Science.gov

Sample records for nsls infared microspectroscopy

  1. NSLS 2009 Activity Report

    SciTech Connect

    Nasta K.; Mona R.

    2009-05-01

    2009 was an incredibly exciting year for light sources at Brookhaven. The National Synchrotron Light Source (NSLS) hosted more than 2,200 visiting researchers, who, along with the about 50 members of our scientific staff, produced a total of 957 publications - about 20 percent of which appeared in premier journals. Covering topics ranging from Alzheimer's disease detection to ethanol-powered fuel cells, a sampling of these findings can be found in this Activity Report. We've also seen the resurfacing of some of our long-time users hard work. I was very proud to hear that two of the three recipients of themore » 2009 Nobel Prize in Chemistry have ties to the NSLS. Venki Ramakrishnan, a former employee in Brookhaven's biology department and long-time user of the NSLS, now at Cambridge University, and Thomas A. Steitz of Yale University, also a long-time NSLS user, shared the prize with Ada E. Yonath of the Weizmann Institute of Science for their work on the structure and function of the ribosome. In the late 1990s, Ramakrishnan and Steitz used protein crystallography at the NSLS to gather atomic-level images of two ribosome subunits: 30S (Ramakrishnan) and 50S (Steitz). Both laureates solved the high-resolution structures for these subunits based on this data. After struggling with a rough budget for several years, we received excellent funding, and then some, this year. In addition to NSLS operations funding, we received $3 million in funds from the American Recovery and Reinvestment Act (ARRA). We used that additional money for two exciting projects: construction of a full-field x-ray microscope and acquisition of several advanced x-ray detectors. The x-ray microscope will be able to image objects with a targeted spatial resolution of 30 nanometers. This capability will be particularly important for new initiatives in energy research and will prepare our users for the projected 1-nanometer resolution benchmark at the National Synchrotron Light Source II (NSLS

  2. THE REVITALIZED NSLS VUV RING.

    SciTech Connect

    HULBERT,S.L.

    1999-10-13

    A status report on the revitalization of the NSLS VUV ring will be presented, concentrating on three areas: (1) the four infrared ports (U2A/B, U4IR, U10A/B, and U12IR), (2) conversion of out-of-date toroidal grating monochromators to spherical grating type (U4A, U7A, and U12A), and (3) new insertion device beamlines (U5UA and U13UB). All of these beamlines were designed (new ones) or upgraded (old ones) to serve a specific scientific need represented by the PRTs (both NSLS and non-NSLS based) involved. Therefore, an overview of the scientific programs served by these new beamlines will be given, as well as a summarymore » of the beamline optical designs and operating performance.« less

  3. The revitalized NSLS VUV ring

    SciTech Connect

    Hulbert, S.L.

    1999-10-13

    A status report on the revitalization of the NSLS VUV ring will be presented, concentrating on three areas: (1) the four infrared ports (U2A/B, U4IR, U10A/B, and U12IR), (2) conversion of out-of-date toroidal grating monochromators to spherical grating type (U4A, U7A, and U12A), and (3) new insertion device beamlines (U5UA and U13UB). All of these beamlines were designed (new ones) or upgraded (old ones) to serve a specific scientific need represented by the PRTs (both NSLS and non-NSLS based) involved. Therefore, an overview of the scientific programs served by these new beamlines will be given, as well as a summarymore » of the beamline optical designs and operating performance.« less

  4. Development of a Tender-Energy Microprobe for Geosciences at NSLS and NSLS-II

    SciTech Connect

    Northrup, Paul A.

    2014-08-30

    This funding is to develop a new Synchrotron user facility for microbeam X-ray absorption spectroscopy (XAS) and quantitative X-ray fluorescence (XRF) imaging, at the National Synchrotron Light Source (NSLS) and NSLS-II. It includes design, purchase of components, and construction of the microprobe endstation and controls. Initial development, commissioning, and application is ongoing at NSLS Beamline X15B, with planned transition in 2014-15 to the NSLS-II TES (Tender-Energy Spatially Resolved X-ray Absorption Spectroscopy) beamline. It is optimized for the “tender” energy range of 1-5 keV, reaching up to 8 keV. Thus it uniquely covers the K absorption edges of critical elements Mg,more » Al, Si, P, S, Cl, and Ca, and can reach up to Co. A stable, high-flux microbeam focus, user-tunable from ~50 to ~5 microns, has been achieved using two-stage achromatic focusing. Existing beamline optics collimate, monochromate, and macro-focus the X-ray beam to ~1 mm at a secondary source aperture (SSA). Beam from the SSA is then re-focused by a pair of mirrors in KB geometry to the microbeam scale. Size of the microbeam is tunable, at the expense of flux, by adjusting the size of the SSA as a virtual source. The new experimental endstation consists of 1) a sample chamber operable as a radiation enclosure with helium atmosphere to facilitate measurements in this energy range, 2) the KB microfocusing optics, 3) a sample-positioning stage for raster-scanning and positioning the sample, 4) X-ray fluorescence detectors, an existing Ge detector for low-signal sensitivity and a new Si detector for high count rates, 5) an optical camera for viewing samples and locating target locations, 6) beam intensity monitors and diagnostics, and 7) controls and data acquisition system. An important aspect of this project is the added capability for fast, on-the-fly scanning of the monochromator (energy), required for fast XAS and advanced XAS imaging. This instrument will be available for

  5. Proceedings: 1st Annual NSLS Day (November 21, 1968).

    ERIC Educational Resources Information Center

    North Suburban Library System, Morton Grove, IL.

    As a commemoration of the first anniversary of the North Suburban Library System (NSLS), a program on "The Public Library in a Changing Suburbia" was presented to the trustees and staff members of the NSLS libraries. This report includes a speech entitled "The Suburban Library in the Affluent Ghetto," presented by Kenneth R. Shaffer; reactions to…

  6. NSLS-II Preliminary Design Report

    SciTech Connect

    Dierker, S.

    2007-11-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configurationmore » to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the

  7. NSLS-II beamline scattered gas bremsstrahlung radiation shielding calculation

    SciTech Connect

    Popescu, Razvan; Xia, Zhenghua, E-mail: xiazhenghuacn@hotmail.com; Job, Panakkal

    2016-07-27

    National Synchrotron Light Source II (NSLS-II) is a new state-of-the-art 3rd generation synchrotron. The NSLS-II facility is shielded up to 3 GeV electron beam energy at 500 mA. When the gas bremsstrahlung (GB) from the storage ring is scattered by the beamline components in the first optical enclosure (FOE), the scattered radiation will pose additional radiation hazard (bypassing primary GB collimators and stops) and challenge the FOE shielding. The scattered GB radiation hazard can be mitigated by supplementary shielding or with an exclusion zone downstream of the FOE.

  8. Energy deposition and non-equilibrium infared radiation of energetic auroral electrons

    NASA Astrophysics Data System (ADS)

    Wu, Yadong; Gao, Bo; Zhu, Guangsheng; Li, Ziguang

    2016-07-01

    Infrared radiation caused by energetic auroral electrons plays an important role in the thermospheric hear budget, and may be seen as background by infrared surveillance sensors. The auroral electron deposition leads to the ionization, excitation, and dissociation of neutral species(N2,O2,and O), and initiates a series of chemical reaction in the upper atmosphere, finally causes the optical emission of infared excited emitters. In this study, the whole progress from the initial auroral electrons energy deposition to the final infrared emissions has been modeled, which including space plasma, atmospheric physical chemistry, and radiative transfer. The initial atmosphere parameters before auroral disturbing are given by MSIS00 model. The primary electron flux at the top of atmosphere is given by a statistical fitting with the sum of three distribution terms, a power law, a Maxwellian and a Guassian. A semi-emprical model is used in the calculation of energy depositon of single primary electron. The total integral ion pairs production rate is obtained after combining with the initial primary electron flux. The production rate and flux of secondary electrons are modeled with a continuous slow down approximation, using different excitation, ionization, dissociation cross sections of N2, O2, and O to electrons. The photochemical reactions with auroral disturbance is analysed, and its calculation model is established. A "three-step" calculation method is created to obtain number densities of eleven species in the hight between 90-160 km, which containing N2+, O2+, O+, O2+(a4Π), O+(2D), O+(2P), N2(A3Σ), N(2D), N(4S), NO+, and N+. Number densities of different vibraional levels of NO and NO+ are got with steady state assumption, considering 1-12 vibrational levels of NO and 1-14 vibrational levels of NO+. The infared emissions and the spectral lines of the two radiating bodies are calculated with a fuzzy model of spectral band.

  9. Capabilities and Limitations of Infrared Reflectance Microspectroscopy

    NASA Technical Reports Server (NTRS)

    Klima, R. L.; Pieters, C. M.

    2005-01-01

    Technological improvements in IR microspectroscopy have made it an increasingly appealing tool for planetary mineralogy. Microspectroscopy presents the prospect of examining small samples nondestructively and acquiring spectra that can be related to remote sensing observations. However, complications are introduced as a target beam size is reduced, and it is critical that limitations are understood. We present the results of a series of well constrained spectroscopic measurements, linking microspectroscopic data to traditionally collected reflectance spectra and petrologic information for the same rock.

  10. Reactive Robinson instability in the NSLS X-ray ring

    SciTech Connect

    Broome, W.A.; Wang, J.M.

    1996-01-22

    The theory of the reactive Robinson instability is formulated in terms of the terminal variables, its stopband structure is analysed, and the results are applied to the X-ray ring of the NSLS. The reactive Robinson instability for the case of multiple cavities in the storage ring is also studied.

  11. PHILOSOPHY FOR NSLS-II DESIGN WITH SUB-NANOMETER HORIZONTAL EMITTANCE.

    SciTech Connect

    OZAKI,S.; BENGTSSON, J.; KRAMER, S.L.

    2007-06-25

    NSLS-II at Brookhaven National Laboratory is a new third-generation storage ring light source, whose construction is on the verge of being approved by DOE. When completed, NSLS-II with its ability to provide users with a wide range of spectrum, ranging from IR to ultra-high brightness hard x-ray beams will replace the existing two (20+ years old) NSLS light sources. While presenting an overview of the NSLS-II accelerator system, this paper focuses on the strategy and development of a novel <1 nm emittance light source.

  12. DESIGN OF BEAM TRANSFER LINES FOR THE NSLS II

    SciTech Connect

    TSOUPAS,N.; ROSE, J.; PINAYEV, I.

    2007-06-25

    The NSLS-II light source which is a proposed facility to be built at Brookhaven National Laboratory utilizes two synchrotron accelerator rings: the booster and the Storage ring (SR). Designing the NSLS-11 injector we considered two options for the booster layout, where the rings either (a) share the same tunnel, but placed at different horizontal planes or (b) booster is located in a separate building. The booster which accepts beam from the linac, accelerates the electron beam to an energy of 3.0 GeV and the beam is extracted to the Booster to Storage Ring (BtS) transport line which transports the beammore » and injects it into the SR ring. The design procedure for each of the two options of the BtS line and other details about the optics and the magnetic elements of the line are presented in this paper.« less

  13. Design and Measurement of the NSLS II Quadrupole Prototypes

    SciTech Connect

    Rehak,M.; Jain, A. K.; Skaritka, J.

    2009-05-04

    The design and measurement of the NSLS-II ring quadrupoles prototypes are presented. These magnets are part of a larger prototype program described in [1]. Advances in software, hardware, and manufacturing have led to some new level of insight in the quest for the perfect magnet design. Three geometric features are used to minimize the first three allowed harmonics by way of optimization. Validations through measurement and confidence levels in calculations are established.

  14. First Results From The Wise Infared Excesses Around Degenerates (WIRED) Survey

    NASA Astrophysics Data System (ADS)

    Debes, John H.; Hoard, D. W.; Wachter, S.; Leisawitz, D. T.; Cohen, M.

    2011-01-01

    The WISE IR Excesses around Degenerates (WIRED) Survey is designed to find low mass companions and dusty disks around white dwarfs using NASA's Wide-field Infared Survey Explorer (WISE) mission. WISE has finished scanning the entire sky, and we have currently cross-correlated the SDSS DR7 white dwarf catalogue with 2MASS, UKIDSS, and WISE photometry to identify candidate excess sources. An overview of the survey is part of a companion presentation at this AAS meeting (Hoard et al.). We show the expected sensitivity level of the WIRED Survey to white dwarfs with dust and/or low mass companions, and present new candidate WISE detections. This work was supported in part by the NASA Postdoctoral Fellowship Program (J.D.), and is based on data from: WISE, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory (JPL), California Institute of Technology(Caltech), funded by NASA; the UKIRT Infrared Deep Sky Survey (UKIDSS); the Two Micron All Sky Survey (2MASS), a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (IPAC)/Caltech, funded by NASA and the NSF; and the Sloan Digital Sky Survey (SDSS). Funding for the SDSS and SDSS-II was provided by the Alfred P. Sloan Foundation, the Participating Institutions, the NSF, the U. S. Dept. of Energy, NASA, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. We used the SIMBAD database, operated at CDS, Strasbourg, France, and the NASA/IPAC Infrared Science Archive, operated by JPL, Caltech, under a contract with NASA.

  15. The Latest Status of NSLS-II Insertion Devices

    NASA Astrophysics Data System (ADS)

    Tanabe, Toshi; Kitegi, Charles; He, Ping; Musardo, Marco; Rank, Oleg Chubar James; Cappadoro, Peter; Fernandes, Huston; Harder, David; Corwin, Todd

    2014-03-01

    The National Synchrotron Light Source-II (NSLS-II) project is now in the final stage of construction. The Linac, the Booster synchrotron, and the Storage Ring magnets girder assemblies have been installed. The first damping wiggler has been delivered and its field characteristics are carefully measured. A Three Pole Wiggler (3PW) and Apple-II type elliptically polarizing undulators (EPUs) have been fabricated by the vendors. Two 3.0m long in-vacuum undulators (IVUs) and one 1.5m long IVU are almost complete and waiting for factory acceptance tests. One 3.0m long IVU for Inelastic X-ray Scattering beamline is in fabrication by a different vendor. Recently two 2.8m long IVUs for long straight sections (LSSs) have been added to the project for "future beamlines". In addition, two 1.5m long IVUs and one 2.8m long IVU for LSSs have been procured for Advanced Beamlines for Biological Investigations with X-rays (ABBIX) project funded by National Institure of Health (NIH). Further, two 3.5m long EPUs for LSSs are being designed for NSLS-II Experimental Tools (NEXT) -Major Item of Equipment (MIE) project. To succeed these conventional IVUs, PrFeB based cryo-permanent magnet undulator (CPMU) is considered as next generation device of hard X-ray sources. An In-Vacuum Magnetic Measurement System (IVMMS) for cold in-situ Hall probe mapping of CPMUs up to 1.5m in length has been developed. Summary of the current status of each project and future plans for the NSLS-II ring will be discussed.

  16. DESIGN OF VISIBLE DIAGNOSTIC BEAMLINE FOR NSLS2 STORAGE RING

    SciTech Connect

    Cheng, W.; Fernandes, H.; Hseuh, H.

    2011-03-28

    A visible synchrotron light monitor (SLM) beam line has been designed at the NSLS2 storage ring, using the bending magnet radiation. A retractable thin absorber will be placed in front of the first mirror to block the central x-rays. The first mirror will reflect the visible light through a vacuum window. The light is guided by three 6-inch diameter mirrors into the experiment hutch. In this paper, we will describe design work on various optical components in the beamline. The ultra high brightness NSLS-II storage ring is under construction at Brookhaven National Laboratory. It will have 3GeV, 500mA electron beammore » circulating in the 792m ring, with very low emittance (0.9nm.rad horizontal and 8pm.rad vertical). The ring is composed of 30 DBA cells with 15 fold symmetry. Three damping wigglers will be installed in long straight sections 8, 18 and 28 to lower the emittance. While electrons pass through the bending magnet, synchrotron radiation will be generated covering a wide spectrum. There are other insertion devices in the storage ring which will generate shorter wavelength radiation as well. Synchrotron radiation has been widely used as diagnostic tool to measure the transverse and longitudinal profile. Three synchrotron light beam lines dedicated for diagnostics are under design and construction for the NSLS-II storage ring: two x-ray beam lines (pinhole and CRL) with the source points from Cell 22 BM{_}A (first bending in the DBA cell) and Cell22 three-pole wiggler; the third beam line is using visible part of radiation from Cell 30 BM{_}B (second bending magnet from the cell). Our paper focuses on the design of the visible beam line - SLM.« less

  17. ADVANCES IN X-RAY COMPUTED MICROTOMOGRAPHY AT THE NSLS.

    SciTech Connect

    DOWD,B.A.

    1998-08-07

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the ''gridding'' algorithm first developed formore » use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.« less

  18. Advances in x-ray computed microtomography at the NSLS

    SciTech Connect

    Dowd, B.A.; Andrews, A.B.; Marr, R.B.

    1998-08-01

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the gridding algorithm first developed formore » use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel{sup 2} slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method.« less

  19. NSLS 2005 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2005).

    SciTech Connect

    MILLER, L.

    2006-05-01

    In 2005, the NSLS proved itself, once again, to be a center of scientific excellence. This remarkable facility, commissioned in the early 1980s, is still attracting some of the world's best researchers in almost every scientific field, who produce more than seven hundred scientific papers every year using the NSLS. The 'Science Highlights' and 'Feature Highlights' sections of this report are just a small sampling of the many, many impressive research projects conducted at the NSLS in 2005. For example, a user group synthesized and studied zinc-oxide nanowires, which have applications in many optical and electrical devices. Another user groupmore » studied how strontium and uranium are removed from high-level radioactive waste. And in another interesting study, users deciphered the basis for antibiotic resistance. However, as always, the success of these projects depends on the performance of the facility. Again this year, the rings were in top form--reliability was 96 percent for the x-ray ring and 99 percent for the VUV-IR ring. Additionally, to keep the NSLS as productive as possible and to continue to attract users, many beamline upgrade projects were completed this year. One of the highlights of these upgrades is the new mini-gap undulator installed at beamline X25. This insertion device is providing a much brighter x-ray source for the program at X25. In the always important area of safety, several noteworthy activities took place this year. In particular, NSLS staff made a major commitment to labeling and inspecting electrical equipment. And perhaps the best news is what didn't happen--there were no reportable occurrences related to environmental, safety, or health issues in 2005, and no injuries that resulted in restricted or lost time. We all owe thanks to the dedicated NSLS staff and users who have ensured that the NSLS remains a reliable, safe, up-to-date research facility. As 2005 came to an end, I stepped down as NSLS Chairman in order to focus my

  20. Theory of infrared microspectroscopy for intact fibers.

    PubMed

    Davis, Brynmor J; Carney, P Scott; Bhargava, Rohit

    2011-01-15

    Infrared microspectroscopy is widely used for the chemical analysis of small samples. In particular, spectral properties of small cylindrical samples are important in forensic analysis, understanding relationships between microstructure and mechanical properties in fibers or fiber composites, and development of cosmetics and drugs for hair. The diameters of the constituent cylinders are typically of the order of the central wavelength of light used to probe the sample. Hence, structure and material spectral response are coupled and recorded spectra are usually distorted to the extent of becoming useless for molecular identification. In this paper, we apply rigorous optical theory to predict the spectral distortions observed in IR microspectroscopic data of fibers. The theory is used, first, to compute the changes that are observed for cylinders of various dimensions under different instrument configurations when compared to the bulk spectrum from the same material. We provide a method to recover intrinsic material spectral response from fibers by correcting for distortion introduced by the cylindrical structure. The theory reported here should enable the routine use of IR microspectroscopy and imaging for the molecular analysis of cylindrical domains in complex materials.

  1. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  2. Reveal protein molecular structural-chemical differences between two types of winterfat (forage) seeds with physiological differences in low temperature tolerance using synchrotron-based Fourier transform infrared microspectroscopy.

    PubMed

    Yu, P; Wang, R; Bai, Y

    2005-11-30

    Winterfat (Krascheninnikovia lanata) (forage seed) is a long-lived native shrub with superior forage quality for livestock and wildlife. The objectives of this study were to use advanced synchrotron technology [S-Fourier transform infrared microspectroscopy (FTIR)] as a novel approach to reveal protein molecular structural-chemical differences in terms of protein secondary structures between the two types of winterfat (forage) seeds, which show physiological differences in low-temperature tolerances. This experiment was performed at beamline U10B at the National Synchrotron Light Source (NSLS) in Brookhaven National Laboratory (BNL), U.S. Department of Energy (NSLS-BNL, New York). The results showed that with the synchrotron analytical technique (S-FTIR), the molecular structural-chemical makeup and characteristics of the winterfat seed tissues could be imaged and revealed. The protein secondary structures differed between the large and the small seed tissues. By using the multicomponent peaks modeling method, the results show that the large seeds contained no significant differences (P > 0.05) in percentage of beta-sheet (average 37.0%) and alpha-helix (average 24.1%). However, the large seeds contained a lower (P < 0.05) percentage of beta-turns (18.1 vs 20.1%) and a lower (P < 0.05) ratio of beta-turns to alpha-helices (0.8 vs 0.9) and beta-turns to beta-sheets (0.5 vs 0.6). Our results demonstrate the potential of highly spatially resolved synchrotron-based FTIR microspectroscopy to reveal differences of structural molecular chemistry and protein secondary structures, which are associated with seed size variation and may affect germination behaviors.

  3. Analysis of human hair by Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Plascencia-Castro, A. S.; Cordova-Fraga, T.; Piña-Ruiz, A. L.; Hernández-Rayas, A.; Bernal, J. J.

    2017-04-01

    Raman microspectroscopy is an optical compound identification technique, which is widely used nowadays for different field applications. A crucial part of this technique is the focus given to the sample in the microscope because it depends on which part of the sample it will analyze. In this work, the effects of irradiating a natural hair samples, obtained from women aged 18 to 55, with a monochromatic light of the Raman spectrometer in two different focus is presented. Two different spectra were obtained with a peak in common. Depending on the information wanted, how the sample is focused plays a crucial role, either way the spectra is information-rich and may be used for biomedical applications.

  4. Molecular imaging with CARS micro-spectroscopy.

    PubMed

    Cicerone, Marcus

    2016-08-01

    After more than a decade of instrument and method development, broadband coherent anti-Stokes Raman scattering (CARS) micro-spectroscopy is beginning to live up to its potential as a label-free imaging modality that can rapidly generate high resolution images with full vibrational spectra at each image pixel. Presently these instruments are able to obtain quantitative, spatially resolved information on lipids from the CH stretch region of the Raman spectrum, and some instrument designs facilitate acquisition of high quality fingerprint spectra, containing information on a host of molecular species including structural proteins, nucleotides, and metabolites. While most of the existing instruments are research projects themselves, it appears that the relevant technologies are maturing so that commercially available instruments may not be too far in the future, making this remarkable imaging modality widely available. Published by Elsevier Ltd.

  5. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    SciTech Connect

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materialsmore » Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new

  6. NSLS 2006 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2006)

    SciTech Connect

    MILLER, L.

    2006-12-31

    This past year has seen both challenges and fantastic new opportunities for the user community at the NSLS. The fantastic new opportunities are clear and abundant. We now have a five-year strategic plan for new development and continued operation of the NSLS. The NSLS continues to be an extremely productive facility, and the UEC is delighted at how NSLS Chair Chi-Chang Kao has consulted widely within the user community to develop a five-year plan for strategic upgrades and continued operation of the facility. The NSLS-II project, led by Associate Lab Director Steve Dierker, has done very well in its Departmentmore » of Energy (DOE) reviews and will hopefully soon receive Critical Decision-1 (CD-1) approval, which in DOE lingo gives a go-ahead to launch the detailed design of the facility. We also held the first joint user meeting between the NSLS and Brookhaven's Center for Functional Nanomaterials (CFN), for which the building is near completion. The joint user meeting is an important step toward the close collaboration of the two facilities. The CFN, led by Emilio Mendez, promises to provide capabilities and research foci that are complementary to those at the NSLS. Together, all of these developments give a clear path to an exciting future of synchrotron radiation research at Brookhaven! However, with opportunities come challenges! One of the largest of these faced in the past year involved congressional support for scientific research in general, and DOE user facilities in particular. As you likely know, Congress did not complete its usual budget process in 2006, with the exceptions of the departments of Defense and Homeland Security. This left science funding at the budget levels enacted in late 2005 for FY2006, and unfortunately, FY2006 was not a particularly memorable vintage for science support. The good news is that you, the user community, have spoken up with unprecedented vigor about this, and Congress appears to be listening. As we look at the FY2007

  7. Polarized Raman microspectroscopy on intact human hair.

    PubMed

    Ackermann, Katrin R; Koster, Joachim; Schlücker, Sebastian

    2008-10-01

    Polarization-resolved Raman microspectroscopy with near-infrared laser excitation was applied to intact human hair in order to non-invasively investigate the conformation and orientation of the polypeptide chains. By varying the orientation of the hair shaft relative to the polarization directions of the laser/analyzer, a set of four polarized Raman spectra is obtained; this allows to simultaneously determine both the secondary structure of hair proteins and the orientation of the polypeptide strands relative to the axis of the hair shaft. For the amide I band, results from a quantitative analysis of the polarized Raman spectra are compared with theoretically expected values for fibers with uniaxial symmetry. Based on the polarization behavior of the amide I band and further vibrational bands, a partial ordering of alpha-helical polypeptide strands parallel to the hair shaft can be concluded. We suggest that this microspectroscopic approach may be used for human hair diagnostics by detecting structural or orientational alterations of keratins.

  8. Raman microspectroscopy for visualization of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Harada, Yoshinori; Koizumi, Noriaki; Takamatsu, Tetsuro

    2013-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery is essential for improving quality of life of patients. To preserve peripheral nerves, detection of ne peripheral nerves that cannot be identi ed by human eye or under white light imaging is necessary. In this study, we sought to provide a proof-of-principle demonstration of a label-free detection technique of peripheral nerve tissues against adjacent tissues that employs spontaneous Raman microspectroscopy. A line-illumination confocal Raman microscope was used for the experiment. A laser operating at the wavelength of 532 nm was used as an excitation laser light. We obtained Raman spectra of peripheral nerve, brous connective tissue, skeletal muscle, blood vessel, and adipose tissue of Wistar rats, and extracted speci c spectral features of peripheral nerves and adjacent tissues. By applying multivariate image analysis, peripheral nerves were clearly detected against adjacent tissues without any preprocessing neither xation nor staining. These results suggest the potential of the Raman spectroscopic observation for noninvasive and label-free nerve detection, and we expect this method could be a key technique for nerve-sparing surgery.

  9. The Capability of Raman Microspectroscopy to Differentiate Printing Inks.

    PubMed

    Johnson, Chelsea E; Martin, Paul; Roberts, Katherine A; Trejos, Tatiana; Corzo, Ruthmara; Almirall, Jose R; Safer, Alan M

    2018-01-01

    This study applies Raman microspectroscopy to differentiate the chemical components in printing inks of different brands, colors, and type using the 532 nm and 785 nm excitation wavelengths. Spectra were collected from 319 inks (78 inkjet, 76 toner, 79 offset, and 86 intaglio) representing various colors. Comparisons were performed to calculate discrimination capability percentages for each ink type. Overall, Raman microspectroscopy differentiates according to the following hierarchy: intaglio (96%), inkjet (92%), offset (90%), and toner (61%). The ability of Raman microspectroscopy to differentiate between same-colored inks from different brands was dependent on the color and ink analyzed. Based on ink color, the discrimination capability ranged from 75 to 94% (inkjet), 0 to 86% (toner), and 0 to 77% (offset). Copper phthalocyanine was detected in cyan inks and various intaglio inks, while carbon black was identified in black inkjet, offset, and intaglio inks. © 2017 American Academy of Forensic Sciences.

  10. Development of the XFP beamline for x-ray footprinting at NSLS-II

    SciTech Connect

    Bohon, Jen, E-mail: jbohon@bnl.gov; Sullivan, Michael; Abel, Don

    2016-07-27

    For over a decade, synchrotron-based footprinting studies at the NSLS X28C beamline have provided unique insights and approaches for examining the solution-state structures of large macromolecular assemblies, membrane proteins, and soluble proteins, for time-resolved studies of macromolecular dynamics, and most recently for in vivo studies of RNA-protein complexes. The transition from NSLS to NSLS-II has provided the opportunity to create an upgraded facility for the study of increasingly complex systems; progress on the development of the XFP (X-ray Footprinting for In Vitro and In Vivo Structural Studies of Biological Macromolecules) beamline at NSLS-II is presented here. The XFP beamline willmore » utilize a focused 3-pole wiggler source to deliver a high flux density x-ray beam, where dynamics can be studied on the microsecond to millisecond timescales appropriate for probing biological macromolecules while minimizing sample perturbation. The beamline optics and diagnostics enable adaptation of the beam size and shape to accommodate a variety of sample morphologies with accurate measurement of the incident beam, and the upgrades in sample handling and environment control will allow study of highly sensitive or unstable samples. The XFP beamline is expected to enhance relevant flux densities more than an order of magnitude from that previously available at X28C, allowing static and time-resolved structural analysis of highly complex samples that have previously pushed the boundaries of x-ray footprinting technology. XFP, located at NSLS-II 17-BM, is anticipated to become available for users in 2016.« less

  11. NSLS-II: Nonlinear Model Calibration for Synchrotrons

    SciTech Connect

    Bengtsson, J.

    2010-10-08

    This tech note is essentially a summary of a lecture we delivered to the Acc. Phys. Journal Club Apr, 2010. However, since the estimated accuracy of these methods has been naive and misleading in the field of particle accelerators, i.e., ignores the impact of noise, we will elaborate on this in some detail. A prerequisite for a calibration of the nonlinear Hamiltonian is that the quadratic part has been understood, i.e., that the linear optics for the real accelerator has been calibrated. For synchrotron light source operations, this problem has been solved by the interactive LOCO technique/tool (Linear Optics frommore » Closed Orbits). Before that, in the context of hadron accelerators, it has been done by signal processing of turn-by-turn BPM data. We have outlined how to make a basic calibration of the nonlinear model for synchrotrons. In particular, we have shown how this was done for LEAR, CERN (antiprotons) in the mid-80s. Specifically, our accuracy for frequency estimation was {approx} 1 x 10{sup -5} for 1024 turns (to calibrate the linear optics) and {approx} 1 x 10{sup -4} for 256 turns for tune footprint and betatron spectrum. For a comparison, the estimated tune footprint for stable beam for NSLS-II is {approx}0.1. Since the transverse damping time is {approx}20 msec, i.e., {approx}4,000 turns. There is no fundamental difference for: antiprotons, protons, and electrons in this case. Because the estimated accuracy for these methods in the field of particle accelerators has been naive, i.e., ignoring the impact of noise, we have also derived explicit formula, from first principles, for a quantitative statement. For e.g. N = 256 and 5% noise we obtain {delta}{nu} {approx} 1 x 10{sup -5}. A comparison with the state-of-the-arts in e.g. telecomm and electrical engineering since the 60s is quite revealing. For example, Kalman filter (1960), crucial for the: Ranger, Mariner, and Apollo (including the Lunar Module) missions during the 60s. Or Claude Shannon et

  12. Optical design and simulation of a new coherence beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Williams, Garth J.; Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Robinson, Ian K.

    2017-08-01

    We will discuss the optical design for a proposed beamline at NSLS-II, a late-third generation storage ring source, designed to exploit the spatial coherence of the X-rays to extract high-resolution spatial information from ordered and disordered materials through Coherent Diffractive Imaging, executed in the Bragg- and forward-scattering geometries. This technique offers a powerful tool to image sub-10 nm spatial features and, within ordered materials, sub-Angstrom mapping of deformation fields. Driven by the opportunity to apply CDI to a wide range of samples, with sizes ranging from sub-micron to tens-of-microns, two optical designs have been proposed and simulated under a wide variety of optical configurations using the software package Synchrotron Radiation Workshop. The designs, their goals, and the results of the simulation, including NSLS-II ring and undulator source parameters, of the beamline performance as a function of its variable optical components is described.

  13. Experimental evidence of ion-induced instabilities in the NSLS-II storage ring

    SciTech Connect

    Cheng, Weixing; Li, Yongjun; Podobedov, Boris

    2017-03-12

    Fast ion instability has been identified as one of the most prominent instabilities in the recently constructed NSLS-II storage ring at Brookhaven National Laboratory. At a relatively low beam current (~ 25 mA) multi-bunch fills, ion-induced instabilities have already been observed during the early stages of machine commissioning. At present user operation with 250 mA in ~1000 bunches, the fast ion still remains the dominant instability, even after months of vacuum conditioning at high current. Ion-induced dipole motions of the electron beam have been suppressed using the transverse bunch-by-bunch (BxB) feedback system. However other adverse effects of this instability, suchmore » as the vertical beam size increase along the bunch train cannot be cured by the feedback system. Therefore, to achieve the NSLS-II design current of 500 mA while maintaining a small vertical beam emittance, it is important to further understand the fast ion instability and develop mitigation techniques. This paper reports on a series of ion-instability observations at various fill patterns and beam currents using start-of-art NSLS-II diagnostic tools.« less

  14. Brillouin microspectroscopy assessment of tissue differentiation during embryonic development

    NASA Astrophysics Data System (ADS)

    Troyanova-Wood, Maria; Meng, Zhaokai; Silverberg, Hannah; Yakovlev, Vladislav V.

    2017-02-01

    Changes in mechanical properties represent one of the driving factors behind cell differentiation during embryonic development. However, measuring these changes without disrupting the normal progression of morphogenesis or destroying the developing organism is not trivial. Brillouin microspectroscopy has been shown to be capable of nocontact, non-destructive and non-disruptive assessment of elastic properties in developing zebrafish embryos. The present study builds upon the previous work, and observes the changes in elasticity during the development of heart and brain in zebrafish embryos from 8 to 28 hpf (hours post-fertilization) at regular intervals. Brillouin microspectroscopy has proved to be a suitable technique to continuously monitor tissue differentiation and the development of individual organs with high spatial resolution without harming the developing organism.

  15. Probing axial orientation of collagen fibers with Brillouin microspectroscopy

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Yakovlev, Vladislav V.

    2015-03-01

    Collagen is an important structural component in many biological tissues including bone, teeth, skin, and vascular endothelial layer. Its fibrillar arrangement can produce tissues with distinct anisotropies and is responsible for its unique elastic properties. However, current methods of retrieving orientation of those fibers show low sensitivity to the out-of-plane orientations. In this report, we employed Brillouin microspectroscopy to probe the local sound velocity, which, in its turn, is found to have a strong correlation to the local fibrillar arrangements.

  16. IR microspectroscopy: potential applications in cervical cancer screening.

    PubMed

    Walsh, Michael J; German, Matthew J; Singh, Maneesh; Pollock, Hubert M; Hammiche, Azzedine; Kyrgiou, Maria; Stringfellow, Helen F; Paraskevaidis, Evangelos; Martin-Hirsch, Pierre L; Martin, Francis L

    2007-02-08

    Screening exfoliative cytology for early dysplastic cells reduces incidence and mortality from squamous carcinoma of the cervix. In the developed world, screening programmes have adopted a 3-5 years recall system. In its absence, cervical cancer would be the second most common female cancer in these regions; instead, it is currently eleventh. However, there exist a number of limitations to the smear test even given the removal of contaminants using liquid-based cytology. It is prohibitively expensive, labour-intensive and subject to inaccuracies that give rise to significant numbers of false negatives. There remains a need for novel approaches to allow efficient and objective interrogation of exfoliative cytology. Methods that variously exploit infrared (IR) microspectroscopy are one possibility. Using IR microspectroscopy, an integrated 'biochemical-cell fingerprint' of the lipid, protein and carbohydrate composition of a biomolecular entity may be derived in the form of a spectrum via vibrational transitions of individual chemical bonds. Powerful statistical approaches (e.g. principal component analysis) now facilitate the interrogation of large amounts of spectroscopic data to allow the extraction of what may be small but extremely significant biomarker differences between disease-free and pre-malignant or malignant samples. An increasing wealth of literature points to the ability of IR microspectroscopy to allow the segregation of cells based on their disease status. We review the current evidence supporting its diagnostic potential in cancer biology.

  17. Operation of a small-gap undulator on the NSLS X-ray Ring

    SciTech Connect

    Stefan, P.M.; Krinsky, S.; Rakowsky, G.

    1995-02-01

    The authors report results of an on-going experiment being carried out in the X13 straight section of the NSLS X-ray Ring which explores the limits of the operation of small-gap undulators. In particular, they discuss the operation of a 16 mm period small-gap undulator. At an electron beam current of 300 mA the variable gap vacuum chamber has been closed to an inner aperture of 3.8 mm with no effect on the electron beam lifetime. Measurements of the output radiation spectrum at a magnet gap of 7.5 mm are described.

  18. Safe operating conditions for NSLS-II Storage Ring Frontends commissioning

    SciTech Connect

    Seletskiy, S.; Amundsen, C.; Ha, K.

    2015-04-02

    The NSLS-II Storage Ring Frontends are designed to safely accept the synchrotron radiation fan produced by respective insertion device when the electron beam orbit through the ID is locked inside the predefined Active Interlock Envelope. The Active Interlock is getting enabled at a particular beam current known as AI safe current limit. Below such current the beam orbit can be anywhere within the limits of the SR beam acceptance. During the FE commissioning the beam orbit is getting intentionally disturbed in the particular ID. In this paper we explore safe operating conditions for the Frontends commissioning.

  19. Latest experiences and future plans on NSLS-II insertion devices

    SciTech Connect

    Tanabe, T.; Hidaka, Y.; Kitegi, C.

    2016-07-27

    National Synchrotron Light Source-II (NSLS-II) is the latest storage ring of 3 GeV energy at the Brookhaven National Laboratory (BNL). The horizontal emittance of the electron beam with the currently installed six damping wigglers is 0.9 nm.rad, which could be further reduced to 0.5 nm.rad with more insertion devices (IDs). With only one RF cavity the beam current is restricted to 200 mA. Five hundred mA operation is envisaged for next year with an addition of the second cavity. Six (plus two branches) beamlines have been commissioned in the initial phase of the project. In July 2015, three NIH fundedmore » beamlines called “Advanced Beamlines for Biological Investigations with X-rays” (ABBIX) will be added for operation. This paper describes the experiences of ID development, installation, and commissioning for the NSLS-II project as well as our future plans to improve the performance of the facility in terms of source development.« less

  20. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.

    PubMed

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-05-04

    Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.

  1. Cellular injury evidenced by impedance technology and infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2015-03-01

    Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915 cm-1, 933 cm-1, 989 cm-1, 1192 cm-1, 1369 cm-1, 1437 cm-1, 1450 cm-1, 1546 cm-1, 1634 cm-1, 1679 cm-1 1772 cm-1, 2874 cm-1 and 2962 cm-1) associated with cytotoxicity were significantly (p value < 0.05, one way ANOVA, Tukey test, Bonferroni) altered, while two of the bands were also indicative of early stress related responses. In PCA, poor separation between nontoxic and cytostatic

  2. Cellular injury evidenced by impedance technology and infrared microspectroscopy.

    PubMed

    le Roux, K; Prinsloo, L C; Meyer, D

    2015-03-05

    Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915cm(-)(1), 933cm(-)(1), 989cm(-)(1), 1192cm(-)(1), 1369cm(-)(1), 1437cm(-)(1), 1450cm(-)(1), 1546cm(-)(1), 1634cm(-)(1), 1679cm(-)(1) 1772cm(-)(1), 2874cm(-)(1) and 2962cm(-)(1)) associated with cytotoxicity were significantly (p value<0.05, one way ANOVA, Tukey test, Bonferroni) altered, while two of the bands were also indicative of early stress related responses. In PCA, poor

  3. Laser Microperforated Biodegradable Microbial Polyhydroxyalkanoate Substrates for Tissue Repair Strategies: An Infrared Microspectroscopy Studey

    SciTech Connect

    G Ellis; P Cano; M Jadraque

    2011-12-31

    Flexible and biodegradable film substrates prepared by solvent casting from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) solutions in chloroform were microperforated by ultraviolet laser ablation and subsequently characterized using infrared (IR) microspectroscopy and imaging techniques and scanning electron microscopy (SEM). Both transmission synchrotron IR microspectroscopy and attenuated total reflectance microspectroscopy measurements demonstrate variations in the polymer at the ablated pore rims, including evidence for changes in chemical structure and crystallinity. SEM results on microperforated PHBHV substrates after cell culture demonstrated that the physical and chemical changes observed in the biomaterial did not hinder cell migration through the pores.

  4. NSLS-II storage ring insertion device and front-end commissioning and operation

    SciTech Connect

    Wang, G., E-mail: gwang@bnl.gov; Shaftan, T.; Amundsen, C.

    2016-07-27

    The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. During spring/ summer of 2014, the storage ring was commissioned up to 50 mA without insertion devices. In the fall of 2014, we began commissioning of the project beamlines, which included seven insertion devices on six ID ports. Beamlines IXS, HXN, CSX-1, CSX-2, CHX, SRX, and XPD-1 consist of elliptically polarized undulator (EPU), damping wigglers (DW) and in-vacuum undulators (IVU) covering from VUV to hard x-ray range. In this paper, experience with commissioning and operation is discussed.more » We focus on reaching storage ring performance with IDs, including injection, design emittance, compensation of orbit distortions caused by ID residual field, source point stability, beam alignment and tools for control, monitoring and protection of the ring chambers from ID radiation.« less

  5. Beam measurements using visible synchrotron light at NSLS2 storage ring

    SciTech Connect

    Cheng, Weixing, E-mail: chengwx@bnl.gov; Bacha, Bel; Singh, Om

    2016-07-27

    Visible Synchrotron Light Monitor (SLM) diagnostic beamline has been designed and constructed at NSLS2 storage ring, to characterize the electron beam profile at various machine conditions. Due to the excellent alignment, SLM beamline was able to see the first visible light when beam was circulating the ring for the first turn. The beamline has been commissioned for the past year. Besides a normal CCD camera to monitor the beam profile, streak camera and gated camera are used to measure the longitudinal and transverse profile to understand the beam dynamics. Measurement results from these cameras will be presented in this paper.more » A time correlated single photon counting system (TCSPC) has also been setup to measure the single bunch purity.« less

  6. Beamline X-11A at the NSLS: A unique facility for x-ray absorption spectroscopy

    SciTech Connect

    Heald, S. M.; Sayers, D. E.

    1989-07-01

    The design and operation of beamline X-11A at the NSLS is described. It employs a unique optical design using a two/four crystal monochromator and a SiC collimating mirror. In either the two- or four-crystal mode a sagittal focusing crystal allows collection of up to 5 mrad of horizontal divergence. Two techniques for rapid scanning of a sagitally focusing crystal will be described and compared. These are dynamically bending the crystal during the scan or translating a fixed radius bent crystal in a manner to maintain a fixed focus on the sample. The flexibility of this two/four crystal design allows themore » intensity and/or resolution of the beamline to be optimized for particular experiments.« less

  7. Development and commissioning of an x-ray beam alignment flag for NSLS-II

    SciTech Connect

    Kosciuk, B., E-mail: bkosciuk@bnl.gov; Hu, Y.; Keister, J.

    2016-07-27

    The NSLS-II Synchrotron Light Source is a 3 GeV electron storage ring recently commissioned and is now entering operations at Brookhaven National Laboratory. One of the major tasks was to commission the six project beamline front ends which required a diagnostic to resolve x-ray beam position for the purpose of beam alignment at low current. Since none of the front ends were outfitted with any x-ray diagnostics in the baseline design, an x-ray beam profile monitor or “flag” that could be easily installed into existing front end vacuum chambers was proposed to satisfy this requirement. Here we present the developmentmore » of this novel device which utilizes a polycrystalline CVD diamond luminescent screen to produce a visible image of the x-ray beam cross-section and is then captured with a CCD camera.« less

  8. A classification model for non-alcoholic steatohepatitis (NASH) using confocal Raman micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Yan, Jie; Yu, Yang; Kang, Jeon Woong; Tam, Zhi Yang; Xu, Shuoyu; Fong, Eliza Li Shan; Singh, Surya Pratap; Song, Ziwei; Tucker Kellogg, Lisa; So, Peter; Yu, Hanry

    2017-07-01

    We combined Raman micro-spectroscopy and machine learning techniques to develop a classification model based on a well-established non-alcoholic steatohepatitis (NASH) mouse model, using spectrum pre-processing, biochemical component analysis (BCA) and logistic regression.

  9. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental

  10. [Application of FTIR micro-spectroscopy in the tribology].

    PubMed

    Hu, Zhi-meng

    2002-10-01

    The wave number of characteristic absorption peak nu asC-O-C of the polyester formed on the frictional process were determined by Fourier Transform Infrared (FTIR) Micro-spectroscopy, and the wave number displacement of characteristic absorption peak nu asC-O-C was analyzed based on the conversion mass of polyester formed. The internal relations between anti-wear order rule of hydroxyl fatty acids and vibration absorption peak nu asC-O-C of polyester formed by hydroxyl fatty acids was deduced according to these results, and the anti-wear order of hydroxyl fatty acids was reasonably explained, that is 13, 14-di-hydroxydocosanoic acid > 13 (14)-monohydroxydocosanoic acid = 9,10-dihydroxyoctadecanoic acid > 9,10,12-trihydroxyoctadecanoic acid > 9(10)-monohydroxyoctadecanoic acid. A net polyester film is formed by 13, 14-dihydroxydocosanoic acid and a linear polyester film is formed by 9, (10)-monohydroxyoctadecanoic acid and 13(14)-monohydroxydocosanoic acid.

  11. Bacterial mixture analysis with Raman chemical imaging microspectroscopy

    NASA Astrophysics Data System (ADS)

    Tripathi, Ashish; Jabbour, Rabih E.; Guicheteau, Jason A.; Christesen, Steven D.; Emge, Darren K.; Jensen, Janet L.; Snyder, A. Peter

    2009-05-01

    Raman chemical imaging microspectroscopy (RCIM) is being evaluated as a technology for waterborne pathogen detection. Binary and ternary mixtures including combinations of polystyrene beads, Grampositive Bacillus anthracis and B. atrophaeus spores, B. cereus vegetative cells, and Gram-negative E. coli cells were investigated by RCIM for differentiation and characterization purposes. We have demonstrated the ability of RCIM, in combination with Pearson's cross correlation and multivariate principal components analysis data reduction techniques, to differentiate these components in the same field of view (FOV). Conventional applications of RCIM consist of differentiating relatively broad areas in a FOV. Here, RCIM is expanded in its capabilities to differentiate and distinguish between different micron size species in single particles and clusters of mixed species.

  12. Analysis of human breast tissues with Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Zhang, Lin; Liu, Jianhong; Yu, Fan; Sun, Shizhong

    2006-01-01

    Raman microspectroscopy was used to study normal, benign and malignant human breast tissues. The Raman spectrum of normal breast tissue recorded with 514.5 nm line of Ar + laser excitation contains features attributed to carotenoids and lipids. The CH II bending mode near 1447 cm -1 in normal tissue shifts up to 1454 cm -1 in diseased tissues (benign and malignant). The band near 1660 cm -1 in normal tissue is narrow and sharp; whereas the band is broaden in the diseased tissues. In the region of C-H stretching mode, the 2902-/2860-cm -1 intensity ratio shows differences among normal, benign and malignant breast tissues. The ratio is the smallest in carcinoma tissue. The observed spectra differences may be used to probe breast lesion. The results show that Raman spectroscopic technique may have clinical applications.

  13. Fast scanning microspectroscopy: an electrodynamic moving-condenser method.

    PubMed

    Benedetti, P A; Bianchini, G; Chiti, G

    1976-10-01

    The poor speed performance or the limited optical accuracy of the scanning devices currently employed in microspectroscopy can be substantially improved, for high resolution work, using a method based on the displacement of the condenser by means of an electrodynamic technique. The unit described, for work in the visible range, features random addressing capability for both X and Y scanning axes and focusing by means of arbitrary driving signals. An area up to 500 x 500 microm(2) can be explored with an accuracy of 0.15 microm approximately, while the position settling-time is less than 6 msec. The fast and precise operation is particularly valuable in dual-beam measurements on photosensitive and living samples as well as in more complicated computer assisted experiments.

  14. Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis.

    PubMed

    Rusciano, Giulia; Capriglione, Paola; Pesce, Giuseppe; Del Prete, Salvatore; Cennamo, Gilda; Di Cave, David; Cerulli, Luciano; Sasso, Antonio

    2013-01-01

    Acanthamoeba keratitis is a rare but serious corneal disease, often observed in contact lens wearers. Clinical treatment of infected patients frequently involves the use of polyhexamethylene biguanide (PHMB), a polymer used as a disinfectant and antiseptic, which is toxic also for the epithelial cells of the cornea. Prompt and effective diagnostic tools are hence highly desiderable for both starting early therapy and timely suspension of the treatment. In this work we use Raman microspectroscopy to analyse in vitro a single Acanthamoeba cell in cystic phase. In particular, we investigate the effect of PHMB at the single-cell level, providing useful information on both the underlying biochemical mechanism and the time frame for Acanthamoeba eradication in ocular infections. Furthermore, we demonstrate that Raman spectroscopy, in conjunction with standard multivariate analysis methods, allows discriminating between live and dead Acanthamoebas, which is fundamental to optimizing patients' treatment.

  15. Raman Microspectroscopy Analysis in the Treatment of Acanthamoeba Keratitis

    PubMed Central

    Rusciano, Giulia; Capriglione, Paola; Pesce, Giuseppe; Del Prete, Salvatore; Cennamo, Gilda; Di Cave, David; Cerulli, Luciano; Sasso, Antonio

    2013-01-01

    Acanthamoeba keratitis is a rare but serious corneal disease, often observed in contact lens wearers. Clinical treatment of infected patients frequently involves the use of polyhexamethylene biguanide (PHMB), a polymer used as a disinfectant and antiseptic, which is toxic also for the epithelial cells of the cornea. Prompt and effective diagnostic tools are hence highly desiderable for both starting early therapy and timely suspension of the treatment. In this work we use Raman microspectroscopy to analyse in vitro a single Acanthamoeba cell in cystic phase. In particular, we investigate the effect of PHMB at the single-cell level, providing useful information on both the underlying biochemical mechanism and the time frame for Acanthamoeba eradication in ocular infections. Furthermore, we demonstrate that Raman spectroscopy, in conjunction with standard multivariate analysis methods, allows discriminating between live and dead Acanthamoebas, which is fundamental to optimizing patients’ treatment. PMID:23977228

  16. Phenotypic Expression in Wheat Revealed Using FT-IR Microspectroscopy

    SciTech Connect

    Brewer, L.; Wetzel, D

    2009-01-01

    Wheat selected for cultivation through the centuries has a glume that is 'soft' instead of 'tough' as naturally occurring. In production, this is desirable because it enables mechanical threshing with efficient separation of kernel from the head of each stalk without damaging the kernel. FT-IR microspectroscopy provides chemically based, objective assessment of genetic expression by measuring the extent of genetic expression. In the Microbeam Molecular Spectroscopy Laboratory, Manhattan, KS, an imaging FT-IR microspectrometer with a detector array focused on the image plane was used to obtain spectral data from dissected glume specimens of nine tough and eleven soft wheat cultivarsmore » in a rectangular mapping pattern. With cellulose as the substrate, the extent of lignification is measurable from the ratio of the lignin (1508 cm{sup -1}) baseline adjusted band area to the representative cellulosic (1370 cm{sup -1}) band area. A distinction between soft and tough glumes is obtained in numerical terms. Using a band ratio minimizes variation due to thickness differences. While analyzing mapped sections of glume, care is taken to avoid tabulation of spectral data from vascular bundles. Inclusion of these data would to avoid tabulation of spectral data from vascular bundles. Inclusion of these data would bias the analysis toward the composition of highly lignified vascular bundles. Spatially resolved focal plane array FT-IR microspectroscopy reveals the extent of glume lignification that is coincident with the toughness trait. This enables breeders to rank the degree of lignin expression and discriminate between soft and tough breeding results.« less

  17. First demonstration of the fast-to-slow corrector current shift in the NSLS-II storage ring

    SciTech Connect

    Yang, Xi; Tian, Yuke; Yu, Li Hua

    2018-04-01

    In order to realize the full benefits of the high brightness and ultra-small beam sizes of NSLS-II, it is essential that the photon beams are exceedingly stable. In the circumstances of implementing local bumps, changing ID gaps, and long term drifting, the fast orbit feedback (FOFB) requires shifting the fast corrector strengths to the slow correctors to prevent the fast corrector saturation and to make the beam orbit stable in the sub-micron level. As the result, a reliable and precise technique of fast-to-slow corrector strength shift has been developed and tested at NSLS-II. This technique is based on the fastmore » corrector response to the slow corrector change when the FOFB is on. In this article, the shift technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented. The maximum fast corrector current was reduced from greater than 0.45 A to less than 0.04 A with the orbit perturbation within ±1 μm.« less

  18. First demonstration of the fast-to-slow corrector current shift in the NSLS-II storage ring

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Tian, Yuke; Yu, Li Hua; Smaluk, Victor

    2018-04-01

    To realize the full benefits of the high brightness and ultra-small beam sizes of NSLS-II, it is essential that the photon beams are exceedingly stable. In the circumstances of implementing local bumps, changing ID gaps, and long term drifting, the fast orbit feedback (FOFB) requires shifting the fast corrector strengths to the slow correctors to prevent the fast corrector saturation and to make the beam orbit stable in the sub-micron level. As the result, a reliable and precise technique of fast-to-slow corrector strength shift has been developed and tested at NSLS-II. This technique is based on the fast corrector response to the slow corrector change when the FOFB is on. In this article, the shift technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented. The maximum fast corrector current was reduced from greater than 0.45 A to less than 0.04 A with the orbit perturbation within ±1 μm.

  19. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...

    2016-08-10

    We present that third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and rampedmore » operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. In conclusion, this made the effective shielding process for NSLS-II quite accurate and reliable. The

  20. The life science X-ray scattering beamline at NSLS-II

    DOE PAGES

    DiFabio, Jonathan; Yang, Lin; Chodankar, Shirish; ...

    2015-09-30

    We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ~0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beammore » stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.« less

  1. The life science x-ray scattering beamline at NSLS-II

    SciTech Connect

    DiFabio, Jonathan; Chodankar, Shirish; Pjerov, Sal

    2016-07-27

    We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ∼0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beammore » stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.« less

  2. Raman microspectroscopy investigation of Ag ion-exchanged glass layers.

    PubMed

    Rahman, A; Giarola, M; Cattaruzza, E; Gonella, F; Mardegan, M; Trave, E; Quaranta, A; Mariotto, G

    2012-11-01

    The ion-exchange process is widely used to dope silicate glass layers with silver, aimed at controlling the Ag state in view of possible applications, ranging from light waveguide fabrication to nanostructured composite glass synthesis. The silver doped glass structure as well as its prescribed properties depend on both the preparation parameters and the subsequent treatments. Several structural aspects are still open with regard either to the modification of the glass incorporating the dopant, or to clustering phenomena silver undergoes as a function of its local concentration and state, which are in turn strongly dependent on the preparation route. Systematic characterizations of these systems are mandatory to address the role of the various synthesis parameters in giving rise to the observed features, thus pointing out the effective methodologies for the fabrication of silicate glass layers with the desired properties. In this work, the results of micro-Raman, optical absorption and photoluminescence characterizations are presented for soda-lime glass slides doped with silver by Ag(+)-Na+ exchange and subsequent thermal treatments in air. In particular, a cross-section profiling analysis by Raman micro-spectroscopy was performed on Ag ion-exchanged samples after treatment at some different temperatures. The experimental findings allow to elucidate the role of the treatment temperature in the clustering process related to the local Ag concentration inside the exchanged glass layer.

  3. Analysis of single particle photodegradation using photothermal infrared microspectroscopy.

    PubMed

    Moffat, Jonathan G; Eddleston, Mark D; Belton, Peter S; Jones, William; Craig, Duncan Q M

    2013-04-21

    The increasing use of high throughput methods, coupled with the need to develop approaches to anticipate long term stability issues, has necessitated the introduction of testing approaches whereby extremely small samples may be rapidly analysed. A novel method is described whereby the UV light-induced degradation of single particles of a model drug, nifedipine, may be rapidly and simply monitored using photothermal infrared microspectroscopy (PTMS). The technique involves the contact attachment of individual particles to a heated probe tip composed of a modified Wollaston wire which enables temperature fluctuations to be measured. Application of a focused IR beam to excite the sample allows measurement and subsequent Fourier transformation of the resultant interferogram to produce an IR spectrum which is in good agreement with that obtained from conventional IR methods. By application of a UV source to the assembly for specified time periods, we demonstrate that it is possible to monitor the appearance of peaks associated with degradation products as a function of time. The technique is critically evaluated in terms of practical issues associated with volatilization, particle size effects and orientation to the light source as well as more general issues associated with the sensitivity, resolution and quantitative interpretation of data from the PTMS technique. Overall the method has been shown to be capable of rapid measurement of photo-instability on individual particles, with important implications for development of the approach as a rapid screening or high throughput technique, although there are practical and theoretical limitations to reliable quantitative analysis at the present time.

  4. Study of atmospheric aerosol processing using confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Laskina, O.; Grassian, V. H.

    2012-12-01

    Aerosols undergo aging and heterogeneous chemistry as they are transported through the atmosphere. This leads to changes in their properties and their effects on climate, biogeochemistry and human health. Chemical imaging of individual particles may be used to directly investigate the heterogeneity of composition within atmospheric aerosol particles. Single-particle Raman microspectroscopy is a powerful method for chemical imaging and non-destructive physico-chemical characterization of aerosol particles. In this study we investigate the effect of chemical processing on the distribution of chemical species in single particles of mineral dust aerosol using Raman spectral imaging. Raman mapping was used to show the distribution of humic substances and organic acids on some major components of mineral dust (quartz, clays and calcium carbonate). It was shown that humic materials form coating on the surface of particles, whereas interactions of calcium carbonate with organic acids (oxalic and acetic acids) lead to reactions that cause a heterogeneous distribution of components within the reacted particle. Additionally, in a newly designed flow system aerosol can be equilibrated at different relative humidities to study hygroscopicity and phase transitions within these particles. These types of studies are important as the distribution of species in a single particle determines its reactivity, water uptake, and optical properties and thus defines its impact on climate and environment.

  5. Water matrix and age effects on microorganism Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Tripathi, Ashish; Jabbour, Rabih E.; Treado, Patrick J.; Nelson, Matthew P.; Snyder, A. Peter

    2010-04-01

    Raman microspectroscopy is used to probe the age and milieu parameters for suspensions of bacteria for their detection in water backgrounds. No studies have been reported on the fate of Raman signatures over time for biologicals stored in water matrices. A FALCON II Raman Chemical Imaging System (ChemImage, Pittsburgh, PA) and 532 nm laser excitation source acquired the Raman spectra. MATLAB principal components (PC) analysis software was employed for data reduction. Suspensions of Bacillus atrophaeus, Bacillus thuringiensis, and three strains of E. coli (EC) were prepared in distilled and recipe tap water. Aliquots at 5 min, 5 hr, and 1, 2, and 7 days at 25 C were dried on microscope slides in replicate. Adequate spectral differences were observed for all three organism species. Microscope analysis showed that freshly suspended Bacillus spores and EC vegetative cells, in both water matrices, remained as spores after seven days. Agar plate growth procedures showed that the bacteria were still viable even after seven days resting in both water matrices. All three bacterial species were separated based on PC analysis; however, the three EC strains coalesced. The water matrix parameter was inconsistent in its ability to separate the Raman spectra in PC plots of the five bacteria. Within each group, the time parameter poorly separated the bacterial resting suspensions as the aging proceeded. A Mahalanobis linkage distance analysis (dendrogram) for all three species and strains in both water matrices confirmed a random order for all five suspension times.

  6. Biological substance characterization in water matrices with Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Jabbour, Rabih E.; Tripathi, Ashish; Treado, Patrick J.; Neiss, Jason H.; Nelson, Matthew P.; Jensen, Janet L.; Snyder, A. Peter

    2007-04-01

    Raman spectroscopy has been evaluated as a candidate technology for waterborne pathogen detection. Parameters have been investigated that influence the fidelity of Raman spectra of microorganisms and protein biological substances including bacterial species and strains, susceptibility to laser induced photodamage, composition of water matrix, and organism aging in water. An important operating parameter is the laser induced photodamage threshold of a variety of biological materials. The laser induced photodamage may be minimized by operating a 532 nm continuous wave laser excitation at laser power densities below 2300 W/cm2 for Gram-positive Bacillus atrophaeus (BG) vegetative cells, 2800 W/cm2 for BG spores, and 3500 W/cm2 for Gram-negative E. coli organisms. Multivariate principal components analysis was able to discriminate six Gram-positive and Gram-negative organisms as well as five proteins between 5K and 65K mass units. B. thuringiensis, B. cereus, BG spore and vegetative preparations, and E. coli showed minimal aging effects when suspended in distilled and tap water. In general, Raman microspectroscopy of biological substances exhibited minimal spectral variability due to the age of a resting suspension, water matrix, and bacterial strain. The observed signature variability did not prevent the differentiation and characterization of bacterial genus and species and protein substances using Raman spectroscopy.

  7. Characterization of topical film-forming systems using atomic force microscopy and Raman microspectroscopy.

    PubMed

    Garvie-Cook, Hazel; Frederiksen, Kit; Petersson, Karsten; Guy, Richard H; Gordeev, Sergey

    2015-03-02

    Polymeric film-forming systems for dermal drug delivery represent an advantageous alternative to more conventional topically applied formulations. Their mechanical properties and homogeneity can be characterized with atomic force microscopy (AFM), using both imaging and nanoindentation modes, and Raman microspectroscopy mapping. Film-forming polymers, with and without a plasticizer and/or betamethasone 17-valerate (a representative topical drug), were dissolved in absolute ethanol. Polymeric films were then cast on glass slides and examined in ambient air using AFM imaging and Raman microspectroscopy. Using nanoindentation, the elastic moduli of various films were determined and found to decrease with increasing plasticizer content. Films with 20% w/w plasticizer had elastic moduli close to that of skin. AFM images showed little difference in the topography of the films on incorporation of plasticizer. Raman microspectroscopy maps of the surface of the polymeric films, with a spatial resolution of approximately 1 μm, revealed homogeneous distributions of plasticizer and drug within the films.

  8. Comparison of hair from rectum cancer patients and from healthy persons by Raman microspectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Wei, Xiaoli; Wang, Xin; Fang, Yusheng; Huang, Qing

    2013-09-01

    In this work, Raman microspectroscopy and imaging was employed to analyze cancer patients' hair tissue. The comparison between the hair from rectum cancer patients and the hair from healthy people reveals some remarkable differences, such as for the rectum cancer patients, there are more lipids but less content of α-helix proteins in the hair medulla section. Though more statistic data are required to establish universary rules for practical and accurate diagnosis, this work based on case study demonstrates the possibility of applying Raman microspectroscopy to reveal abnormality in non-cancer tissues such as hair in order to predict and diagnose cancers.

  9. Analysis of Wilhelm Ostwald's "Colour Organ" with Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Bridarolli, Alexandra; Atak, Sefkan; Herm, Christoph

    2016-11-01

    The "Scientific Colour Organ" is a collection of 680 pigment powders, created by the chemist Wilhelm Ostwald in 1925 as a means to represent his colour system. Today, it remains a leading part of colour theory. Analysis of these materials was undertaken to understand how the colour system was realised and to gain indications for preservation of the collection to which it belongs. Dispersive Raman microspectroscopy was applied directly to the powders, as well as using alternative techniques to suppress fluorescence. Barium sulphate was detected in all of the samples with one exception. Portable X-ray fluorescence revealed that this compound was a constituent of lithopone pigment. Raman spectroscopy furthermore revealed synthetic ultramarine (C.I. PB 29) as well as six different synthetic organic pigments and dyes (C.I. PY3; C.I. PO5; C.I. PR81:1; C.I. PV2 and two different triarylmethane dyes). Thin-layer chromatography was applied to determine the exact combination of dyes causing the gradual change in colour of each powder compared to the adjacent samples. With the exception of triarylmethane, the synthetic organic dyes could be identified with Raman spectroscopy directly on the chromatographic plate. The efficiency of thin-layer chromatography combined with Raman spectroscopy for identification of organic pigments could thus be shown. X-ray fluorescence indicated the presence of tungsten-molybdenum lakes in some samples. Comparison of the analytical results to information published by Oswald in 1917 showed that he switched to more light-stable synthetic organic pigments used for his "Scientific Colour Organ".

  10. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions

    DOE PAGES

    Yu, Peiqiang

    2006-01-01

    Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in

  11. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  12. Progressive steps of polymorphic transformation of gabapentin polymorphs studied by hot-stage FTIR microspectroscopy.

    PubMed

    Hsu, Cheng-Hung; Ke, Wen-Ting; Lin, Shan-Yang

    2010-01-01

    The aim of this study was to determine the progressive processes of polymorphic transformation of different gabapentin (GBP) polymorphs by using hot-stage Fourier transform infrared (FTIR) microspectroscopy. Four polymorphs of GBP were previously prepared and then identified by differential scanning calorimetry (DSC), thermogravimetric (TG) analysis, FTIR microspectroscopy and X-ray powder diffractometry. A novel hot-stage FTIR microspectroscopic technique was used to investigate the progressive steps of polymorphic transformation of each GBP polymorph sealed within two pieces of KBr plates. Four polymorphs (Forms I, II, III and IV) of GBP were well characterized. The GBP form I was proven to be a monohydrate, but other GBP forms II-IV were anhydrous. Different thermal-induced progressive processes and steps of polymorphic interconversion of GBP polymorphs were clearly found from the changes in the three-dimensional IR spectral contour and peak intensity by using hot-stage FTIR microspectroscopy. The results also indicate that GBP form I was dehydrated and transformed to form III, and then converted to form IV; whereas GBP forms II and III directly transformed to form IV during heating. The GBP form IV was the last polymorph before the intramolecular lactamization of GBP. A one-step novel hot-stage FTIR microspectroscopy was successfully applied to simultaneously and continuously investigate the progressive processes and steps of thermal-induced polymorphic interconversion of GBP polymorph in the solid state.

  13. Fourier-Transform Infrared Microspectroscopy, a Novel and Rapid Tool for Identification of Yeasts

    PubMed Central

    Wenning, Mareike; Seiler, Herbert; Scherer, Siegfried

    2002-01-01

    Fourier-transform infrared (FT-IR) microspectroscopy was used in this study to identify yeasts. Cells were grown to microcolonies of 70 to 250 μm in diameter and transferred from the agar plate by replica stamping to an IR-transparent ZnSe carrier. IR spectra of the replicas on the carrier were recorded using an IR microscope coupled to an IR spectrometer, and identification was performed by comparison to reference spectra. The method was tested by using small model libraries comprising reference spectra of 45 strains from 9 genera and 13 species, recorded with both FT-IR microspectroscopy and FT-IR macrospectroscopy. The results show that identification by FT-IR microspectroscopy is equivalent to that achieved by FT-IR macrospectroscopy but the time-consuming isolation of the organisms prior to identification is not necessary. Therefore, this method also provides a rapid tool to analyze mixed populations. Furthermore, identification of 21 Debaryomyces hansenii and 9 Saccharomyces cerevisiae strains resulted in 92% correct identification at the strain level for S. cerevisiae and 91% for D. hansenii, which demonstrates that the resolution power of FT-IR microspectroscopy may also be used for yeast typing at the strain level. PMID:12324312

  14. Analysis of thin-film polymers using attenuated total internal reflection-Raman microspectroscopy.

    PubMed

    Tran, Willie; Tisinger, Louis G; Lavalle, Luis E; Sommer, André J

    2015-01-01

    Two methods commonly employed for molecular surface analysis and thin-film analysis of microscopic areas are attenuated total reflection infrared (ATR-IR) microspectroscopy and confocal Raman microspectroscopy. In the former method, the depth of the evanescent probe beam can be controlled by the wavelength of light, the angle of incidence, or the refractive index of the internal reflection element. Because the penetration depth is proportional to the wavelength of light, one could interrogate a smaller film thickness by moving from the mid-infrared region to the visible region employing Raman spectroscopy. The investigation of ATR Raman microspectroscopy, a largely unexplored technique available to Raman microspectroscopy, was carried out. A Renishaw inVia Raman microscope was externally modified and used in conjunction with a solid immersion lens (SIL) to perform ATR Raman experiments. Thin-film polymer samples were analyzed to explore the theoretical sampling depth for experiments conducted without the SIL, with the SIL, and with the SIL using evanescent excitation. The feasibility of micro-ATR Raman was examined by collecting ATR spectra from films whose thickness measured from 200 to 60 nm. Films of these thicknesses were present on a much thicker substrate, and features from the underlying substrate did not become visible until the thin film reached a thickness of 68 nm.

  15. FT-IR Microspectroscopy of Rat Ear Cartilage

    PubMed Central

    Vidal, Benedicto de Campos; Mello, Maria Luiza S.

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140–820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of –SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of –SO3- groups (1236–1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the –SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027–1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  16. Quantifying Carbonate and Serpentine Abundances through VSWIR Microspectroscopy

    NASA Astrophysics Data System (ADS)

    Leask, E.; Ehlmann, B. L.

