken the form of jointly hosted principal investigator (PI) meetings, the largest of which was held last February (see Eos Vol. 92, No. 24, 14 June 2011). The joint goals are: (1) increased collaboration among grantees and across programs; (2) building capacity among grantees in areas of mutual interest; (3) identification of gaps in investments to date; and (4) identification of opportunities for coordination of evaluation efforts. NOAA's primary funding opportunity for CCE projects is its Environmental Literacy Grant (ELG) Program. Although not exclusively focused on climate, there has been increased emphasis on this area since 2009. Through ELG, NOAA encourages the use of NOAA assets (data, facilities, educational resources, and people) in grantees' work. Thirty awards with a primary focus on CCE have been awarded to institutions of higher education, informal science education, and non-profit organizations involved in K-12 and informal/non-formal education. We anticipate this funding opportunity will continue to support the improvement of climate literacy among various audiences of learners in the future. NASA supported efforts in CCE in an ad hoc way for years. It became a focus area in 2008 with the launch of the NASA Global Climate Change Education (GCCE) Project. This project funded 57 awards in 2008-2010, the vast majority of them in teacher professional development, or use of data, models, or simulations. Beginning in FY11, NASA moved the project into the Minority University Research and Education Program. Fourteen awards were made to minority higher education institutions, non-profit organizations, and community colleges. These efforts are expected to continue in FY12 and beyond under NASA Innovations in Climate Education (NICE). A solicitation for the NICE project is currently anticipated in Summer 2012. Through its core programs, NSF supports a variety of efforts designed to improve teaching and learning about CCE in formal and informal settings, often through leveraging NSF-supported climate research. In 2009, dedicated CCE funding supported 10 new awards aimed at focusing NSF investments in key areas: preparing innovators for the workforce; strategies for scaling up and disseminating effective curricula and instructional resources; assessment of student learning of complex climate issues; and, increasing access to CCE and professional development for learners, educators, and policymakers. Phase I of the Climate Change Education Partnership (CCEP) program, launched in 2010, supports strategic planning activities within 15 regional and thematic partnerships that bring together climate scientists, learning scientists, and education practitioners. A solicitation for CCEP Phase II implementation is anticipated in Fall 2011. We will discuss agency funding opportunities, examples of collaborations, and common metrics/sharing tools for evaluation of CCE projects.
Teaching and sharing about the Sun in the United States and with Spanish language resources
NASA Astrophysics Data System (ADS)
Peticolas, L. M.; Craig, N.; Hawkins, I.; Walker, C.
2007-05-01
The United States has many different scientific agencies that fund research on solar science, including the National Aeronautics and Space Agency (NASA) and the National Science Foundation (NSF). Because there is a large population of Spanish-speaking people in the US, some of the resources developed by the education components of research projects take into account broader cultural perspectives on science and are developed in Spanish. We will describe the education and outreach programs of three solar programs funded by NASA and NSF, the Solar TErrestrial RElations Observatory (STEREO) program, the "We Are One Under the Sun" Program, and the National Optical Astronomy Observatory (NOAO) education program. The STEREO program aims to teach about the Sun through different venues including teacher workshops and courses, teacher materials, turning solar data from STEREO into sound, working with museums, and creating solar posters, CDs, DVDs, and lenticulars. The "We are One Under the Sun" program focuses on Native Americans and Hispanics of Native heritage. It works by merging culture, ancient observatories, and the latest NASA solar science to engage children, youth, and the general public in science and technology through solar traditions in their own indigenous culture. The NOAO Educational Outreach Program was established to make the science and scientists of NOAO more accessible to the K-12 and college-level communities. We will focus on the NOAO solar projects and Spanish-Language Astronomy Materials Educational Center program, which provides multiple types of Spanish- language materials for teachers. These programs have had different levels of outreach in Spanish-speaking countries, namely Mexico (STEREO and "We are One Under the Sun") and Chile (NOAO). We will describe these efforts and give links to the Spanish and English resources available to learn and teach about the Sun.
NASA Astrophysics Data System (ADS)
Ryan, J. G.; Singer, J.
2013-12-01
The NSF offers funding programs that support geoscience education spanning atmospheric, oceans, and Earth sciences, as well as environmental science, climate change and sustainability, and research on learning. The 'Resources to Transform Undergraduate Geoscience Education' (RTUGeoEd) is an NSF Transforming Undergraduate Education in STEM (TUES) Type 2 special project aimed at supporting college-level geoscience faculty at all types of institutions. The project's goals are to carry out activities and create digital resources that encourage the geoscience community to submit proposals that impact their courses and classroom infrastructure through innovative changes in instructional practice, and contribute to making transformative changes that impact student learning outcomes and lead to other educational benefits. In the past year information sessions were held during several national and regional professional meetings, including the GSA Southeastern and South-Central Section meetings. A three-day proposal-writing workshop for faculty planning to apply to the TUES program was held at the University of South Florida - Tampa. During the workshop, faculty learned about the program and key elements of a proposal, including: the need to demonstrate awareness of prior efforts within and outside the geosciences and how the proposed project builds upon this knowledge base; need to fully justify budget and role of members of the project team; project evaluation and what matters in selecting a project evaluator; and effective dissemination practices. Participants also spent time developing their proposal benefitting from advice and feedback from workshop facilitators. Survey data gathered from workshop participants point to a consistent set of challenges in seeking grant support for a desired educational innovation, including poor understanding of the educational literature, of available funding programs, and of learning assessment and project evaluation. Many also noted that their institutions did not recognize the value of education-related scholarly activities, or undervaluing it compared to more traditional research activities. Given this reality, faculty desire strategies for balancing their time to allow time to pursue both. The current restructuring of NSF educational programs raises questions regarding future directions and the scale of support that may be available from the proposed Catalyzing Advances in Undergraduate STEM Education (CAUSE) Program. At the time of writing this abstract, specific details have not been communicated, but it appears that CAUSE could encompass components from several programs within the Division of Undergraduate Education's TUES, STEP, and WIDER programs, as well as the Geoscience Education and OEDG programs in the Geosciences Directorate. The RTUGeoEd project will continue to provide support to faculty seeking CAUSE (and other educational funding within DUE).
Obituary: Seth L. Tuttle (1931-2011)
NASA Astrophysics Data System (ADS)
Eriksson, Samantha
2011-12-01
Seth L. Tuttle, 80, a retired physicist who worked 25 years at the National Science Foundation (NSF) died on August 8, 2011, at the Dove House hospice in Westminster, MD, from complications of a fall that he suffered while visiting his son in Denver, in December, 2010 and that left him a quadriplegic. Seth was a native of Spokane, Washington. In High School he was student body president, "Thespian of the Year," played football, basketball and tennis and graduated as the valedictorian, winning several scholarships, including one from the National Honor Society. He attended the University of Idaho but dropped out and in 1951 enlisted in the Army. He graduated from the Infantry Candidate School and Paratrooper Jump School and served during the Korean War, a tour of duty he was very proud of and of which he had many memories that he liked to share. At the end of the Korean War he got out of the Army, and went back to school, finishing with a degree in Math in 1955 at the University of Washington. He next attended graduate school at the U of Michigan, majoring in astronomy, but interrupted his studies once again and went to work for the Michigan Institute of Science and Technology (MIST). At MIST he headed the Launch Phase Analysis group of the Ballistic Missile Radiation Analysis Center, analyzing models of radiation from ballistic missiles for the US Early Warning System. Later he became Deputy Director of a project that designed, built and operated an observatory on Maui, Hawaii, dedicated to track missiles and satellites. In 1971 Seth moved to Washington, DC with his family, to work at the Institute for Defense Analysis on missile defense and optical and infrared physics matters of interest to the Defense Department. In 1974, in a complete turnaround from defense oriented work, he went to the NSF as Program Manager for Energy Conservation and Energy Systems research. A few years later when the Department of Energy (DoE) was established, NSF's energy related programs were transferred to DoE. Seth chose to stay at the NSF, where he spent the rest of his working life. Staying at the NSF allowed him to return to his first scientific interest, astronomy. He became a Program Manager in NSF's Division of Astronomical Sciences (AST), serving at various times as Program Manager for the National Radio Astronomy Observatory (NRAO), the National Astronomy and Ionosphere Center (NAIC- Arecibo Obs.) and the National Optical Astronomy Observatory (NOAO). Seth liked to say that in order to show that managers have to make changes to show that they manage, regardless if this is necessary or not. His own management philosophy ran exactly opposite to this statement, however, intervening only minimally in the affairs of the National Centers and only when he thought that it was absolutely necessary to do so. Seth was an extremely sociable and gregarious person, well known to many and much liked throughout the Foundation. He put a lot of effort and enthusiasm into organizing AST's vernal equinox party for many years, and he invariably acted as Master of Ceremonies, distributing various awards to those who worked with and helped AST during the year. The most coveted of these, that Seth made famous, was the VLA mashed penny award that consisted of a penny mashed flat by one of the VLA antennas, attached to a certificate mentioning the good work of the recipient in favor of astronomy. He kept a good supply of these in his office in preparation for the party! Seth also loved to act as Santa Claus, and at one memorable NSF Christmas Party, he, along with a couple of other NSF staff members, performed a musical number in drag to great success! Seth was a lifelong tennis player and started a group at the Carderock Springs Tennis and Swim club, with strange rules, called "Kabuki Tennis" that played under all weather conditions. He was a cigar aficionado and loved wine, beer and good food. Seth's political views tended to be liberal and he enjoyed teasing his more conservative colleagues about their views, but did so always in a good natured manner. He was a great story teller and loved a good joke, especially a dirty one. In retirement, he organized a monthly lunch for retired men in his neighborhood. Whenever he found himself close to the NSF he liked to have lunch with his former colleagues, enjoying the latest astronomy related gossip. Seth was very close to his children and grandchildren. He is survived by a son, Russell Tuttle of Lakewood, CO and a daughter, Samantha Eriksson of New Windsor, MD and four grandchildren. His wife of 49 years, the former Dorothea Leonard, died in 2007.
The NASA "PERS" Program: Solid Polymer Electrolyte Development for Advanced Lithium-Based Batteries
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennett, William R.
2007-01-01
In fiscal year 2000, The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The ultimate objective of this development program, which was referred to as the Polymer Energy Rechargeable System (PERS), was to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative exploited both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases focused on R&D activities to address the critical technical issues and challenges at the cell level. Out of a total of 38 proposals received in response to a NASA Research Announcement (NRA) solicitation, 18 proposals (13 contracts and 5 grants) were selected for initial award to address these technical challenges. Brief summaries of technical approaches, results and accomplishments of the PERS Program development efforts are presented. With Agency support provided through FY 2004, the PERS Program efforts were concluded in 2005, as internal reorganizations and funding cuts resulted in shifting programmatic priorities within NASA. Technically, the PERS Program participants explored, to various degrees over the lifetime of the formal program, a variety of conceptual approaches for developing and demonstrating performance of a viable advanced solid polymer electrolyte possessing the desired attributes, as well as several participants addressing all components of an integrated cell configuration. Programmatically, the NASA PERS Program was very successful, even though the very challenging technical goals for achieving a viable solid polymer electrolyte material or the overall envisioned long-term, program objectives were not met due to funding reductions. The NASA PERS Program provided research opportunities and generated and disseminated a wealth of new scientific knowledge and technical competencies within the polymer electrolyte area.
Lithium-Ion Battery Program Status
NASA Technical Reports Server (NTRS)
Surampudi, S.; Huang, C. K.; Smart, M.; Davies, E.; Perrone, D.; Distefano, S.; Halpert, G.
1996-01-01
The objective of this program is to develop rechargeable Li-ion cells for future NASA missions. Applications that would benefit from this project are: new millenium spacecraft; rovers; landers; astronaut equipment; and planetary orbiters. The approach of this program is: select electrode materials and electrolytes; identify failure modes and mechanisms and enhance cycle life; demonstrate Li-ion cell technology with liquid electrolyte; select candidate polymer electrolytes for Li-ion polymer cells; and develop Li-ion polymer cell technology.
Increasing Diversity in the Earth Sciences - Impact of the IDES Program in Oregon
NASA Astrophysics Data System (ADS)
de Silva, S. L.; Guerrero, E. F.; Duncan, R. A.; de Silva, L. L.; Eriksson, S. C.
2014-12-01
The NSF-OEDG funded Increasing Diversity in the Earth Sciences (IDES) program hosted at Oregon State University targets undergraduate students from diverse backgrounds and diverse ethnicity to engage in research. Partnering with local community colleges, non-traditional students are the hallmark of this program. The IDES program has several components to support the students in the transition from community college to the four-year universities of Oregon State University and Portland State University. Over the four years, the program has adapted while adhering to its primary goals: (1) to increase the number of students from underrepresented groups who prepare for and pursue careers in Earth Science research and education, and (2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Now in its final year under an extension, 53 participants have participated in the program. An ongoing external evaluation of the program reveals that the various stakeholders consider IDES very successful. Participant surveys and interviews document several impacts: expanded opportunities, making professional contacts, building self-confidence, enhanced ability to be employable, and personal acknowledgement. Research mentors and administrators from partner institutions see positive impacts on the students and on their organizations. Challenges include better communication between the IDES program, mentors, and students. IDES is poised to move forward with its current experiences and successes as a foundation for further funding. IDES-like activities can be funded from private sources and it is a good fit for funding from Research Experiences for Undergraduates at NSF. The new emphasis on education and research at community colleges is an exciting opportunity and Oregon State University has already used aspects of the IDES program in current grant proposals to obtain funds for more undergraduate research.
Preparing physics students for careers outside of academia
NASA Astrophysics Data System (ADS)
Redmond, Kendra; Czujko, Roman; Sauncy, Toni
2014-03-01
Most undergraduate physics programs focus on preparing students for physics graduate school, but in reality around 40% of physics bachelor's degree recipients go directly into the workforce. In response to calls for more STEM workers and a desire to see more students of all ambitions benefit from a physics education, the American Institute of Physics has been exploring how physics departments can better prepare their students to enter the STEM workforce after the bachelor's degree, and how students can better prepare themselves to enter the STEM workforce. This poster will include results from this NSF-funded Career Pathways Project, including an overview of common features of departments that successfully prepare students to enter the workforce and a career toolbox we have created for physics students. Work supported by NSF award 1011829.
The Undergraduate ALFALFA Team: Collaborative Research Projects
NASA Astrophysics Data System (ADS)
Cannon, John M.; Koopmann, Rebecca A.; Haynes, Martha P.; Undergraduate ALFALFA Team, ALFALFA Team
2016-01-01
The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) has allowed faculty and students from a wide range of public and private colleges and especially those with small astronomy programs to learn how science is accomplished in a large collaboration while contributing to the scientific goals of a legacy radio astronomy survey. The UAT has achieved this through close collaboration with ALFALFA PIs to identify research areas accessible to undergraduates. In this talk we will summarize the main research efforts of the UAT, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey. This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, and AST-1211005.
NASA Astrophysics Data System (ADS)
McCay, D.; Fiorenza, P.; Lautz, L.