    2015-12-01

    Visible and shortwave-infrared (VSWIR) reflectance spectroscopy has been used for large-scale mineral mapping on Earth and on Mars. A prototype instrument (UCIS—Ultra Compact Imaging Spectrometer), operating in microscopic mode, applies the same principles over an area the size of a traditional thin section (15-50 cm2), acquiring data over the 0.5-2.5 μm range at a spatial scale of 80 μm/pixel. This technique requires little to no sample preparation and is non-destructive, preserving rock texture. It can be used on future rovers/landers for in-situ petrology and in the lab to link spectral data acquired at large scale with rock mineralogy. We compare microscale mineral maps and abundance results from linear spectral unmixing to other techniques, including XRD, acid dissolution, and EDS/WDS mapping. Samples from the Semail Ophiolite (Oman) are used as an analogue for Martian carbonate and serpentine deposits to assess the capabilities of IR spectroscopy to discriminate carbonate from minerals with absorptions at similar wavelength positions, to determine carbonate composition and the composition of intermixed phases, and to determine their relative abundances. We find that UCIS infrared images can differentiate between carbonate phases not distinguished in XRD results. For example, in a magnesite vein sample, the bulk magnesite is spectrally distinct from another carbonate phase present only in cavities within the sample. Microprobe and EDS analyses of the sample confirm that calcite is present only as a coating within secondary porosity. Similar to SEM-EDS mapping at smaller scales, UCIS can identify rare phases contained within a few pixels (100s μm). For example, aluminum-bearing phyllosilicates in discrete clasts were found among more typical serpentine in a carbonate-cemented breccia. Signals from such rare phases are typically not detectable in XRD but are in spatially resolved microscale IR data. Collectively, data indicate that VSWIR microspectroscopy

  17. Raman Micro-spectroscopy Study of Healthy and Burned Biological Tissue

    NASA Astrophysics Data System (ADS)

    Zarnani, Faranak; Glosser, Robert; Idris, Ahamed

    2011-10-01

    Burn injuries are a significant medical problem, and need to be treated quickly and precisely. Burned skin needs to be removed early, within hours (less than 24 hrs) of injury, when the margins of the burn are still hard to define. Studies show that treating and excising burn wounds soon after the injury prevents the wound from becoming deeper, reduces the release of proinflammatory mediators, and reduces or prevents the systemic inflammatory reaction syndrome. Also, removing burned skin prepares the affected region for skin grafting. Raman micro-spectroscopy could be used as an objective diagnostic method that will assist burn surgeons in distinguishing unburned from burned areas. As a first step in developing a diagnostic tool, we present Raman micro-spectroscopy information from normal and burned ex vivo rat skin.

  18. Protein secondary structure imaging with ultrabroadband multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy.

    PubMed

    Bito, Kotatsu; Okuno, Masanari; Kano, Hideaki; Tokuhara, Shihomi; Naito, Satoru; Masukawa, Yoshinori; Leproux, Philippe; Couderc, Vincent; Hamaguchi, Hiro-o

    2012-02-02

    Protein secondary structures in human hair have been studied with ultrabroadband multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The CARS peak-shift mapping method has been developed and applied to hair samples with and without treatments by chemical reduction and mechanical extension. It clearly visualizes the treatment induced changes in protein secondary structures and their spatial distributions. Using the new imaging technique, we found a multilayered structure in the human hair cortex.

  19. In Situ Detection of Antibiotic Amphotericin B Produced in Streptomyces nodosus Using Raman Microspectroscopy

    PubMed Central

    Miyaoka, Rimi; Hosokawa, Masahito; Ando, Masahiro; Mori, Tetsushi; Hamaguchi, Hiro-o; Takeyama, Haruko

    2014-01-01

    The study of spatial distribution of secondary metabolites within microbial cells facilitates the screening of candidate strains from marine environments for functional metabolites and allows for the subsequent assessment of the production of metabolites, such as antibiotics. This paper demonstrates the first application of Raman microspectroscopy for in situ detection of the antifungal antibiotic amphotericin B (AmB) produced by actinomycetes—Streptomyces nodosus. Raman spectra measured from hyphae of S. nodosus show the specific Raman bands, caused by resonance enhancement, corresponding to the polyene chain of AmB. In addition, Raman microspectroscopy enabled us to monitor the time-dependent change of AmB production corresponding to the growth of mycelia. The Raman images of S. nodosus reveal the heterogeneous distribution of AmB within the mycelia and individual hyphae. Moreover, the molecular association state of AmB in the mycelia was directly identified by observed Raman spectral shifts. These findings suggest that Raman microspectroscopy could be used for in situ monitoring of antibiotic production directly in marine microorganisms with a method that is non-destructive and does not require labeling. PMID:24828290

  20. In situ detection of antibiotic amphotericin B produced in Streptomyces nodosus using Raman microspectroscopy.

    PubMed

    Miyaoka, Rimi; Hosokawa, Masahito; Ando, Masahiro; Mori, Tetsushi; Hamaguchi, Hiro-O; Takeyama, Haruko

    2014-05-13

    The study of spatial distribution of secondary metabolites within microbial cells facilitates the screening of candidate strains from marine environments for functional metabolites and allows for the subsequent assessment of the production of metabolites, such as antibiotics. This paper demonstrates the first application of Raman microspectroscopy for in situ detection of the antifungal antibiotic amphotericin B (AmB) produced by actinomycetes-Streptomyces nodosus. Raman spectra measured from hyphae of S. nodosus show the specific Raman bands, caused by resonance enhancement, corresponding to the polyene chain of AmB. In addition, Raman microspectroscopy enabled us to monitor the time-dependent change of AmB production corresponding to the growth of mycelia. The Raman images of S. nodosus reveal the heterogeneous distribution of AmB within the mycelia and individual hyphae. Moreover, the molecular association state of AmB in the mycelia was directly identified by observed Raman spectral shifts. These findings suggest that Raman microspectroscopy could be used for in situ monitoring of antibiotic production directly in marine microorganisms with a method that is non-destructive and does not require labeling.

  1. In-operando studies of Ag-TCNQ nanocrystals using Raman and soft x-ray microspectroscopy

    NASA Astrophysics Data System (ADS)

    Rösner, Benedikt; Schmidt, Ute; Fink, Rainer H.

    2017-06-01

    We characterize individual Ag-TCNQ nanocrystals during switching their resistivity state in operando. Raman and soft X-ray absorption microspectroscopy are employed to disclose the electronic state of the organic component in dependency of applied voltage. Whereas Raman microspectroscopy offers qualitative insight into the conversion of negatively charged TCNQ molecules to their neutral counterpart, quantification of the neutral fraction can be achieved using X-ray absorption spectroscopy. These results allow a detailed investigation of resistivity switching in electrically bistable Ag-TCNQ nanocrystals.

  2. Raman microspectroscopy for in situ examination of carbon-microbe-mineral interactions

    NASA Astrophysics Data System (ADS)

    Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Waldrop, M. P.

    2016-12-01

    The changing paradigm of soil organic matter formation and turnover is focused at the nexus of microbe-carbon-mineral interactions. However, visualizing biotic and abiotic stabilization of C on mineral surfaces is difficult given our current techniques. Therefore we investigated Raman microspectroscopy as a potential tool to examine microbially mediated organo-mineral associations. Raman microspectroscopy is a non-destructive technique that has been used to identify microorganisms and minerals, and to quantify microbial assimilation of 13C labeled substrates in culture. We developed a partial least squares regression (PLSR) model to accurately quantify (within 5%) adsorption of four model 12C substrates (glucose, glutamic acid, oxalic acid, p-hydroxybenzoic acid) on a range of soil minerals. We also developed a PLSR model to quantify the incorporation of 13C into E. coli cells. Using these two models, along with measures of the 13C content of respired CO2, we determined the allocation of glucose-derived C into mineral-associated microbial biomass and respired CO2 in situ and through time. We observed progressive 13C enrichment of microbial biomass with incubation time, as well as 13C enrichment of CO2 indicating preferential decomposition of glucose-derived C. We will also present results on the application of our in situ chamber to quantify the formation of organo-mineral associations under both abiotic and biotic conditions with a variety of C and mineral substrates, as well as the rate of turnover and stabilization of microbial residues. Application of Raman microspectroscopy to microbial-mineral interactions represents a novel method to quantify microbial transformation of C substrates and subsequent mineral stabilization without destructive sampling, and has the potential to provide new insights to our conceptual understanding of carbon-microbe-mineral interactions.

  3. Analysis of bone protein and mineral composition in bone disease using synchrotron infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, Lisa M.; Hamerman, David; Chance, Mark R.; Carlson, Cathy S.

    1999-10-01

    Infrared (IR) microspectroscopy is an analytical technique that is highly sensitive to the chemical components in bone. The brightness of a synchrotron source permits the examination of individual regions of bone in situ at a spatial resolution superior to that of a conventional infrared source. At Beamlines U10B and U2B at the National Synchrotron Light Source, we are examining the role of bone chemical composition in bone disease. In osteoarthritis (OA), it has been demonstrated that the bone underlying the joint cartilage (subchondral bone) becomes thickened prior to cartilage breakdown. Using synchrotron infrared microspectroscopy, we have examined the chemical composition of the subchondral bone in histologically normal and OA monkeys. Results demonstrate that the subchondral bone of OA monkeys is significantly more mineralized than the normal bone, primarily due to an increase in carbonate concentration in the OA bone. High resolution analysis indicates that differences in carbonate content are uniform throughout the subchondral bone region, suggesting that high subchondral bone carbonate may be a marker for OA. Conversely, increases in phosphate content are more pronounced in the region near the marrow space, suggesting that, as the subchondral bone thickens, the bone also becomes more mineralized. Osteoporosis is a disease characterized by a reduction in bone mass and a skeleton that is more susceptible to fracture. To date, it is unclear whether bone remodeled after the onset of osteoporosis differs in chemical composition from older bone. Using fluorescence-assisted infrared microspectroscopy, we are comparing the composition of monkey bone remodeled at various time points after the onset of osteoporosis (induced by ovariectomy). We find that the chemical composition of bone remodeled one year after ovariectomy and one year prior to necropsy is similar to normal bone. On the other hand, bone remodeled two years after ovariectomy is less mature, indicated

  4. Infrared Microspectroscopy of Bionanomaterials (Diatoms) with Careful Evaluation of Void Effects.

    PubMed

    Alipour, Leila; Hamamoto, Mai; Nakashima, Satoru; Harui, Rika; Furiki, Masanari; Oku, Osamu

    2016-03-01

    In order to characterize a representative natural bionanomaterial, present day centric diatom samples (diameter, 175-310 µm) have been analyzed and imaged by infrared (IR) micro-spectroscopy and scanning electron microscopy (SEM). Because diatom silica frustules have complex microscopic morphology, including many void areas such as micro- or nano-pores, the effects of voids on the spectral band shapes were first evaluated. With increasing void area percentage, 1220 cm(-1)/1070 cm(-1) peak height ratio (Si-O polymerization index) increases and 950 cm(-1)/800 cm(-1) peak height ratio (Si-OH/Si-O-Si) decreases, both approaching 1. Based on the void area percentage of representative diatom samples determined using SEM image analyses (51.5% to 20.5%) and spectral simulation, the 1220 cm(-1)/1070 cm(-1) ratios of diatom samples are sometimes affected by the void effect, but the 950 cm(-1)/800 cm(-1) ratios can indicate real structural information of silica. This void effect should be carefully evaluated for IR micro-spectroscopy of micro-nano-porous materials. Maturity of diatom specimens may be evaluated from: (1) void area percentages determined by SEM; (2) average thicknesses determined by optical microscope; and (3) average values of 1220 cm(-1)/1070 cm(-1) peak height ratios (opposite trend to the void effect) determined by IR micro-spectroscopy. Microscopic heterogeneities of chemical structures of silica were obtained by IR micro-spectroscopic mapping of four representative diatoms. The 950 cm(-1)/800 cm(-1) ratios show that large regions of some diatoms consist of hydrated amorphous immature silica. The successful analysis of diatoms by IR micro-spectroscopic data with careful void effect evaluation may be applied to physicochemical structures of many other bionanomaterials. © The Author(s) 2016.

  5. One-step Real-time Food Quality Analysis by Simultaneous DSC-FTIR Microspectroscopy.

    PubMed

    Lin, Shan-Yang; Lin, Chih-Cheng

    2016-01-01

    This review discusses an analytical technique that combines differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy, which simulates the accelerated stability test and detects decomposition products simultaneously in real time. We show that the DSC-FTIR technique is a fast, simple and powerful analytical tool with applications in food sciences. This technique has been applied successfully to the simultaneous investigation of: encapsulated squid oil stability; the dehydration and intramolecular condensation of sweetener (aspartame); the dehydration, rehydration and solidification of trehalose; and online monitoring of the Maillard reaction for glucose (Glc)/asparagine (Asn) in the solid state. This technique delivers rapid and appropriate interpretations with food science applications.

  6. New In-Situ and Operando Facilities for Catalysis Science at NSLS-II: The Deployment of Real-Time, Chemical, and Structure-Sensitive X-ray Probes

    SciTech Connect

    Palomino, Robert M.; Stavitski, Eli; Waluyo, Iradwikanari

    2017-03-31

    The start of operations at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory heralded a new beginning for photon-science-based research capabilities in catalysis. This new facility builds on many years of pioneering work that was conducted at the NSLS synergistically by many scientists from academia, government labs, and industry. Over several decades, numerous discoveries in catalysis were driven through the emergence of an arsenal of tools at the NSLS that exploited the power of emerging X-ray methods encompassing scattering, spectroscopy, and imaging. Thus, in-situ and operando methodologies that coupled reactor environments directly with advanced analytical techniques pavedmore » a rapid path towards realizing an improved fundamental understanding at the frontiers of chemical science challenges of the day.« less

  7. Aleurone Cell Walls of Wheat Grain: High Spatial Resolution Investigation Using Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Jamme, F.; Robert, R; Bouchet, B

    2008-01-01

    Infrared microspectroscopy and immunolabeling techniques were employed in order to obtain deeper insight into the biochemical nature of aleurone cell walls of wheat grain. The use of a synchrotron source, thanks to its intrinsic brightness, has provided unprecedented information at the level of a few micrometers and has allowed the discrimination of various polysaccharides in cell walls. The high spectral quality obtained in the small analyzed domain has been beneficial in estimating the relative proportions of {Beta}-glucan and arabinoxylan, through the use of principal component analysis (PCA). The highest amount of {Beta}-glucan is found in periclinal cell walls close tomore » the starchy endosperm. The junction regions between aleurone cells are enriched in arabinoxylan. At the early stage of wheat grain development (271 degrees D), the chemical composition along the cell walls is more heterogeneous than at the mature stage. Both synchrotron infrared microspectroscopy and immunolabeling experiments made it possible to reveal the spatial heterogeneity of the various chemical compositions of aleurone cell walls.« less

  8. Role of Synchrotron infra red microspectroscopy in studying epidermotropism of cutaneous T-cell lymphoma

    SciTech Connect

    El Bedewi, A.; El Anany, G; El Mofty, M

    2010-01-01

    The molecular mechanisms of epidermotropism in mycosis fungoides (MF) are not well understood to date. The aim of this study was to differentiate between epidermal and dermal lymphocytes within the skin of MF patients. This study was done on 10 MF patients with a mean age of 50 years diagnosed clinically in the Department of Dermatology, Cairo University, Egypt. A 6 mm biopsy was taken from each patient in order to confirm the diagnosis. Skin biopsies were cut, put on low e-slides and then stained with H&E. Further examination with Synchrotron infrared (IR) microspectroscopy was done in National Synchrotron Lightmore » Source - Brookhaven National Laboratory, New York, USA. Immunophenotyping using antibodies CD3, CD4, CD8, CD20 and CD30 was also done. Statistical analysis was done by Student's t-test and cluster analysis. Both epidermal and dermal lymphocytes were clustered separately. Also, Amide I and RNA and DNA within the lymphocytes were significantly different between the epidermis and the dermis. The biochemical analysis of protein, RNA and DNA with Synchrotron IR microspectroscopy is a promising tool for studying epidermotropism in cutaneous T-cell lymphoma.« less

  9. Using Brillouin microspectroscopy to characterize adipocytes' response to lipid droplet accumulation

    NASA Astrophysics Data System (ADS)

    Troyanova-Wood, Maria; Coker, Zachary; Traverso, Andrew; Yakovlev, Vladislav V.

    2017-02-01

    Obesity and overweight are accompanied by an enlargement of adipocytes, which is commonly related to the increasing number or size of lipid droplets within the cells. Some studies have shown that the accumulation of lipid droplets within adipocytes results in their increased stiffness. Recently, Brillouin microspectroscopy has been introduced as a nondestructive method of imaging the elasticity of cells. Unlike other imaging modalities, it is capable of assessing the elastic properties on both tissue- and cell levels. In this study, Brillouin spectroscopy was used to measure the elasticity changes in response to accumulation of lipid droplets within adipocyte during adipogenesis. The cell line used in the study is 3T3-L1, with chemically-induced differentiation from pre-adipocytes to mature adipocytes. The Brillouin shift measurements of the cells before and after differentiation indicate that the stiffness of adipocytes increases due to accumulation of lipid droplets. The results are in agreement with previous atomic force microscopy (AFM) nanoindentation studies. Brillouin microspectroscopy is a technique suitable for measuring the changes of elasticity of adipocytes in response to lipid droplet accumulation.

  10. Identification of Pyridinoline Trivalent Collagen Cross-Links by Raman Microspectroscopy.

    PubMed

    Gamsjaeger, Sonja; Robins, Simon P; Tatakis, Dimitris N; Klaushofer, Klaus; Paschalis, Eleftherios P

    2017-06-01

    Intermolecular cross-linking of bone collagen is intimately related to the way collagen molecules are arranged in a fibril, imparts certain mechanical properties to the fibril, and may be involved in the initiation of mineralization. Raman microspectroscopy allows the analysis of minimally processed bone blocks and provides simultaneous information on both the mineral and organic matrix (mainly type I collagen) components, with a spatial resolution of ~1 μm. The aim of the present study was to validate Raman spectroscopic parameters describing one of the major mineralizing type I trivalent cross-links, namely pyridinoline (PYD). To achieve this, a series of collagen cross-linked peptides with known PYD content (as determined by HPLC analysis), human bone, porcine skin, predentin and dentin animal model tissues were analyzed by Raman microspectroscopy. The results of the present study confirm that it is feasible to monitor PYD trivalent collagen cross-links by Raman spectroscopic analysis in mineralized tissues, exclusively through a Raman band ~1660 wavenumbers. This allows determination of the relative PYD content in undecalcified bone tissues with a spatial resolution of ~1 μm, thus enabling correlations with histologic and histomorphometric parameters.

  11. FT-IR microspectroscopy in rapid identification of bacteria in pure and mixed culture

    NASA Astrophysics Data System (ADS)

    Fontoura, Inglid; Belo, Ricardo; Sakane, Kumiko; Cardoso, Maria Angélica Gargione; Khouri, Sônia; Uehara, Mituo; Raniero, Leandro; Martin, Airton A.

    2010-02-01

    In recent years FT-IR microspectroscopy has been developed for microbiology analysis and applied successfully in pure cultures of microorganisms to rapidly identify strains of bacteria, yeasts and fungi. The investigation and characterization of microorganism mixed cultures is also of growing importance, especially in hospitals where it is common to poly-microbial infections. In this work, the rapid identification of bacteria in pure and mixed cultures was studied. The bacteria were obtained from the Institute Oswaldo Cruz culture collection at Brazil. Escherichia coli ATCC 10799 and Staphylococcus aureus ATCC 14456 were analyzed, 3 inoculations were examined in triplicate: Escherichia coli, Staphylococcus aureus and a mixed culture of them. The inoculations were prepared according to McFarland 0.5, incubated at 37 ° C for 6 hours, diluted in saline, placed in the CaF2 window and store for one hour at 50°C to obtain thin film. The measurement was performed by Spectrum Spotlight 400 (Perkin-Elmer) equipment in the range of 4000-900 cm-1, with 32 scans using a transmittance technique with point and image modes. The data were processed (baseline, normalization, calculation of first derivate followed by smoothing with 9 point using a Savitzky-Golay algorithm) and a cluster analysis were done by Ward's algorithm and an excellent discrimination between pure and mixed culture was obtained. Our preliminary results indicate that the FT-IR microspectroscopy associated with cluster analysis can be used to discriminate between pure and mixed culture.

  12. Biochemical profiling of rat embryonic stem cells grown on electrospun polyester fibers using synchrotron infrared microspectroscopy.

    PubMed

    Doncel-Pérez, Ernesto; Ellis, Gary; Sandt, Christophe; Shuttleworth, Peter S; Bastida, Agatha; Revuelta, Julia; García-Junceda, Eduardo; Fernández-Mayoralas, Alfonso; Garrido, Leoncio

    2018-04-18

    Therapeutic options for spinal cord injuries are severely limited; current treatments only offer symptomatic relief and rehabilitation focused on educating the individual on how to adapt to their new situation to make best possible use of their remaining function. Thus, new approaches are needed, and interest in the development of effective strategies to promote the repair of neural tracts in the central nervous system inspired us to prepare functional and highly anisotropic polymer scaffolds. In this work, an initial assessment of the behavior of rat neural progenitor cells (NPCs) seeded on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber scaffolds using synchrotron-based infrared microspectroscopy (SIRMS) is described. Combined with a modified touch imprint cytology sample preparation method, this application of SIRMS enabled the biochemical profiles of NPCs on the coated polymer fibers to be determined. The results showed that changes in the lipid and amide I-II spectral regions are modulated by the type and coating of the substrate used and the culture time. SIRMS studies can provide valuable insight into the early-stage response of NPCs to the morphology and surface chemistry of a biomaterial, and could therefore be a useful tool in the preparation and optimization of cellular scaffolds. Graphical abstract Synchrotron IR microspectroscopy can provide insight into the response of neural progenitor cells to synthetic scaffolds.

  13. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis

    PubMed Central

    Mattana, Sara; Caponi, Silvia; Tamagnini, Francesco; Fioretto, Daniele; Palombo, Francesca

    2017-01-01

    Amyloidopathy is one of the most prominent hallmarks of Alzheimer’s disease (AD), the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, β-amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons, giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a β-amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of β-pleated sheet conformation (β-amyloid) protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy. PMID:29151920

  14. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis.

    PubMed

    Mattana, Sara; Caponi, Silvia; Tamagnini, Francesco; Fioretto, Daniele; Palombo, Francesca

    2017-11-01

    Amyloidopathy is one of the most prominent hallmarks of Alzheimer's disease (AD), the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, β -amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons , giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a β -amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of β -pleated sheet conformation ( β -amyloid) protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy.

  15. Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis.

    PubMed

    Kumar, Srividya; Verma, Taru; Mukherjee, Ria; Ariese, Freek; Somasundaram, Kumaravel; Umapathy, Siva

    2016-04-07

    Biomolecular structure elucidation is one of the major techniques for studying the basic processes of life. These processes get modulated, hindered or altered due to various causes like diseases, which is why biomolecular analysis and imaging play an important role in diagnosis, treatment prognosis and monitoring. Vibrational spectroscopy (IR and Raman), which is a molecular bond specific technique, can assist the researcher in chemical structure interpretation. Based on the combination with microscopy, vibrational microspectroscopy is currently emerging as an important tool for biomedical research, with a spatial resolution at the cellular and sub-cellular level. These techniques offer various advantages, enabling label-free, biomolecular fingerprinting in the native state. However, the complexity involved in deciphering the required information from a spectrum hampered their entry into the clinic. Today with the advent of automated algorithms, vibrational microspectroscopy excels in the field of spectropathology. However, researchers should be aware of how quantification based on absolute band intensities may be affected by instrumental parameters, sample thickness, water content, substrate backgrounds and other possible artefacts. In this review these practical issues and their effects on the quantification of biomolecules will be discussed in detail. In many cases ratiometric analysis can help to circumvent these problems and enable the quantitative study of biological samples, including ratiometric imaging in 1D, 2D and 3D. We provide an extensive overview from the recent scientific literature on IR and Raman band ratios used for studying biological systems and for disease diagnosis and treatment prognosis.

  16. Spectroscopic signature of mouse embryonic stem cell-derived hepatocytes using synchrotron Fourier transform infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Thumanu, Kanjana; Tanthanuch, Waraporn; Ye, Danna; Sangmalee, Anawat; Lorthongpanich, Chanchao; Parnpai, Rangsun; Heraud, Philip

    2011-05-01

    Stem cell-based therapy for liver regeneration has been proposed to overcome the persistent shortage in the supply of suitable donor organs. A requirement for this to succeed is to find a rapid method to detect functional hepatocytes, differentiated from embryonic stem cells. We propose Fourier transform infrared (FTIR) microspectroscopy as a versatile method to identify the early and last stages of the differentiation process leading to the formation of hepatocytes. Using synchrotron-FTIR microspectroscopy, the means of identifying hepatocytes at the single-cell level is possible and explored. Principal component analysis and subsequent partial least-squares (PLS) discriminant analysis is applied to distinguish endoderm induction from hepatic progenitor cells and matured hepatocyte-like cells. The data are well modeled by PLS with endoderm induction, hepatic progenitor cells, and mature hepatocyte-like cells able to be discriminated with very high sensitivity and specificity. This method provides a practical tool to monitor endoderm induction and has the potential to be applied for quality control of cell differentiation leading to hepatocyte formation.

  17. Detection of mycoplasma in contaminated mammalian cell culture using FTIR microspectroscopy.

    PubMed

    Wehbe, Katia; Vezzalini, Marzia; Cinque, Gianfelice

    2018-05-01

    Mycoplasma contamination represents a significant problem to the culture of mammalian cells used for research as it can cause disastrous effects on eukaryotic cells by altering cellular parameters leading to unreliable experimental results. Mycoplasma cells are very small bacteria therefore they cannot be detected by visual inspection using a visible light microscope and, thus, can remain unnoticed in the cell cultures for long periods. The detection techniques used nowadays to reveal mycoplasma contamination are time consuming and expensive with each having significant drawbacks. The ideal detection should be simple to perform with minimal preparation time, rapid, inexpensive, and sensitive. To our knowledge, for the first time, we employed Fourier transform infrared (FTIR) microspectroscopy to investigate whether we can differentiate between control cells and the same cells which have been infected with mycoplasmas during the culturing process. Chemometric methods such as HCA and PCA were used for the data analysis in order to detect spectral differences between control and intentionally infected cells, and spectral markers were revealed even at low contamination level. The preliminary results showed that FTIR has the potential to be used in the future as a reliable complementary detection technique for mycoplasma-infected cells. Graphical abstract FTIR microspectroscopy is able to differentiate between mycoplasma infected cells (LC for low contamination and HC for high contamination) and control non-infected cells (CN).

  18. Imaging Local Chemical Microstructure of Germinated Wheat with Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Koc,H.; Wetzel, D.

    2008-01-01

    The spatial resolution enabled by in situ Fourier-transform infrared (FT-IR) microspectroscopy as predicted from our earlier report in Spectroscopy (1) is applied to localized chemical analysis in this vital biological process of seed germination. Germination includes several different biochemical and structural processes. Ultimately, the entire seed is consumed in sustaining the new life that results after sprouting and growth (2-4). Alpha amylase production is the standard evidence for detection of sprouted (germinated) wheat at harvest. Moist preharvest conditions can cause devastating losses and render the harvested wheat unfit for flour production. Dormancy of dry seeds following harvest retards sprouting undermore » proper storage.« less

  19. High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy

    NASA Astrophysics Data System (ADS)

    Scarponi, F.; Mattana, S.; Corezzi, S.; Caponi, S.; Comez, L.; Sassi, P.; Morresi, A.; Paolantoni, M.; Urbanelli, L.; Emiliani, C.; Roscini, L.; Corte, L.; Cardinali, G.; Palombo, F.; Sandercock, J. R.; Fioretto, D.

    2017-07-01

    Brillouin and Raman scattering spectroscopy are established techniques for the nondestructive contactless and label-free readout of mechanical, chemical, and structural properties of condensed matter. Brillouin-Raman investigations currently require separate measurements and a site-matched approach to obtain complementary information from a sample. Here, we demonstrate a new concept of fully scanning multimodal microspectroscopy for simultaneous detection of Brillouin and Raman light scattering in an exceptionally wide spectral range, from fractions of GHz to hundreds of THz. It yields an unprecedented 150-dB contrast, which is especially important for the analysis of opaque or turbid media such as biomedical samples, and spatial resolution on a subcellular scale. We report the first applications of this new multimodal method to a range of systems, from a single cell to the fast reaction kinetics of a curing process, and the mechanochemical mapping of highly scattering biological samples.

  20. Characterization of children's latent fingerprint residues by infrared microspectroscopy: forensic implications.

    PubMed

    Williams, Diane Keith; Brown, Corrie J; Bruker, Justine

    2011-03-20

    The chemistry of children's latent fingerprint residues was investigated as a function of time and temperature by non-destructive spectrochemical analysis. Latent fingerprints from children, ranging in age from 2 to 11 years, were deposited onto aluminum-coated glass slides and were analyzed by Fourier-Transform Infrared Microspectroscopy. The results revealed that there are three major classes of compounds present in children's latent fingerprints: carboxylic acid salts, proteins, and esters. By studying the changes in the fingerprint residues as a function of time and at elevated temperatures, we discovered that the salts in the fingerprint residues are stable relative to the esters. These findings have relevant forensic implications; by targeting the acid salts instead of the esters or proteins, children's latent fingerprints may be recovered after extended periods of time have elapsed. Copyright © 2011. Published by Elsevier Ireland Ltd.

  1. Tissue diagnosis using power-sharing multifocal Raman micro-spectroscopy and auto-fluorescence imaging

    PubMed Central

    Sinjab, Faris; Kong, Kenny; Gibson, Graham; Varma, Sandeep; Williams, Hywel; Padgett, Miles; Notingher, Ioan

    2016-01-01

    We describe a multifocal Raman micro-spectroscopy detection method based on a digital micromirror device, which allows for simultaneous “power-sharing” acquisition of Raman spectra from ad hoc sampling points. As the locations of the points can be rapidly updated in real-time via software control of a liquid-crystal spatial light modulator (LC-SLM), this technique is compatible with automated adaptive- and selective-sampling Raman spectroscopy techniques, the latter of which has previously been demonstrated for fast diagnosis of skin cancer tissue resections. We describe the performance of this instrument and show examples of multiplexed measurements on a range of test samples. Following this, we show the feasibility of reducing measurement time for power-shared multifocal Raman measurements combined with confocal auto-fluorescence imaging to provide guided diagnosis of tumours in human skin samples. PMID:27570692

  2. Darkfield microspectroscopy of nanostructures on silver tip-enhanced Raman scattering probes

    SciTech Connect

    Itoh, Tamitake, E-mail: tamitake-itou@aist.go.jp; Yamamoto, Yuko S., E-mail: yamayulab@gmail.com; Department of Chemistry, School of Science and Technology, Kagawa University, Takamatsu, Kagawa 761-0396

    2016-01-11

    We report an evaluation method employing darkfield microspectroscopy for silver probes used in tip-enhanced Raman scattering (TERS). By adjusting the darkfield illumination, the diffracted light from the probe outlines disappears and the diffracted light from the surface nanostructures and tips of the probes appears as colorful spots. Scanning electron microscopy reveals that the spectral variations in these spots reflect the shapes of the surface nanostructures. The tip curvatures correlate to the spectral maxima of their spots. Temporal color changes in the spots indicate the deterioration due to the oxidation of the silver surfaces. These results show that the proposed methodmore » is useful for in situ evaluation of plasmonic properties of TERS probes.« less

  3. Following Drug Uptake and Reactions inside Escherichia coli Cells by Raman Microspectroscopy

    PubMed Central

    2015-01-01

    Raman microspectroscopy combined with Raman difference spectroscopy reveals the details of chemical reactions within bacterial cells. The method provides direct quantitative data on penetration of druglike molecules into Escherichia coli cells in situ along with the details of drug–target reactions. With this label-free technique, clavulanic acid and tazobactam can be observed as they penetrate into E. coli cells and subsequently inhibit β-lactamase enzymes produced within these cells. When E. coli cells contain a β-lactamase that forms a stable complex with an inhibitor, the Raman signature of the known enamine acyl–enzyme complex is detected. From Raman intensities it is facile to measure semiquantitatively the number of clavulanic acid molecules taken up by the lactamase-free cells during growth. PMID:24901294

  4. Amphetamine effects on brain protein structure and oxidative stress as revealed by FTIR microspectroscopy.

    PubMed

    Rodríguez-Casado, A; Alvarez, I; Toledano, A; de Miguel, E; Carmona, P

    Amphetamines are psychostimulants abused by man, that eventually leads to drug dependence. Amphetamine administration to rodents has been shown to provoke significant neurotoxicity involving dopaminergic nerve terminal degeneration. However, little information related to the effect of amphetamines on reactive oxygen species (ROS) production and neurotoxicity in brain is currently available. Herein we report the biochemical alterations of lipids and proteins in brain sections from amphetamine-treated rodents using infrared microspectroscopy, immunohistochemistry, and immunoblotting. The spectroscopic changes reveal for the first time the formation of beta-sheet-rich proteins in the cortex, but no significant protein alterations are visible in hippocampus region where hydroperoxide concentration is found to be lower relative to cortex. These result suggest that ROS generated by amphetamine-mediated oxidative stress induce formation beta-sheet-rich proteins which can be of amyloid beta-like character.

  5. Characterization and Application of a Grazing Angle Objective for Quantitative Infrared Reflection Microspectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    1995-01-01

    A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.

  6. Imaging phospholipid conformational disorder and packing in giant multilamellar liposome by confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Noothalapati, Hemanth; Iwasaki, Keita; Yoshimoto, Chikako; Yoshikiyo, Keisuke; Nishikawa, Tomoe; Ando, Masahiro; Hamaguchi, Hiro-o.; Yamamoto, Tatsuyuki

    2017-12-01

    Liposomes are closed phospholipid bilayer systems that have profound applications in fundamental cell biology, pharmaceutics and medicine. Depending on the composition (pure or mixture of phospholipids, presence of cholesterol) and preparation protocol, intra- and inter-chain molecular interactions vary leading to changes in the quality (order and packing) of liposomes. So far it is not possible to image conformational disorders and packing densities within a liposome in a straightforward manner. In this study, we utilized confocal Raman microspectroscopy to visualize structural disorders and packing efficiency within a giant multilamellar liposome model by focusing mainly on three regions in the vibrational spectrum (Csbnd C stretching, Csbnd H deformation and Csbnd H stretching). We estimated properties such as trans/gauche isomers and lateral packing probability. Interestingly, our Raman imaging studies revealed gel phase rich domains and heterogeneous lateral packing within the giant multilamellar liposome.

  7. Infrared micro-spectroscopy of human tissue: principles and future promises.

    PubMed

    Diem, Max; Ergin, Ayşegül; Remiszewski, Stan; Mu, Xinying; Akalin, Ali; Raz, Dan

    2016-06-23

    This article summarizes the methods employed, and the progress achieved over the past two decades in applying vibrational (Raman and IR) micro-spectroscopy to problems of medical diagnostics and cellular biology. During this time, several research groups have verified the enormous information contained in vibrational spectra; in fact, information on protein, lipid and metabolic composition of cells and tissues can be deduced by decoding the observed vibrational spectra. This decoding process is aided by the availability of computer workstations and advanced algorithms for data analysis. Furthermore, commercial instrumentation for the fast collection of both Raman and infrared micro-spectral data has enabled the collection of images of cells and tissues based solely on vibrational spectroscopic data. The progress in the field has been manifested by a steady increase in the number and quality of publications submitted by established and new research groups in vibrational spectroscopy in the biological and biomedical arenas.

  8. Beam line X-11A at the NSLS (National Synchrotron Light Source): A unique facility for x-ray absorption spectroscopy

    SciTech Connect

    Heald, S.M.; Sayers, D.E.

    1988-01-01

    The design and operation of beam line X-11A at the NSLS is described. It employs a unique optical design using a two/four crystal monochromator and a SiC collimating mirror. In either two or four crystal mode a sagittal focusing crystal allows collection of up to 5 mrad of horizontal divergence. Two techniques for rapid scanning of a sagitally focusing crystal will be described and compared. These are dynamically bending the crystal during the scan or translating a fixed radius bent crystal in a manner to maintain a fixed focus on the sample. The flexibility of this two/four crystal design allowsmore » the intensity and/or resolution of the beam line to be optimized for particular experiments. 4 refs., 6 figs.« less

  9. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Wetzel, D.; Bonwell, E; Fritz, T

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the {alpha}-helix form compared with that in other secondary structure forms including {beta}-sheet. Modeling of {alpha}-helix and {beta}-sheet absorption bands that contribute to the amide I band at 1650 cm{sup -1} was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill upmore » the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 {mu}m thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 {mu}m diameter or confocal 5 {mu}mX5{mu}m spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the {alpha}-helix population relative to other secondary protein structures from the position and shape of the amide I

  10. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Bonwell,E.; Fisher, T.; Fritz, A.

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the a-helix form compared with that in other secondary structure forms including {beta}-sheet. Modeling of a-helix and {beta}-sheet absorption bands that contribute to the amide I band at 1650 cm-1 was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up themore » field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 {mu}m thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 {mu}m diameter or confocal 5 {mu}m x 5 {mu}m spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the a-helix population relative to other secondary protein structures from the position and shape of the amide I absorption band

  11. The reliability of Raman micro-spectroscopy in measuring the density of CO2 mantle fluids

    NASA Astrophysics Data System (ADS)

    Remigi, S.; Frezzotti, M. L.; Ferrando, S.; Villa, I. M.; Maffeis, A.

    2017-12-01

    Recent evaluations of carbon fluxes into and out the Earth's interior recognize that a significant part of the total outgassing of deep Earth carbon occurs in tectonically active areas (Kelemen and Manning, 2015). Potential tracers of carbon fluxes at mantle depths include CO2 fluid inclusions in peridotites. Raman micro-spectroscopy allows calculating the density of CO2 fluids based on the distance of the CO2 Fermi doublet, Δ, in cm-1 (Rosso and Bodnar, 1995). The aim of this work is to check the reliability of Raman densimeter equations (cf. Lamadrid et al., 2016) for high-density CO2 fluids originating at mantle depths. Forty pure CO2 inclusions in peridotites (El Hierro, Canary Islands) of known density (microthermometry) have been analyzed by Raman micro-spectroscopy. In order to evaluate the influence of contaminants on the reliability of equations, 22 CO2-rich inclusions containing subordinate amounts of N2, CO, SO2 have also been studied. Raman spectrometer analytical conditions are: 532 nm laser, 80 mW emission power, T 18°C, 1800 and 600 grating, 1 accumulation x 80 sec. Daily calibration included diamond and atmosphere N2. Results suggest that the "Raman densimeter" represents an accurate method to calculate the density of CO2 mantle fluids. Equations, however, must be applied only to pure CO2 fluids, since contaminants, even in trace amounts (0.39 mol%), affect the Δ resulting in density overestimation. Present study further highlights how analytical conditions and data processing, such as spectral resolution (i.e., grating), calibration linearity, and statistical treatment of spectra, influence the accuracy and the precision of Δ measurements. As a consequence, specific analytical protocols for single Raman spectrometers should be set up in order to get reliable CO2 density data. Kelemen, Peter B., & Craig E. Manning. PNAS, 112.30 (2015): E3997-E4006.Lamadrid, H. M., Moore, L. R., Moncada, D., Rimstidt, J. D., Burruss, R. C., & Bodnar, R. J. Chem

  12. Multicomponent cleaning verification of stainless steel surfaces for the removal of dairy residues using infrared microspectroscopy.

    PubMed

    Lang, Matthew P; Kocaoglu-Vurma, Nurdan A; Harper, W James; Rodriguez-Saona, Luis E

    2011-03-01

    The application of infrared microspectroscopy (IRMS) technology, combined with multivariate analysis, was evaluated to develop sensitive and robust methods to assess cleanability of stainless steel surfaces for the removal of dairy food residues. UHT milk samples (skim, 1%, 2%, and whole) were analyzed for total nitrogen (Kjeldahl) and fat (Babcock) contents. The coupons were manually soiled with serially diluted milk samples resulting in soils ranging from 0.1 to 428.1 μg/cm(2) for protein and 0.1 to 374.17 μg/cm(2) for fat, and then autoclaved to simulate a heated equipment surface. Reflectance spectra were collected from stainless steel coupons by using IRMS, and multivariate analysis was used to develop calibration models based on cross-validated partial least squares regression (PLSR). Statistical analysis for the prediction of protein and fat showed a standard error of cross-validation (SECV) of 0.5 and 0.4 μg/cm(2) for prediction of protein and fat, respectively, and correlation coefficients (rVal) > 0.99. To improve the sensitivity, swabbing and concentration steps were used prior to IRMS analysis obtaining SECV of 0.04 and 0.01 μg/cm(2) for the prediction of protein and fat, respectively, and rVal > 0.99. The PLSR models accurately predicted the levels of protein and fat on autoclaved stainless steel coupons soiled with milk. A simple, reliable, and robust protocol based on IRMS and multivariate analysis was developed for multicomponent characterization of stainless steel surfaces that can contribute to more efficient cleaning verification with regard to contamination on surfaces of processing equipment. We report the application of Fourier transform infrared microspectroscopy (FTIR) for the validation of CIP cleaning efficiency that would provide a basis for better understanding of the mechanisms involved in the removal of physical soil and food residues from different types of equipment surfaces commonly utilized in the biotech, pharmaceutical, and

  13. Analysis of coupled-bunch instabilities for the NSLS-II storage ring with a 500MHz 7-cell PETRA-III cavity

    SciTech Connect

    Bassi, G.; Blednykh, A.; Cheng, W.

    2015-12-11

    We present the NSLS-II storage ring that is designed to operate with superconducting RF-cavities with the aim to store an average current of 500 mA distributed in 1080 bunches, with a gap in the uniform filling for ion clearing. At the early stage of the commissioning (phase 1), characterized by a bare lattice without damping wigglers and without Landau cavities, a normal conducting 7-cell PETRA-III RF-cavity structure has been installed with the goal to store an average current of 25 mA. In this paper we discuss our analysis of coupled-bunch instabilities driven by the Higher Order Modes (HOMs) of themore » 7-cell PETRA-III RF-cavity. As a cure of the instabilities, we apply a well-known scheme based on a proper detuning of the HOMs frequencies based upon cavity temperature change, and the use of the beneficial effect of the slow head–tail damping at positive chromaticity to increase the transverse coupled-bunch instability thresholds. In addition, we discuss measurements of coupled-bunch instabilities observed during the phase 1 commissioning of the NSLS-II storage ring. In our analysis we rely, in the longitudinal case, on the theory of coupled-bunch instability for uniform fillings, while in the transverse case we complement our studies with numerical simulations with OASIS, a novel parallel particle tracking code for self-consistent simulations of collective effects driven by short and long-range wakefields.« less

  14. Darkfield reflection visible microspectroscopy equipped with a color mapping system of a brown altered granite.

    PubMed

    Onga, Chie; Nakashima, Satoru

    2014-01-01

    Visible darkfield reflectance spectroscopy equipped with a color mapping system has been developed and applied to a brown-colored Rokko granite sample. Sample reflectance spectra converted to Kubelka-Munk (KM) spectra show similar features to goethite and lepidocrocite. Raman microspectroscopy on the granite sample surface confirms the presence of these minerals. Here, L*a*b* color values (second Commission Internationale d'Eclairage [CIELab] 1976 color space) were determined from the sample reflection spectra. Grey, yellow, and brown zones of the granite show different L*, a*, and b* values. In the a*-b* diagram, a* and b* values in the grey and brown zones are on the lepidocrocite/ferrihydrite trends, but their values in the brown zone are larger than those in the grey zone. The yellow zone shows data points close to the goethite trend. Iron (hydr)oxide-rich areas can be visualized by means of large a* and b* values in the L*, a*, and b* maps. Although the present method has some problems and limitations, the visible darkfield reflectance spectroscopy can be a useful method for colored-material characterization.

  15. In vitro colocalization of plasmonic nano-biolabels and biomolecules using plasmonic and Raman scattering microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chaudhari, Kamalesh; Pradeep, Thalappil

    2015-04-01

    An insight into the intracellular fate of theranostics is important for improving their potential in biological applications. In vivo efficacy of plasmonic theranostics depends on our ability to monitor temporal changes in their size, shape, and state of aggregation, and the identification of molecules adsorbed on their surfaces. We develop a technique which combines plasmonic and Raman scattering microspectroscopy to colocalize plasmonic scattering from metallic nanoparticles with the Raman signatures of biomolecules adsorbed on the surface of the former. Using this technique, we have colocalized biomolecules with the plasmonic scattering from silver nanoparticles in the vicinity of Escherichia coli bacteria. To prove the applicability of this setup for the measurements on mammalian cells, imaging of HEK293 cells treated with gold nanoparticles was performed. We discuss the importance of such correlated measurements over individual techniques, although the latter may lead to misinterpretation of results. Finally, with the above-mentioned examples, we have given criteria to improve the specificity of theranostics. We believe that this methodology will be considered as a prime development in the assessment of theranostics.

  16. Infrared microspectroscopy analysis of ibuprofen release from drug eluting beads in uterine tissue.

    PubMed

    Namur, J; Wassef, M; Pelage, J P; Lewis, A; Manfait, M; Laurent, A

    2009-05-05

    Ibuprofen loaded embolization beads (IBU-BB) have been developed to reduce inflammation and pain following uterine artery embolization for the treatment of uterine fibroids. The present work has investigated the elution properties of IBU-BB in situ after embolization with Fourier Transform Infrared Microspectroscopy (FTIRMS). Twelve sheep underwent uterine artery embolization with IBU-BB (485 mM) or control unloaded beads. IBU concentration was determined inside the beads and in the tissue surrounding the beads using FTIRMS of uterine tissue sections sampled 24 h or 1 week after embolization. After 24 h, IBU concentration inside the bead was only 18.6 mM out of the 485 mM initially loaded (p < 0.0001, univariate sign test). The concentration in the tissue around the beads was 8 mM, which is well above the in vitro therapeutic levels (6 microM). After one week the concentration of IBU had decreased to 4.9 mM in the beads (p = 0.0502, Mann Whitney) and no IBU was detected in the surrounding tissue. This work has demonstrated that IBU-BB can provide a sustained release of the anti-inflammatory drug over at least one week. The in vivo elution properties of IBU-BB may be suitable to alleviate pain and inflammation after embolization.

  17. Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging.

    PubMed

    Lupoi, Jason S; Smith-Moritz, Andreia; Singh, Seema; McQualter, Richard; Scheller, Henrik V; Simmons, Blake A; Henry, Robert J

    2015-01-01

    Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focal plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.

  18. In Situ FTIR Microspectroscopy of Brain Tissue from a Transgenic Mouse Model of Alzheimer Disease

    SciTech Connect

    Rak,M.; Del Bigio, M.; Mai, S.

    2007-01-01

    Plaques composed of the A{beta} peptide are the main pathological feature of Alzheimer's disease. Dense-core plaques are fibrillar deposits of A{beta}, showing all the classical properties of amyloid including {beta}-sheet secondary structure, while diffuse plaques are amorphous deposits. We studied both plaque types, using synchrotron infrared (IR) microspectroscopy, a technique that allows the chemical composition and average protein secondary structure to be investigated in situ. We examined plaques in hippocampal, cortical and caudal tissue from 5- to 21-month-old TgCRND8 mice, a transgenic model expressing doubly mutant amyloid precursor protein, and displaying impaired hippocampal function and robust pathology from an earlymore » age. Spectral analysis confirmed that the congophilic plaque cores were composed of protein in a {beta}-sheet conformation. The amide I maximum of plaque cores was at 1623 cm-1, and unlike for in vitro A{beta} fibrils, the high-frequency (1680-1690 cm-1) component attributed to antiparallel {beta}-sheet was not observed. A significant elevation in phospholipids was found around dense-core plaques in TgCRND8 mice ranging in age from 5 to 21 months. In contrast, diffuse plaques were not associated with IR detectable changes in protein secondary structure or relative concentrations of any other tissue components.« less

  19. Reversible Data Hiding in FTIR Microspectroscopy Images with Tamper Indication and Payload Error Correction

    PubMed Central

    Seppänen, Tapio

    2017-01-01

    Fourier transform infrared (FTIR) microspectroscopy images contain information from the whole infrared spectrum used for microspectroscopic analyses. In combination with the FTIR image, visible light images are used to depict the area from which the FTIR spectral image was sampled. These two images are traditionally acquired as separate files. This paper proposes a histogram shifting-based data hiding technique to embed visible light images in FTIR spectral images producing single entities. The primary objective is to improve data management efficiency. Secondary objectives are confidentiality, availability, and reliability. Since the integrity of biomedical data is vital, the proposed method applies reversible data hiding. After extraction of the embedded data, the FTIR image is reversed to its original state. Furthermore, the proposed method applies authentication tags generated with keyed Hash-Based Message Authentication Codes (HMAC) to detect tampered or corrupted areas of FTIR images. The experimental results show that the FTIR spectral images carrying the payload maintain good perceptual fidelity and the payload can be reliably recovered even after bit flipping or cropping attacks. It has been also shown that extraction successfully removes all modifications caused by the payload. Finally, authentication tags successfully indicated tampered FTIR image areas. PMID:29259987

  20. Reversible Data Hiding in FTIR Microspectroscopy Images with Tamper Indication and Payload Error Correction.

    PubMed

    Fylakis, Angelos; Keskinarkaus, Anja; Partala, Juha; Saarakkala, Simo; Seppänen, Tapio

    2017-01-01

    Fourier transform infrared (FTIR) microspectroscopy images contain information from the whole infrared spectrum used for microspectroscopic analyses. In combination with the FTIR image, visible light images are used to depict the area from which the FTIR spectral image was sampled. These two images are traditionally acquired as separate files. This paper proposes a histogram shifting-based data hiding technique to embed visible light images in FTIR spectral images producing single entities. The primary objective is to improve data management efficiency. Secondary objectives are confidentiality, availability, and reliability. Since the integrity of biomedical data is vital, the proposed method applies reversible data hiding. After extraction of the embedded data, the FTIR image is reversed to its original state. Furthermore, the proposed method applies authentication tags generated with keyed Hash-Based Message Authentication Codes (HMAC) to detect tampered or corrupted areas of FTIR images. The experimental results show that the FTIR spectral images carrying the payload maintain good perceptual fidelity and the payload can be reliably recovered even after bit flipping or cropping attacks. It has been also shown that extraction successfully removes all modifications caused by the payload. Finally, authentication tags successfully indicated tampered FTIR image areas.

  1. Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin

    NASA Astrophysics Data System (ADS)

    Leroy, Marie; Lefèvre, Thierry; Pouliot, Roxane; Auger, Michèle; Laroche, Gaétan

    2015-06-01

    Psoriasis is a chronic dermatosis that affects around 3% of the world's population. The etiology of this autoimmune pathology is not completely understood. The barrier function of psoriatic skin is known to be strongly altered, but the structural modifications at the origin of this dysfunction are not clear. To develop strategies to reduce symptoms of psoriasis or adequate substitutes for modeling, a deep understanding of the organization of psoriatic skin at a molecular level is required. Infrared and Raman microspectroscopies have been used to obtain direct molecular-level information on psoriatic and healthy human skin biopsies. From the intensities and positions of specific vibrational bands, the lipid and protein distribution and the lipid order have been mapped in the different layers of the skin. Results showed a similar distribution of lipids and collagen for normal and psoriatic human skin. However, psoriatic skin is characterized by heterogeneity in lipid/protein composition at the micrometer scale, a reduction in the definition of skin layer boundaries and a decrease in lipid chain order in the stratum corneum as compared to normal skin. A global decrease of the structural organization is exhibited in psoriatic skin that is compatible with an alteration of its barrier properties.

  2. Distinction of cervical cancer biopsies by use of infrared microspectroscopy and probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Podshyvalov, A.; Sahu, R. K.; Mark, S.; Kantarovich, K.; Guterman, H.; Goldstein, J.; Jagannathan, R.; Argov, S.; Mordechai, S.

    2005-06-01

    Fourier-transform infrared spectroscopy has shown alterations of spectral characteristics of cells and tissues as a result of carcinogenesis. The research reported here focuses on the diagnosis of cancer in formalin-fixed biopsied tissue for which immunochemistry is not possible and when PAP-smear results are to be confirmed. The data from two groups of patients (a control group and a group of patients diagnosed with cervical cancer) were analyzed. It was found that the glucose/phosphate ratio decreases (by 23-49%) and the RNA/DNA ratio increases (by 38-150%) in carcinogenic compared with normal tissue. Fourier-transform microspectroscopy was used to examine these tissues. This type of study in larger populations may help to set standards or classes with which to use treated biopsied tissue to predict the possibility of cancer. Probabilistic neural networks and statistical tests as parts of these biopsies predict the possibility of cancer with a high degree of accuracy (>95%).

  3. Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma.

    PubMed

    Larraona-Puy, Marta; Ghita, Adrian; Zoladek, Alina; Perkins, William; Varma, Sandeep; Leach, Iain H; Koloydenko, Alexey A; Williams, Hywel; Notingher, Ioan

    2009-01-01

    We investigate the potential of Raman microspectroscopy (RMS) for automated evaluation of excised skin tissue during Mohs micrographic surgery (MMS). The main aim is to develop an automated method for imaging and diagnosis of basal cell carcinoma (BCC) regions. Selected Raman bands responsible for the largest spectral differences between BCC and normal skin regions and linear discriminant analysis (LDA) are used to build a multivariate supervised classification model. The model is based on 329 Raman spectra measured on skin tissue obtained from 20 patients. BCC is discriminated from healthy tissue with 90+/-9% sensitivity and 85+/-9% specificity in a 70% to 30% split cross-validation algorithm. This multivariate model is then applied on tissue sections from new patients to image tumor regions. The RMS images show excellent correlation with the gold standard of histopathology sections, BCC being detected in all positive sections. We demonstrate the potential of RMS as an automated objective method for tumor evaluation during MMS. The replacement of current histopathology during MMS by a "generalization" of the proposed technique may improve the feasibility and efficacy of MMS, leading to a wider use according to clinical need.

  4. Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma

    NASA Astrophysics Data System (ADS)

    Larraona-Puy, Marta; Ghita, Adrian; Zoladek, Alina; Perkins, William; Varma, Sandeep; Leach, Iain H.; Koloydenko, Alexey A.; Williams, Hywel; Notingher, Ioan

    2009-09-01

    We investigate the potential of Raman microspectroscopy (RMS) for automated evaluation of excised skin tissue during Mohs micrographic surgery (MMS). The main aim is to develop an automated method for imaging and diagnosis of basal cell carcinoma (BCC) regions. Selected Raman bands responsible for the largest spectral differences between BCC and normal skin regions and linear discriminant analysis (LDA) are used to build a multivariate supervised classification model. The model is based on 329 Raman spectra measured on skin tissue obtained from 20 patients. BCC is discriminated from healthy tissue with 90+/-9% sensitivity and 85+/-9% specificity in a 70% to 30% split cross-validation algorithm. This multivariate model is then applied on tissue sections from new patients to image tumor regions. The RMS images show excellent correlation with the gold standard of histopathology sections, BCC being detected in all positive sections. We demonstrate the potential of RMS as an automated objective method for tumor evaluation during MMS. The replacement of current histopathology during MMS by a ``generalization'' of the proposed technique may improve the feasibility and efficacy of MMS, leading to a wider use according to clinical need.

  5. Chemical analysis of multiple sclerosis lesions by FT-IR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Levine, Steven M.; Wetzel, David L.

    1998-06-01

    Fourier transform infrared microspectroscopy can be used to collect infrared spectra from microscopic regions of tissue sections. If spectra are collected along a grid pattern, then maps of chemical functional groups can be produced and correlated to tissue histopathology. In the present study, white matter from multiple sclerosis and control brains were examined. Mapping experiments were designed such that 17 spectra were collected at 200 μm intervals along a line that was partially or wholly within a multiple sclerosis lesion site or within a representative white matter region of control tissue. Data analysis was based on earlier in vitro studies, which found that the carbonyl at 1740 cm-1 increases when lipids become oxidized, and the amide I peak at ~1660 cm-1 broadens when proteins become oxidized. The results indicated that the C=O to CH2 ratio (1740 cm-1:1468 cm-1) was elevated at several collection points in lesion sites from each of five multiple sclerosis brains examined compared to values from white matter of four control brains. Inspection of the amide I peak at 1657 cm-1 revealed that it was broadened towards 1652 cm-1 in multiple sclerosis tissues but not control tissues. These results suggest that lipids and proteins are oxidized at active multiple sclerosis lesion sites. The localization of these products to lesion sites supports a role for free radicals in the pathogenesis of multiple sclerosis.

  6. Deposition and organisation of cell wall polymers during maturation of poplar tension wood by FTIR microspectroscopy.

    PubMed

    Chang, Shan-Shan; Salmén, Lennart; Olsson, Anne-Mari; Clair, Bruno

    2014-01-01

    To advance our understanding of the formation of tension wood, we investigated the macromolecular arrangement in cell walls by Fourier transform infrared microspectroscopy (FTIR) during maturation of tension wood in poplar (Populus tremula x P. alba, clone INRA 717-1B4). The relation between changes in composition and the deposition of the G-layer in tension wood was analysed. Polarised FTIR measurements indicated that in tension wood, already before G-layer formation, a more ordered structure of carbohydrates at an angle more parallel to the fibre axis exists. This was clearly different from the behaviour of opposite wood. With the formation of the S₂ layer in opposite wood and the G-layer in tension wood, the orientation signals from the amorphous carbohydrates like hemicelluloses and pectins were different between opposite wood and tension wood. For tension wood, the orientation for these bands remains the same all along the cell wall maturation process, probably reflecting a continued deposition of xyloglucan or xylan, with an orientation different to that in the S₂ wall throughout the whole process. In tension wood, the lignin was more highly oriented in the S₂ layer than in opposite wood.

  7. Raman microspectroscopy discrimination of single human keratinocytes exposed at low dose of pesticide

    NASA Astrophysics Data System (ADS)

    Perna, Giuseppe; Lasalvia, Maria; Capozzi, Vito

    2012-02-01

    Raman spectroscopy is a useful technique for early diagnosis of cellular damage related to the exposure at toxic chemicals, because biochemical changes related to action mechanism of chemicals can be detected in Raman spectra. In this investigation Raman microspectroscopy has been used, in correlation with the principal component analysis method, to detect biochemical changes occurring in cultured human cells as a consequence of exposure at a commercial pesticide. Cultured human keratinocyte cells have been exposed at increasing concentrations of pesticide for 24 h. Viability tests indicated that the cells vitality is almost completely preserved when the concentration of active ingredient of pesticide is very low (5 × 10-8 M, about two orders of magnitude lower than the cytotoxic concentration at 24 h exposure). Nonetheless, the analysis of Raman spectra allows to state that a biochemical change occurs: it involves mainly the protein linkages between aminoacids (amide I bonds) and, at a minor amount, lipids. On the whole, principal components analysis is able to classify into two separate clusters the control and exposed human cells.

  8. Classification of normal and malignant human gastric mucosa tissue with confocal Raman microspectroscopy and wavelet analysis

    NASA Astrophysics Data System (ADS)

    Hu, Yaogai; Shen, Aiguo; Jiang, Tao; Ai, Yong; Hu, Jiming

    2008-02-01

    Thirty-two samples from the human gastric mucosa tissue, including 13 normal and 19 malignant tissue samples were measured by confocal Raman microspectroscopy. The low signal-to-background ratio spectra from human gastric mucosa tissues were obtained by this technique without any sample preparation. Raman spectral interferences include a broad featureless sloping background due to fluorescence and noise. They mask most Raman spectral feature and lead to problems with precision and quantitation of the original spectral information. A preprocessed algorithm based on wavelet analysis was used to reduce noise and eliminate background/baseline of Raman spectra. Comparing preprocessed spectra of malignant gastric mucosa tissues with those of counterpart normal ones, there were obvious spectral changes, including intensity increase at ˜1156 cm -1 and intensity decrease at ˜1587 cm -1. The quantitative criterion based upon the intensity ratio of the ˜1156 and ˜1587 cm -1 was extracted for classification of the normal and malignant gastric mucosa tissue samples. This could result in a new diagnostic method, which would assist the early diagnosis of gastric cancer.

  9. Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging

    DOE PAGES

    Lupoi, Jason S.; Smith-Moritz, Andreia; Singh, Seema; ...

    2015-07-10

    Background: Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. Results: PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focalmore » plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. Conclusion: This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.« less

  10. A study of electric field standing waves on reflection microspectroscopy of polystyrene particles.

    PubMed

    Brooke, Heather; Bronk, B V; McCutcheon, J N; Morgan, S L; Myrick, M L

    2009-11-01

    We have been investigating the mid-infrared (MIR) reflection spectrum of microparticles on mirrored substrates. Gold-coated porous alumina filters were used as a substrate to layer the particles and provide consistent reflection spectra. Polystyrene spheres with measured diameters of 0.42 microm were studied using Fourier transform infrared (FT-IR) reflection microspectroscopy, and spectra are shown for coverages in the range 0.5-6 monolayers (ML). Results show that absorption has a nonlinear, stairstep-like dependence on particle coverage and a wavelength dependence that can be explained by electric field standing waves (EFSW) caused by the mirrored substrate. The same effect is found to cause progressive weakening of the observed spectra as a function of increasing wavelength in sub-monolayer coverage measurements. Scattering effects in the spectra are consistent with surface scattering at the antinodes of the EFSW. These observations provide explanations for differences seen between optical properties of particles calculated using the specular-reflection method versus those calculated using traditional aerosol methods. A simple multilayer method for estimating particle absorption coefficients is demonstrated that compares well with values reported using ellipsometry for bulk polystyrene. Another simple method based on submonolayer coverage spectra provides spectra suitable for classification analysis but is only semi-quantitative at determining absorption coefficients.

  11. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy

    PubMed Central

    Brauchle, Eva; Thude, Sibylle; Brucker, Sara Y.; Schenke-Layland, Katja

    2014-01-01

    Although apoptosis and necrosis have distinct features, the identification and discrimination of apoptotic and necrotic cell death in vitro is challenging. Immunocytological and biochemical assays represent the current gold standard for monitoring cell death pathways; however, these standard assays are invasive, render large numbers of cells and impede continuous monitoring experiments. In this study, both room temperature (RT)-induced apoptosis and heat-triggered necrosis were analyzed in individual Saos-2 and SW-1353 cells by utilizing Raman microspectroscopy. A targeted analysis of defined cell death modalities, including early and late apoptosis as well as necrosis, was facilitated based on the combination of Raman spectroscopy with fluorescence microscopy. Spectral shifts were identified in the two cell lines that reflect biochemical changes specific for either RT-induced apoptosis or heat-mediated necrosis. A supervised classification model specified apoptotic and necrotic cell death based on single cell Raman spectra. To conclude, Raman spectroscopy allows a non-invasive, continuous monitoring of cell death, which may help shedding new light on complex pathophysiological or drug-induced cell death processes. PMID:24732136

  12. In vitro colocalization of plasmonic nano-biolabels and biomolecules using plasmonic and Raman scattering microspectroscopy.

    PubMed

    Chaudhari, Kamalesh; Pradeep, Thalappil

    2015-04-01

    An insight into the intracellular fate of theranostics is important for improving their potential in biological applications. In vivo efficacy of plasmonic theranostics depends on our ability to monitor temporal changes in their size, shape, and state of aggregation, and the identification of molecules adsorbed on their surfaces. We develop a technique which combines plasmonic and Raman scattering microspectroscopy to colocalize plasmonic scattering from metallic nanoparticles with the Raman signatures of biomolecules adsorbed on the surface of the former. Using this technique, we have colocalized biomolecules with the plasmonic scattering from silver nanoparticles in the vicinity of Escherichia coli bacteria. To prove the applicability of this setup for the measurements on mammalian cells, imaging of HEK293 cells treated with gold nanoparticles was performed. We discuss the importance of such correlated measurements over individual techniques, although the latter may lead to misinterpretation of results. Finally, with the above-mentioned examples, we have given criteria to improve the specificity of theranostics. We believe that this methodology will be considered as a prime development in the assessment of theranostics.

  13. Profiling pluripotent stem cells and organelles using synchrotron radiation infrared microspectroscopy.

    PubMed

    Sandt, Christophe; Frederick, Joni; Dumas, Paul

    2013-01-01

    FTIR micro-spectroscopy is a sensitive, non-destructive and label-free method offering diffraction-limited resolution with high signal-to-noise ratios when combined with a synchrotron radiation source. The vibrational signature of individual cells was used to validate an alternative strategy for reprogramming induced pluripotent stem cells generated from amniocytes. The iPSC lines PB09 and PB10, were reprogrammed from the same amniocyte cell line using respectively the Oct54, Sox2, Lin28, and Nanog and the Oct4 and Sox2 transcription factor cocktail. We show that cells reprogrammed by the two different sets of transfection factors have similar spectral signatures after reprogramming, except for a small subpopulation of cells in one of the cell lines. Mapping HeLa cells at subcellular resolution, we show that the Golgi apparatus, the cytoplasm and the nucleus have a specific spectral signature. The CH(3):CH(2) ratio is the highest in the nucleus and the lowest in the Golgi apparatus/endoplasmic reticulum, in agreement with the membrane composition of these organelles. This is confirmed by specific staining of the organelles with fluorescent dyes. Subcellular differentiation of cell compartments is also demonstrated in living cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lipid quantification by Raman microspectroscopy as a potential biomarker in prostate cancer.

    PubMed

    O'Malley, Jordan; Kumar, Rahul; Kuzmin, Andrey N; Pliss, Artem; Yadav, Neelu; Balachandar, Srimmitha; Wang, Jianmin; Attwood, Kristopher; Prasad, Paras N; Chandra, Dhyan

    2017-07-01

    Metastatic castration-resistant prostate cancer (mCRPC) remains incurable and is one of the leading causes of cancer-related death among American men. Therefore, detection of prostate cancer (PCa) at early stages may reduce PCa-related mortality in men. We show that lipid quantification by vibrational Raman Microspectroscopy and Biomolecular Component Analysis may serve as a potential biomarker in PCa. Transcript levels of lipogenic genes including sterol regulatory element-binding protein-1 (SREBP-1) and its downstream effector fatty acid synthase (FASN), and rate-limiting enzyme acetyl CoA carboxylase (ACACA) were upregulated corresponding to both Gleason score and pathologic T stage in the PRAD TCGA cohort. Increased lipid accumulation in late-stage transgenic adenocarcinoma of mouse prostate (TRAMP) tumors compared to early-stage TRAMP and normal prostate tissues were observed. FASN along with other lipogenesis enzymes, and SREBP-1 proteins were upregulated in TRAMP tumors compared to wild-type prostatic tissues. Genetic alterations of key lipogenic genes predicted the overall patient survival using TCGA PRAD cohort. Correlation between lipid accumulation and tumor stage provides quantitative marker for PCa diagnosis. Thus, Raman spectroscopy-based lipid quantification could be a sensitive and reliable tool for PCa diagnosis and staging. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Characteristics of electrically injured skin from human hand tissue samples using Fourier transform infrared microspectroscopy.

    PubMed

    Li, Shi-Ying; Zou, Dong-Hua; Luo, Yi-Wen; Sun, Qi-Ran; Deng, Kai-Fei; Chen, Yi-Jiu; Huang, Ping

    2014-01-01

    This technical note describes a method for distinguishing normal skin tissue samples from those electrically injured by Fourier transform infrared microspectroscopy (FTIR MSP). Furthermore, the infrared spectral features of electrically injured cells and tissues were evaluated to identify molecular changes in epidermal cells. In the present study, 20 human hand tissue samples were evaluated macroscopically and histopathologically. The electrically injured skin samples were subdivided into 2 regions [normal cell regions (NCRs) and polarized cell regions (PCRs)] and 14 major spectral absorption bands were selected. The spectral results showed that the band absorbance at 1080, 1126, 1172, 1242, 1307, 1403, 1456, 1541, 2852, 2925, 2957, 3075, and 3300cm(-1) increased significantly both in the stratum and non-stratum corneum of the PCRs in electrically injured skin tissues samples. No significant difference was found between normal skin and the NCR of the electrically injured skin samples. The band absorbance ratios of A1172/A1126, A1456/A1403, and A2925/A2957 were significantly increased, whereas the A1652/A1541 ratio was decreased in the PCR of the stratum corneum and non-stratum corneum. Baseline changes from 4000 to near 1737cm(-1) were observed in the spectra of the electrically injured skin samples, which were interpreted in terms of the pathological process involved in electrical injury. FTIR-MSP presents a useful method to provide objective spectral markers for the assisted diagnosis of electrical marks. © 2013.

  16. Application of FTIR microspectroscopy for characterization of biomolecular changes in human melanoma cells treated by sesamol and kojic acid.

    PubMed

    Srisayam, Montra; Weerapreeyakul, Natthida; Barusrux, Sahapat; Tanthanuch, Waraporn; Thumanu, Kanjana

    2014-03-01

    Hyperpigmentation is aesthetic undesirable. Sesamol and the standard antimelanogenic agent (kojic acid) were shown to hinder melanogenesis by blocking tyrosinase and reducing melanin content. The FTIR microspectroscopy was used in an attempt to find a novel method to define biological alternation in a melanogenesis inhibition of sesamol and kojic acid. Tyrosinase inhibition and melanin content of sesamol and kojic acid were evaluated. The FTIR microspectroscopy was adopted to define the vibrational characteristic involved with the melanogenesis in the untreated SK-MEL2 cells vs. the sesamol- and kojic-treated SK-MEL2 cells. Sesamol and kojic acid inhibited mushroom tyrosinase at IC₅₀ of 0.33 μg/ml and 6.1±0.4 μg/ml, respectively. Moreover, 30 μg/ml sesamol inhibited 23.55±8.25% cellular tyrosinase activity in human SK-MEL2 cells, while 600 μg/ml kojic acid inhibited 33.9±1.4% cellular tyrosinase activity in the same cells. In the SK-MEL2-treated with two inhibitors, the FTIR spectra assigned to the lipid and nucleic acid bands were significantly depleted with the secondary protein structure shifted to a more β-pleated secondary protein one. Both sesamol and kojic acid display a similar pattern of antimelanogenesis activity albeit to a different degree. The mechanism of their whitening effect may be via the alteration of (a) the enzyme conformation disallowing the ordinary enzyme-substrate interaction and maybe (b) the integrity of the lipid-containing melanosome. Our results support the alternative use of FTIR microspectroscopy as a simple and reagent-free method for characterization of biomolecular changes in human melanoma cells. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Localized (5 μm) probing and detailed mapping of hair with synchrotron powered FT-IR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Wetzel, David L.; Williams, Gwyn P.

    1998-06-01

    The thickness and high absorptivity of single hairs typically result in the saturation of major infrared bands and their distortion. Single human hairs longitudinally microtomed and mounted on mirror slides were scanned routinely in the past with a 20 μm×100 μm aperture that limited spatial resolution for localized probing and detailed mapping. Use of the nondivergent, bright, and low-noise synchrotron source for FT-IR microspectroscopy enables good S/N even at apertures as small as 5-6 μm. Functional group mapping as well as localized probing for extraneous materials illustrates the utility of this powerful probe.

  18. Molecular characterization of cyanobacterial silicification using synchrotron infrared micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Benning, Liane G.; Phoenix, V. R.; Yee, N.; Tobin, M. J.

    2004-02-01

    Synchrotron-based Fourier-transform infrared (SR-FTIR) micro-spectroscopy was used to determine the concentration-dependent response of the organic structure of live cyanobacterial cells to silicification. Mid-infrared (4000-600 cm -1) measurements carried out on single filaments and sheaths of the cyanobacteria Calothrix sp. (strain KC97) were used to monitor the interaction between a polymerizing silica solution and the organic functional groups of the cells during progressive silicification. Spectra of whole-cells and sheaths were analyzed and the spectral features were assigned to specific functional groups related to the cell: lipids (-CH 2 and -CH 3; at 2870-2960 cm -1), fatty acids (>C=O at 1740 cm -1), proteins (amides I and II at 1650 and 1540 cm -1), nucleic acids (>P=O 1240 cm -1), carboxylic acids (C-O at 1392 cm -1), and polysaccharides (C-O between 1165 and 1030 cm -1). These vibrations and the characteristic vibrations for silica (Si-O between 1190 and 1060 cm -1; to some extent overlapping with the C-O frequencies of polysaccharides and Si-O at 800 cm -1) were used to follow the progress of silicification. Relative to unsilicified samples, the intensity of the combined C-O/Si-O vibration band increased considerably over the course of the silicification (whole-cells by > 90% and sheath by ˜75%). This increase is a consequence of (1) extensive growth of the sheath in response to the silicification, and (2) the formation of thin amorphous silica layers on the sheath. The formation of a silica specific band (˜800 cm -1) indicates, however, that the precipitation of amorphous silica is controlled by the dehydroxylation of abiotically formed silanol groups.

  19. Imaging the Material Properties of Bone Specimens using Reflection-Based Infrared Microspectroscopy

    PubMed Central

    Acerbo, Alvin S.; Carr, G. Lawrence; Judex, Stefan; Miller, Lisa M.

    2012-01-01

    Fourier Transform InfraRed Microspectroscopy (FTIRM) is a widely used method for mapping the material properties of bone and other mineralized tissues, including mineralization, crystallinity, carbonate substitution, and collagen cross-linking. This technique is traditionally performed in a transmission-based geometry, which requires the preparation of plastic-embedded thin sections, limiting its functionality. Here, we theoretically and empirically demonstrate the development of reflection-based FTIRM as an alternative to the widely adopted transmission-based FTIRM, which reduces specimen preparation time and broadens the range of specimens that can be imaged. In this study, mature mouse femurs were plastic-embedded and longitudinal sections were cut at a thickness of 4 μm for transmission-based FTIRM measurements. The remaining bone blocks were polished for specular reflectance-based FTIRM measurements on regions immediately adjacent to the transmission sections. Kramers-Kronig analysis of the reflectance data yielded the dielectric response from which the absorption coefficients were directly determined. The reflectance-derived absorbance was validated empirically using the transmission spectra from the thin sections. The spectral assignments for mineralization, carbonate substitution, and collagen cross-linking were indistinguishable in transmission and reflection geometries, while the stoichiometric/non-stoichiometric apatite crystallinity parameter shifted from 1032 / 1021 cm−1 in transmission-based to 1035 / 1025 cm−1 in reflection-based data. This theoretical demonstration and empirical validation of reflection-based FTIRM eliminates the need for thin sections of bone and more readily facilitates direct correlations with other methods such nanoindentation and quantitative backscatter electron imaging (qBSE) from the same specimen. It provides a unique framework for correlating bone’s material and mechanical properties. PMID:22455306

  20. Imaging the Material Properties of Bone Specimens Using Reflection-Based Infrared Microspectroscopy

    SciTech Connect

    Acerbo A. S.; Carr, G.L.; Judex, S.

    2012-03-13

    Fourier transform infrared microspectroscopy (FTIRM) is a widely used method for mapping the material properties of bone and other mineralized tissues, including mineralization, crystallinity, carbonate substitution, and collagen cross-linking. This technique is traditionally performed in a transmission-based geometry, which requires the preparation of plastic-embedded thin sections, limiting its functionality. Here, we theoretically and empirically demonstrate the development of reflection-based FTIRM as an alternative to the widely adopted transmission-based FTIRM, which reduces specimen preparation time and broadens the range of specimens that can be imaged. In this study, mature mouse femurs were plastic-embedded and longitudinal sections were cut at a thicknessmore » of 4 {micro}m for transmission-based FTIRM measurements. The remaining bone blocks were polished for specular reflectance-based FTIRM measurements on regions immediately adjacent to the transmission sections. Kramers-Kronig analysis of the reflectance data yielded the dielectric response from which the absorption coefficients were directly determined. The reflectance-derived absorbance was validated empirically using the transmission spectra from the thin sections. The spectral assignments for mineralization, carbonate substitution, and collagen cross-linking were indistinguishable in transmission and reflection geometries, while the stoichiometric/nonstoichiometric apatite crystallinity parameter shifted from 1032/1021 cm{sup -1} in transmission-based to 1035/1025 cm{sup -1} in reflection-based data. This theoretical demonstration and empirical validation of reflection-based FTIRM eliminates the need for thin sections of bone and more readily facilitates direct correlations with other methods such as nanoindentation and quantitative backscatter electron imaging (qBSE) from the same specimen. It provides a unique framework for correlating bone's material and mechanical properties.« less

  1. Optimal methods for processing mineralized tissues for Fourier transform infrared microspectroscopy.

    PubMed

    Aparicio, S; Doty, S B; Camacho, N P; Paschalis, E P; Spevak, L; Mendelsohn, R; Boskey, A L

    2002-05-01

    Fourier transform infrared microspectroscopy (FTIRM) and infrared imaging (FTIRI) are techniques utilized in the analysis of bone mineral and matrix properties in health and disease. Since the spatial arrangement of bone tissue is conserved using FTIRM and FTIRI, quantitative data can be obtained on bone mineral (hydroxyapatite) crystalline size and composition, and on matrix structure and composition at discrete anatomic locations with a spatial resolution from approximately 7 mm (FTIRI) to 10 mm (FTIRM). To section bone for FTIRM and FTIRI, it must be preserved ("fixed") to maintain its properties, and embedded in a hard supportive material. Since most of the embedding media have components that spectrally overlap the components of mineralized tissues, it is critical to define optimal embedding and fixation protocols that have the least effect on mineral and matrix spectra. In the current study, the spectra of mouse calvaria in seven different fixatives and six different commonly used embedding media were assessed by FTIRM and FTIRI. The fixatives evaluated were absolute ethanol, 70% ethanol, glycerol, formaldehyde, EM fixative, and formalin in cacodylate or phosphate-buffered saline. The embedding media tested were Araldite, Epon, JB-4, LR White, PMMA, and Spurr. Comparisons were made to FTIR spectra obtained from unprocessed ground calvaria and to spectra of cryosections of unfixed tissue, fast-frozen in polyvinyl alcohol (5% PVA). Non-aqueous fixatives and embedding in LR White, Spurr, Araldite, and PMMA had the least effect on the spectral parameters measured (mineral to matrix ratio, mineral crystallinity, and collagen maturity) compared with cryo-sectioned calvaria and non-fixed, non-embedded calvaria in KBr pellets.

  2. Imaging the material properties of bone specimens using reflection-based infrared microspectroscopy.

    PubMed

    Acerbo, Alvin S; Carr, G Lawrence; Judex, Stefan; Miller, Lisa M

    2012-04-17

    Fourier transform infrared microspectroscopy (FTIRM) is a widely used method for mapping the material properties of bone and other mineralized tissues, including mineralization, crystallinity, carbonate substitution, and collagen cross-linking. This technique is traditionally performed in a transmission-based geometry, which requires the preparation of plastic-embedded thin sections, limiting its functionality. Here, we theoretically and empirically demonstrate the development of reflection-based FTIRM as an alternative to the widely adopted transmission-based FTIRM, which reduces specimen preparation time and broadens the range of specimens that can be imaged. In this study, mature mouse femurs were plastic-embedded and longitudinal sections were cut at a thickness of 4 μm for transmission-based FTIRM measurements. The remaining bone blocks were polished for specular reflectance-based FTIRM measurements on regions immediately adjacent to the transmission sections. Kramers-Kronig analysis of the reflectance data yielded the dielectric response from which the absorption coefficients were directly determined. The reflectance-derived absorbance was validated empirically using the transmission spectra from the thin sections. The spectral assignments for mineralization, carbonate substitution, and collagen cross-linking were indistinguishable in transmission and reflection geometries, while the stoichiometric/nonstoichiometric apatite crystallinity parameter shifted from 1032/1021 cm(-1) in transmission-based to 1035/1025 cm(-1) in reflection-based data. This theoretical demonstration and empirical validation of reflection-based FTIRM eliminates the need for thin sections of bone and more readily facilitates direct correlations with other methods such as nanoindentation and quantitative backscatter electron imaging (qBSE) from the same specimen. It provides a unique framework for correlating bone's material and mechanical properties.

  3. Tracking infrared signatures of drugs in cancer cells by Fourier transform microspectroscopy.

    PubMed

    Bellisola, Giuseppe; Della Peruta, Marco; Vezzalini, Marzia; Moratti, Elisabetta; Vaccari, Lisa; Birarda, Giovanni; Piccinini, Massimo; Cinque, Gianfelice; Sorio, Claudio

    2010-12-01

    Aimed at developing accurate, reliable and cost-saving analytical techniques for drugs screening we evaluated the potential of Fourier Transform (FT) InfraRed (IR) microspectroscopy (microFTIR) as a quantitative pre-diagnostic approach for the rapid identification of IR signatures of drugs targeting specific molecular pathways causing Chronic Myeloid Leukemia (CML). To obtain reproducible FTIR absorbance spectra at the necessary spatial resolution we optimized sample preparation and acquisition parameters on a single channel Mercury-Cadmium-Telluride (MCT) detector in the spectral interval of frequencies from 4000 to 800 cm(-1). Single K562 cells were illuminated by Synchrotron Radiation (SR) and a number of ~15 K562 cells spread in monolayer were illuminated by a conventional IR source (Globar), respectively. Combining IR spectral data with the results of complementary biochemical investigations carried out in samples by different analytical methods we identified and cross-validated IR signatures of drugs targeting the oncogenic protein BCR/ABL and its associated abnormal tyrosine kinase activity in K562 cell line. Unsupervised pattern recognition performed by Hierarchical Cluster Analysis (HCA) clustered the spectra of single K562 cells in two distinct groups roughly corresponding to living and to apoptotic cells, respectively. The corresponding IR spectral profiles were assumed to represent drug-resistant and drug-sensitive cells. Significant variations with increasing percentages of apoptotic cells were observed after the treatment of K562 cells with drugs that directly or indirectly target BCR/ABL. In conclusion, we suggest that microFTIR associated with multivariate data analysis may be useful to assess drug compounds in ex vivo cancer cell models and possibly peripheral blast cells from CML patients.

  4. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils

    DOE PAGES

    Eichorst, Stephanie A.; Strasser, Florian; Woyke, Tanja; ...

    2015-08-31

    The combined approach of incubating environmental samples with stable isotope-labeled substrates followed by single-cell analyses through high-resolution secondary ion mass spectrometry (NanoSIMS) or Raman microspectroscopy provides insights into the in situ function of microorganisms. This approach has found limited application in soils presumably due to the dispersal of microbial cells in a large background of particles. We developed a pipeline for the efficient preparation of cell extracts from soils for subsequent single-cell methods by combining cell detachment with separation of cells and soil particles followed by cell concentration. The procedure was evaluated by examining its influence on cell recoveries andmore » microbial community composition across two soils. This approach generated a cell fraction with considerably reduced soil particle load and of sufficient small size to allow single-cell analysis by NanoSIMS, as shown when detecting active N2-fixing and cellulose-responsive microorganisms via 15N2 and 13C-UL-cellulose incubations, respectively. The same procedure was also applicable for Raman microspectroscopic analyses of soil microorganisms, assessed via microcosm incubations with a 13C-labeled carbon source and deuterium oxide (D2O, a general activity marker). Lastly, the described sample preparation procedure enables single-cell analysis of soil microorganisms using NanoSIMS and Raman microspectroscopy, but should also facilitate single-cell sorting and sequencing.« less

  5. The influence of high fat diets with different ketogenic ratios on the hippocampal accumulation of creatine - FTIR microspectroscopy study

    NASA Astrophysics Data System (ADS)

    Skoczen, A.; Setkowicz, Z.; Janeczko, K.; Sandt, Ch.; Borondics, F.; Chwiej, J.

    2017-09-01

    The main purpose of this study was the determination and comparison of anomalies in creatine (Cr) accumulation occurring within CA3 and DG areas of hippocampal formation as a result of two high-fat, carbohydrate-restricted ketogenic diets (KD) with different ketogenic ratio (KR). To reach this goal, Fourier transformed infrared microspectroscopy with synchrotron radiation source (SRFTIR microspectroscopy) was applied for chemical mapping of creatine absorption bands, occurring around 1304, 1398 and 2800 cm- 1. The samples were taken from three groups of experimental animals: control group (N) fed with standard laboratory diet, KD1 and KD2 groups fed with high-fat diets with KR 5:1 and 9:1 respectively. Additionally, the possible influence on the phosphocreatine (PhCr, the high energetic form of creatine) content was evaluated by comparative analysis of chemical maps obtained for creatine and for compounds containing phosphate groups which manifest in the spectra at the wavenumbers of around 1240 and 1080 cm- 1. Our results showed that KD2 strongly modifies the frequency of Cr inclusions in both analyzed hippocampal areas. Statistical analysis, performed with Mann-Whitney U test revealed increased accumulation of Cr within CA3 and DG areas of KD2 fed rats compared to both normal rats and KD1 experimental group. Moreover, KD2 diet may modify the frequency of PhCr deposits as well as the PhCr to Cr ratio.

  6. Label-free nonenzymatic glycation monitoring of collagen scaffolds in type 2 diabetic mice by confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Shi, Panpan; Liu, Hanping; Deng, Xiaoyuan; Jin, Ying; Wang, Qiannan; Liu, Hao; Chen, Maosheng; Han, Xue

    2015-02-01

    Collagen is the key target of nonenzymatic glycation during physiopathological processes such as diabetes. The induced changes in the biochemical property of collagen by nonenzymatic glycation remain a major challenge to probe. This study investigated the use of confocal Raman microspectroscopy to label-free monitor the nonenzymatic glycation of collagen scaffolds from type 2 diabetic (T2D) mice at different timepoints (0, 4, 8, and 12 weeks). The glycated collagen scaffolds were obtained through the decellularized dermal matrix method to remove the epidermis layer, subcutaneous tissue, and cells in the dermis and to retain the collagen fibrils. Raman spectra showed no changes in Raman peak positions, which indicated that nonenzymatic glycation could produce no significant changes in the triple-helix structure of collagen in T2D mice. However, the relative intensity of the Raman bands at 921, 1033, 1244, 1274, 1346, 1635, and 1672 cm-1 increased as diabetic time progressed. Correlation analysis suggested that the spectra of these bands had a high positive correlation with the expression of anti-advanced glycation end products obtained by immunofluorescence imaging of the same collagen scaffolds. Confocal Raman microspectroscopy proves a potential tool to label-free monitor the collagen changes caused by nonenzymatic glycation in T2D mice.

  7. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils.

    PubMed

    Eichorst, Stephanie A; Strasser, Florian; Woyke, Tanja; Schintlmeister, Arno; Wagner, Michael; Woebken, Dagmar

    2015-10-01

    The combined approach of incubating environmental samples with stable isotope-labeled substrates followed by single-cell analyses through high-resolution secondary ion mass spectrometry (NanoSIMS) or Raman microspectroscopy provides insights into the in situ function of microorganisms. This approach has found limited application in soils presumably due to the dispersal of microbial cells in a large background of particles. We developed a pipeline for the efficient preparation of cell extracts from soils for subsequent single-cell methods by combining cell detachment with separation of cells and soil particles followed by cell concentration. The procedure was evaluated by examining its influence on cell recoveries and microbial community composition across two soils. This approach generated a cell fraction with considerably reduced soil particle load and of sufficient small size to allow single-cell analysis by NanoSIMS, as shown when detecting active N2-fixing and cellulose-responsive microorganisms via (15)N2 and (13)C-UL-cellulose incubations, respectively. The same procedure was also applicable for Raman microspectroscopic analyses of soil microorganisms, assessed via microcosm incubations with a (13)C-labeled carbon source and deuterium oxide (D2O, a general activity marker). The described sample preparation procedure enables single-cell analysis of soil microorganisms using NanoSIMS and Raman microspectroscopy, but should also facilitate single-cell sorting and sequencing. © FEMS 2015.

  8. Identification of Pulmonary Edema in Forensic Autopsy Cases of Sudden Cardiac Death Using Fourier Transform Infrared Microspectroscopy: A Pilot Study.

    PubMed

    Lin, Hancheng; Luo, Yiwen; Sun, Qiran; Zhang, Ji; Tuo, Ya; Zhang, Zhong; Wang, Lei; Deng, Kaifei; Chen, Yijiu; Huang, Ping; Wang, Zhenyuan

    2018-02-20

    Many studies have proven the usefulness of biofluid-based infrared spectroscopy in the clinical domain for diagnosis and monitoring the progression of diseases. Here we present a state-of-the-art study in the forensic field that employed Fourier transform infrared microspectroscopy for postmortem diagnosis of sudden cardiac death (SCD) by in situ biochemical investigation of alveolar edema fluid in lung tissue sections. The results of amide-related spectral absorbance analysis demonstrated that the pulmonary edema fluid of the SCD group was richer in protein components than that of the neurologic catastrophe (NC) and lethal multiple injuries (LMI) groups. The complementary results of unsupervised principle component analysis (PCA) and genetic algorithm-guided partial least-squares discriminant analysis (GA-PLS-DA) further indicated different global spectral band patterns of pulmonary edema fluids between these three groups. Ultimately, a random forest (RF) classification model for postmortem diagnosis of SCD was built and achieved good sensitivity and specificity scores of 97.3% and 95.5%, respectively. Classification predictions of unknown pulmonary edema fluid collected from 16 cases were also performed by the model, resulting in 100% correct discrimination. This pilot study demonstrates that FTIR microspectroscopy in combination with chemometrics has the potential to be an effective aid for postmortem diagnosis of SCD.

  9. Discrimination of micromass-induced chondrocytes from human mesenchymal stem cells by focal plane array-Fourier transform infrared microspectroscopy.

    PubMed

    Chonanant, Chirapond; Bambery, Keith R; Jearanaikoon, Nichada; Chio-Srichan, Sirinart; Limpaiboon, Temduang; Tobin, Mark J; Heraud, Philip; Jearanaikoon, Patcharee

    2014-12-01

    Rapid and sensitive methods for identifying stem cell differentiation state are required for facilitating future stem cell therapies. We aimed to evaluate the capability of focal plane array-Fourier transform infrared (FPA-FTIR) microspectroscopy for characterising the differentiation of chondrocytes from human mesenchymal stem cells (hMSCs). Successful induction was validated by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis for collagen and aggrecan expression as chondrocyte markers in parallel with the spectroscopy. Spectra derived from chondrocyte-induced cells revealed strong IR absorbance bands attributed to collagen near 1338 and 1234 cm(-1) and proteoglycan at 1245 and 1175-960 cm(-1) compared to the non-induced cells. In addition, spectra from control and induced cells are segregated into separate clusters in partial least squares discriminant analysis score plots at the very early stages of induction and discrimination of an independent set of validation spectra with 100% accuracy. The predominant bands responsible for this discrimination were associated with collagen and aggrecan protein concordant with those obtained from RT-PCR and Western blot techniques. Our findings support the capability of FPA-FTIR microspectroscopy as a label-free tool for stem cell characterization allowing rapid and sensitive detection of macromolecular changes during chondrogenic differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils

    PubMed Central

    Eichorst, Stephanie A.; Strasser, Florian; Woyke, Tanja; Schintlmeister, Arno; Wagner, Michael; Woebken, Dagmar

    2015-01-01

    The combined approach of incubating environmental samples with stable isotope-labeled substrates followed by single-cell analyses through high-resolution secondary ion mass spectrometry (NanoSIMS) or Raman microspectroscopy provides insights into the in situ function of microorganisms. This approach has found limited application in soils presumably due to the dispersal of microbial cells in a large background of particles. We developed a pipeline for the efficient preparation of cell extracts from soils for subsequent single-cell methods by combining cell detachment with separation of cells and soil particles followed by cell concentration. The procedure was evaluated by examining its influence on cell recoveries and microbial community composition across two soils. This approach generated a cell fraction with considerably reduced soil particle load and of sufficient small size to allow single-cell analysis by NanoSIMS, as shown when detecting active N2-fixing and cellulose-responsive microorganisms via 15N2 and 13C-UL-cellulose incubations, respectively. The same procedure was also applicable for Raman microspectroscopic analyses of soil microorganisms, assessed via microcosm incubations with a 13C-labeled carbon source and deuterium oxide (D2O, a general activity marker). The described sample preparation procedure enables single-cell analysis of soil microorganisms using NanoSIMS and Raman microspectroscopy, but should also facilitate single-cell sorting and sequencing. PMID:26324854

  11. Using synchrotron-based FT-IR microspectroscopy to study erucamide migration in 50-micron-thick bilayer linear low-density polyethylene and polyolefin plastomer films.

    PubMed

    Sankhe, Shilpa Y; Hirt, Douglas E

    2003-01-01

    The diffusion of additives in thick (approximately 500 microns) single layer and multilayer films has been characterized using FT-IR microspectroscopy. The objective of this research was to investigate additive migration and concentration profiles in coextruded multilayer films of industrially relevant thicknesses. In particular, the investigation focused on the migration of an erucamide slip agent in 50-micron-thick coextruded bilayer films of linear low-density polyethylene (LLDPE) and a polyolefin plastomer (POP). Erucamide concentration profiles were successfully mapped using synchrotron-based FT-IR microspectroscopy. The synchrotron radiation helped to achieve a higher spatial resolution for the thin films. Meticulous sample preparation was needed to map the thin film samples. Results with FT-IR microspectroscopy showed that the additive-concentration profiles were relatively uniform across the multilayer-film thickness irrespective of the intended initial additive distribution. For example, a bilayer planned for 1 wt % erucamide in an LLDPE layer and no erucamide in a POP layer showed significant additive migration into the POP layer at the extrusion rates used. FT-IR microspectroscopy results also showed that more erucamide migrated to the surface of a POP layer than an LLDPE layer. Attenuated total reflectance (ATR) FT-IR spectroscopy was used to confirm the time-dependent increase of erucamide surface concentration and that the increase was more pronounced at the surface of the POP layers.

  12. Synchrotron FTIR micro-spectroscopy for structural analysis of Lewy bodies in the brain of Parkinson’s disease patients

    NASA Astrophysics Data System (ADS)

    Araki, Katsuya; Yagi, Naoto; Ikemoto, Yuka; Yagi, Hisashi; Choong, Chi-Jing; Hayakawa, Hideki; Beck, Goichi; Sumi, Hisae; Fujimura, Harutoshi; Moriwaki, Taro; Nagai, Yoshitaka; Goto, Yuji; Mochizuki, Hideki

    2015-12-01

    Lewy bodies (LBs), which mainly consist of α-synuclein (α-syn), are neuropathological hallmarks of patients with Parkinson’s disease (PD). The fine structure of LBs is unknown, and LBs cannot be made artificially. Nevertheless, many studies have described fibrillisation using recombinant α-syn purified from E. coli. An extremely fundamental problem is whether the structure of LBs is the same as that of recombinant amyloid fibrils. Thus, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to analyse the fine structure of LBs in the brain of PD patients. Our results showed a shift in the infrared spectrum that indicates abundance of a β-sheet-rich structure in LBs. Also, 2D infrared mapping of LBs revealed that the content of the β-sheet structure is higher in the halo than in the core, and the core contains a large amount of proteins and lipids.

  13. Synchrotron Ultraviolet Microspectroscopy on Rat Cortical Bone: Involvement of Tyrosine and Tryptophan in the Osteocyte and Its Environment

    PubMed Central

    Pallu, Stéphane; Rochefort, Gael Y.; Jaffre, Christelle; Refregiers, Matthieu; Maurel, Delphine B.; Benaitreau, Delphine; Lespessailles, Eric; Jamme, Frédéric; Chappard, Christine; Benhamou, Claude-Laurent

    2012-01-01

    Alcohol induced osteoporosis is characterized by a bone mass decrease and microarchitecture alterations. Having observed an excess in osteocyte apoptosis, we aimed to assess the bone tissue biochemistry, particularly in the osteocyte and its environment. For this purpose, we used a model of alcohol induced osteoporosis in rats. Bone sections of cortical bone were investigated using synchrotron UV-microspectrofluorescence at subcellular resolution. We show that bone present three fluorescence peaks at 305, 333 and 385 nm, respectively corresponding to tyrosine, tryptophan and collagen. We have determined that tyrosine/collagen and tryptophan/collagen ratios were higher in the strong alcohol consumption group. Tryptophan is related to the serotonin metabolism involved in bone formation, while tyrosine is involved in the activity of tyrosine kinases and phosphatases in osteocytes. Our experiment represents the first combined synchrotron UV microspectroscopy analysis of bone tissue with a quantitative biochemical characterization in the osteocyte and surrounding matrix performed separately. PMID:22937127

  14. Monitoring the RNA distribution in human embryonic stem cells using Raman micro-spectroscopy and fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Falamas, A.; Kalra, S.; Chis, V.; Notingher, I.

    2013-11-01

    The aim of this study was to monitor the intracellular distribution of nucleic acids in human embryonic stem cells. Raman micro-spectroscopy and fluorescence imaging investigations were employed to obtain high-spatial resolution maps of nucleic acids. The DNA Raman signal was identified based on the 782 cm-1 band, while the RNA characteristic signal was detected based on the 813 cm-1 fingerprint band assigned to O-P-O symmetric stretching vibrations. Additionally, principal components analysis was performed and nucleic acids characteristic Raman signals were identified in the data set, which were plotted at each position in the cells. In this manner, high intensity RNA signal was identified in the cells nucleolus and cytoplasm, while the nucleus presented a much lower signal.

  15. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jinghua; Qi, Zeming; Huang, Qing; Wei, Xiaoli; Ke, Zhigang; Fang, Yusheng; Tian, Yangchao; Yu, Zengliang

    2013-01-01

    Energetic particles exist ubiquitously and cause varied biological effects such as DNA strand breaks, lipid peroxidation, protein modification, cell apoptosis or death. An emerging biotechnology based on ion-beam technique has been developed to serve as an effective tool for mutation breeding of crops and microbes. In order to improve the effectiveness of ion-beam biotechnology for mutation breeding, it is indispensible to gain a better understanding of the mechanism of the interactions between the energetic ions and biological systems which is still elusive. A new trend is to conduct more comprehensive research which is based on micro-scaled observation of the changes of the cellular structures and compositions under the interactions. For this purpose, advanced synchrotron FTIR (s-FTIR) microscopy was employed to monitor the cellular changes of single fungal hyphae under irradiation of α-particles from 241Am. Intracellular contents of ROS, MDA, GSSG/GSH and activities of CAT and SOD were measured via biochemical assay. Ion-irradiation on Rhizopus oryzae causes localized vacuolation, autolysis of cell wall and membrane, lipid peroxidation, DNA damage and conformational changes of proteins, which have been clearly revealed by the s-FTIR microspectroscopy. The different changes of cell viability, SOD and CAT activities can be explained by the ROS-involved chemical reactions. Evidently, the elevated level of ROS in hyphal cells upon irradiation plays the key role in the caused biological effect. This study demonstrates that s-FTIR microspectroscopy is an effective tool to study the damage of fungal hyphae caused by ionizing radiation and it facilitates the exploit of the mechanism for the interactions between the energetic ions and biological systems.

  16. Identification of individual red blood cells by Raman microspectroscopy for forensic purposes: in search of a limit of detection.

    PubMed

    Muro, Claire K; Lednev, Igor K

    2017-01-01

    Traces of body fluids can be present at a variety of crime scenes. It is important that forensic investigators have a reliable and nondestructive method of identifying these traces. Of equal importance is establishing the limitations of any method in use, including its detection limit. We have previously reported on the use of Raman microspectroscopy and multivariate data analysis to identify and differentiate body fluids. While many studies use serial dilutions to establish limits of detection, we utilized a different approach and demonstrated that a single red blood cell is sufficient to be correctly identified as blood. The experimental Raman spectra of individual red blood cells were loaded into the previously reported models for body fluid identification, and all were correctly classified as peripheral blood. These results demonstrate that our model can be used to identify peripheral blood, even if there is only a single red blood cell present. Furthermore, a single red blood cell is 5000× smaller than the amount of peripheral blood required to perform DNA analysis in a modern crime laboratory. This means that if a bloodstain is large enough for DNA analysis, Raman microspectroscopy should be able to make a positive identification. Considering that the sample analysis reported here was carried out with a different instrument, not the one used for the previously reported method development, these results also represent a form of method validation. The model's ability to correctly classify spectra acquired on a different instrumental platform is crucial in preparing it for practical application. Graphical Abstract Peripheral blood is of great interest in forensic sciences. While many tests are available for the identification of peripheral blood at a crime scene, most are presumptive and destructive. Here we present results that show our new, nondestructive method can identify peripheral blood using as little as a single red blood cell.

  17. Repartition of oil miscible and water soluble UV filters in an applied sunscreen film determined by confocal Raman microspectroscopy.

    PubMed

    Sohn, Myriam; Buehler, Theodor; Imanidis, Georgios

    2016-07-06

    Photoprotection provided by topical sunscreens is expressed by the sun protection factor (SPF) which depends primarily on the UV filters contained in the product and the applied sunscreen amount. Recently, the vehicle was shown to significantly impact film thickness distribution of an applied sunscreen and sunscreen efficacy. In the present work, repartition of the UV filters within the sunscreen film upon application is investigated for its role to affect sun protection efficacy. The spatial repartition of an oil-miscible and a water-soluble UV filter within the sunscreen film was studied using confocal Raman microspectroscopy. Epidermis of pig ear skin was used as substrate for application of three different sunscreen formulations, an oil-in-water emulsion, a water-in-oil emulsion, and a clear lipo-alcoholic spray (CAS) and SPF in vitro was measured. Considerable differences in the repartition of the UV filters upon application and evaporation of volatile ingredients were found between the tested formulations. A nearly continuous phase of lipid-miscible UV filter was formed only for the WO formulation with dispersed aggregates of water-soluble UV filter. OW emulsion and CAS exhibited interspersed patches of the two UV filters, whereas the segregated UV filter domains of the latter formulation were by comparison of a much larger scale and spanned the entire thickness of the sunscreen film. CAS therefore differed markedly from the other two formulations with respect to filter repartition. This difference should be reflected in SPF when the absorption spectra of the employed UV filters are not the same. Confocal Raman microspectroscopy was shown to be a powerful technique for studying this mechanism of sun protection performance of sunscreens.

  18. From the meso to the nanoscopic scale through synchrotron imaging approaches: advances and near future at the NSLS-II SRX beamline

    NASA Astrophysics Data System (ADS)

    De Andrade, V.; Thieme, J.; Ganne, J.; Beck, P.; Fayard, B.; Salomé, M.

    2012-12-01

    instrument for Earth Sciences. SRX is one of the first 6 project beamlines of the new National Synchrotron Light Source II (NSLS-II). Operating from 4.65 to 28 keV, SRX will comprise a high flux station and a nanoprobe (switchable within a couple of minutes), both operating with a world leading flux. SRX will start early science experiments in spring 2014. References [1] De Andrade, V., Susini, et al., "Submicrometer Hyperspectral X-ray Imaging of Heterogeneous Rocks and Geomaterials: Applications at the Fe K-Edge," Analytical Chemistry, 83(11), 4220-4227 (2011). [2] Beck P., De Andrade V., et al., "The redox state of iron in the matrix of CI, CM and metamorphosed CM chondrites by XANES spectroscopy". In press GCA. [3] Ganne J., De Andrade, et al., "Modern-style plate subduction and HP-LT rocks preserved in the Palaeoproterozoic West African Craton," Nature Geosciences, 5, 60-65, (2012). [4] De Andrade V., Thieme, J, et al., "The sub-micron resolution X-ray spectroscopy beamline at NSLS-II", Nuclear Instruments and Methods in Physics Research Section A, 649(1), 46-48 (2011).

  19. One-step simultaneous differential scanning calorimetry-FTIR microspectroscopy to quickly detect continuous pathways in the solid-state glucose/asparagine Maillard reaction.

    PubMed

    Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang

    2013-01-01

    The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.

  20. Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile-butadiene-styrene model samples and historical objects.

    PubMed

    Saviello, Daniela; Pouyet, Emeline; Toniolo, Lucia; Cotte, Marine; Nevin, Austin

    2014-09-16

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-μFTIR) was used to map photo-oxidative degradation of acrylonitrile-butadiene-styrene (ABS) and to investigate the presence and the migration of additives in historical samples from important Italian design objects. High resolution (3×3 μm(2)) molecular maps were obtained by FTIR microspectroscopy in transmission mode, using a new method for the preparation of polymer thin sections. The depth of photo-oxidation in samples was evaluated and accompanied by the formation of ketones, aldehydes, esters, and unsaturated carbonyl compounds. This study demonstrates selective surface oxidation and a probable passivation of material against further degradation. In polymer fragments from design objects made of ABS from the 1960s, UV-stabilizers were detected and mapped, and microscopic inclusions of proteinaceous material were identified and mapped for the first time. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Fourier transform infrared microspectroscopy identifies symmetric PO(2)(-) modifications as a marker of the putative stem cell region of human intestinal crypts.

    PubMed

    Walsh, Michael J; Fellous, Tariq G; Hammiche, Azzedine; Lin, Wey-Ran; Fullwood, Nigel J; Grude, Olaug; Bahrami, Fariba; Nicholson, James M; Cotte, Marine; Susini, Jean; Pollock, Hubert M; Brittan, Mairi; Martin-Hirsch, Pierre L; Alison, Malcolm R; Martin, Francis L

    2008-01-01

    Complex biomolecules absorb in the mid-infrared (lambda = 2-20 microm), giving vibrational spectra associated with structure and function. We used Fourier transform infrared (FTIR) microspectroscopy to "fingerprint" locations along the length of human small and large intestinal crypts. Paraffin-embedded slices of normal human gut were sectioned (10 microm thick) and mounted to facilitate infrared (IR) spectral analyses. IR spectra were collected using globar (15 microm x 15 microm aperture) FTIR microspectroscopy in reflection mode, synchrotron (microspectroscopy in transmission mode or near-field photothermal microspectroscopy. Dependent on the location of crypt interrogation, clear differences in spectral characteristics were noted. Epithelial-cell IR spectra were subjected to principal component analysis to determine whether wavenumber-absorbance relationships expressed as single points in "hyperspace" might on the basis of multivariate distance reveal biophysical differences along the length of gut crypts. Following spectroscopic analysis, plotted clusters and their loadings plots pointed toward symmetric (nu(s))PO(2)(-) (1,080 cm(-1)) vibrations as a discriminating factor for the putative stem cell region; this proved to be a more robust marker than other phenotypic markers, such as beta-catenin or CD133. This pattern was subsequently confirmed by image mapping and points to a novel approach of nondestructively identifying a tissue's stem cell location. nu(s)PO(2)(-), probably associated with DNA conformational alterations, might facilitate a means of identifying stem cells, which may have utility in other tissues where the location of stem cells is unclear.

  2. High Spatial Resolution Infrared Micro-Spectroscopy Reveals the Mechanism of Leaf Lignin Decomposition by Aquatic Fungi

    PubMed Central

    Kerr, Janice L.; Baldwin, Darren S.; Tobin, Mark J.; Puskar, Ljiljana; Kappen, Peter; Rees, Gavin N.; Silvester, Ewen

    2013-01-01

    Organic carbon is a critical component of aquatic systems, providing energy storage and transfer between organisms. Fungi are a major decomposer group in the aquatic carbon cycle, and are one of few groups thought to be capable of breaking down woody (lignified) tissue. In this work we have used high spatial resolution (synchrotron light source) infrared micro-spectroscopy to study the interaction between aquatic fungi and lignified leaf vein material (xylem) from River Redgum trees (E. camaldulensis) endemic to the lowland rivers of South-Eastern Australia. The work provides spatially explicit evidence that fungal colonisation of leaf litter involves the oxidative breakdown of lignin immediately adjacent to the fungal tissue and depletion of the lignin-bound cellulose. Cellulose depletion occurs over relatively short length scales (5–15 µm) and highlights the likely importance of mechanical breakdown in accessing the carbohydrate content of this resource. Low bioavailability compounds (oxidized lignin and polyphenols of plant origin) remain in colonised leaves, even after fungal activity diminishes, and suggests a possible pathway for the sequestration of carbon in wetlands. The work shows that fungi likely have a critical role in the partitioning of lignified material into a biodegradable fraction that can re-enter the aquatic carbon cycle, and a recalcitrant fraction that enters long-term storage in sediments or contribute to the formation of dissolved organic carbon in the water column. PMID:23577169

  3. Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis

    PubMed Central

    Oinas, J.; Rieppo, L.; Finnilä, M. A. J.; Valkealahti, M.; Lehenkari, P.; Saarakkala, S.

    2016-01-01

    The changes in chemical composition of human articular cartilage (AC) caused by osteoarthritis (OA) were investigated using Fourier transform infrared microspectroscopy (FTIR-MS). We demonstrate the sensitivity of FTIR-MS for monitoring compositional changes that occur with OA progression. Twenty-eight AC samples from tibial plateaus were imaged with FTIR-MS. Hyperspectral images of all samples were combined for K-means clustering. Partial least squares regression (PLSR) analysis was used to compare the spectra with the OARSI grade (histopathological grading of OA). Furthermore, the amide I and the carbohydrate regions were used to estimate collagen and proteoglycan contents, respectively. Spectral peak at 1338 cm−1 was used to estimate the integrity of the collagen network. The layered structure of AC was revealed using the carbohydrate region for clustering. Statistically significant correlation was observed between the OARSI grade and the collagen integrity in the superficial (r = −0.55) and the deep (r = −0.41) zones. Furthermore, PLSR models predicted the OARSI grade from the superficial (r = 0.94) and the deep (r = 0.77) regions of the AC with high accuracy. Obtained results suggest that quantitative and qualitative changes occur in the AC composition during OA progression, and these can be monitored by the use of FTIR-MS. PMID:27445254

  4. Direct Measurement of pH in Individual Particles via Raman Microspectroscopy and Variation in Acidity with Relative Humidity.

    PubMed

    Rindelaub, Joel D; Craig, Rebecca L; Nandy, Lucy; Bondy, Amy L; Dutcher, Cari S; Shepson, Paul B; Ault, Andrew P

    2016-02-18

    Atmospheric aerosol acidity is an important characteristic of aqueous particles, which has been linked to the formation of secondary organic aerosol by catalyzing reactions of oxidized organic compounds that have partitioned to the particle phase. However, aerosol acidity is difficult to measure and traditionally estimated using indirect methods or assumptions based on composition. Ongoing disagreements between experiments and thermodynamic models of particle acidity necessitate improved fundamental understanding of pH and ion behavior in high ionic strength atmospheric particles. Herein, Raman microspectroscopy was used to determine the pH of individual particles (H2SO4+MgSO4) based on sulfate and bisulfate concentrations determined from νs(SO4(2-)) and νs(HSO4(-)), the acid dissociation constant, and activity coefficients from extended Debye-Hückel calculations. Shifts in pH and peak positions of νs(SO4(2-)) and νs(HSO4(-)) were observed as a function of relative humidity. These results indicate the potential for direct spectroscopic determination of pH in individual particles and the need to improve fundamental understanding of ion behavior in atmospheric particles.

  5. The Use of Synchrotron Infrared Microspectroscopy in the Assessment of Cutaneous T-cell Lymphoma vs. Pityriasis lichenoides Chronica

    SciTech Connect

    El Bedewi, A.; El Anany, G; El Mofty, M

    2010-01-01

    The diagnosis of cutaneous lymphomas remains a challenge for both the clinician and dermatopathologist. To differentiate between frank malignant and premalignant lymphocytes within the skin. This study was performed on 20 patients with a mean age of 50 years. They were divided into two groups: mycosis fungoides (MF) (stage IA, IB and IIA) and pityriasis lichenoides chronica (PLC). Immunophenotyping using antibodies CD3, CD4, CD8, CD20 and CD30 was performed. Synchrotron Fourier transform infrared microspectroscopy (S-FTIRM) was performed on cell nuclei to assess chemical differences between MF and PLC cases as a potential complementary screening tool. Dermal spectra of both MFmore » and PLC were compared using principal components analysis (PCA) of the S-FTIRM data. All PLC spectra was clustered together. However, the MF spectra formed two clusters, one that grouped with the PLC and the other grouped separately. Moreover, protein and nucleic acids showed highly significant differences between MF (IIA and IB), MF (IA) and PLC. The malignant transformation within lymphocytes was identifiable through the spectroscopic analysis of protein, RNA and DNA with S-FTIRM, making it a promising tool for classifying the progression of cutaneous T-cell lymphoma.« less

  6. Polarization Microscopy and Infrared Microspectroscopy of Integument Coverings of Diapausing Larvae in Two Distantly Related Nonsocial Bees.

    PubMed

    Mello, Maria Luiza S; Vidal, Benedicto de Campos; Rozen, Jerome G

    2018-02-01

    The larvae of the two distantly related nonsocial bees Ericrocis lata (Apidae) and Hesperapis (Carinapis) rhodocerata (Melittidae), which develop mostly under arid desert areas of North America, and that differ in that they either spin (E. lata) or do not spin (H. rhodocerata) protective cocoons before entering diapause, produce transparent films that cover the larval integument. To understand the nature of these films, their responses to topochemical tests and their characteristics when examined with fluorescence and high-performance polarization microscopy and microspectroscopy were studied. A positive staining by Sudan black B, birefringence of negative sign, and a Fourier transform-infrared (FT-IR) spectrum typical of lipids were detected for the integument covering of both species. The FT-IR signature, particularly, suggests a wax chemical composition for these lipid coverings, resembling the waxes that are used as construction materials in the honey cells produced by social bees. Considering the arid environmental conditions under which these larvae develop, we hypothesize that their covering films may have evolved as protection against water depletion. This hypothesis seems especially appropriate for H. rhodocerata larvae, which are capable of undergoing a long diapause period in the absence of a protective cocoon.

  7. A semi-automated Raman micro-spectroscopy method for morphological and chemical characterizations of microplastic litter.

    PubMed

    L, Frère; I, Paul-Pont; J, Moreau; P, Soudant; C, Lambert; A, Huvet; E, Rinnert

    2016-12-15

    Every step of microplastic analysis (collection, extraction and characterization) is time-consuming, representing an obstacle to the implementation of large scale monitoring. This study proposes a semi-automated Raman micro-spectroscopy method coupled to static image analysis that allows the screening of a large quantity of microplastic in a time-effective way with minimal machine operator intervention. The method was validated using 103 particles collected at the sea surface spiked with 7 standard plastics: morphological and chemical characterization of particles was performed in <3h. The method was then applied to a larger environmental sample (n=962 particles). The identification rate was 75% and significantly decreased as a function of particle size. Microplastics represented 71% of the identified particles and significant size differences were observed: polystyrene was mainly found in the 2-5mm range (59%), polyethylene in the 1-2mm range (40%) and polypropylene in the 0.335-1mm range (42%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Chemical changes demonstrated in cartilage by synchrotron infrared microspectroscopy in an antibody-induced murine model of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Croxford, Allyson M.; Selva Nandakumar, Kutty; Holmdahl, Rikard; Tobin, Mark J.; McNaughton, Don; Rowley, Merrill J.

    2011-06-01

    Collagen antibody-induced arthritis develops in mice following passive transfer of monoclonal antibodies (mAbs) to type II collagen (CII) and is attributed to effects of proinflammatory immune complexes, but transferred mAbs may react directly and damagingly with CII. To determine whether such mAbs cause cartilage damage in vivo in the absence of inflammation, mice lacking complement factor 5 that do not develop joint inflammation were injected intravenously with two arthritogenic mAbs to CII, M2139 and CIIC1. Paws were collected at day 3, decalcified, paraffin embedded, and 5-μm sections were examined using standard histology and synchrotron Fourier-transform infrared microspectroscopy (FTIRM). None of the mice injected with mAb showed visual or histological evidence of inflammation but there were histological changes in the articular cartilage including loss of proteoglycan and altered chondrocyte morphology. Findings using FTIRM at high lateral resolution revealed loss of collagen and the appearance of a new peak at 1635 cm-1 at the surface of the cartilage interpreted as cellular activation. Thus, we demonstrate the utility of synchrotron FTIRM for examining chemical changes in diseased cartilage at the microscopic level and establish that arthritogenic mAbs to CII do cause cartilage damage in vivo in the absence of inflammation.

  9. Direct analysis of water content and movement in single dormant bacterial spores using confocal Raman microspectroscopy and Raman imaging.

    PubMed

    Kong, Lingbo; Setlow, Peter; Li, Yong-qing

    2013-08-06

    Heavy water (D2O) has a distinct molecular vibration spectrum, and this has been used to analyze the water content, distribution, and movement in single dormant Bacillus cereus spores using confocal Raman microspectroscopy and Raman imaging. These methods have been used to measure the kinetics of D2O release from spores suspended in H2O, the spatial distribution of D2O in spores, and the kinetics of D2O release from spores during dehydration in air at room temperature. The results obtained were as follows. (1) The Raman spectrum of single D2O-loaded dormant spores suggests that D2O in spores is in a relatively weak hydrogen-bonded mode, compared to the strong hydrogen-bonded mode in pure D2O. (2) The D2O content of individual spores in a population was somewhat heterogeneous. (3) The spatial distribution of D2O in single dormant spores is uneven, and is less dense in the central core region. Raman images of different molecular components indicate that the water distribution is somewhat different from those of proteins and Ca-dipicolinic acid. (4) Exchange of spore D2O with external H2O took place in less than 1 s. (5) However, release of spore D2O during air dehydration at room temperature was slow and heterogeneous and took 2-3 h for complete D2O release.

  10. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil.

    PubMed

    Serrano, Paloma; Hermelink, Antje; Lasch, Peter; de Vera, Jean-Pierre; König, Nicole; Burckhardt, Oliver; Wagner, Dirk

    2015-12-01

    Methanogenic archaea are widespread anaerobic microorganisms responsible for the production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena Delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the differences observed in their resistance, we described the chemical composition of methanogenic strains from permafrost and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is a powerful tool for microbial identification and provides fingerprint-like information about the chemical composition of the cells. Our results show that the chemical composition of methanogens from permafrost-affected soils presents a high homology and is remarkably different from strains inhabiting non-permafrost environments. In addition, we performed a phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove the different evolutionary relationship of the permafrost strains. We conclude that the permafrost methanogenic strains show a convergent chemical composition regardless of their genotype. This fact is likely to be the consequence of a complex adaptive process to the Siberian permafrost environment and might be the reason underlying their resistant nature. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Development of a classification model for non-alcoholic steatohepatitis (NASH) using confocal Raman micro-spectroscopy.

    PubMed

    Yan, Jie; Yu, Yang; Kang, Jeon Woong; Tam, Zhi Yang; Xu, Shuoyu; Fong, Eliza Li Shan; Singh, Surya Pratap; Song, Ziwei; Tucker-Kellogg, Lisa; So, Peter T C; Yu, Hanry

    2017-12-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in developed countries [1]. A subset of individuals with NAFLD progress to non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD which predisposes individuals to cirrhosis, liver failure and hepatocellular carcinoma. The current gold standard for NASH diagnosis and staging is based on histological evaluation, which is largely semi-quantitative and subjective. To address the need for an automated and objective approach to NASH detection, we combined Raman micro-spectroscopy and machine learning techniques to develop a classification model based on a well-established NASH mouse model, using spectrum pre-processing, biochemical component analysis (BCA) and logistic regression. By employing a selected pool of biochemical components, we identified biochemical changes specific to NASH and show that the classification model is capable of accurately detecting NASH (AUC=0.85-0.87) in mice. The unique biochemical fingerprint generated in this study may serve as a useful criterion to be leveraged for further validation in clinical samples. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. In situ observation of dynamic electrodeposition processes by soft x-ray fluorescence microspectroscopy and keyhole coherent diffractive imaging

    NASA Astrophysics Data System (ADS)

    Bozzini, Benedetto; Kourousias, George; Gianoncelli, Alessandra

    2017-03-01

    This paper describes two novel in situ microspectroscopic approaches to the dynamic study of electrodeposition processes: x-ray fluorescence (XRF) mapping with submicrometric space resolution and keyhole coherent diffractive imaging (kCDI) with nanometric lateral resolution. As a case study, we consider the pulse-plating of nanocomposites with polypyrrole matrix and Mn x Co y O z dispersoids, a prospective cathode material for zinc-air batteries. This study is centred on the detailed measurement of the elemental distributions developing in two representative subsequent growth steps, based on the combination of in situ identical-location XRF microspectroscopy—accompanied by soft-x ray absorption microscopy—and kCDI. XRF discloses space and time distributions of the two electrodeposited metals and kCDI on the one hand allows nanometric resolution and on the other hand provides complementary absorption as well as phase contrast modes. The joint information derived from these two microspectroscopies allows measurement of otherwise inaccessible observables that are a prerequisite for electrodeposition modelling and control accounting for dynamic localization processes.

  13. Vibrational microspectroscopic identification of powdered traditional medicines: Chemical micromorphology of Poria observed by infrared and Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jian-bo; Sun, Su-qin; Ma, Fang; Zhou, Qun

    2014-07-01

    Microscopic identification using optical microscopes is a simple and effective method to identify powdered traditional medicines made from plants, animals and fungi. Sometimes, the criteria based on physical properties of the microscopic characteristics of drug powder may be ambiguous, which makes the microscopic identification method subjective and empirical to some extent. In this research, the vibrational microspectroscopic identification method is proposed for more explicit discrimination of powdered traditional medicines. The chemical micromorphology, i.e., chemical compositions and related physical morphologies, of the drug powder can be profiled objectively and quantitatively by infrared and Raman microspectroscopy, leading to better understanding about the formation mechanisms of microscopic characteristics and more accurate identification criteria. As an example, the powder of Poria, which is one of the most used traditional Chinese medicines, is studied in this research. Three types of hyphae are classified according to their infrared spectral features in the region from 1200 to 900 cm-1. Different kinds of polysaccharides indicate that these hyphae may be in different stages of the growth. The granular and branched clumps observed by the optical microscope may be formed from the aggregation of the mature hyphae with β-D-glucan reserves. The newfound spherical particles may originate from the exuded droplets in the fresh Poria because they are both composed of α-D-glucan. The results are helpful to understand the development of the hyphae and the formation of active polysaccharides in Poria and to establish accurate microspectroscopic identification criteria.

  14. Looking inside the box: using Raman microspectroscopy to deconstruct microbial biomass stoichiometry one cell at a time

    USGS Publications Warehouse

    Hall, Edward K.; Singer, Gabriel A.; Pölzl, Marvin; Hämmerle, Ieda; Schwarz, Christian; Daims, Holger; Maixner, Frank; Battin, Tom J.

    2011-01-01

    Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity.

  15. The excitation intensity dependence of singlet fission dynamics of a rubrene microcrystal studied by femtosecond transient microspectroscopy.

    PubMed

    Ishibashi, Y; Inoue, Y; Asahi, T

    2016-10-05

    We have investigated the excitation intensity dependence of the singlet fission in a crystalline rubrene by means of femtosecond transient absorption microspectroscopy. When a rubrene microcrystal was excited to higher energy levels than that of the lowest singlet excited (S 1 ) state with a 397 nm femtosecond laser pulse, a triplet excited state was formed through two pathways of the singlet fission, i.e. the direct fission from higher vibrational levels of the S 1 state with a time constant of 2.2 ps and the thermally activated fission from the S 1 state in a few tens of ps. The time constant of the thermally activated fission changed from 35 to 17 ps for increasing of the laser fluence from 0.65 to 18 mJ cm -2 per pulse, although that of the direct fission was constant with the excitation laser intensity. On the other hand, the yield of the triplet formation was independent of the intensity. We also examined the temperature dependence of the singlet fission and demonstrated the activation energy of the thermally activated fission to be 0.21 eV. Based on the experimental results, we considered the excitation intensity dependence of the singlet fission of the rubrene crystal in terms of the effect of transient local heating on a ps time scale after femtosecond laser excitation owing to the nonradiative vibrational relaxation from the higher vibrational level to the lower one in the S 1 state.

  16. On the effect of experimental noise on the classification of biological samples using Raman micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Barton, Sinead J.; Kerr, Laura T.; Domijan, Katarina; Hennelly, Bryan M.

    2016-04-01

    Raman micro-spectroscopy is an optoelectronic technique that can be used to evaluate the chemical composition of biological samples and has been shown to be a powerful diagnostic tool for the investigation of various cancer related diseases including bladder, breast, and cervical cancer. Raman scattering is an inherently weak process with approximately 1 in 107 photons undergoing scattering and for this reason, noise from the recording system can have a significant impact on the quality of the signal, and its suitability for diagnostic classification. The main sources of noise in the recorded signal are shot noise, CCD dark current, and CCD readout noise. Shot noise results from the low signal photon count while dark current results from thermally generated electrons in the semiconductor pixels. Both of these noise sources are time dependent; readout noise is time independent but is inherent in each individual recording and results in the fundamental limit of measurement, arising from the internal electronics of the camera. In this paper, each of the aforementioned noise sources are analysed in isolation, and used to experimentally validate a mathematical model. This model is then used to simulate spectra that might be acquired under various experimental conditions including the use of different cameras, different source wavelength, and power etc. Simulated noisy datasets of T24 and RT112 cell line spectra are generated based on true cell Raman spectrum irradiance values (recorded using very long exposure times) and the addition of simulated noise. These datasets are then input to multivariate classification using Principal Components Analysis and Linear Discriminant Analysis. This method enables an investigation into the effect of noise on the sensitivity and specificity of Raman based classification under various experimental conditions and using different equipment.

  17. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta

    2018-01-01

    Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (<2 Gy) than indicated in radiation protection guidelines. As a result, research efforts are now being directed towards identifying early predictors of lens degeneration resulting in cataractogenesis. In this study, Raman micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3  ×  3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.

  18. Using synchrotron radiation-based infrared microspectroscopy to reveal microchemical structure characterization: frost damaged wheat vs. normal wheat.

    PubMed

    Xin, Hangshu; Zhang, Xuewei; Yu, Peiqiang

    2013-08-14

    This study was conducted to compare: (1) protein chemical characteristics, including the amide I and II region, as well as protein secondary structure; and (2) carbohydrate internal structure and functional groups spectral intensities between the frost damaged wheat and normal wheat using synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM). Fingerprint regions of specific interest in our study involved protein and carbohydrate functional group band assignments, including protein amide I and II (ca. 1774-1475 cm(-1)), structural carbohydrates (SCHO, ca. 1498-1176 cm(-1)), cellulosic compounds (CELC, ca. 1295-1176 cm(-1)), total carbohydrates (CHO, ca. 1191-906 cm(-1)) and non-structural carbohydrates (NSCHO, ca. 954-809 cm(-1)). The results showed that frost did cause variations in spectral profiles in wheat grains. Compared with healthy wheat grains, frost damaged wheat had significantly lower (p < 0.05) spectral intensities in height and area ratios of amide I to II and almost all the spectral parameters of carbohydrate-related functional groups, including SCHO, CHO and NSCHO. Furthermore, the height ratio of protein amide I to the third peak of CHO and the area ratios of protein amide (amide I + II) to carbohydrate compounds (CHO and SCHO) were also changed (p < 0.05) in damaged wheat grains. It was concluded that the SR-FTIR microspectroscopic technique was able to examine inherent molecular structure features at an ultra-spatial resolution (10 × 10 μm) between different wheat grains samples. The structural characterization of wheat was influenced by climate conditions, such as frost damage, and these structural variations might be a major reason for the decreases in nutritive values, nutrients availability and milling and baking quality in wheat grains.

  19. Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Larraona-Puy, M.; Ghita, A.; Zoladek, A.; Perkins, W.; Varma, S.; Leach, I. H.; Koloydenko, A. A.; Williams, H.; Notingher, I.

    2011-05-01

    Skin cancer is the most common human malignancy and basal cell carcinoma (BCC) represents approximately 80% of the non-melanoma cases. Current methods of treatment require histopathological evaluation of the tissues by qualified personnel. However, this method is subjective and in some cases BCC can be confused with other structures in healthy skin, including hair follicles. In this preliminary study, we investigated the potential of Raman micro-spectroscopy (RMS) to discriminate between hair follicles and BCC in skin tissue sections excised during Mohs micrographic surgery (MMS). Imaging and diagnosis of skin sections was automatically generated using ' a priori'-built spectral model based on LDA. This model had 90 ± 9% sensitivity and 85 ± 9% specificity for discrimination of BCC from dermis and epidermis. The model used selected Raman bands corresponding to the largest spectral differences between the Raman spectra of BCC and the normal skin regions, associated mainly with nucleic acids and collagen type I. Raman spectra corresponding to the epidermis regions of the hair follicles were found to be closer to those of healthy epidermis rather than BCC. Comparison between Raman spectral images and the gold standard haematoxylin and eosin (H&E) histopathology diagnosis showed good agreement. Some hair follicle regions were misclassified as BCC; regions corresponded mainly to the outermost layer of hair follicle (basal cells) which are expected to have higher nucleic acid concentration. This preliminary study shows the ability of RMS to distinguish between BCC and other tissue structures associated to healthy skin which can be confused with BCC due to their similar morphology.

  20. Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy.

    PubMed

    Vanna, R; Ronchi, P; Lenferink, A T M; Tresoldi, C; Morasso, C; Mehn, D; Bedoni, M; Picciolini, S; Terstappen, L W M M; Ciceri, F; Otto, C; Gramatica, F

    2015-02-21

    In clinical practice, the diagnosis and classification of acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) start from the manual examination of stained smears of bone marrow (BM) and peripheral blood (PB) by using an optical microscope. This step is subjective and scarcely reproducible. Therefore, the development of subjective and potentially automatable methods for the recognition of typical AML/MDS cells is necessary. Here we have used Raman spectroscopy for distinguishing myeloblasts, promyelocytes, abnormal promyelocytes and erhytroblasts, which have to be counted for a correct diagnosis and morphological classification of AML and MDS. BM samples from patients affected by four different AML subtypes, mostly characterized by the presence of the four subpopulations selected for this study, were analyzed. First, each cell was scanned by acquiring 4096 spectra, thus obtaining Raman images which demonstrate an accurate description of morphological features characteristic of each subpopulation. Raman imaging coupled with hierarchical cluster analysis permitted the automatic discrimination and localization of the nucleus, the cytoplasm, myeloperoxidase containing granules and haemoglobin. Second, the averaged Raman fingerprint of each cell was analysed by multivariate analysis (principal component analysis and linear discriminant analysis) in order to study the typical vibrational features of each subpopulation and also for the automatic recognition of cells. The leave-one-out cross validation of a Raman-based classification model demonstrated the correct classification of myeloblasts, promyelocytes (normal/abnormal) and erhytroblasts with an accuracy of 100%. Normal and abnormal promyelocytes were distinguished with 95% accuracy. The overall classification accuracy considering the four subpopulations was 98%. This proof-of-concept study shows that Raman micro-spectroscopy could be a valid approach for developing label-free, objective and automatic

  1. Using Synchrotron Radiation-Based Infrared Microspectroscopy to Reveal Microchemical Structure Characterization: Frost Damaged Wheat vs. Normal Wheat

    PubMed Central

    Xin, Hangshu; Zhang, Xuewei; Yu, Peiqiang

    2013-01-01

    This study was conducted to compare: (1) protein chemical characteristics, including the amide I and II region, as well as protein secondary structure; and (2) carbohydrate internal structure and functional groups spectral intensities between the frost damaged wheat and normal wheat using synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM). Fingerprint regions of specific interest in our study involved protein and carbohydrate functional group band assignments, including protein amide I and II (ca. 1774–1475 cm−1), structural carbohydrates (SCHO, ca. 1498–1176 cm−1), cellulosic compounds (CELC, ca. 1295–1176 cm−1), total carbohydrates (CHO, ca. 1191–906 cm−1) and non-structural carbohydrates (NSCHO, ca. 954–809 cm−1). The results showed that frost did cause variations in spectral profiles in wheat grains. Compared with healthy wheat grains, frost damaged wheat had significantly lower (p < 0.05) spectral intensities in height and area ratios of amide I to II and almost all the spectral parameters of carbohydrate-related functional groups, including SCHO, CHO and NSCHO. Furthermore, the height ratio of protein amide I to the third peak of CHO and the area ratios of protein amide (amide I + II) to carbohydrate compounds (CHO and SCHO) were also changed (p < 0.05) in damaged wheat grains. It was concluded that the SR-FTIR microspectroscopic technique was able to examine inherent molecular structure features at an ultra-spatial resolution (10 × 10 μm) between different wheat grains samples. The structural characterization of wheat was influenced by climate conditions, such as frost damage, and these structural variations might be a major reason for the decreases in nutritive values, nutrients availability and milling and baking quality in wheat grains. PMID:23949633

  2. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation.

    PubMed

    Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta

    2018-01-09

    Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (<2 Gy) than indicated in radiation protection guidelines. As a result, research efforts are now being directed towards identifying early predictors of lens degeneration resulting in cataractogenesis. In this study, Raman micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3  ×  3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.

  3. Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach - A Raman micro-spectroscopy study.

    PubMed

    Ghosal, Sutapa; Chen, Michael; Wagner, Jeff; Wang, Zhong-Min; Wall, Stephen

    2018-02-01

    Pacific Ocean trawl samples, stomach contents of laboratory-raised fish as well as fish from the subtropical gyres were analyzed by Raman micro-spectroscopy (RMS) to identify polymer residues and any detectable persistent organic pollutants (POP). The goal was to access specific molecular information at the individual particle level in order to identify polymer debris in the natural environment. The identification process was aided by a laboratory generated automated fluorescence removal algorithm. Pacific Ocean trawl samples of plastic debris associated with fish collection sites were analyzed to determine the types of polymers commonly present. Subsequently, stomach contents of fish from these locations were analyzed for ingested polymer debris. Extraction of polymer debris from fish stomach using KOH versus ultrapure water were evaluated to determine the optimal method of extraction. Pulsed ultrasonic extraction in ultrapure water was determined to be the method of choice for extraction with minimal chemical intrusion. The Pacific Ocean trawl samples yielded primarily polyethylene (PE) and polypropylene (PP) particles >1 mm, PE being the most prevalent type. Additional microplastic residues (1 mm - 10 μm) extracted by filtration, included a polystyrene (PS) particle in addition to PE and PP. Flame retardant, deca-BDE was tentatively identified on some of the PP trawl particles. Polymer residues were also extracted from the stomachs of Atlantic and Pacific Ocean fish. Two types of polymer related debris were identified in the Atlantic Ocean fish: (1) polymer fragments and (2) fragments with combined polymer and fatty acid signatures. In terms of polymer fragments, only PE and PP were detected in the fish stomachs from both locations. A variety of particles were extracted from oceanic fish as potential plastic pieces based on optical examination. However, subsequent RMS examination identified them as various non-plastic fragments, highlighting the importance

  4. Vibrational microspectroscopic identification of powdered traditional medicines: chemical micromorphology of Poria observed by infrared and Raman microspectroscopy.

    PubMed

    Chen, Jian-bo; Sun, Su-qin; Ma, Fang; Zhou, Qun

    2014-07-15

    Microscopic identification using optical microscopes is a simple and effective method to identify powdered traditional medicines made from plants, animals and fungi. Sometimes, the criteria based on physical properties of the microscopic characteristics of drug powder may be ambiguous, which makes the microscopic identification method subjective and empirical to some extent. In this research, the vibrational microspectroscopic identification method is proposed for more explicit discrimination of powdered traditional medicines. The chemical micromorphology, i.e., chemical compositions and related physical morphologies, of the drug powder can be profiled objectively and quantitatively by infrared and Raman microspectroscopy, leading to better understanding about the formation mechanisms of microscopic characteristics and more accurate identification criteria. As an example, the powder of Poria, which is one of the most used traditional Chinese medicines, is studied in this research. Three types of hyphae are classified according to their infrared spectral features in the region from 1200 to 900 cm(-1). Different kinds of polysaccharides indicate that these hyphae may be in different stages of the growth. The granular and branched clumps observed by the optical microscope may be formed from the aggregation of the mature hyphae with β-D-glucan reserves. The newfound spherical particles may originate from the exuded droplets in the fresh Poria because they are both composed of α-D-glucan. The results are helpful to understand the development of the hyphae and the formation of active polysaccharides in Poria and to establish accurate microspectroscopic identification criteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Rapid recognition of drug-resistance/sensitivity in leukemic cells by Fourier transform infrared microspectroscopy and unsupervised hierarchical cluster analysis.

    PubMed

    Bellisola, Giuseppe; Cinque, Gianfelice; Vezzalini, Marzia; Moratti, Elisabetta; Silvestri, Giovannino; Redaelli, Sara; Gambacorti Passerini, Carlo; Wehbe, Katia; Sorio, Claudio

    2013-07-21

    We tested the ability of Fourier Transform (FT) InfraRed (IR) microspectroscopy (microFTIR) in combination with unsupervised Hierarchical Cluster Analysis (HCA) in identifying drug-resistance/sensitivity in leukemic cells exposed to tyrosine kinase inhibitors (TKIs). Experiments were carried out in a well-established mouse model of human Chronic Myelogenous Leukemia (CML). Mouse-derived pro-B Ba/F3 cells transfected with and stably expressing the human p210(BCR-ABL) drug-sensitive wild-type BCR-ABL or the V299L or T315I p210(BCR-ABL) drug-resistant BCR-ABL mutants were exposed to imatinib-mesylate (IMA) or dasatinib (DAS). MicroFTIR was carried out at the Diamond IR beamline MIRIAM where the mid-IR absorbance spectra of individual Ba/F3 cells were acquired using the high brilliance IR synchrotron radiation (SR) via aperture of 15 × 15 μm(2) in sizes. A conventional IR source (globar) was used to compare average spectra over 15 cells or more. IR signatures of drug actions were identified by supervised analyses in the spectra of TKI-sensitive cells. Unsupervised HCA applied to selected intervals of wavenumber allowed us to classify the IR patterns of viable (drug-resistant) and apoptotic (drug-sensitive) cells with an accuracy of >95%. The results from microFTIR + HCA analysis were cross-validated with those obtained via immunochemical methods, i.e. immunoblotting and flow cytometry (FC) that resulted directly and significantly correlated. We conclude that this combined microFTIR + HCA method potentially represents a rapid, convenient and robust screening approach to study the impact of drugs in leukemic cells as well as in peripheral blasts from patients in clinical trials with new anti-leukemic drugs.