2017-12-01
More than half of Ph.D. scientists and engineers find employment in non-academic sectors. Recognizing the range of career options for graduate degree holders and the need to align graduate education with the expectations of prospective employers, the National Science Foundation (NSF) created the NSF Research Traineeship (NRT) program. To date, over 100 NRT programs have been funded. As these programs are implemented, it is important to assess their progress, successes, and challenges. This presentation describes the ongoing evaluation of one NRT program, "Education Model Program on Water-Energy Research" (or EMPOWER) at Syracuse University. Through seminars, mini-grants, professional development activities, field courses, internship opportunities, and coursework, EMPOWER's goal is to equip students with the skills needed for the range of career options in water and energy. In collaboration with an external evaluator, EMPOWER is examining the fidelity of the program to proposed goals, providing feedback to inform project improvement (formative assessment) and assessing the effectiveness of achieving program goals (summative assessment). Using a convergent parallel mixed method design, qualitative and quantitative data were collected to develop a full assessment of the first year of the program. Evaluation findings have resulted in several positive changes to the program. For example, EMPOWER students perceive themselves to have high technical skills, but the data show that the students do not believe that they have a strong professional network. Based on those findings, EMPOWER offered several professional development events focused on building one's professional network. Preliminary findings have enabled the EMPOWER leadership team to make informed decisions about the ways the program elements can be redesigned to better meet student needs, about how to the make the program more effective, and determine the program elements that may be sustained beyond the funding period. Evaluation of programs like EMPOWER provide essential information to support continual improvement of STEM graduate programs.
2016-09-25
can meet specific requirements for a wide range of polymers and composites. Particularly, because of the similarity between twin screw extruder and...Release; Distribution Unlimited UU UU UU UU 25-09-2016 1-Feb-2015 30-Apr-2016 Request Twin Screw Extruder to Enhance DoD Interested Polymer ...Request Twin Screw Extruder to Enhance DoD Interested Polymer Nanocomposite Research and STEM Program Report Title In comparison to our existing melt
Nunes, Paula; Haines, Nicola; Kuppuswamy, Venkat; Fleet, David J.
2006-01-01
N-ethylmaleimide sensitive factor (NSF) can dissociate the soluble NSF attachment receptor (SNARE) complex, but NSF also participates in other intracellular trafficking functions by virtue of SNARE-independent activity. Drosophila that express a neural transgene encoding a dominant-negative form of NSF2 show an 80% reduction in the size of releasable synaptic vesicle pool, but no change in the number of vesicles in nerve terminal boutons. Here we tested the hypothesis that vesicles in the NSF2 mutant terminal are less mobile. Using a combination of genetics, pharmacology, and imaging we find a substantial reduction in vesicle mobility within the nerve terminal boutons of Drosophila NSF2 mutant larvae. Subsequent analysis revealed a decrease of filamentous actin in both NSF2 dominant-negative and loss-of-function mutants. Lastly, actin-filament disrupting drugs also decrease vesicle movement. We conclude that a factor contributing to the NSF mutant phenotype is a reduction in vesicle mobility, which is associated with decreased presynaptic F-actin. Our data are consistent with a model in which actin filaments promote vesicle mobility and suggest that NSF participates in establishing or maintaining this population of actin. PMID:16914524
48 CFR 2515.215-70 - NSF negotiation authorities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true NSF negotiation authorities... CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Negotiation Authorities 2515.215-70 NSF negotiation authorities. (a) Authorities. Citation: 42 U.S.C. 1870(c). (b) Application. When an NSF contract...
Vertical Interaction in Open Software Engineering Communities
2009-03-01
Program in CASOS (NSF,DGE-9972762), the Office of Naval Research under Dynamic Network Analysis program (N00014-02-1-0973, the Air Force Office of...W91WAW07C0063) for research in the area of dynamic network analysis. Additional support was provided by CASOS - the center for Computational Analysis of Social...methods across the domain. For a given project, de - velopers can choose from dozens of models, tools, platforms, and languages for specification, design
National resource for computation in chemistry, phase I: evaluation and recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-05-01
The National Resource for Computation in Chemistry (NRCC) was inaugurated at the Lawrence Berkeley Laboratory (LBL) in October 1977, with joint funding by the Department of Energy (DOE) and the National Science Foundation (NSF). The chief activities of the NRCC include: assembling a staff of eight postdoctoral computational chemists, establishing an office complex at LBL, purchasing a midi-computer and graphics display system, administering grants of computer time, conducting nine workshops in selected areas of computational chemistry, compiling a library of computer programs with adaptations and improvements, initiating a software distribution system, providing user assistance and consultation on request. This reportmore » presents assessments and recommendations of an Ad Hoc Review Committee appointed by the DOE and NSF in January 1980. The recommendations are that NRCC should: (1) not fund grants for computing time or research but leave that to the relevant agencies, (2) continue the Workshop Program in a mode similar to Phase I, (3) abandon in-house program development and establish instead a competitive external postdoctoral program in chemistry software development administered by the Policy Board and Director, and (4) not attempt a software distribution system (leaving that function to the QCPE). Furthermore, (5) DOE should continue to make its computational facilities available to outside users (at normal cost rates) and should find some way to allow the chemical community to gain occasional access to a CRAY-level computer.« less
Middle-and High-School Students' Interest in Nanoscale Science and Engineering Topics and Phenomena
ERIC Educational Resources Information Center
Hutchinson, Kelly; Bodner, George M.; Lynn, Bryan
2011-01-01
Research has shown that an increase in students' interest in science and engineering can have a positive effect on their achievement (Baird, 1986; Eccles & Wigfield, 2002; French, Immekus & Oakes, 2005; Schiefele, Krapp, & Winteler, 1992; Schwartz Bloom & Haplin, 2003; Weinburgh, 1995). Whereas many NSF-funded programs in materials…
Connecting Research to Teaching: Integrated Curricula and Preparation for College Mathematics
ERIC Educational Resources Information Center
Post, Thomas R.; Monson, Debra S.; Andersen, Edwin; Harwell, Michael R.
2012-01-01
In the early 1990s, after a long series of disappointing results on national and international mathematics achievement tests the National Science Foundation (NSF) funded the development of thirteen complete mathematics programs at the elementary school, middle school, and secondary school levels. Many teachers were quite happy with the new…
ERIC Educational Resources Information Center
Xie, Yichun; Reider, David
2014-01-01
This paper analyzes the outcomes of an innovative technology experience for students and teachers (ITEST) project, Mayor's Youth Technology Corps (MYTCs) in Detroit, MI, which was funded by the NSF ITEST program. The MYTC project offered an integration of two technologies, geographic information system (GIS) and information assurance (IA), to…
Women, Minorities, and Persons with Disabilities in Science and Engineering: 2011. NSF 11-309
ERIC Educational Resources Information Center
National Science Foundation, 2011
2011-01-01
This report provides statistical information about the participation of women, minorities, and persons with disabilities in science and engineering education and employment. Its primary purpose is to serve as an information source. It offers no endorsement of or recommendations about policies or programs. National Science Foundation reporting on…
Basidiomycetes of the Greater Antilles project
D.J. Lodge; T.J. Baroni; S.A. Cantrell
2002-01-01
The inventory of basidiomycetes of the Greater Antilles, with special emphasis on the Luquillo Long-Term Ecological Research Site, was a 4 year project initiated in 1996 with funding from the USA National Science Foundation's (NSF) Biotic Surveys and Inventories Program. The objective was to survey and inventory all basidiomycetes except rust fungi on the...
The Computer and the Fourth Revolution.
ERIC Educational Resources Information Center
Molnar, Andrew R.
An overview is provided of the Fourth Revolution, i.e., the revolution which is taking place in education as a result of the introduction of computers into the field. The growth of computing in education, especially in higher education, is traced, and some major National Science Foundation (NSF) programs are mentioned. Following this, a few of the…
Educating Tomorrow's Science Teachers: STEM ACT Conference Report
ERIC Educational Resources Information Center
Sternheim, Morton M.; Feldman, Allan; Berger, Joseph B.; Zhao, Yijie
2008-01-01
This document reports on the findings of an NSF-funded conference (STEM ACT) on the alternative certification of science teachers. The conference explored the issues that have arisen in science education as a result of the proliferation of alternative certification programs in the United States, and to identify the research that needs to be done…
Essential Competencies for Interdisciplinary Graduate Training: Summary Report. GS-10F-0086K
ERIC Educational Resources Information Center
Gamse, Beth C.; Espinosa, Lorelle L.; Roy, Radha
2013-01-01
The Integrative Graduate Education and Research Traineeship (IGERT) program represents a substantial investment by the National Science Foundation (NSF) to improve the quality of graduate education, and ultimately, to increase the number of graduates better prepared to address our nation's 21st century scientific and technological needs. The…
ERIC Educational Resources Information Center
DO-IT, 2007
2007-01-01
A series of activities were undertaken to understand the underrepresentation and increase the participation of people with disabilities in science, technology, engineering, and mathematics (STEM) careers. These activities were funded by the Research in Disabilities Education (RDE) program of the National Science Foundation (NSF). They were…
Data Sharing and Reuse within the Academic Pathways Study
ERIC Educational Resources Information Center
Toye, George; Sheppard, Sheri; Chen, Helen L.
2016-01-01
The Academic Pathway Study (APS) research program within National Science Foundation (NSF) Center for Advancement of Engineering Education (CAEE) ran from 2003-2010. It amassed a collection of longitudinal as well as cross-sectional data sets, of varying research method types and formats, from four different primary cohorts that included over…
Real Reform Takes More than "Stirring the Pot"
ERIC Educational Resources Information Center
Yager, Robert E.; Ali, Mohamed Moustafa; Hacieminoglu, Esme
2010-01-01
This article is the first in what will become a continuing series of articles highlighting the perspectives of renowned science educators. The first featured article is by Robert Yager, Science Education Center, University of Iowa, USA. Dr. Yager has directed over 100 NSF projects designed to improve K-16 science programs. He has served as…
ERIC Educational Resources Information Center
Koster, Auriane; Denker, Brendan
2012-01-01
Arizona State University's (ASU) Global Institute of Sustainability (GIOS) was awarded a five-year National Science Foundation (NSF) GK-12 grant in 2009 entitled "Sustainability Science for Sustainable Schools." The general focus of the grant is on science, technology, engineering, and math (STEM) education in K-12 schools. The…
STEM Specialty Programs: A Pathway for Under-Represented Students into STEM Fields
ERIC Educational Resources Information Center
Alvarez, Charles Alex; Edwards, Douglas; Harris, Bonnie
2010-01-01
Addressing the under-representation of women, minorities, and persons with disabilities in science, technology, engineering, and mathematics (STEM) fields has been an initiative of the U.S. Congress for the past 30 years, but the challenge still remains unresolved. The National Science Foundation (NSF) and the Congressional Committee on Equal…
ERIC Educational Resources Information Center
Phillips, Michelle; St. John, Mark
2013-01-01
In 2009, the National Science Foundation funded the "Dynabook: A Digital Resource and Preservice Model for Developing TPCK" project through its Discovery Research K-12 program. Dynabook project leaders and the National Science Foundation (NSF) recognized that digital textbooks would soon be a primary instructional resource, and seized…
78 FR 68479 - Notice of Intent To Seek Approval To Renew an Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-14
... implementing Arctic research policy, and the Director of the National Science Foundation shall ensure that the... certain regions of the Arctic sponsored by the NSF/GEO/Division of Polar Programs. The information is used... imposed by the Arctic and Antarctic continents, while also performing specific duties as specified by...
ERIC Educational Resources Information Center
Parker, Caroline E.; Stylinski, Cathlyn; Darrah, Marjorie; McAuliffe, Carla; Gupta, Preeti
2010-01-01
The National Science Foundation (NSF) Innovative Technology Experiences for Students and Teachers (ITEST) program provides a unique opportunity to assess a broad spectrum of professional development projects that share key characteristics but were designed to meet distinct local school and community contexts. To better understand how innovative…
Soucy, Katie; Fairhurst, Rick M; Lynn, Geoffrey M; Fomalont, Kevin; Wynn, Thomas A; Siegel, Richard M
2016-12-01
Immunology is an increasingly interdisciplinary field. Here we describe a new model for interinstitutional graduate training as partnerships between complementary laboratories. This collaborative model reduces time to graduation without compromising productivity or alumni outcomes. We offer our experience with one such program and thoughts on the ingredients for their success. Despite tremendous recent advances in technology, communications, and the translation of basic scientific discoveries into new diagnostics and therapies for human diseases, graduate training in immunology and other areas of biomedical research in the United States has remained remarkably unchanged since the early 20th century, with coursework and laboratory rotations taking up much of the first 2 years, and a single mentor shepherding the student through a research project over 3 or more subsequent years. The time to graduation still averages more than 6 years in the biomedical sciences field (http://www.nsf.gov/statistics/2016/nsf16300/), with uncertain benefit of this extended time to research productivity and career advancement. Published by Elsevier Ltd.
Broader Societal Issues of Nanotechnology
NASA Astrophysics Data System (ADS)
Roco, M. C.
2003-08-01
Nanoscale science and engineering are providing unprecedented understanding and control over the basic building blocks of matter, leading to increased coherence in knowledge, technology, and education. The main reason for developing nanotechnology is to advance broad societal goals such as improved comprehension of nature, increased productivity, better healthcare, and extending the limits of sustainable development and of human potential. This paper outlines societal implication activities in nanotechnology R&D programs. The US National Nanotechnology Initiative annual investment in research with educational and societal implications is estimated at about 30 million (of which National Science Foundation (NSF) awards about 23 million including contributions to student fellowships), and in nanoscale research with relevance to environment at about 50 million (of which NSF awards about 30 million and EPA about 6 million). An appeal is made to researchers and funding organizations worldwide to take timely and responsible advantage of the new technology for economic and sustainable development, to initiate societal implications studies from the beginning of the nanotechnology programs, and to communicate effectively the goals and potential risks with research users and the public.
Novel Technique for Quantitative Fast Scanning Calorimetry on Electrospun Fibers
NASA Astrophysics Data System (ADS)
Thomas, David; Govinna, Nelaka; Schick, Christoph; Cebe, Peggy
Fast scanning chip calorimetry allows for the study of polymers which have rapid nucleation and/or crystallization kinetics, or degrade within their melting range. Heating rates used, up to 4000 K/s, allow studies of hetero and homogeneous nucleation at time scales inaccessible with conventional calorimeters, whose rates are typically <0.5 K/s. Polyethylene terephthalate (PET) and polyvinyl alcohol (PVA) were chosen in the development of a new methodology to obtain quantitative fast scanning thermal data from electrospun nanofibers using a Flash DSC1. The structure of nanofibers requires special methods to load nanogram-sized samples onto a UFSC1 sensor. Fibers were directly spun onto TEM grids which provide a durable substrate to support bundles of nanofibers and possess excellent thermal conductivity allowing for a strong, repeatable signal and ensure good sample to sensor contact. As spun samples were held isothermally at temperatures ranging from Tg to Tm then heated at 2,000 K/s to assess as-spun crystallinity and cold crystallization behaviors. Above Tm the fibers break up into micro- and nano-droplets. On these samples, melt crystallization experiments were performed to study nucleation and crystallization of polymer confined to nanodroplet morphology. NSF DMR-1608125.
Spatial-Temporal dynamics of Newtonian and viscoelastic turbulence
NASA Astrophysics Data System (ADS)
Wang, Sung-Ning; Graham, Michael
2015-11-01
Introducing a trace amount of polymer into liquid turbulent flows can result in substantial reduction of friction drag. This phenomenon has been widely used in fluid transport, such as the Alaska crude oil pipeline. However, the mechanism is not well understood. We conduct direct numerical simulations of Newtonian and viscoelastic turbulence in large domains, in which the flow shows different characteristics in different regions. In some areas the drag is low and vortex motions are quiescent, while in other areas the drag is higher and the motions are more active. To identify these regions, we apply a statistical method, k-means clustering, which partitions the observations into k clusters by assigning each observation to its nearest centroid. The resulting partition maximizes the between-cluster variance. In the simulations, the observations are the instantaneous wall shear rate. Regions with different levels of drag are automatically identified by the partitioning algorithm. We find that the velocity profiles of the centroids exhibit characteristics similar to the individual coherent structures observed in minimal domain simulations. In addition, as viscoelasticity increases, polymer stretch becomes strongly correlated with wall shear stress. This work was supported by NSF grant CBET-1510291.