  6. Determination of the sequence of intersecting lines from laser toner and seal ink by Fourier transform infrared microspectroscopy and scanning electron microscope / energy dispersive X-ray mapping.

    PubMed

    Wang, Yuanfeng; Li, Bing

    2012-06-01

    The aim of this study was to verify that the combination of Fourier transform infrared microspectroscopy and scanning electron microscope / energy dispersive X-ray mapping could be applied to line intersection problems. The spectral data of red seal ink, laser toner and their intersections, such as peak location and peak intensity, were described. Relative peak height ratios of different chemical components in intersecting lines were used to distinguish the sequences. Energy dispersive X-ray mapping characteristics of intersecting areas were also detailed. The results show that both the laser toner and the seal ink appear on the surface of intersections, regardless of the sequence. The distribution of the two inks on the surface is influenced not only by the sequence of heterogeneous lines but also by diffusion. Fourier transform infrared microspectroscopy and scanning electron microscope/energy dispersive X-ray mapping are able to explore the chemical components and the corresponding elemental distribution in the intersections. The combination of these two techniques has provided a reliable method for sequencing intersecting lines of red seal ink and laser toner, and more importantly, this method may be a basis for sequencing superimposed lines from other writing instruments. Copyright © 2011 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  7. In situ examination of osteoblast biomineralization on sulfonated polystyrene-modified substrates using Fourier transform infrared microspectroscopy

    DOE PAGES

    Meng, Yizhi; Faillace, Meghan E.; Dorst, Kathryn; ...

    2017-07-10

    Osteoporosis is a skeletal disorder that is characterized by the loss of bone mineral density (BMD) resulting in increased risk of fracture. However, it has been shown that BMD is not the only indicator of fracture risk, as the strength of bone depends on a number of factors, including bone mass, architecture and material properties. We present that physiological mineral deposition requires the formation of a properly developed extracellular matrix (ECM), which recruits calcium and phosphate ions into the synthesis of apatite crystals. Temporal and spatial compositional and structural changes of biological apatite greatly depend on the properties of themore » crystals initially formed. As such, Fourier-transform infrared microspectroscopy (FTIRM) is capable of examining adaptive remodeling by providing compositional information such as the level of mineralization and carbonate substitution, as well as quality and perfection of the mineral phase. The objective of this study was to evaluate the in vitro mineralization development of MC3T3-E1 murine calvarial preosteoblasts cultured on different substrata by comparing FTIRM measurements from two subclones (mineralizing subclone 4 and nonmineralizing subclone 24) maintained in culture for up to 21 days. The results showed that modulation of the substrate surface using a thin coating of sulfonated polystyrene (SPS) provided favorable conditions for the development of a mineralizable ECM and that the mineral formed by the osteoblasts was similar to that of fully mineralized bone tissue. Specifically, the mineralizing subclone produced significantly more mineral phosphate when cultured on SPS-coated substrates for 21 days, compared to the same culture on bare substrates. In contrast, the level of mineralization in nonmineralizing subclone was low on both SPS-coated and uncoated substrates. The mineralizing subclone also produced comparable amounts of collagen on both substrates; however, mineralization was significantly

  8. Detection of protein structure of frozen ancient human remains recovered from a glacier in Canada using synchrotron fourier transform infrared microspectroscopy.

    PubMed

    Quaroni, Luca; Christensen, Colleen R; Chen, Becky; Vogl, Wayne; Monsalve, Maria Victoria

    2013-06-01

    We previously used synchrotron infrared microspectroscopy to describe the biochemical signature of skeletal muscle (biceps brachii) from the frozen ancient remains of a young man. In this current paper, we use light microscopy to assess the state of preservation of cellular components in the trapezius muscle from these same ancient remains and then use mid-infrared analysis at the Canadian Light Source synchrotron facility to further analyze the tissue. We compare spectra between the trapezius samples from the ancient remains and a recently deceased cadaver (control). Infrared spectra indicate preservation of secondary structure, with the α-helix being the principal component, along with triple helical portions of the protein backbone. Our mid-infrared analysis indicates an energy reserve in the skeletal muscle in the ancient remains.

  9. Comparison of methodologies for separation of fungal isolates using Fourier transform infrared (FTIR) spectroscopy and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) microspectroscopy.

    PubMed

    Oberle, Jennifer; Dighton, John; Arbuckle-Keil, Georgia

    2015-11-01

    Twenty distinct fungal isolates were analysed using three methods of sample preparation for FTIR spectroscopy and FTIR-ATR microspectroscopy to test for differences in surface chemical composition between living and dried fungal samples, as well as differences between surface chemistry and overall chemistry of homogenized dried samples. Results indicated that visually the FTIR spectra of different fungi are remarkably similar with subtle discernable differences, which statistical analysis of the spectra supported. Within each data set, different fungal isolates were responsible for statistical differences. Lack of congruence between each of the methods used suggests that determination of chemical composition is highly dependent upon the method of sample preparation and analysis (surface vs. whole) applied. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Analysis Of Pulmonary Tissue Of Natural Mummy Of XIII Century (Saint Zita, Lucca-Tuscany) By Means Of FT-IR Microspectroscopy.

    NASA Astrophysics Data System (ADS)

    Benedetti, Enzo; Vergamini, Piergiorgio; Fornaciari, Gino; Spremolla, Giuliano

    1989-12-01

    During a recognition carried out by one of us on the S.Zita's body, preserved for seven hundred years in the S.Frediano's Basilica (Lucca, Tuscany-Italy) it has been possible to verify the good condition of many orgains and systems. In this comunication we report preliminary results of an analysis of the pulmonary tissue which to the histologic examination showed a typical aspect. It was observed the presence of a massive anthracosis. In order to obtain indication, at molecular level, FT-IR microspectroscopy measurements were carried out. The infrared spectra relative to different microareas allowed us to evidence regions of tissue decomposed, and others in which the infrared spectra showed absorptions characteristic of proteic components at 1650 cm-1 and 1540 cm-1 ascribed to the Amide I and Amide II vibrations respectively. In the 1350-950 cm-1 range bands due to nucleic acids were detected. Also in the CH stretching region bands due to methyl and methylene groups were observed, likely due to the presence of paraffinic segments of phospholipids of cellular membranes. Previous FT-IR studies carried out by us on biological systems such as normal and leukemic lymphocytes (1), on lymphoblast (2), and recently on cells isolated from neoplastic pulmonary tissues (3), represent a basis which allows us to perform a sufficiently complete assignment on the spectra obtained on this finding. These spectra are surprisingly very similar to those obtained by us on human lung tissue from surgical specimens. As far as we know, FT-IR microspectroscopy, which was first employed by our group in the study of human neoplasia at level of single cell (4) has been applied in the analysis of ancient pulmonary tissue, certainly not submitted to any conservative treatment. This kind of approach can open up new possibilities in obtaining indication, at molecular level, on findings of paleophanthology of different origin and age.

  11. Label-free identification and characterization of murine hair follicle stem cells located in thin tissue sections with Raman micro-spectroscopy.

    PubMed

    Tsai, Tsung-Hua; Short, Michael A; McLean, David I; Zeng, Haishan; McElwee, Kevin; Lui, Harvey

    2014-06-07

    Stem cells offer tremendous opportunities for regenerative medicine. Over the past decade considerable research has taken place to identify and characterize the differentiation states of stem cells in culture. Raman micro-spectroscopy has emerged as an ideal technology since it is fast, nondestructive, and does not require potentially toxic dyes. Raman spectroscopy systems can also be incorporated into confocal microscope imaging systems allowing spectra to be obtained from below the tissue surface. Thus there is significant potential for monitoring stem cells in living tissue. Stem cells that reside in hair follicles are suitable for testing this possibility since they are close to the skin surface, and typically clustered around the bulge area. One of the first steps needed would be to obtain Raman micro-spectra from stem cells located in thin sections of tissue, and then see whether these spectra are clearly different from those of the surrounding differentiated cells. To facilitate this test, standard 5 μm thick sections of murine skin tissue were stained to identify the location of hair follicle stem cells and their progeny. Raman spectra were then obtained from adjacent cells in a subsequent unstained 10 μm thick section. The spectra revealed significant differences in peak intensities associated with nucleic acids, proteins, lipids and amino acids. Statistical analyses of the Raman micro-spectra identified stem cells with 98% sensitivity and 94% specificity, as compared with a CD34 immunostaining gold standard. Furthermore analyses of the spectral variance indicated differences in cellular dynamics between the two cell groups. This study shows that Raman micro-spectroscopy has a potential role in identifying adult follicle stem cells, laying the groundwork for future applications of hair follicle stem cells and other somatic stem cells in situ.

  12. Micas from mariupolite of the Oktiabrski massif (SE Ukraine): An insight into the host rock evolution - Geochemical data supported by Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Dumańska-Słowik, Magdalena; Wesełucha-Birczyńska, Aleksandra; Pieczka, Adam

    2015-02-01

    Muscovite and two dark mica varieties (the coarse-crystalline, pegmatitic, and fine-crystalline with signs of early weathering) representing members of the biotite series, originating from mariupolite of the Oktiabrski massif, (Ukraine), were investigated along with their solid inclusions using electron microprobe and Raman micro-spectroscopy to discuss their genesis and relationship to the parental magma. The coarse-crystalline, pegmatitic biotite, (K1.90Rb0.02Na0.01)(Fe2+3.56Mg1.34Ti0.36Fe3+0.34Mn0.03)[(Si5.73Al2.10Fe3+0.17)O20](OH3.24 F0.76) represents the primary, magmatic annite that crystallized from an alkaline, Fe-rich and Mg-depleted host magma, whereas the fine-crystalline biotite, partly altered to vermiculite, (K1.75Rb0.03Na0.03)(Fe3+3.23Fe2+1.16Mg0.26Mn0.04Ti0.10)[(Si5.16 Al2.84)O20](OH)4.00, devoid of F, represents a re-equilibrated or secondary, post-magmatic Fe3+-bearing mica crystallized from alkaline to the subalkaline host magma. Muscovite, (K1.96Na0.06)(Al3.97Fe2+0.06)[(Si5.99Al2.01)O20](OH)4, with low Na/(Na + K) ratio, low Fe and devoid of Ti and also F, forms only tiny, subhedral flakes formed in the post-magmatic, hydrothermal stage. The primary, unaltered biotite contains numerous solid inclusions of primary origin (albite, aegirine, zircon, K-feldspar, nepheline, pyrochlore, magnetite) and secondary origin (natrolite, hematite, Ti-Mn oxides/hydroxides); most of them are accompanied by a carbonaceous substance, all confirmed by scanning electron microscopy and Raman microspectroscopy.

  13. Study of cell-differentiation and assembly of photosynthetic proteins during greening of etiolated Zea mays leaves using confocal fluorescence microspectroscopy at liquid-nitrogen temperature.

    PubMed

    Shibata, Yutaka; Katoh, Wataru; Tahara, Yukari

    2013-04-01

    Fluorescence microspectroscopy observations were used to study the processes of cell differentiation and assemblies of photosynthesis proteins in Zea mays leaves under the greening process. The observations were done at 78K by setting the sample in a cryostat to avoid any undesired progress of the greening process during the measurements. The lateral and axial spatial resolutions of the system were 0.64μm and 4.4μm, respectively. The study revealed the spatial distributions of protochlorophyllide (PChld) in both the 632-nm-emitting and 655-nm-emitting forms within etiolated Zea mays leaves. The sizes of the fluorescence spots attributed to the former were larger than those of the latter, validating the assignment of the former and latter to the prothylakoid and prolamellar bodies, respectively. In vivo microspectroscopy observations of mature Zea mays leaves confirmed the different photosystem II (PS I)/photosystem I (PS II) ratio between the bundle sheath (BS) and mesophyll (MS) cells, which is specific for C4-plants. The BS cells in Zea mays leaves 1h after the initiation of the greening process tended to show fluorescence spectra at shorter wavelength side (at around 679nm) than the MS cells (at around 682nm). The 679-nm-emitting chlorophyll-a form observed mainly in the BS cells was attributed to putative precursor complexes to PS I. The BS cells under 3-h greening showed higher relative intensities of the PS I fluorescence band at around 735nm, suggesting the reduced PS II amount in the BS cells in this greening stage. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Synchrotron Time-Lapse Imaging of Lignocellulosic Biomass Hydrolysis: Tracking Enzyme Localization by Protein Autofluorescence and Biochemical Modification of Cell Walls by Microfluidic Infrared Microspectroscopy

    PubMed Central

    Devaux, Marie-Françoise; Jamme, Frédéric; André, William; Bouchet, Brigitte; Alvarado, Camille; Durand, Sylvie; Robert, Paul; Saulnier, Luc; Bonnin, Estelle; Guillon, Fabienne

    2018-01-01

    Tracking enzyme localization and following the local biochemical modification of the substrate should help explain the recalcitrance of lignocellulosic plant cell walls to enzymatic degradation. Time-lapse studies using conventional imaging require enzyme labeling and following the biochemical modifications of biopolymers found in plant cell walls, which cannot be easily achieved. In the present work, synchrotron facilities have been used to image the enzymatic degradation of lignocellulosic biomass without labeling the enzyme or the cell walls. Multichannel autofluorescence imaging of the protein and phenolic compounds after excitation at 275 nm highlighted the presence or absence of enzymes on cell walls and made it possible to track them during the reaction. Image analysis was used to quantify the fluorescence intensity variations. Consistent variations in the enzyme concentration were found locally for cell cavities and their surrounding cell walls. Microfluidic FT-IR microspectroscopy allowed for time-lapse tracking of local changes in the polysaccharides in cell walls during degradation. Hemicellulose degradation was found to occur prior to cellulose degradation using a Celluclast® preparation. Combining the fluorescence and FT-IR information yielded the conclusion that enzymes did not bind to lignified cell walls, which were consequently not degraded. Fluorescence multiscale imaging and FT-IR microspectroscopy showed an unexpected variability both in the initial biochemical composition and the degradation pattern, highlighting micro-domains in the cell wall of a given cell. Fluorescence intensity quantification showed that the enzymes were not evenly distributed, and their amount increased progressively on degradable cell walls. During degradation, adjacent cells were separated and the cell wall fragmented until complete degradation. PMID:29515611

  15. Mid-IR, Far-IR, Raman micro-spectroscopy, and FESEM-EDX study of IDP L2021C5: Clues to its origin

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Borg, J.; Dartois, E.; Rietmeijer, F. J. M.; Grossemy, F.; Sandt, C.; Le Sergeant d'Hendecourt, L.; Rotundi, A.; Dumas, P.; Djouadi, Z.; Jamme, F.

    2011-04-01

    Interplanetary Dust Particles (IDPs) are potentially of cometary origin. They may therefore provide important clues to a better understanding of the early Solar System physical and chemical conditions. A chondritic porous aggregate IDP (named L2021C5) was analyzed using mid to far FTIR (2-60 μm) micro-spectroscopy, Raman micro-spectroscopy, field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) analyses. The IDP was pressed between diamond windows to increase the quality of the spectral data by overcoming the diffraction limitation and minimizing light scattering effects from particles of a global size similar to the wavelength of the observation. This combination of techniques has enabled a mineralogical, organic and compositional description of the compressed particle. The IR spectra show that in L2021C5 amorphous silicates are more abundant than crystalline ones, and that the crystalline component is richer in olivine than in pyroxene. The composition and distribution of these inorganic components match very well the small silicate grains emission observed for comet Hale-Bopp from ISO-SWS spectra. Raman spectroscopy has allowed the detection of carbonaceous structures displaying different degrees of order, covering almost the whole range observed so far for IDPs. The combination of the three analytical techniques indicates that L2021C5 is a low-Ca, chondritic porous aggregate that experienced only mild flash heating on atmospheric entry, as indicated by the disordered carbon properties, the Fe/S atomic ratio of sulfides, the absence of Na depletion, and the small depletion of S. Based on a plausible cometary origin and on the estimated low entry velocity, we suggest that this IDP came from the Zodiacal cloud that is dominated by dust from Jupiter-Family comets.

  16. Near infared spectroscopy in the forest products industry

    Treesearch

    Chi-Leung So; Brian K. Via; Leslie H. Groom; Lawrence R. Schimleck; Todd F. Shupe; Stephen S. Kelley; Timothy G. Rials

    2004-01-01

    Improving manufacturing efficiency and increasing product worth requires the right combination of actions throughout the manufacturing process. Many innovations have been developed over the last several decades to achieve these goals. Innovations typically work their way backwards in the manufacturing process, with an increasing level of monitoring occurring at the end...

  17. Community Plan for Far-Infared/Submillimeter Space Astronomy

    NASA Technical Reports Server (NTRS)

    Leisawitz, David; Oegerle, William (Technical Monitor)

    2003-01-01

    The consensus of attendees at the Second Workshop on New Concepts for Far-Infrared/Submillimeter Space Astronomy is that the Single Aperture Far-IR telescope (SAFIR), a cooled spaceborne observatory, is important for the future of far-infrared astronomy. This paper describes the specifications and capabilities of SAFIR, possible designs for SAFIR, and suggests a development strategy for the technology necessary for the telescope.

  18. Micas from mariupolite of the Oktiabrski massif (SE Ukraine): an insight into the host rock evolution--geochemical data supported by Raman microspectroscopy.

    PubMed

    Dumańska-Słowik, Magdalena; Wesełucha-Birczyńska, Aleksandra; Pieczka, Adam

    2015-02-25

    Muscovite and two dark mica varieties (the coarse-crystalline, pegmatitic, and fine-crystalline with signs of early weathering) representing members of the biotite series, originating from mariupolite of the Oktiabrski massif, (Ukraine), were investigated along with their solid inclusions using electron microprobe and Raman micro-spectroscopy to discuss their genesis and relationship to the parental magma. The coarse-crystalline, pegmatitic biotite, (K1.90Rb0.02Na0.01)(Fe3.56(2+)Mg1.34Ti0.36Fe0.34(3+)Mn0.03)[(Si5.73Al2.10Fe0.17(3+))O20](OH3.24 F0.76) represents the primary, magmatic annite that crystallized from an alkaline, Fe-rich and Mg-depleted host magma, whereas the fine-crystalline biotite, partly altered to vermiculite, (K1.75Rb0.03Na0.03)(Fe3.23(3+)Fe1.16(2+)Mg0.26Mn0.04Ti0.10)[(Si5.16 Al2.84)O20](OH)4.00, devoid of F, represents a re-equilibrated or secondary, post-magmatic Fe(3+)-bearing mica crystallized from alkaline to the subalkaline host magma. Muscovite, (K1.96Na0.06)(Al3.97Fe0.06(2+))[(Si5.99Al2.01)O20](OH)4, with low Na/(Na+K) ratio, low Fe and devoid of Ti and also F, forms only tiny, subhedral flakes formed in the post-magmatic, hydrothermal stage. The primary, unaltered biotite contains numerous solid inclusions of primary origin (albite, aegirine, zircon, K-feldspar, nepheline, pyrochlore, magnetite) and secondary origin (natrolite, hematite, Ti-Mn oxides/hydroxides); most of them are accompanied by a carbonaceous substance, all confirmed by scanning electron microscopy and Raman microspectroscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Quantification and Identification of Microplastics in Marine Samples from 5 µm to 5 mm by FTIR and Raman Microspectroscopy and Imaging

    NASA Astrophysics Data System (ADS)

    Fischer, D.

    2016-12-01

    Several million tons of plastic debris enter the oceans every year caused by industry, inappropriate disposal of waste, waste from fishing activities and waste from ships. Macro plastic parts in the ocean are degraded to secondary microplastics (MP), mostly in the range from 1 µm to 5 mm. Primary MP on the other hand, are microbeads in cosmetic products, cleaning agents and industrial incorrect disposed raw materials. The impacts of MP on marine ecosystems can cause many problems for animals, birds and humans, like the absorption of toxic contaminants by MP, the potential association of MP with pathogenic microorganism, the mistake with food and that MP itself can contain toxic additives. We show the first results, achieved with samples collected from different sites in the Baltic Sea and adjacent river systems, gathered from the water surface, from the water column and from sea sediments and beaches to get knowledge of the composition, size and distribution of MP in the oceans. After preparation we get cleaned samples on a silicon filter [1]. On this filter we identify MP by FTIR and Raman microspectroscopy. All particles > 500 µm are separately measured. The particles < 500 µm remain on the filter and will be measured individual and by imaging. Afterwards we identify the polymer and the particle size and distribution. The most identified plastic types are PE, PP, PS, PVC, PC and polyester. An example for a Raman image is shown in Fig. 1. Fig.1: 3D Raman Image (z-axis: intensity of the CH range 2800-3000cm-1) of a sample from a setting sediment sampler at the island Gotland, Baltic Sea We compared Raman imaging and single point measurements and additionally FTIR and Raman Imaging. These and further topics, like the comparison of different sampling sites will be discussed in the talk. It can be summarized that Raman microspectroscopy is an outstanding method to detect MP in aquatic systems down to 1 µm. Detailed results are described in [1, 2]. [1] Käppler A

  20. Investigating the molecular structural features of hulless barley (Hordeum vulgare L.) in relation to metabolic characteristics using synchrotron-based fourier transform infrared microspectroscopy.

    PubMed

    Yang, Ling; Christensen, David A; McKinnon, John J; Beattie, Aaron D; Xin, Hangshu; Yu, Peiqiang

    2013-11-27

    The synchrotron-based Fourier transform infrared microspectroscopy (SR-FTIRM) technique was used to quantify molecular structural features of the four hulless barley lines with altered carbohydrate traits [amylose, 1-40% of dry matter (DM); β-glucan, 5-10% of DM] in relation to rumen degradation kinetics, intestinal nutrient digestion, and predicted protein supply. Spectral features of β-glucan (both area and heights) in hulless barley lines showed a negative correlation with protein availability in the small intestine, including truly digested protein in the small intestine (DVE) (r = -0.76, P < 0.01; r = -0.84, P < 0.01) and total metabolizable protein (MP) (r = -0.71, P < 0.05; r = -0.84, P < 0.01). Variation in absorption intensities of total carbohydrate (CHO) was observed with negative effects on protein degradation, digestion, and potential protein supply (P < 0.05). Molecular structural features of CHO in hulless barley have negative effects on the supply of true protein to ruminants. The results clearly indicated the impact of the carbohydrate-protein structure and matrix.

  1. Preliminary studies of the effects of psychological stress on circulating lymphocytes analyzed by synchrotron radiation based-Fourier transform infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Vargas-Caraveo, Alejandra; Castillo-Michel, Hiram; Mejia-Carmona, Gloria Erika; Pérez-Ishiwara, David Guillermo; Cotte, Marine; Martínez-Martínez, Alejandro

    2014-07-01

    Psychological stress is a condition that not only generates behavioral disorders but also disrupts homeostasis and immune activity that can exacerbate or lead to inflammatory diseases. The aim of this work was to study biochemical changes in circulating immune cells from rats under psychological stress by using vibrational spectroscopy. A stress model was used, where exposure to a stressor was repeated for 5 days. Subsequently, circulating lymphocytes were examined for their biomolecular vibrational fingerprints with synchrotron radiation based-Fourier transform infrared microspectroscopy. The results showed an increased absorption at the ester lipid region (1720-1755 cm-1) in lymphocytes from stressed rats, suggesting lipid peroxidation. Statistical significant changes in wavenumber peak position and absorbance in the nucleic acid region were also observed (915-950 cm-1 Z-DNA, 1090-1150 cm-1 symmetric stretching of Psbnd Osbnd C, 1200-1260 cm-1 asymmetric PO2 and 1570-1510 cm-1 methylated nucleotides) which suggest a reduction of transcriptional activity in lymphocytes from stressed rat. These results unravel part of the mechanisms by which psychological stress may affect the immune system leading to systemic consequences.

  2. Cation Diffusion and Segregation at the Interface between Samarium-Doped Ceria and LSCF or LSFCu Cathodes Investigated with X-ray Microspectroscopy.

    PubMed

    Giannici, Francesco; Canu, Giovanna; Chiara, Alessandro; Gambino, Marianna; Aliotta, Chiara; Longo, Alessandro; Buscaglia, Vincenzo; Martorana, Antonino

    2017-12-27

    The chemical compatibility between electrolytes and electrodes is an extremely important aspect governing the overall impedance of solid-oxide cells. Because these devices work at elevated temperatures, they are especially prone to cation interdiffusion between the cell components, possibly resulting in secondary insulating phases. In this work, we applied X-ray microspectroscopy to study the interface between a samarium-doped ceria (SDC) electrolyte and lanthanum ferrite cathodes (La 0.4 Sr 0.6 Fe 0.8 Cu 0.2 O 3 (LSFCu); La 0.9 Sr 0.1 Fe 0.85 Co 0.15 O 3 (LSCF)), at a submicrometric level. This technique allows to combine the information about the diffusion profiles of cations on the scale of several micrometers, together with the chemical information coming from space-resolved X-ray absorption spectroscopy. In SDC-LSCF bilayers, we find that the prolonged thermal treatments at 1150 °C bring about the segregation of samarium and iron in micrometer-sized perovskite domains. In both SDC-LSCF and SDC-LSFCu bilayers, cerium diffuses into the cathode perovskite lattice A-site as a reduced Ce 3+ cation, whereas La 3+ is easily incorporated in the ceria lattice, reaching 30 atom % in the ceria layer in contact with LSFCu.

  3. Preliminary studies of the effects of psychological stress on circulating lymphocytes analyzed by synchrotron radiation based-Fourier transform infrared microspectroscopy.

    PubMed

    Vargas-Caraveo, Alejandra; Castillo-Michel, Hiram; Mejia-Carmona, Gloria Erika; Pérez-Ishiwara, David Guillermo; Cotte, Marine; Martínez-Martínez, Alejandro

    2014-07-15

    Psychological stress is a condition that not only generates behavioral disorders but also disrupts homeostasis and immune activity that can exacerbate or lead to inflammatory diseases. The aim of this work was to study biochemical changes in circulating immune cells from rats under psychological stress by using vibrational spectroscopy. A stress model was used, where exposure to a stressor was repeated for 5 days. Subsequently, circulating lymphocytes were examined for their biomolecular vibrational fingerprints with synchrotron radiation based-Fourier transform infrared microspectroscopy. The results showed an increased absorption at the ester lipid region (1720-1755 cm(-1)) in lymphocytes from stressed rats, suggesting lipid peroxidation. Statistical significant changes in wavenumber peak position and absorbance in the nucleic acid region were also observed (915-950 cm(-1) Z-DNA, 1090-1150 cm(-1) symmetric stretching of P-O-C, 1200-1260 cm(-1) asymmetric PO2 and 1570-1510 cm(-1) methylated nucleotides) which suggest a reduction of transcriptional activity in lymphocytes from stressed rat. These results unravel part of the mechanisms by which psychological stress may affect the immune system leading to systemic consequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Contributions to Advances in Blend Pellet Products (BPP) Research on Molecular Structure and Molecular Nutrition Interaction by Advanced Synchrotron and Globar Molecular (Micro)Spectroscopy.

    PubMed

    Guevara-Oquendo, VÍctor H; Yu, Peiqiang

    2018-04-13

    To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.

  5. Binder Effects in SiO2‐ and Al2O3‐Bound Zeolite ZSM‐5‐Based Extrudates as Studied by Microspectroscopy

    PubMed Central

    Whiting, Gareth T.; Meirer, Florian; Mertens, Machteld M.; Bons, Anton‐Jan; Weiss, Brian M.; Stevens, Paul A.; de Smit, Emiel

    2015-01-01

    Abstract Microspectroscopic methods were explored to investigate binder effects occurring in ZSM‐5‐containing SiO2‐ and Al2O3‐bound millimetre‐sized extrudates. Using thiophene as a selective probe for Brønsted acidity, coupled with time‐resolved in situ UV/Vis and confocal fluorescence microspectroscopy, variations in reactivity and selectivity between the two distinct binder types were established. It was found that aluminium migration occurs in ZSM‐5‐containing Al2O3‐bound extrudates, forming additional Brønsted acid sites. These sites strongly influence the oligomer selectivity, favouring the formation of thiol‐like species (i.e., ring‐opened species) in contrast to higher oligomers, predominantly formed on SiO2‐bound ZSM‐5‐containing extrudates. Not only were the location and distribution of these oligomers visualised by 3 D analysis, it was also observed that more conjugated species appeared to grow off the surface of the zeolite ZSM‐5 crystals (containing less conjugated species) into the surrounding binder material. Furthermore, a higher binder content resulted in an increasing overall reactivity owing to the greater number of stored thiophene monomers available per Brønsted acid site. PMID:27158274

  6. Characterization of protein alterations in damaged axons in the brainstem following traumatic brain injury using fourier transform infrared microspectroscopy: a preliminary study.

    PubMed

    Zhang, Ji; Niu, Fei; Dong, Hongmei; Liu, Liang; Li, Jie; Li, Shangxun

    2015-05-01

    Axonal injury contributes greatly to neurological dysfunction following traumatic brain injury (TBI), but current histological diagnostic methods are limited in identifying the pathological profiles of injured axons and unable to provide an objective and accurate quantification. Fourier transform infrared microspectroscopy (FTIRM) has the ability to offer macromolecular bioinformatics of the tissues including biochemical composition and structure by calculating band absorption intensity. In this study, axonal injury in the brainstem of rats with traumatic brain injury at 72 h post-trauma, which was confirmed with beta-amyloid precursor protein (β-APP) immunostaining, was detected with FTIRM technique. The lower intensity of infrared absorbance under the amide I band corresponds strongly to the area of axonal injury, and further analysis of amide I band shows significant differences in protein conformation between injured and normal axons. The findings indicate that using FTIRM technique, the amide I band has potentials to be a infrared spectral marker of axonal injury. © 2015 American Academy of Forensic Sciences.

  7. Pigmented Creatine Deposits in Amyotrophic Lateral Sclerosis Central Nervous System Tissues Identified by Synchrotron Fourier Transform Infrared Microspectroscopy and X-ray Fluorescence Spectromicroscopy

    SciTech Connect

    Kastyak, M.; Szczerbowska-Boruchowska, M; Adamek, D

    2010-01-01

    Amyotrophic Lateral Sclerosis (ALS) is an untreatable, neurodegenerative disease of motor neurons characterized by progressive muscle atrophy, limb paralysis, dysarthria, dysphagia, dyspnae and finally death. Large motor neurons in ventral horns of spinal cord and motor nuclei in brainstem, large pyramidal neurons of motor cortex and/or large myelinated axons of corticospinal tracts are affected. In recent synchrotron Fourier Transform Infrared microspectroscopy (sFTIR) studies of ALS CNS autopsy tissue, we discovered a small deposit of crystalline creatine, which has a crucial role in energy metabolism. We have now examined unfixed, snap frozen, post-autopsy tissue sections of motor cortex, brain stem, spinalmore » cord, hippocampus and substantia nigra from six ALS and three non-degenerated cases with FTIR and micro-X-ray fluorescence (XRF). Heterogeneous pigmented deposits were discovered in spinal cord, brain stem and motor neuron cortex of two ALS cases. The FTIR signature of creatine has been identified in these deposits and in numerous large, non-pigmented deposits in four of the ALS cases. Comparable pigmentation and creatine deposits were not found in controls or in ALS hippocampus and substantia nigra. Ca, K, Fe, Cu and Zn, as determined by XRF, were not correlated with the pigmented deposits; however, there was a higher incidence of hot spots (Ca, Zn, Fe and Cu) in the ALS cases. The identity of the pigmented deposits remains unknown, although the absence of Fe argues against both erythrocytes and neuromelanin. We conclude that elevated creatine deposits may be indicators of dysfunctional oxidative processes in some ALS cases.« less

  8. Studying anti-oxidative properties of inclusion complexes of α-lipoic acid with γ-cyclodextrin in single living fission yeast by confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Noothalapati, Hemanth; Ikarashi, Ryo; Iwasaki, Keita; Nishida, Tatsuro; Kaino, Tomohiro; Yoshikiyo, Keisuke; Terao, Keiji; Nakata, Daisuke; Ikuta, Naoko; Ando, Masahiro; Hamaguchi, Hiro-o.; Kawamukai, Makoto; Yamamoto, Tatsuyuki

    2018-05-01

    α-lipoic acid (ALA) is an essential cofactor for many enzyme complexes in aerobic metabolism, especially in mitochondria of eukaryotic cells where respiration takes place. It also has excellent anti-oxidative properties. The acid has two stereo-isomers, R- and S- lipoic acid (R-LA and S-LA), but only the R-LA has biological significance and is exclusively produced in our body. A mutant strain of fission yeast, Δdps1, cannot synthesize coenzyme Q10, which is essential during yeast respiration, leading to oxidative stress. Therefore, it shows growth delay in the minimal medium. We studied anti-oxidant properties of ALA in its free form and their inclusion complexes with γ-cyclodextrin using this mutant yeast model. Both free forms R- and S-LA as well as 1:1 inclusion complexes with γ-cyclodextrin recovered growth of Δdps1 depending on the concentration and form. However, it has no effect on the growth of wild type fission yeast strain at all. Raman microspectroscopy was employed to understand the anti-oxidant property at the molecular level. A sensitive Raman band at 1602 cm-1 was monitored with and without addition of ALAs. It was found that 0.5 mM and 1.0 mM concentrations of ALAs had similar effect in both free and inclusion forms. At 2.5 mM ALAs, free forms inhibited the growth while inclusion complexes helped in recovered. 5.0 mM ALA showed inhibitory effect irrespective of form. Our results suggest that the Raman band at 1602 cm-1 is a good measure of oxidative stress in fission yeast.

  9. Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntingtons Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter

    SciTech Connect

    Bonda M.; Miller L.; Perrin V.

    2011-09-02

    Huntington's disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons usingmore » synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of {beta}-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt's {beta}-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar

  10. Analysis of the slow germination of multiple individual superdormant Bacillus subtilis spores using multifocus Raman microspectroscopy and differential interference contrast microscopy.

    PubMed

    Zhang, P; Kong, L; Wang, G; Scotland, M; Ghosh, S; Setlow, B; Setlow, P; Li, Y-Q

    2012-03-01

    To analyse the dynamic germination of hundreds of individual superdormant (SD) Bacillus subtilis spores. Germination of hundreds of individual SD B. subtilis spores with various germinants and under different conditions was followed by multifocus Raman microspectroscopy and differential interference contrast microscopy for 12h and with temporal resolutions of ≤30s. SD spores germinated poorly with the nutrient germinant used to isolate them and with alternate germinants targeting the germinant receptor (GR) used originally. The mean times following mixing of spores and nutrient germinants to initiate and complete fast release of Ca-dipicolinic acid (CaDPA) (T(lag) and T(release) times, respectively) of SD spores were much longer than those of dormant spores. However, the ΔT(release) times (T(release) -T(lag) ) of SD spores were essentially identical to those of dormant spores. SD spores germinated almost as well as dormant spores with nutrient germinants targeting GRs different from the one used to isolate the SD spores and with CaDPA that does not trigger spore germination via GRs. Since (i) ΔT(release) times were essentially identical in GR-dependent germination of SD and dormant spores; (ii) rates of GR-independent germination of SD and dormant spores were identical; (iii) large increases in T(lag) times were the major difference in the GR-dependent germination of SD as compared with spores; and (iv) higher GR levels are correlated with shorter T(lag) times, these results are consistent with the hypothesis that low levels of a GR are the major reason that some spores in a population are SD with germinants targeting this same GR. This study provides information on the dynamic germination of individual SD spores and improves the understanding of spore superdormancy. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  11. Morphology, spatial distribution, and concentration of flame retardants in consumer products and environmental dusts using scanning electron microscopy and Raman micro-spectroscopy.

    PubMed

    Wagner, Jeff; Ghosal, Sutapa; Whitehead, Todd; Metayer, Catherine

    2013-09-01

    We characterized flame retardant (FR) morphologies and spatial distributions in 7 consumer products and 7 environmental dusts to determine their implications for transfer mechanisms, human exposure, and the reproducibility of gas chromatography-mass spectrometry (GC-MS) dust measurements. We characterized individual particles using scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS). Samples were screened for the presence of 3 FR constituents (bromine, phosphorous, non-salt chlorine) and 2 metal synergists (antimony and bismuth). Subsequent analyses of select samples by RMS enabled molecular identification of the FR compounds and matrix materials. The consumer products and dust samples possessed FR elemental weight percents of up to 36% and 31%, respectively. We identified 24 FR-containing particles in the dust samples and classified them into 9 types based on morphology and composition. We observed a broad range of morphologies for these FR-containing particles, suggesting FR transfer to dust via multiple mechanisms. We developed an equation to describe the heterogeneity of FR-containing particles in environmental dust samples. The number of individual FR-containing particles expected in a 1-mg dust sample with a FR concentration of 100ppm ranged from <1 to >1000 particles. The presence of rare, high-concentration bromine particles was correlated with decabromodiphenyl ether concentrations obtained via GC-MS. When FRs are distributed heterogeneously in highly concentrated dust particles, human exposure to FRs may be characterized by high transient exposures interspersed by periods of low exposure, and GC-MS FR concentrations may exhibit large variability in replicate subsamples. Current limitations of this SEM/EDS technique include potential false negatives for volatile and chlorinated FRs and greater quantitation uncertainty for brominated FR in aluminum-rich matrices. Copyright © 2013 Elsevier Ltd. All

  12. Studying anti-oxidative properties of inclusion complexes of α-lipoic acid with γ-cyclodextrin in single living fission yeast by confocal Raman microspectroscopy.

    PubMed

    Noothalapati, Hemanth; Ikarashi, Ryo; Iwasaki, Keita; Nishida, Tatsuro; Kaino, Tomohiro; Yoshikiyo, Keisuke; Terao, Keiji; Nakata, Daisuke; Ikuta, Naoko; Ando, Masahiro; Hamaguchi, Hiro-O; Kawamukai, Makoto; Yamamoto, Tatsuyuki

    2018-05-15

    α-lipoic acid (ALA) is an essential cofactor for many enzyme complexes in aerobic metabolism, especially in mitochondria of eukaryotic cells where respiration takes place. It also has excellent anti-oxidative properties. The acid has two stereo-isomers, R- and S- lipoic acid (R-LA and S-LA), but only the R-LA has biological significance and is exclusively produced in our body. A mutant strain of fission yeast, Δdps1, cannot synthesize coenzyme Q10, which is essential during yeast respiration, leading to oxidative stress. Therefore, it shows growth delay in the minimal medium. We studied anti-oxidant properties of ALA in its free form and their inclusion complexes with γ-cyclodextrin using this mutant yeast model. Both free forms R- and S-LA as well as 1:1 inclusion complexes with γ-cyclodextrin recovered growth of Δdps1 depending on the concentration and form. However, it has no effect on the growth of wild type fission yeast strain at all. Raman microspectroscopy was employed to understand the anti-oxidant property at the molecular level. A sensitive Raman band at 1602cm -1 was monitored with and without addition of ALAs. It was found that 0.5mM and 1.0mM concentrations of ALAs had similar effect in both free and inclusion forms. At 2.5mM ALAs, free forms inhibited the growth while inclusion complexes helped in recovered. 5.0mM ALA showed inhibitory effect irrespective of form. Our results suggest that the Raman band at 1602cm -1 is a good measure of oxidative stress in fission yeast. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Morphology, Spatial Distribution, and Concentration of Flame Retardants in Consumer Products and Environmental Dusts using Scanning Electron Microscopy and Raman Micro-spectroscopy

    PubMed Central

    WAGNER, JEFF; GHOSAL, SUTAPA; WHITEHEAD, TODD; METAYER, CATHERINE

    2013-01-01

    We characterized flame retardant (FR) morphologies and spatial distributions in 7 consumer products and 7 environmental dusts to determine their implications for transfer mechanisms, human exposure, and the reproducibility of gas chromatography-mass spectrometry (GC-MS) dust measurements. We characterized individual particles using scanning electron microscopy / energy dispersive x-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS). Samples were screened for the presence of 3 FR constituents (bromine, phosphorous, non-salt chlorine) and 2 metal synergists (antimony and bismuth). Subsequent analyses of select samples by RMS enabled molecular identification of the FR compounds and matrix materials. The consumer products and dust samples possessed FR elemental weight percents of up to 36% and 31%, respectively. We identified 24 FR-containing particles in the dust samples and classified them into 9 types based on morphology and composition. We observed a broad range of morphologies for these FR-containing particles, suggesting FR transfer to dust via multiple mechanisms. We developed an equation to describe the heterogeneity of FR-containing particles in environmental dust samples. The number of individual FR-containing particles expected in a 1-mg dust sample with a FR concentration of 100 ppm ranged from <1 to >1000 particles. The presence of rare, high-concentration bromine particles was correlated with decabromodiphenyl ether concentrations obtained via GC-MS. When FRs are distributed heterogeneously in highly concentrated dust particles, human exposure to FRs may be characterized by high transient exposures interspersed by periods of low exposure, and GC-MS FR concentrations may exhibit large variability in replicate subsamples. Current limitations of this SEM/EDS technique include potential false negatives for volatile and chlorinated FRs and greater quantitation uncertainty for brominated FR in aluminum-rich matrices. PMID:23739093

  14. Cellular organization and spectral diversity of GFP-like proteins in live coral cells studied by single and multiphoton imaging and microspectroscopy

    NASA Astrophysics Data System (ADS)

    Salih, Anya; Cox, Guy C.; Larkum, Anthony W.

    2003-07-01

    Tissues of many marine invertebrates of class Anthozoa contain intensely fluorescent or brightly coloured pigments. These pigments belong to a family of photoactive proteins closely related to Green Fluorescent Protein (GFP), and their emissions range from blue to red wavelengths. The great diversity of these pigments has only recently been realised. To investigate the role of these proteins in corals, we have performed an in vivo fluorescent pigment (FP) spectral and cellular distribution analyses in live coral cells using single and multi-photon laser scanning imaging and microspectroscopy. These analyses revealed that even single colour corals contain spectroscopically heterogeneous pigment mixtures, with 2-5 major colour types in the same area of tissue. They were typically arranged in step-wise light emission energy gradients (e.g. blue, green, yellow, red). The successive overlapping emission-excitation spectral profiles of differently coloured FPs suggested that they were suited for sequential energy coupling. Traces of red FPs (emission = 570-660 nm) were present, even in non-red corals. We confirmed that radiative energy transfer could occur between separate granules of blue and green FPs and that energy transfer was inversely proportional to the square of the distance between them. Multi-photon micro-spectrofluorometric analysis gave significantly improved spectral resolution by restricting FP excitation to a single point in the focal plane of the sample. Pigment heterogeneity at small scales within granules suggested that fluorescence resonance energy transfer (FRET) might be occurring, and we confirmed that this was the case. Thus, energy transfer can take place both radiatively and by FRET, probably functioning in photoprotection by dissipation of excessive solar radiation.

  15. Isolating stem cells in the inter-follicular epidermis employing synchrotron radiation-based Fourier-transform infrared microspectroscopy and focal plane array imaging.

    PubMed

    Patel, Imran I; Harrison, Wesley J; Kerns, Jemma G; Filik, Jacob; Wehbe, Katia; Carmichael, Paul L; Scott, Andrew D; Philpott, Mike P; Frogley, Mark D; Cinque, Gianfelice; Martin, Francis L

    2012-10-01

    Normal function and physiology of the epidermis is maintained by the regenerative capacity of this tissue via adult stem cells (SCs). However, definitive identifying markers for SCs remain elusive. Infrared (IR) spectroscopy exploits the ability of cellular biomolecules to absorb in the mid-IR region (λ = 2.5-25 μm), detecting vibrational transitions of chemical bonds. In this study, we exploited the cell's inherent biochemical composition to discriminate SCs of the inter-follicular skin epidermis based on IR-derived markers. Paraffin-embedded samples of human scalp skin (n = 4) were obtained, and 10-μm thick sections were mounted for IR spectroscopy. Samples were interrogated in transmission mode using synchrotron radiation-based Fourier-transform IR (FTIR) microspectroscopy (15 × 15 μm) and also imaged employing globar-source FTIR focal plane array (FPA) imaging (5.4 × 5.4 μm). Dependent on the location of derived spectra, wavenumber-absorbance/intensity relationships were examined using unsupervised principal component analysis. This approach showed clear separation and spectral differences dependent on cell type. Spectral biomarkers concurrently associated with segregation of SCs, transit-amplifying cells and terminally-differentiated cells of epidermis were primarily PO(2)(-) vibrational modes (1,225 and 1,080 cm(-1)), related to DNA conformational alterations. FPA imaging coupled with hierarchical cluster analysis also indicated the presence of specific basal layer cells potentially originating from the follicular bulge, suggested by co-clustering of spectra. This study highlights PO (2) (-) vibrational modes as potential putative SC markers.

  16. The New Big Science at the NSLS

    NASA Astrophysics Data System (ADS)

    Crease, Robert

    2016-03-01

    The term ``New Big Science'' refers to a phase shift in the kind of large-scale science that was carried out throughout the U.S. National Laboratory system, when large-scale materials science accelerators rather than high-energy physics accelerators became marquee projects at most major basic research laboratories in the post-Cold War era, accompanied by important changes in the character and culture of the research ecosystem at these laboratories. This talk explores some aspects of this phase shift at BNL's National Synchrotron Light Source.

  17. Infrared microspectroscopy identifies biomolecular changes associated with chronic oxidative stress in mammary epithelium and stroma of breast tissues from healthy young women

    PubMed Central

    Patel, Imran I; Shearer, Debra A; Fogarty, Simon W; Fullwood, Nigel J; Quaroni, Luca; Martin, Francis L; Weisz, Judith

    2014-01-01

    Studies of the decades-long latent stages of breast carcinogenesis have been limited to when hyperplastic lesions are already present. Investigations of earlier stages of breast cancer (BC) latency have been stymied by the lack of fiducial biomarkers needed to identify where in histologically normal tissues progression toward a BC might be taking place. Recent evidence suggests that a marker of chronic oxidative stress (OxS), protein adducts of 4-hydroxy-2-nonenal (4HNE), can meet this need. Specifically: (1) 4HNE immunopositive (4HNE+) mammary epithelial (ME) cells were found to be prevalent in normal (reduction mammoplasty) tissues of most women (including many teenagers) studied, representative of those living in the United States’ high risk-posing environment and: (2) marked (>1.5-fold) differences were identified between tissues of healthy young women with many vs. few 4HNE+ ME cells in the relative levels of transcripts for 42 of the 84 OxS-associated genes represented in SABioscience Oxidative-Stress/Oxidative-Defense PCR array. Herein we used synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy to identify molecular changes associated with 4HNE adducts in basal and luminal ME cells in terminal ductal units (TDLU), which are the cells of origin of BC, and associated intralobular and interlobular stroma, known contributors to carcinogenesis. Multivariate analysis-derived wavenumbers differentiated 4HNE+ and 4HNE− cells in each of the anatomical compartments. Specifically, principal component and linear discriminant analyses of mid-infrared spectra obtained from these cells revealed unambiguous, statistically highly significant differences in the “biochemical fingerprint” of 4HNE+ vs. 4HNE− luminal and basal ME cells, as well as between associated intralobular and interlobular stroma. These findings demonstrate further SR-FTIR microspectroscopy’s ability to identify molecular changes associated with altered

  18. Microprobing the molecular spatial distribution and structural architecture of feed-type sorghum seed tissue (Sorghum Bicolor L.) using the synchrotron radiation infrared microspectroscopy technique.

    PubMed

    Yu, Peiqiang

    2011-09-01

    Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at ∼1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure α-helix), 1628 (protein secondary structure β-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH(3) anti-symmetric), 2929 (CH(2) anti-symmetric), 2877 (CH(3) symmetric) and 2848 cm(-1) (CH(2) asymmetric)]. The relative protein secondary structure α-helix to β-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH(3) to CH(2) ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop specific cereal grain varieties with targeted food and

  19. Microprobing the molecular spatial distribution and structural architecture of feed-type sorghum seed tissue (Sorghum Bicolor L.) using the synchrotron radiation infrared microspectroscopy technique

    PubMed Central

    Yu, Peiqiang

    2011-01-01

    Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at ∼1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure α-helix), 1628 (protein secondary structure β-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH3 anti-symmetric), 2929 (CH2 anti-symmetric), 2877 (CH3 symmetric) and 2848 cm−1 (CH2 asymmetric)]. The relative protein secondary structure α-helix to β-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH3 to CH2 ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop specific cereal grain varieties with targeted food and feed quality

  20. The Ratio 1660/1690 cm−1 Measured by Infrared Microspectroscopy Is Not Specific of Enzymatic Collagen Cross-Links in Bone Tissue

    PubMed Central

    Farlay, Delphine; Duclos, Marie-Eve; Gineyts, Evelyne; Bertholon, Cindy; Viguet-Carrin, Stéphanie; Nallala, Jayakrupakar; Sockalingum, Ganesh D.; Bertrand, Dominique; Roger, Thierry; Hartmann, Daniel J.; Chapurlat, Roland; Boivin, Georges

    2011-01-01

    In postmenopausal osteoporosis, an impairment in enzymatic cross-links (ECL) occurs, leading in part to a decline in bone biomechanical properties. Biochemical methods by high performance liquid chromatography (HPLC) are currently used to measure ECL. Another method has been proposed, by Fourier Transform InfraRed Imaging (FTIRI), to measure a mature PYD/immature DHLNL cross-links ratio, using the 1660/1690 cm−1 area ratio in the amide I band. However, in bone, the amide I band composition is complex (collagens, non-collagenous proteins, water vibrations) and the 1660/1690 cm−1 by FTIRI has never been directly correlated with the PYD/DHLNL by HPLC. A study design using lathyritic rats, characterized by a decrease in the formation of ECL due to the inhibition of lysyl oxidase, was used in order to determine the evolution of 1660/1690 cm−1 by FTIR Microspectroscopy in bone tissue and compare to the ECL quantified by HPLC. The actual amount of ECL was quantified by HPLC on cortical bone from control and lathyritic rats. The lathyritic group exhibited a decrease of 78% of pyridinoline content compared to the control group. The 1660/1690 cm−1 area ratio was increased within center bone compared to inner bone, and this was also correlated with an increase in both mineral maturity and mineralization index. However, no difference in the 1660/1690 cm−1 ratio was found between control and lathyritic rats. Those results were confirmed by principal component analysis performed on multispectral infrared images. In bovine bone, in which PYD was physically destructed by UV-photolysis, the PYD/DHLNL (measured by HPLC) was strongly decreased, whereas the 1660/1690 cm−1 was unmodified. In conclusion, the 1660/1690 cm−1 is not related to the PYD/DHLNL ratio, but increased with age of bone mineral, suggesting that a modification of this ratio could be mainly due to a modification of the collagen secondary structure related to the mineralization process. PMID:22194900

  1. Characterization of the Microchemical Structure of Seed Endosperm within a Cellular Dimension among Six Barley Varieties with Distinct Degradation Kinetics, Using Ultraspatially Resolved Synchrotron-Based Infrared Microspectroscopy

    PubMed Central

    Liu, Na; Yu, Peiqiang

    2013-01-01

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical–structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular–structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical–structural differences in the endosperm among the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P < 0.05) among the barley samples in terms of the peak ratio and peak area and height intensities of amides I (ca. 1650 cm−1) and II (ca. 1550 cm−1), cellulosic compounds (ca. 1240 cm−1), CHO component peaks (the first peak at the region ca. 1184–1132 cm−1, the second peak at ca. 1132–1066 cm−1, and the third peak at ca. 1066–950 cm−1). With the SFTIRM technique, the structural characteristics of the cereal seeds were illuminated among different cultivars at an ultraspatial resolution. The structural differences of barley seeds may be one reason for the various digestive behaviors and nutritive values in ruminants. The results show weak correlations between the functional groups’ spectral data (peak area, height intensities, and ratios) and rumen biodegradation kinetics (rate and extent of nutrient degradation). Weak correlations may indicate that limited variations of these six barley varieties might not be sufficient to interpret the relationship between spectroscopic information

  2. Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique

    SciTech Connect

    P Yu

    2011-12-31

    Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecularmore » images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at {approx}1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure {alpha}-helix), 1628 (protein secondary structure {beta}-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH{sub 3} anti-symmetric), 2929 (CH{sub 2} anti-symmetric), 2877 (CH{sub 3} symmetric) and 2848 cm{sup -1} (CH{sub 2} asymmetric)]. The relative protein secondary structure {alpha}-helix to {beta}-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH{sub 3} to CH{sub 2} ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop

  3. Synchrotron-based and globar-sourced molecular (micro)spectroscopy contributions to advances in new hulless barley (with structure alteration) research on molecular structure, molecular nutrition, and nutrient delivery.

    PubMed

    Yang, Ling; Yu, Peiqiang

    2017-01-02

    This paper aimed to review synchrotron-based and globar-sourced molecular infrared (micro)spectroscopy contributions to advances in new hulless barley (with structure alteration) research on molecular structure, molecular nutrition, and nutrient delivery in ruminants. It reviewed recent progress in barley varieties, its utilization for animal and human, inherent structure features and chemical make-up, evaluation and research methodology, breeding progress, rumen degradation, and intestinal digestion. The emphasis of this review was focused on the effect of alteration of carbohydrate traits of newly developed hulless barley on molecular structure changes and nutrient delivery and quantification of the relationship between molecular structure features and changes and truly absorbed nutrient supply to ruminants. This review provides an insight into how inherent structure changes on a molecular basis affect nutrient utilization and availability in ruminants.

  4. Combining Time-of-Flight Secondary Ion Mass Spectrometry Imaging Mass Spectrometry and CARS Microspectroscopy Reveals Lipid Patterns Reminiscent of Gene Expression Patterns in the Wing Imaginal Disc of Drosophila melanogaster.

    PubMed

    Marty, Florian; Rago, Gianluca; Smith, Donald F; Gao, Xiaoli; Eijkel, Gert B; MacAleese, Luke; Bonn, Mischa; Brunner, Erich; Basler, Konrad; Heeren, Ron M A

    2017-09-19

    Using label-free ToF-SIMS imaging mass spectrometry, we generated a map of small molecules differentially expressed in the Drosophila wing imaginal disc. The distributions of these moieties were in line with gene expression patterns observed during wing imaginal disc development. Combining ToF-SIMS imaging and coherent anti-Stokes Raman spectroscopy (CARS) microspectroscopy allowed us to locally identify acylglycerols as the main constituents of the pattern differentiating the future body wall tissue from the wing blade tissue. The findings presented herein clearly demonstrate that lipid localization patterns are strongly correlated with a developmental gene expression. From this correlation, we hypothesize that lipids play a so far unrecognized role in organ development.

  5. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    SciTech Connect

    Yu,P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecularmore » structure revealed included protein structure {alpha}-helices, {beta}-sheets, and others such as {beta}-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted {alpha}-helices, {beta}-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm{sup -1}, the results show that barley protein consisted of approximately 18-34% of {alpha}-helices, 14-25% of {beta}-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P < 0.05) proportions of {alpha}-helices (30-34%) than Dolly and Valier ({alpha}-helices 18-23%). Harrington was in between which was 25%. For protein {beta}-sheets, AC Metcalfe, and LP955 consisted of higher proportions (22-25%) than Dolly and Valier (13-17%). Different barley varieties contained different {alpha}-helix to {beta}-sheet ratios, ranging from 1.4 to 2.0, although the difference were

  6. Brain mapping by FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Wetzel, David L.; Le Vine, Steven M.

    1992-03-01

    Spatial resolution achieved with a state-of-the-art scanning molecular FT-IR microspectrometer allows excellent spectra to be obtained from relatively small areas of 8 micrometers thick section of brain tissue. Concentration mapping is achieved by picking absorbances or baseline-corrected absorbances of select peaks for each scan obtained at a particular x,y coordinate of the tissue section. Scanning was done in the transmission mode and a programmable microscope stage was used to position the specimen in the beam between scans. The chemical selectivity of the microspectroscopic technique allowed us to superimpose chemical data onto the spatially-defined structures, particularly myelin, in the brain. Since the chemical information is both qualitative and semiquantitative the heterogeneous distribution is revealed. Previously spectroscopic analysis was performed on myelin fractions obtained from brain homogenates. This did not allows observation of localized concentration differences, as is now the case. In addition to spectra, maps of selected key wavelength responses presented from frozen sections of normal brains, result in chemically selective distribution profiles in the gray matter, white matter and basal ganglia.

  7. Infrared Microspectroscopy Of Pathologic Tissue

    NASA Astrophysics Data System (ADS)

    O'Leary, Timothy J.; Engler, Walter F.; Ventre, Kathleen M.

    1989-12-01

    Infrared spectroscopy is a powerful technique by which to characterize the conformations of proteins, lipids, and nucleic acids (1). Previously we have demonstrated that infrared spectroscopy can be used to characterize the secondary structure of abnormal protein accumulation products, known as amyloid, which are often found in association with medullary carcinoma of the thyroid (2). The utility of the technique was highly limited by the fact that essentially the entire specimen had to consist of this abnormal protein for infrared spectroscopic analysis to be useful. The development of high quality microscopes capable of both light microscopic and infrared characterization of materials has enabled us to extend our earlier use of infrared spectroscopy to diseases and tissues in which the abnormal region of interest is only a few hundred square micrometers in area. Tissue for spectroscopic examination is mounted on microscope slides which have been prepared by acid washing, plating with gold or gold-palladium alloy (3) and coating with high molecular weight poly-L-lysine. Sections of tissue which have been previously embedded in paraffin are cut with a microtome at 4 to 5 micrometers thickness, floated onto a bath of distilled water, picked up on the microscope slide, and allowed to dry overnight. Paraffin is removed by soaking the slides in two changes of xylene, and then the sections are rehydrated by placing them in absolute alcohol, then in fifty percent alcohol, and finally in water. Sections may then be stained using standard histologic stains, such as hematoxylin and eosin, then once again dehydrated with alcohol. After drying, the sections are covered with an index-matching fluid, such as Fluorolube, which allows a relatively good visual microscopic examination of the tissue when the microscope is used in reflectance mode. High quality reflectance infrared spectra may be easily obtained when the tissue is prepared and mounted in this way (Figure 1). Alternatively, fresh or formalin-fixed tissues which have not been embedded in paraffin may be prepared for examination by freezing them in a cryostat, cutting five to ten micrometer thick sections, and mounting them directly on the polylysine coated gold-plated slides. These tissues may then be stained with hematoxylin and eosin or with Diff-Quik, then dehydrated with acetone, thus preserving cellular lipids. We have examined a number of cases of medullary carcinoma of the thyroid and obtained infrared spectra of the associated amyloid protein. Spectra were obtained using an IR-Plan microscope interfaced to a Bomem DA3 Fourier transform infrared spectrometer. A 32x objective was used, with a circular aperture which allowed acquisition of spectra from a region as small as 90 micrometers in diameter. A narrow-band 0.25 mm MCT detector was employed. A typical spectrum from amyloid found i11 a medullary carcinoma of the thyroid is found in Figure 1; features found in the 1630 to 1645 cm region of the Amide I band are indicative of β-sheet structure, which has previously been described in amyloid proteins (4). The amount of fl-sheet structure, as assessed visually in comparison with the rest of the Amide I band, varies markedly from region to region and case to case. The presence of this βsheet structure cannot be used to differentiate amyloid from other extracellular proteins. Figure 2 shows the spectrum of colloid from a thyroid follicle. This material, which is largely composed of thyroglobulin, also shows a significant amount of βstructure, as does the heart muscle examined following frozen section. In the case of the heart muscle, however, cellular lipid is also observed as methylene C-H stretching modes in the 2800-3100 cm region of the spectrum. The frozen section tissue preparation procedure leaves the cellular lipid in place, while the paraffin-embedding and removal procedure used for preparation of the first two specimens extracts cellular lipids as well, resulting in a much less prominent C-H stretching mode region.

  8. Segregation of human prostate tissues classified high-risk (UK) versus low-risk (India) for adenocarcinoma using Fourier-transform infrared or Raman microspectroscopy coupled with discriminant analysis.

    PubMed

    Patel, Imran I; Trevisan, Júlio; Singh, Paras B; Nicholson, Caroline M; Krishnan, R K Gopala; Matanhelia, Shyam S; Martin, Francis L

    2011-08-01

    Vibrational spectroscopy techniques can be applied to identify a susceptibility-to-adenocarcinoma biochemical signature. A sevenfold difference in incidence of prostate adenocarcinoma (CaP) remains apparent amongst populations of low- (e.g. India) compared with high-risk (e.g. UK) regions, with migrant studies implicating environmental and/or lifestyle/dietary causative factors. This study set out to determine the biospectroscopy-derived spectral differences between risk-associated cohorts to CaP. Benign prostate tissues were obtained using transurethral resection from high-risk (n = 11, UK) and low-risk (n = 14, India) cohorts. Samples were analysed using attenuated total reflection Fourier-transform infrared (FTIR) spectroscopy, FTIR microspectroscopy and Raman microspectroscopy. Spectra were subsequently processed within the biochemical cell region (1,800(-1)-500 cm(-1)) employing principal component analysis (PCA) and linear discriminant analysis (LDA) to determine whether wavenumber-absorbance/intensity relationships might reveal biochemical differences associated with region-specific susceptibility to CaP. PCA-LDA scores and corresponding cluster vector plots identified pivotal segregating biomarkers as 1,582 cm(-1) (Amide I/II trough); 1,551 cm(-1) (Amide II); 1,667 cm(-1) (Amide I); 1,080 cm(-1) (DNA/RNA); 1,541 cm(-1) (Amide II); 1,468 cm(-1) (protein); 1,232 cm(-1) (DNA); 1,003 cm(-1) (phenylalanine); 1,632 cm(-1) [right-hand side (RHS) Amide I] for glandular epithelium (P < 0.0001) and 1,663 cm(-1) (Amide I); 1,624 cm(-1) (RHS Amide I); 1,126 cm(-1) (RNA); 1,761, 1,782, 1,497 cm(-1) (RHS Amide II); 1,003 cm(-1) (phenylalanine); and 1,624 cm(-1) (RHS Amide I) for adjacent stroma (P < 0.0001). Primarily protein secondary structure variations were biomolecular markers responsible for cohort segregation with DNA alterations exclusively located in the glandular epithelial layers. These biochemical differences may lend vital insights into the aetiology of CaP.

  9. Correlated Raman micro-spectroscopy and scanning electron microscopy analyses of flame retardants in environmental samples: a micro-analytical tool for probing chemical composition, origin and spatial distribution.

    PubMed

    Ghosal, Sutapa; Wagner, Jeff

    2013-07-07

    We present correlated application of two micro-analytical techniques: scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS) for the non-invasive characterization and molecular identification of flame retardants (FRs) in environmental dusts and consumer products. The SEM/EDS-RMS technique offers correlated, morphological, molecular, spatial distribution and semi-quantitative elemental concentration information at the individual particle level with micrometer spatial resolution and minimal sample preparation. The presented methodology uses SEM/EDS analyses for rapid detection of particles containing FR specific elements as potential indicators of FR presence in a sample followed by correlated RMS analyses of the same particles for characterization of the FR sub-regions and surrounding matrices. The spatially resolved characterization enabled by this approach provides insights into the distributional heterogeneity as well as potential transfer and exposure mechanisms for FRs in the environment that is typically not available through traditional FR analysis. We have used this methodology to reveal a heterogeneous distribution of highly concentrated deca-BDE particles in environmental dust, sometimes in association with identifiable consumer materials. The observed coexistence of deca-BDE with consumer material in dust is strongly indicative of its release into the environment via weathering/abrasion of consumer products. Ingestion of such enriched FR particles in dust represents a potential for instantaneous exposure to high FR concentrations. Therefore, correlated SEM/RMS analysis offers a novel investigative tool for addressing an area of important environmental concern.

  10. Shining light on the differences in molecular structural chemical makeup and the cause of distinct degradation behavior between malting- and feed-type barley using synchrotron FTIR microspectroscopy: a novel approach.

    PubMed

    Yu, Peiqiang; Doiron, Kevin; Liu, Dasen

    2008-05-14

    The objective of this study was to use advanced synchrotron-sourced FTIR microspectroscopy (SFTIRM) as a novel approach to identify the differences in protein and carbohydrate molecular structure (chemical makeup) between these two varieties of barley and illustrate the exact causes for their significantly different degradation kinetics. Items assessed included (1) molecular structural differences in protein amide I to amide II intensities and their ratio within cellular dimensions, (2) molecular structural differences in protein secondary structure profile and their ratios, and (3) molecular structural differences in carbohydrate component peak profile. Our hypothesis was that molecular structure (chemical makeup) affects barley quality, fermentation, and degradation behavior in both humans and animals. Using SFTIRM, the protein and carbohydrate molecular structural chemical makeup of barley was revealed and identified. The protein molecular structural chemical makeup differed significantly between the two varieties of barleys. No difference in carbohydrate molecular structural chemical makeup was detected. Harrington was lower than Valier in protein amide I, amide II, and protein amide I to amide II ratio, while Harrington was relatively higher in model-fitted protein alpha-helix and beta-sheet, but lower in the others (beta-turn and random coil). These results indicated that it is the molecular structure of protein (chemical makeup) that may play a major role in the different degradation kinetics between the two varieties of barleys (not the molecular structure of carbohydrate). It is believed that use of the advanced synchrotron technology will make a significant step and an important contribution to research in examining the molecular structure (chemical makeup) of plant, feed, and seeds.

  11. Shining Light on the Differences in Molecular Structural Chemical Makeup and the Cause of Distinct Degradation Behavior Between Malting- and Feed- Type Barley Using Synchrotorn FTIR Microspectroscopy: A Novel Approach

    SciTech Connect

    Yu,P.; Doiron, K.; Liu, D.

    2008-01-01

    The objective of this study was to use advanced synchrotron-sourced FTIR microspectroscopy (SFTIRM) as a novel approach to identify the differences in protein and carbohydrate molecular structure (chemical makeup) between these two varieties of barley and illustrate the exact causes for their significantly different degradation kinetics. Items assessed included (1) molecular structural differences in protein amide I to amide II intensities and their ratio within cellular dimensions, (2) molecular structural differences in protein secondary structure profile and their ratios, and (3) molecular structural differences in carbohydrate component peak profile. Our hypothesis was that molecular structure (chemical makeup) affects barley quality,more » fermentation, and degradation behavior in both humans and animals. Using SFTIRM, the protein and carbohydrate molecular structural chemical makeup of barley was revealed and identified. The protein molecular structural chemical makeup differed significantly between the two varieties of barleys. No difference in carbohydrate molecular structural chemical makeup was detected. Harrington was lower than Valier in protein amide I, amide II, and protein amide I to amide II ratio, while Harrington was relatively higher in model-fitted protein a-helix and {beta}-sheet, but lower in the others ({beta}-turn and random coil). These results indicated that it is the molecular structure of protein (chemical makeup) that may play a major role in the different degradation kinetics between the two varieties of barleys (not the molecular structure of carbohydrate). It is believed that use of the advanced synchrotron technology will make a significant step and an important contribution to research in examining the molecular structure (chemical makeup) of plant, feed, and seeds.« less

  12. Fourier transform infared spectroscopic imaging for the identification of concealed drug residue particles and fingerprints

    NASA Astrophysics Data System (ADS)

    Ricci, Camilla; Chan, K. L. Andrew; Kazarian, Sergei G.

    2006-09-01

    Conventional FTIR spectroscopy and microscopy has been widely used in forensic science. New opportunities exist to obtain rapid chemical images and to enhance the sensitivity of detection of trace materials using attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy coupled with a focal-plane array (FPA) detector. In this work, the sensitivity of ATR-FTIR spectroscopic imaging using three different kinds of ATR crystals (Ge coupled with an infrared microscope, ZnSe and diamond) and resulting in three different optical arrangements for the detection of model drug particles is discussed. Model systems of ibuprofen and paracetamol particles having a size below 32 micrometers have been prepared by sieving. The sensitivity level in the three different approaches has been compared and it has been found that both micro and macro-ATR imaging methods have proven to be a promising techniques for the identification of concealed drug particles. To demonstrate the power and applicability of FTIR chemical imaging to forensic research, various examples are discussed. This includes investigation of the changes of chemical nature of latent fingerprint residue under controlled conditions of humidity and temperature studied by ATR-FTIR imaging. This study demonstrates the potential of spectroscopic imaging for visualizing the chemical changes of fingerprints.

  13. Infared beak treatment method compared with conventional hot blade amputation in laying hens

    USDA-ARS?s Scientific Manuscript database

    Infrared lasers have been widely used for noninvasive surgical applications in human medicine and their results are reliable, predictable and reproducible. Infrared lasers have recently been designed with the expressed purpose of providing a less painful, more precise beak trimming method compared w...

  14. Fourier transform infared spectroscopy investigation of protein conformation in spray-dried protein/trehalose powders.

    PubMed

    French, Donna L; Arakawa, Tsutomu; Li, Tiansheng

    2004-03-01

    Spray drying is a way to generate protein solids (powders), which is also true for lyophilization. Sugars are used to protect proteins from conformational changes and chemical degradations arising from drying processes and storage conditions such as the humidity. The influence of trehalose and humidity on the conformation and hydration of spray-dried recombinant human granolucyte colony stimulating factor (rhG-CSF) and recombinant consensus interferon-alpha (rConIFN) was investigated using Fourier transform IR spectroscopy. The spectral analysis of spray-dried powders in the amide I region demonstrated that trehalose stabilized the alpha-helical conformation of both rhG-CSF and rConIFN proteins. Exposure of the pure protein powders to 33% relative humidity (RH) resulted in the formation of beta sheets and loss of turns but no change in alpha-helical structure. Trehalose reduced the magnitude of the changes in beta sheets and turns. Exposure of the pure protein powders to 75% RH resulted in the loss of alpha-helical conformation with a corresponding increase in beta structures (beta sheets and turns). Trehalose did not protect proteins from the loss of alpha-helical structures, but it reduced the formation of antiparallel beta sheets. Hydrogen-deuterium exchange (H-D exchange) was used to further characterize these hydration-induced conformational changes. At 33% RH the percent exchange of the protein decreased with increasing trehalose content, indicating a greater protection of the protein from H-D exchange by a higher concentration of trehalose. Such protection correlates with decreased conformational changes of the protein by trehalose at this humidity. At 75% RH the degree of H-D exchange of the protein was insensitive to the powder composition in all powders. Surprisingly, the H-D exchange of trehalose was low at about 20-25%, which was nearly independent of the protein/trehalose ratio and humidity, indicating that the exchangeable protons on trehalose molecules are highly protected in protein-containing powders. The observed protein hydration is related to the effect of trehalose on the conformational changes of the protein under humidity. Copyright 2004 Wiley Periodicals, Inc.

  15. Use of near infared spectroscopy to measure the chemical and mechanical properties of solid wood

    Treesearch

    Stephen S. Kelley; Timothy G. Rials; Rebecca Snell; Leslie H. Groom; Amie Sluiter

    2004-01-01

    Near infrared (NIR) spectroscopy (500 nm-2400 nm), coupled with multivariate analytic (MVA) statistical techniques, have been used to predict the chemical and mechanical properties of solid loblolly pine wood. The samples were selected from different radial locations and heights of three loblolly pine trees grown in Arkansas. The chemical composition and mechanical...

  16. A Microshutter-Based Field Selector for JWST's Near Infared Spectrograph

    NASA Technical Reports Server (NTRS)

    Silvergerg, Rorbert F.; Arendt, Richard; Franz, David; Jhabvala, Murzy; Kletetschka, Gunther; Kutyrev, Alexander; Li, Mary; Moseley, Samuel H.; Rapchun, David; Snodgrass, Stephen; hide

    2007-01-01

    One of the James Webb Space Telescope's (JWST) primary science goals is to characterize the epoch of galaxy formation in the universe and observe the first galaxies and clusters of galaxies. This goal requires multi-band imaging and spectroscopic data in the near infrared portion of the spectrum for large numbers of very faint galaxies. Because such objects are sparse on the sky at the JWST resolution, a multi-object spectrograph is necessary to efficiently carry out the required observations. We have developed a fully programmable microshutter array that will be used as the field selector for the Near Infrared Spectrograph (NIRSpec) on JWST. This device allows slits to be opened at the locations of selected galaxies in the field of view while blocking other unwanted light from the sky background and bright sources. In practice, greater than 100 objects within the field of view will be observed simultaneously. In this paper, we describe the microshutter arrays, their development, fabrication, testing, and progress toward delivery of flight qualified devices to the NIRSpec instrument team in 2008.

  17. Use of near infared spectroscopy to predict the mechanical properties of six softwoods

    Treesearch

    Stephen S. Jelley; Timothy G. Rials; Leslie H. Groom; Chi-Leung So

    2004-01-01

    The visible and near infrared (NIR)(500-2400 nm) spectra and mechanical properties of almost 1000 small clear-wood samples from six softwood species: Pinus taeda L. (loblolly pine), Pinus palustris, Mill. (longleaf pine), Pinus elliottii Engelm. (slash pine), Pinus echinata Mill. (shortleaf...

  18. Quantum Well Intrasubband Photodetector for Far Infared and Terahertz Radiation Detection

    NASA Technical Reports Server (NTRS)

    Ting, David Z. -Y.; Chang, Yia-Chung; Bandara, Sumith V.; Gunapala, Sarath D.

    2007-01-01

    The authors present a theoretical analysis on the possibility of using the dopant-assisted intrasubband absorption mechanism in quantum wells for normal-incidence far infrared/terahertz radiation detection. The authors describe the proposed concept of the quantum well intrasubband photodetector (QWISP), which is a compact semiconductor heterostructure device compatible with existing GaAs focal-plane array technology, and present theoretical results demonstrating strong normal-incidence absorption and responsivity in the QWISP.

  19. An Inside Look: NSLS-II Storage Ring

    ScienceCinema

    Fries, Gregory

    2018-01-16

    Look inside the storage ring of the National Synchrotron Light Source II, under construction at Brookhaven Lab. Exactly 843 magnets now encircle the ring. Their job will be to steer, stabilize, and store electrons racing around at near light speed.

  20. Infrastructure development for radioactive materials at the NSLS-II

    DOE PAGES

    Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...

    2017-11-04

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  1. Infrastructure development for radioactive materials at the NSLS-II

    SciTech Connect

    Sprouster, D. J.; Weidner, R.; Ghose, S. K.

    2018-02-01

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  2. Infrastructure development for radioactive materials at the NSLS-II

    NASA Astrophysics Data System (ADS)

    Sprouster, D. J.; Weidner, R.; Ghose, S. K.; Dooryhee, E.; Novakowski, T. J.; Stan, T.; Wells, P.; Almirall, N.; Odette, G. R.; Ecker, L. E.

    2018-02-01

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilities at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.

  3. An Inside Look: NSLS-II Storage Ring

    SciTech Connect

    Fries, Gregory

    2013-10-21

    Look inside the storage ring of the National Synchrotron Light Source II, under construction at Brookhaven Lab. Exactly 843 magnets now encircle the ring. Their job will be to steer, stabilize, and store electrons racing around at near light speed.

  4. First Structural Steel Erected at NSLS-II

    ScienceCinema

    None

    2017-12-09

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  5. Molecular Basis of Protein Structure in Proanthocyanidin and Anthocyanin-Enhanced Lc-transgenic Alfalfa in Relation to Nutritive Value Using Synchrotron-Radiation FTIR Microspectroscopy: A Novel Approach

    SciTech Connect

    Yu, P.; Jonker, A; Gruber, M

    2009-01-01

    To date there has been very little application of synchrotron radiation-based Fourier transform infrared microspectroscopy (SRFTIRM) to the study of molecular structures in plant forage in relation to livestock digestive behavior and nutrient availability. Protein inherent structure, among other factors such as protein matrix, affects nutritive quality, fermentation and degradation behavior in both humans and animals. The relative percentage of protein secondary structure influences protein value. A high percentage of e-sheets usually reduce the access of gastrointestinal digestive enzymes to the protein. Reduced accessibility results in poor digestibility and as a result, low protein value. The objective of this studymore » was to use SRFTIRM to compare protein molecular structure of alfalfa plant tissues transformed with the maize Lc regulatory gene with non-transgenic alfalfa protein within cellular and subcellular dimensions and to quantify protein inherent structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling. Protein molecular structure revealed by this method included a-helices, e-sheets and other structures such as e-turns and random coils. Hierarchical cluster analysis and principal component analysis of the synchrotron data, as well as accurate spectral analysis based on curve fitting, showed that transgenic alfalfa contained a relatively lower (P < 0.05) percentage of the model-fitted a-helices (29 vs. 34) and model-fitted e-sheets (22 vs. 27) and a higher (P < 0.05) percentage of other model-fitted structures (49 vs. 39). Transgenic alfalfa protein displayed no difference (P > 0.05) in the ratio of a-helices to e-sheets (average: 1.4) and higher (P < 0.05) ratios of a-helices to others (0.7 vs. 0.9) and e-sheets to others (0.5 vs. 0.8) than the non-transgenic alfalfa protein. The transgenic protein structures also exhibited no difference (P > 0.05) in the vibrational intensity of protein amide I (average of 24) and

  6. Molecular basis of protein structure in proanthocyanidin and anthocyanin-enhanced Lc-transgenic alfalfa in relation to nutritive value using synchrotron-radiation FTIR microspectroscopy: A novel approach

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang; Jonker, Arjan; Gruber, Margaret

    2009-09-01

    To date there has been very little application of synchrotron radiation-based Fourier transform infrared microspectroscopy (SRFTIRM) to the study of molecular structures in plant forage in relation to livestock digestive behavior and nutrient availability. Protein inherent structure, among other factors such as protein matrix, affects nutritive quality, fermentation and degradation behavior in both humans and animals. The relative percentage of protein secondary structure influences protein value. A high percentage of β-sheets usually reduce the access of gastrointestinal digestive enzymes to the protein. Reduced accessibility results in poor digestibility and as a result, low protein value. The objective of this study was to use SRFTIRM to compare protein molecular structure of alfalfa plant tissues transformed with the maize Lc regulatory gene with non-transgenic alfalfa protein within cellular and subcellular dimensions and to quantify protein inherent structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling. Protein molecular structure revealed by this method included α-helices, β-sheets and other structures such as β-turns and random coils. Hierarchical cluster analysis and principal component analysis of the synchrotron data, as well as accurate spectral analysis based on curve fitting, showed that transgenic alfalfa contained a relatively lower ( P < 0.05) percentage of the model-fitted α-helices (29 vs. 34) and model-fitted β-sheets (22 vs. 27) and a higher ( P < 0.05) percentage of other model-fitted structures (49 vs. 39). Transgenic alfalfa protein displayed no difference ( P > 0.05) in the ratio of α-helices to β-sheets (average: 1.4) and higher ( P < 0.05) ratios of α-helices to others (0.7 vs. 0.9) and β-sheets to others (0.5 vs. 0.8) than the non-transgenic alfalfa protein. The transgenic protein structures also exhibited no difference ( P > 0.05) in the vibrational intensity of protein amide I (average of

  7. Vibrational microspectroscopy analysis of human lenses

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, C.; Piergies, N.; Sozańska, A.; Chaniecki, P.; Rękas, M.; Miszczyk, J.; Gajda, M.; Kwiatek, W. M.

    2018-01-01

    In this study we present vibrational analysis of healthy (non-affected by cataract) and cataractous human lenses by means of Raman and FTIR spectroscopy methods. The performed analysis provides complex information about the secondary structure of the proteins and conformational changes of the amino acid residues due to the formation of opacification of human lens. Briefly, the changes in the conformation of the Tyr and Trp residues and the protein secondary structure between the healthy and cataractous samples, were recognized. Moreover, the observed spectral pattern suggests that the process of cataract development does not occur uniformly over the entire volume of the lens.

  8. Diffraction-limited IR Microspectroscopy with IRENI

    Treesearch

    J. Sedlmair; B. Illman; M. Unger; C. Hirschmugl

    2012-01-01

    In a unique way, IRENI (Infrared environmental Imaging), operated at the Synchrotron Radiation Center in Madison, combines IR spectroscopy and IR imaging, revealing the chemical morphology of a sample. Most storage ring based IR confocal microscopes have to overcome a trade-off between spatial resolution versus...

  9. Confocal Raman Microspectroscopy of Oral Streptococci

    NASA Astrophysics Data System (ADS)

    Beier, Brooke D.

    Raman spectroscopy has been used in a variety of applications throughout the field of biomedical optics. It has the ability to acquire chemically-specific information in a non-invasive manner, without the need for exogenous markers. This makes it useful in the identification of bacterial species, as well as in the study of tissues and other cells. In this work, a species identification model has been created in order to discriminate between the oral bacterial species Streptococcus sanguinis and Streptococcus mutans. These are two of the most prevalent species within the human mouth and their relative concentrations can be an indicator of a patient's oral health and risk of tooth decay. They are predominantly found within plaque on the tooth's surface. To study a simplified model for dental plaque, we have examined S. sanguinis and S. mutans grown in biofilm forms. Raman spectroscopy has been implemented here through a confocal microscope. The optical system has been equipped with computationally controlled stages to allow for automated scanning, including autofocusing to probe a consistent depth within a sample. A spectrum has been acquired from each position within a scan and sent for spectral preprocessing before being submitted for species identification. This preprocessing includes an algorithm that has been developed to remove fluorescence features from known contaminants within the confocal volume, to include signal from a fluorescent substrate. Species classification has been accomplished using a principal component score-fed logistic regression model constructed from a variety of biofilm samples that have been transferred and allowed to dry, as might occur with the study of plaque samples. This binary classification model has been validated on other samples with identical preparations. The model has also been transferred to determine the species of hydrated biofilms studied in situ. Artificially mixed biofilms have been examined to test the spatial capabilities of our species identification model. The work included in this thesis has been focused on the study of S. sanguinis and S. mutans, though the principles could easily be applied to the study of other biofilms.

  10. Laser ablation surface-enhanced Raman microspectroscopy.

    PubMed

    Londero, Pablo S; Lombardi, John R; Leona, Marco

    2013-06-04

    Improved identification of trace organic compounds in complex matrixes is critical for a variety of fields such as material science, heritage science, and forensics. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can attain single-molecule sensitivity and has been shown to complement mass spectrometry, but lacks widespread application without a robust method that utilizes the effect. We demonstrate a new, highly sensitive, and widely applicable approach to SERS analysis based on laser ablation in the presence of a tailored plasmonic substrate. We analyze several challenging compounds, including non-water-soluble pigments and dyed leather from an ancient Egyptian chariot, achieving sensitivity as high as 120 amol for a 1:1 signal-to-noise ratio and 5 μm spatial resolution. This represents orders of magnitude improvement in spatial resolution and sensitivity compared to those of other SERS approaches intended for widespread application, greatly increasing the applicability of SERS.

  11. Evaluation of the Brain Activity Using the Functional Near-Infared Spectroscopy while Having Stimulated by Pleasant and Unpleasant Music

    NASA Astrophysics Data System (ADS)

    Asano, Hirotoshi; Hiroshige, Satoru; Ide, Hideto

    We propose the psychological research and physiological measurements. We used oxyHb as physiological measurements in order to evaluate the emotion of “pleasant-unpleasant”. Concretely, we evaluated the difference in the emotion of “pleasant-unpleasant” from oxyHb of the frontal lobe. The experiment showed that a relation between psychological amount and ⊿oxyHb. Based on the result, we presumed the psychological amount using the multiple regression analysis. As a result, it turned out that we can evaluate the emotion of “pleasant-unpleasant” by fNIRS.

  12. Comparison of laboratory and in-flight performance of infared array camera (IRAC) detector arrays on Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Pipher, Judith L.; McMurtry, Craig W.; Forrest, William J.; McCreight, Craig R.; McKelvey, Mark E.; McMurray, Robert E., Jr.; Johnson, Roy R.; Fazio, Giovanni G.; Hora, Joseph L.; Allen, Lori E.; Ashby, Matthew L. N.; Barmby, Pauline; Deutsch, Lynne K.; Huang, Jiasheng; Marengo, Massimo; Megeath, S. Thomas; Pahre, Michael A.; Patten, Brian M.; Wang, Zhong; Willner, Steven P.; Hoffmann, William F.; Moseley, Samuel H., Jr.; Arendt, Richard G.; Krebs, Danny J.; Eisenhardt, Peter R.; Stern, Daniel; Gorjian, Varoujan; Bhattacharya, Bidushi; Glaccum, William J.; Lacy, Mark D.; Lowrance, Patrick J.; Carey, Sean J.; Laine, Seppo J.; Stauffer, John R.; Surace, Jason A.; Reach, William T.; Wilson, Gillian

    2004-10-01

    The Infrared Array Camera (IRAC) on Spitzer Space Telescope includes four Raytheon Vision Systems focal plane arrays, two with InSb detectors, and two with Si:As detectors. A brief comparison of pre- flight laboratory results vs. in-flight performance is given, including quantum efficiency and noise, as well as a discussion of irregular effects, such as residual image performance, "first frame effect", "banding", "column pull-down" and multiplexer bleed. Anomalies not encountered in pre-flight testing, as well as post-flight laboratory tests on these anomalies at the University of Rochester and at NASA Ames using sister parts to the flight arrays, are emphasized.

  13. The Optical-Infared Study and Geometric Model of Young Multipolar Planetary nebula -- IRAS 21282+5050

    NASA Astrophysics Data System (ADS)

    Hsia, Chih-Hao; Chau, Wayne; Kwok, Sun

    2015-08-01

    We present high angular resolution Hubble Space Telescope (HST) optical and near-infrared imaging of the famous compact planetary nebula (PN) IRAS 21282+5050. Optical images of this object reveal several complex morphological structures including three pairs of lobes and an elliptical shell lying close to the plane of the sky. From near-infrared observations, we found a dust torus which is oriented nearly perpendicular to the major axis of elliptical shell. The results suggest that IRAS 21282+5050 (IRAS 21282) is indeed a multipolar PN, and these structures developed in the early stage on its evolutionary track. We also constructed this object by a three-dimensional (3D) model and determined the dimensions of these intrinsic structures. Assuming these lobes are shaped by wind interactions, the presence of these geometric structures has been suggested as the result of multiple phases of fast winds with temporal and directional variations. Based on the visualization of 3D model of this object viewed from different orientations, the appearance of IRAS 21282 shows similar intrinsic structures as other multipolar PNs.

  14. Liquid Space Lubricants Examined by Vibrational Micro-Spectroscopy

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.

    2008-01-01

    Considerable effort has been expended to develop liquid lubricants for satellites and space exploration vehicles. These lubricants must often perform under a range of harsh conditions such as vacuum, radiation, and temperature extremes while in orbit or in transit and in extremely dusty environments at destinations such as the Moon and Mars. Historically, oil development was guided by terrestrial application, which did not provide adequate space lubricants. Novel fluids such as the perfluorinated polyethers provided some relief but are far from ideal. With each new fluid proposed to solve one problem, other problems have arisen. Much of the work performed at the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in elucidating the mechanisms by which chemical degradation of space oils occur has been done by vibrational micro-spectroscopic techniques such as infrared and Raman, which this review details. Presented are fundamental lubrication studies as well as actual case studies in which vibrational spectroscopy has led to millions of dollars in savings and potentially prevented loss of mission.

  15. Mie scatter corrections in single cell infrared microspectroscopy.

    PubMed

    Konevskikh, Tatiana; Lukacs, Rozalia; Blümel, Reinhold; Ponossov, Arkadi; Kohler, Achim

    2016-06-23

    Strong Mie scattering signatures hamper the chemical interpretation and multivariate analysis of the infrared microscopy spectra of single cells and tissues. During recent years, several numerical Mie scatter correction algorithms for the infrared spectroscopy of single cells have been published. In the paper at hand, we critically reviewed existing algorithms for the correction of Mie scattering and suggest improvements. We developed an iterative algorithm based on Extended Multiplicative Scatter Correction (EMSC), for the retrieval of pure absorbance spectra from highly distorted infrared spectra of single cells. The new algorithm uses the van de Hulst approximation formula for the extinction efficiency employing a complex refractive index. The iterative algorithm involves the establishment of an EMSC meta-model. While existing iterative algorithms for the correction of resonant Mie scattering employ three independent parameters for establishing a meta-model, we could decrease the number of parameters from three to two independent parameters, which reduced the calculation time for the Mie scattering curves for the iterative EMSC meta-model by a factor of 10. Moreover, by employing the Hilbert transform for evaluating the Kramers-Kronig relations based on a FFT algorithm in Matlab, we further improved the speed of the algorithm by a factor of 100. For testing the algorithm we simulate distorted apparent absorbance spectra by utilizing the exact theory for the scattering of infrared light at absorbing spheres, taking into account the high numerical aperture of infrared microscopes employed for the analysis of single cells and tissues. In addition, the algorithm was applied to measured absorbance spectra of single lung cancer cells.

  16. Brillouin microspectroscopy of nanostructured biomaterials: photonics assisted tailoring mechanical properties

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Jaiswal, Manish K.; Chitrakar, Chandani; Thakur, Teena; Gaharwar, Akhilesh K.; Yakovlev, Vladislav V.

    2016-03-01

    Developing new biomaterials is essential for the next-generation of materials for bioenergy, bioelectronics, basic biology, medical diagnostics, cancer research, and regenerative medicine. Specifically, recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. The physical properties of nanocomposite biomaterials, including elasticity and viscosity, play key roles in controlling cell fate, which underlines therapeutic success. Conventional mechanical tests, including uniaxial compression and tension, dynamic mechanical analysis and shear rheology, require mechanical forces to be directly exerted onto the sample and therefore may not be suitable for in situ measurements or continuous monitoring of mechanical stiffness. In this study, we employ spontaneous Brillouin spectroscopy as a viscoelasticity-specific probing technique. We utilized a Brillouin spectrometer to characterize biomaterial's microscopic elasticity and correlated those with conventional mechanical tests (e.g., rheology).

  17. Recent approaches for bridging the pressure gap in photoelectron microspectroscopy

    PubMed Central

    Kolmakov, Andrei; Gregoratti, Luca; Kiskinova, Maya; Günther, Sebastian

    2016-01-01

    Ambient-pressure photoelectron spectroscopy (APPES) and microscopy are at the frontier of modern chemical analysis at liquid-gas, solid-liquid and solid-gas interfaces, bridging science and engineering of functional materials. Complementing the current state-of-the art of the instruments, we survey in this short review several alternative APPES approaches, developed recently in the scanning photoelectron microscope (SPEM) at the Elettra laboratory. In particular, we report on experimental setups for dynamic near-ambient pressure environment, using pulsed-gas injection in the vicinity of samples or reaction cells with very small apertures, allowing for experiments without introducing additional differential pumping stages. The major part of the review is dedicated to the construction and performance of novel environmental cells using ultrathin electron-transparent but molecularly impermeable membranes to isolate the gas or liquid ambient from the electron detector operating in ultra-high vacuum (UHV). We demonstrate that two dimensional materials, such as graphene and derivatives, are mechanically robust to withstand atmospheric - UHV pressure differences and are sufficiently transparent for the photoelectrons emitted from samples immersed in the liquid or gaseous media. There are many unique opportunities for APPES using X-rays over a wide energy range. We show representative results that illustrate the potential of these ‘ambient-pressure’ approaches. Combined with the ca 100 nm lateral resolution of SPEM, they can overcome the pressure gap challenges and address the evolution of chemical composition and electronic structure at surface and interfaces under realistic operation conditions with unprecedented lateral and spectral resolution. PMID:28008215

  18. An Implantable RF Solenoid for Magnetic Resonance Microscopy and Microspectroscopy

    PubMed Central

    Cohen, Mark S.; Clark, W. Gilbert; Chu, Allen C.; Nunnally, Ray L.; Smith, Jolinda; Mills, Dixie; Judy, Jack W.

    2014-01-01

    Miniature solenoids routinely enhance small volume nuclear magnetic resonance imaging and spectroscopy; however, no such techniques exist for patients. We present an implantable microcoil for diverse clinical applications, with a microliter coil volume. The design is loosely based on implantable depth electrodes, in which a flexible tube serves as the substrate, and a metal stylet is inserted into the tube during implantation. The goal is to provide enhanced signal-to-noise ratio (SNR) of structures that are not easily accessed by surface coils. The first-generation prototype was designed for implantation up to 2 cm, and provided initial proof-of-concept for microscopy. Subsequently, we optimized the design to minimize the influence of lead inductances, and to thereby double the length of the implantable depth (4 cm). The second-generation design represents an estimated SNR improvement of over 30% as compared to the original design when extended to 4 cm. Impedance measurements indicate that the device is stable for up to 24 h in body temperature saline. We evaluated the SNR and MR-related heating of the device at 3T. The implantable microcoil can differentiate fat and water peaks, and resolve submillimeter features. PMID:22156945

  19. Identification of bacteria causing acute otitis media using Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Ayala, Oscar D.; Wakeman, Catherine A.; Skaar, Eric P.; Mahadevan-Jansen, Anita

    2016-03-01

    Otitis media (OM) is the leading cause of acute physician visits and prescription of antibiotics for children. Current standard techniques to diagnose acute otitis media (AOM) are limited by their ability to probe only changes in symptoms of the bacterial infection that cause AOM. Furthermore, they are not able to detect the presence of or identify bacteria causing AOM, which is important for diagnosis and proper antibiotic treatment. Our goal is to detect the presence of and identify the pathogens involved in causing AOM based on their biochemical profile using Raman spectroscopy (RS). An inVia confocal Raman microscope (Renishaw) at 785 nm was used to detect bacteria causing AOM in vitro. The three main bacteria that cause AOM, Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae were cultured in chocolate agar and Mueller-Hinton agar to determine which agar type would minimize Raman signal from the growth agar. Preliminary results identified specific Raman spectral features characteristic of S. pneumoniae. RS has the potential to accurately diagnose AOM, which will help in identifying the antibiotic that will be most beneficial for the patient and ultimately decrease the course of infection.

  20. Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Edrei, Eitan; Scarcelli, Giuliano

    2018-04-01

    Brillouin spectroscopy is a powerful optical technique for non-contact viscoelastic characterizations which has recently found applications in three-dimensional mapping of biological samples. Brillouin spectroscopy performances are rapidly degraded by optical aberrations and have therefore been limited to homogenous transparent samples. In this work, we developed an adaptive optics (AO) configuration designed for Brillouin scattering spectroscopy to engineer the incident wavefront and correct for aberrations. Our configuration does not require direct wavefront sensing and the injection of a "guide-star"; hence, it can be implemented without the need for sample pre-treatment. We used our AO-Brillouin spectrometer in aberrated phantoms and biological samples and obtained improved precision and resolution of Brillouin spectral analysis; we demonstrated 2.5-fold enhancement in Brillouin signal strength and 1.4-fold improvement in axial resolution because of the correction of optical aberrations.

  1. Raman and CARS microspectroscopy of cells and tissues.

    PubMed

    Krafft, Christoph; Dietzek, Benjamin; Popp, Jürgen

    2009-06-01

    Raman spectroscopy has been recognized to be a powerful tool to study cells and tissues because the method provides molecular information without external markers such as stains or radioactive labels. To overcome the disadvantage of low signal intensities from most biomolecules, enhancement effects are utilized. A non-linear variant of Raman spectroscopy called coherent anti-Stokes Raman spectroscopy (CARS) belongs to the most promising techniques because it combines signal enhancement due to the coherent nature of the process with further advantages such as directional emission, narrow spectral bandwidth and no disturbing interference with autofluorescence. This review describes briefly the principles of the methods and summarizes applications to cells and tissues that are expected to gain significance in the future such as the combination with imaging approaches, microscopy, optical traps and fiber-optic probes.

  2. Probing Alzheimers Disease Pathology and Early Detection at the NSLS with Infrared, XRF, and DEI

    SciTech Connect

    Zhong,Z.; Bennett, D.; Chapman, D.

    2008-01-01

    We explored diffraction enhanced imaging (DEI) in both planar and computed tomography (CT) modes for early detection of beta amyloid deposition, a hallmark feature in Alzheimer's disease (AD). Since amyloid plaques precede clinical symptoms by years, their early detection is of great interest. These findings were correlated with results from synchrotron infrared microspectroscopic imaging and X-ray fluorescence microscopy, to determine the secondary structure of the amyloid beta protein and metal concentration in the amyloid plaques, respectively.

  3. Soft matter interfaces beamline at NSLS-II: geometrical ray-tracing vs. wavefront propagation simulations

    NASA Astrophysics Data System (ADS)

    Zhernenkov, Mikhail; Canestrari, Niccolo; Chubar, Oleg; DiMasi, Elaine

    2014-09-01

    We report on the implications of the design of a Soft Matter Interfaces beamline, a long energy range canted in-vacuum undulator (IVU) beamline at National Synchrotron Light Source II, based on comparison of geometrical ray-tracing and partially coherent x-ray wavefront propagation simulation software packages, namely, SHADOW and Synchrotron Radiation Workshop (SRW). For SHADOW, we employed an SRW-generated source file which simulated spectralangular distribution and apparent source characteristics of radiation produced by a 2.8 m long IVU with a 23 mm period and allowed us to realistically estimate the beam intensity at the sample positions. We highlight the necessity to use realistic mirror surface profiles with expected slope errors as opposed to "standard" built-in SHADOW surface error options. The beamline performances at three different x-ray photon energies: 20358 eV, 10778 eV, and 2101 eV, under different focusing conditions, have been studied. We compare beamline simulations performed with both software packages. In particular, we stress that the neglect of wavefront diffraction effects in geometrical ray-tracing approach results in significant discrepancies in beam spot size and beam shape, the correct assessments of which are crucial in determining the future performance of an instrument.

  4. Multivariate modelling of density, strength, and stiffness from near infared for mature, juvenile, and pith wood of longleaf pine (Pinus Palustris)

    Treesearch

    Brian K. Via; Todd F. Shupe; Leslie H. Groom; Michael Stine; Chi-Leung So

    2003-01-01

    In manufacturing, monitoring the mechanical properties of wood with near infrared spectroscopy (NIR) is an attractive alternative to more conventional methods. However, no attention has been given to see if models differ between juvenile and mature wood. Additionally, it would be convenient if multiple linear regression (MLR) could perform well in the place of more...

  5. Electrocatalysis of the Ethylene glycol oxidation reaction and in situ Fourier-transform infared study on PtMo/C electrocatalysts in alkaline and acid media

    NASA Astrophysics Data System (ADS)

    Pech-Rodríguez, W. J.; Calles-Arriaga, C.; González-Quijano, D.; Vargas-Gutiérrez, G.; Morais, C.; Napporn, T. W.; Rodríguez-Varela, F. J.

    2018-01-01

    PtMo/C (Pt:Mo atomic ratios of 1:1, 2:1 and 3:1) and Pt/C electrocatalysts synthesized by the formic acid method are investigated for the ethylene glycol oxidation reaction (EGOR) in alkaline and acid media. From XRD measurements, the crystallite sizes are between 2.5 and 4.3 nm. Electrochemical characterization of the EGOR on the electrocatalysts shows that the PtMo/C series exhibit higher electrocatalytic activity. When comparing the two electrolytes, the mass current densities obtained in alkaline media are significantly higher than in the acid counterpart. Among the bimetallic anodes, Pt1Mo1/C delivered a high performance in both media. In situ FTIR spectroscopy analysis has been performed to study the pathway of the EGOR. In alkaline media, the PtMo/C electrocatalysts have a higher selectivity for the C2 pathway resulting in the formation of species such as glycolate, glyoxal and glyoxylate. On the other hand, in acid electrolyte, the PtMo/C anodes show a preferential C1 pathway at high potentials and the main intermediate is identified as glycolic acid. The results indicate that the higher catalytic activity of PtMo/C electrocatalysts towards the EGOR may be attributed to the bifunctional mechanism and also to an electronic effect because of the incorporation of Mo atoms into the catalysts structure.

  6. Synchrotron radiation in biosciences

    NASA Astrophysics Data System (ADS)

    Marinkovic, Nebojsa S.; Gupta, Sayan; Zhan, Chenyang; Chance, Mark R.

    2005-12-01

    The Center for Synchrotron Biosciences (CSB) operates five beamlines at the National Synchrotron Light Source (NSLS). Infrared (IR) micro-spectroscopy, X-ray absorption spectroscopy, structural proteomics and macromolecular footprinting are among the major technologies available through the Center. IR micro-spectroscopy is used to examine protein-folding in the microsecond time regime, image bone, neurons, seeds and other biological tissues, as well as image samples of interest in the chemical and environmental sciences. Structural proteomics research of New York Structural Genomics Research Consortium (NYSGRC) is steadily increasing the number of solved protein structures, with a goal to solve 100-200 structures per year. To speed up the research, a high-throughput method called 'metallomics' was implemented for NYSGRC crystallographers to detect intrinsic anomalous scatterers using X-ray absorption spectroscopy. Hydroxyl radical mediated X-ray footprinting is capable of resolving folding events of RNA, at single base resolution on millisecond timescales using a synchrotron white beam. The high brightness of synchrotron source is essential for CSB projects as it permits the use of smaller sample sizes and/or concentration, and allows studies of more complicated biological systems than with conventional sources.

  7. National Synchrotron Light Source

    ScienceCinema

    None

    2017-12-09

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  8. Sirepo: a web-based interface for physical optics simulations - its deployment and use at NSLS-II

    NASA Astrophysics Data System (ADS)

    Rakitin, Maksim S.; Chubar, Oleg; Moeller, Paul; Nagler, Robert; Bruhwiler, David L.

    2017-08-01

    "Sirepo" is an open source cloud-based software framework which provides a convenient and user-friendly web-interface for scientific codes such as Synchrotron Radiation Workshop (SRW) running on a local machine or a remote server side. SRW is a physical optics code allowing to simulate the synchrotron radiation from various insertion devices (undulators and wigglers) and bending magnets. Another feature of SRW is a support of high-accuracy simulation of fully- and partially-coherent radiation propagation through X-ray optical beamlines, facilitated by so-called "Virtual Beamline" module. In the present work, we will discuss the most important features of Sirepo/SRW interface with emphasis on their use for commissioning of beamlines and simulation of experiments at National Synchrotron Light Source II. In particular, "Flux through Finite Aperture" and "Intensity" reports, visualizing results of the corresponding SRW calculations, are being routinely used for commissioning of undulators and X-ray optical elements. Material properties of crystals, compound refractive lenses, and some other optical elements can be dynamically obtained for the desired photon energy from the databases publicly available at Argonne National Lab and at Lawrence Berkeley Lab. In collaboration with the Center for Functional Nanomaterials (CFN) of BNL, a library of samples for coherent scattering experiments has been implemented in SRW and the corresponding Sample optical element was added to Sirepo. Electron microscope images of artificially created nanoscale samples can be uploaded to Sirepo to simulate scattering patterns created by synchrotron radiation in different experimental schemes that can be realized at beamlines.

  9. Comparison of methods for transfer of calibration models in near-infared spectroscopy: a case study based on correcting path length differences using fiber-optic transmittance probes in in-line near-infrared spectroscopy.

    PubMed

    Sahni, Narinder Singh; Isaksson, Tomas; Naes, Tormod

    2005-04-01

    This article addresses problems related to transfer of calibration models due to variations in distance between the transmittance fiber-optic probes. The data have been generated using a mixture design and measured at five different probe distances. A number of techniques reported in the literature have been compared. These include multiplicative scatter correction (MSC), path length correction (PLC), finite impulse response (FIR), orthogonal signal correction (OSC), piecewise direct standardization (PDS), and robust calibration. The quality of the predictions was expressed in terms of root mean square error of prediction (RMSEP). Robust calibration gave good calibration transfer results, while the other methods did not give acceptable results.

  10. Infrared Micro-Spectroscopy of Organic and Hydrous Components in Some Antarctic Micrometeorites

    NASA Technical Reports Server (NTRS)

    Suzuki, A.; Kebukawa, Y.; Nakashima, S.; Keller, L. P.; Zolensky, M. E.; Nakamura, T.

    2005-01-01

    Micrometeorites extracted from Antarctic ice are a major source of extraterrestrial materials available for study in the laboratory. Materials in this size range are important because the peak in the mass flux distribution of extraterrestrial particles accreted by the Earth occurs for particles approximately 200 microns in diameter with a mass accretion rate estimated at approximately 40 x 10(exp 6) kilograms per year. It has been suggested that micrometeorites may have contributed much pre-biotic organic matter to the early Earth, but the types and abundances of organic material in micrometeorites are poorly known. We have conducted infrared (IR) micro-spectrocopy of small micrometeorites (about 100 microns in size) in order to characterize organic matter that is present in the particles. The obtained results were compared with IR signatures of representative carbonaceous chondrites.

  11. Investigation of carbonates in the Sutter's Mill meteorite grains with hyperspectral infrared imaging micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Yesiltas, Mehmet

    2018-04-01

    Synchrotron-based high spatial resolution hyperspectral infrared imaging technique provides thousands of infrared spectra with high resolution, thus allowing us to acquire detailed spatial maps of chemical molecular structures for many grains in short times. Utilizing this technique, thousands of infrared spectra were analyzed at once instead of inspecting each spectrum separately. Sutter's Mill meteorite is a unique carbonaceous type meteorite with highly heterogeneous chemical composition. Multiple grains from the Sutter's Mill meteorite have been studied using this technique and the presence of both hydrous and anhydrous silicate minerals have been observed. It is observed that the carbonate mineralogy varies from simple to more complex carbonates even within a few microns in the meteorite grains. These variations, the type and distribution of calcite-like vs. dolomite-like carbonates are presented by means of hyperspectral FTIR imaging spectroscopy with high resolution. Various scenarios for the formation of different carbonate compositions in the Sutter's Mill parent body are discussed.

  12. Investigation of carbonates in the Sutter's Mill meteorite grains with hyperspectral infrared imaging micro-spectroscopy.

    PubMed

    Yesiltas, Mehmet

    2018-04-05

    Synchrotron-based high spatial resolution hyperspectral infrared imaging technique provides thousands of infrared spectra with high resolution, thus allowing us to acquire detailed spatial maps of chemical molecular structures for many grains in short times. Utilizing this technique, thousands of infrared spectra were analyzed at once instead of inspecting each spectrum separately. Sutter's Mill meteorite is a unique carbonaceous type meteorite with highly heterogeneous chemical composition. Multiple grains from the Sutter's Mill meteorite have been studied using this technique and the presence of both hydrous and anhydrous silicate minerals have been observed. It is observed that the carbonate mineralogy varies from simple to more complex carbonates even within a few microns in the meteorite grains. These variations, the type and distribution of calcite-like vs. dolomite-like carbonates are presented by means of hyperspectral FTIR imaging spectroscopy with high resolution. Various scenarios for the formation of different carbonate compositions in the Sutter's Mill parent body are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Effect of substrate choice and tissue type on tissue preparation for spectral histopathology by Raman microspectroscopy.

    PubMed

    Fullwood, Leanne M; Griffiths, Dave; Ashton, Katherine; Dawson, Timothy; Lea, Robert W; Davis, Charles; Bonnier, Franck; Byrne, Hugh J; Baker, Matthew J

    2014-01-21

    Raman spectroscopy is a non-destructive, non-invasive, rapid and economical technique which has the potential to be an excellent method for the diagnosis of cancer and understanding disease progression through retrospective studies of archived tissue samples. Historically, biobanks are generally comprised of formalin fixed paraffin preserved tissue and as a result these specimens are often used in spectroscopic research. Tissue in this state has to be dewaxed prior to Raman analysis to reduce paraffin contributions in the spectra. However, although the procedures are derived from histopathological clinical practice, the efficacy of the dewaxing procedures that are currently employed is questionable. Ineffective removal of paraffin results in corruption of the spectra and previous experiments have shown that the efficacy can depend on the dewaxing medium and processing time. The aim of this study was to investigate the influence of commonly used spectroscopic substrates (CaF2, Spectrosil quartz and low-E slides) and the influence of different histological tissue types (normal, cancerous and metastatic) on tissue preparation and to assess their use for spectral histopathology. Results show that CaF2 followed by Spectrosil contribute the least to the spectral background. However, both substrates retain paraffin after dewaxing. Low-E substrates, which exhibit the most intense spectral background, do not retain wax and resulting spectra are not affected by paraffin peaks. We also show a disparity in paraffin retention depending upon the histological identity of the tissue with abnormal tissue retaining more paraffin than normal.

  14. How spectroscopy and microspectroscopy of degraded wood contribute to understand fungal wood decay.

    PubMed

    Fackler, Karin; Schwanninger, Manfred

    2012-11-01

    Nuclear magnetic resonance, mid and near infrared, and ultra violet (UV) spectra of wood contain information on its chemistry and composition. When solid wood samples are analysed, information on the molecular structure of the lignocellulose complex of wood e.g. crystallinity of polysaccharides and the orientation of the polymers in wood cell walls can also be gained. UV and infrared spectroscopy allow also for spatially resolved spectroscopy, and state-of-the-art mapping and imaging systems have been able to provide local information on wood chemistry and structure at the level of wood cells (with IR) or cell wall layers (with UV). During the last decades, these methods have also proven useful to follow alterations of the composition, chemistry and physics of the substrate wood after fungi had grown on it as well as changes of the interactions between the wood polymers within the lignocellulose complex caused by decay fungi. This review provides an overview on how molecular spectroscopic methods could contribute to understand these degradation processes and were able to characterise and localise fungal wood decay in its various stages starting from the incipient and early ones even if the major share of research focussed on advanced decay. Practical issues such as requirements in terms of sample preparation and sample form and present examples of optimised data analysis will also be addressed to be able to detect and characterise the generally highly variable microbial degradation processes within their highly variable substrate wood.

  15. Optical Absorption Microspectroscopy (μ-OAS) Based on Schwarzschild-Type Cassegrain Optics.

    PubMed

    Chassé, Mathieu; Lelong, Gérald; van Nijnatten, Peter; Schoofs, Ivo; de Wolf, Jürgen; Galoisy, Laurence; Calas, Georges

    2015-04-01

    A new experimental setup, combining a custom-designed Schwarzschild-type Cassegrain-based microscope and an ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometer, has been developed, focusing the light beam down to 20 μm diameter. Optical absorption spectra (in the 300-2500 nm range) have been measured on micrometer-sized natural glass inclusions providing information on iron speciation in magmatic melts. The absence of contribution from the host crystal matrix provides a test of the efficiency of micro-focusing. A microthermometric stage has been adapted on the microscope for measuring optical absorption spectra up to 900 K with application to the thermochromism of minute natural spinel crystals (MgAl2O4:Fe(2+),Cr(3+)). This experimental setup provides an easy and fast way to follow the evolution of spectral properties and color of glasses or crystals with temperature as well as the possibility of measuring spatially resolved optical absorption spectra.

  16. Nonlinear optical microscopy and microspectroscopy of oral precancers and early cancer

    NASA Astrophysics Data System (ADS)

    Vargas, Gracie; Edward, Kert

    2013-02-01

    Multiphoton autofluorescence microscopy (MPAM) offers the ability to assess morphometry similar to that of pathologic evaluation as well as biochemical information from endogenous fluorophores which are altered with neoplastic transformation. In this study the spectroscopic properties of normal and neoplastic oral epithelium were evaluated toward the goal of identifying image/spectroscopic based indicators of neoplastic transformation using nonlinear optical microscopy. Results indicated measureable differences between normal, dysplasia, and SCC that could be helpful in delineating between the three conditions. In particular, a blue shift in autofluorescence emission was experienced for dysplasia relative to normal. However, in the case of SCC the epithelial emission experienced a significant red shift relative to both dysplasia and normal and displayed in an additional red peak that was not present in either normal or dysplastic mucosa. Results were consistent with published results for SCC in the single-photon literature. The study demonstrates that multiphoton autofluorescence spectroscopy may reveal features of oral mucosa that can be useful for differentiating normal and neoplastic mucosa. When combined with morphometry provided by MPAM, a potentially powerful technique for imaging of the oral cavity could be developed which provides both morphometric and spectroscopic information.

  17. Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy

    PubMed Central

    Lee, Yao-Chang; Chiang, Cheng-Cheng; Huang, Pei-Yu; Chung, Chao-Yu; Huang, Timothy D.; Wang, Chun-Chieh; Chen, Ching-Iue; Chang, Rong-Seng; Liao, Cheng-Hao; Reisz, Robert R.

    2017-01-01

    Fossilized organic remains are important sources of information because they provide a unique form of biological and evolutionary information, and have the long-term potential for genomic explorations. Here we report evidence of protein preservation in a terrestrial vertebrate found inside the vascular canals of a rib of a 195-million-year-old sauropodomorph dinosaur, where blood vessels and nerves would normally have been present in the living organism. The in situ synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectra exhibit the characteristic infrared absorption bands for amide A and B, amide I, II and III of collagen. Aggregated haematite particles (α-Fe2O3) about 6∼8 μm in diameter are also identified inside the vascular canals using confocal Raman microscopy, where the organic remains were preserved. We propose that these particles likely had a crucial role in the preservation of the proteins, and may be remnants partially contributed from haemoglobin and other iron-rich proteins from the original blood. PMID:28140389

  18. Inclusion study of hourglass amethyst from Boudi (Morocco) by Raman microspectroscopy and microthermometric measurements

    NASA Astrophysics Data System (ADS)

    Dumańska-Słowik, Magdalena; Toboła, Tomasz; Jarmołowicz-Szulc, Katarzyna; Naglik, Beata; Dyląg, Joanna; Szczerba, Jacek

    2017-12-01

    Amethyst from Boudi with characteristic hourglass colour zoning hosts numerous pseudo-secondary fluid and mineral inclusions. Measured values of temperature homogenization (Th) for selected fluid inclusion assemblages (FIA) in colourless and violet regions of the crystal range from 154 to 330 °C. The higher temperatures values are characteristic for violet zones than colourless regions of the crystal. The brine content and concentration vary from 5.71 to 13.94 wt% NaCl eq. Raman spectra of selected fluid inclusions revealed they are mainly composed of H2O (3500-3000 cm- 1) and subordinately CO2 both gaseous and liquid (1386 cm- 1 and 1281 cm- 1). Mineral inclusions are mainly represented by hematite with marker bands at 1321, 413, 293 and 227 cm- 1, subordinately quartz. Amethyst crystallized from medium- to low-temperature silica fluids (191-445 °C, 64-131 MPa) containing some amounts of CO2 and Fe at hydrothermal stage of post magmatic activity in Boudi (Morocco). Its possible depth of formation was calculated to be ca. 2.8-5.7 km.

  19. Delafossite structure of heterogenite polytypes (HCoO2) by Raman and infrared micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Burlet, C.; Goethals, H.; Vanbrabant, Y.

    2016-04-01

    Heterogenite is commonly referred in mineralogy literature as a cobalt oxy-hydroxide CoO(OH). However, detailed analysis of Raman and infrared spectra acquired on particularly well-crystallized natural samples of heterogenite suggests that the mineral can be characterized by a delafossite-type structure, with a general chemical formula ABO2. Indeed, the Raman spectrum of heterogenite, along the one with grimaldiite (HCrO2), lacks visible free OH-group vibrational modes, while the infrared spectrum shows strong hydrogen bond absorption bands. HCoO2 is thus a better formulation of heterogenite that describes more clearly its vibrational behavior and avoids the confusion in literature. Electronic backscattered diffraction (EBSD) is then used to distinguish and map the 2H and 3R heterogenite natural polytypes for the first time. The comparison of EBSD and Raman mappings clearly indicates that the 2H polytype is characterized by an additional peak at 1220 cm- 1. The presence/absence is therefore an efficient tool to distinguish both polytypes.

  20. Characterization of red blood cells (RBCs) using dual Brillouin/Raman micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Bustamante-Lopez, Sandra C.; Yakovlev, Vladislav V.; Meissner, Kenith E.

    2016-04-01

    Erythrocytes, or red blood cells, transport oxygen to and carbon dioxide from the body's tissues and organs. Red blood cell mechanical properties are altered in a number of diseases such as sickle cell anaemia and malaria. Additionally, mechanically modified red blood cell ghosts are being considered as a long-term, biocompatible carrier for drug delivery and for blood analyte sensing. Brillouin spectroscopy enables viscoelastic characterization of samples at the microscale. In this report, Brillouin spectroscopy is applied to characterize the mechanical properties of red blood cells and red blood cell ghosts.

  1. Towards noninvasive drug distribution in tissues: coherent Raman microspectroscopy of chiral molecules

    NASA Astrophysics Data System (ADS)

    Petrov, Georgi I.; Yakovlev, Vladislav V.

    2017-02-01

    Many biologically active molecules are chiral. Many drugs, which are currently in use, are supplied as an equimolar mixture of enantiomers. Although they have the same chemical structure, i.e. are not distinguishable by conventional Raman spectroscopy, most isomers of chiral drugs exhibit marked differences in biological activities such as pharmacology, toxicology, pharmacokinetics, metabolism, etc. In this report we introduced a new spectroscopic tool to extend nonlinear Raman spectroscopy to chiral substances.

  2. Observing the in situ chiral modification of Ni nanoparticles using scanning transmission X-ray microspectroscopy

    NASA Astrophysics Data System (ADS)

    Watson, David J.; Acharya, Sushma; Nicklin, Richard E. J.; Held, Georg

    2014-11-01

    Enantioselective heterogeneous hydrogenation of Cdbnd O bonds is of great potential importance in the synthesis of chirally pure products for the pharmaceutical and fine chemical industries. One of the most widely studied examples of such a reaction is the hydrogenation of β-ketoesters and β-diketoesters over Ni-based catalysts in the presence of a chiral modifier. Here we use scanning transmission X-ray microscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) to investigate the adsorption of the chiral modifier, namely (R,R)-tartaric acid, onto individual nickel nanoparticles. The C K-edge spectra strongly suggest that tartaric acid deposited onto the nanoparticle surfaces from aqueous solutions undergoes a keto-enol tautomerisation. Furthermore, we are able to interrogate the Ni L2,3-edge resonances of individual metal nanoparticles which, combined with X-ray diffraction (XRD) patterns showed them to consist of a pure nickel phase rather than the more thermodynamically stable bulk nickel oxide. Importantly, there appears to be no "particle size effect" on the adsorption mode of the tartaric acid in the particle size range ~ 90-~ 300 nm.

  3. FT-IR microspectroscopy characterization of supports for enzyme immobilization in biosensing applications

    NASA Astrophysics Data System (ADS)

    Portaccio, M.; Della Ventura, B.; Gabrovska, K.; Marinov, I.; Godjevargova, T.; Mita, D. G.; Lepore, M.

    2010-04-01

    The investigation of materials suitable for enzyme immobilization in biosensing applications has a widespread interest. There are many studies on physico-chemical properties of these materials at macroscopic level but few studies have been devoted to examine and correlate these properties at microscopic level. FT-IR spectroscopy with Micro-Attenuated Total Reflection (Micro-ATR) approach can be extremely useful for understanding a variety of aspects of materials which can be used for optimising immobilization procedures. Moreover, this experimental approach is particularly simple to use (no sample preparation is required) and minimally invasive. Using a Perkin Elmer Spectrum One FT-IR spectrometer equipped with a mercury-cadmium-telluride detector and a micro-ATR element we investigated different materials used for immobilization procedures with various enzymes widely used for biosensing in environmental and clinical applications. In particular, composite membranes constituted by a chemically modified poly-acrylonitrile (PAN) membrane plus layers of tethered chitosan of different molecular weight have been examined. Also silica gel matrices without and with glucose oxidase have been investigated. Spectra have been analysed and the contribution of principal functional groups has been evidenced.

  4. 2D correlation Raman microspectroscopy of chosen parts of rat's brain tissue

    NASA Astrophysics Data System (ADS)

    Zięba-Palus, J.; Wesełucha-Birczyńska, A.; Sacharz, J.; Lewandowski, M. H.; Palus, K.; Chrobok, Ł.; Kowalski, R.; Moskal, P.; Birczyńska, M.; Sozańska, Agnieszka

    2017-11-01

    Raman spectra of two areas of Wistar rat brain tissue, tissue that are linked functionally to one another -the somatosensory cortex (Sc) and the dorsolateral geniculate nucleus of the thalamus (DLG)- excited with 442 nm, 514.5 nm, 785 nm and 1064 nm laser lines- were studied. No fixation method was used to preserve samples taken from the precisely defined anatomical areas of the brain. The brain slides were kept in artificial cerebrospinal fluid during the measurements. Averaged spectra were analyzed using the 2D correlation method. The varying wavelength/energy of the excitation laser was regarded as an external stimulus. 2D correlation analysis resolved differences between Sc and DLG in the range of 1800-1000 cm-1 and also in the hetero-spectral regions of about 1800-1200 cm-1 and 3100-2500 cm-1. Auto-peaks at 1659 cm-1 and 1666 cm-1 characterize the phase of the constituent lipid clusters with proteins and cholesterol in Sc and cholesterol in DLG, respectively. Appearing cross-peaks indicate the correlations with different phospholipids structures and protein bands and also cholesterol for Sc and DLG, respectively. Asynchronous spectra distinguish between areas of the brain due to the presence of neurotransmitters.

  5. Characterization of buried metal-molecule-metal junctions using Fourier transform infrared microspectroscopy.

    PubMed

    Babayco, Christopher B; Land, Donald P; Parikh, Atul N; Kiehl, Richard A

    2014-09-01

    We have devised an infrared spectromicroscopy based experimental configuration to enable structural characterization of buried molecular junctions. Our design utilizes a small mercury drop at the focal point of an infrared microscope to act as a mirror in studying metal-molecule-metal (MmM) junctions. An organic molecular monolayer is formed either directly on the mercury drop or on a thin, infrared (IR) semi-transparent layer of Au deposited onto an IR transparent, undoped silicon substrate. Following the formation of the monolayer, films on either metal can be examined independently using specular reflection spectroscopy. Furthermore, by bringing together the two monolayers, a buried molecular bilayer within the MmM junction can be characterized. Independent examination of each half of the junction prior to junction formation also allows probing any structural and/or conformational changes that occur as a result of forming the bilayer. Because our approach allows assembling and disassembling microscopic junctions by forming and withdrawing Hg drops onto the monolayer covered metal, spatial mapping of junctions can be performed simply by translating the location of the derivatized silicon wafer. Finally, the applicability of this technique for the longer-term studies of changes in molecular structure in the presence of electrical bias is discussed.

  6. Depth profiling of APTES self-assembled monolayers using surface-enhanced confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Yingying; Yanagisawa, Masahiro; Kunimoto, Masahiro; Nakamura, Masatoshi; Homma, Takayuki

    2017-09-01

    The internal structure of self-assembled monolayers (SAMs) such as 3-aminopropyltriethoxysilane (APTES) fabricated on a glass substrate is difficult to characterize and analyze at nanometer level. In this study, we employed surface-enhanced Raman spectroscopy (SERS) to study the internal molecular structure of APTES SAMs. The sample APTES SAMs were deposited with Ag nanoparticles to enhance the Raman signal and to obtain subtler structure information, which were supported by density functional theory calculations. In addition, in order to carry out high-resolution analysis, especially for vertical direction, a fine piezo electric positioner was used to control the depth scanning with a step of 0.1 nm. We measured and distinguished the vertical Raman intensity variations of specific groups in APTES, such as Ag/NH2, CH2, and Sisbnd O, with high resolution. The interfacial bond at the two interfaces of Ag-APTES and APTES-SiO2 was identified. Moreover, APTES molecule orientation was demonstrated to be inhomogeneous from frequency shift.

  7. Investigation of androgen effects on prostate cancer cell lines by near-infrared Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Beljebbar, Abdelilah; Romijn, Johannes C.; Puppels, Gerwin J.

    2000-05-01

    Near IR Raman spectroscopy was used to investigate the effect of synthetic androgen R1881 on the androgen- responsive cell line LNCaP. The comparison between Raman spectra of the cell sunder androgen deprived conditions and in the presence of different concentrations of R1881 shows changes mainly in the concentration of lipids and DNA content. The androgen-unresponsive prostate cell line PC3 was used as a control. Our results demonstrate that in LNCaP cells R1881 induces an intracellular accumulation of lipids and leads to a relative decrease in DNA content. These changes could potentially be used as criteria to differentiate between responsive and unresponsive cell lines because they were not observed in the androgen unresponsive cell line PC3. We have also measured Raman spectra of lipid droplets directly in single living LNCaP cells, grown in the absence or in the presence of R1881 by Raman spectrometry. These droplets accumulate in cells grown in the presence of R1881. Our results show indeed that the main components in droplets were lipids and suggest that the surrounding cytoplasm does not significantly contribute to these Raman spectra. The major classes of lipids droplets affected by androgen were triglyceride and cholesterol linoleate.

  8. The influence of physical state on shikimic acid ozonolysis: a case for in situ microspectroscopy

    NASA Astrophysics Data System (ADS)

    Steimer, S. S.; Lampimäki, M.; Coz, E.; Grzinic, G.; Ammann, M.

    2014-10-01

    Atmospheric soluble organic aerosol material can become solid or semi-solid. Due to increasing viscosity and decreasing diffusivity, this can impact important processes such as gas uptake and reactivity within aerosols containing such substances. This work explores the dependence of shikimic acid ozonolysis on humidity and thereby viscosity. Shikimic acid, a proxy for oxygenated reactive organic material, reacts with O3 in a Criegee-type reaction. We used an environmental microreactor embedded in a scanning transmission X-ray microscope (STXM) to probe this oxidation process. This technique facilitates in situ measurements with single micron-sized particles and allows to obtain near-edge X-ray absorption fine structure (NEXAFS) spectra with high spatial resolution. Thus, the chemical evolution of the interior of the particles can be followed under reaction conditions. The experiments show that the overall degradation rate of shikimic acid is depending on the relative humidity in a way that is controlled by the decreasing diffusivity of ozone with decreasing humidity. This decreasing diffusivity is most likely linked to the increasing viscosity of the shikimic acid-water mixture. The degradation rate was also depending on particle size, most congruent with a reacto-diffusion limited kinetic case where the reaction progresses only in a shallow layer within the bulk. No gradient in the shikimic acid concentration was observed within the bulk material at any humidity indicating that the diffusivity of shikimic acid is still high enough to allow its equilibration throughout the particles on the timescale of hours at higher humidity and that the thickness of the oxidized layer under dry conditions, where the particles are solid, is beyond the resolution of STXM.

  9. The influence of physical state on shikimic acid ozonolysis: a case for in situ microspectroscopy

    NASA Astrophysics Data System (ADS)

    Steimer, S. S.; Lampimäki, M.; Coz, E.; Grzinic, G.; Ammann, M.

    2014-03-01

    Atmospheric soluble organic aerosol material can become solid or semi-solid. Due to increasing viscosity and decreasing diffusivity, this can impact important processes such as gas uptake and reactivity within aerosols containing such substances. This work explores the dependence of shikimic acid ozonolysis on humidity and thereby viscosity. Shikimic acid, a proxy for oxygenated reactive organic material, reacts with O3 in a Criegee-type reaction. We used an environmental microreactor embedded in a Scanning Transmission X-ray Microscope (STXM) to probe this oxidation process. This technique facilitates in situ measurements with single micron-sized particles and allows to obtain Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra with high spatial resolution. Thus, the chemical evolution of the interior of the particles can be followed under reaction conditions. The experiments show that the overall degradation rate of shikimic acid is depending on the relative humidity in a way that is controlled by the decreasing diffusivity of ozone with decreasing humidity. This decreasing diffusivity is most likely linked to the increasing viscosity of the shikimic acid-water mixture. The degradation rate was also depending on particle size, most congruent with a reacto-diffusion limited kinetic case where the reaction progresses only in a shallow layer within the bulk. No gradient in the shikimic acid concentration was observed within the bulk material at any humidity indicating that the diffusivity of shikimic acid is still high enough to allow its equilibration throughout the particles on the time scale of hours at higher humidity and that the thickness of the oxidized layer under dry conditions, where the particles are solid, is beyond the resolution of STXM.

  10. Real-time quantum cascade laser-based infrared microspectroscopy in-vivo

    NASA Astrophysics Data System (ADS)

    Kröger-Lui, N.; Haase, K.; Pucci, A.; Schönhals, A.; Petrich, W.

    2016-03-01

    Infrared microscopy can be performed to observe dynamic processes on a microscopic scale. Fourier-transform infrared spectroscopy-based microscopes are bound to limitations regarding time resolution, which hampers their potential for imaging fast moving systems. In this manuscript we present a quantum cascade laser-based infrared microscope which overcomes these limitations and readily achieves standard video frame rates. The capabilities of our setup are demonstrated by observing dynamical processes at their specific time scales: fermentation, slow moving Amoeba Proteus and fast moving Caenorhabditis elegans. Mid-infrared sampling rates between 30 min and 20 ms are demonstrated.

  11. Nonlinear microscopy and infrared and Raman microspectroscopy for brain tumor analysis

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Dietzek, Benjamin; Meyer, Tobias; Bergner, Norbert; Romeike, Bernd F. M.; Reichart, Rupert; Kalff, Rolf; Popp, Jürgen

    2011-03-01

    Scope of the neurosurgical management of brain tumors is to remove pathological tissue, preserve normal tissue and brain functions, and collect material for neuropathological diagnosis. A prerequisite is to recognize the tumor margins as precise as possible. Scope of neuropathology is to determine the type and grade of the tumor that is an important indicator for the treatment and prognosis of the patient. In this contribution we present vibrational spectroscopic approaches to complement existing neurosurgical and neuropathological tools. First, Fourier transform infrared (FTIR) imaging is applied to obtain molecular contrast from dried, thin tissue sections. Second, Raman spectroscopic images were collected from the same specimens. Finally, coherent anti-Stokes Raman scattering (CARS) microscopic images were obtained. To demonstrate the complementary nature of the techniques results from a brain metastasis of a lung cancer are discussed. Whereas CARS images could be collected within seconds, exposure times were minutes for FTIR images and hours for Raman images. However, the CARS microscope just probed a single band near 2850 cm-1. FTIR and Raman system probed the full spectral range involving the fingerprint region below 1800 cm-1 and the stretch vibrations between 2800 and 3600 cm-1. Morphological features were resolved in the images such as solid tumor, tumor islets, necrosis and cell nuclei.

  12. The effect of laser excitation on the Raman microspectroscopy of nanoindentation-induced silicon phase transformation

    NASA Astrophysics Data System (ADS)

    Mahon, D. C.; Mahon, P. J.; Creagh, D. C.

    2007-09-01

    It is well established that silicon undergoes a series of phase transformations when subjected to the pressure of nanoindentation. Phase transformations in silicon are studied using diamond anvil apparatus. The effect of the high pressure is an increase in density in diamond-cubic Si-I and as a result an unstable metallic phase of silicon (Si-II) is formed. This rapidly transforms to other phases upon pressure release. Depending on the rate of pressure release, rhombohedral (r8) Si-XII, body-centered-cubic (bc8) Si-III and/or the amorphous phase (a-Si) can occur. Raman spectroscopy is particularly useful for the characterization of the many different phases of the transformed silicon. A comparison of Raman spectra obtained with different laser wavelength excitations has been undertaken to examine whether source dependent effects occur during the characterization of the silicon phases. Preliminary results are presented here.

  13. Analysis of cosmetic residues on a single human hair by ATR FT-IR microspectroscopy.

    PubMed

    Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Naranitad, Suwimol; Ekgasit, Sanong

    2018-05-15

    In this work, ATR FT-IR spectra of single human hair and cosmetic residues on hair surface are successfully collected using a homemade dome-shaped Ge μIRE accessary installed on an infrared microscope. By collecting ATR spectra of hairs from the same person, the spectral patterns are identical and superimposed while different spectral features are observed from ATR spectra of hairs collected from different persons. The spectral differences depend on individual hair characteristics, chemical treatments, and cosmetics on hair surface. The "Contact-and-Collect" technique that transfers remarkable materials on the hair surface to the tip of the Ge μIRE enables an identification of cosmetics on a single hair. Moreover, the differences between un-split and split hairs are also studied in this report. These highly specific spectral features can be employed for unique identification or for differentiation of hairs based on the molecular structures of hairs and cosmetics on hairs. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser

    PubMed Central

    Kole, Matthew R.; Reddy, Rohith K.; Schulmerich, Matthew V.; Gelber, Matthew K.; Bhargava, Rohit

    2012-01-01

    Fourier-transform infrared imaging (FT-IR) is a well-established modality but requires the acquisition of a spectrum over a large bandwidth, even in cases where only a few spectral features may be of interest. Discrete frequency infrared (DF-IR) methods are now emerging in which a small number of measurements may provide all the analytical information needed. The DF-IR approach is enabled by the development of new sources integrating frequency selection, in particular of tunable, narrow-bandwidth sources with enough power at each wavelength to successfully make absorption measurements. Here, we describe a DF-IR imaging microscope that uses an external cavity quantum cascade laser (QCL) as a source. We present two configurations, one with an uncooled bolometer as a detector and another with a liquid nitrogen cooled Mercury Cadmium Telluride (MCT) detector and compare their performance to a commercial FT-IR imaging instrument. We examine the consequences of the coherent properties of the beam with respect to imaging and compare these observations to simulations. Additionally, we demonstrate that the use of a tunable laser source represents a distinct advantage over broadband sources when using a small aperture (narrower than the wavelength of light) to perform high-quality point mapping. The two advances highlight the potential application areas for these emerging sources in IR microscopy and imaging. PMID:23113653

  15. Analysis of cosmetic residues on a single human hair by ATR FT-IR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Naranitad, Suwimol; Ekgasit, Sanong

    2018-05-01

    In this work, ATR FT-IR spectra of single human hair and cosmetic residues on hair surface are successfully collected using a homemade dome-shaped Ge μIRE accessary installed on an infrared microscope. By collecting ATR spectra of hairs from the same person, the spectral patterns are identical and superimposed while different spectral features are observed from ATR spectra of hairs collected from different persons. The spectral differences depend on individual hair characteristics, chemical treatments, and cosmetics on hair surface. The "Contact-and-Collect" technique that transfers remarkable materials on the hair surface to the tip of the Ge μIRE enables an identification of cosmetics on a single hair. Moreover, the differences between un-split and split hairs are also studied in this report. These highly specific spectral features can be employed for unique identification or for differentiation of hairs based on the molecular structures of hairs and cosmetics on hairs.

  16. Investigation of burn effect on skin using simultaneous Raman-Brillouin spectroscopy, and fluorescence microspectroscopy

    NASA Astrophysics Data System (ADS)

    Coker, Zachary; Meng, Zhaokai; Troyanova-Wood, Maria; Traverso, Andrew; Ballmann, Charles; Petrov, Georgi; Ibey, Bennett L.; Yakovlev, Vladislav

    2017-02-01

    Burns are thermal injuries that can completely damage or at least compromise the protective function of skin, and affect the ability of tissues to manage moisture. Burn-damaged tissues exhibit lower elasticity than healthy tissues, due to significantly reduced water concentrations and plasma retention. Current methods for determining burn intensity are limited to visual inspection, and potential hospital x-ray examination. We present a unique confocal microscope capable of measuring Raman and Brillouin spectra simultaneously, with concurrent fluorescence investigation from a single spatial location, and demonstrate application by investigating and characterizing the properties of burn-afflicted tissue on chicken skin model. Raman and Brillouin scattering offer complementary information about a material's chemical and mechanical structure, while fluorescence can serve as a useful diagnostic indicator and imaging tool. The developed instrument has the potential for very diverse analytical applications in basic biomedical science and biomedical diagnostics and imaging.

  17. Fourier transform infrared microspectroscopy identifies early lineage commitment in differentiating human embryonic stem cells.

    PubMed

    Heraud, Philip; Ng, Elizabeth S; Caine, Sally; Yu, Qing C; Hirst, Claire; Mayberry, Robyn; Bruce, Amanda; Wood, Bayden R; McNaughton, Don; Stanley, Edouard G; Elefanty, Andrew G

    2010-03-01

    Human ESCs (hESCs) are a valuable tool for the study of early human development and represent a source of normal differentiated cells for pharmaceutical and biotechnology applications and ultimately for cell replacement therapies. For all applications, it will be necessary to develop assays to validate the efficacy of hESC differentiation. We explored the capacity for FTIR spectroscopy, a technique that rapidly characterises cellular macromolecular composition, to discriminate mesendoderm or ectoderm committed cells from undifferentiated hESCs. Distinct infrared spectroscopic "signatures" readily distinguished hESCs from these early differentiated progeny, with bioinformatic models able to correctly classify over 97% of spectra. These data identify a role for FTIR spectroscopy as a new modality to complement conventional analyses of hESCs and their derivatives. FTIR spectroscopy has the potential to provide low-cost, automatable measurements for the quality control of stem and differentiated cells to be used in industry and regenerative medicine. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  18. Studies of chemical fixation effects in human cell lines using Raman microspectroscopy.

    PubMed

    Meade, Aidan D; Clarke, Colin; Draux, Florence; Sockalingum, Ganesh D; Manfait, Michel; Lyng, Fiona M; Byrne, Hugh J

    2010-03-01

    The in vitro study of cellular species using Raman spectroscopy has proven a powerful non-invasive modality for the analysis of cell constituents and processes. This work uses micro-Raman spectroscopy to study the chemical fixation mechanism in three human cell lines (normal skin, normal bronchial epithelium, and lung adenocarcinoma) employing fixatives that preferentially preserve proteins (formalin), and nucleic acids (Carnoy's fixative and methanol-acetic acid). Spectral differences between the mean live cell spectra and fixed cell spectra together with principal components analysis (PCA), and clustering techniques were used to analyse and interpret the spectral changes. The results indicate that fixation in formalin produces spectral content that is closest to that in the live cell and by extension, best preserves the cellular integrity. Nucleic acid degradation, protein denaturation, and lipid leaching were observed with all fixatives and for all cell lines, but to varying degrees. The results presented here suggest that the mechanism of fixation for short fixation times is complex and dependent on both the cell line and fixative employed. Moreover, important spectral changes occur with all fixatives that have consequences for the interpretation of biochemical processes within fixed cells. The study further demonstrates the potential of vibrational spectroscopy in the characterization of complex biochemical processes in cells at a molecular level.