Worldwide Impact: International Year of Astronomy Dark Skies Awareness Programs
NASA Astrophysics Data System (ADS)
Walker, C. E.; Pompea, S. M.; Isbell, D.
2009-12-01
The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, “Dark Skies Awareness” is a global cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs through: - New Technology (website, podcasts, social networking, Second Life) - Educational Materials (Great Switch Out, a traveling exhibit, brochures, posters, CDs, DVDs, educational kit) - The Arts (photo contest) - Events (Earth Hour, International Dark Sky Week, World Night in Defense of Starlight, Dark Skies Discovery Sites, Sidewalk Astronomy, Nights in the Parks) - Citizen Science Programs (5 star hunting programs & Quiet Skies) Dark Skies Communities (Starlight Initiative, International Dark Sky Communities) Many countries around the world have participated in these programs. We will highlight 24 countries in particular and focus on successful techniques used in aspects of the programs, results and impact on the audience, and plans and challenges for maintaining or extending the program beyond the International Year of Astronomy. The International Year of Astronomy 2009 is partially funded from a grant from the National Science Foundation (NSF) Astronomy Division. The National Optical Astronomy Observatory is host to the IYA2009 Dark Skies Awareness programs and is operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with NSF.
The ASM-NSF Biology Scholars Program: An Evidence-Based Model for Faculty Development.
Chang, Amy L; Pribbenow, Christine M
2016-05-01
The American Society for Microbiology (ASM) established its ASM-NSF (National Science Foundation) Biology Scholars Program (BSP) to promote undergraduate education reform by 1) supporting biologists to implement evidence-based teaching practices, 2) engaging life science professional societies to facilitate biologists' leadership in scholarly teaching within the discipline, and 3) participating in a teaching community that fosters disciplinary-level science, technology, engineering, and mathematics (STEM) reform. Since 2005, the program has utilized year-long residency training to provide a continuum of learning and practice centered on principles from the scholarship of teaching and learning (SoTL) to more than 270 participants ("scholars") from biology and multiple other disciplines. Additionally, the program has recruited 11 life science professional societies to support faculty development in SoTL and discipline-based education research (DBER). To identify the BSP's long-term outcomes and impacts, ASM engaged an external evaluator to conduct a study of the program's 2010-2014 scholars (n = 127) and society partners. The study methods included online surveys, focus groups, participant observation, and analysis of various documents. Study participants indicate that the program achieved its proposed goals relative to scholarship, professional society impact, leadership, community, and faculty professional development. Although participants also identified barriers that hindered elements of their BSP participation, findings suggest that the program was essential to their development as faculty and provides evidence of the BSP as a model for other societies seeking to advance undergraduate science education reform. The BSP is the longest-standing faculty development program sponsored by a collective group of life science societies. This collaboration promotes success across a fragmented system of more than 80 societies representing the life sciences and helps catalyze biology education reform efforts.
America COMPETES at 5 years: An Analysis of Research-Intensive Universities' RCR Training Plans.
Phillips, Trisha; Nestor, Franchesca; Beach, Gillian; Heitman, Elizabeth
2018-02-01
This project evaluates the impact of the National Science Foundation's (NSF) policy to promote education in the responsible conduct of research (RCR). To determine whether this policy resulted in meaningful RCR educational experiences, our study examined the instructional plans developed by individual universities in response to the mandate. Using a sample of 108 U.S. institutions classified as Carnegie "very high research activity", we analyzed all publicly available NSF RCR training plans in light of the consensus best practices in RCR education that were known at the time the policy was implemented. We found that fewer than half of universities developed plans that incorporated at least some of the best practices. More specifically, only 31% of universities had content and requirements that differed by career stage, only 1% of universities had content and requirements that differed by discipline; and only 18% of universities required some face-to-face engagement from all classes of trainees. Indeed, some schools simply provided hand-outs to their undergraduate students. Most universities (82%) had plans that could be satisfied with online programs such as the Collaborative Institutional Training Initiative's RCR modules. The NSF policy requires universities to develop RCR training plans, but provides no guidelines or requirements for the format, scope, content, duration, or frequency of the training, and does not hold universities accountable for their training plans. Our study shows that this vaguely worded policy, and lack of accountability, has not produced meaningful educational experiences for most of the undergraduate students, graduate students, and post-doctoral trainees funded by the NSF.
NSF Lower Atmospheric Observing Facilities (LAOF) in support of science and education
NASA Astrophysics Data System (ADS)
Baeuerle, B.; Rockwell, A.
2012-12-01
Researchers, students and teachers who want to understand and describe the Earth System require high quality observations of the atmosphere, ocean, and biosphere. Making these observations requires state-of-the-art instruments and systems, often carried on highly capable research platforms. To support this need of the geosciences community, the National Science Foundation's (NSF) Division of Atmospheric and Geospace Sciences (AGS) provides multi-user national facilities through its Lower Atmospheric Observing Facilities (LAOF) Program at no cost to the investigator. These facilities, which include research aircraft, radars, lidars, and surface and sounding systems, receive NSF financial support and are eligible for deployment funding. The facilities are managed and operated by five LAOF partner organizations: the National Center for Atmospheric Research (NCAR); Colorado State University (CSU); the University of Wyoming (UWY); the Center for Severe Weather Research (CSWR); and the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). These observational facilities are available on a competitive basis to all qualified researchers from US universities, requiring the platforms and associated services to carry out various research objectives. The deployment of all facilities is driven by scientific merit, capabilities of a specific facility to carry out the proposed observations, and scheduling for the requested time. The process for considering requests and setting priorities is determined on the basis of the complexity of a field campaign. The poster will describe available observing facilities and associated services, and explain the request process researchers have to follow to secure access to these platforms for scientific as well as educational deployments. NSF/NCAR GV Aircraft
Update on the NSF PAARE Program at SC State
NASA Astrophysics Data System (ADS)
Walter, Donald K.; Ajello, Marco; Brittain, Sean D.; Cash, Jennifer; Hartmann, Dieter; Ho, Shirley; Howell, Steve B.; King, Jeremy R.; Leising, Mark D.; Smith, Daniel M.
2017-01-01
We report on results from our NSF PAARE program during Year 2 of the project. Our partnership under this PAARE award includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) as well as individual investigators at NASA Ames and Carnegie Mellon University. Our recent work on variable and peculiar stars, work with the Kepler Observatory and our educational products in cosmology for non-STEM majors will be presented. We have successfully piloted sharing our teaching resources by offering an upper-level astrophysics course taught at Clemson via video conferencing , allowing a graduating senior from SC State to take a course not available through his home institution. Additionally, we are working on a memorandum of agreement between the two institutions that will allow for the seamless transfer of an undergraduate from SC State to Clemson’s graduate program in physics and astronomy. Our curriculum work includes new web-based cosmology activities and laboratory experiments. SC State undergraduates are reporting at this conference on their work with the light curves of semiregular variables using Kepler data. Additionally, we are heavily involved in the Citizen CATE Experiment. A PAARE scholarship student from SC State and the PAARE PI traveled to Indonesia for the March 2016 solar eclipse. Their results are also being presented elsewhere at this conference (see Myles McKay’s poster). Support for this work includes our NSF PAARE award AST-1358913 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory. Additional support has been provided by the South Carolina Space Grant Consortium and from NASA to SC State under awards NNX11AB82G and NNX13AC24G. CATE work has been supported by NASA SMD award NNX16AB92A to the National Solar Observatory. Additional details can be found at: http://physics.scsu.edu
NASA Astrophysics Data System (ADS)
Lamb, M. A.; Cashman, S. M.; Dorsey, R. J.; Bennett, S. E. K.; Loveless, J. P.; Goodliffe, A. M.
2014-12-01
The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate the significant findings from the MARGINS program into open-source college-level curriculum. The Gulf of California (GOC) served as the focus site for the Rupturing Continental Lithosphere initiative, which addressed several scientific questions: What forces drive rift initiation, localization, propagation and evolution? How does deformation vary in time and space, and why? How does crust evolve, physically and chemically, as rifting proceeds to sea-floor spreading? What is the role of sedimentation and magmatism in continental extension? We developed two weeks of curriculum designed for an upper-division structural geology, tectonics or geophysics course. The curriculum includes lectures, labs, and in-class activities that can be used as a whole or individually. The first set of materials introduces the RCL initiative to students and has them analyze the bathymetry and oblique-rifting geometry of the GOC in an exercise using GeoMapApp. The second set of materials has two goals: (1) introduce students to fundamental concepts of interpreting seismic reflection data via lectures and in-class interpretation of strata, basement, and faults from recent GOC seismic data, and (2) encourage students to discover the structural geometry and rift evolution, including the east-to-west progression of faulting and transition from detachment to high-angle faulting in the northern GOC, and changes in deformation style from north to south. In the third set of materials, students investigate isostatic affects of sediment fill in GOC oblique rift basins. This activity consists of a problem set, introduced in a lecture, where students integrate their findings from the previous bathymetry- and seismic-interpretation exercises.
Biosphere 2, a nexus of partner networks that improve student experiences and outcomes
NASA Astrophysics Data System (ADS)
Dontsova, K.; Bonine, K. E.; Batchelor, R. L.; Brinkworth, C.; Keller, J. M.; Hogan, D.; Treloar, D.
2017-12-01
University of Arizona (UA) Biosphere 2 co-convenes several internship opportunities for undergraduate students, including 1) NSF-funded Research Experiences for Undergraduates (REU) Site: "Biosphere 2 Earth Systems Research for Environmental Solutions", 2) NSF-funded INCLUDES program "Collaborative Research: Integrating Indigenous and Western Knowledge to Transform Learning and Discovery in the Geosciences" executed in collaboration with the University Corporation for Atmospheric Research (UCAR), and 3) STEM Teacher and Researcher (STAR) Fellows Program in partnership with California Polytechnic State University - San Luis Obispo. In addition, the B2 REU Site partners with several UA organizations linking research to stakeholders, such as UA Cooperative Extension, Institute of the Environment, and the Water Resources Research Center, and with the UA Graduate College's Undergraduate Research Opportunities Consortium (UROC), which connects a diverse portfolio of summer research programs across the UA campus. Connections among these programs and organizations allow us to improve student experiences and outcomes by leveraging organizational, mentor, and peer diversity and expertise. Each partnership brings unique benefits for the students - from access to teaching experience and perspectives that STAR Fellows provide, to a multitude of professional development programs made possible by pooled resources of UROC participants, to access to networks and knowledge from our outreach partners, to opportunities for continued multi-year learning and support with INCLUDES and UCAR. Coming together allows all partners to better apply outside resources, expertise, and knowledge to bring more value to the students and to help students enrich themselves as well as partner organizations and program participants.
Drag reduction in plane Couette flow of dilute polymer solutions
NASA Astrophysics Data System (ADS)
Liu, Nansheng; Teng, Hao; Lu, Xiyun; Khomami, Bamin
2017-11-01
Drag reduction (DR) in the plane Couette flow (PCF) by the addition of flexible polymers has been studied by direct numerical simulation (DNS) in this work. Special interest has been directed to explore the similarity and difference in the DR features between the PCF and the plane Poiseuille flow (PPF), and to clarify the effects of large-scale structures (LSSs) on the near-wall turbulence. It has been demonstrated that in the near-wall region the drag-reduced PCF shares typical DR features similar to those reported for the drag-reduced PPF (White & Mungal 2008; Graham 2014), however in the core region intriguing differences are found between these two DR shear flows of polymeric solution. Specifically, in the core region of the drag-reduced PCF, the polymer chains are stretched substantial and absorb kinetic energy from the turbulent fluctuations. In commensurate, peak values of conformation tensor components Cyy and Czz occur in the core region. This finding is strikingly different from that of the drag-reduced PPF. For the drag-reduced PCF, the LSSs are found to have monotonically increasing effects on the near-wall flow as the Weissenberg number increases, and have their spanwise length scale unchanged. This work is supported by the NSFC Grants 11272306 and 11472268 and the NSF Grant CBET0755269. This research was also supported in part by allocation of advanced computational resources on DARTER by the National Institute for Computational Sciences (NICS).
Action at a Distance in the Cell's Nucleus
NASA Astrophysics Data System (ADS)
Kondev, Jane
Various functions performed by chromosomes involve long-range communication between DNA sequences that are tens of thousands of bases apart along the genome, and microns apart in the nucleus. In this talk I will discuss experiments and theory relating to two distinct modes of long-range communication in the nucleus, chromosome looping and protein hopping along the chromosome, both in the context of DNA-break repair in yeast. Yeast is an excellent model system for studies that link chromosome conformations to their function as there is ample experimental evidence that yeast chromosome conformations are well described by a simple, random-walk polymer model. Using a combination of polymer physics theory and experiments on yeast cells, I will demonstrate that loss of polymer entropy due to chromosome looping is the driving force for homology search during repair of broken DNA by homologous recombination. I will also discuss the spread of histone modifications along the chromosome and away from the DNA break point in the context of simple physics models based on chromosome looping and kinase hopping, and show how combining physics theory and cell-biology experiment can be used to dissect the molecular mechanism of the spreading process. These examples demonstrate how combined theoretical and experimental studies can reveal physical principles of long-range communication in the nucleus, which play important roles in regulation of gene expression, DNA recombination, and chromatin modification. This work was supported by the NSF DMR-1206146.
NASA Astrophysics Data System (ADS)
Esperanca, S.
2003-12-01
The goal of NSF's ADVANCE Program is to help increase the participation of women in the scientific and engineering workforce through the increased representation and advancement of women in academic science and engineering careers. The Program tries to address this under representation by focusing on support for men and women with three approaches: institutional (Institutional Transformation), grass-root (Leadership), and individual (Fellows) support. The ADVANCE Program alternates with a round of Institutional and Leadership awards in one year and a Fellows competition the next. Since its inception in 2001, NSF has had two competitive rounds for each of the three award types and will have spent approximately 75 M\\ by the end of the next fiscal year (2004). The first and second ADVANCE Institutional Transformation competitions (FY 2001 and 2003) received over 70 proposals each. These awards are for multi-year support in the amount of 3-4M\\ each. Details and access to the websites for the ADVANCE programs of each institution can be found in NSF's ADVANCE webpage at http://nsf.gov/home/crssprgm/advance/itwebsites.htm. The number of proposals submitted for the Leadership awards competition dropped from 35 in 2001 to 26 in 2003, despite an increase in the allowed award size for the second round. In terms of projected goals, this part of ADVANCE is perhaps the most eclectic. Some Leadership awards were made to professional societies to work specifically with their respective scientific communities in identifying needs that might be peculiar to a field of science. In the first round of the Leadership awards, PI Mary-Anne Holmes of the University of Nebraska-Lincoln and collaborators received a grant to work with the Association of Women Geoscientists to determine the current status of women geoscientists in the US. These grantees hope to disseminate the information gathered under this award broadly in order to educate women students and faculty on strategies to overcome barriers, and to encourage women to pursue academic geoscience careers as well as teach administrators how to recruit and retain qualified women in geoscience. The ADVANCE Fellows competition includes eligibility for women in three broad categories: early-career; career interruption; and trailing spouse. The first Fellows competition took place in 2002 and received over 150 applications throughout the Foundation. The Directorate of Geosciences (GEO) received 26 proposals, approximately 18% of the total number, and second only to the Directorate of Biological Sciences (BIO). Of the 26 proposals, 5 were in Atmospheric Sciences (ATM), 9 in Earth Sciences (EAR), and 12 in Ocean Sciences (OCE). Proposal pressure in the Fellows competition was roughly correlated with the number of women in the respective fields. In GEO, the number of proposals reflected broadly the representation of women as PIs in the various Divisions, where OCE has the largest number of female PIs, followed by EAR and ATM, respectively. Of the pool of applicants in 2002 and 2004, approximately 50% were PIs that applied in the early-career (post-doctoral) category, with the other 50% composed of about half for each of the two other categories (spouse relocation and career interruption). Over the next two years, NSF hopes to have a significant portfolio of awards to start deriving some information on successful models for promoting the increase in the representation of women at higher levels of the academic career. Feedback to the members of the ADVANCE Implementation Committee is strongly encouraged as we continue to try to improve this program to better answer the needs of women in academia.