  19. Application of confocal X-ray fluorescence micro-spectroscopy to the investigation of paint layers.

    PubMed

    Sun, Tianxi; Liu, Zhiguo; Wang, Guangfu; Ma, Yongzhong; Peng, Song; Sun, Weiyuan; Li, Fangzuo; Sun, Xuepeng; Ding, Xunliang

    2014-12-01

    A confocal micro X-ray fluorescence (MXRF) spectrometer based on polycapillary X-ray optics was used for the identification of paint layers. The performance of the confocal MXRF was studied. Multilayered paint fragments of a car were analyzed nondestructively to demonstrate that this confocal MXRF instrument could be used in the discrimination of the various layers in multilayer paint systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fluorescence Microspectroscopy for Testing the Dimerization Hypothesis of BACE1 Protein in Cultured HEK293 Cells

    NASA Astrophysics Data System (ADS)

    Gardeen, Spencer; Johnson, Joseph L.; Heikal, Ahmed A.

    2016-06-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder that results from the formation of beta-amyloid plaques in the brain that trigger the known symptoms of memory loss in AD patients. The beta-amyloid plaques are formed by the proteolytic cleavage of the amyloid precursor protein (APP) by the proteases BACE1 and gamma-secretase. These enzyme-facilitated cleavages lead to the production of beta-amyloid fragments that aggregate to form plaques, which ultimately lead to neuronal cell death. Recent detergent protein extraction studies suggest that BACE1 protein forms a dimer that has significantly higher catalytic activity than its monomeric counterpart. In this contribution, we examine the dimerization hypothesis of BACE1 in cultured HEK293 cells using complementary fluorescence spectroscopy and microscopy methods. Cells were transfected with a BACE1-EGFP fusion protein construct and imaged using confocal, and differential interference contrast to monitor the localization and distribution of intracellular BACE1. Complementary fluorescence lifetime and anisotropy measurements enabled us to examine the conformational and environmental changes of BACE1 as a function of substrate binding. Using fluorescence correlation spectroscopy, we also quantified the diffusion coefficient of BACE1-EGFP on the plasma membrane as a means to test the dimerization hypothesis as a fucntion of substrate-analog inhibitition. Our results represent an important first towards examining the substrate-mediated dimerization hypothesis of BACE1 in live cells.

  1. Recognizing different tissues in human fetal femur cartilage by label-free Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Kunstar, Aliz; Leijten, Jeroen; van Leuveren, Stefan; Hilderink, Janneke; Otto, Cees; van Blitterswijk, Clemens A.; Karperien, Marcel; van Apeldoorn, Aart A.

    2012-11-01

    Traditionally, the composition of bone and cartilage is determined by standard histological methods. We used Raman microscopy, which provides a molecular "fingerprint" of the investigated sample, to detect differences between the zones in human fetal femur cartilage without the need for additional staining or labeling. Raman area scans were made from the (pre)articular cartilage, resting, proliferative, and hypertrophic zones of growth plate and endochondral bone within human fetal femora. Multivariate data analysis was performed on Raman spectral datasets to construct cluster images with corresponding cluster averages. Cluster analysis resulted in detection of individual chondrocyte spectra that could be separated from cartilage extracellular matrix (ECM) spectra and was verified by comparing cluster images with intensity-based Raman images for the deoxyribonucleic acid/ribonucleic acid (DNA/RNA) band. Specific dendrograms were created using Ward's clustering method, and principal component analysis (PCA) was performed with the separated and averaged Raman spectra of cells and ECM of all measured zones. Overall (dis)similarities between measured zones were effectively visualized on the dendrograms and main spectral differences were revealed by PCA allowing for label-free detection of individual cartilaginous zones and for label-free evaluation of proper cartilaginous matrix formation for future tissue engineering and clinical purposes.

  2. Raman microspectroscopy of nucleus and cytoplasm for human colon cancer diagnosis.

    PubMed

    Liu, Wenjing; Wang, Hongbo; Du, Jingjing; Jing, Chuanyong

    2017-11-15

    Subcellular Raman analysis is a promising clinic tool for cancer diagnosis, but constrained by the difficulty of deciphering subcellular spectra in actual human tissues. We report a label-free subcellular Raman analysis for use in cancer diagnosis that integrates subcellular signature spectra by subtracting cytoplasm from nucleus spectra (Nuc.-Cyt.) with a partial least squares-discriminant analysis (PLS-DA) model. Raman mapping with the classical least-squares (CLS) model allowed direct visualization of the distribution of the cytoplasm and nucleus. The PLS-DA model was employed to evaluate the diagnostic performance of five types of spectral datasets, including non-selective, nucleus, cytoplasm, ratio of nucleus to cytoplasm (Nuc./Cyt.), and nucleus minus cytoplasm (Nuc.-Cyt.), resulting in diagnostic sensitivity of 88.3%, 84.0%, 98.4%, 84.5%, and 98.9%, respectively. Discriminating between normal and cancerous cells of actual human tissues through subcellular Raman markers is feasible, especially when using the nucleus-cytoplasm difference spectra. The subcellular Raman approach had good stability, and had excellent diagnostic performance for rectal as well as colon tissues. The insights gained from this study shed new light on the general applicability of subcellular Raman analysis in clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Organic and inorganic correlations for Northwest Africa 852 by synchrotron-based Fourier transform infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Yesiltas, Mehmet; Peale, Robert E.; Unger, Miriam; Sedlmair, Julia; Hirschmugl, Carol J.

    2015-10-01

    Relationships between organic molecules and inorganic minerals are investigated in a single 34 μm diameter grain of the CR2 chondrite Northwest Africa 852 (NWA) 852 with submicron spatial resolution using synchrotron-based imaging micro-FTIR spectroscopy. Correlations based on absorption strength for the various constituents are determined using statistical correlation analysis. The silicate band is found to be correlated with the hydration band, and the latter is highly correlated with stretching modes of aliphatic hydrocarbons. Spatial distribution maps show that water+organic combination, silicate, OH, and C-H distributions overlap, suggesting a possible catalytic role of phyllosilicates in the formation of organics. In contrast, the carbonate band is anticorrelated with water+organic combination, however uncorrelated with any other spectral feature. The average ratio of asymmetric CH2 and CH3 band strengths (CH2/CH3 = 2.53) for NWA 852 is similar to the average ratio of interplanetary dust particles (~2.40) and Wild 2 cometary dust particles (2.50), but it significantly exceeds that of interstellar medium objects (~1.00) and several aqueously altered carbonaceous chondrites (~1.40). This suggests organics of similar length/branching, and perhaps similar formation regions, for NWA 852, Wild 2 dust particles, and interplanetary dust particles. The heterogeneous spatial distribution of ratio values indicates the presence of a mixture of aliphatic organic material with different length/branching, and thus a wide range of parent body processes, which occurred before the considered grain was formed.

  4. Time-resolved optical absorption microspectroscopy of magnetic field sensitive flavin photochemistry

    NASA Astrophysics Data System (ADS)

    Antill, Lewis M.; Beardmore, Joshua P.; Woodward, Jonathan R.

    2018-02-01

    The photochemical reactions of blue-light receptor proteins have received much attention due to their very important biological functions. In addition, there is also growing evidence that the one particular class of such proteins, the cryptochromes, may be associated with not only a biological photo-response but also a magneto-response, which may be responsible for the mechanism by which many animals can respond to the weak geomagnetic field. Therefore, there is an important scientific question over whether it is possible to directly observe such photochemical processes, and indeed the effects of weak magnetic fields thereon, taking place both in purified protein samples in vitro and in actual biochemical cells and tissues. For the former samples, the key lies in being able to make sensitive spectroscopic measurements on very small volumes of samples at potentially low protein concentrations, while the latter requires, in addition, spatially resolved measurements on length scales smaller than typical cellular components, i.e., sub-micron resolution. In this work, we discuss a two- and three-color confocal pump-probe microscopic approach to this question which satisfies these requirements and is thus useful for experimental measurements in both cases.

  5. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?

    PubMed

    Käppler, Andrea; Fischer, Dieter; Oberbeckmann, Sonja; Schernewski, Gerald; Labrenz, Matthias; Eichhorn, Klaus-Jochen; Voit, Brigitte

    2016-11-01

    The contamination of aquatic ecosystems with microplastics has recently been reported through many studies, and negative impacts on the aquatic biota have been described. For the chemical identification of microplastics, mainly Fourier transform infrared (FTIR) and Raman spectroscopy are used. But up to now, a critical comparison and validation of both spectroscopic methods with respect to microplastics analysis is missing. To close this knowledge gap, we investigated environmental samples by both Raman and FTIR spectroscopy. Firstly, particles and fibres >500 μm extracted from beach sediment samples were analysed by Raman and FTIR microspectroscopic single measurements. Our results illustrate that both methods are in principle suitable to identify microplastics from the environment. However, in some cases, especially for coloured particles, a combination of both spectroscopic methods is necessary for a complete and reliable characterisation of the chemical composition. Secondly, a marine sample containing particles <400 μm was investigated by Raman imaging and FTIR transmission imaging. The results were compared regarding number, size and type of detectable microplastics as well as spectra quality, measurement time and handling. We show that FTIR imaging leads to significant underestimation (about 35 %) of microplastics compared to Raman imaging, especially in the size range <20 μm. However, the measurement time of Raman imaging is considerably higher compared to FTIR imaging. In summary, we propose a further size division within the smaller microplastics fraction into 500-50 μm (rapid and reliable analysis by FTIR imaging) and into 50-1 μm (detailed and more time-consuming analysis by Raman imaging). Graphical Abstract Marine microplastic sample (fraction <400 μm) on a silicon filter (middle) with the corresponding Raman and IR images.

  6. [Noninvasive medical imaging system for tissue classification using RGB LED and micro-spectroscopy].

    PubMed

    Yang, Bor-Wen; Lin, Yu-Min; Wang, Shih-Yuan; Ying, Shang-Ping

    2013-07-01

    As skin is the exterior organ of human body, cosmetic industry advances year by year. To reveal the details of skin tissue, threedimensional medical imaging is required. Based on the idea of "readout instead of write", a new scheme named spectral classification imaging (SCI) is proposed in the present study to reduce the invasiveness by applying the reflection spectra of the sample points for three-dimensional medical imaging. Broad-band light source and the spectrometer were employed to collect the spectra curves of scanned region, which were classified into several tissue types by their cross-correlations. A colorful tissue tomography can finally be obtained by filling in each image pixel the color indicating the corresponding tissue type. The lateral/longitudinal resolutions and penetration depth were analyzed to characterize the SCI system. The lateral resolution is based on the source's diffraction limit, the longitudinal resolution is by its depth-of-focus, and the penetration depth is equivalent to its skin depth. The imaging results of an amethyst of 0.6 mm (chi-direction) x 0.6 mm (y-direction) with a total of 120 x 120 pixels per frame and a guppy fish of 3.2 mm (chi-direction) x 2.4 mm (y-direction) of 160 x 120 pixels, are presented to show the image quality. The effects of the cross-correlation coefficient and the number of source wavelengths on the imaging results were explored. The value of cross-correlation threshold determines the required time for imaging, the resulted number of tissue groups, and the variety of tissue colors in the imaging result. Owing to its virtual noninvasiveness and easy configuration, the SCI system is highly promising for practical uses. RGB LEDs possess merits of broad bandwidth, low cost, long lifetime, small volume, and are ready to be integrated into a multi-color source module. Replacing the wide-band light source and the spectrometer module with a composite RGB LED with discrete wavelengths and a micro-spectrometer for spectra retrieval, the system has great potential to be minimized as a hand-held product for noninvasive medical imaging. It leads to reduced use of non-eco-friendly cosmetics and extended advance of cosmetic dermatology.

  7. Multicomponent peak modeling of protein secondary structures: comparison of gaussian with lorentzian analytical methods for plant feed and seed molecular biology and chemistry research.

    PubMed

    Yu, Peiqiang

    2005-11-01

    The objective of this study was to compare Gaussian and Lorentzian multicomponent peak modeling methods in quantification of protein secondary structures of various plant seed and feed tissues within intact tissue at a cellular and subcellular level using the advanced synchrotron light sourced Fourier transform infrared (FT-IR) microspectroscopy (S-FTIR). This experiment was performed at the beamline U10B at the National Synchrotron Light Source (NSLS) in Brookhaven National Laboratory (BNL), U.S. Dept of Energy (NSLS-BNL, NY). The results show that in the comparison of the Gaussian and Lorentzian multi-peak modeling methods, the Gaussian method is more accurate for fitting multi-peak curves of protein secondary structures than the Lorentzian method, with higher modeling R(2) values (0.92 versus 0.89, P < 0.05). There were no large differences (P > 0.05) in the quantification of the relative percentage alpha-helices, beta-sheets, and others in protein secondary structures of the plant seed tissues, with averages of 30.2%, 40.4%, and 29.4%, respectively. However, there are significant differences (P < 0.05) in the quantification of the ratios of sheet alpha-helix (1.42 versus 1.60; SEM = 0.058) in protein secondary structures of the plant seed tissues. With synchrotron FT-IR microspectroscopy, the ultrastructural-chemical makeup and nutritive characteristics could be revealed at a high spatial resolution. Synchrotron-based FT-IR microspectroscopy revealed that the secondary structure of protein differed between the plant seed tissues in terms of relative percentage and ratio of protein secondary structures (alpha-helix and beta-sheet) within cellular dimensions. The results also show that the flaxseed tissues contained higher (P < 0.05) percentage alpha-helix (38.6 versus 24.0%) beta-sheet (45.3 versus 36.9%), lower (P < 0.05) percentage of other secondary structures (16.1% versus 39.0%), and higher (P < 0.05) ratios alpha-helix beta-sheet (0.90 versus 0.69) than

  8. Synchrotron-based X-ray fluorescence imaging and elemental mapping from biological samples

    SciTech Connect

    D Rao; M Swapna; R Cesareo

    2011-12-31

    The present study utilized the new hard X-ray microspectroscopy beamline facility, X27A, available at NSLS, BNL, USA, for elemental mapping. This facility provided the primary beam in a small spot of the order of {approx}10 {mu}m, for focussing. With this spatial resolution and high flux throughput, the synchrotron-based X-ray fluorescent intensities for Mn, Fe, Zn, Cr, Ti and Cu were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector. The sample is scanned in a 'step-and-repeat' mode for fast elemental mapping measurements and generated elemental maps at 8, 10 and 12 keV, from a small animal shell (snail). The accumulatedmore » trace elements, from these biological samples, in small areas have been identified. Analysis of the small areas will be better suited to establish the physiology of metals in specific structures like small animal shell and the distribution of other elements.« less

  9. Synchrotron-induced X-ray fluorescence from rat bone and lumber vertebra of different age groups

    NASA Astrophysics Data System (ADS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Tako; Yuasa, Tetsuya; Takeda, Tohoru; Tromba, Giuliana; Gigante, Giovanni E.

    2009-02-01

    The fluorescence spectra from rat bones of different age groups (8, 56 and 78 weeks) and lumber vertebra were measured with 8, 10 and 12 keV synchrotron X-rays. We have utilized the new hard X-ray micro-spectroscopy beamline facility, X27A, available at NSLS with a primary beam spot size of the order of ˜10 μm. With this spatial resolution and high flux throughput, X-ray fluorescent intensities for Ca and other trace elements were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector. Regarding the lumber vertebra, we acquired the fluorescence spectra from the left, right and middle portions and calcium accumulation was evaluated and compared with the other samples. We have identified the major trace elements of Ca, Ni, Fe and Zn and minor trace elements of Ti, Cr and Mn in the sample. The percentage of scattered radiation and trace element contributions from these samples were highlighted at different energies.

  10. NSLS-II biomedical beamlines for micro-crystallography, FMX, and for highly automated crystallography, AMX: New opportunities for advanced data collection

    SciTech Connect

    Fuchs, Martin R., E-mail: mfuchs@bnl.gov; Bhogadi, Dileep K.; Jakoncic, Jean

    2016-07-27

    We present the final design of the x-ray optics and experimental stations of two macromolecular crystallography (MX) beamlines at the National Synchrotron Light Source-II. The microfocusing FMX beamline will deliver a flux of ∼5×10{sup 12} ph/s at 1 Å into a 1 – 20 µm spot, its flux density surpassing current MX beamlines by up to two orders of magnitude. It covers an energy range from 5 – 30 keV. The highly automated AMX beamline is optimized for high throughput, with beam sizes from 4 – 100 µm, an energy range of 5 – 18 keV and a flux atmore » 1 Å of ∼10{sup 13} ph/s. A focus in designing the beamlines lay on achieving high beam stability, for example by implementing a horizontal bounce double crystal monochromator at FMX. A combination of compound refractive lenses and bimorph mirror optics at FMX supports rapid beam size changes. Central components of the in-house developed experimental stations are horizontal axis goniometers with a target sphere of confusion of 100 nm, piezo-slits for dynamic beam size changes during diffraction experiments, dedicated secondary goniometers for data collection from specimen in crystallization plates, and next generation pixel array detectors. FMX and AMX will support a broad range of biomedical structure determination methods from serial crystallography on micron-sized crystals, to structure determination of complexes in large unit cells, to rapid sample screening and room temperature data collection of crystals in trays.« less

  11. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II

    DOE PAGES

    Nazaretski, E.; Yan, H.; Lauer, K.; ...

    2017-10-05

    A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less

  12. Hutch for CSX Beamlines

    ScienceCinema

    Haas, Ed

    2018-02-06

    NSLS-II will produce x-rays 10,000 times brighter than NSLS. To keep people safe from intense x-rays in the new facility, special enclosures, called hutches, will surround particular sections of beamlines.

  13. Refurbishment of a used in-vacuum undulator from the National Synchrotron Light Source for the National Synchrotron Light Source-II ring.

    PubMed

    Tanabe, Toshiya; Bassan, Harmanpreet; Broadbent, Andrew; Cappadoro, Peter; Escallier, John; Harder, David; Hetzel, Charles; Hidas, Dean; Kitegi, Charles; Kosciuk, Bernard; Musardo, Marco; Kirkland, Johnny

    2017-09-01

    The National Synchrotron Light Source (NSLS) ceased operation in September 2014 and was succeeded by NSLS-II. There were four in-vacuum undulators (IVUs) in operation at NSLS. The most recently constructed IVU for NSLS was the mini-gap undulator (MGU-X25, to be renamed IVU18 for NSLS-II), which was constructed in 2006. This device was selected to be reused for the New York Structural Biology Consortium Microdiffraction beamline at NSLS-II. At the time of construction, IVU18 was a state-of-the-art undulator designed to be operated as a cryogenic permanent-magnet undulator. Due to the more stringent field quality and impedance requirements of the NSLS-II ring, the transition region was redesigned. The control system was also updated to NSLS-II specifications. This paper reports the details of the IVU18 refurbishment activities including additional magnetic measurement and tuning.

  14. Discriminating the intraerythrocytic lifecycle stages of the malaria parasite using synchrotron FT-IR microspectroscopy and an artificial neural network.

    PubMed

    Webster, Grant T; de Villiers, Katherine A; Egan, Timothy J; Deed, Samantha; Tilley, Leann; Tobin, Mark J; Bambery, Keith R; McNaughton, Don; Wood, Bayden R

    2009-04-01

    Synchrotron Fourier transform infrared (FT-IR) spectra of fixed single erythrocytes infected with Plasmodium falciparum at different stages of the intraerythrocytic cycle are presented for the first time. Bands assigned to the hemozoin moiety at 1712, 1664, and 1209 cm(-1) are observed in FT-IR difference spectra between uninfected erythrocytes and infected trophozoites. These bands are also found to be important contributors in separating the trophozoite spectra from the uninfected cell spectra in principal components analysis. All stages of the intraerythrocytic lifecycle of the malarial parasite, including the ring and schizont stage, can be differentiated by visual inspection of the C-H stretching region (3100-2800 cm(-1)) and by using principal components analysis. Bands at 2922, 2852, and 1738 cm(-1) assigned to the nu(asym)(CH(2) acyl chain lipids), nu(sym)(CH(2) acyl chain lipids), and the ester carbonyl band, respectively, increase as the parasite matures from its early ring stage to the trophozoite and finally to the schizont stage. Training of an artificial neural network showed that excellent automated spectroscopic discrimination between P. falciparum-infected cells and the control cells is possible. FT-IR difference spectra indicate a change in the production of unsaturated fatty acids as the parasite matures. The ring stage spectrum shows bands associated with cis unsaturated fatty acids. The schizont stage spectrum displays no evidence of cis bands and suggests an increase in saturated fatty acids. These results demonstrate that different phases of the P. falciparum intraerthyrocytic life cycle are characterized by different lipid compositions giving rise to distinct spectral profiles in the C-H stretching region. This insight paves the way for an automated infrared-based technology capable of diagnosing malaria at all intraerythrocytic stages of the parasite's life cycle.

  15. Perpendicular Magnetic Anisotropy in Ultrathin Co/Ni Multilayer Films Studies with Ferromagnetic Resonance and Magnetic X-Ray Microspectroscopy

    DTIC Science & Technology

    2012-06-28

    consistent with the in-plane anisotropy of the Py layer. The Co hysteresis loops show that the n¼4 and n¼ 6 Co9Ni films have a large remanence and coercive...The other films n¼4 and 6 have a high remanence and submicron scale domain subdivision is not observed in zero field. To summarize, this study

  16. Multiplex coherent anti-Stokes Raman scattering microspectroscopy of brain tissue with higher ranking data classification for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Pohling, Christoph; Bocklitz, Thomas; Duarte, Alex S.; Emmanuello, Cinzia; Ishikawa, Mariana S.; Dietzeck, Benjamin; Buckup, Tiago; Uckermann, Ortrud; Schackert, Gabriele; Kirsch, Matthias; Schmitt, Michael; Popp, Jürgen; Motzkus, Marcus

    2017-06-01

    Multiplex coherent anti-Stokes Raman scattering (MCARS) microscopy was carried out to map a solid tumor in mouse brain tissue. The border between normal and tumor tissue was visualized using support vector machines (SVM) as a higher ranking type of data classification. Training data were collected separately in both tissue types, and the image contrast is based on class affiliation of the single spectra. Color coding in the image generated by SVM is then related to pathological information instead of single spectral intensities or spectral differences within the data set. The results show good agreement with the H&E stained reference and spontaneous Raman microscopy, proving the validity of the MCARS approach in combination with SVM.

  17. Elucidation of penetration enhancement mechanism of Emu oil using FTIR microspectroscopy at EMIRA laboratory of SESAME synchrotron

    NASA Astrophysics Data System (ADS)

    Mansour, Randa S. H.; Sallam, Alsayed A.; Hamdan, Imad I.; Khalil, Enam A.; Yousef, Ibraheem

    2017-10-01

    It has been proposed that Emu oil possesses skin permeation-enhancing effect. This study aimed to address its possible penetration enhancement mechanism(s) using IR microscopy, in accordance with LPP theory. The penetration of Emu oil through the layers of human skin was accomplished by monitoring oil-IR characteristic feature at 3006 cm- 1. The unsaturated components of Emu oil accumulated at about 270 μm depth of skin surface. The interaction of Emu oil with lipid and protein constituents of SC was investigated in comparison with a commonly used enhancer, IPM. Inter-sample spectral differences were identified using PCA and linked with possible enhancement mechanisms. Emu oil treatment caused a change in the slope of the right contour of amide I band of the protein spectral range. This was also clear in the second derivative spectra where the emergence of a new shoulder at higher frequency was evident, suggesting disorganization of keratin α-helix structure. This effect could be a result of disruption of some hydrogen bonds in which amide Cdbnd O and Nsbnd H groups of keratin are involved. The low intensity of the emerged shoulder is also in agreement with formation of weaker hydrogen bonds. IPM did not affect the protein component. No conclusions regarding the effect of penetration enhancers on the SC lipids were obtained. This was due to the overlap of the endogenous (skin) and exogenous (oil) CH stretching and scissoring frequencies. The SC carbonyl stretching peak disappeared as a result of IPM treatment which may reflect some degree of lipid extraction.

  18. Copper uptake, intracellular localization, and speciation in marine microalgae measured by synchrotron radiation X-ray fluorescence and absorption microspectroscopy

    DOE PAGES

    Adams, Merrin S.; Dillon, Carolyn T.; Vogt, Stefan; ...

    2016-07-20

    Metal toxicity to aquatic organisms depends on the speciation of the metal and its binding to the critical receptor site(s) (biotic ligand) of the organism. The intracellular nature of the biotic ligand for Cu in microalgal cells was investigated using the high elemental sensitivity of microprobe synchrotron radiation X-ray fluorescence (SR-XRF) and X-ray absorption near-edge spectroscopy (XANES). The marine microalgae, Ceratoneis closterium, Phaeodactylum tricornutum, and Tetraselmis sp. were selected based on their varying sensitivities to Cu (72-h 50% population growth inhibitions of 8–47 μg Cu/L). Intracellular Cu in control cells was similar for all three species (2.5–3.2 × 10–15 gmore » Cu/cell) and increased 4-fold in C. closterium and Tetraselmis sp. when exposed to copper, but was unchanged in P. tricornutum (72-h exposure to 19, 40, and 40 μg Cu/L, respectively). Whole cell microprobe SR-XRF identified endogenous Cu in the central compartment (cytoplasm) of control (unexposed) cells. After Cu exposure, Cu was colocated with organelles/granules dense in P, S, Ca, and Si and this was clearly evident in thin sections of Tetraselmis sp. XANES indicated coexistence of Cu(I) and Cu(II) in control and Cu-exposed cells, with the Cu ligand (e.g., phytochelatin) in P. tricornutum different from that in C. closterium and Tetraselmis sp. Here, this study supports the hypothesis that Cu(II) is reduced to Cu(I) and that polyphosphate bodies and phytochelatins play a significant role in the internalization and detoxification of Cu in marine microalgae.« less

  19. X-ray absorption near-edge structure micro-spectroscopy study of vanadium speciation in Phycomyces blakesleeanus mycelium.

    PubMed

    Žižić, Milan; Dučić, Tanja; Grolimund, Daniel; Bajuk-Bogdanović, Danica; Nikolic, Miroslav; Stanić, Marina; Križak, Strahinja; Zakrzewska, Joanna

    2015-09-01

    Vanadium speciation in the fungus Phycomyces blakesleeanus was examined by X-ray absorption near-edge structure (XANES) spectroscopy, enabling assessment of oxidation states and related molecular symmetries of this transition element in the fungus. The exposure of P. blakesleeanus to two physiologically important vanadium species (V(5+) and V(4+)) resulted in the accumulation of this metal in central compartments of 24 h old mycelia, most probably in vacuoles. Tetrahedral V(5+), octahedral V(4+), and proposed intracellular complexes of V(5+) were detected simultaneously after addition of a physiologically relevant concentration of V(5+) to the mycelium. A substantial fraction of the externally added V(4+) remained mostly in its original form. However, observable variations in the pre-edge-peak intensities in the XANES spectra indicated intracellular complexation and corresponding changes in the molecular coordination symmetry. Vanadate complexation was confirmed by (51)V NMR and Raman spectroscopy, and potential binding compounds including cell-wall constituents (chitosan and/or chitin), (poly)phosphates, DNA, and proteins are proposed. The evidenced vanadate complexation and reduction could also explain the resistance of P. blakesleeanus to high extracellular concentrations of vanadium.

  20. Detection of organic colorants in historical painting layers using UV laser ablation surface-enhanced Raman microspectroscopy.

    PubMed

    Cesaratto, Anna; Leona, Marco; Lombardi, John R; Comelli, Daniela; Nevin, Austin; Londero, Pablo

    2014-12-22

    Surface-enhanced Raman spectroscopy (SERS) has been increasingly used in the study of works of art to identify organic pigments and dyes in paintings, which (depending on the material) are difficult or not possible to detect by other current methods. The application of SERS to the study of paintings has been limited, however, by the lack of a sampling approach with sufficient sensitivity and spatial resolution. We show that ultraviolet laser ablation (LA) sampling coupled with SERS detection can be successfully used to study paint layers. LA-SERS permitted the isolation of signals from colorants in individual thin paint layers in sample cross-sections, avoiding contamination from adjacent layers. These results expand the range of analytical applications of SERS demonstrating how the technique can be used to sensitively detect minor organic components in complex matrices. While this is fundamental for the study of cultural heritage, it is also relevant in other fields such as forensic analysis, food science, and pharmacology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Wild 2 grains characterized combining MIR/FIR/Raman micro-spectroscopy and FE-SEM/EDS analyses

    NASA Astrophysics Data System (ADS)

    Ferrari, M.; Rotundi, A.; Rietmeijer, F. J. M.; Della Corte, V.; Baratta, G. A.; Brunetto, R.; Dartois, E.; Djouadi, Z.; Merouane, S.; Borg, J.; Brucato, J. R.; Le Sergeant d'Hendecourt, L.; Mennella, V.; Palumbo, M. E.; Palumbo, P.

    We present the results of the analyses \\cite{Rotundi14} of two bulk terminal particles (TPs), C2112,7,171,0,0 (TP2) and C2112,9,171,0,0 (TP3), derived from the Jupiter-Family comet 81P/Wild 2 returned by the NASA Stardust mission \\cite{Brownlee06}. Each particle, embedded in a slab of silica aerogel, was pressed in a diamond cell. Aerogel is usually cause of problems when characterizing the minerals and organic materials present in the embedded particles. We overcame this common issue by means of the combination of FE-SEM/EDS, IR and Raman mu -spectroscopy, three non-destructive analytical techniques, which provided bulk mineralogical and organic information on TP2 and TP3. This approach proved to be a practical solution for preliminary characterization, i.e. scanning particles for chemical and mineralogical heterogeneity. Using this type of bulk characterization prior to more detailed studies, could be taken into account as a standard procedure to be followed for selecting Stardust particles-of-interest. TP2 and TP3 are dominated by Ca-free and low-Ca, Mg-rich, Mg,Fe-olivine. The presence of melilite in both particles is supported by IR mu -spectroscopy and corroborated by FE-SEM/EDS analyses, but is not confirmed by Raman mu -spectroscopy possibly because the amount of this mineral is too small to be detected. TP2 and TP3 show similar silicate mineral compositions, but Ni-free, low-Ni, sub-sulfur (Fe,Ni)S grains are present only in TP2. TP2 contains indigenous amorphous carbon hot spots, while no indigenous carbon was identified in TP3. These non-chondritic particles probably originated in a differentiated body. The presence of high temperature melilite group minerals (incl. gehlenite) in TP2 and TP3 reinforces the notion that collisionally-ejected refractory debris from differentiated asteroids may be common in Jupiter-Family comets. This raises the question whether similar debris and other clearly asteroidal particles could be present in Halley-type comets and, if so, which fraction of the dust in these comets is truly represented by non-processed silicates and organic material. The work done for Stardust samples is important to understand the similarities and differences among comets. In fact, the results of this study are relevant also for the ROSETTA mission that encountered the Jupiter-Family (J-F) comet 67P/Churyumov-Gerasimenko in August, 2014. At the time this mission was launched, our ideas of comet dust were biased by the findings of the Halley missions. The Stardust mission showed an unexpected richness of dust that originated from the inner solar system. Rosetta is confirming these results but also adding information, in particular on the presence of a primitive and unprocessed dust component \\cite{Fulle15}. The work was supported by PRIN2008/MIUR (Ministero dell'Istruzione dell'Università e della Ricerca), the Italian Space Agency (ASI), and MAE (Ministero degli Affari Esteri). The IAS team is grateful to the French space agency CNES for funding and supporting this work as well as to the CNRS PNP planetology program. FJMR was supported by grant NNX11AC36G through the NASA LARS Program. We thank the NASA Johnson Space Center/Astromaterials Curation laboratory for providing the samples.

  2. Bioaccumulation of CeO2 Nanoparticles by Earthworms in Biochar-Amended Soil: A Synchrotron Microspectroscopy Study.

    PubMed

    Servin, Alia D; Castillo-Michel, Hiram; Hernandez-Viezcas, Jose A; De Nolf, Wout; De La Torre-Roche, Roberto; Pagano, Luca; Pignatello, Joseph; Uchimiya, Minori; Gardea-Torresdey, Jorge; White, Jason C

    2018-01-11

    The interactions of nanoparticles (NPs) with biochar and soil components may substantially influence NP availability and toxicity to biota. In the present study, earthworms (Eisenia fetida) were exposed for 28 days to a residential or agricultural soil amended with 0-2000 mg of CeO 2 NP/kg and with biochar (produced by the pyrolysis of pecan shells at 350 and 600 °C) at various application rates [0-5% (w/w)]. After 28 days, earthworms were depurated and analyzed for Ce content, moisture content, and lipid peroxidation. The results showed minimal toxicity to the worms; however, biochar (350 or 600 °C) was the dominant factor, accounting for 94 and 84% of the variance for the moisture content and lipid peroxidation, respectively, in the exposed earthworms. For both soils with 1000 mg of CeO 2 /kg at 600 °C, biochar significantly decreased the accumulation of Ce in the worm tissues. Amendment with 350 °C biochar had mixed responses on Ce uptake. Analysis by micro X-ray fluorescence (μ-XRF) and micro X-ray absorption near edge structure (μ-XANES) was used to evaluate Ce localization, speciation, and persistence in CeO 2 - and biochar-exposed earthworms after depuration for 12, 48, and 72 h. Earthworms from the 500 mg of CeO 2 /kg and 0% biochar treatments eliminated most Ce after a 48 h depuration period. However, in the same treatment and with 5% BC-600 (biochar pyrolysis temperature of 600 °C), ingested biochar fragments (∼50 μm) with Ce adsorbed to the surfaces were retained in the gut after 72 h. Additionally, Ce remained in earthworms from the 2000 mg of CeO 2 /kg and 5% biochar treatments after depuration for 48 h. Analysis by μ-XANES showed that, within the earthworm tissues, Ce remained predominantly as Ce 4+ O 2 , with only few regions (2-3 μm 2 ) where it was found in the reduced form (Ce 3+ ). The present findings highlight that soil and biochar properties have a significant influence in the internalization of CeO 2 NPs in earthworms; such interactions need to be considered when estimating NP fate and effects in the environment.

  3. Probing Structural Perturbation in a Bent Molecular Crystal with Synchrotron Infrared Microspectroscopy and Periodic Density Functional Theory Calculations.

    PubMed

    Pejov, Ljupčo; Panda, Manas K; Moriwaki, Taro; Naumov, Panče

    2017-02-15

    The range of unit cell orientations generated at the kink of a bent single crystal poses unsurmountable challenges with diffraction analysis and limits the insight into the molecular-scale mechanism of bending. On a plastically bent crystal of hexachlorobenzene, it is demonstrated here that spatially resolved microfocus infrared spectroscopy using synchrotron radiation can be applied in conjunction with periodic density functional theory calculations to predict spectral changes or to extract information on structural changes that occur as a consequence of bending. The approach reproduces well the observed trends, such as the wall effects, and provides estimations of the vibrational shifts, unit cell deformations, and intramolecular parameters. Generally, expansion of the lattice induces red-shift while compression induces larger blue-shift of the characteristic ν(C-C) and ν(C-Cl) modes. Uniform or non-uniform expansion or contraction of the unit cell of 0.1 Å results in shifts of several cm -1 , whereas deformation of the cell of 0.5° at the unique angle causes shifts of <0.5 cm -1 . Since this approach does not include parameters related to the actual stimulus by which the deformation has been induced, it can be generalized and applied to other mechanically, photochemically, or thermally bent crystals.

  4. Copper Uptake, Intracellular Localization, and Speciation in Marine Microalgae Measured by Synchrotron Radiation X-ray Fluorescence and Absorption Microspectroscopy.

    PubMed

    Adams, Merrin S; Dillon, Carolyn T; Vogt, Stefan; Lai, Barry; Stauber, Jennifer; Jolley, Dianne F

    2016-08-16

    Metal toxicity to aquatic organisms depends on the speciation of the metal and its binding to the critical receptor site(s) (biotic ligand) of the organism. The intracellular nature of the biotic ligand for Cu in microalgal cells was investigated using the high elemental sensitivity of microprobe synchrotron radiation X-ray fluorescence (SR-XRF) and X-ray absorption near-edge spectroscopy (XANES). The marine microalgae, Ceratoneis closterium, Phaeodactylum tricornutum, and Tetraselmis sp. were selected based on their varying sensitivities to Cu (72-h 50% population growth inhibitions of 8-47 μg Cu/L). Intracellular Cu in control cells was similar for all three species (2.5-3.2 × 10(-15) g Cu/cell) and increased 4-fold in C. closterium and Tetraselmis sp. when exposed to copper, but was unchanged in P. tricornutum (72-h exposure to 19, 40, and 40 μg Cu/L, respectively). Whole cell microprobe SR-XRF identified endogenous Cu in the central compartment (cytoplasm) of control (unexposed) cells. After Cu exposure, Cu was colocated with organelles/granules dense in P, S, Ca, and Si and this was clearly evident in thin sections of Tetraselmis sp. XANES indicated coexistence of Cu(I) and Cu(II) in control and Cu-exposed cells, with the Cu ligand (e.g., phytochelatin) in P. tricornutum different from that in C. closterium and Tetraselmis sp. This study supports the hypothesis that Cu(II) is reduced to Cu(I) and that polyphosphate bodies and phytochelatins play a significant role in the internalization and detoxification of Cu in marine microalgae.

  5. Detection of l-Cysteine in wheat flour by Raman microspectroscopy combined chemometrics of HCA and PCA.

    PubMed

    Cebi, Nur; Dogan, Canan Ekinci; Develioglu, Ayşen; Yayla, Mediha Esra Altuntop; Sagdic, Osman

    2017-08-01

    l-Cysteine is deliberately added to various flour types since l-Cysteine has enabled favorable baking conditions such as low viscosity, increased elasticity and rise during baking. In Turkey, usage of l-Cysteine as a food additive isn't allowed in wheat flour according to the Turkish Food Codex Regulation on food additives. There is an urgent need for effective methods to detect l-Cysteine in wheat flour. In this study, for the first time, a new, rapid, effective, non-destructive and cost-effective method was developed for detection of l-Cysteine in wheat flour using Raman microscopy. Detection of l-Cysteine in wheat flour was accomplished successfully using Raman microscopy combined chemometrics of PCA (Principal Component Analysis) and HCA (Hierarchical Cluster Analysis). In this work, 500-2000cm -1 spectral range (fingerprint region) was determined to perform PCA and HCA analysis. l-Cysteine and l-Cystine were determined with detection limit of 0.125% (w/w) in different wheat flour samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Confocal Raman Microspectroscopy: The Measurement of VX Depth Profiles in Hairless Guinea Pig Skin and the Evaluation of RSDL

    DTIC Science & Technology

    2015-02-01

    Medical S &T Division. iv EXECUTIVE SUMMARY The nerve agent VX is a potent organophosphorous compound that is extremely toxic. VX depth profiles...5a. CONTRACT NUMBER guinea pig skin and the evaluation of RSDL 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Braue, EH...PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER US Army Medical Research Institute of Chemical

  7. Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Yijin; Meirer, Florian; Krest, Courtney M.; Webb, Samuel; Weckhuysen, Bert M.

    2016-08-01

    To understand how hierarchically structured functional materials operate, analytical tools are needed that can reveal small structural and chemical details in large sample volumes. Often, a single method alone is not sufficient to get a complete picture of processes happening at multiple length scales. Here we present a correlative approach combining three-dimensional X-ray imaging techniques at different length scales for the analysis of metal poisoning of an individual catalyst particle. The correlative nature of the data allowed establishing a macro-pore network model that interprets metal accumulations as a resistance to mass transport and can, by tuning the effect of metal deposition, simulate the response of the network to a virtual ageing of the catalyst particle. The developed approach is generally applicable and provides an unprecedented view on dynamic changes in a material's pore space, which is an essential factor in the rational design of functional porous materials.

  8. Mie-Type Scattering and Non-Beer-Lambert Absorption Behavior of Human Cells in Infrared Microspectroscopy

    PubMed Central

    Mohlenhoff, Brian; Romeo, Melissa; Diem, Max; Wood, Bayden R.

    2005-01-01

    We report infrared microspectral features of nuclei in a completely inactive and contracted (pyknotic) state, and of nuclei of actively dividing cells. For pyknotic nuclei, the very high local concentration of DNA leads to opaqueness of the chromatin and, consequently, the absence of DNA signals in the IR spectra of very small nuclei. However, these nuclei can be detected by their scattering properties, which can be described by the Mie theory of scattering from dielectric spheres. This scattering depends on the size of the nucleus; consequently, quite different scattering cross-sections are calculated and observed for pyknotic and mitotic nuclei. PMID:15749767

  9. Wild 2 grains characterized combining MIR/FIR/Raman micro-spectroscopy and FE-SEM/EDS analyses

    NASA Astrophysics Data System (ADS)

    Rotundi, Alessandra; Rietmeijer, Frans J. M.; Ferrari, Marco; Della Corte, Vincenzo; Baratta, Giuseppe A.; Brunetto, Rosario; Dartois, Emmanuel; Djouadi, Zahia; Merouane, Sihane; Borg, Janet; Brucato, John R.; Le Sergeant d'Hendecourt, Louis; Mennella, Vito; Palumbo, Maria Elisabetta; Palumbo, Pasquale

    2014-05-01

    We present the analyses results of two bulk Terminal Particles, C2112,7,171,0,0 and C2112,9,171,0,0, derived from the Jupiter-Family comet 81P/Wild 2 returned by the Stardust mission. Each particle embedded in a slab of silica aerogel was pressed in a diamond cell. The aerogel, as expected, caused problems to identify the minerals and organic materials present in these particles. These problems were overcome by means of the combination of FE-SEM/EDS, IR and Raman μ-spectroscopy, three non-destructive analytical techniques, which allowed the mineral and organic information on the two bulk particles. Indeed, this approach proved to be practical for preliminary characterization, i.e. scanning particles for chemical and mineralogical heterogeneity. It can be considered as a procedure to be followed for selecting Stardust particles-of- interest using this type of bulk characterization prior to more detailed studies. TP2 and TP3 are dominated by Ca-free and low-Ca, Mg-rich, Mg,Fe-olivine. The presence of melilite in both particles is supported by IR μ-spectroscopy, but is not confirmed by Raman μ-spectroscopy possibly because the amounts are too small to be detected. TP2 and TP3 show similar silicate mineral compositions but Ni-free and low-Ni, sub-sulfur (Fe,Ni)S grains are present in TP2 only. TP2 contains indigenous amorphous carbon hot spots; no indigenous carbon was identified in TP3. These non-chondritic particles probably originated in a differentiated body. The presence of high temperature melilite group minerals (incl. gehlenite) in TP2 and TP3 reinforces the notion that collisionally-ejected refractory debris from differentiated asteroids may be common in Jupiter-Family comets. It does raise the question if similar debris and other clearly asteroidal dust could be present in Halley-type comets and if so what fractions of the dust in these comets are truly non-processed silicates and organic material. The results of this study will be relevant to the ROSETTA mission that will rendezvous with Jupiter-Family comet 67P/Churyumov-Gerasimenko during 2014 October. At the time this mission was launched our ideas of comet dust were biased by the findings of the Halley missions. The Stardust mission showed an unexpected richness of dust that originated from the inner solar system. We should be prepared for a similar mixed dust population of mono- and polymict debris in this J-F comet. Still, it would be nice if doesn't look like anything seen in comet Wild 2. The work in Stardust samples is important to the question what are the similarities and differences among comets.

  10. Microspectroscopy (μFTIR) reveals co-localization of lipid oxidation and amyloid plaques in human Alzheimer disease brains.

    PubMed

    Benseny-Cases, Núria; Klementieva, Oxana; Cotte, Marine; Ferrer, Isidre; Cladera, Josep

    2014-12-16

    Amyloid peptides are the main component of one of the characteristic pathological hallmarks of Alzheimer's disease (AD): senile plaques. According to the amyloid cascade hypothesis, amyloid peptides may play a central role in the sequence of events that leads to neurodegeneration. However, there are other factors, such as oxidative stress, that may be crucial for the development of the disease. In the present paper, we show that it is possible, by using Fourier tranform infrared (FTIR) microscopy, to co-localize amyloid deposits and lipid peroxidation in tissue slides from patients affected by Alzheimer's disease. Plaques and lipids can be analyzed in the same sample, making use of the characteristic infrared bands for peptide aggregation and lipid oxidation. The results show that, in samples from patients diagnosed with AD, the plaques and their immediate surroundings are always characterized by the presence of oxidized lipids. As for samples from non-AD individuals, those without amyloid plaques show a lower level of lipid oxidation than AD individuals. However, it is known that plaques can be detected in the brains of some non-AD individuals. Our results show that, in such cases, the lipid in the plaques and their surroundings display oxidation levels that are similar to those of tissues with no plaques. These results point to lipid oxidation as a possible key factor in the path that goes from showing the typical neurophatological hallmarks to suffering from dementia. In this process, the oxidative power of the amyloid peptide, possibly in the form of nonfibrillar aggregates, could play a central role.

  11. Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy

    DOE PAGES

    Liu, Yijin; Meirer, Florian; Krest, Courtney M.; ...

    2016-08-30

    To understand how hierarchically structured functional materials operate, analytical tools are needed that can reveal small structural and chemical details in large sample volumes. Often, a single method alone is not sufficient to get a complete picture of processes happening at multiple length scales. Here we present a correlative approach combining three-dimensional X-ray imaging techniques at different length scales for the analysis of metal poisoning of an individual catalyst particle. The correlative nature of the data allowed establishing a macro-pore network model that interprets metal accumulations as a resistance to mass transport and can, by tuning the effect of metalmore » deposition, simulate the response of the network to a virtual ageing of the catalyst particle. In conclusion, the developed approach is generally applicable and provides an unprecedented view on dynamic changes in a material’s pore space, which is an essential factor in the rational design of functional porous materials.« less

  12. How Confocal Is Confocal Raman Microspectroscopy on the Skin? Impact of Microscope Configuration and Sample Preparation on Penetration Depth Profiles.

    PubMed

    Lunter, Dominique Jasmin

    2016-01-01

    The aim of the study was to elucidate the effect of sample preparation and microscope configuration on the results of confocal Raman microspectroscopic evaluation of the penetration of a pharmaceutical active into the skin (depth profiling). Pig ear skin and a hydrophilic formulation containing procaine HCl were used as a model system. The formulation was either left on the skin during the measurement, or was wiped off or washed off prior to the analysis. The microscope configuration was varied with respect to objectives and pinholes used. Sample preparation and microscope configuration had a tremendous effect on the results of depth profiling. Regarding sample preparation, the best results could be observed when the formulation was washed off the skin prior to the analysis. Concerning microscope configuration, the use of a 40 × 0.6 numerical aperture (NA) objective in combination with a 25-µm pinhole or a 100 × 1.25 NA objective in combination with a 50-µm pinhole was found to be advantageous. Complete removal of the sample from the skin before the analysis was found to be crucial. A thorough analysis of the suitability of the chosen microscope configuration should be performed before acquiring concentration depth profiles. © 2016 S. Karger AG, Basel.

  13. Ice Nucleation properties of Air-Plane Soot Surrogates Using Vibrational Micro-spectroscopy: a preliminary study

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Ismael; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand

    2015-04-01

    Aircraft emissions have been studied extensively since the late 1960s and the interest was mainly driven by their direct and indirect effects on climate and the generation of contrails [1-4]. Emissions of solid-state particles (soots) from engine exhausts due to incomplete fuel combustion are considered to influence ice and liquid water cloud droplet activation [4]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation by promoting ice formation above water homogeneous freezing point. While some experiments focused on ice nucleation on soot particles did not yet reach definitive conclusions, soot are reported to be generally worse ice nuclei than mineral dust, nucleating at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing. However, there are still numerous opened questions on the ice nucleation properties of soot particles [5], most likely due to the lack of information on the abundance, on the physico-chemical properties (structure and chemical compositions) of these aerosols, competition between different ice nucleation modes and dynamical factors that affect ice nucleation. Furthermore, the soot emitted from aircraft may be associated with soluble components like sulphate that can act as heterogeneous ice nuclei and initiate freezing at supersaturation of only 120-130% [6]. Therefore, more detailed studies of aerosol nucleation activity combined with throughout structural and compositional analyzes are needed in order to establish any association between the particles' hygroscopicity and their physico-chemical properties. In the present preliminary work, nucleation activity of air-plane soot particle surrogates is monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated. Careful calibration of the sample's surface temperature was performed beforehand while monitoring the deliquescence and efflorescence of micrometer-size NaCl crystals at various temperatures. The ice nucleation potential of different soot surrogates can be studied. A correlation with their physico-chemical properties via FTIR, Raman and mass spectrometry analyses is underway. [1] Anderson et al., Geophys.Res. Lett. 25, 1689-1692, (1998) [2] Hyashida et al. Fuel. 128, 148-154. (2014) [3] Popovicheva & Starik. Atmospheric and Oceanic Physics. 43, 121-141. (2007) [4] Manninen et al. Boreal Environment Research. 19, 383-405. (2014) [5] Hoose & Möhler. Atmospheric Chemistry and Physics. 12, 9817-9854. (2012) [6] Haag et al., Atmos. Chem. Phys., 3, 1791-1806 (2003)

  14. National Security Letters, the USA PATRIOT Act, and the Constitution: The Tensions between National Security and Civil Rights

    ERIC Educational Resources Information Center

    Gorham-Oscilowski, Ursula; Jaeger, Paul T.

    2008-01-01

    In response to the terrorist attacks of 9/11, the USA PATRIOT Act greatly expanded the ability of the Federal Bureau of Investigation to use National Security Letters (NSLs) in investigations and the contexts in which they could be used by relaxing the standards under which NSLs could be employed. NSLs allow investigators to acquire a significant…

  15. National Synchrotron Light Source

    ScienceCinema

    BNL

    2017-12-09

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  16. Conformational differences in protein disulfide linkages between normal hair and hair from subjects with trichothiodystrophy: a quantitative analysis by Raman microspectroscopy.

    PubMed

    Schlücker, S; Liang, C; Strehle, K R; DiGiovanna, J J; Kraemer, K H; Levin, I W

    2006-08-15

    Raman spectra of normal hair shafts and hair shafts from patients exhibiting trichothiodystrophy (TTD) were obtained using line focus laser illumination. Because hair from TTD patients has a significant decrease in the content of the sulfur-containing amino acids in comparison to normal hair, the 550-500 cm(-1) disulfide stretching mode region of the Raman spectrum was examined in detail. A quantitative spectral analysis demonstrates significant increases in the two energetically less favored gauche-gauche-trans (g-g-t) and trans-gauche-trans (t-g-t) forms. These observations suggest that the increased amounts of these less stable disulfide conformers are contributing factors to or associated with the hair brittleness observed for this congenital disorder. Structure-spectra correlations for the three dominant disulfide conformers are confirmed by quantum chemical calculations using modern density functional theory (DFT). Copyright 2006 Wiley Periodicals, Inc.

  17. Identification of copper-based green pigments in Jaume Huguet's Gothic altarpieces by Fourier transform infrared microspectroscopy and synchrotron radiation X-ray diffraction.

    PubMed

    Salvadó, N; Pradell, T; Pantos, E; Papiz, M Z; Molera, J; Seco, M; Vendrell-Saz, M

    2002-07-01

    The scientific investigation of ancient paintings gives a unique insight into ancient painting techniques and their evolution through time and geographic location. This study deals with the identification of the green pigments used by one of the most important Catalan masters in Gothic times, Jaume Huguet. Other pigments and materials have also been characterized by means of conventional techniques such as optical microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Synchrotron radiation X-ray diffraction has been used to produce maps of phases at a spatial resolution of 100 microm across chromatic layers.

  18. Micro-Spectroscopy as a Tool for Detecting Micron-Scale Mineral Variations Across a Rock Surface: An Example Using a Thin Section of Martian Meteorite ALH 84001

    NASA Technical Reports Server (NTRS)

    Dalton, J. Brad; Bishop, Janice L.

    2003-01-01

    Imaging spectroscopy is a powerful tool for mineral detection across broad spatial regions. A prototype micro-imaging spectrometer at NASA Ames is tested in this study on a scale of tens to hundreds of microns across rock surfaces. Initial measurements were performed in the visible spectral region on a thin section of martian meteorite ALH 84001.

  19. Study of Barley Grain Molecular Structure for Ruminants Using DRIFT, FTIR-ATR and Synchrotron Radiation Infrared Microspectroscopy (SR-IMS): A Review

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang

    2012-05-01

    Barley inherent structures are highly associated with nutrient utilization and availability in both humans and animals. Barley has different degradation kinetics compared with other cereal grains. It has a relatively higher degradation rate and extent, which often cause digestive disorder in the rumen. Therefore understanding barley inherent structure at cellular and molecular levels and processing-induced structure changes is important, because we can manipulate barley inherent structures and digestive behaviors. Several molecular spectroscopy techniques can be used to detect barley inherent structures at cellular and molecular levels. This article reviews several applications of the IR molecular spectral bioanalytical techniques - DRIFT, FT/IR-ATR and SR-IMS for barley chemistry, molecular structure and molecular nutrition research

  20. Coke formation during the methanol-to-olefin conversion: in situ microspectroscopy on individual H-ZSM-5 crystals with different Brønsted acidity.

    PubMed

    Mores, Davide; Kornatowski, Jan; Olsbye, Unni; Weckhuysen, Bert M

    2011-03-01

    Coke formation during the methanol-to-olefin (MTO) conversion has been studied at the single-particle level with in situ UV/Vis and confocal fluorescence microscopy. For this purpose, large H-ZSM-5 crystals differing in their Si/Al molar ratio have been investigated. During MTO, performed at 623 and 773 K, three major UV/Vis bands assigned to different carbonaceous deposits and their precursors are observed. The absorption at 420 nm, assigned to methyl-substituted aromatic compounds, initiates the buildup of the optically active coke species. With time-on-stream, these carbonaceous compounds expand in size, resulting in the gradual development of a second absorption band at around 500 nm. An additional broad absorption band in the 600 nm region indicates the enhanced formation of extended carbonaceous compounds that form as the reaction temperature is raised. Overall, the rate of coke formation decreases with decreasing aluminum content. Analysis of the reaction kinetics indicates that an increased Brønsted acid site density facilitates the formation of larger coke species and enhances their formation rate. The use of multiple excitation wavelengths in confocal fluorescence microscopy enables the localization of coke compounds with different molecular dimensions in an individual H-ZSM-5 crystal. It demonstrates that small coke species evenly spread throughout the entire H-ZSM-5 crystal, whereas extended coke deposits primarily form near the crystal edges and surfaces. Polarization-dependent UV/Vis spectroscopy measurements illustrate that extended coke species are predominantly formed in the straight channels of H-ZSM-5. In addition, at higher temperatures, fast deactivation leads to the formation of large aromatic compounds within channel intersections and at the external zeolite surface, where the lack of spatial restrictions allows the formation of graphite-like coke. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synchrotron Infrared and Deep UV Fluorescent Microspectroscopy Study of PB1-F2 β-Aggregated Structures in Influenza A Virus-infected Cells*

    PubMed Central

    Chevalier, Christophe; Le Goffic, Ronan; Jamme, Frédéric; Leymarie, Olivier; Réfrégiers, Matthieu; Delmas, Bernard

    2016-01-01

    PB1-F2 is a virulence factor of influenza A virus (IAV) whose functions remain misunderstood. The different roles of PB1-F2 may be linked to its structural polymorphism and to its propensity to assemble into oligomers and amyloid fibers in the vicinity of the membrane of IAV-infected cells. Here, we monitored the impact of PB1-F2 on the biochemical composition and protein structures of human epithelial pulmonary cells (A549) and monocytic cells (U937) upon IAV infection using synchrotron Fourier-transform infrared (FTIR) and deep UV (DUV) microscopies at the single-cell level. Cells were infected with a wild-type IAV and its PB1-F2 knock-out mutant for analyses at different times post-infection. IR spectra were recorded in each condition and processed to evaluate the change in the component band of the spectra corresponding to the amide I (secondary structure) and the CH stretching region (membrane). The IR spectra analysis revealed that expression of PB1-F2 in U937 cells, but not in A549 cells, results in the presence of a specific β-aggregate signature. Furthermore, the lipid membrane composition of U937 cells expressing PB1-F2 was also altered in a cell type-dependent manner. Using DUV microscopy and taking advantage of the high content of tryptophan residues in the sequence of PB1-F2 (5/90 aa), we showed that the increase of the autofluorescent signal recorded in monocytic cells could be correlated with the IR detection of β-aggregates. Altogether, our results constitute an important step forward in the understanding of the cell type-dependent function of PB1-F2. PMID:26896002

  2. Semi-quantitative chemical analysis of hard coatings by Raman micro-spectroscopy: the aluminium chromium nitride system as an example.

    PubMed

    Kaindl, R; Sartory, B; Neidhardt, J; Franz, R; Reiter, A; Polcik, P; Tessadri, R; Mitterer, C

    2007-11-01

    A new method for chemical analyses of nitride-based hard coatings is presented. Raman band shifts in the spectra of Al(x)Cr(1-x)N coatings, deposited by physical vapour deposition from Al(x)Cr(1-x) targets with x (T,Al) = 0, 0.25, 0.50, 0.70 and 0.85, are calibrated using compositional data of the coatings derived by elastic recoil detection analysis (ERDA) and electron probe micro-analysis (EPMA). Inserting the composition-dependent Raman shift of a combinatorial acoustic-optic lattice mode into an empirically derived equation allows the determination of Al/Cr ratios of the coating with an accuracy of about +/-2%. Spot, line and area analyses of coated cemented carbide and cold work steel samples by using a computer-controlled, motorized x,y-stage are demonstrated and the most important errors influencing precision and accuracy are discussed. Figure Raman map of a coated cold-work steel sample.

  3. Structural alterations in rat liver proteins due to streptozotocin-induced diabetes and the recovery effect of selenium: Fourier transform infrared microspectroscopy and neural network study

    NASA Astrophysics Data System (ADS)

    Bozkurt, Ozlem; Haman Bayari, Sevgi; Severcan, Mete; Krafft, Christoph; Popp, Jürgen; Severcan, Feride

    2012-07-01

    The relation between protein structural alterations and tissue dysfunction is a major concern as protein fibrillation and/or aggregation due to structural alterations has been reported in many disease states. In the current study, Fourier transform infrared microspectroscopic imaging has been used to investigate diabetes-induced changes on protein secondary structure and macromolecular content in streptozotocin-induced diabetic rat liver. Protein secondary structural alterations were predicted using neural network approach utilizing the amide I region. Moreover, the role of selenium in the recovery of diabetes-induced alterations on macromolecular content and protein secondary structure was also studied. The results revealed that diabetes induced a decrease in lipid to protein and glycogen to protein ratios in diabetic livers. Significant alterations in protein secondary structure were observed with a decrease in α-helical and an increase in β-sheet content. Both doses of selenium restored diabetes-induced changes in lipid to protein and glycogen to protein ratios. However, low-dose selenium supplementation was not sufficient to recover the effects of diabetes on protein secondary structure, while a higher dose of selenium fully restored diabetes-induced alterations in protein structure.

  4. Forensic identification of blood in the presence of contaminations using Raman microspectroscopy coupled with advanced statistics: effect of sand, dust, and soil.

    PubMed

    Sikirzhytskaya, Aliaksandra; Sikirzhytski, Vitali; McLaughlin, Gregory; Lednev, Igor K

    2013-09-01

    Body fluid traces recovered at crime scenes are among the most common and important types of forensic evidence. However, the ability to characterize a biological stain at a crime scene nondestructively has not yet been demonstrated. Here, we expand the Raman spectroscopic approach for the identification of dry traces of pure body fluids to address the problem of heterogeneous contamination, which can impair the performance of conventional methods. The concept of multidimensional Raman signatures was utilized for the identification of blood in dry traces contaminated with sand, dust, and soil. Multiple Raman spectra were acquired from the samples via automatic scanning, and the contribution of blood was evaluated through the fitting quality using spectroscopic signature components. The spatial mapping technique allowed for detection of "hot spots" dominated by blood contribution. The proposed method has great potential for blood identification in highly contaminated samples. © 2013 American Academy of Forensic Sciences.

  5. Radiometric calibration of optical microscopy and microspectroscopy apparata over a broad spectral range using a special thin-film luminescence standard

    SciTech Connect

    Valenta, J., E-mail: jan.valenta@mff.cuni.cz; Greben, M.

    2015-04-15

    Application capabilities of optical microscopes and microspectroscopes can be considerably enhanced by a proper calibration of their spectral sensitivity. We propose and demonstrate a method of relative and absolute calibration of a microspectroscope over an extraordinary broad spectral range covered by two (parallel) detection branches in visible and near-infrared spectral regions. The key point of the absolute calibration of a relative spectral sensitivity is application of the standard sample formed by a thin layer of Si nanocrystals with stable and efficient photoluminescence. The spectral PL quantum yield and the PL spatial distribution of the standard sample must be characterized bymore » separate experiments. The absolutely calibrated microspectroscope enables to characterize spectral photon emittance of a studied object or even its luminescence quantum yield (QY) if additional knowledge about spatial distribution of emission and about excitance is available. Capabilities of the calibrated microspectroscope are demonstrated by measuring external QY of electroluminescence from a standard poly-Si solar-cell and of photoluminescence of Er-doped Si nanocrystals.« less

  6. Direct label-free measurement of the distribution of small molecular weight compound inside thick biological tissue using coherent Raman microspectroscopy

    PubMed Central

    Kawagishi, Masahiko; Obara, Yuki; Suzuki, Takayuki; Hayashi, Masumi; Misawa, Kazuhiko; Terada, Sumio

    2015-01-01

    Distributions of small molecular weight (less than 300 Da) compounds inside biological tissue have been obscure because of the lack of appropriate methods to measure them. Although fluorescence techniques are widely used to characterise the localisation of large biomolecules, they cannot be easily applied to the cases with small molecule compounds. We used CARS spectroscopy to detect and identify a label-free small molecule compound. To facilitate detection in aqueous environment, we utilised time-resolved and phase-sensitive techniques to reduce non-resonant background generated from water. We applied this technique to detect small molecular weight compound, taurine, inside mouse cornea tissue immersed in taurine solution as an initial model experiment. We detected a Raman peak of taurine near wavenumber 1033 cm−1 inside cornea and successfully characterised its depth profile in the tissue. Our CARS spectra measurement can be a promising method to measure and visualise the distribution of small bio-related compounds in biological background without using any labeling, paving the way for new cell biological analysis in various disciplines. PMID:26353981

  7. Refurbishment of a used in-vacuum undulator from the National Synchrotron Light Source for the National Synchrotron Light Source-II ring

    DOE PAGES

    Tanabe, Toshiya; Bassan, Harmanpreet; Broadbent, Andrew; ...

    2017-08-01

    The National Synchrotron Light Source (NSLS) ceased operation in September 2014 and was succeeded by NSLS-II. There were four in-vacuum undulators (IVUs) in operation at NSLS. The most recently constructed IVU for NSLS was the mini-gap undulator (MGU-X25, to be renamed IVU18 for NSLS-II), which was constructed in 2006. This device was selected to be reused for the New York Structural Biology Consortium Microdiffraction beamline at NSLS-II. At the time of construction, IVU18 was a state-of-the-art undulator designed to be operated as a cryogenic permanent-magnet undulator. Due to the more stringent field quality and impedance requirements of the NSLS-II ring,more » the transition region was redesigned. The control system was also updated to NSLS-II specifications. As a result, this paper reports the details of the IVU18 refurbishment activities including additional magnetic measurement and tuning.« less

  8. MATERIAL QUALITY CHARACTERIZATION OF CDZNTE SUBSTRATES FOR HGCDTE EPITAXY.

    SciTech Connect

    CARINI, G.A.; BOLOTNIKOV, A.E.; CAMARDA, G.S.

    2005-08-18

    CdZnTe (CZT) has been traditionally used as substrate for HgCdTe (MCT) epitaxy. The constraint of good lattice matching plays a fundamental role in the use of this substrate. In, fact, despite the difficulties in growing large area of affordable high-quality substrates, CZT wafers remain the best choice for high yield infrared devices. Nevertheless, material quality of the substrate and epilayer play a limiting role in IR focal plane array (FPA) detector technology. Furthermore, data suggest that the quality of the epilayer is affected by imperfections in the CZT substrate. In addition the pixel size for the current generation of FPAsmore » (less than 20 {micro}m) suggests a need for detailed microscale characterization and an understanding of the substrates and epilayers on at least the spatial scale of the pixel dimensions. In an effort to understand the correlation between material quality and device performances, we have begun to study CZT substrates to investigate bulk and surface properties. The National Synchrotron Light Source (NSLS, BNL) permits a wide variety of material investigations that take advantage of the highly collimated photon radiation emitted from the X-ray and VUV-IR rings. Synchrotron radiation offers the capability to combine good resolution and shorter exposure times than conventional X-ray sources, which allow the ability for high-resolution mapping of relatively large areas in an acceptable amount of time. Transmission X-ray diffraction techniques, such as white beam topography and rocking curves, have already been used for bulk investigation [l] as well as IR transmission microspectroscopy. Surface studies on CZT substrates were performed using X-ray diffraction. By correlating results from the different material and device investigations, we offer a more complete characterization of bulk and surface crystalline quality and their effects on device performance. Information on the location of grain boundaries and precipitates

  9. Structural makeup, biopolymer conformation, and biodegradation characteristics of a newly developed super genotype of oats (CDC SO-I versus conventional varieties): a novel approach.

    PubMed

    Damiran, Daalkhaijav; Yu, Peiqiang

    2010-02-24

    Recently, a new "super" genotype of oats (CDC SO-I or SO-I) has been developed. The objectives of this study were to determine structural makeup (features) of oat grain in endosperm and pericarp regions and to reveal and identify differences in protein amide I and II and carbohydrate structural makeup (conformation) between SO-I and two conventional oats (CDC Dancer and Derby) grown in western Canada in 2006, using advanced synchrotron radiation based Fourier transform infrared microspectroscopy (SRFTIRM). The SRFTIRM experiments were conducted at National Synchrotron Light Sources, Brookhaven National Laboratory (NSLS, BNL, U.S. Department of Energy). From the results, it was observed that comparison between the new genotype oats and conventional oats showed (1) differences in basic chemical and protein subfraction profiles and energy values with the new SO-I oats containing lower lignin (21 g/kg of DM) and higher soluble crude protein (530 g/kg CP), crude fat (59 g/kg of DM), and energy values (TDN, 820 g/kg of DM; NE(L3x), 7.8 MJ/kg of DM); (2) significant differences in rumen biodegradation kinetics of dry matter, starch, and protein with the new SO-I oats containing lower EDDM (638 g/kg of DM) and higher EDCP (103 g/kg of DM); (3) significant differences in nutrient supply with highest truly absorbed rumen undegraded protein (ARUP, 23 g/kg of DM) and total metabolizable protein supply (MP, 81 g/kg of DM) from the new SO-I oats; and (4) significant differences in structural makeup in terms of protein amide I in the endosperm region (with amide I peak height from 0.13 to 0.22 IR absorbance unit) and cellulosic compounds to carbohydrate ratio in the pericarp region (ratio from 0.02 to 0.06). The results suggest that with the SRFTIRM technique, the structural makeup differences between the new genotype oats (SO-I) and two conventional oats (Dancer and Derby) could be revealed.

  10. Structural Make-up, Biopolymer Conformation, and Biodegradation Characteristics of Newly Developed Super Genotype of Oats (CDC SO-I vs. Conventional Varieties): Novel Approach

    SciTech Connect

    Damiran, D.; Yu, P

    2010-01-01

    Recently, a new 'super' genotype of oats (CDC SO-I or SO-I) has been developed. The objectives of this study were to determine structural makeup (features) of oat grain in endosperm and pericarp regions and to reveal and identify differences in protein amide I and II and carbohydrate structural makeup (conformation) between SO-I and two conventional oats (CDC Dancer and Derby) grown in western Canada in 2006, using advanced synchrotron radiation based Fourier transform infrared microspectroscopy (SRFTIRM). The SRFTIRM experiments were conducted at National Synchrotron Light Sources, Brookhaven National Laboratory (NSLS, BNL, U.S. Department of Energy). From the results, it wasmore » observed that comparison between the new genotype oats and conventional oats showed (1) differences in basic chemical and protein subfraction profiles and energy values with the new SO-I oats containing lower lignin (21 g/kg of DM) and higher soluble crude protein (530 g/kg CP), crude fat (59 g/kg of DM), and energy values (TDN, 820 g/kg of DM; NE{sub L3x}, 7.8 MJ/kg of DM); (2) significant differences in rumen biodegradation kinetics of dry matter, starch, and protein with the new SO-I oats containing lower EDDM (638 g/kg of DM) and higher EDCP (103 g/kg of DM); (3) significant differences in nutrient supply with highest truly absorbed rumen undegraded protein (ARUP, 23 g/kg of DM) and total metabolizable protein supply (MP, 81 g/kg of DM) from the new SO-I oats; and (4) significant differences in structural makeup in terms of protein amide I in the endosperm region (with amide I peak height from 0.13 to 0.22 IR absorbance unit) and cellulosic compounds to carbohydrate ratio in the pericarp region (ratio from 0.02 to 0.06). The results suggest that with the SRFTIRM technique, the structural makeup differences between the new genotype oats (SO-I) and two conventional oats (Dancer and Derby) could be revealed.« less

  11. Dietary patterns are associated with disease risk among participants in the women's health initiative observational study

    USDA-ARS?s Scientific Manuscript database

    Coronary heart disease (CHD) is the leading cause of death in women. A nested case-control study tested whether dietary patterns predicted CHD events among 1224 participants in the Women’s Health Initiative-Observational Study (WHI-OS) with centrally confirmed CHD, fatal or nonfatal myocardial infar...

  12. Changes in the chemical composition and spectroscopy of loblolly pine medium density fiberboard furnish as a function of age and refining pressure

    Treesearch

    Stephen S. Kelley; Thomas Elder; Leslie H. Groom

    2005-01-01

    Loblolly pine wood between the ages of 5-35 was refined into medium density fiberboard furnish at steam pressures from 2 to 18 bar, The effect of age and processing conditions on the properties of the fibers was assessed by wet chemical analyses, Near Infared Spectroscopy (NIR) and powder X-ray diffraction (XRD).In general ,the percentages of extractives and glucose...

  13. 418th Brookhaven Lecture

    ScienceCinema

    Timur Shaftan

    2017-12-09

    The NSLS-II project will establish a third-generation light source at Brookhaven Lab, increasing beam-line brightness by 10,000. Achieving and maintaining this will involve tightly focusing the electron beam, providing the most efficient insertion devices, and achieving and maintaining a high electron current. In this talk, the various sub-systems of NSLS-II will be reviewed, and the requirements and key elements of their design will be discussed. In addition, the a small prototype of a light source of a different kind that was developed by the NSLS will also be discussed.

  14. Intramolecular Dynamics: A Study of Molecules at High Levels of Vibrational Excitation.

    DTIC Science & Technology

    1988-05-27

    block number) Lasers Infared , Multiphoton Excitation Dissociation Selectivity Raman Spectroscopy ,:,.. 2. Q - WR’$qACT’ (Cotlius - rms pwo ahtf nomes..ey...CLASSIFICATION OF THIS PAGErnon Date Entered) %-"", or A irg -r !C o,; - eS % 002-j".. b~- 7.. .7- 7 77- - 7 %J, Intramolecular Dynamics: A Study of...excitation dynamics below the dissociation threshold by means of time-resolved spontaneous q Raman scattering. Specifically, the following questions were

  15. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biologymore » department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or

  16. Trace Element Abundance Measurements on Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Flynn, George

    1996-01-01

    The X-Ray Microprobe on beamline X-26A at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was used to determine the abundances of elements from Cr through Sr in individual interplanetary dust particles (IDPs) collected from the Earth's stratosphere and the Scanning Transmission X-ray Microscope (STXM) on beamline X-1A at the NSLS was used to determine the carbon abundances and spatial distributions in IDPs. In addition, modeling was performed in an attempt to associate particular types of IDPs with specific types of parent bodies, and thus to infer the chemistry, mineralogy, and structural properties of those parent bodies.

  17. Formation and Post-Shock Evolution of Coesite in Suevite from the Ries Impact Structure (Germany)

    NASA Astrophysics Data System (ADS)

    Fazio, A.; Mansfeld, U.; Langenhorst, L.

    2017-07-01

    In this work, we revisited the mechanism of formation of coesite and its post-shock evolution on the basis of new Raman microspectroscopy and TEM observations on coesite aggregates within diaplectic glass of suevite from the Ries impact structure.

  18. Participation in the Center for Advanced Processing and Packaging Studies

    DTIC Science & Technology

    2009-11-24

    resistance of Bacillus cereus spores. International Journal of Food Science and Technology. 30: 71-78. 24 Meyer, R.S., Cooper, K.L., Knorr, D., and...transform infrared microspectroscopy and multivariate analysis of Bacillus 1 amyloliquefaciens spore inactivation during pressure-assisted thermal...microspectroscopy 6 7 8 9 Keywords: Pressure-assisted thermal processing, thermal processing, high pressure 10 processing, Bacillus

  19. Infrared absorption spectroscopy with color center lasers

    NASA Astrophysics Data System (ADS)

    Carrick, P. G.; Curl, R. F.; Tittel, F. K.; Koester, E.; Pfeiffer, J.; Kasper, J. V. V.

    Results are presented of the application of a computer controlled color center laser combined with Stark modulation and magnetic rotation effect modulation for obtaining high resolution spectra of molecular species. The lowest electronic transition of the C2H free radical, of interest in astrophysics, is observed near 3772/cm and the high resolution spectra of methanol and hydroxylamine in the OH stretching region are obtained. It is concluded that color center laser absorption spectroscopy combined with sensitivy enhancement through modulation techniques is a sensitive and versatile means of determining the spectra of free radicals and transient molecules in the infared region.

  20. Normalized Difference Vegetation Index for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the Normalized Difference Vegetation Index (NDVI), or "greenness" of the Fanno Creek floodplain study area. Aerial photography was used to isolate areas of vegetation based on comparing different bandwidths within the imagery. In this case, the NDVI is calculated as the quotient of the near infrared band minus the red band divided by the near infared plus the red band. NDVI = (NIR - R)/(NIR + R).

  1. National Synchrotron Light Source II

    ScienceCinema

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2018-01-16

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  2. High resolution microtomography for density and spatial infomation about wood structures

    Treesearch

    Barbara. Illman; Betsy. Dowd

    1999-01-01

    Microtomography has successfully been used to characterize loss of structural integrity of wood. Tomographic images were generated with the newly developed third generation x-ray computed microtomography (XCMT) instrument at the X27A beamline at the national Synchrotron Light source (NSLS). The beamline is equipped with high-flux x-ray monochromator based on multilayer...

  3. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2017-12-09

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  4. Using LiDAR to as a Potential Method for Detection Plastics in Water

    NASA Astrophysics Data System (ADS)

    Lee, G.; Neal, A.; Mielke, R.; Bookhagen, B.

    2010-12-01

    We conducted a series of experiments using Light Detection and Range (LiDAR) technology as an innovative way to detect the presence of plastics in water. The purpose of this study was to determine if LiDAR technology is a feasible, non-intrusive alternative to dredging in the ocean to determine the amount of plastics in the ocean. We used a tripod mounted RIEGL LMS-Z420i terrestrial LiDAR 3-D scanner and the associated operating software RiSCAN Pro. The terrestrial LiDAR is an optical remote sensing technology that measures the reflection of near infared light to find the range of a distant target that is most commonly used to create high precision digital elevation models of terrestrial surfaces. In theory, water should absorb the near infared light, while the plastics should reflect the light. The experiments consisted of different scale models of plastic pellets in water, ranging from a small plastic dish to a large tank to test the range of the LiDAR in different salt and fresh water mediums.

  5. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    SciTech Connect

    Gmuer, N.F.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUVmore » and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.« less

  6. AC orbit bump method of local impedance measurement

    SciTech Connect

    Smaluk, Victor; Yang, Xi; Blednykh, Alexei

    2017-08-04

    A fast and precise technique of local impedance measurement has been developed and tested at NSLS-II. This technique is based on in-phase sine-wave (AC) excitation of four fast correctors adjacent to the vacuum chamber section, impedance of which is measured. The beam position is measured using synchronous detection. Use of the narrow-band sine-wave signal allows us to improve significantly the accuracy of the orbit bump method. Beam excitation by fast correctors results in elimination of the systematic error caused by hysteresis effect. The systematic error caused by orbit drift is also eliminated because the measured signal is not affected bymore » the orbit motion outside the excitation frequency range. In this article, the measurement technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented.« less

  7. Measurements on semiconductor and scintillator detectors at the Advanced Light Source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Camarda, Giuseppe S.; Bolotnikov, Aleksey E.; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Roy, Utpal N.; Yang, Ge; James, Ralph B.; Vanier, Peter E.

    2016-09-01

    During the transition period between closure of Beamline X27B at BNL's NSLS and the opening of Beamline MID at NSLS-II, we began operation of LBNL's ALS Beamline 3.3.2 to carry out our radiation detection materials RD. Measurements performed at this Beamline include, X-ray Detector Response Mapping and White Beam X-ray Diffraction Topography (WBXDT), among others. We will introduce the capabilities of the Beamline and present the most recent results obtained on CdZnTe and scintillators. The goal of the studies on CdZnTe is to understand the origin and effects of subgrain boundaries and help to visualize the presence of a higher concentration of impurities, which might be responsible for the deterioration of the energy resolution and response uniformity in the vicinity of the sub-grain boundaries. The results obtained in the second year of measurements will be presented.

  8. National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less

  9. National Synchrotron Light Source annual report 1991

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less

  10. Multi-objective dynamic aperture optimization for storage rings

    DOE PAGES

    Li, Yongjun; Yang, Lingyun

    2016-11-30

    We report an efficient dynamic aperture (DA) optimization approach using multiobjective genetic algorithm (MOGA), which is driven by nonlinear driving terms computation. It was found that having small low order driving terms is a necessary but insufficient condition of having a decent DA. Then direct DA tracking simulation is implemented among the last generation candidates to select the best solutions. The approach was demonstrated successfully in optimizing NSLS-II storage ring DA.

  11. Simulation of U-5 prototype undulator effects on the beam dynamics

    NASA Astrophysics Data System (ADS)

    Qian, Y. L.; Turner, L. R.

    1993-06-01

    The APS prototype undulator U-5 has been installed at the NSLS VUV ring. Its effects on the beam behaviour have been simulated with the tracking codes TEAPOT and RACETRACK. The tune shift, the distortion of the betatron function, the chromaticity, the transverse coupling, and some of the amplitude-dependent effects on the VUV ring have been compared and are presented in this paper.

  12. Theoretical and experimental study of the formation conditions of stepped leaders in negative flashes

    SciTech Connect

    Xie, Shijun, E-mail: sj-xie@163.com; State Key Laboratory of Control and Simulation of Power System and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084; Zeng, Rong

    2015-08-15

    Natural lightning flashes are stochastic and uncontrollable, and thus, it is difficult to observe the formation process of a downward negative stepped leader (NSL) directly and in detail. This situation has led to some dispute over the actual NSL formation mechanism, and thus has hindered improvements in the lightning shielding analysis model. In this paper, on the basis of controllable long air gap discharge experiments, the formation conditions required for NSLs in negative flashes have been studied. First, a series of simulation experiments on varying scales were designed and carried out. The NSL formation processes were observed, and several ofmore » the characteristic process parameters, including the scale, the propagation velocity, and the dark period, were obtained. By comparing the acquired formation processes and the characteristic parameters with those in natural lightning flashes, the similarity between the NSLs in the simulation experiments and those in natural flashes was proved. Then, based on the local thermodynamic equation and the space charge estimation method, the required NSL formation conditions were deduced, and the space background electric field (E{sub b}) was proposed as the primary parameter for NSL formation. Finally, the critical value of E{sub b} required for the formation of NSLs in natural flashes was determined to be approximately 75 kV/m by extrapolation of the results of the simulation experiments.« less

  13. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    SciTech Connect

    Chen, Jingguang; Frenkel, Anatoly; Rodriguez, Jose

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, andmore » to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.« less

  14. The NIGMS X6A East Coast Structural Biology Facility

    SciTech Connect

    Stojanoff, V.; Venkatagiriyappa, V.; Jakoncic, J.

    2004-05-12

    The X6A facility at the National Synchrotron Light Source (NSLS) is a dedicated macromolecular crystallography beam line funded by the National Institute of General Medical Sciences. The facility serves expert and non-expert crystallographers from protein purification to the determination of atomic coordinates. The X6A facility consists of an experimental station and an associated laboratory for sample preparation. The X6A beam line optics include an NSLS design Si(111) channel-cut monochromator and an Oxford Danfysik toroidal focusing mirror. The end station consists of a CrystalLogic Kappa diffractometer and an ADSC 210 CCD detector. Standard crystallographic packages are available to assist the usersmore » for data analysis. An automated sample changer will be added in the near future to the end station. The associated laboratory is fully equipped for all aspects of protein purification and crystallization. The beam line is currently available for users (http://protein.nsls.bnl.gov). The main goal of the X6A effort is to provide the basic tools to researchers who would like to use macromolecular crystallography and structural biology to address important biological questions.« less

  15. Gain-enhanced free-electron laser with an electromagnetic pump field

    NASA Technical Reports Server (NTRS)

    Hiddleston, H. R.; Segall, S. B.; Catella, G. C.

    1982-01-01

    The feasibility of enhancing the gain for the free electron laser (FEL) with an electromagnetic (EM) pump field has been considered. The enhancement is provided by reacceleration of the electrons in the interaction region by means of a static, axial electric field. A FEL utilizing a low energy electron beam and a wiggler magnet with a periodicity on the order of 1 cm would produce far infared (FIR) radiation with wavelengths on the order of a few hundred microns. The use of the FIR radiation as the pump field in a two-stage FEL is envisioned to obtain visible radiation with a low energy electron beam. A summary is provided regarding the theory and equations of motion for the EM-pumped FEL. The derived relations are applied to the second stage of such a two-stage FEL. The obtained equations have been incorporated into a computer code which has been used to calculate laser gain and energy conversion efficiency.

  16. NAHUAL: A Next-Generation Near Infrared Spectrograph for the GTC

    NASA Astrophysics Data System (ADS)

    Martín, E. L.; Guenther, E.; Del Burgo, C.; Rodler, F.; Álvarez, C.; Baffa, C.; Béjar, V. J. S.; Caballero, J. A.; Deshpande, R.; Esparza, P.; López Morales, M.; Moitinho, A.; Montes, D.; Montgomery, M. M.; Pallé, E.; Tata, R.; Valdivielso, L.; Zapatero Osorio, M. R.

    2010-10-01

    The extension of the highly successful Doppler technique into the near-infrared (0.9-2.5 μm) is opening new parameter domains for extra-solar planet searches in terms of ages and masses of the primary stars. Here we present the current status of NAHUAL, a next generation near-infrared spectrograph for the 10.4-meter Gran Telescopio Canarias (GTC). Among its observing modes, it includes a hyper-stable high-resolution capability aimed at high-precision Doppler measurements of cool stars in the near-infrared. The sticky question of the best wavelength calibration for the near-infared is addressed in the last section of this paper.

  17. Synthesis and Characterization of Gd2O3 Hollow Microspheres Using a Template-Directed Method

    PubMed Central

    Jiang, Xueliang; Yu, Lu; Yao, Chu; Zhang, Fuqing; Zhang, Jiao; Li, Chenjian

    2016-01-01

    Uniform rare-earth gadolinium oxide (Gd2O3) hollow microspheres, as formed through a urea-assisted homogenous precipitation process using carbon spheres as a template and a subsequent heat treatment, were characterized by using X-ray diffraction, Fourier transformed infared spectroscopy, thermogravimetry, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Tellet surface area measurement. The results indicate that the final products can be indexed to a cubic Gd2O3 phase with high purity and have a uniform morphology at 500 nm in diameter and 20 nm in shell thickness. The as-synthesized Gd2O3 hollow microspheres exhibited a superior photooxidation activity to that of Gd2O3 powder and an effect similar to P25, significantly broadening the potential of Gd2O3 hollow microspheres for many practical applications. PMID:28773446

  18. Synthesis and Characterization of Gd₂O₃ Hollow Microspheres Using a Template-Directed Method.

    PubMed

    Jiang, Xueliang; Yu, Lu; Yao, Chu; Zhang, Fuqing; Zhang, Jiao; Li, Chenjian

    2016-04-28

    Uniform rare-earth gadolinium oxide (Gd₂O₃) hollow microspheres, as formed through a urea-assisted homogenous precipitation process using carbon spheres as a template and a subsequent heat treatment, were characterized by using X-ray diffraction, Fourier transformed infared spectroscopy, thermogravimetry, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Tellet surface area measurement. The results indicate that the final products can be indexed to a cubic Gd₂O₃ phase with high purity and have a uniform morphology at 500 nm in diameter and 20 nm in shell thickness. The as-synthesized Gd₂O₃ hollow microspheres exhibited a superior photooxidation activity to that of Gd₂O₃ powder and an effect similar to P25, significantly broadening the potential of Gd₂O₃ hollow microspheres for many practical applications.

  19. The Multispectral Atmospheric Mapping Sensor (MAMS): Instrument description, calibration and data quality

    NASA Technical Reports Server (NTRS)

    Jedlovec, G. J.; Menzel, W. P.; Atkinson, R.; Wilson, G. S.; Arvesen, J.

    1986-01-01

    A new instrument has been developed to produce high resolution imagery in eight visible and three infared spectral bands from an aircraft platform. An analysis of the data and calibration procedures has shown that useful data can be obtained at up to 50 m resolution with a 2.5 milliradian aperture. Single sample standard errors for the measurements are 0.5, 0.2, and 0.9 K for the 6.5, 11.1, and 12.3 micron spectral bands, respectively. These errors are halved when a 5.0 milliradian aperture is used to obtain 100 m resolution data. Intercomparisons with VAS and AVHRR measurements show good relative calibration. MAMS development is part of a larger program to develop multispectral Earth imaging capabilities from space platforms during the 1990s.

  20. Synthesis and photolysis of NaYF4@SiO2@TiO2 core-shell nanocomposites

    NASA Astrophysics Data System (ADS)

    Shi, Guoyou; Mao, Yifu; Ren, Guozhong; Gong, Lunjun; Zhi, Zhugong

    2014-12-01

    Monodisperse β-NaYF4 nanocrystals were synthesized with oleic acid as capping ligands by solvothermal method, and then, SiO2 and TiO2 were coated successively. Intense ultraviolet light is emitted from NaYF4:Yb/Tm under the 980 nm laser and the intensity of ultraviolet light reduce dramatically after these nanocrystals were coated with SiO2 and TiO2 shells, which means NaYF4@SiO2@TiO2 core-shell nanocomposites can be used to realize the infared photocatalysis. Photocatalytic activity of these nanocomposites is demonstrated using methyl orange (MO) as a chemical probe under the 980 nm laser excitation.

  1. In-vivo imaging of stimulus-evoked intrinsic optical signals correlated with retinal activation in anesthetized frog

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; Zhang, Qiu-Xiang; Li, Yang-Guo

    2011-09-01

    Intrinsic optical signal imaging (IOS) promises a noninvasive method for high resolution examination of retinal function. Using freshly isolated animal retinas, we have conducted a series of experiments to test fast IOSs which have time courses comparable to electrophysiological kinetics. In this article, we demonstrate the feasibility of in vivo imaging of fast IOSs correlated with retinal activation in anesthetized frog (Rana Pipiens). A rapid (68,000 lines/s) line-scan confocal ophthalmoscope was constructed to achieve high-speed (200 frames/s) near infared (NIR) recording of fast IOSs. By rejecting out-of-focus background light, the line-scan confocal imager provided enough resolution to differentiate individual photoreceptors in vivo. With visible light stimulation, NIR confocal images disclosed transient IOSs with time courses comparable to retinal ERG kinetics. High-resolution IOS images revealed both positive (increasing) and negative (decreasing) light responses, with sub-cellular complexity, in the activated retina.

  2. TES observations of the martian surface and atmosphere

    USGS Publications Warehouse

    Christensen, P.R.; Kieffer, H.H.; Pearl, J.C.; Conrath, B.; Malin, M.C.; Clark, R.C.; Morris, R.V.; Banfield, J.L.; Lane, M.D.; Smith, M.D.; Hamilton, V.E.; Kuzmin, R.O.

    2000-01-01

    The TES instrument is a Fourier transform Michelson interferometer operating with 10 or 5 cm-1 sampling int he thermal infared spectral region from 1700 to 200 cm-1 (~6 to 50 μm) where virtually all minerals have characteristic fundamental vibrational absorption bands (1, 2, 3, 4, 5, 6, 7, 8). The TES data used in this paper are among the 6x107 spectra collected during the early mapping phase of the MGS mission from southern hemisphere winter to early summer (aerocentric longitude, Ls, 107° to 297°. The methodology for separating the surface and atmospheric components of the radiance from Mars, which allows detailed analysis and interpretation of surface mineralogy (9, 10), is described in previous papers (10, 11).

  3. Description of data on the Nimbus 7 LIMS map archive tape: Temperature and geopotential height

    NASA Technical Reports Server (NTRS)

    Haggard, K. V.; Remsberg, E. E.; Grose, W. L.; Russell, J. M., III; Marshall, B. T.; Lingenfelser, G.

    1986-01-01

    The process by which the analysis of the Limb Infared Monitor of the Stratosphere (LIMS) experiment data were used to produce estimates of synoptic maps of temperature and geopotential height is described. In addition to a detailed description of the analysis procedure, several interesting features in the data are discussed and these features are used to demonstrate how the analysis procedure produced the final maps and how one can estimate the uncertainties in the maps. In addition, features in the analysis are noted that would influence how one might use, or interpret, the results. These include subjects such as smoothing and the interpretation of wave components. While some suggestions are made for an improved analysis of the data, it is shown that, in general, the maps are an excellent estimation of the synoptic fields.

  4. Detecting carbon uptake by individual algae in multi-species assemblages

    USDA-ARS?s Scientific Manuscript database

    Knowing how different algal species utilize carbon (C) can help predict how assemblage changes will alter energy input and flow in ecosystems, and can help refine algal species selection for bioengineering applications. Fourier-transform infrared (FTIR) microspectroscopy was used to measure inorgani...

  5. Raman spectroscopy of oral bacteria

    NASA Astrophysics Data System (ADS)

    Berger, Andrew J.; Zhu, Qingyuan; Quivey, Robert G.

    2003-10-01

    Raman spectroscopy has been employed to measure the varying concentrations of two oral bacteria in simple mixtures. Evaporated droplets of centrifuged mixtures of Streptococcus sanguis and Streptococcus mutans were analyzed via Raman microspectroscopy. The concentration of s. sanguis was determined based upon the measured Raman spectrum, using partial least squares cross-validation, with an r2 value of 0.98.

  6. The Advantages of an Attenuated Total Internal Reflection Infrared Microspectroscopic Imaging Technique for the Analysis of Polymer Laminates.

    PubMed

    Ling, Chen; Sommer, André J

    2015-06-01

    Until recently, the analysis of polymer laminates using infrared microspectroscopy involved the painstaking separation of individual layers by dissection or by obtaining micrometer thin cross-sections. The latter usually requires the expertise of an individual trained in microtomy and even then, the very structure of the laminate could affect the outcome of the spectral results. The recent development of attenuated total internal reflection (ATR) infrared microspectroscopy imaging has provided a new avenue for the analysis of these multilayer structures. This report compares ATR infrared microspectroscopy imaging with conventional transmission infrared microspectroscopy imaging. The results demonstrate that the ATR method offers improved spatial resolution, eliminates a variety of competing optical processes, and requires minimal sample preparation relative to transmission measurements. These advantages were illustrated using a polymer laminate consisting of 11 different layers whose thickness ranged in size from 4-20 μm. The spatial resolution achieved by using an ATR-FTIR (Fourier transform infrared spectroscopy) imaging technique was diffraction limited. Contrast in the ATR images was enhanced by principal component analysis.

  7. In-situ Raman microprobe studies of plant cell walls: macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) B.S.P.

    Treesearch

    U.P. Agarwal; R.H. Atalla

    1986-01-01

    Native-state organization and distribution of cell-wall components in the secondary wall of woody tissue from P. mariana (Black Spruce) have been investigated using polarized Raman microspectroscopy. Evidence for orientation is detected through Raman intensity variations resulting from rotations of the exciting electric vector with respect to cell-wall geometry....

  8. Novel FT-IR Microspectroscopic Census of Simple Starch Granules for Octenyl Succinate Ester Modification

    SciTech Connect

    Bai, Y.; Shi, Y; Wetzel, D

    2009-01-01

    Fourier transform infrared (FT-IR) microspectroscopy was used to investigate reaction homogeneity of octenyl succinic anhydride modification on waxy maize starch and detect uniformity of blends of modified and native starches. For the first time, the level and uniformity of chemical substitution on individual starch granules were analyzed by FT-IR microspectroscopy. More than 100 starch granules of each sample were analyzed one by one by FT-IR microspectroscopy. In comparison to the native starch, modified starch had two additional bands at 1723 and 1563 cm{sup -1}, indicative of ester formation in the modified starch. For the 3% modification level, the degree ofmore » substitution (DS) was low (0.019) and the distribution of the ester group was not uniform among starch granules. For the modified starch with DS of 0.073, 99% of individual starch granules had a large carbonyl band area, indicating that most granules were modified to a sufficient extent that the presence of their carbonyl ester classified them individually as being modified. However, the octenyl succinate concentration varied between granules, suggesting that the reaction was not uniform. When modified starch (DS = 0.073) was blended with native starch (3:7, w/w) to achieve a mixture with an average DS of 0.019, FT-IR microspectroscopy was able to detect heterogeneity of octenyl succinate in the blend and determine the ratio of the modified starch to the native starch granules.« less

  9. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    SciTech Connect

    Bryant, Rebecca; Kszos, Lynn A

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas ofmore » investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  10. Program and Abstracts of the International Free Electron Laser Conference (10th) Held in Jerusalem, Israel on August 29-September 2, 1988

    DTIC Science & Technology

    1988-09-02

    Experiment at NSLS: Status Report. (2) - 08:50-09:10 D.J. Bamford (Stanford): Measurement of the Coherent Harmonics Ra- diated in the Mark III Free...the Coherent Harmonics Radiated in the Mark III Free Electron Laser Douglas J. Banford and A.G. Deacon. 7.3 Spontaneous Emission of the Super-Aco FEL...laser wiggler has been measured In. ltU using a 20 microsecond 4 ampere current pulse In a streched wire and measuring the displacement of the traveling

  11. Pushing x-ray photon correlation spectroscopy beyond the continuous frame rate limit

    DOE PAGES

    Dufresne, Eric M.; Narayanan, Suresh; Sandy, Alec R.; ...

    2016-01-06

    We demonstrate delayed-frame X-ray Photon Correlation Spectroscopy with 120 microsecond time resolution, limited only by sample scattering rates, with a prototype Pixel-array detector capable of taking two image frames separated by 153 ns or less. Although the overall frame rate is currently limited to about 4 frame pairs per second, we easily measured millisecond correlation functions. In conclusion, this technology, coupled to the use of brighter synchrotrons such as Petra III or the NSLS-II should enable X-ray Photon Correlation Spectroscopy on microsecond time scales on a wider variety of materials.

  12. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    SciTech Connect

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  13. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    SciTech Connect

    Yang, Xi; Huang, Xiaobiao

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  14. Scanning photoemission microscopy with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Ade, Harald W.

    1992-08-01

    Progress in photoemission spectro-microscopy at various synchrotron radiation facilities is reviewed. Microprobe devices such as MAXIMUM at the SRC in Wisconsin, the X1-SPEM at the NSLS at BNL, as well as the ellipsoidal ring mirror microscope at DESY in Hamburg, recorded first images during the last few years. The present status of these devices which achieve their lateral resolution by focusing X-rays to a small spot is the primary focus of this paper, but work representing other approaches to spectro-microscopy is also discussed.

  15. Novel mouse IgG-like immunoreactivity expressed by neurons in the moth Manduca sexta: developmental regulation and colocalization with crustacean cardioactive peptide.

    PubMed

    Klukas, K A; Brelje, T C; Mesce, K A

    1996-10-15

    Immunoglobulin-related molecules have been shown to play important roles in cell-cell recognition events during the development of both vertebrate and invertebrate nervous systems. In the moth, Manduca sexta, we report the presence of novel, mouse, immunoglobulin G (mIgG)-like immunoreactivity in a discrete population of identified neurosecretory neurons (the NS-Ls also known as the cell 27s) and interneurons (the IN-704s). A number of polyclonal anti-mIgG antibodies were used to immunostain these cells in wholemount. The mIgG-like-immunoreactive (IR) neurons were present during embryogenesis through the developing adult stages, but disappeared in the postemerged adult. Biochemical analysis of M. sexta ventral nerve cords revealed that the mIgG-like antigen is a membrane-associated 27-kDa protein which is likely responsible for the mIgG-like immunostaining observed. Unambiguous identification of the mIgG-like-IR neurons was based on neuronal morphology and our ability to demonstrate conclusively that these neurons expressed immunoreactivity to an antiserum against crustacean cardioactive peptide (CCAP). The NS-Ls and IN-704s were both shown to colocalize the CCAP and mIgG-like immunoreactivities. The mIgG-like and CCAP-IR neurons were identical to a subset of CCAP-IR neurons recently described by Davis et al. [(1993) J. Comp. Neurol., 338:612-627] in pupae. We found these CCAP-IR neurons, however, also to be present in larvae. The mIgG-like- and CCAP-IR neurons included the NS-L pair of the subesophageal maxillary neuromere, which projected anteriorly to the corpora cardiaca, and the NS-L of the labial neuromere whose axons projected out the dorsal nerve of the next posterior ganglion. The mIgG-like and CCAP-IR NS-Ls were also observed throughout the three thoracic ganglia, and all shared strikingly similar structural features. These cells exited out the dorsal nerve of the next posterior ganglion and eventually projected to the neurohemal release sites of the

  16. TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS OPTIMIZATION

    SciTech Connect

    Yang, L.

    2011-03-28

    Dynamic aperture (DA) optimization with direct particle tracking is a straight forward approach when the computing power is permitted. It can have various realistic errors included and is more close than theoretical estimations. In this approach, a fast and parallel tracking code could be very helpful. In this presentation, we describe an implementation of storage ring particle tracking code TESLA for beam dynamics optimization. It supports MPI based parallel computing and is robust as DA calculation engine. This code has been used in the NSLS-II dynamics optimizations and obtained promising performance.

  17. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K; Weber, F; Dewald, E

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  18. Impact of Beam Energy Modulation on rf Zero-Phasing Microbunch Measurements

    SciTech Connect

    Huang, Zhirong

    2003-08-18

    Temporal profile of a simple bunch distribution may be obtained by measuring the horizontal density profile of an energy-chirped electron beam at a dispersive region using the rf zero-phasing technique. For an energy-modulated beam, the horizontal profile obtained by this technique is also modulated with an enhanced amplitude. We study the microbunching experiment at the NSLS source development laboratory and show that the horizontal modulation observed by the rf zero-phasing technique can be explained by the space-charge induced energy modulation in the accelerator.

  19. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    DOE PAGES

    Yang, Xi; Huang, Xiaobiao

    2016-05-13

    Here, we propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. Finally, the method has been successfully demonstrated on the NSLS-II storage ring.

  20. Recent research in flaxseed (oil seed) on molecular structure and metabolic characteristics of protein, heat processing-induced effect and nutrition with advanced synchrotron-based molecular techniques.

    PubMed

    Doiron, Kevin J; Yu, Peiqiang

    2017-01-02

    Advanced synchrotron radiation-based infrared microspectroscopy is able to reveal feed and food structure feature at cellular and molecular levels and simultaneously provides composition, structure, environment, and chemistry within intact tissue. However, to date, this advanced synchrotron-based technique is still seldom known to food and feed scientists. This article aims to provide detailed background for flaxseed (oil seed) protein research and then review recent progress and development in flaxseed research in ruminant nutrition in the areas of (1) dietary inclusion of flaxseed in rations; (2) heat processing effect; (3) assessing dietary protein; (4) synchrotron-based Fourier transform infrared microspectroscopy as a tool of nutritive evaluation within cellular and subcellular dimensions; (5) recent synchrotron applications in flaxseed research on a molecular basis. The information described in this paper gives better insight in flaxseed research progress and update.

  1. Focally Elevated Creatine Detected in Amyloid Precursor Protein (APP) Transgenic Mice and Alzheimer Disease Brain Tissue

    SciTech Connect

    Gallant,M.; Rak, M.; Szeghalmi, A.

    2006-01-01

    The creatine/phosphocreatine system, regulated by creatine kinase, plays an important role in maintaining energy balance in the brain. Energy metabolism and the function of creatine kinase are known to be affected in Alzheimer diseased brain and in cells exposed to the {beta}-amyloid peptide. We used infrared microspectroscopy to examine hippocampal, cortical, and caudal tissue from 21-89-week-old transgenic mice expressing doubly mutant (K670N/M671L and V717F) amyloid precursor protein and displaying robust pathology from an early age. Microcrystalline deposits of creatine, suggestive of perturbed energetic status, were detected by infrared microspectroscopy in all animals with advanced plaque pathology. Relatively large creatine depositsmore » were also found in hippocampal sections from post-mortem Alzheimer diseased human brain, compared with hippocampus from non-demented brain. We therefore speculate that this molecule is a marker of the disease process.« less

  2. Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue.

    PubMed

    Gallant, Meghan; Rak, Margaret; Szeghalmi, Adriana; Del Bigio, Marc R; Westaway, David; Yang, Jin; Julian, Robert; Gough, Kathleen M

    2006-01-06

    The creatine/phosphocreatine system, regulated by creatine kinase, plays an important role in maintaining energy balance in the brain. Energy metabolism and the function of creatine kinase are known to be affected in Alzheimer diseased brain and in cells exposed to the beta-amyloid peptide. We used infrared microspectroscopy to examine hippocampal, cortical, and caudal tissue from 21-89-week-old transgenic mice expressing doubly mutant (K670N/M671L and V717F) amyloid precursor protein and displaying robust pathology from an early age. Microcrystalline deposits of creatine, suggestive of perturbed energetic status, were detected by infrared microspectroscopy in all animals with advanced plaque pathology. Relatively large creatine deposits were also found in hippocampal sections from post-mortem Alzheimer diseased human brain, compared with hippocampus from non-demented brain. We therefore speculate that this molecule is a marker of the disease process.

  3. Recent Research and Progress in Food, Feed and Nutrition with Advanced Synchrotron-based SR-IMS and DRIFT Molecular Spectroscopy.

    PubMed

    Liu, Na; Yu, Peiqiang

    2016-01-01

    Ultraspatially resolved synchrotron radiation based infrared microspectroscopy is able to detect the structure features of a food or feed tissue at cellular and molecular levels. However, to date, this advanced synchrotron-based technique is almost unknown to food and feed scientists. The objective of this article was to introduce this novel analytical technology, ultra-spatially resolved synchrotron radiation based infrared microspectroscopy (SR-IMS) to food, feed, conventional nutrition, and molecular nutrition scientists. The emphasis of this review focused on the following areas: (1) Principles of molecular spectroscopy for food and feed structure research, such as protein molecular structure, carbohydrate conformation, heating induced protein structure changes, and effect of gene-transformation on food and feed structure; (2) Molecular spectral analysis methodology; (3) Biological applications of synchrotron SR-IMS and DRIFT spectroscopy; and (4) Recent progress in food, feed and nutrition research program. The information described in this article gives better insight in food structure research progress and update.

  4. Efflorescence upon humidification? X-ray microspectroscopic in situ observation of changes in aerosol microstructure and phase state upon hydration

    NASA Astrophysics Data System (ADS)

    Pöhlker, Christopher; Saturno, Jorge; Krüger, Mira L.; Förster, Jan-David; Weigand, Markus; Wiedemann, Kenia T.; Bechtel, Michael; Artaxo, Paulo; Andreae, Meinrat O.

    2014-05-01

    The phase and mixing state of atmospheric aerosols is a central determinant of their properties and thus their role in atmospheric cycling and climate. Particularly, the hygroscopic response of aerosol particles to relative humidity (RH) variation is a key aspect of their atmospheric life cycle and impacts. Here we applied X-ray microspectroscopy under variable RH conditions to internally mixed aerosol particles from the Amazonian rain forest collected during periods with anthropogenic pollution. Upon hydration, we observed substantial and reproducible changes in particle microstructure, which appear as mainly driven by efflorescence and recrystallization of sulfate salts. Multiple solid and liquid phases were found to coexist, especially in intermediate humidity regimes. We show that X-ray microspectroscopy under variable RH is a valuable technique to analyze the hygroscopic response of individual ambient aerosol particles. Our initial results underline that RH changes can trigger strong particle restructuring, in agreement with previous studies on artificial aerosols.

  5. Polyester (PET) single fiber FT-IR dichroism: Potential individualization

    NASA Astrophysics Data System (ADS)

    Cho, Liling; Wetzel, David L.; Reffner, John A.

    1998-06-01

    Individualization of undyed fibers can be a problem in analyzing fiber evidence in forensic cases. In addition to the physical and optical microscopic features, the chemical composition information from single fiber FT-IR microspectroscopy may be useful. In the case of polyester, the most commonly used fiber, only a single generic class usually is recognized. Single fiber polarized FT-IR microspectroscopy provides a means of using the molecular orientation of the macromolecules in the fiber resulting from their manufacturing history to observe spectroscopic differences. Dichroic ratios for eight usable infrared bands for PET single fibers permit multidimensional discriminant analysis. The procedure described sorts PET fibers into 10 working subclasses and demonstrates the potential of this approach for single fiber individualization. This new dimension can be added to the traditional size, shape, and other distinguishing features.

  6. Coherent anti-Stokes Raman scattering imaging through turbid medium

    NASA Astrophysics Data System (ADS)

    Arora, Rajan; Petrov, Georgi I.; Yakovlev, Vladislav V.

    2011-03-01

    Coherent Raman microspectroscopy imaging is an emerging technique for non-invasive, chemically-specific optical imaging. The wealth of information available through hyperspectral imaging potentially allows discriminating and imaging different chemicals in biological tissues, which is important, for example, for stain-free histopathology. One of the advantages of nonlinear Raman microspectroscopy is the ability to achieve high spatial resolution imaging in the presence of light scattering, when conventional confocal microscopy fails. In this report, a commercially available hyperspectral analysis software is utilized for analysis of vibrational spectra collected through highly scattering medium In particular, applications to remote optical sensing of potential biological threats and to imaging through a layer of skin tissue were successfully demonstrated.

  7. Imaging ToF-SIMS and synchrotron-based FT-IR microspectroscopic studies of prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Gazi, E.; Lockyer, N. P.; Vickerman, J. C.; Gardner, P.; Dwyer, J.; Hart, C. A.; Brown, M. D.; Clarke, N. W.; Miyan, J.

    2004-06-01

    Imaging ToF-SIMS and synchrotron-based Fourier transform infrared (SR-FT-IR) microspectroscopy have been used to obtain chemical information from individual cells derived from human prostate cancer (CaP). ToF-SIMS imaging of molecular signals characteristic of membrane bound phospholipids are used to elucidate different fracture planes within individual freeze-fractured CaP cells. The localisation of Cu within the cytoplasm of cancer cells is consistent with increased metastatic potential. Line scans across CaP cells using SR-FT-IR microspectroscopy provide complimentary information on the localisation (±1 μm) of lipid and protein domains. This combined analytical approach offers a novel means of characterising individual CaP cells and investigating the biochemical basis of disease progression and metastases.

  8. Applicability of Fourier transform infrared (FTIR) spectroscopy in rapid identification of some Candida and dermatophyte species infections in humans.

    PubMed

    Mohammed, Yaser F; Salem, Elsayed Z; Shahin, Ibrahim M I; Abdo, Hamed M; Emam, Hanaa E; Fawzy, Mahmoud; Abdel Salam, Mohamed F

    2016-10-01

    Traditional systems of identifying yeasts and dermatophytes have many disadvantages. Preliminary data on a radically different approach based on optical spectroscopic techniques suggest that these techniques may offer some advantages. We conducted a trial to verify the practical applicability of Fourier transform infrared (FTIR) spectroscopy in the identification of some yeast and dermatophyte species, in which samples from 50 patients with superficial fungal infections were cultured on Sabouraud dextrose agar with chloramphenicol and cycloheximide (actidione) and studied using FTIR microspectroscopy. Spectra of the same species were identical, whereas spectra of different species did not show similarity. This study showed that FTIR microspectroscopy is promising and can be used to obtain, with a single measurement, a "molecular fingerprint" of Candida and dermatophyte species. It can be improved further in terms of reliability. © 2016 The International Society of Dermatology.

  9. A Multiscale Vibrational Spectroscopic Approach for Identification and Biochemical Characterization of Pollen

    PubMed Central

    Bağcıoğlu, Murat; Zimmermann, Boris; Kohler, Achim

    2015-01-01

    Background Analysis of pollen grains reveals valuable information on biology, ecology, forensics, climate change, insect migration, food sources and aeroallergens. Vibrational (infrared and Raman) spectroscopies offer chemical characterization of pollen via identifiable spectral features without any sample pretreatment. We have compared the level of chemical information that can be obtained by different multiscale vibrational spectroscopic techniques. Methodology Pollen from 15 different species of Pinales (conifers) were measured by seven infrared and Raman methodologies. In order to obtain infrared spectra, both reflectance and transmission measurements were performed on ground and intact pollen grains (bulk measurements), in addition, infrared spectra were obtained by microspectroscopy of multigrain and single pollen grain measurements. For Raman microspectroscopy measurements, spectra were obtained from the same pollen grains by focusing two different substructures of pollen grain. The spectral data from the seven methodologies were integrated into one data model by the Consensus Principal Component Analysis, in order to obtain the relations between the molecular signatures traced by different techniques. Results The vibrational spectroscopy enabled biochemical characterization of pollen and detection of phylogenetic variation. The spectral differences were clearly connected to specific chemical constituents, such as lipids, carbohydrates, carotenoids and sporopollenins. The extensive differences between pollen of Cedrus and the rest of Pinaceae family were unambiguously connected with molecular composition of sporopollenins in pollen grain wall, while pollen of Picea has apparently higher concentration of carotenoids than the rest of the family. It is shown that vibrational methodologies have great potential for systematic collection of data on ecosystems and that the obtained phylogenetic variation can be well explained by the biochemical composition of

  10. Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks.

    PubMed

    Jehlicka, Jan; Urban, Ondrej; Pokorný, Jan

    2003-08-01

    Different types of carbonaceous matter from rocks display Raman spectral features which knowledge permits to obtain structural information of these materials. Application of Raman microspectroscopy to investigate kerogen, bitumen, fossils, highly carbonified amorphous carbon as well as graphite from different environments is reviewed. Differences in Raman spectra and structural differences between carbonaceous samples differing in their metamorphic history are discussed on the basis of new data.

  11. Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds.

    PubMed

    Kunstar, Aliz; Leferink, Anne M; Okagbare, Paul I; Morris, Michael D; Roessler, Blake J; Otto, Cees; Karperien, Marcel; van Blitterswijk, Clemens A; Moroni, Lorenzo; van Apeldoorn, Aart A

    2013-09-06

    Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional scaffolds for regenerative medicine and clinical purposes. Raman spectroscopy can be used for non-invasive sensing of cellular and ECM biochemistry. We have investigated the use of conventional (confocal and semiconfocal) Raman microspectroscopy and fibre-optic Raman spectroscopy for in vitro monitoring of ECM formation in three-dimensional poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) scaffolds. Chondrocyte-seeded PEOT/PBT scaffolds were analysed for ECM formation by Raman microspectroscopy, biochemical analysis, histology and scanning electron microscopy. ECM deposition in these scaffolds was successfully detected by biochemical and histological analysis and by label-free non-destructive Raman microspectroscopy. In the spectra collected by the conventional Raman set-ups, the Raman bands at 937 and at 1062 cm(-1) which, respectively, correspond to collagen and sulfated glycosaminoglycans could be used as Raman markers for ECM formation in scaffolds. Collagen synthesis was found to be different in single chondrocyte-seeded scaffolds when compared with microaggregate-seeded samples. Normalized band-area ratios for collagen content of single cell-seeded samples gradually decreased during a 21-day culture period, whereas collagen content of the microaggregate-seeded samples significantly increased during this period. Moreover, a fibre-optic Raman set-up allowed for the collection of Raman spectra from multiple pores inside scaffolds in parallel. These fibre-optic measurements could give a representative average of the ECM Raman signal present in tissue-engineered constructs. Results in this study provide proof-of-principle that Raman microspectroscopy is a promising non-invasive tool to monitor ECM production and remodelling in three-dimensional porous cartilage tissue-engineered constructs.

  12. RADIATION BIOLOGY AND ISOTOPE UTILIZATION IN APPLIED BOTANY (in German)

    SciTech Connect

    Glubrecht, H.

    1959-01-01

    A short survey is given of the problems being studied in the Institute for Radiation Biology in the Technische Hochschule in Hannover. Extensive data are presented on a method of studying the effect of ionizing radiation on plant cells with the aid of UV microspectroscopy. From the change in UV absorption in ranges of a few mu , conclusions can be drawn as to the probability of primary ionizations in protein molecules and nucleic acids. (auth)

  13. Infrared Spectroscopic Imaging for Prostate Pathology Practice

    DTIC Science & Technology

    2011-04-01

    With the use of eq 35, an estimate of the imaginary index k(νj) can be found from the transmission data. Applying a Kramers- Kronig calculation38 to k...measured and predicted transmission data; (2) calculate the complex refractive index from the absorbance using Kramers- Kronig analysis; (3) calculate...and e, (f) the complex refractive index calculated using the microspectroscopy model and Kramers- Kronig analysis, (i) the recovered absorbance of SU-8

  14. Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds

    PubMed Central

    Kunstar, Aliz; Leferink, Anne M.; Okagbare, Paul I.; Morris, Michael D.; Roessler, Blake J.; Otto, Cees; Karperien, Marcel; van Blitterswijk, Clemens A.; Moroni, Lorenzo; van Apeldoorn, Aart A.

    2013-01-01

    Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional scaffolds for regenerative medicine and clinical purposes. Raman spectroscopy can be used for non-invasive sensing of cellular and ECM biochemistry. We have investigated the use of conventional (confocal and semiconfocal) Raman microspectroscopy and fibre-optic Raman spectroscopy for in vitro monitoring of ECM formation in three-dimensional poly(ethylene oxide terephthalate)–poly(butylene terephthalate) (PEOT/PBT) scaffolds. Chondrocyte-seeded PEOT/PBT scaffolds were analysed for ECM formation by Raman microspectroscopy, biochemical analysis, histology and scanning electron microscopy. ECM deposition in these scaffolds was successfully detected by biochemical and histological analysis and by label-free non-destructive Raman microspectroscopy. In the spectra collected by the conventional Raman set-ups, the Raman bands at 937 and at 1062 cm−1 which, respectively, correspond to collagen and sulfated glycosaminoglycans could be used as Raman markers for ECM formation in scaffolds. Collagen synthesis was found to be different in single chondrocyte-seeded scaffolds when compared with microaggregate-seeded samples. Normalized band-area ratios for collagen content of single cell-seeded samples gradually decreased during a 21-day culture period, whereas collagen content of the microaggregate-seeded samples significantly increased during this period. Moreover, a fibre-optic Raman set-up allowed for the collection of Raman spectra from multiple pores inside scaffolds in parallel. These fibre-optic measurements could give a representative average of the ECM Raman signal present in tissue-engineered constructs. Results in this study provide proof-of-principle that Raman microspectroscopy is a promising non-invasive tool to monitor ECM production and remodelling in three-dimensional porous cartilage tissue-engineered constructs. PMID:23825118

  15. Raman spectroscopic differentiation of planktonic bacteria and biofilms.

    PubMed

    Kusić, Dragana; Kampe, Bernd; Ramoji, Anuradha; Neugebauer, Ute; Rösch, Petra; Popp, Jürgen

    2015-09-01

    Both biofilm formations as well as planktonic cells of water bacteria such as diverse species of the Legionella genus as well as Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli were examined in detail by Raman microspectroscopy. Production of various molecules involved in biofilm formation of tested species in nutrient-deficient media such as tap water was observed and was particularly evident in the biofilms formed by six Legionella species. Biofilms of selected species of the Legionella genus differ significantly from the planktonic cells of the same organisms in their lipid amount. Also, all Legionella species have formed biofilms that differ significantly from the biofilms of the other tested genera in the amount of lipids they produced. We believe that the significant increase in the synthesis of this molecular species may be associated with the ability of Legionella species to form biofilms. In addition, a combination of Raman microspectroscopy with chemometric approaches can distinguish between both planktonic form and biofilms of diverse bacteria and could be used to identify samples which were unknown to the identification model. Our results provide valuable data for the development of fast and reliable analytic methods based on Raman microspectroscopy, which can be applied to the analysis of tap water-adapted microorganisms without any cultivation step.

  16. Direct and model-free detection of carbohydrate excipients in traditional Chinese medicine formula granules by ATR-FTIR microspectroscopic imaging.

    PubMed

    Chen, Jianbo; Sun, Suqin; Zhou, Qun

    2017-04-01

    A formula granule is a traditional Chinese medicine preparation made from the decoction of a single herbal medicinal. Because of the flexibility for combination and the convenience for utilization, formula granules are becoming popular in clinical applications. However, the efficacy and safety of commercial formula granules often suffer from the improper addition of carbohydrate excipients. Therefore, the detection of carbohydrate excipients is indispensable for the quality control of formula granules. FTIR spectroscopy has been used for the detection of carbohydrate excipients in formula granules. But the overlapped absorption signals limit the sensitivity and specificity of detection. Besides, a large number of multivariate calibration models are needed for quantitative determination. To overcome the above disadvantages, this research utilizes FTIR microspectroscopy for the model-free and universal detection of carbohydrate excipients in formula granules. Using ATR-FTIR imaging, excipient particles and herbal extract particles in formula granules can be measured individually, which resolves the absorption signals of excipients and herbal extract spatially and thus improves the sensitivity and specificity of detection. The content of excipients can be estimated directly from the number of excipient particles, which is robust to the variations of herb extracts and free of calibration models. The case study of Gardeniae Fructus formula granules shows the potential of FTIR microspectroscopy in the direct and rapid detection of carbohydrate excipients in formula granules. Graphical Abstract Excipient particles in TCM formula granules can be measured and recognized individually by FTIR microspectroscopy.

  17. An investigation of indomethacin-nicotinamide cocrystal formation induced by thermal stress in the solid or liquid state.

    PubMed

    Lin, Hong-Liang; Zhang, Gang-Chun; Huang, Yu-Ting; Lin, Shan-Yang

    2014-08-01

    The impact of thermal stress on indomethacin (IMC)-nicotinamide (NIC) cocrystal formation with or without neat cogrinding was investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) microspectroscopy, and simultaneous DSC-FTIR microspectroscopy in the solid or liquid state. Different evaporation methods for preparing IMC-NIC cocrystals were also compared. The results indicated that even after cogrinding for 40 min, the FTIR spectra for all IMC-NIC ground mixtures were superimposable on the FTIR spectra of IMC and NIC components, suggesting there was no cocrystal formation between IMC and NIC after cogrinding. However, these IMC-NIC ground mixtures appear to easily undergo cocrystal formation after the application of DSC determination. Under thermal stress induced by DSC, the amount of cocrystal formation increased with increasing cogrinding time. Moreover, simultaneous DSC-FTIR microspectroscopy was a useful one-step technique to induce and clarify the thermal-induced stepwise mechanism of IMC-NIC cocrystal formation from the ground mixture in real time. Different solvent evaporation rates induced by thermal stress significantly influenced IMC-NIC cocrystal formation in the liquid state. In particular, microwave heating may promote IMC-NIC cocrystal formation in a short time. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Synchrotron-Based Infrared Microanalysis of Biological Redox Processes under Electrochemical Control

    PubMed Central

    2016-01-01

    We describe a method for addressing redox enzymes adsorbed on a carbon electrode using synchrotron infrared microspectroscopy combined with protein film electrochemistry. Redox enzymes have high turnover frequencies, typically 10–1000 s–1, and therefore, fast experimental triggers are needed in order to study subturnover kinetics and identify the involvement of transient species important to their catalytic mechanism. In an electrochemical experiment, this equates to the use of microelectrodes to lower the electrochemical cell constant and enable changes in potential to be applied very rapidly. We use a biological cofactor, flavin mononucleotide, to demonstrate the power of synchrotron infrared microspectroscopy relative to conventional infrared methods and show that vibrational spectra with good signal-to-noise ratios can be collected for adsorbed species with low surface coverages on microelectrodes with a geometric area of 25 × 25 μm2. We then demonstrate the applicability of synchrotron infrared microspectroscopy to adsorbed proteins by reporting potential-induced changes in the flavin mononucleotide active site of a flavoenzyme. The method we describe will allow time-resolved spectroscopic studies of chemical and structural changes at redox sites within a variety of proteins under precise electrochemical control. PMID:27269716

  19. The effect of optical substrates on micro-FTIR analysis of single mammalian cells.

    PubMed

    Wehbe, Katia; Filik, Jacob; Frogley, Mark D; Cinque, Gianfelice

    2013-02-01

    The study of individual cells with infrared (IR) microspectroscopy often requires living cells to be cultured directly onto a suitable substrate. The surface effect of the specific substrates on the cell growth-viability and associated biochemistry-as well as on the IR analysis-spectral interference and optical artifacts-is all too often ignored. Using the IR beamline, MIRIAM (Diamond Light Source, UK), we show the importance of the substrate used for IR absorption spectroscopy by analyzing two different cell lines cultured on a range of seven optical substrates in both transmission and reflection modes. First, cell viability measurements are made to determine the preferable substrates for normal cell growth. Successively, synchrotron radiation IR microspectroscopy is performed on the two cell lines to determine any genuine biochemically induced changes or optical effect in the spectra due to the different substrates. Multivariate analysis of spectral data is applied on each cell line to visualize the spectral changes. The results confirm the advantage of transmission measurements over reflection due to the absence of a strong optical standing wave artifact which amplifies the absorbance spectrum in the high wavenumber regions with respect to low wavenumbers in the mid-IR range. The transmission spectra reveal interference from a more subtle but significant optical artifact related to the reflection losses of the different substrate materials. This means that, for comparative studies of cell biochemistry by IR microspectroscopy, it is crucial that all samples are measured on the same substrate type.

  20. Investigation on cell assemblies for mantle rheology

    NASA Astrophysics Data System (ADS)

    Long, H.; Li, L.; Chen, J.; Leinenweber, K.; Wang, L.; Liu, Z.; Vaughan, M. T.; Yang, Y.; Weidner, D. J.

    2004-12-01

    Several types of cell assemblies are being tested on large volume press apparatus at Sam85, NSLS to determine their suitability for high pressure rheology experiments, with present focus on the influence of different cells on water fugacity and the thermal efficiency. SanCarlos olivine, both lab dry and super dry, is being used as the testing material. Three types of pressure media including mullite, MgO and boron:epoxy (BE) are used for both DIA and T-cup apparatus in the test. For lab dry sample assemblies, 2¡ª3 hours heating at 130C in the vacuum environment is applied before experiment in order to drive off the absorptive water. Different pressure media in each apparatus are carried out at the same P-T path. After experiments the recovered samples are examined on the synchrotron infrared (IR) spectrometer at U2A beamline of NSLS to evaluate the water concentration. IR results suggest that mullite cell offers an acceptable dry environment for the rheology study. Among the tested cell assemblies, mullite cell has a comparable thermal efficiency as BE cell does. Both of them show much higher heating efficiency than MgO cell does. This preliminary study suggests that mullite has great potential as the pressure medium for the high pressure and high temperature experiment.

  1. Techniques for transparent lattice measurement and correction

    NASA Astrophysics Data System (ADS)

    Cheng, Weixing; Li, Yongjun; Ha, Kiman

    2017-07-01

    A novel method has been successfully demonstrated at NSLS-II to characterize the lattice parameters with gated BPM turn-by-turn (TbT) capability. This method can be used at high current operation. Conventional lattice characterization and tuning are carried out at low current in dedicated machine studies which include beam-based measurement/correction of orbit, tune, dispersion, beta-beat, phase advance, coupling etc. At the NSLS-II storage ring, we observed lattice drifting during beam accumulation in user operation. Coupling and lifetime change while insertion device (ID) gaps are moved. With the new method, dynamical lattice correction is possible to achieve reliable and productive operations. A bunch-by-bunch feedback system excites a small fraction (∼1%) of bunches and gated BPMs are aligned to see those bunch motions. The gated TbT position data are used to characterize the lattice hence correction can be applied. As there are ∼1% of total charges disturbed for a short period of time (several ms), this method is transparent to general user operation. We demonstrated the effectiveness of these tools during high current user operation.

  2. Heating-freezing effects on the orientation of kaolin clay particles

    DOE PAGES

    Jaradat, Karam A.; Darbari, Zubin; Elbakhshwan, Mohamed; ...

    2017-09-29

    The effects of temperature changes on the particle orientation of a consolidated kaolin are studied using XRD experiments. Here, two sets of equipment were utilized in this study: a benchtop equipment, and a synchrotron beamline at the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory. The kaolin specimens tested in the benchtop XRD were subjected to elevated and freezing temperatures ex-situ, while those used for the NSLS-II experiment were exposed to the temperature changes in-situ. The temperatures considered in this study range from freezing (-10 °C) to elevated temperature below boiling (90 °C). The thermally-induced reorientation of claymore » mineral particles is highly dependent on the relative orientation of the clay mineral particles with respect to the applied thermal gradient. For example, kaolin samples with kaolinite particles oriented perpendicular to the thermal gradient, and to the expected thermally-induced pore water flow, experience much higher particles reorientations compared to samples with particles initially oriented parallel to the thermal gradient. Lastly, freezing kaolin preserved its microstructure as ice crystals form.« less

  3. Inverse Variational Problem for Nonstandard Lagrangians

    NASA Astrophysics Data System (ADS)

    Saha, A.; Talukdar, B.

    2014-06-01

    In the mathematical physics literature the nonstandard Lagrangians (NSLs) were introduced in an ad hoc fashion rather than being derived from the solution of the inverse problem of variational calculus. We begin with the first integral of the equation of motion and solve the associated inverse problem to obtain some of the existing results for NSLs. In addition, we provide a number of alternative Lagrangian representations. The case studies envisaged by us include (i) the usual modified Emden-type equation, (ii) Emden-type equation with dissipative term quadratic in velocity, (iii) Lotka-Volterra model and (vi) a number of the generic equations for dissipative-like dynamical systems. Our method works for nonstandard Lagrangians corresponding to the usual action integral of mechanical systems but requires modification for those associated with the modified actions like S =∫abe L(x ,x˙ , t) dt and S =∫abL 1 - γ(x ,x˙ , t) dt because in the latter case one cannot construct expressions for the Jacobi integrals.

  4. Soft x-ray measurements using photoconductive type-IIa and single-crystal chemical vapor deposited diamond detectors

    SciTech Connect

    Moore, A. S.; Bentley, C. D.; Foster, J. M.

    2008-10-15

    Photoconductive detectors (PCDs) are routinely used alongside vacuum x-ray diodes (XRDs) to provide an alternative x-ray flux measurement at laser facilities such as HELEN at AWE Aldermaston, UK, and Omega at the Laboratory for Laser Energetics. To evaluate diamond PCDs as an alternative to XRD arrays, calibration measurements made at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory are used to accurately calculate the x-ray flux from a laser-heated target. This is compared to a flux measurement using the Dante XRD diagnostic. Estimates indicate that the photoinduced conductivity from measurements made at Omega are too large, and calculationsmore » using the radiometric calibrations made at the NSLS agree with this hypothesis. High-purity, single-crystal, chemical vapor deposited (CVD) diamond samples are compared to natural type-IIa PCDs and show promising high resistivity effects, the corollary of which preliminary results show is a slower response time.« less

  5. When Protein Crystallography Won't Show You the Membranes (446th Brookhaven Lecture)

    SciTech Connect

    Yang, Lin

    2009-02-18

    High fever, stomach ache, coughing, sneezing, and fatigue -- these are all painful signs that you may have caught the flu virus. But how does your body actually 'catch' a virus? Somewhere along the way, the virus infected your body by penetrating the membranes, or surfaces, of some of your body's cells. And then it spreads. Cell membranes are permeable surfaces made of proteins and lipids that allow vital materials to enter and exit cells. Many proteins and cell structures are studied at Brookhaven's National Synchrotron Light Source (NSLS) using a procedure called protein crystallography. But they sometimes have uniquemore » characteristics that do not allow them to be easily studied using this widely adopted method. These characteristics make it difficult to understand the cell membrane structure and its ability to both welcome and refuse certain materials and viruses, such as the flu, on behalf of the cell's internal components. Yang will explain the protein crystallography procedure, the simple structure of the cell membrane, and the unusual characteristics of its proteins and lipids. He will also discuss a new, unique method being developed at the NSLS to study proteins and lipids within their native environment as they form the essential permeable surface of a cell membrane.« less

  6. Pancam Multispectral and APXS Chemical Examination of Rocks and Soils in Marathon Valley and Points South Along the Rim of Endeavour Crater

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D. W.; Gellert, R.; VanBommel, S.; Arvidson, R. E.; Schroder, C.

    2017-01-01

    The Mars Exploration Rover Opportunity has concluded its exploration of Marathon Valley, a 100-meter-wide valley in the western rim of the 22-kilometer-diameter Endeavour crater. Orbital observations from CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) indicated the presence of Fe smectites in Marathon Valley. Since leaving the valley, Opportunity has been traversing along the inner rim of the crater, and currently towards the outer rim. This presentation describes the Pancam 430 to 1009 nanometer (VNIR - Visible and Near Infared) multispectral reflectance and APXS (Alpha Particle X-ray Spectrometer) chemical compositions of rock and soil units observed during the latter portions of the Marathon Valley campaign on the Knudson Ridge area and observations of those materi-als along the traverse to the south. Full Pancam spectral coverage of rock targets consists of 13 filter (13f) data collections with 11 spectrally unique channels with data processing. Data were examined using spectral parameters, decorrelation stretch composites, and spectral mixture analysis. Note that color terms used here refer to colors in various false-color renditions, not true colors. The APXS determines major and select trace element compositions of targets.

  7. A synthetic DNA motor that transports nanoparticles along carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cha, Tae-Gon; Pan, Jing; Chen, Haorong; Salgado, Janette; Li, Xiang; Mao, Chengde; Choi, Jong Hyun

    2014-01-01

    Intracellular protein motors have evolved to perform specific tasks critical to the function of cells such as intracellular trafficking and cell division. Kinesin and dynein motors, for example, transport cargoes in living cells by walking along microtubules powered by adenosine triphosphate hydrolysis. These motors can make discrete 8 nm centre-of-mass steps and can travel over 1 µm by changing their conformations during the course of adenosine triphosphate binding, hydrolysis and product release. Inspired by such biological machines, synthetic analogues have been developed including self-assembled DNA walkers that can make stepwise movements on RNA/DNA substrates or can function as programmable assembly lines. Here, we show that motors based on RNA-cleaving DNA enzymes can transport nanoparticle cargoes--CdS nanocrystals in this case--along single-walled carbon nanotubes. Our motors extract chemical energy from RNA molecules decorated on the nanotubes and use that energy to fuel autonomous, processive walking through a series of conformational changes along the one-dimensional track. The walking is controllable and adapts to changes in the local environment, which allows us to remotely direct `go' and `stop' actions. The translocation of individual motors can be visualized in real time using the visible fluorescence of the cargo nanoparticle and the near-infared emission of the carbon-nanotube track. We observed unidirectional movements of the molecular motors over 3 µm with a translocation velocity on the order of 1 nm min-1 under our experimental conditions.

  8. Visualization of microcalcifications using photoacoustic imaging: feasibility study

    NASA Astrophysics Data System (ADS)

    Hsiao, Tsai-Chu; Wang, Po-Hsun; Fan, Chih-Tai; Cheng, Yao-You; Li, Meng-Lin

    2011-03-01

    Recently, photoacoustic imaging has been intensively studied for blood vessel imaging, and shown its capability of revealing vascular features suggestive of malignancy of breast cancer. In this study, we explore the feasibility of visualization of micro-calcifications using photoacoustic imaging. Breast micro-calcification is also known as one of the most important indicators for early breast cancer detection. The non-ionizing radiation and speckle free nature of photoacoustic imaging overcomes the drawbacks of current diagnostic tools - X-ray mammography and ultrasound imaging, respectively. We employed a 10-MHz photoacoustic imaging system to verify our idea. A sliced chicken breast phantom with granulated calcium hydroxyapatite (HA) - major chemical composition of the breast calcification associated with malignant breast cancers - embedded was imaged. With the near infared (NIR) laser excitation, it is shown that the distribution of ~500 μm HAs can be clearly imaged. In addition, photoacoustic signals from HAs rivals those of blood given an optimal NIR wavelength. In summary, photoacoustic imaging shows its promise for breast micro-calcification detection. Moreover, fusion of the photoacoustic and ultrasound images can reveal the location and distribution of micro-calcifications within anatomical landmarks of the breast tissue, which is clinically useful for biopsy and diagnosis of breast cancer staging.

  9. Retrieving Land Surface Temperature from Hyperspectral Thermal Infrared Data Using a Multi-Channel Method

    PubMed Central

    Zhong, Xinke; Huo, Xing; Ren, Chao; Labed, Jelila; Li, Zhao-Liang

    2016-01-01

    Land Surface Temperature (LST) is a key parameter in climate systems. The methods for retrieving LST from hyperspectral thermal infrared data either require accurate atmospheric profile data or require thousands of continuous channels. We aim to retrieve LST for natural land surfaces from hyperspectral thermal infrared data using an adapted multi-channel method taking Land Surface Emissivity (LSE) properly into consideration. In the adapted method, LST can be retrieved by a linear function of 36 brightness temperatures at Top of Atmosphere (TOA) using channels where LSE has high values. We evaluated the adapted method using simulation data at nadir and satellite data near nadir. The Root Mean Square Error (RMSE) of the LST retrieved from the simulation data is 0.90 K. Compared with an LST product from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat, the error in the LST retrieved from the Infared Atmospheric Sounding Interferometer (IASI) is approximately 1.6 K. The adapted method can be used for the near-real-time production of an LST product and to provide the physical method to simultaneously retrieve atmospheric profiles, LST, and LSE with a first-guess LST value. The limitations of the adapted method are that it requires the minimum LSE in the spectral interval of 800–950 cm−1 larger than 0.95 and it has not been extended for off-nadir measurements. PMID:27187408

  10. Determination of technical readiness for an atmospheric carbon imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Mobilia, Joseph; Kumer, John B.; Palmer, Alice; Sawyer, Kevin; Mao, Yalan; Katz, Noah; Mix, Jack; Nast, Ted; Clark, Charles S.; Vanbezooijen, Roel; Magoncelli, Antonio; Baraze, Ronald A.; Chenette, David L.

    2013-09-01

    The geoCARB sensor uses a 4-channel push broom slit-scan infrared imaging grating spectrometer to measure the absorption spectra of sunlight reflected from the ground in narrow wavelength regions. The instrument is designed for flight at geostationary orbit to provide mapping of greenhouse gases over continental scales, several times per day, with a spatial resolution of a few kilometers. The sensor provides multiple daily maps of column-averaged mixing ratios of CO2, CH4, and CO over the regions of interest, which enables flux determination at unprecedented time, space, and accuracy scales. The geoCARB sensor development is based on our experience in successful implementation of advanced space deployed optical instruments for remote sensing. A few recent examples include the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on the geostationary Solar Dynamics Observatory (SDO), the Space Based Infrared System (SBIRS GEO-1) and the Interface Region Imaging Spectrograph (IRIS), along with sensors under development, the Near Infared camera (NIRCam) for James Webb (JWST), and the Global Lightning Mapper (GLM) and Solar UltraViolet Imager (SUVI) for the GOES-R series. The Tropospheric Infrared Mapping Spectrometer (TIMS), developed in part through the NASA Instrument Incubator Program (IIP), provides an important part of the strong technological foundation for geoCARB. The paper discusses subsystem heritage and technology readiness levels for these subsystems. The system level flight technology readiness and methods used to determine this level are presented along with plans to enhance the level.

  11. Rapid fluorometric bacteria detection assay and photothermal effect by fluorescent polymer of coated surfaces and aqueous state.

    PubMed

    Islamy Mazrad, Zihnil Adha; In, Insik; Lee, Kang-Dae; Park, Sung Young

    2017-03-15

    A fluorescent dye and a photothermal agent were grafted onto a cationic polymer for rapid and simple bacteria detection in liquid and solid phase based fluorescence on/off. The integrated poly(vinylpyrrolidone) (PVP) backbone with catechol and bromoethane moieties possesses unique optical properties due to the presence of boron dipyrromethane (BODIPY) and near infared NIR-responsive IR825 (F-PVP). The cationic segments showed distinct fluorescence quenching patterns after interaction with gram-positive and gram-negative bacteria via polyion complex interactions. Fluorescence quenching depended on direct interaction of the bacterial cell membrane, as confirmed using SEM and confocal imaging. The detection limit was 1mg/mL for the liquid-phase assay and the minimal detectable concentration of bacteria using the solid-phase assay was 10 6 CFU/mL. After bacterial detection in contaminated area, our system can directly kill bacteria via the photothermal conversion ability of the IR825 substituent using NIR exposure by polymer solution and limited in coated PP. Finally, the proposed biosensor is capable as potential material for detection of bacteria in simple liquid and solid phase assay. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Spectroscopy of Infrared Galaxies in Clusters to z = 1

    NASA Astrophysics Data System (ADS)

    Webb, Tracy; Faloon, Ashley; O'Donnell, Daniel; Noble, Allison; Yee, Howard; Ellingson, Erica; Muzzin, Adam; Barrientos, Felipe; Yan, Renbin; Gilbank, David; Gladders, Mike

    2009-02-01

    We are conducting a multi-wavelength study of a unique sample of galaxy clusters over the redshift range 0.3 < z < 1.1. A key component of this program is infrared imaging with the Spitzer Space Telescope at 24microns, which is sensitive to dust enshrouded star formation activity and active galactic nuclei (AGN). The intial results of this program indicate an increase in the number of infared luminous galaxies in clusters with redshift; however these results rely on statistical background subtraction and are dominated by cosmic variance. Here we propose to obtain deep spectroscopic observations of the infrared sources within the cluster fields, which are key to (i) studying the evolution of the infrared galaxy luminosity function within clusters with redshift, in comparison to the field, and as a function of cluster properties, such as mass and dynamicl state; and (ii) elucidating the nature and origin of the infrared galaxies in clusters, in the context of hierarchical formation and galaxy evolution in high-density regions. Our sample is unique in having the mass, redshift, and multi-wavelength coverage to address these important scientific issues.