45 CFR 689.5 - Initial NSF handling of misconduct matters.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 3 2014-10-01 2014-10-01 false Initial NSF handling of misconduct matters. 689.5... FOUNDATION RESEARCH MISCONDUCT § 689.5 Initial NSF handling of misconduct matters. (a) NSF staff who learn of alleged misconduct will promptly and discreetly inform OIG or refer informants to OIG. (b) The identity of...
45 CFR 689.5 - Initial NSF handling of misconduct matters.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 3 2011-10-01 2011-10-01 false Initial NSF handling of misconduct matters. 689.5... FOUNDATION RESEARCH MISCONDUCT § 689.5 Initial NSF handling of misconduct matters. (a) NSF staff who learn of alleged misconduct will promptly and discreetly inform OIG or refer informants to OIG. (b) The identity of...
45 CFR 689.5 - Initial NSF handling of misconduct matters.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 3 2013-10-01 2013-10-01 false Initial NSF handling of misconduct matters. 689.5... FOUNDATION RESEARCH MISCONDUCT § 689.5 Initial NSF handling of misconduct matters. (a) NSF staff who learn of alleged misconduct will promptly and discreetly inform OIG or refer informants to OIG. (b) The identity of...
45 CFR 689.5 - Initial NSF handling of misconduct matters.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 3 2010-10-01 2010-10-01 false Initial NSF handling of misconduct matters. 689.5... FOUNDATION RESEARCH MISCONDUCT § 689.5 Initial NSF handling of misconduct matters. (a) NSF staff who learn of alleged misconduct will promptly and discreetly inform OIG or refer informants to OIG. (b) The identity of...
45 CFR 689.5 - Initial NSF handling of misconduct matters.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 3 2012-10-01 2012-10-01 false Initial NSF handling of misconduct matters. 689.5... FOUNDATION RESEARCH MISCONDUCT § 689.5 Initial NSF handling of misconduct matters. (a) NSF staff who learn of alleged misconduct will promptly and discreetly inform OIG or refer informants to OIG. (b) The identity of...
Leith, William S.
2017-01-01
This year, the National Earthquake Hazards Reduction Program (NEHRP) turns 40, four decades since the Earthquake Hazards Reduction Act of 1977 was enacted establishing the Program, spurring numerous federal, state, and community actions to reduce earthquake losses in the U.S.A. and its territories and setting a standard for earthquake loss‐reduction projects internationally. Four agencies are partners in NEHRP: the Federal Emergency Management Agency (FEMA), the National Institute of Standards and Technology (NIST, the lead agency), the National Science Foundation (NSF), and the U.S. Geological Survey (USGS).
Recruitment, Advancement and Retention of Women in the Physical Sciences at U.C. Irvine
NASA Astrophysics Data System (ADS)
Druffel, E. R.; Smecker-Hane, T.; Kehoe, P.; Bryant, S. V.
2004-12-01
Strategies for the recruitment, retention and advancement of women in the physical sciences at U.C. Irvine are presented. The NSF-funded ADVANCE Program has implemented several new initiatives. Among these are new requirements for recruitment committees, participation by school equity advisors, personalized mentoring programs and establishment of senior chairs. Progress towards our goals are reviewed and evaluated. Issues such as dual career couples and the balance between family/personal time and work are also addressed.
Adjoint-Free Variational Data Assimilation into a Regional Wave Model
2015-07-01
Wave Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...developed by Oceanweather, Inc. using the methodology of Cardone et al. (1995, 1996). The winds were taken for the period 11–20 September 2011 and...International Arctic Research Center, NSF Grants 1107925 and 1203740. It was also supported by theOffice of Naval Research (Program Element 0602435N, pro
Open-Source Programming for Automated Generation of Graphene Raman Spectral Maps
NASA Astrophysics Data System (ADS)
Vendola, P.; Blades, M.; Pierre, W.; Jedlicka, S.; Rotkin, S. V.
Raman microscopy is a useful tool for studying the structural characteristics of graphene deposited onto substrates. However, extracting useful information from the Raman spectra requires data processing and 2D map generation. An existing home-built confocal Raman microscope was optimized for graphene samples and programmed to automatically generate Raman spectral maps across a specified area. In particular, an open source data collection scheme was generated to allow the efficient collection and analysis of the Raman spectral data for future use. NSF ECCS-1509786.
NASA Technical Reports Server (NTRS)
Mccray, Richard; Ostriker, Jeremiah P.; Acton, Loren W.; Bahcall, Neta A.; Bless, Robert C.; Brown, Robert A.; Burbidge, Geoffrey; Burke, Bernard F.; Clark, George W.; Cordova, France A.
1991-01-01
Recommendations are given regarding National Science Foundation (NSF) astronomy programs and the NASA Space Astrophysics program. The role of ground based astronomy is reviewed. The role of National Optical Astronomy Observatories (NOAO) in ground-based night-time astronomical research is discussed. An enhanced Explored Program, costs and management of small and moderate space programs, the role of astrophysics within NASA's space exploration initiative, suborbital and airborne astronomical research, the problems of the Hubble Space Telescope, and astronomy education are discussed. Also covered are policy issues related to the role of science advisory committees, international cooperation and competition, archiving and distribution of astronomical data, and multi-wavelength observations of variable sources.
Mock X-ray Observations of Localized LMC Outflows
NASA Astrophysics Data System (ADS)
Tomesh, Teague; Bustard, Chad; Zweibel, Ellen
2018-01-01
The Milky Way’s nearest neighbor, the Large Magellanic Cloud (LMC), is a perfect testing ground for modeling a variety of astrophysical phenomena. Specifically, the LMC provides a unique opportunity for the study of possible localized outflows driven by star formation and their x-ray signatures. We have developed FLASH simulations of theoretical outflows originating in the LMC that we have used to generate predicted observations of X-ray luminosity. This X-ray emission can be a useful probe of the hot gas in these winds which may couple to the cool gas and drive it from the disk. Future observations of the LMC may provide us with valuable checks on our model. This work is partially supported by the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.
PRISM Polarimetry of Massive Stars
NASA Astrophysics Data System (ADS)
Kerkstra, Brennan; Lomax, Jamie R.; Bjorkman, Karen S.; Bjorkman, Jon Eric; Skiff, Brian; Covey, Kevin R.; Wisniewski, John P.
2016-01-01
We present the early results from our long-term, multi-epoch filter polarization survey of massive stars in and around young Galactic clusters. These BVRI polarization data were obtained using the PRISM instrument mounted on the 1.8m Perkins Telescope at Lowell Observatory. We first detail the creation of our new semi-automated polarization data reduction pipeline that we developed to process these data. Next, we present our analysis of the instrumental polarization properties of the PRISM instrument, via observations of polarized and unpolarized standard stars. Finally, we present early results on the total and intrinsic polarization behavior of several isolated, previously suggested classical Be stars, and discuss these results in the context of the larger project.BK acknowledges support from a NSF/REU at the University of Oklahoma. This program was also supported by NSF-AST 11411563, 1412110, and 1412135.
A Partnership in Observational and Computational Astronomy (POCA)
NASA Astrophysics Data System (ADS)
Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M., Jr.
2009-01-01
A partnership has been established between South Carolina State University (SCSU, a Historically Black College/University), the National Optical Astronomy Observatory (NOAO) and Clemson University (CU) under an award from NSF's "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. The mission of POCA is to develop an effective, long-term partnership that combines the strengths of the three institutions to increase the scientific and educational output of all the partners with special emphasis on enhancing diversity in the field of astronomy. Components of the program include enhancing faculty and student research in astronomy at SCSU, recruiting and retaining underrepresented minority students into the field, outreach through planetarium programs and museum exhibits and developing web based resources in astronomy education. Activities in the first year of the program are discussed. We have begun developing and testing several new astronomy laboratory exercises. Our first summer internship program has concluded successfully. With PAARE scholarship money, we are now supporting four physics majors at SCSU who have chosen the astronomy option (concentration) for their degree. SCSU undergraduates have acquired observing experience on the KPNO Mayall 4-meter telescope under the guidance of faculty and graduate students from CU. NOAO astronomers have collaborated with SCSU faculty to begin a research program that studies RV Tauri stars. Funds from PAARE are supporting follow-up research to a just-completed doctoral dissertation by E. A. Mayo described elsewhere in these proceedings. Future plans for graduate fellowships and related activities are discussed in addition to summer internships for POCA undergraduates at CU and NOAO. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.
The ASM-NSF Biology Scholars Program: An Evidence-Based Model for Faculty Development
Chang, Amy L.; Pribbenow, Christine M.
2016-01-01
The American Society for Microbiology (ASM) established its ASM-NSF (National Science Foundation) Biology Scholars Program (BSP) to promote undergraduate education reform by 1) supporting biologists to implement evidence-based teaching practices, 2) engaging life science professional societies to facilitate biologists’ leadership in scholarly teaching within the discipline, and 3) participating in a teaching community that fosters disciplinary-level science, technology, engineering, and mathematics (STEM) reform. Since 2005, the program has utilized year-long residency training to provide a continuum of learning and practice centered on principles from the scholarship of teaching and learning (SoTL) to more than 270 participants (“scholars”) from biology and multiple other disciplines. Additionally, the program has recruited 11 life science professional societies to support faculty development in SoTL and discipline-based education research (DBER). To identify the BSP’s long-term outcomes and impacts, ASM engaged an external evaluator to conduct a study of the program’s 2010–2014 scholars (n = 127) and society partners. The study methods included online surveys, focus groups, participant observation, and analysis of various documents. Study participants indicate that the program achieved its proposed goals relative to scholarship, professional society impact, leadership, community, and faculty professional development. Although participants also identified barriers that hindered elements of their BSP participation, findings suggest that the program was essential to their development as faculty and provides evidence of the BSP as a model for other societies seeking to advance undergraduate science education reform. The BSP is the longest-standing faculty development program sponsored by a collective group of life science societies. This collaboration promotes success across a fragmented system of more than 80 societies representing the life sciences and helps catalyze biology education reform efforts. PMID:27158300
NASA Technical Reports Server (NTRS)
Lenz, Robert W.
1995-01-01
A fact-finding team of American scientists and engineers visited Japan to assess the status of research and development and applications in biodegradable polymers. The visit was sponsored by the National Science Foundation and industry. In Japan, the team met with representatives of 31 universities, government ministries and institutes, companies, and associations. Japan's national program on biodegradable polymers and plastics evaluates new technologies, testing methods, and potential markets for biodegradables. The program is coordinated by the Biodegradable Plastics Society of Japan, which seeks to achieve world leadership in biodegradable polymer technology and identify commercial opportunities for exploiting this technology. The team saw no major new technology breakthroughs. Japanese scientists and engineers are focusing on natural polymers from renewable resources, synthetic polymers, and bacterially-produced polymers such as polyhydroxyalkanoates, poly(amino acids), and polysaccharides. The major polymers receiving attention are the Zeneca PHBV copolymers, Biopol(registered trademark), poly(lactic acid) from several sources, polycaprolactone, and the new synthetic polyester, Bionolle(registered trademark), from Showa High Polymer. In their present state of development, these polymers all have major deficiencies that inhibit their acceptance for large-scale applications.
Polymer concrete overlay test program : final report.
DOT National Transportation Integrated Search
1981-12-01
The results in this report were obtained during the test program which began in 1973. Physical properties of various polymer concretes are listed. They include compressive strength, splitting tensile strength, bond strength, the modulus of elasticity...
Summer Course Promotes Polymer Chemistry for Small Colleges.
ERIC Educational Resources Information Center
Stinson, Stephen
1989-01-01
Describes a three-week summer program teaching selected chemistry faculty how to incorporate polymer chemistry into chemistry courses. In addition to lectures, the program conducted many experiments and provided a trip to industry laboratories. (YP)
Winning the Global Skills Race: National Centers Prime Students for Success in Emerging Job Markets
ERIC Educational Resources Information Center
Murray, Corey
2007-01-01
This article talks about a joint effort between the National Science Foundation and the nation's community colleges that helps students secure jobs in technical career fields. It describes Advanced Technological Education Program (ATE), National Science Foundation's (NSF's) premier initiative with two-year colleges that was created in response to…
Inquiry-Based Examination of Chemical Disruption of Bacterial Biofilms
ERIC Educational Resources Information Center
Redelman, Carly V.; Hawkins, Misty A. W.; Drumwright, Franklin R.; Ransdell, Beverly; Marrs, Kathleen; Anderson, Gregory G.
2012-01-01
Inquiry-based instruction in the sciences has been demonstrated as a successful educational strategy to use for both high school and college science classrooms. As participants in the NSF Graduate STEM Fellows in K-12 Education (GK-12) Program, we were tasked with creating novel inquiry-based activities for high school classrooms. As a way to…
ERIC Educational Resources Information Center
Huinker, DeAnn; Coan, Cheryl
The Urban Systemic Initiatives (USI) program is an effort sponsored by the National Science Foundation (NSF) that targets large urban school systems with the goal of sustainable implementation of high-quality, standards-based teaching for the purpose of attaining system-wide increases in students' learning of challenging mathematics and science.…
ERIC Educational Resources Information Center
Whitla, Dean K.; Pinck, Dan C.
Presented is a summary of findings and recommendations provided by the Harvard Study Committee under the auspices of the Massachusetts Advisory Council on Education. The study is mainly concerned with the four National Science Foundation (NSF) programs: Elementary Science Study, Science Curriculum Improvement Study, Science - A Process Approach,…
Advancing STEM Education: A 2020 Vision
ERIC Educational Resources Information Center
Bybee, Rodger W.
2010-01-01
STEM (an acronym for science, technology, engineering and mathematics) had its origins in the 1990s at the National Science Foundation (NSF) and has been used as a generic label for any event, policy, program, or practice that involves one or several of the STEM disciplines. However, a recent survey on the "perception of STEM" found that most…
"I Want To Be like...": Middle School Students' Identification with Scientists on Television
ERIC Educational Resources Information Center
Ryan, Lisa; Steinke, Jocelyn
2010-01-01
This article describes a study funded by the Research on Gender in Science and Engineering (GSE) Program of the National Science Foundation (NSF). The study focused on gaining a better understanding of how middle school students perceive television depictions of scientists. This study involved collaboration between a major research university and…
ERIC Educational Resources Information Center
Thurston, Linda P.; Shuman, Cindy; Middendorf, B. Jan; Johnson, Cassandra
2017-01-01
The Research in Disabilities Education Synthesis Project (RDE-SP), a four-year mixed methods research project, assessed a decade of funded projects (2001-2011) under the National Science Foundation's Research in Disabilities Education program which is aimed at increasing participation and retention of students with disabilities (SWD) in Science,…
Faculty Workshops for Teaching Information Assurance through Hands-On Exercises and Case Studies
ERIC Educational Resources Information Center
Yuan, Xiaohong; Williams, Kenneth; Yu, Huiming; Rorrer, Audrey; Chu, Bei-Tseng; Yang, Li; Winters, Kathy; Kizza, Joseph
2017-01-01
Though many Information Assurance (IA) educators agree that hands-on exercises and case studies improve student learning, hands-on exercises and case studies are not widely adopted due to the time needed to develop them and integrate them into curricula. Under the support of the National Science Foundation (NSF) Scholarship for Service program, we…
Tri-P-LETS: Changing the Face of High School Computer Science
ERIC Educational Resources Information Center
Sherrell, Linda; Malasri, Kriangsiri; Mills, David; Thomas, Allen; Greer, James
2012-01-01
From 2004-2007, the University of Memphis carried out the NSF-funded Tri-P-LETS (Three P Learning Environment for Teachers and Students) project to improve local high-school computer science curricula. The project reached a total of 58 classrooms in eleven high schools emphasizing problem solving skills, programming concepts as opposed to syntax,…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... applications. SUMMARY: The i6 Challenge is a new, multi-agency innovation competition led by the U.S... (NIH), the National Science Foundation (NSF), and the U.S. Patent and Trademark Office (USPTO) to... designed to encourage and reward innovative, ground-breaking ideas that will accelerate technology...
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Directorate for Education and Human Resources.
This report describes the efforts of the National Science Foundation (NSF) and its Division of Undergraduate Education (DUE) to provide educational support to two-year colleges to strengthen science, technology, engineering, and mathematics programs through grants, collaborative efforts, and support for curriculum materials and teacher activities.…
ERIC Educational Resources Information Center
Harmon, Hobart L.; Smith, Keith C.
2012-01-01
This monograph offers an in-depth look at the National Science Foundation's (NSF) Rural Systemic Initiative (RSI) efforts, an investment of more than $140 million to reform mathematics and science programs in rural K-12 public education and tribal education. The authors seek to promote a foundation of contextual understanding for improving public…
Energy Conversion and Combustion Sciences
2013-03-08
Property issues Flameholding (flammability limit) Flame propagation (turbulent-flame speed) combustion-Mixing interaction shock Cavity Based Scramjet ...focusing: • “Very-high” speed (space access) region • Overlapping interests and close coordination with AF programs ( scramjet , rockets etc.). • NSF...and Relevant Conditions Hypersonics Gas Turbines Rockets M > 0.1 Re ? Da ? wrinkled flame ball laminar flame Auto Engines PGC (1
ERIC Educational Resources Information Center
Kelly, Angela M.; Gningue, Serigne M.; Qian, Gaoyin
2015-01-01
This study explored the challenges facing 1st-year alternatively certified teachers of mathematics and science in urban middle schools. Four teachers, participants in a National Science Foundation (NSF)-funded Robert Noyce Scholarship Program, were followed from preservice training through their 1st year of teaching, having taken part in…
Essential Competencies for Interdisciplinary Graduate Training in IGERT: Final Report. GS-10F-0086K
ERIC Educational Resources Information Center
Gamse, Beth C.; Espinosa, Lorelle L.; Roy, Radha
2013-01-01
The Integrative Graduate Education and Research Traineeship (IGERT) program represents a substantial investment by the National Science Foundation (NSF) to improve the quality of graduate education, and ultimately, to increase the number of graduates better prepared to address the nation's 21st century scientific and technological needs. The…
Coordinating Council. Eighth Meeting: Using the Internet
NASA Technical Reports Server (NTRS)
1992-01-01
This NASA Scientific and Technical Information Program Coordinating Council meeting theme was entitled 'Using Internet'. Individual topics included STI LAN migration, NSF and NREN (National Science Foundation and the National Research and Education Network), and the New NASA Headquarters LAN. Discussions are recorded for each topic and visuals are provided for STI LAN migration and NSI - NASA Science Internet.
Effective Management of Ocean Biogeochemistry and Ecological Data: the BCO-DMO Story
NASA Astrophysics Data System (ADS)
Chandler, C. L.; Groman, R. C.; Allison, M. D.; Wiebe, P. H.; Glover, D. M.; Gegg, S. R.
2012-04-01
Data availability expectations of the research community, environmental management decision makers, and funding agency representatives are changing. Consequently, data management practices in many science communities are changing as well. In an effort to improve access to data generated by ocean biogeochemistry and ecological researchers funded by the United States (US) National Science Foundation (NSF) Division of Ocean Sciences (OCE), the Biological and Chemical Oceanography Data Management Office (BCO-DMO) was created in late 2006. Currently, the main BCO-DMO objective is to ensure availability of data resulting from select OCE and Office of Polar Programs (OPP) research awards granted by the US NSF. An important requirement for the BCO-DMO data management system is that it provides open access to data that are supported by sufficient metadata to enable data discovery and accurate reuse. The office manages and serves all types of oceanographic data (in situ, experimental, model results) generated during the research process and contributed by the originating investigators from large national programs and medium-sized collaborative research projects, as well as researchers with single investigator awards. BCO-DMO staff members have made strategic use of standards and use of terms from controlled vocabularies while balancing the need to maintain flexible data ingest systems that accommodate the heterogeneous nature of ocean biogeochemistry and ecological research data. Many of the discrete ocean biogeochemistry data sets managed by BCO-DMO are still acquired manually, often with prototype sensor systems. Data sets such as these that are not "born-digital" present a significant management challenge. Use of multiple levels of term-mappings and development of an ontology has enabled BCO-DMO to incorporate a semantically enabled faceted search into the data access system that will improve data access through enhanced data discovery. BCO-DMO involves an ongoing collaboration between data managers and marine scientists funded by the US NSF. BCO-DMO staff members work with investigators throughout the data life cycle, beginning with the data management plan that is part of the original proposal, during cruise planning and experimental design, through data reporting to meet funding agency requirements and finally to submission of final data sets for publication and final archive in a permanent data center. It is important to note that support from and continued active involvement of the NSF program managers has been a significant contributor to the success of this developing system. URL: http://bco-dmo.org/
NASA Astrophysics Data System (ADS)
President Ronald Reagan plans to nominate William J. Merrell, Jr., to be assistant director of the National Science Foundation (NSF) for Astronomical, Atmospheric, Earth, and Ocean Sciences (AAEO), according to an announcement by NSF. The President also has announced his intention to nominate Craig C. Black and Charles L. Hosier to the National Science Board (NSB), NSF said. The president's nominations are subject to Senate confirmation.
ERIC Educational Resources Information Center
National Science Foundation, Arlington, VA.
The National Science Foundation (NSF) workshop on Optical Science and Engineering was organized to examine approaches NSF could use to identify opportunities in optical science, engineering, and education that meet both the mission of NSF and its broader national goals. The workshop participants identified opportunities where optical science and…
NASA Astrophysics Data System (ADS)
Ribaudo, Joseph; Koopmann, Rebecca A.; Haynes, Martha P.; Balonek, Thomas J.; Cannon, John M.; Coble, Kimberly A.; Craig, David W.; Denn, Grant R.; Durbala, Adriana; Finn, Rose; Hallenbeck, Gregory L.; Hoffman, G. Lyle; Lebron, Mayra E.; Miller, Brendan P.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Olowin, Ronald Paul; Pantoja, Carmen; Pisano, Daniel J.; Rosenberg, Jessica L.; Troischt, Parker; Venkatesan, Aparna; Wilcots, Eric M.; ALFALFA Team
2017-01-01
The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 20 institutions across the US and Puerto Rico, founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The objective of the UAT is to provide opportunities for its members to develop expertise in the technical aspects of observational radio spectroscopy, its associated data analysis, and the motivating science. Partnering with Arecibo Observatory, the UAT has worked with more than 280 undergraduates and 26 faculty to date, offering 8 workshops onsite at Arecibo (148 undergraduates), observing runs at Arecibo (69 undergraduates), remote observing runs on campus, undergraduate research projects based on Arecibo science (120 academic year and 185 summer projects), and presentation of results at national meetings such as the AAS (at AAS229: Ball et al., Collova et al., Davis et al., Miazzo et al., Ruvolo et al, Singer et al., Cannon et al., Craig et al., Koopmann et al., O'Donoghue et al.). 40% of the students and 45% of the faculty participants have been women and members of underrepresented groups. More than 90% of student alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women.In this presentation, we summarize the UAT program and the current research efforts of UAT members based on Arecibo science, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey (APPSS). This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, AST-121105, and AST-1637339.
NASA Astrophysics Data System (ADS)
Jones, B.; Patino, L. C.; Rom, E. L.; Adams, A.
2017-12-01
The geosciences continue to lag other science, technology, engineering, and mathematics (STEM) disciplines in the engagement, recruitment and retention of traditionally underrepresented and underserved groups, requiring more focused and strategic efforts to address this problem. Prior investments made by the National Science Foundation (NSF) related to broadening participation in STEM have identified many effective strategies and model programs for engaging, recruiting, and retaining underrepresented students in the geosciences. These investments also have documented clearly the importance of committed, knowledgeable, and persistent leadership for making local progress in this area. Achieving diversity at larger and systemic scales requires a network of diversity "champions" who can catalyze widespread adoption of these evidence-based best practices and resources. Although many members of the geoscience community are committed to the ideals of broadening participation, the skills and competencies to achieve success must be developed. The NSF GEO Opportunities for Leadership in Diversity (GOLD) program was implemented in 2016, as a funding opportunity utilizing the Ideas Lab mechanism. Ideas Labs are intensive workshops focused on finding innovative solutions to grand challenge problems. The ultimate aim of this Ideas Lab, organized by the NSF Directorate for Geosciences (GEO), was to facilitate the design, pilot implementation, and evaluation of innovative professional development curricula that can unleash the potential of geoscientists with interests in broadening participation to become impactful leaders within the community. The expectation is that mixing geoscientists with experts in broadening participation research, behavioral change, social psychology, institutional change management, leadership development research, and pedagogies for professional development will not only engender fresh thinking and innovative approaches for preparing and empowering geoscientists as change agents for increasing diversity, but will also produce experiments that contribute to the research base regarding leader and leadership development.
Mechanics governs single-cell signaling and multi-cell robustness in biofilm infections
NASA Astrophysics Data System (ADS)
Gordon, Vernita
In biofilms, bacteria and other microbes are embedded in extracellular polymers (EPS). Multiple types of EPS can be produced by a single bacterial strain - the reasons for this redundancy are not well-understood. Our work suggests that different polymers may confer distinct mechanical benefits. Our model organism is Pseudomonas aeruginosa, an opportunistic human pathogen that forms chronic biofilm infections associated with increased antibiotic resistance and evasion of the immune defense. Biofilms initiate when bacteria attach to a surface, sense the surface, and change their gene expression. Changes in gene expression are regulated by a chemical signal, cyclic-di-GMP. We find that one EPS material, called ``PEL,'' enhances surface sensing by increasing mechanical coupling of single bacteria to the surface. Measurements of bacterial motility suggest that PEL may increase frictional interactions between the surface and the bacteria. Consistent with this, we show that bacteria increase cyclic-di-GMP signaling in response to mechanical shear stress. Mechanosensing has long been known to be important to the function of cells in higher eukaryotes, but this is one of only a handful of studies showing that bacteria can sense and respond to mechanical forces. For the mature biofilm, the embedding polymer matrix can protect bacteria both chemically and mechanically. P. aeruginosa infections in the cystic fibrosis (CF) lung often last for decades, ample time for the infecting strain(s) to evolve. Production of another EPS material, alginate, is well-known to tend to increase over time in CF infections. Alginate chemically protects biofilms, but also makes them softer and weaker. Recently, it is being increasingly recognized that bacteria in chronic CF infections also evolve to increase PSL production. We use oscillatory bulk rheology to determine the unique contributions of EPS materials to biofilm mechanics. Unlike alginate, increased PSL stiffens biofilms. Increasing both PSL and alginate expression increases the energy cost to break the biofilm. We compare the elastic moduli of biofilms to estimated stresses exerted by phagocytotic immune cells, and infer that increased PSL could confer a mechanical fitness benefit. This work was supported by start-up funds from The University of Texas at Austin and a gift from ExxonMobile to VDG, and by Grants from the Human Frontiers Science Program (HFSP RGY0081/2012-GORDON) and the National Science Foundation (NSF 1337670).
NSF Commits to Supercomputers.
ERIC Educational Resources Information Center
Waldrop, M. Mitchell
1985-01-01
The National Science Foundation (NSF) has allocated at least $200 million over the next five years to support four new supercomputer centers. Issues and trends related to this NSF initiative are examined. (JN)
High Molecular Weight Polymers in the New Chemicals Program
There are three categories or types of High Molecular Weight (HMW, 10,000 daltons) polymers typically reviewed by the New Chemicals Program: Soluble, insoluble, and water absorbing. Each of the three types are treated differently.
Polymer Energy Rechargeable System Battery Being Developed
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2003-01-01
Long description. Illustrations of discotic liquid crystals, rod-coil polymers, lithium-ion conducting channel dilithium phthalocyanine (Li2Pc) from top and side, novel star polyethylene oxide structures, composite polyethylene oxide materials (showing polyethylene oxide + lithium salt, carbon atoms and oxygen atoms), homopolyrotaxanes, and diblock copolymers In fiscal year 2000, NASA established a program to develop the next generation, lithium-based, polymer electrolyte batteries for aerospace applications. The goal of this program, known as Polymer Energy Rechargeable Systems (PERS), is to develop a space-qualified, advanced battery system embodying polymer electrolyte and lithium-based electrode technologies and to establish world-class domestic manufacturing capabilities for advanced batteries with improved performance characteristics that address NASA s future aerospace battery requirements.
Localization Protection and Symmetry Breaking in One-dimensional Potts Chains
NASA Astrophysics Data System (ADS)
Friedman, Aaron; Vasseur, Romain; Potter, Andrew; Parameswaran, Siddharth
Recent work on the 3-state Potts and Z3 clock models has demonstrated that their ordered phases are connected by duality to a phase that hosts topologically protected parafermionic zero modes at the system's boundary. The analogy with Kitaev's example of the one-dimensional Majorana chain (similarly related by duality to the Ising model) suggests that such zero modes may also be stabilized in highly excited states by many-body localization (MBL). However, the Potts model has a non-Abelian S3 symmetry believed to be incompatible with MBL; hence any MBL state must spontaneously break this symmetry, either completely or into one of its abelian subgroups (Z2 or Z3), with the topological phase corresponding to broken Z3 symmetry. We therefore study the excited state phase structure of random three-state Potts and clock models in one dimension using exact diagonalization and real-space renormalization group techniques. We also investigate the interesting possibility of a direct excited-state transition between MBL phases that break either Z3 or Z2 symmetry, forbidden within Landau theory. NSF DGE-1321846 (AJF), NSF DMR-1455366 and President's Research Catalyst Award No. CA-15-327861 from the University of California Office of the President (SAP), LDRD Program of LBNL (RV), NSF PHY11-25915 at the KITP (AJF, RV, SAP).
Understanding Density Functional Theory (DFT) and Completing it in Practice
NASA Astrophysics Data System (ADS)
Bagayoko, Diola
2015-03-01
A brief review of the seminal article by Hohenberg and Kohn leads to two conditions that have to be met by electronic structure calculations in order for their results to represent the physics content of DFT. One of these conditions is often the verifiable attainment of the absolute minima of the occupied energies. Using the second Hohenberg Kohn theorem, we show that results of calculations that do not meet this condition, when it applies, do not necessarily represent DFT findings. We illustrate this fact with over 100 calculated band gaps that are much smaller than corresponding, measured ones; in contrast, we list calculations that strictly adhered to the aforementioned conditions and whose results are in excellent agreement with experiment. We describe two crucial steps in the latter calculations that add to or complete DFT in practice. Some implications of our findings for academia, industry, and program package developers will be discussed. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.
NASA Astrophysics Data System (ADS)
Roach, James; Sander, Leonard; Zochowski, Michal
Auto-associative memory is the ability to retrieve a pattern from a small fraction of the pattern and is an important function of neural networks. Within this context, memories that are stored within the synaptic strengths of networks act as dynamical attractors for network firing patterns. In networks with many encoded memories, some attractors will be stronger than others. This presents the problem of how networks switch between attractors depending on the situation. We suggest that regulation of neuronal spike-frequency adaptation (SFA) provides a universal mechanism for network-wide attractor selectivity. Here we demonstrate in a Hopfield type attractor network that neurons minimal SFA will reliably activate in the pattern corresponding to a local attractor and that a moderate increase in SFA leads to the network to converge to the strongest attractor state. Furthermore, we show that on long time scales SFA allows for temporal sequences of activation to emerge. Finally, using a model of cholinergic modulation within the cortex we argue that dynamic regulation of attractor preference by SFA could be critical for the role of acetylcholine in attention or for arousal states in general. This work was supported by: NSF Graduate Research Fellowship Program under Grant No. DGE 1256260 (JPR), NSF CMMI 1029388 (MRZ) and NSF PoLS 1058034 (MRZ & LMS).
Science beyond the Classroom: Hands-On Optics and the Boys and Girls Club
NASA Astrophysics Data System (ADS)
Dokter, Erin F.; Walker, C.; Peruta, C.; Ubach, C.; Sparks, R.; Pompea, S.
2006-12-01
In Summer and Fall 2006, the Hands-On Optics program of the National Optical Astronomy Observatory (NOAO) teamed up with two local Boys and Girls Clubs in the Tucson area to conduct informal education programs for elementary and middle school aged children. Hands-On Optics (HOO) is a collaborative program funded by NSF to create and sustain a unique, national, informal science education program to excite students about science by actively engaging them in optics activities. The program was designed especially to reach underserved students. In this talk, the successes and challenges of implementing these programs will be discussed, as well as the lessons learned in the process, which may be applied to other partnerships between EPO providers and informal learning venues.
NASA Astrophysics Data System (ADS)
Mukasa, S. B.; Stride Committee, U.
2007-12-01
The University of Michigan obtained funding from the NSF ADVANCE Program for 2001-2006 to devise and implement strategies to improve representation and climate for its tenure-track women faculty in the natural sciences departments and the College of Engineering. This project was launched with a campus-wide survey to pinpoint problem areas, followed by the appointment of a committee of senior faculty now known as "Science and Technology Recruiting to Improve Diversity and Excellence" or STRIDE to provide information and advice about practices that will maximize the likelihood that well-qualified female and minority candidates for faculty positions will be identified, and, if selected for offers, recruited, retained, and promoted. This presentation will review the lessons learned and progress made during the 5-year period of NSF funding which ended in December 2006. It will also cover the steps taken to institutionalize the UM ADVANCE Program with financial support from the Provost's Office for the next 5 years, and the challenges and opportunities presented by Michigan's Proposition 2 to ban Affirmative Action programs. In its present form, the UM ADVANCE Program now has the mandate to address issues concerning both gender and underrepresented minorities, and also to engage all academic departments in the University, not only those in the STEM fields. As a result, the acronym STRIDE has been changed to mean Strategies and Tactics for Recruiting to Improve Diversity and Excellence. A case will be made that the institutional transformations underway at UM allow greater administrative success, particularly for women and underrepresented minorities.
Wachira, Catherine; Ruger, Jennifer Prah
2011-06-01
The public health and development communities understand clearly the need to integrate anti-poverty efforts with HIV/AIDS programs. This article reports findings about the impact of the Poverty Reduction Strategy Paper (PRSP) process on Malawi's National HIV/AIDS Strategic Framework (NSF). In this article we ask, how does the PRSP process support NSF accountability, participation, access to information, funding, resource planning and allocation, monitoring, and evaluation? In 2007, we developed and conducted a survey of Malawian government ministries, United Nations agencies, members of the Country Coordination Mechanism, the Malawi National AIDS Commission (NAC), and NAC grantees (N = 125, 90% response rate), seeking survey respondents' retrospective perceptions of NSF resource levels, participation, inclusion, and governance before, during, and after Malawi's PRSP process (2000-2004). We also assessed principle health sector and economic indicators and budget allocations for HIV/AIDS. These indicators are part of a new conceptual framework called shared health governance (SHG), which seeks congruence among the values and goals of different groups and actors to reflect a common purpose. Under this framework, global health policy should encompass: (i) consensus among global, national, and sub-national actors on goals and measurable outcomes; (ii) mutual collective accountability; and (iii) enhancement of individual and group health agency. Indicators to assess these elements included: (i) goal alignment; (ii) adequate resource levels; (iii) agreement on key outcomes and indicators for evaluating those outcomes; (iv) meaningful inclusion and participation of groups and institutions; (v) special efforts to ensure participation of vulnerable groups; and (vi) effectiveness and efficiency measures. Results suggest that the PRSP process supported accountability for NSF resources. However, the process may have marginalized key stakeholders, potentially undercutting the implementation of HIV/AIDS Action Plans. Copyright © 2010. Published by Elsevier Ltd.
Bennett, George L.
2017-07-20
Groundwater quality in the North San Francisco Bay Shallow Aquifer study unit (NSF-SA) was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in Marin, Mendocino, Napa, Solano, and Sonoma Counties and included two physiographic study areas: the Valleys and Plains area and the surrounding Highlands area. The NSF-SA focused on groundwater resources used for domestic drinking water supply, which generally correspond to shallower parts of aquifer systems than that of groundwater resources used for public drinking water supply in the same area. The assessments characterized the quality of untreated groundwater, not the quality of drinking water.This study included three components: (1) a status assessment, which characterized the status of the quality of the groundwater resources used for domestic supply for 2012; (2) an understanding assessment, which evaluated the natural and human factors potentially affecting water quality in those resources; and (3) a comparison between the groundwater resources used for domestic supply and those used for public supply.The status assessment was based on data collected from 71 sites sampled by the U.S. Geological Survey for the GAMA Priority Basin Project in 2012. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and California State Water Resources Control Board Division of Drinking Water regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a grid-based method to estimate the proportion of the groundwater resources that has concentrations of water-quality constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale and permits comparisons to other GAMA Priority Basin Project study areas.In the NSF-SA study unit as a whole, inorganic constituents with human-health benchmarks were detected at high relative concentrations (RCs) in 27 percent of the shallow aquifer system, and inorganic constituents with secondary maximum contaminant levels (SMCL) were detected at high RCs in 24 percent of the system. The inorganic constituents detected at high RCs were arsenic, boron, fluoride, manganese, nitrate, iron, sulfate, and total dissolved solids (TDS). Organic constituents with human-health benchmarks were detected at high RCs in 1 percent of the shallow aquifer system. Of the 148 organic constituents analyzed, 30 constituents were detected, although only 1, chloroform, had a detection frequency greater than 10 percent.Natural and anthropogenic factors that could affect the groundwater quality were evaluated by using results from statistical testing of associations between constituent concentrations and values of potential explanatory factors. Groundwater age class (modern, mixed, or pre-modern), redox class (oxic or anoxic), aquifer lithology class (metamorphic, sedimentary, or volcanic), and dissolved oxygen concentrations were the explanatory factors that explained distribution patterns of most of the inorganic constituents best. Groundwater classified primarily as pre-modern or mixed in age was associated with higher concentrations of arsenic and fluoride than waters classified as modern. Anoxic or mixed redox conditions were associated with higher concentrations of boron, fluoride, and manganese. Similar patterns of association with explanatory variables were seen for inorganic constituents with aesthetic-based benchmarks detected at high concentrations. Nitrate and perchlorate had higher concentrations in oxic than in the anoxic redox class and were positively correlated with urban land use.The NSF-SA water-quality results were compared to those of the GAMA North San Francisco Bay Public-Supply Aquifer study unit (NSF-PA). The NSF-PA was sampled in 2004 and covers much of the same area as the NSF-SA, but focused on the deeper public-supply aquifer system. The comparison of the NSF-PA to the NSF-SA showed that there were more differences between the Valleys and Plains study areas of the two study units than between the Highlands study areas of the two study units. As expected from the shallower depth of wells, the NSF-SA Valleys and Plains study area had a lesser proportion of pre-modern age groundwater and greater proportion of modern age groundwater than the NSF-PA Valleys and Plains study area. In contrast, well depths and groundwater ages were not significantly different between the two Highlands study areas. Arsenic, manganese, and nitrate were present at high RCs, and perchlorate was detected in greater proportions of the NSF-SA Valleys and Plains study area than the NSF-PA Valleys and Plains study area.
NASA Astrophysics Data System (ADS)
Cotter, J. F.
2009-12-01
The goal of the UMM - REU program is to nurture the development of women in the geological sciences. Women are historically under-represented in the geological sciences. This program introduces undergraduate women to research project design and independent data collection and analysis designed to increase student’s scientific skills, introduce them to new fields of study, and to develop academic/professional confidence. In so doing, the program tries to encourage students to continue their education at the graduate level and/or to pursue a career in the Geosciences. The program was first proposed in 1988 and was run during the summers of 1989, '90, '91, '94, '95, '97, ’99, 2000, 05, 07, and 09 (in 1996 and 1998 a similar program was run at Gustavus Adolphus College). The focus of the program is field and laboratory research to determine the origin and history of glacial deposits in west-central Minnesota and the late Paleozoic Glacial deposits of the Parana Basin, Brazil. Much of the success of the program can be attributed to developing student “ownership” of their individual projects, their particular REU group, and the UMM-REU program overall. Research projects are selected and designed by the participants. Frequently considered are: research subject, location of field area and geologic techniques employed. Both project ownership and team building is encouraged by participant led weekly visits to field areas and frequent group discussions of research problems, successes and major gaffes. Additional team building activities include: 1) living in the same on-campus apartments and Brazilian B&B, 2) organized social activities, 3) international travel and working with Brazilian (women) students, 4) readings and discussions on "women in geology”, 5) shared strategies and concerns for career choices and; 6) participation in the "Friends of UMM-REU" conference (an "informal" presentation of results). Finally, an emphasis is placed on the utilization of the support network that has developed among the UMM-REU alumni. Participants read publications by past UMM-REU researchers, they are encouraged to contact alumni for information and advice, and alumni are invited back to mentor participants, provide insights and interact socially. UMM-REU reunions are held on a regular basis. The UMM-REU network is growing. Ninety-three women from 30 institutions have participated in the UMM-REU program. Participants have published four papers and 75 abstracts. Initial career trajectories are good. Of the 80 UMM-REU alumni that have (to date) received a bachelor degree: 29 went directly into careers in the sciences or teaching and 46 enrolled in graduate (9 have completed Ph.D.s). Over the long term results are also good. Of the 93 UMM-REU participants only 13 are not now pursuing degrees or working in careers in the sciences. Research for this study was funded by a grant from the N.S.F.-R.E.U. Program, including NSF-EAR 9820249 and NSF-EAR 0640575.
Waterman Award nominations sought
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-10-01
The U.S. National Science Foundation (NSF) is accepting nominations for the 2013 Alan T. Waterman Award. The award, established in 1975 to commemorate NSF's first director, is the foundation's highest honor for promising, early-career researchers. Nominees are accepted from all sources, from any field of science and engineering that NSF supports. In addition to receiving a medal, the award recipient will also receive a $1,000,000 grant over 5 years for scientific research or advanced study in any field of science or engineering supported by NSF. Completed nomination packages are due by 31 October. For more information, see http://www.nsf.gov/od/waterman/waterman.jsp.
NASA Astrophysics Data System (ADS)
President Ronald Reagan has announced his intention to nominate Richard S. Nicholson as assistant director of the National Science Foundation (NSF) for mathematical and physical sciences. Nicholson has been acting deputy director and staff director of NSF since 1983.A research chemist by training, Nicholson was an associate professor of chemistry at Michigan State University before joining NSF in 1970. He served in a number of capacities at NSF, including executive director of the National Science Board commission on precollege education in mathematics, science, and technology, deputy assistant director for the mathematical and physical sciences, and senior planning officer for mathematical and physical sciences. The nomination is subject to Senate confirmation.
Assessment of a Merged Research and Education Program in Pacific Latin America
NASA Astrophysics Data System (ADS)
Bluth, G. J.; Gierke, J. S.; Gross, E. L.; Kieckhafer, P. B.; Rose, W. I.
2006-12-01
The ultimate goal of integrating research with education is to encourage cross-disciplinary, creative, and critical thinking in problem solving and foster the ability to deal with uncertainty in analyzing problems and designing appropriate solutions. The National Science Foundation (NSF) is actively promoting these kinds of programs, in particular in conjunction with international collaboration. With NSF support, we are building a new educational system of applied research and engineering, using two existing programs at Michigan Tech: a Peace Corp/Master's International (PC/MI) program in Natural Hazards which features a 2-year field assignment, and an "Enterprise" program for undergraduates, which gives teams of geoengineering students the opportunity to work for three years in a business-like setting to solve real-world problems. This project involves 2 post-doctoral researchers, 3-5 Ph.D. and Master's, 5-10 PC/MI graduate students, and roughly 20 undergraduate students each year. The assessment of this project involves measurement of participant perceptions and motivations towards working in Pacific Latin America (Ecuador, El Salvador, Guatemala and Nicaragua), and tracking the changes as the participants complete academic and field aspects of this program. As the participants progress through their projects and Peace Corps assignments, we also get insights into the type of academic preparation best suited for international geoscience collaboration and it is not always a matter of technical knowledge. As a result, we are modifying existing courses in hazard communication, as well as developing a new course focusing on the geology of these regions taught through weekly contributions by an international team of researchers. Other efforts involve multi-university, web-based courses in critical technical topics such as volcano seismology, which because of their complex, cross-disciplinary nature are difficult to sustain from a single institution.
Polymer Energy Rechargeable System (PERS) Development Program
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Manzo, Michelle A.; Dalton, Penni J.; Marsh, Richard A.; Surampudi, Rao
2001-01-01
The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) have recently established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The overall objective of this development program, which is referred to as PERS, Polymer Energy Rechargeable System, is to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative will exploit both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases will focus on R&D activities to address the critical technical issues and challenges at the cell level.
Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H
2007-08-15
Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
Presented is a detailed study of National Science Foundation (NSF) programs in pre-college science education. The development of policies and operational procedures are traced over the past quarter century and their impact on management practice analyzed. The report is presented in two parts: Volume 1, the findings and recommendations, and Volume…
ERIC Educational Resources Information Center
Doyle, Lynn H.; Huinker, DeAnn
The Urban Systemic Initiatives (USI) program is an effort sponsored by the National Science Foundation (NSF) that targets large urban school systems with the goal of sustainable implementation of high-quality, standards-based teaching for the purpose of attaining system-wide increases in students' learning of challenging mathematics and science.…
Performance verification testing of the UltraStrip Systems, Inc., Mobile Emergency Filtration System (MEFS) was conducted under EPA's Environmental Technology Verification (ETV) Program at the EPA Test and Evaluation (T&E) Facility in Cincinnati, Ohio, during November, 2003, thr...
ERIC Educational Resources Information Center
Webb, Cathleen; Dahl, Darwin; Pesterfield, Lester; Lovell, Donielle; Zhang, Rui; Ballard, Sue; Kellie, Shawn
2013-01-01
In this NSF-supported project, two Anasazi FT-NMRs are being integrated simultaneously across the chemistry curriculum at Western Kentucky University (WKU) and Elizabethtown Community and Technical College (ECTC). The collaborative project adds to a new curriculum initiative by integrating NMR throughout the chemistry curriculum to enhance both…
ERIC Educational Resources Information Center
Gafney, Leo
2017-01-01
This report is based on several evaluations of NSF-funded geoscience projects at Stony Brook University on Long Island, NY. The report reviews the status of K-12 geoscience education, identifying challenges posed by the Next Generation Science Standards (NGSS), the experiences of university faculty engaged in teacher preparation, state…
ERIC Educational Resources Information Center
Ward, R. Bruce; Sienkiewicz, Frank; Sadler, Philip; Antonucci, Paul; Miller, Jaimie
2013-01-01
We describe activities created to help student participants in Project ITEAMS (Innovative Technology-Enabled Astronomy for Middle Schools) develop a deeper understanding of picture elements (pixels), image creation, and analysis of the recorded data. ITEAMS is an out-of-school time (OST) program funded by the National Science Foundation (NSF) with…
A generalized four-fifth law for compressible turbulence
NASA Astrophysics Data System (ADS)
Aluie, Hussein
2016-11-01
Kolmogorov's 4/5-th law is a celebrated exact result of incompressible turbulence, and is key to the formulation of his 1941 phenomenology. We will present its generalization to compressible turbulence. Partial support was provided by NSF Grant OCE-1259794, US Department of Energy (US DOE) Grant DE-SC0014318, and the LANL LDRD program through Project Number 20150568ER.
EdTrAc Teacher Education Program: First-Year Implementation Evaluation (2005-2006)
ERIC Educational Resources Information Center
Pittman, Brian; Shelton, Ellen
2006-01-01
The Educational Training Academy (EdTrAc) is an NSF-funded project of Normandale Community College to increase the number, diversity, and skills of students preparing to be elementary and middle school teachers with a specialty in math and science. Overall, this evaluation indicates that the EdTrAc implementation is on track after its first year…
ERIC Educational Resources Information Center
Lande, Micah; Adams, Robin; Chen, Helen; Currano, Becky; Leifer, Larry
2007-01-01
The Institute for Scholarship on Engineering Education (ISEE) program is one element of the NSF-sponsored Center for the Advancement of Engineering Education (CAEE). Its primary goal is to build a community of engineering education scholars who can think and work across disciplines with an ultimate aim of improving the engineering student…
Computing Across the Physics and Astrophysics Curriculum
NASA Astrophysics Data System (ADS)
DeGioia Eastwood, Kathy; James, M.; Dolle, E.
2012-01-01
Computational skills are essential in today's marketplace. Bachelors entering the STEM workforce report that their undergraduate education does not adequately prepare them to use scientific software and to write programs. Computation can also increase student learning; not only are the students actively engaged, but computational problems allow them to explore physical problems that are more realistic than the few that can be solved analytically. We have received a grant from the NSF CCLI Phase I program to integrate computing into our upper division curriculum. Our language of choice is Matlab; this language had already been chosen for our required sophomore course in Computational Physics because of its prevalence in industry. For two summers we have held faculty workshops to help our professors develop the needed expertise, and we are now in the implementation and evaluation stage. The end product will be a set of learning materials in the form of computational modules that we will make freely available. These modules will include the assignment, pedagogical goals, Matlab code, samples of student work, and instructor comments. At this meeting we present an overview of the project as well as modules written for a course in upper division stellar astrophysics. We acknowledge the support of the NSF through DUE-0837368.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozyr, Alex
This report presents methods, and analytical and quality control procedures for salinity, oxygen, nutrient, inorganic carbon, organic carbon, chlorofluorocarbon (CFC), and bomb carbon-14 system parameters performed during the A20_2003 and A22_2003 cruises, which took place between September 22 and November 13, 2003, aboard research vessel (R/V) Knorr under the auspices of the National Oceanic and Atmospheric Administration (NOAA) and National Science Foundation (NSF). The R/V Knorr departed Woods Hole, Massachusetts, on September 22 for the Repeat Section A20, and ended this line in Port of Spain, Trinidad, on October 20. The Repeat Section A22 started on October 23 in Portmore » of Spain, Trinidad, and finished on November 13, 2003, in Woods Hole, Massachusetts. The research conducted was one of a series of repeat hydrography sections jointly funded by NOAA and NSF as part of the Climate Variability Program (CLIVAR)/CO2/repeat hydrography/tracer program. Samples were taken from 36 depths at 88 stations on section A20 and 82 stations on section A22. The data presented in this report include the analyses of water samples for total inorganic carbon (TCO 2), total alkalinity (TALK), dissolved organic carbon (DOC), CFC, carbon-14, hydrographic, and other chemical measurements.« less
US-China Collaboration on Landslide Research and Student Training
NASA Astrophysics Data System (ADS)
Wang, G.
2016-12-01
Funded by a NSF International Research Experience for Students (IRES) project (OIA: 1460034) at the University of Houston (http://ires.nsm.uh.edu), the author brought eight U.S. students to China in the summer of 2016. The host university at the China side is the China University of Geoscience at Wuhan. The international collaborative project is designed to expose U.S. students to the international landslide research community at an early stage of their careers. The NSF IRES program will support minimum 18 U.S. students (two graduates and four undergraduates per year) to conduct advanced landslide research in the Three Gorges area in China during the summers (eight weeks) of 2016, 2017, and 2018. The 2016 summer program includes a one-week-long pre-training at the University of Houston, a two-week-long intensive Chinese language and cultural course at the main campus of the China University of Geosciences (Wuhan), a four-week-long landslide field investigation in the Three Gorges Reservoir area, and a one-week-long wrap-up at the University of Houston. This presentation will introduce the experiences and lessons that we learned from the first-year activities of the international collaborative project.
Cosmic Ray Acceleration from Multiple Galactic Wind Shocks
NASA Astrophysics Data System (ADS)
Cotter, Cory; Bustard, Chad; Zweibel, Ellen
2018-01-01
Cosmic rays still have an unknown origin. Many mechanisms have been suggested for their acceleration including quasars, pulsars, magnetars, supernovae, supernova remnants, and galactic termination shocks. The source of acceleration may be a mixture of these and a different mixture in different energy regimes. Using numerical simulations, we investigate multiple shocks in galactic winds as potential cosmic rays sources. By having shocks closer to the parent galaxy, more particles may diffuse back to the disk instead of being blown out in the wind, as found in Bustard, Zweibel, and Cotter (2017, ApJ) and also Merten, Bustard, Zweibel, and Tjus (to be submitted to ApJ). Specifically, this flux of cosmic rays could contribute to the unexplained "shin" region between the well-known "knee" and "ankle" of the cosmic ray spectrum. We would like to acknowledge support from the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.
Clinton Administration announces FY 2001 budget request
NASA Astrophysics Data System (ADS)
Showstack, Randy
Blessed with a strong US. economy the Clinton Administration on February 7 released a fiscal year 2001 federal budget request totaling a whopping $1,835 billion. Most of the funding request is slated for big ticket items including Social Security defense spending, Medicaid, Medicare, and paying down the federal debt. However, within the 19% of the budget that funds non-defense discretionary programs,science agencies receive fairly healthy increases.The National Science Foundation (NSF) budget request would increase NSF funding by 17.3% $675 million and bring the total budget request to $4.6 billion. This includes significant increases for several initiatives: biocomplexity in the environment, information technology research, nanoscale science and engineering, and 21st century workforce. Among the major Earth science projects are launching the Earthscope initiative which includes the US Array and San Andreas Fault Observatory at Depth (SAFOD) and the National Ecological Observatory Network (NEON).
Variable Stars as an Introduction to Computational Research
NASA Astrophysics Data System (ADS)
Cash, Jennifer; Walter, Donald K.
2017-01-01
As a part of larger effort to enhance the research activity at SC State and involve more undergraduates in research activities, we present our efforts to develop an introductory research experience where the goal is a balance of astrophysical understanding, general research skills, and programming skills which the students can carry into a wide variety of future research activities. We have found that variable stars are a very good topic for this sort of introductory experience due to a combination of factors including: accessibility of data, easily understandable physical processes, and a relatively straight forward data analysis process. We will present an outline of our research experiences to guide a student from the very initial stages of learning to final presentation of the student's work.“This work was supported in part by NSF PAARE award AST-1358913 and NSF HBCU-UP award HRD-1332449 to SCSU.”
Toxicity of pyrolysis gases from synthetic polymers
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Soriano, J. A.; Kosola, K. L.; Kourtides, D. A.; Parker, J. A.
1977-01-01
The screening test method was used to investigate toxicity in polyethylene, polystyrene, polymethyl methacrylate, polyaryl sulfone, polyether sulfone, polyphenyl sulfone, and polyphenylene sulfide. Changing from a rising temperature program to a fixed temperature program resulted on shorter times to animal responses. This effect was attributed in part to more rapid generation of toxicants. The toxicants from the sulfur containing polymers appeared to act more rapidly than the toxicants from the other polymers. It was not known whether this effect was due primarily to difference in concentration or in the nature of the toxicants. The carbon monoxide concentration found did not account for the results observed with the sulfur containing polymers. Polyphenyl sulfone appeared to exhibit the least toxicity among the sulfur containing polymers evaluated under these test conditions.
NASA Astrophysics Data System (ADS)
Moore, J.; Serreze, M. C.; Middleton, D.; Ramamurthy, M. K.; Yarmey, L.
2013-12-01
The NSF funds the Advanced Cooperative Arctic Data and Information System (ACADIS), url: (http://www.aoncadis.org/). It serves the growing and increasingly diverse data management needs of NSF's arctic research community. The ACADIS investigator team combines experienced data managers, curators and software engineers from the NSIDC, UCAR and NCAR. ACADIS fosters scientific synthesis and discovery by providing a secure long-term data archive to NSF investigators. The system provides discovery and access to arctic related data from this and other archives. This paper updates the technical components of ACADIS, the implementation of best practices, the value of ACADIS to the community and the major challenges facing this archive for the future in handling the diverse data coming from NSF Arctic investigators. ACADIS provides sustainable data management, data stewardship services and leadership for the NSF Arctic research community through open data sharing, adherence to best practices and standards, capitalizing on appropriate evolving technologies, community support and engagement. ACADIS leverages other pertinent projects, capitalizing on appropriate emerging technologies and participating in emerging cyberinfrastructure initiatives. The key elements of ACADIS user services to the NSF Arctic community include: data and metadata upload; support for datasets with special requirements; metadata and documentation generation; interoperability and initiatives with other archives; and science support to investigators and the community. Providing a self-service data publishing platform requiring minimal curation oversight while maintaining rich metadata for discovery, access and preservation is challenging. Implementing metadata standards are a first step towards consistent content. The ACADIS Gateway and ADE offer users choices for data discovery and access with the clear objective of increasing discovery and use of all Arctic data especially for analysis activities. Metadata is at the core of ACADIS activities, from capturing metadata at the point of data submission to ensuring interoperability , providing data citations, and supporting data discovery. ACADIS metadata efforts include: 1) Evolution of the ACADIS metadata profile to increase flexibility in search; 2) Documentation guidelines; and 3) Metadata standardization efforts. A major activity is now underway to ensure consistency in the metadata profile across all archived datasets. ACADIS is embarking on a critical activity to create Digital Object Identifiers (DOI) for all its holdings. The data services offered by ACADIS focus on meeting the needs of the data providers, providing dynamic search capabilities to peruse the ACADIS and related cyrospheric data repositories, efficient data download and some special services including dataset reformatting and visualization. The service is built around of the following key technical elements: The ACADIS Gateway housed at NCAR has been developed to support NSF Arctic data coming from AON and now broadly across PLR/ARC and related archives: The Arctic Data Explorer (ADE) developed at NSIDC is an integral service of ACADIS bringing the rich archive from NSIDC together with catalogs from ACADIS and international partners in Arctic research: and Rosetta and the Digital Object Identifier (DOI) generation scheme are tools available to the community to help publish and utilize datasets in integration and synthesis and publication.
NASA Technical Reports Server (NTRS)
Gall, Robert
2005-01-01
This document is the final report of the work of the Office of the Lead Scientist (OLS) of the U.S. Weather Research Program (USWRP) and for Coordination of the World Weather Research Program (WWRP). The proposal was for a continuation of the duties and responsibilities described in the proposal of 7 October, 1993 to NSF and NOAA associated with the USWRP Lead Scientist then referred to as the Chief Scientist. The activities of the Office of the Lead Scientist (OLS) ended on January 31, 2005 and this report describes the activities undertaken by the OLS from February 1, 2004 until January 3 1, 2005. The OLS activities were under the cosponsorship of the agencies that are members of the Interagency Working Group (IWG) of the US WRP currently: NOAA, NSF, NASA, and DOD. The scope of the work described includes activities that were necessary to develop, facilitate and implement the research objectives of the USWRP consistent with the overall program goals and specific agency objectives. It included liaison with and promotion of WMO/WWW activities that were consistent with and beneficial to the USWRP programs and objectives. Funds covered several broad categories of activity including meetings convened by the Lead Scientist, OLS travel, partial salary and benefits support, publications, hard-copy dissemination of reports and program announcements and the development and maintenance of the USWRP website. In addition to funding covered by this grant, NCAR program funds provided co-sponsorship of half the salary and benefits resources of the USWRP Lead Scientist (.25 FTE) and the WWRP Chairman/Liaison (.167 FTE). Also covered by the grant were partial salaries for the Science Coordinator for the hurricane portion of the program and partial salary for a THORPEX coordinator.
Controlling toughness and dynamics of polymer networks via mussel-inspired dynamical bonds
NASA Astrophysics Data System (ADS)
Filippidi, Emmanouela
For dry, thermoset, polymer systems increasing the degree of cross-linking increases the elastic modulus. However, it simultaneously compromises the elongation under tension, usually reducing the overall total energy dissipated before fracture (toughness). Dynamic reformable bonds and complex network topologies have been used to circumnavigate this issue with moderate success, mainly in hydrated network systems. Hydration, however, which swells these networks limits how far one could increase the modulus, while their chemistry prevents improvement of the mechanics upon drying. Employing the mussel byssus-inspired strategy of iron-catechol coordination bonds, we have synthesized and studied epoxy networks comprising covalently attached catechol moieties capable of forming additional iron-catechol complex cross-links that still function in dry conditions. In such a fashion, we create a high modulus, high elongation, high toughness material. The iron-catechol coordination bonds play multiple roles that enhance the mechanical performance of the system: at low strain and fast strain rates, they act like permanent cross-links with bonding strength similar to covalent bonds, but start disassociating at high elongation. They are also reformable, enabling material self-healing in a matter of minutes in the absence of load. Finally, the dissociative crosslink cleavage alters the local chain topology, creating length scales that unfold upon elongation. The elegance of this system lies on its general versatility. Both the polymer and metal ion can be used as control parameters to study the interplay of covalent and dynamical bonds as well as explore the limits of the design of elastomers with enhanced toughness. MRSEC of NSF Award No. DMR-1121053.
Earthquake Hazards Program Could Have New Leadership
NASA Astrophysics Data System (ADS)
Showstack, Randy
The interagency National Earthquake Hazards Reduction Program (NEHRP) in the United States will have new leadership and increased authorized funding, if bipartisan re-authorization legislation approved by the House of Representatives on 1 October becomes law. The bill, H. R. 2608, would elevate the National Institute of Standards and Technology as the lead agency for planning and coordinating NEHRP, replacing the Federal Emergency Management Agency in that role. The NEHRP, established by Congress in 1977, also includes the U.S. Geological Survey (USGS) and the National Science Foundation (NSF) as agency partners.
NASA Astrophysics Data System (ADS)
Ford, K. E. Saavik; Paglione, Timothy; Robbins, Dennis; Mac Low, Mordecai-Mark; Agueros, Marcel A.
2015-01-01
AstroCom NYC is an NSF-funded partnership between astronomers at The City University of New York (CUNY), The American Museum of Natural History (AMNH) and Columbia University, designed to increase recruitment and retention of underrepresented minorities in astronomy and astrophysics. I will discuss the major program elements, including: recruitment, student selection, a 'Methods of Scientific Research' (MSR) course, summer research experience and ongoing structured mentoring. I will also discuss how the programs are integrated into each institution and present progress updates from our first two years.
Multi-scale Multi-mechanism Toughening of Hydrogels
NASA Astrophysics Data System (ADS)
Zhao, Xuanhe
Hydrogels are widely used as scaffolds for tissue engineering, vehicles for drug delivery, actuators for optics and fluidics, and model extracellular matrices for biological studies. The scope of hydrogel applications, however, is often severely limited by their mechanical properties. Inspired by the mechanics and hierarchical structures of tough biological tissues, we propose that a general principle for the design of tough hydrogels is to implement two mechanisms for dissipating mechanical energy and maintaining high elasticity in hydrogels. A particularly promising strategy for the design is to integrate multiple pairs of mechanisms across multiple length scales into a hydrogel. We develop a multiscale theoretical framework to quantitatively guide the design of tough hydrogels. On the network level, we have developed micro-physical models to characterize the evolution of polymer networks under deformation. On the continuum level, we have implemented constitutive laws formulated from the network-level models into a coupled cohesive-zone and Mullins-effect model to quantitatively predict crack propagation and fracture toughness of hydrogels. Guided by the design principle and quantitative model, we will demonstrate a set of new hydrogels, based on diverse types of polymers, yet can achieve extremely high toughness superior to their natural counterparts such as cartilages. The work was supported by NSF(No. CMMI- 1253495) and ONR (No. N00014-14-1-0528).
NASA Astrophysics Data System (ADS)
He, Ruixuan; Ward, Daniel; Echeverri, Mauricio; Kyu, Thein
2015-03-01
Guided by ternary phase diagrams of polyethylene glycol diacrylate (PEGDA), succinonitrile plasticizer, and LiTFSI salt, completely amorphous solid-state transparent polymer electrolyte membranes (ss-PEM) were fabricated by UV irradiation in the isotropic melt state. Effects of PEGDA molecular weight (700 vs 6000 g/mol) on ss-PEM performance were investigated. These amorphous PEMs have superionic room temperature ionic conductivity of ~10-3 S/cm, whereby PEGDA6000-PEM outperforms its PEGDA700 counterpart, which may be ascribed to lower crosslinking density and greater segmental mobility. The longer chain between crosslinked points of PEGDA6000-PEM is responsible for greater extensibility of ~80% versus ~7% of PEGDA700-PEM. Besides, both PEMs exhibited thermal stability up to 120 °C and electrochemical stability versus Li+/Li up to 4.7V. LiFePO4/PEM/Li and Li4Ti5O12 /PEM/Li half-cells exhibited stable cyclic behavior up to 50 cycles tested with a capacity of ~140mAh/g, suggesting that LiFePO4/PEM/Li4Ti5O12 may be a promising full-cell for all solid-state lithium battery. We thank NSF-DMR 1161070 for providing funding of this project.
Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers
Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng
2015-01-01
Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349
Enhanced nitrogen removal with an onsite aerobic cyclic biological treatment unit.
Babcock, Roger W; Senthill, Atiim; Lamichhane, Krishna M; Agsalda, Jessica; Lindbo, Glen D
2015-01-01
Coastal Zone Act Reauthorization Amendments (CZARA, Section 6217) necessitate the requirement that onsite wastewater disposal units located near impaired surface waters or groundwater to provide at least 50% nitrogen removal. Approximately 38% of Hawaii households use onsite systems including septic tanks and cesspools that cannot meet this requirement. Upgrades to aerobic treatment units (ATUs) are a possible compliance solution. In Hawaii, ATUs must meet National Sanitation Foundation Standard 40 (NSF40) Class I effluent criteria. Previously, a multi-chamber, flow-through, combined attached/suspended growth type ATU (OESIS-750) and presently, a sequencing batch type ATU (CBT 0.8KF-210) were evaluated for NSF40 compliance, nutrient removal capability (NSF245), and adaptability for water reuse (NSF350). Both units easily achieved the NSF40 Class I effluent criteria. While the OESIS-750 achieved only 19% nitrogen removal, the CBT unit achieved 81% nitrogen removal, meeting the NSF245 criteria and CZARA requirements for applications in critical wastewater disposal areas. In addition, the CBT consistently produced effluent with turbidity less than 2 NTU (NSF350) and UVT254 greater than 70%, facilitating the production of unrestricted-use recycled water.
75 FR 6651 - DOE/NSF Nuclear Science Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Department of Energy.../NSF Nuclear Science Advisory Committee (NSAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86... on scientific priorities within the field of basic nuclear science research. Tentative Agenda: Agenda...
Polymer concrete overlay test program : users' manual.
DOT National Transportation Integrated Search
1977-12-01
The purpose of this manual is to provide the reader with sufficient information to successfully place a polyester styrene polymer concrete overlay on a bridge deck. Although the binder is a resin, no detailed knowledge of polymer chemistry is needed ...
Research Based Science Education: An Exemplary Program for Broader Impacts
NASA Astrophysics Data System (ADS)
Walker, C. E.; Pompea, S. M.
2016-12-01
Broader impacts are most effective when standing on the shoulders of successful programs. The Research Based Science Education (RBSE) program was such a successful program and played a major role in activating effective opportunities beyond the scope of its program. NSF funded the National Optical Astronomy Observatory (NOAO) to oversee the project from 1996-2008. RBSE provided primarily high school teachers with on-site astronomy research experiences and their students with astronomy research projects that their teachers could explain with confidence. The goal of most student research projects is to inspire and motivate students to go into STEM fields. The authors of the original NSF proposal felt that for students to do research in the classroom, a foundational research experience for teachers must first be provided. The key components of the program consisted of 16 teachers/year on average; a 15-week distance learning course covering astronomy content, research, mentoring and leadership skills; a subsequent 10-day summer workshop with half the time on Kitt Peak on research-class telescopes; results presented on the 9th day; research brought back to the classroom; more on-site observing opportunities for students and teachers; data placed on-line to reach a wider audience; opportunities to submit research articles to the project's refereed journal; and travel for teachers (and the 3 teachers they each mentored) to a professional meeting. In 2004, leveraging on the well-established RBSE program, the NOAO/NASA Spitzer Space Telescope Research began. Between 2005 and 2008, metrics included 32 teachers (mostly from RBSE), 10 scientists, 15 Spitzer Director Discretionary proposals, 31 AAS presentations and many Intel ISEF winners. Under new funding in 2009, the NASA/IPAC Teacher Archive Research Program was born with similar goals and thankfully still runs today. Broader impacts, lessons learned and ideas for future projects will be discussed in this presentation.
Dynamics of Hyperbranched Polymers under Confinement
NASA Astrophysics Data System (ADS)
Androulaki, Krystallenia; Chrissopoulou, Kiriaki; Anastasiadis, Spiros H.; Prevosto, Daniele; Labardi, Massimiliano
2015-03-01
The effect of severe confinement on the dynamics of three different generations of hyperbranched polyesters (Boltorns) is investigated by Dielectric Spectroscopy. The polymers are intercalated within the galleries of natural Na+-MMT, thus, forming 1nm polymer films confined between solid walls. The Tg's of the polymers determined by DSC show a clear dependence on the generation whereas the transition is completely suppressed when all the polymer chains are intercalated. The dynamic investigation of the bulk polymers reveals two sub-Tg processes, with similar behavior for the three polymers with the segmental relaxation observed above the Tg of each. For the nanocomposites, where all polymers are severely confined, the dynamics show significant differences compared to that of the bulk polymers. The sub-Tg processes are similar for the three generations but significantly faster and with weaker temperature dependence than those in the bulk. The segmental process appears at temperatures below the bulk polymer Tg, it exhibits an Arrhenius temperature dependence and shows differences for the three generations. A slow process that appears at higher temperatures is due to interfacial polarization. Co-financed by the EU and Greek funds through the Operational Program ``Education and Lifelong Learning'' of the NSRF-Research Funding Program: THALES-Investing in knowledge society through the Eur. Social Fund (MIS 377278) and COST Action MP0902-COINAPO.
Proceedings of the 25th Himalaya-Karakoram-Tibet Workshop
Leech, Mary L.; Klemperer, Simon L.; Mooney, Walter D.
2010-01-01
For a quarter of a century the Himalayan-Karakoram-Tibet (HKT) Workshop has provided scientists studying the India-Asia collision system a wonderful opportunity for workshop-style discussion with colleagues working in this region. In 2010, HKT returns to North America for the first time since 1996. The 25th international workshop is held from June 7 to10 at San Francisco State University, California. The international community was invited to contribute scientific papers to the workshop, on all aspects of geoscience research in the geographic area of the Tibetan Plateau and its bounding ranges and basins, from basic mapping to geochemical and isotopic analyses to large-scale geophysical imaging experiments. In recognition of the involvement of U.S. Geological Survey (USGS) scientists in a wide range of these activities, the USGS agreed to publish the extended abstracts of the numerous components of HKT-25 as an online Open-File Report, thereby ensuring the wide availability and distribution of these abstracts, particularly in the HKT countries from which many active workers are precluded by cost from attending international meetings. In addition to the workshop characterized by contributed presentations, participants were invited to attend a pre-meeting field trip from the Coast Ranges to the Sierra Nevada, to allow the international group to consider how the tectonic elements of the Pacific margin compare to those of the Himalayan belt. Following the workshop, the National Science Foundation (NSF) sponsored a workshop on the 'Future directions for NSF-sponsored geoscience research in the Himalaya/Tibet' intended to provide NSF Program Directors with a clear statement and vision of community goals for the future, including the scientific progress we can expect if NSF continues its support of projects in this geographic region, and to identify which key geoscience problems and processes are best addressed in the Himalaya and Tibet, what key datasets are needed, and how NSF can best support the evolving need for interdisciplinary investigations. This workshop also has clear societal relevance. Recent earthquakes have brought international attention to active tectonics and earthquake hazards in the HKT region. Prominent examples include the Mw 7.8 Kokoxili (Qinghai, China) earthquake of 2001, the Mw 7.6 Kashmir (Pakistan) earthquake of 2005, the Mw 7.9 Wenchuan (Sichuan, China) earthquake of 2008, and this year the Mw 6.9 Yushu (Qinghai, China) earthquake. Geological and geophysical field work conducted both before these earthquakes, as well as in response to them, has helped to define the active faults and regional tectonics in the HKT region. The research presented at this workshop provides the framework necessary for improved seismic hazard assessments in this region. The organizers gratefully acknowledge the support of NSF's Continental Dynamics Program and its Office of International Science and Engineering, through award EAR-0965796. We thank San Francisco State University's Sheldon Axler, Dean of the College of Science and Engineering, and Toby Garfield, Director of the Romberg Tiburon Center, for use of their conference facilities; and the Department of Geosciences, particularly Deb Shulman and Miriam Knof, for administrative support. The California Academy of Sciences generously hosted a reception for visiting delegates, and Brad Ritts (Chevron Exploration Technology Company), Todd Greene (California State University, Chico) and John Shervais (Utah State University) together co-led the pre-conference field trip. Technical editing of this volume was led by Roxanne Renedo (U.S. Geological Survey) with assistance from Margaret Milia (Stanford University). We are grateful to the U.S. Geological Survey (USGS) Earthquake Hazards Program and the USGS Menlo Park (California) Publishing Service Center for making this online report possible.
An Analysis of NSF Geosciences 2009 Research Experience for Undergraduate Site Programs
NASA Astrophysics Data System (ADS)
Sanchez, S. C.; Patino, L. C.; Rom, E. L.; Weiler, S. C.
2009-12-01
The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides undergraduate students the opportunity to conduct research at different institutions and in areas that may not be available in their home campuses. The Geosciences REU Sites foster research opportunities in areas closely aligned with undergraduate majors and facilitates discovery of the multidisciplinary nature of the Geosciences. The aim of this paper is to provide an overview of the Geosciences REU Site programs run in 2009. A survey requesting information on recruitment methods, student demographics, enrichment activities, and fields of research was sent to the Principal Investigators of each of the 50 active REU Sites; over 70% of the surveys were returned with the requested information. The internet is the most widely used mechanism to recruit participants, but the survey did not distinguish among different tools like websites, emails, social networks, etc. The admissions rate for REU Sites in Geosciences varies from less than 10% to 50%, with the majority of participants being rising seniors and juniors. A few Sites include rising sophomores. At least 40% of the participants come from non-PhD granting institutions. Among the participants, gender distribution is balanced, with a slightly larger number of female participants. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; more than 75% of the participants are Caucasian and Asian students. Furthermore, participants from minority-serving institutions constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic well activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings), networking and social activities. There are some clear similarities among REU Sites managed by the three divisions in the Directorate of Geosciences (e.g. recruitment tools, academic level of participants, and enrichment activities), but other aspects vary among the Sites managed by the different divisions (e.g. admissions rate, diversity, and distribution among research disciplines). The results from this survey will be used to examine strengths in the REU Sites in the Geosciences, opportunities that may be under utilized, and community needs to enhance this NSF wide program.
Administration's Proposed NSF Budget Includes a 5.5% Increase for Geosciences
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-04-01
The fiscal year (FY) 2014 proposed federal budget for the U.S. National Science Foundation (NSF) is $7.63 billion, 7.3% above the FY 2012 actual amount. NSF acting director Cora Marrett said the budget reflects the administration's recognition of NSF and the importance of funding basic research. "We are pleased about where we stand and hope that Congress will be just as pleased with the budget proposal and will help move things forward," she said during a meeting of the NSF Advisory Committee for Geosciences on 11 April. Budget comparisons are to FY 2012 because the 2013 appropriations were enacted at the end of March, less than 2 weeks before President Barack Obama sent the proposed budget to Congress.
1983-01-01
POLYMER FORMATION VIA NUCLEOPHILIC ADDITION TO ACETYLENES Carl L. Bumgardner Department of Chemistry North Carolina...State University Raleigh, North Carolina ABSTRACT Utilizing the ability of acetylenes to add nucleophiles, two new polymer - forming reactions were...examined. The first involved hydroquinone and 1, 4-diethynylbenzene, which, under base calatysis, gave a new semiconducting polymer having the
Solid Polymer Electrolyte (SPE) fuel cell technology program
NASA Technical Reports Server (NTRS)
1979-01-01
The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.