  13. Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method

    NASA Astrophysics Data System (ADS)

    Bi, Shuyun; Zhang, Hanqi; Qiao, Chunyu; Sun, Ying; Liu, Chunming

    2008-01-01

    Emodin interacting with deoxyribonucleic acid (DNA) has been studied by different spectroscopic techniques, such as fluorescence, ultraviolet and visible (UV-vis), and fourier transform infared (FT-IR) spectroscopies, using ethidium bromide (EB) as a fluorescence probe of DNA. The decrease in the fluorescence of DNA-EB system on addition of emodin shows that the fluorescence quenching of DNA-EB complex by emodin occurs. The binding constants of emodin with DNA in the presence of EB are 6.02 × 10 4, 9.20 × 10 4 and 1.17 × 10 5 L mol -1 at 20, 35 and 50 °C, respectively. FT-IR spectrum further suggests that both the phosphate groups and the bases of DNA react with emodin. The reaction of DNA with emodin in the presence of EB is affected by ionic strength and temperature. The values of melting temperature ( Tm) of DNA-EB complex and emodin-DNA-EB complexes were determined, respectively. From the experiment evidences, the major binding mode of emodin with DNA should be the groove binding.

  14. Analyzing astronomical observations with the NASA Ames PAH database

    NASA Astrophysics Data System (ADS)

    Cami, J.

    2011-03-01

    We use the NASA Ames Polycyclic Aromatic Hydrocarbon (PAH) infrared spectroscopic database to model infared emission of PAHs following absorption of a UV photon. We calculate emission spectra resulting from the full cooling cascade for each species in the database. Using a least squares approach, we can find out what PAH mixtures best reproduce a few typical astronomical observations representing the different classes of UIR spectra. We find that we can reproduce the observed UIR spectra in the wavelength range 6-14 μm, offering support for the hypothesis that the UIR bands are indeed due to vibrational modes of PAHs and related molecular species. Spectral decompositions of our best fit models confirm and reinforce several earlier results: (i) the 6.2 μm band requires a significant contribution of nitrogen-substituted PAHs (PANHs); (ii) the reported components and their variations in the 7.7 μm band are indicative of changes in the size distribution of the contributing molecules; (iii) there is a significant contribution of anions to the 7.7 μm band; (iv) the 11.2 μm band is due to large, neutral and pure PAHs; (v) the 11.0 μm band is due to large PAH cations.

  15. The preparation and characterization of highly aligned poly(epsilon-caprolactone)/poly ethylene oxide/chitosan ultrafine fiber for the application to tissue scaffold.

    PubMed

    Nien, Yu-Hsun; Wang, Jia-Yi; Tsai, Yan-Sheng

    2013-07-01

    The purpose of this study was to fabricate poly(epsilon-caprolactone) (PCL)/poly ethylene oxid (PEO)/chitosan (CS) ultrafine fiber in both aligned and random structures using electrospinning technique and their process parameters were optimized. The aligned and random PCL/PEO/chitosan ultrafine fibers were also used as scaffold for tissue engineering and their cell affinity was investigated. In the first part, we inspected the effect of environment conditions, solution properties, process parameters on PCL/PEO/chitosan ultrafine fiber. In the second part, the apparatus of electrospinning to manufacture highly aligned PCL/PEO/chitosan ultrafine fiber was developed. The effects of process parameters such as flow rate, design of collector and rotation speed of collecting drum on the morphology of ultrafine fiber were discussed. In addition, the cross link of PCL/PEO/chitosan ultrafine fiber by cross-linking agent was examined, too. The physical properties, chemical properties, and cell affinities of the aligned PCL/PEO/chitosan ultrafine fiber with or without cross link were measured. The chemical analysis and tensile strength of the ultrafine fiber were characterized using Fourier Transfer Infared Spectrophotometer and Universal Tensile Machine, respectively. The results show that the aligned PCL/PEO/chitosan ultrafine fibrous mat had the capacity to induce cellular alignment and enhance cellular elongation.

  16. The Coronal Magnetic Field, Signatures of Coronal Holes and Silicon Nanometer Dust Grains

    NASA Astrophysics Data System (ADS)

    Habbal, S. R.; Arndt, M. B.; Nayfeh, M.; Arnaud, J.; Woo, R.

    2003-12-01

    The near-infrared part of the solar spectrum is where some of the strongest coronal forbidden lines are formed. Polarized emission in these lines offers the only tool currently known for the inference of the direction of the coronal magnetic field. The first successful observations of the polarized emission from the 1074.7 nm Fe XIII line were made by Eddy, Lee and Emerson during the eclipse of 1966 in a limited region of the corona. The only subsequent polarimetric observations in this line were carried out with the coronagraph at Sac Peak from 1977-1980. We report on the first successful polarimetric measurements of the 1074.7 nm line in a field of view extending out to 3.5 solar radii which were made during the total solar eclipse of 21 June 2001. In addition to confirming earlier results of the predominance of a radial direction of the coronal magnetic field, these measurements yielded the first polarimetric signature of coronal holes, and the signature of nanometer size dust grains in the corona. These observations suggest the existence of a rich coronal spectrum of narrow lines in the near-infared produced by the fluorescence of silicon nanometer dust grains in the inner corona. This work was funded by NSF grant ATM-0003661 and NASA grant NAG5-10873 to the Smithsonian Astrophysical Observatory.

  17. The origin of the far-infrared luminosity within the spiral galaxy M101

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas A.; Scowen, Paul A.

    1994-01-01

    High resolution 60 and 100 micron images obtained with the Infared Astronomical Satellite (IRAS) are compared with H alpha images in order to investigate the origin of the far-infrared luminosity within the late-type spiral galaxy M101. There is a good correspondence between the far-infrared and H-alpha morphology. The far-infrared and H-alpha luminosities have been measured at 129 independent locations on the star forming disk of M101. After correcting the H-alpha luminosity for extinction and extrapolating the IRAS (40-120 microns) luminosity to 1000 microns we find that the far-infrared luminosity is commensurate with that expected from the O and B stars which are required to ionize the hydrogen gas, at all locations within M101. Additionally, the IRAS HiRes 60 and 100 micron images reveal that the dust temperature peaks coincide identically with the location of H II regions. The far-infrared luminosity of M101 is radiated primarily by dust with temperatures well in excess of that expected for cirrus, but similar to that observed for Galactic and extragalactic H II regions.

  18. Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs.

    PubMed

    Yan, Wenxia; Liu, Hanping; Deng, Xiaoyuan; Jin, Ying; Sun, Huimin; Li, Caiyun; Wang, Ning; Chu, Jing

    2017-07-01

    Mesenchymal stem cells (MSCs) had been reported as a novel therapeutic strategy for non-healing diabetic cutaneous wound mainly by promoting the formation of extracellular matrix (ECM) and neovasculature. Collagen regeneration is one of the key processes of ECM remodeling in wound healing. Accordingly, rapid assessment of the collagen content in a noninvasive manner can promptly provide objective evaluation for MSC therapy of cutaneous wound healing and strength evidence to adjust therapeutic regimen. In the present study, noninvasive Raman microspectroscopy was used for tracing the regeneration status of collagen during diabetic wound healing with MSCs. Wound tissues of normal mice, diabetic mice, and MSC-treated diabetic mice were subjected to Masson trichrome staining assay and submitted to spectroscopic analysis by Raman microspectroscopy after wounding 7, 14, and 21 days. Masson trichrome staining demonstrated that there was more collagen deposition in diabetic + MSCs group relative to diabetic group. The relative intensity of Raman collagen peak positions at 937, 1004, 1321, 1452, and 1662 cm -1 increased in MSC-treated diabetic group compared to diabetic group, although normal mice group had the highest relative intensity of collagen peak bands. Correlation analysis suggested that the spectral bands had a high positive correlation with the collagen intensity detected by Masson trichrome staining in wound tissues of three groups. Our results demonstrate that Raman microspectroscopy has potential application in rapidly and quantitatively assessing diabetic wound healing with MSCs by monitoring collagen variation, which may provide a novel method for the study of skin regeneration.

  19. Maxillary Sinus Lift with Beta-Tricalcium Phosphate (β-TCP) in Edentulous Patients: A Nanotomographic and Raman Study.

    PubMed

    Pascaretti-Grizon, Florence; Guillaume, Bernard; Terranova, Lisa; Arbez, Baptiste; Libouban, Hélène; Chappard, Daniel

    2017-09-01

    Sinus lift elevation restores bone mass at the maxilla in edentulate patients before the placement of dental implants. It consists of opening the lateral side of the sinus and grafting beta-tricalcium phosphate granules (β-TCP) under the olfactory membrane. Bone biopsies were obtained in five patients after 60 weeks. They were embedded undecalcified in poly(methyl methacrylate) (pMMA); blocks were analyzed by nanocomputed tomography (nanoCT); specific areas were studied by Raman microspectroscopy. Remnants of β-TCP were osseointegrated and covered with mineralized bone; osteoid tissue was also filling the inner porosity. Macrophages having engulfed numerous β-TCP grains were observed in marrow spaces. β-TCP was identified by nanoCT as osseointegrated particles and as granules in the cytoplasm of macrophages. Raman microspectroscopy permitted to compare the spectra of β-TCP and bone in different areas. The ratio of the ~820 cm -1 band of pMMA (-CH 2 groups) on the ν1 phosphate band at 960 cm -1 reflected tissue hydration because water was substituted by MMA during histological processing. In bone, the ratio of the ~960 cm -1 phosphate to the amide 1 band and the ratio ν2 phosphate band by the 1240-1250 amide III band reflect the mineralization degree. Specific bands of β-TCP were found in osseointegrated β-TCP granules and in the grains phagocytized by the macrophages. The hydration degree was maximal for β-TCP phagocytized by macrophages. Raman microspectroscopy associated with nanoCT is a powerful tool in the analysis of the biomaterial degradation and osseointegration.

  20. Large zeolite H-ZSM-5 crystals as models for the methanol-to-hydrocarbons process: bridging the gap between single-particle examination and bulk catalyst analysis.

    PubMed

    Hofmann, Jan P; Mores, Davide; Aramburo, Luis R; Teketel, Shewangizaw; Rohnke, Marcus; Janek, Jürgen; Olsbye, Unni; Weckhuysen, Bert M

    2013-06-24

    The catalytic, deactivation, and regeneration characteristics of large coffin-shaped H-ZSM-5 crystals were investigated during the methanol-to-hydrocarbons (MTH) reaction at 350 and 500 °C. Online gas-phase effluent analysis and examination of retained material thereof were used to explore the bulk properties of large coffin-shaped zeolite H-ZSM-5 crystals in a fixed-bed reactor to introduce them as model catalysts for the MTH reaction. These findings were related to observations made at the individual particle level by using polarization-dependent UV-visible microspectroscopy and mass spectrometric techniques after reaction in an in situ microspectroscopy reaction cell. Excellent agreement between the spectroscopic measurements and the analysis of hydrocarbon deposits by means of retained hydrocarbon analysis and time-of-flight secondary-ion mass spectrometry of spent catalyst materials was observed. The obtained data reveal a shift towards more condensed coke deposits on the outer zeolite surface at higher reaction temperatures. Zeolites in the fixed-bed reactor setup underwent more coke deposition than those reacted in the in situ microspectroscopy reaction cell. Regeneration studies of the large zeolite crystals were performed by oxidation in O2 /inert gas mixtures at 550 °C. UV-visible microspectroscopic measurements using the oligomerization of styrene derivatives as probe reaction indicated that the fraction of strong acid sites decreased during regeneration. This change was accompanied by a slight decrease in the initial conversion obtained after regeneration. H-ZSM-5 deactivated more rapidly at higher reaction temperature. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Implications of recent research on microstructure modifications, through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, metabolic characteristics and nutrition in cool-climate cereal grains and other types of seeds with advanced molecular techniques.

    PubMed

    Ying, Yuguang; Zhang, Huihua; Yu, Peiqiang

    2018-02-16

    The cutting-edge synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy have recently been developed. These novel techniques are able to reveal structure features at cellular and molecular levels with the tested tissues being intact. However, to date, the advanced techniques are unfamiliar or unknown to food and feed scientists and have not been used to study the molecular structure changes in cool-climate cereal grain seeds and other types of bio-oil and bioenergy seeds. This article aims to provide some recent research in cool-climate cereal grains and other types of seeds on molecular structures and metabolic characteristics of carbohydrate and protein, and implication of microstructure modification through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, and nutrition with advanced molecular techniques- synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy in the areas of (1) Inherent microstructure of cereal grain seeds; (2) The nutritional values of cereal grains; (3) Impact and modification of heat-related processing to cereal grain; (4) Conventional nutrition evaluation methodology; (5) Synchrotron radiation-based and globar-sourced vibrational (micro)-spectroscopy for molecular structure study and molecular thermal stability and mobility, and (6) Recent molecular spectroscopic technique applications in research on raw, traits altered and processed cool-climate cereal grains and other types of seeds. The information described in this article gives better insights of research progress and update in cool-climate cereal grains and other seeds with advanced molecular techniques.

  2. Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons.

    PubMed

    Saint-Jalm, Sarah; Andresen, Esben R; Ferrand, Patrick; Bendahmane, Abdelkrim; Mussot, Arnaud; Vanvincq, Olivier; Bouwmans, Géraud; Kudlinski, Alexandre; Rigneault, Hervé

    2014-08-01

    We present an approach for fiber delivery of femtosecond pulses relying on pulse breakup and soliton self-frequency shift in a custom-made solid-core photonic bandgap fiber. In this scheme, the fiber properties themselves ensure that a powerful Fourier-transform-limited pulse is emitted at the fiber output, hence doing away with the need for complex precompensation and enabling tunability of the excitation. We report high-energy soliton excitation for two-photon fluorescence microspectroscopy over a 100-nm range and multimodal nonlinear imaging on biological samples.

  3. Fabrication of spherical GeSbTe nanoparticles by laser printing technique

    NASA Astrophysics Data System (ADS)

    Tajik, M.; Zuev, D. A.; Milichko, V. A.; Ubyivovk, E. V.; Pevtsov, A. B.; Yakovlev, S. A.; Rybin, M. V.; Makarov, S. V.

    2017-11-01

    By using the laser printing technique, for the first time we fabricate spherical nanoparticles of germanium-antimony-telluride alloy possessing a high refractive index and amorphous-to-crystalline phase transition. The nanoparticles are examined by means of optical dark field micro-spectroscopy, which shows scatterers with different colours (with different optical resonances). The direct measurements of their diameters by using the transmission electron microscopy reveal that the nanoparticles’ colours are related to different sizes of the nanoparticles. While most of nanoparticles are homogeneous, our study shows that some fabricated particles have a core-shell structure.

  4. Characterization of Lubricants on Ball Bearings by FT-IR Using an Integrating Sphere

    NASA Technical Reports Server (NTRS)

    Street, K. W.; Pepper, S. V.; Wright, A. A.; Grady, B.

    2007-01-01

    Fourier Transform-Infrared reflectance microspectroscopy has been used extensively for the examination of coatings on nonplanar surfaces such as ball bearings. While this technique offers considerable advantages, practical application has many drawbacks, some of which are easily overcome by the use of integrating sphere technology. This paper describes the use of an integrating sphere for the quantification of thin layers of lubricant on the surface of ball bearings and the parameters which require optimization in order to obtain reliable data. Several applications of the technique are discussed including determination of lubricant load on 12.7 mm steel ball bearings and the examination of degraded lubricant on post mortem specimens.

  5. Cancer diagnostics by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Meinke, Martina; Gersonde, Ingo H.; Bindig, Uwe; Mueller, Markus; Miller, Kurt; Mueller, Gerhard J.

    2000-11-01

    A diagnostic method to detect differences between diseased and normal tissue from bladder carcinoma by FTIR-microspectroscopy is described. Regions of interest on 10 micrometer thin tissue sections where mapped in transmission mode. After IR-Mapping, the samples have been analyzed with common pathological techniques. Quadratic discriminant as well as correlation analysis was applied to the obtained IR-maps allowing differentiation between cancerous and normal tissue. In the case of the correlation analyses it is further possible to distinguish between different types of tissue.

  6. Development of high resolution Michelson interferometer for stable phase-locked ultrashort pulse pair generation.

    PubMed

    Okada, Takumi; Komori, Kazuhiro; Goshima, Keishiro; Yamauchi, Shohgo; Morohashi, Isao; Sugaya, Takeyoshi; Ogura, Mutsuo; Tsurumachi, Noriaki

    2008-10-01

    We developed a high resolution Michelson interferometer with a two-frequency He-Ne laser positioning system in order to stabilize the relative phase of a pulse pair. The control resolution corresponded to a 12 as time resolution or a phase of 1.5 degrees at 900 nm. This high resolution Michelson interferometer can generate a phase-locked pulse pair either with a specific relative phase such as 0 or pi radians or with an arbitrary phase. Coherent control of an InAs self-assembled quantum dot was demonstrated using the high resolution Michelson interferometer with a microspectroscopy system.

  7. Cold nanoindentation of germanium

    NASA Astrophysics Data System (ADS)

    Huston, L. Q.; Kiran, M. S. R. N.; Smillie, L. A.; Williams, J. S.; Bradby, J. E.

    2017-07-01

    Diamond cubic Ge is subjected to high pressures via nanoindentation at temperatures between -45 °C and 20 °C. The residual impressions are studied using ex-situ Raman microspectroscopy and cross-sectional transmission electron microscopy. The deformation mechanism at 20 °C is predominately via the generation of crystalline defects. However, when the temperature is lowered, the analysis of residual indentation impressions provides evidence for deformation by phase transformation and formation of additional phases such as r8-Ge, hd-Ge, and amorphous Ge. Furthermore, these results show that at 0 °C and below, dc-Ge will reliably phase transform via nanoindentation.

  8. Vibrational spectroscopies for the analysis of cutaneous permeation: experimental limiting factors identified in the case of caffeine penetration.

    PubMed

    Tfaili, Sana; Gobinet, Cyril; Josse, Gwendal; Angiboust, Jean-François; Baillet, Arlette; Manfait, Michel; Piot, Olivier

    2013-02-01

    Caffeine is utilised as a reference for permeation studies in dermatology and cosmetology. The present work aimed to monitor the permeation of a caffeine solution through the skin. For this purpose, Raman and infrared studies were performed. Raman microspectroscopy permitted a dynamic follow-up of the caffeine diffusion. In complementary, infrared microimaging provided information of the caffeine localization in the skin by applying multivariate statistical processing on skin tissue sections. Herein, we prove the possibility of tracking low concentrations of caffeine through the skin and we highlight some experimental limitations of vibrational spectroscopies.

  9. Annual review of biophysics and bioengineering. Volume 4

    SciTech Connect

    Mullins, L.J.; Hagins, W.A.; Stryer, L.

    1975-01-01

    Topics covered include: EEG analysis; computer methods in electrocardiography; thermal properties of biomaterials, the physiological model, computer-aided instruction in medicine, chemotaxis in bacteria, muscle structure and contraction, electron microspectroscopy, spatial organization in animal development, determination of structure by neutron scattering application of intensity fluctuation spectroscopy to molecular biology, physical state of diffusible ions in cells, fluorescent probes in nerve membranes, concentration correlation spectroscopy, antibiotics and membrane biology, biomedical materials, calcium transport, artificial kidneys, survival distribution, computer monitoring in patient care, structure of tRNA, and computers in the clinical pathologic laboratory. Separate abstracts were prepared for two papers. (MCG)

  10. Plasmon-mediated Enhancement of Rhodamine 6G Spontaneous Emission on Laser-spalled Nanotextures

    NASA Astrophysics Data System (ADS)

    Kuchmizhak, A. A.; Nepomnyashchii, A. V.; Vitrik, O. B.; Kulchin, Yu. N.

    Biosensing characteristics of the laser-spalled nanotextures produced under single-pulse irradiation of a 500-nm thick Ag film surface were assessed by measuring spontaneous emission enhancement of overlaying Rhodamine 6G (Rh6G) molecules utilizing polarization-resolved confocal microspectroscopy technique. Our preliminary study shows for the first time that a single spalled micro-sized crater covered with sub-100 nm sharp tips at a certain excitation conditions provides up to 40-fold plasmon-mediated enhancement of the spontaneous emission from the 10-nm thick Rh6G over-layer indicating high potential of these easy-to-do structures for routine biosensing tasks.

  11. Informal proposal for an Atomic Physics Facility at the National Synchrotron Light Source

    SciTech Connect

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1986-01-01

    An Atomic Physics Facility (APF) for experiments that will use radiation from a superconducting wiggler on the NSLS X-13 port is described. The scientific justification for the APF is given and the elements of the facility are discussed. It is shown that it will be possible to conduct a uniquely varied set of experiments that can probe most aspects of atomic physics. A major component of the proposal is a heavy-ion storage ring capable of containing ions with energies of about 10 MeV/nucleon. The ring can be filled with heavy ions produced at the BNL MP Tandem Laboratory or frommore » independent ion-source systems. A preliminary cost estimate for the facility is presented.« less

  12. Low-frequency quadrupole impedance of undulators and wigglers

    DOE PAGES

    Blednykh, A.; Bassi, G.; Hidaka, Y.; ...

    2016-10-25

    An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ r. Here, in the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ r → ∞), and the case in which the magnets are fullymore » saturated (μ r = 1).« less

  13. Defining the safe current limit for opening ID photon shutter

    SciTech Connect

    Seletskiy, S.

    2015-12-14

    The NSLS-II storage ring is protected from possible damage from insertion devices (IDs) synchrotron radiation by a dedicated active interlock system (AIS). It monitors electron beam position and angle and triggers beam drop if beam orbit exceeds the boundaries of pre-calculated active interlock envelope (AIE). The beamlines (BL) and beamline frontends (FE) are designed under assumption that the electron beam is interlocked within the AIE. For historic reasons the AIS engages the ID active interlock (AI-ID) at any non-zero beam current whenever the ID photon shutter (IDPS) is getting opened. Such arrangement creates major inconveniences for BLs commissioning. Apparently theremore » is some IDPS safe current limit (SCL) under which the IDPS can be opened without interlocking the e-beam. The goal of this paper is to find such limit.« less

  14. Fast and precise technique for magnet lattice correction via sine-wave excitation of fast correctors

    SciTech Connect

    Yang, X.; Smaluk, V.; Yu, L. H.

    2017-05-02

    A novel technique has been developed to improve the precision and shorten the measurement time of the LOCO (linear optics from closed orbits) method. This technique, named AC LOCO, is based on sine-wave (ac) beam excitation via fast correctors. Such fast correctors are typically installed at synchrotron light sources for the fast orbit feedback. The beam oscillations are measured by beam position monitors. The narrow band used for the beam excitation and measurement not only allows us to suppress effectively the beam position noise but also opens the opportunity for simultaneously exciting multiple correctors at different frequencies (multifrequency mode). Wemore » demonstrated at NSLS-II that AC LOCO provides better lattice corrections and works much faster than the traditional LOCO method.« less

  15. Multi-element germanium detectors for synchrotron applications

    SciTech Connect

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.

    2018-04-27

    In this paper, we have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. Finally, we will discuss the technical details of the systems,more » and present some of the results from them.« less

  16. Experimental Investigation of Superradiance in a Tapered Free-Electron Laser Amplifier

    SciTech Connect

    Hidaka, Y.; She, Y.; Murphy, J.B.

    2011-03-28

    We report experimental studies of the effect of undulator tapering on superradiance in a single-pass high-gain free-electron laser (FEL) amplifier. The experiments were performed at the Source Development Laboratory (SDL) of National Synchrotron Light Source (NSLS). Efficiency was nearly tripled with tapering. Both the temporal and spectral properties of the superradiant FEL along the uniform and tapered undulator were experimentally characterized using frequency-resolved optical gating (FROG) images. Numerical studies predicted pulse broadening and spectral cleaning by undulator tapering Pulse broadening was experimentally verified. However, spectral cleanliness degraded with tapering. We have performed first experiments with a tapered undulator and amore » short seed laser pulse. Pulse broadening with tapering expected from simulations was experimentally confirmed. However, the experimentally obtained spectra degraded with tapering, whereas the simulations predicted improvement. A further numerical study is under way to resolve this issue.« less

  17. Synchrotron radiation applications of charge coupled device detectors (invited)

    SciTech Connect

    Clarke, R.; Lowe, W.P.; MacHarrie, R.A.

    1992-01-01

    Scientific charge coupled devices (CCDs) offer many opportunities for high brightness synchrotron radiation applications where good spatial resolution and fast data acquisition are important. We describe the use of virtual-phase CCD pixel arrays as two-dimensional area detectors illustrating the techniques with results from recent x-ray scattering, imaging, and absorption spectroscopy studies at NSLS, CHESS, SRC, and LURE DCI. The virtual phase architecture allows direct frontside illumination of the CCD detector chips giving advantages in the speed and sensitivity of the detector. Combining developments in x-ray optics (dispersive geometry), position sensitive area detectors (CCDs), and fast data acquisition, we have beenmore » able to perform time-resolved measurements at the microsecond level. Current developments include faster data transfer rates so that the single bunch timing structure of third generation synchrotron sources can be exploited.« less

  18. In Situ Tomographic Profiling of Ag2VP2O8 Li-Ion Batteries using Energy Dispersive X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Kirshenbaum, Kevin; Bock, David; Marschilok, Amy; Zhong, Zhong; Takeuchi, Kenneth; Takeuchi, Esther

    2014-03-01

    Bimetallic cathodes for use in Li-ion batteries have been studied in recent years as they may provide multiple electron reduction, yielding both high capacity and high current on discharge. In this study, we investigate the progress of the reaction of Ag2VP2O8 on discharge in a lithium anode cell using in-situ energy dispersive x-ray diffraction at beamline X17B1 at NSLS I. By measuring diffraction patterns in 20 μm segments through the cathode as a function of depth of discharge we are able to produce tomographic images of discharged cells. After analyzing the resulting spectra, we were able to observe the presence and relative intensity of Ag metal formed in the cathode upon discharge shedding light on the mechanisms limiting performance. We acknowledge funding from: Department of Energy, Office of Basic Energy Sciences, under Grant DE-SC0008512; Brookhaven National Laboratory; and Stony Brook University.

  19. High Temperature Mechanical Properties, Fractography and Synchrotron Studies of ATF clad materials from the UCSB-NSUF Irradiations.

    SciTech Connect

    Saleh, Tarik A.; Maloy, Stuart Andrew; Romero, Tobias J.

    2015-02-23

    A variety of tensile samples of Ferritic and Oxide Dispersion Strengthened (ODS or nanostructured ferritic) steels were placed the ATR reactor over 2 years achieving doses of roughly 4-6 dpa at temperatures of roughly 290°C. Samples were shipped to Wing 9 in the CMR facility at Los Alamos National Laboratory and imaged then tested in tension. This report summarizes the room temperature tensile tests, the elevated temperature tensile tests (300°C) and fractography and reduction of area calculations on those samples. Additionally small samples were cut from the undeformed grip section of these tensile samples and sent to the NSLS synchrotronmore » for high energy X-ray analysis, initial results will be described here.« less

  20. Optomechanical design of a high-precision detector robot arm system for x-ray nano-diffraction with x-ray nanoprobe

    NASA Astrophysics Data System (ADS)

    Shu, D.; Kalbfleisch, S.; Kearney, S.; Anton, J.; Chu, Y. S.

    2014-03-01

    Collaboration between Argonne National Laboratory and Brookhaven National Laboratory has created a design for the high-precision detector robot arm system that will be used in the x-ray nano-diffraction experimental station at the Hard X-ray Nanoprobe (HXN) beamline for the NSLS-II project. The robot arm system is designed for positioning and manipulating an x-ray detector in three-dimensional space for nano-diffraction data acquisition with the HXN x-ray microscope. It consists of the following major component groups: a granite base with air-bearing support, a 2-D horizontal base stage, a vertical axis goniometer, a 2-D vertical plane robot arm, a 3-D fast scanning stages group, and a 2-D x-ray pixel detector. The design specifications and unique optomechanical structure of this novel high-precision detector robot arm system will be presented in this paper.

  1. TAILORING X-RAY BEAM ENERGY SPECTRUM TO ENHANCE IMAGE QUALITY OF NEW RADIOGRAPHY CONTRAST AGENTS BASED ON GD OR OTHER LANTHANIDES.

    SciTech Connect

    DILMANIAN,F.A.; WEINMANN,H.J.; ZHONG,Z.

    2001-02-17

    Gadovist, a 1.0-molar Gd contrast agent from Schering AG, Berlin Germany, in use in clinical MPI in Europe, was evaluated as a radiography contrast agent. In a collaboration with Brookhaven National Laboratory (BNL), Schering AG is developing several such lanthanide-based contrast agents, while BNL evaluates them using different x-my beam energy spectra. These energy spectra include a ''truly'' monochromatic beam (0.2 keV energy bandwidth) from the National Synchrotron Light Source (NSLS), BNL, tuned above the Gd K-edge, and x-ray-tube beams from different kVp settings and beam filtrations. Radiographs of rabbits' kidneys were obtained with Gadovist at the NSLS. Furthermore, amore » clinical radiography system was used for imaging rabbits' kidneys comparing Gadovist and Conray, an iodinated contrast agent. The study, using 74 kVp and standard Al beam filter for Conray and 66 kVp and an additional 1.5 mm Cu beam filter for Gadovist, produced comparable images for Gadovist and Conray; the injection volumes were the same, while the radiation absorbed dose for Gadovist was slightly smaller. A bent-crystal silicon monochromator operating in the Laue diffraction mode was developed and tested with a conventional x-ray tube beam; it narrows the energy spectrum to about 4 keV around the anode tungsten's Ku line. Preliminary beam-flux results indicate that the method could be implemented in clinical CT if x-ray tubes with {approximately} twice higher output become available.« less

  2. Speciation and Elemental Mapping of Metal Containing Aerosols

    NASA Astrophysics Data System (ADS)

    Fraund, M. W.; Moffet, R.; Harder, T.; Williams, G.; Chen-Wiegart, Y. C. K.; Laskin, A.; Gilles, M. K.; Schoonen, M. A.; Thieme, J.

    2017-12-01

    Transition metals play a key roles in biogeochemical processes and health effects of aerosols. The Submicron Resolution X-ray (SRX) beamline at the second National Synchrotron Light Source (NSLS-II) can be used to obtain spatially resolved elemental composition using X-ray fluorescence (XRF) as well as element specific molecular information through X-ray absorption near edge structure (XANES) spectroscopy. Here, XANES spectroscopy was used to identify the oxidation state of iron-rich particles collected from the Cape Hedo Observatory on the island of Okinawa, Japan which is subject to aerosols from both biogenic (Gobi desert) and anthropogenic sources (e.g. Beijing and Shanghai). This data was compared with standards to help classify the minerology and source of these aerosol particles with regards to their potential solubility and bioavailability. In another application of the XRF/XANES measurements from NSLS-II, Pb rich particles from Mexico City were probed for distribution and speciation of Pb. Prior study has indicated that elevated concentrations of Pb occur in an industrialized section of northern Mexico City. It has been established that Pb and Zn are internally mixed in atmospheric aerosol and that Zn primarily exists as ZnCl2 and Zn(NO3)2. Based on these observations, it is hypothesized that Pb also exists as PbCl2 and Pb(NO3)­2. In this study it is shown that X-ray absorption near edge structure (XANES) spectroscopy at the Pb L-edge supports Pb being present as PbCl2 and Pb(NO3)2. Submicron resolution X-ray fluorescence mapping is also used to provide complimentary information on the collocation of other high-Z elements.

  3. Macromolecular Topography Leaps into the Digital Age

    NASA Technical Reports Server (NTRS)

    Lovelace, J.; Bellamy, H.; Snell, E. H.; Borgstahl, G.

    2003-01-01

    A low-cost, real-time digital topography system is under development which will replace x-ray film and nuclear emulsion plates. The imaging system is based on an inexpensive surveillance camera that offers a 1000x1000 array of 8 im square pixels, anti-blooming circuitry, and very quick read out. Currently, the system directly converts x-rays to an image with no phosphor. The system is small and light and can be easily adapted to work with other crystallographic equipment. Preliminary images have been acquired of cubic insulin at the NSLS x26c beam line. NSLS x26c was configured for unfocused monochromatic radiation. Six reflections were collected with stills spaced from 0.002 to 0.001 degrees apart across the entire oscillation range that the reflections were in diffracting condition. All of the reflections were rotated to the vertical to reduce Lorentz and beam related effects. This particular CCD is designed for short exposure applications (much less than 1 sec) and so has a relatively high dark current leading to noisy raw images. The images are processed to remove background and other system noise with a multi-step approach including the use of wavelets, histogram, and mean window filtering. After processing, animations were constructed with the corresponding reflection profile to show the diffraction of the crystal volume vs. the oscillation angle as well as composite images showing the parts of the crystal with the strongest diffraction for each reflection. The final goal is to correlate features seen in reflection profiles captured with fine phi slicing to those seen in the topography images. With this development macromolecular topography finally comes into the digital age.

  4. The scientific basis for a satellite mission to retrieve CCN concentrations and their impacts on convective clouds

    NASA Astrophysics Data System (ADS)

    Rosenfeld, D.; Williams, E.; Andreae, M. O.; Freud, E.; Pöschl, U.; Rennó, N. O.

    2012-08-01

    The cloud-mediated aerosol radiative forcing is widely recognized as the main source of uncertainty in our knowledge of the anthropogenic forcing on climate. The current challenges for improving our understanding are (1) global measurements of cloud condensation nuclei (CCN) in the cloudy boundary layer from space, and (2) disentangling the effects of aerosols from the thermodynamic and meteorological effects on the clouds. Here, we present a new conceptual framework to help us overcome these two challenges, using relatively simple passive satellite measurements in the visible and infared (IR). The idea is to use the clouds themselves as natural CCN chambers by retrieving simultaneously the number of activated aerosols at cloud base, Na, and the cloud base updraft speed. The Na is obtained by analyzing the distribution of cloud drop effective radius in convective elements as a function of distance above cloud base. The cloud base updraft velocities are estimated by double stereoscopic viewing and tracking of the evolution of cloud surface features just above cloud base. In order to resolve the vertical dimension of the clouds, the field of view will be 100 m for the microphysical retrievals, and 50 m for the stereoscopic measurements. The viewing geometry will be eastward and 30 degrees off nadir, with the Sun in the back at 30 degrees off zenith westward, requiring a Sun-synchronous orbit at 14 LST. Measuring simultaneously the thermodynamic environment, the vertical motions of the clouds, their microstructure and the CCN concentration will allow separating the dynamics from the CCN effects. This concept is being applied in the proposed satellite mission named Clouds, Hazards and Aerosols Survey for Earth Researchers (CHASER).

  5. Interstellar medium conditions in z 0.2 Lyman-break analogs

    NASA Astrophysics Data System (ADS)

    Contursi, A.; Baker, A. J.; Berta, S.; Magnelli, B.; Lutz, D.; Fischer, J.; Verma, A.; Nielbock, M.; Grácia Carpio, J.; Veilleux, S.; Sturm, E.; Davies, R.; Genzel, R.; Hailey-Dunsheath, S.; Herrera-Camus, R.; Janssen, A.; Poglitsch, A.; Sternberg, A.; Tacconi, L. J.

    2017-10-01

    We present an analysis of far-infrared (FIR) [CII] and [OI] fine structure line and continuum observations obtained with Herschel/PACS, and 12CO(1-0) observations obtained with the IRAM Plateau de Bure Interferometer, of Lyman-break analogs (LBAs) at z 0.2. The principal aim of this work is to determine the typical interstellar medium (ISM) properties of z 1-2 main sequence (MS) galaxies, with stellar masses between 109.5 and 1011M⊙, which are currently not easily detectable in all these lines even with ALMA and NOEMA. We perform PDR modeling and apply different infared diagnostics to derive the main physical parameters of the far-infrared (FIR)-emitting gas and dust and we compare the derived ISM properties to those of galaxies on and above the MS at different redshifts. We find that the ISM properties of LBAs are quite extreme (low gas temperature and high density and thermal pressure) with respect to those found in local normal spirals and more active local galaxies. LBAs have no [CII] deficit despite having the high specific star formation rates (sSFRs) typical of starbursts. Although LBAs lie above the local MS, we show that their ISM properties are more similar to those of high-redshift MS galaxies than of local galaxies above the main sequence. This data set represents an important reference for planning future ALMA [CII] observations of relatively low-mass MS galaxies at the epoch of the peak of the cosmic star formation.

  6. AKARI/IRC source catalogues and source counts for the IRAC Dark Field, ELAIS North and the AKARI Deep Field South

    NASA Astrophysics Data System (ADS)

    Davidge, H.; Serjeant, S.; Pearson, C.; Matsuhara, H.; Wada, T.; Dryer, B.; Barrufet, L.

    2017-12-01

    We present the first detailed analysis of three extragalactic fields (IRAC Dark Field, ELAIS-N1, ADF-S) observed by the infrared satellite, AKARI, using an optimized data analysis toolkit specifically for the processing of extragalactic point sources. The InfaRed Camera (IRC) on AKARI complements the Spitzer Space Telescope via its comprehensive coverage between 8-24 μm filling the gap between the Spitzer/IRAC and MIPS instruments. Source counts in the AKARI bands at 3.2, 4.1, 7, 11, 15 and 18 μm are presented. At near-infrared wavelengths, our source counts are consistent with counts made in other AKARI fields and in general with Spitzer/IRAC (except at 3.2 μm where our counts lie above). In the mid-infrared (11 - 18 μm), we find our counts are consistent with both previous surveys by AKARI and the Spitzer peak-up imaging survey with the InfraRed Spectrograph (IRS). Using our counts to constrain contemporary evolutionary models, we find that although the models and counts are in agreement at mid-infrared wavelengths there are inconsistencies at wavelengths shortward of 7 μm, suggesting either a problem with stellar subtraction or indicating the need for refinement of the stellar population models. We have also investigated the AKARI/IRC filters, and find an active galactic nucleus selection criteria out to z < 2 on the basis of AKARI 4.1, 11, 15 and 18 μm colours.

  7. TNO surface properties

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Merlin, F.; de Bergh, C.; Doressoundiram, A.

    Trans-Neptunian objects and Centaurs are remnants of the protoplanetary disk in which the accretion of the protoplanetesimals occurred. The study of these objects can help in understanding the accretion processes which governed the planetary formation, as well as those of other dust star disks. Studies of the physical and chemical properties of these icy bodies are still limited by the faintness of these objects, even if observed with the worldwide largest telescopes. Recent observations in visible photometry have provided B, V, R and I high quality colors for more than 130 objects. Relevant statistical analyses have been performed and all possible correlations between optical colors and orbital parameters have been analyzed. A taxonomy scheme based on multivariate statistical analysis described by the color indices has been obtained and a tentative interpretation of the obtained groups in terms of surface characteristics will be presented. The most detailed information on the composition of this cold population can be acquired only from spectroscopic observations. The wavelength region, ranging from 0.4 up to 2.3 microns, encompass diagnostic spectral features to investigate on organic compounds, minerals and ices present on the surface of the TNOs. To investigate the evolution of the whole TNO population we have analyzed the results obtained by our group from VLT-ESO programs together with all the spectroscopic data of TNOs and Centaurs available in the literature. The main results of the analysis of the whole sample of 32 objects for which visible and near-infared spectra are available will be presented and discussed. While some objects show no diagnostic spectral bands, others reveal surface deposits of ices of H2O, CH3OH, CH4, and N2, sharing these properties with Pluto, Charon and Triton. The different surface compositions can be diagnostic of possible composition diversity, interior source and/or different evolution with different physical processes

  8. Role of STAT1 in Chlamydia-Induced Type-1 Interferon Production in Oviduct Epithelial Cells

    PubMed Central

    Hosey, Kristen Lynette; Hu, Sishun

    2015-01-01

    We previously reported that Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells) secrete interferon β (IFN-β) in a mostly TLR3-dependent manner. However, C. muridarum-infected TLR3-deficient OE cells were still able to secrete detectable levels of IFN-β into the supernatants, suggesting that other signaling pathways contribute to Chlamydia-induced IFN-β synthesis in these cells. We investigated the role of STAT1 as a possible contributor in the Chlamydia-induced type-1 IFN production in wild-type (WT) and TLR3-deficient OE cells to ascertain its putative role at early- and late-times during Chlamydia infection. Our data show that C. muridarum infection significantly increased STAT1 gene expression and protein activation in WT OE cells; however, TLR3-deficient OE cells showed diminished STAT1 protein activation and gene expression. There was significantly less IFN-β detected in the supernatants of C. muridarum-infected OE cells derived from mice deficient in STAT1 when compared with WT OE cells, which suggest that STAT1 is required for the optimal synthesis of IFN-β during infection. Real-time quantitative polymerase chain reaction analyses of signaling components of the type-1 IFN signaling pathway demonstrated equal upregulation in the expression of STAT2 and IRF7 genes in the WT and TLR3-deficient OE cells, but no upregulation in these genes in the STAT1-deficient OE cells. Finally, experiments in which INFAR1 was blocked with neutralizing antibody revealed that IFNAR1-mediated signaling was critical to the Chlamydia-induced upregulation in IFN-α gene transcription, but had no role in the Chlamydia-induced upregulation in IFN-β gene transcription. PMID:26262558

  9. GT1_aconturs_1: [CII] , [OI] and far infrared continuum emission properties of local Lyman Break Analogs

    NASA Astrophysics Data System (ADS)

    Contursi, A.

    2010-03-01

    [CII] , [OI] and far infrared continuum emission properties of local Lyman Break Analogs We propose to observe 9 Ultra Compact UV-luminous galaxies, selected from Overzier et al (2009) with the PACS spectrometer in the [CII] and [OI] lines at 158 micron and 63 micron, and with the PACS photometer in the green and red filters. These galaxies are at redshifts ~0.2-0.3, they are rare in the nearby Universe and they were chosen because they are analogs of the Lyman Break Galaxies (LBGs), (Heckman et al 2005). For this reason, they have been called: "Local Break Analogs" (LBAs). LBAs and LBGs share many global properties such as, stellar mass, metallicity, dust extinction, star sormation rate (SFR), physical size and gas velocity dispersion. Despite they have been observed with SPITZER at 24 and 70 micron, no systematic and detailed studies of their infrared properties has been done so far. We want to characterize the far infrared (FIR) properties of these galaxies. The porposed [CII] and [OI] observations together with ancillary CO data will allow us to study the physics of the ISM and its interplay with the heating sources. Given the similarity between LBAs and LBGs, these results will shed light also for the LBGs population, helping their further characterization. We will also verify if LBAs, and by analogy also LBGs, are [CII] deficient or not. In the case LBAs are not [CII] deficient, we will empirically calibrate the [CII] emission as a SFR indicator. The SFR will be calculated from the FIR emission measured with PACS, assuming that in such UV bright sources most of the FIR is produced by young stars. Thus, this data set will provide an unique local reference sample for the future infared observations of high redshift UV-bright galaxies with ALMA.

  10. Characterizing quasars in the mid-infrared: high signal-to-noise ratio spectral templates

    NASA Astrophysics Data System (ADS)

    Hill, Allison R.; Gallagher, S. C.; Deo, R. P.; Peeters, E.; Richards, Gordon T.

    2014-03-01

    Mid-infrared (MIR) quasar spectra exhibit a suite of emission features including high ionization coronal lines from the narrow-line region illuminated by the ionizing continuum, broad dust bumps from silicates and graphites, and polycyclic aromatic hydrocarbon (PAH) features from star formation in the host galaxy. However, in Spitzer Infared Spectrograph (IRS) data, few features are detected in most individual spectra because of typically low signal-to-noise ratios (S/N). By generating spectral composites from over 180 IRS observations of Sloan Digital Sky Survey broad-line quasars, we boost the S/N and reveal features in the complex spectra that are otherwise lost in the noise. In addition to an overall composite, we generate composites in three different luminosity bins that span the range of 5.6 μm luminosities of 1040-1046 (erg s-1). We detect the high-ionization, forbidden emission lines of [S IV], [O IV] and [Ne V] λ14 μm in all templates and PAH features in all but the most luminous template. Ratios of lines with a range of ionization potentials show no evidence for a strong difference in the shape of the 41-97 eV ionizing continuum over this range of luminosities. The scaling of the emission-line luminosities as a function of continuum luminosity is consistent with what is expected, and shows no indication of a `disappearing narrow-line region'. The broad 10 and 18 μm silicate features in emission increase in strength with increasing luminosity, and a broad 3-5 μm blackbody consistent with graphite emission at 750 K is evident in the highest luminosity template. We find that the intrinsic quasar continua for all luminosity templates are consistent; apparent differences arise primarily from host galaxy contamination most evident at low luminosity.

  11. Star Formation In The Centers Of Galaxies Due To Secular Evolution

    NASA Astrophysics Data System (ADS)

    Fisher, David; Drory, Niv; Kormendy, John

    2006-05-01

    The two fundamental channels for disk galaxy evolution are environmentally driven hierarchical clustering (galaxy mergers) and internally driven secular evolution. Ellipticals and "classical bulges" are believed to form by mergers. "Pseudobulges" are observed to be more disk-like than classical bulges: they are flatter, they rotate very rapidly, and they have embedded bars, spiral structure, and ongoing star formation. They are the likely products of slow ("secular") rearrangement of disks by bars and oval distortions. Note that pseudobulges can form only if it has been a long time since the last major merger. This qualitative picture is well supported by observations. But, what is the relative importance of mergers and secular evolution in building bulges -- quantitatively? We propose to measure star formation rates in classical bulges and pseudobulges using the far-infrared fluxes observed with MIPS. Additionally, we use mid-infared IRAC imaging to resolve star-forming substructure within these bulges. To measure star formation rates we use published warm dust SED calibrations (Dale and Helou 2002; Wu et al 2005) as well as any that are still under development. Our purpose is to measure pseudobulge growth rates in Sa, Sb, and Sbc galaxies, and to tie together star formation rates with other indicators of secular evolution. Estimating pseudobulge growth time is the necessary next step in determing the relative importance of major mergers and secular evolution in bulge formation. A key to our strategy is the choice of galaxy sample. We propose to observe matched triples of the nearest giant galaxies that have strong, weak, and no obvious driving agents for internal evolution; i.e. galaxies that are barred, globally oval, and unbarred, respectively. Our sample will provide a valuable augmentation of archive data, completing observations of triples where necessary. The result is to increase the return of previous investments for a wider variety of science

  12. Supernova Remnants in the AKARI IRC Survey of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Seok, Ji Yeon; Koo, Bon-Chul; Onaka, Takashi; Ita, Yoshifusa; Lee, Ho-Gyu; Lee, Jae-Joon; Moon, Dae-Sik; Sakon, Itsuki; Kaneda, Hidehiro; Lee, Hyung Mok; Lee, Myung Gyoon; Kim, Sung Eun

    2008-12-01

    We present a near- to mid-infared study of supernova remnants (SNRs) using the AKARI IRC Survey of the Large Magellanic Cloud (LMC). The LMC survey observed about a10 square degree area of the LMC in five bands centered at 3, 7, 11, 15, and 24 μm using the Infrared Camera (IRC) aboard AKARI. The number of SNRs in the survey area is 21, which is about ahalf of the known LMC SNRs. We systematically examined AKARI images and identified eight SNRs with distinguishable infrared emission. All of them were detected at gsim 10 μm and some at 3 and 7μm, too. We present their AKARI images and fluxes. In the 11 / 15 μm versus 15 / 24 μm color-color diagram, the SNRs appear to be aligned along amodified blackbody curve, representing thermal emission from dust at temperatures of between 90 and 190K. There is agood correlation between the 24 μm and X-ray fluxes of the SNRs. It was also found that there is agood correlation between the 24 μm and radio fluxes even if there is no direct physical connection between them. We considered the origin of the detected mid-infrared emission in individual SNRs. We conclude that the mid-infrared emissions in five SNRs that show morphologies similar to the X-rays are dominated by thermal emission from hot dust heated by X-ray emitting plasma. Their 15 / 24 μm color temperatures are generally higher than the Spitzer 24 / 70 μm color temperatures, which suggests that asingle-temperature dust model cannot describe the full spectral energy distribution (SED) of the SNRs. It also implies that our understanding of the full SED is essential for estimating the dust destruction rate of grains by SNR shocks.

  13. Antimicrobial photodynamic therapy using Indocyanine green and near-infrared diode laser in reducing Entrerococcus faecalis.

    PubMed

    Beltes, Charis; Sakkas, Hercules; Economides, Nikolaos; Papadopoulou, Chrissanthy

    2017-03-01

    The use of Antimicrobial Photodynamic Therapy (aPDT) has been suggested as an adjuvant method to eliminate facultative bacteria during root canal disinfection. The purpose of this preliminary in vitro study was to determine whether the light-activated antimicrobial agent, Indocyanine green (ICG), could be used as photosensitizer and kill Enterococcus faecalis strain under planktonic conditions when irradiated with near-infared (NIR) diode laser emitting in 810nm wavelength. Planktonic suspension containing Enterococcus faecalis strain was divided into nine experimental groups: (1) aPDT with ICG and laser (medium energy fluence), (2) aPDT with ICG and laser (high energy fluence), (3) only ICG without laser activation, (4) only laser emission without ICG (5) 2.5% Sodium hypochlorite (NaOCl) as irrigant, (6) 2.5% NaOCl and aPDT with ICG and laser, (7) 2.0% Chlorhexidine gluconate (CHX) as irrigant (8) No treatment (positive control), (9) No bacterial biofilm growth (negative control). The samples were incubated for 7days and colony-forming units (CFUs) were determined to evaluate bacterial viability. The microbiological test revealed that aPDT groups, regardless the overall power, showed significant lower mean log 10 CFU levels, than groups 3, 4 and 7 (p<0.01). The irrigation with 2.5% NaOCl and the combination of PDT and NaOCl achieved total elimination of bacteria. These preliminary in vitro findings imply that the combination of ICG and NIR diode laser may be a novel supplement in aPDT and provide better disinfection during endodontic treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Quantitative Biology of Exercise-Induced Signal Transduction Pathways.

    PubMed

    Liu, Timon Cheng-Yi; Liu, Gang; Hu, Shao-Juan; Zhu, Ling; Yang, Xiang-Bo; Zhang, Quan-Guang

    2017-01-01

    Exercise is essential in regulating energy metabolism. Exercise activates cellular, molecular, and biochemical pathways with regulatory roles in training response adaptation. Among them, endurance/strength training of an individual has been shown to activate its respective signal transduction pathways in skeletal muscle. This was further studied from the viewpoint of quantitative difference (QD). For the mean values, [Formula: see text], of two sets of data, their QD is defined as [Formula: see text] ([Formula: see text]). The function-specific homeostasis (FSH) of a function of a biosystem is a negative-feedback response of the biosystem to maintain the function-specific conditions inside the biosystem so that the function is perfectly performed. A function in/far from its FSH is called a normal/dysfunctional function. A cellular normal function can resist the activation of other signal transduction pathways so that there are normal function-specific signal transduction pathways which full activation maintains the normal function. An acute endurance/strength training may be dysfunctional, but its regular training may be normal. The normal endurance/strength training of an individual may resist the activation of other signal transduction pathways in skeletal muscle so that there may be normal endurance/strength training-specific signal transduction pathways (NEPs/NSPs) in skeletal muscle. The endurance/strength training may activate NSPs/NEPs, but the QD from the control is smaller than 0.80. The simultaneous activation of both NSPs and NEPs may enhance their respective activation, and the QD from the control is larger than 0.80. The low level laser irradiation pretreatment of rats may promote the activation of NSPs in endurance training skeletal muscle. There may be NEPs/NSPs in skeletal muscle trained by normal endurance/strength training.

  15. Retention of cobalt on a humin derived from brown coal.

    PubMed

    Alvarez-Puebla, R A; Aroca, R F; Valenzuela-Calahorro, C; Garrido, J J

    2006-07-31

    In this work, the retention of cobalt on a humin (HU) derived from a brown coal is studied. Through a systematic and coordinated investigation of the behavior of the metal ions in solution (speciation diagrams as a function of pH) and their adsorption and precipitation processes with reactive functional groups of the solid (sorption isotherms), the interactions of different Co(II) species with HU are probed. To further confirm the nature of these interactions, the complementary spectroscopic techniques of FTIR, Raman microspectroscopy, UV-visible absorption and XRD are employed. Molecular modeling techniques are used to gain information about the stability of different Co(II) species as a function of pH, as well as the stability of Co(II) species complexed with benzoic acid, a common surface component of humic substances. It is found that the selectivity that humin has for different Co(II) species, as well as the amount of Co(II) that it can retain, are both highly dependent on pH. Through Raman microspectroscopy measurements, the presence and location of Co(OH)(2) precipitates on the surface of HU is confirmed.

  16. Lipid uptake and skin occlusion following topical application of oils on adult and infant skin.

    PubMed

    Stamatas, Georgios N; de Sterke, Johanna; Hauser, Matthias; von Stetten, Otto; van der Pol, André

    2008-05-01

    Topical application of oils and oil-based formulations is common practice in skin care for both adults and infants. Only limited knowledge however is available regarding skin penetration and occlusive potential of oils and common methods for measuring skin moisturization fall short when it comes to the moisturizing effect of oils. In this study we used in vivo confocal Raman microspectroscopy to test the efficacy of paraffin oil (mineral oil) and two vegetable oils in terms of skin penetration and occlusion. Petrolatum was used as a positive control. The products were applied topically on the forearms of nine volunteers and seven infants and Raman spectra were acquired before and at 30 and 90 min following application. Depth concentration profiles for lipid and water were calculated from the Raman spectra. Skin occlusion was assessed from the amount of stratum corneum (SC) swelling measured from the water concentration profiles. The paraffin oil and the vegetable oils penetrate the top layers of the SC with similar concentration profiles, a result that was confirmed both for adult and infant skin. The three oils tested demonstrated modest SC swelling (10-20%) compared to moderate swelling (40-60%) for petrolatum. These data indicate that there is no statistical difference between the paraffin oil and vegetable oils in terms of skin penetration and skin occlusion. The results for petrolatum show that in vivo confocal Raman microspectroscopy is sensitive and specific enough to measure both lipid uptake and skin occlusion events following topical application.

  17. Phase Transformations in a Human Tooth Tissue at the Initial Stage of Caries

    PubMed Central

    Prutskij, Tatiana; Ippolitov, Yury

    2015-01-01

    The aim of the paper is to study phase transformations in solid tissues of the human teeth during the development of fissure caries by Raman and fluorescence microspectroscopy. The study of the areas with fissure caries confirmed the assumption of the formation of a weak interaction between phosphate apatite enamel and organic acids (products of microorganisms). The experimental results obtained with by Raman microspectroscopy showed the formation of dicalcium phosphate dihydrate - CaHPO4-2H2O in the area of mural demineralization of carious fissure. A comparative analysis of structural and spectroscopic data for the intact and carious enamel shows that emergence of a more soluble phase - carbonate-substituted hydroxyapatite - is typical for the initial stage of caries. It is shown that microareas of dental hard tissues in the carious fissure due to an emerging misorientation of apatite crystals have a higher fluorescence yield than the area of the intact enamel. These areas can be easily detected even prior to a deep demineralization (white spot stage) for the case of irreversibly changed organomineral complex and intensive removal of the mineral component. PMID:25901743

  18. The Effect of Moderate Temperatures on Latent Fingerprint Chemistry.

    PubMed

    Johnston, Andrew; Rogers, Keith

    2017-09-01

    The effect of moderate temperatures (25-75 ℃) on latent fingerprints over a five-hour period was examined using Fourier transform infrared (FT-IR) microspectroscopy. The aim of the study was to detect changes in IR spectra due to any changes in fingerprint chemistry; these results were then compared to pure compounds found in sebum that was subjected to 75 ℃ for 5 h. Latent fingerprints deposited on CaF 2 microscope slides and placed on a Peltier pump heating stage showed that higher temperatures significantly reduced the quantity of sebaceous compounds after 5 h, whereas temperatures below 45 ℃ had little effect on the quantity of these compounds over the same time period. Fourier transform infrared microspectroscopy allowed for the real-time detection of changes to the IR spectra and demonstrated an increase in the OH stretch band (3250 cm -1 ) over 5 h at all temperatures investigated, suggesting various oxidation processes were taking place. Pure samples analyzed included squalene, fatty acids, wax esters, and mixed triglycerides. Unsaturated lipids showed a similar increase in the OH stretch band to the latent fingerprints whereas saturated compounds showed no change over time. This information is required to better understand the effect of moderate temperatures on latent fingerprints and how these temperatures could affect aged print composition.

  19. Inhibition of RNA and protein synthesis in pollen tube development of Pinus bungeana by actinomycin D and cycloheximide.

    PubMed

    Hao, Huaiqing; Li, Yiqin; Hu, Yuxi; Lin, Jinxing

    2005-03-01

    * The effects of actinomycin D and cycloheximide on RNA and protein synthesis were investigated during pollen tube development of Pinus bungeana. * RNA and protein contents, protein expression patterns, cell wall components and ultrastructural changes of pollen tubes were studied using spectrophotometry, SDS-PAGE electrophoresis, Fourier transformed infrared (FTIR) microspectroscopy and transmission electron microscopy (TEM). * Pollen grains germinated in the presence of actinomycin D, but tube elongation and RNA synthesis were inhibited. By contrast, cycloheximide inhibited pollen germination and protein synthesis, induced abnormal tube morphology, and retarded the tube growth rate. SDS-PAGE analysis showed that protein expression patterns changed distinctly, with some proteins being specific for each phase. FTIR microspectroscopy established significant changes in the chemical composition of pollen tube walls. TEM analysis revealed the inhibitors caused disintegration of organelles involved in the secretory system. * These results suggested RNA necessary for pollen germination and early tube growth were present already in the pollen grains before germination, while the initiation of germination and the maintenance of pollen tube elongation depended on continuous protein synthesis.

  20. Infrared Spectroscopy as a Chemical Fingerprinting Tool

    NASA Technical Reports Server (NTRS)

    Huff, Tim; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Infrared (IR) spectroscopy is a powerful analytical tool in the chemical fingerprinting of materials. The technique is rapid, reproducible and usually non-invasive. With the appropriate accessories, the technique can be used to examine samples in either a solid, liquid or gas phase. Solid samples of varying sizes and shapes may be used, and with the addition of microscopic IR (microspectroscopy) capabilities, minute materials such as single fibers and threads may be examined. With the addition of appropriate software, microspectroscopy can be used for automated discrete point or compositional surface area mapping, with the latter providing a means to record changes in the chemical composition of a material surface over a defined area. Both aqueous and non-aqueous free-flowing solutions can be analyzed using appropriate IR techniques, as can viscous liquids such as heavy oils and greases. Due to the ability to characterize gaseous samples, IR spectroscopy can also be coupled with thermal processes such as thermogravimetric (TG) analyses to provide both thermal and chemical data in a single run. In this configuration, solids (or liquids) heated in a TG analyzer undergo decomposition, with the evolving gases directed into the IR spectrometer. Thus, information is provided on the thermal properties of a material and the order in which its chemical constituents are broken down during incremental heating. Specific examples of these varied applications will be cited, with data interpretation and method limitations further discussed.

  1. Infrared microspectroscopic determination of collagen cross-links in articular cartilage

    NASA Astrophysics Data System (ADS)

    Rieppo, Lassi; Kokkonen, Harri T.; Kulmala, Katariina A. M.; Kovanen, Vuokko; Lammi, Mikko J.; Töyräs, Juha; Saarakkala, Simo

    2017-03-01

    Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current standard method for determination of cross-link concentrations in tissues is the destructive high-performance liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestructively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR) microspectroscopy. Half of the bovine articular cartilage samples (n=27) were treated with threose to increase the collagen cross-linking while the other half (n=27) served as a control group. Partial least squares (PLS) regression with variable selection algorithms was used to predict the cross-link concentrations from the measured average FTIR spectra of the samples, and HPLC was used as the reference method for cross-link concentrations. The correlation coefficients between the PLS regression models and the biochemical reference values were r=0.84 (p<0.001), r=0.87 (p<0.001) and r=0.92 (p<0.001) for hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP), and pentosidine (Pent) cross-links, respectively. The study demonstrated that FTIR microspectroscopy is a feasible method for investigating cross-link concentrations in articular cartilage.

  2. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    PubMed

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  3. Classification and Identification of Enterococci: a Comparative Phenotypic, Genotypic, and Vibrational Spectroscopic Study

    PubMed Central

    Kirschner, C.; Maquelin, K.; Pina, P.; Ngo Thi, N. A.; Choo-Smith, L.-P.; Sockalingum, G. D.; Sandt, C.; Ami, D.; Orsini, F.; Doglia, S. M.; Allouch, P.; Mainfait, M.; Puppels, G. J.; Naumann, D.

    2001-01-01

    Rapid and accurate identification of enterococci at the species level is an essential task in clinical microbiology since these organisms have emerged as one of the leading causes of nosocomial infections worldwide. Vibrational spectroscopic techniques (infrared [IR] and Raman) could provide potential alternatives to conventional typing methods, because they are fast, easy to perform, and economical. We present a comparative study using phenotypic, genotypic, and vibrational spectroscopic techniques for typing a collection of 18 Enterococcus strains comprising six different species. Classification of the bacteria by Fourier transform (FT)-IR spectroscopy in combination with hierarchical cluster analysis revealed discrepancies for certain strains when compared with results obtained from automated phenotypic systems, such as API and MicroScan. Further diagnostic evaluation using genotypic methods—i.e., PCR of the species-specific ligase and glycopeptide resistance genes, which is limited to the identification of only four Enterococcus species and 16S RNA sequencing, the “gold standard” for identification of enterococci—confirmed the results obtained by the FT-IR classification. These results were later reproduced by three different laboratories, using confocal Raman microspectroscopy, FT-IR attenuated total reflectance spectroscopy, and FT-IR microspectroscopy, demonstrating the discriminative capacity and the reproducibility of the technique. It is concluded that vibrational spectroscopic techniques have great potential as routine methods in clinical microbiology. PMID:11325987

  4. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement.

    PubMed

    Lenz, Robin; Enders, Kristina; Stedmon, Colin A; Mackenzie, David M A; Nielsen, Torkel Gissel

    2015-11-15

    Identification and characterisation of microplastic (MP) is a necessary step to evaluate their concentrations, chemical composition and interactions with biota. MP ≥10μm diameter filtered from below the sea surface in the European and subtropical North Atlantic were simultaneously identified by visual microscopy and Raman micro-spectroscopy. Visually identified particles below 100μm had a significantly lower percentage confirmed by Raman than larger ones indicating that visual identification alone is inappropriate for studies on small microplastics. Sixty-eight percent of visually counted MP (n=1279) were spectroscopically confirmed being plastic. The percentage varied with type, colour and size of the MP. Fibres had a higher success rate (75%) than particles (64%). We tested Raman micro-spectroscopy applicability for MP identification with respect to varying chemical composition (additives), degradation state and organic matter coating. Partially UV-degraded post-consumer plastics provided identifiable Raman spectra for polymers most common among marine MP, i.e. polyethylene and polypropylene. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Raman spectroscopy of blood serum for Alzheimer's disease diagnostics: specificity relative to other types of dementia.

    PubMed

    Ryzhikova, Elena; Kazakov, Oleksandr; Halamkova, Lenka; Celmins, Dzintra; Malone, Paula; Molho, Eric; Zimmerman, Earl A; Lednev, Igor K

    2015-07-01

    The key moment for efficiently and accurately diagnosing dementia occurs during the early stages. This is particularly true for Alzheimer's disease (AD). In this proof-of-concept study, we applied near infrared (NIR) Raman microspectroscopy of blood serum together with advanced multivariate statistics for the selective identification of AD. We analyzed data from 20 AD patients, 18 patients with other neurodegenerative dementias (OD) and 10 healthy control (HC) subjects. NIR Raman microspectroscopy differentiated patients with more than 95% sensitivity and specificity. We demonstrated the high discriminative power of artificial neural network (ANN) classification models, thus revealing the high potential of this developed methodology for the differential diagnosis of AD. Raman spectroscopic, blood-based tests may aid clinical assessments for the effective and accurate differential diagnosis of AD, decrease the labor, time and cost of diagnosis, and be useful for screening patient populations for AD development and progression. Multivariate data analysis of blood serum Raman spectra allows for the differentiation between patients with Alzheimer's disease, other types of dementia and healthy individuals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ultra Compact Imaging Spectrometer (UCIS)

    NASA Astrophysics Data System (ADS)

    Blaney, Diana L.; Green, Robert; Mouroulis, Pantazis; Cable, Morgan; Ehlmann, Bethany; Haag, Justin; Lamborn, Andrew; McKinley, Ian; Rodriguez, Jose; van Gorp, Byron

    2016-10-01

    The Ultra Compact Imaging Spectrometer (UCIS) is a modular visible to short wavelength infrared imaging spectrometer architecture which could be adapted to a variety of mission concepts requiring low mass and low power. Imaging spectroscopy is an established technique to address complex questions of geologic evolution by mapping diagnostic absorption features due to minerals, organics, and volatiles throughout our solar system. At the core of UCIS is an Offner imaging spectrometer using M3 heritage and a miniature pulse tube cryo-cooler developed under the NASA Maturation of Instruments for Solar System Exploration (MatISSE) program to cool the focal plane array. The TRL 6 integrated spectrometer and cryo-cooler provide a basic imaging spectrometer capability that is used with a variety of fore optics to address lunar, mars, and small body science goals. Potential configurations include: remote sensing from small orbiters and flyby spacecraft; in situ panoramic imaging spectroscopy; and in situ micro-spectroscopy. A micro-spectroscopy front end is being developed using MatISSE funding with integration and testing planned this summer.

  7. Metal-based particles in human amniotic fluids of fetuses with normal karyotype and congenital malformation--a pilot study.

    PubMed

    Barošová, H; Dvořáčková, J; Motyka, O; Kutláková, K Mamulová; Peikertová, P; Rak, J; Bielniková, H; Kukutschová, J

    2015-05-01

    This study explores the inorganic composition of amniotic fluid in healthy human fetuses and fetuses with congenital malformation with a special attention to presence of metal-based solid particles. Amniotic fluid originates from maternal blood and provides fetus mechanical protection and nutrients. In spite of this crucial role, the environmental impact on the composition of amniotic fluid remains poorly studied. The samples of human amniotic fluids were obtained by amniocentesis, including both healthy pregnancies and those with congenital malformations. The samples were analysed using several techniques, including Raman microspectroscopy, scanning electron microscopy with energy-dispersed spectrometry (SEM-EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. Several metal-based particles containing barium, titanium, iron, and other elements were detected by SEM-EDS and Raman microspectroscopy. XRD analysis detected only sodium chloride as the main component of all amniotic fluid samples. Infrared spectroscopy detected protein-like organic components. Majority of particles were in form of agglomerates up to tens of micrometres in size, consisting of mainly submicron particles. By statistical analysis (multiple correspondence analysis), it was observed that groups of healthy and diagnosed fetuses form two separate groups and therefore, qualitative differences in chemical composition may have distinct biological impact. Overall, our results suggest that metal-based nanosized pollutants penetrate into the amniotic fluid and may affect human fetuses.

  8. Raman spectroscopic analysis of the calcium oxalate producing extremotolerant lichen Circinaria gyrosa

    NASA Astrophysics Data System (ADS)

    Böttger, U.; Meessen, J.; Martinez-Frias, J.; Hübers, H.-W.; Rull, F.; Sánchez, F. J.; de la Torre, R.; de Vera, J.-P.

    2014-01-01

    In the context of astrobiological exposure and simulation experiments in the BIOMEX project, the lichen Circinaria gyrosa was investigated by Raman microspectroscopy. Owing to the symbiotic nature of lichens and their remarkable extremotolerance, C. gyrosa represents a valid model organism in recent and current astrobiological research. Biogenic compounds of C. gyrosa were studied that may serve as biomarkers in Raman assisted remote sensing missions, e.g. ExoMars. The surface as well as different internal layers of C. gyrosa have been characterized and data on the detectability and distribution of β-carotene, chitin and calcium oxalate monohydrate (whewellite) are presented in this study. Raman microspectroscopy was applied on natural samples and thin sections. Although calcium oxalates can also be formed by rare geological processes it may serve as a suitable biomarker for astrobiological investigations. In the model organism C. gyrosa, it forms extracellular crystalline deposits embedded in the intra-medullary space and its function is assumed to balance water uptake and gas exchange during the rare, moist to wet environmental periods that are physiologically favourable. This is a factor that was repeatedly demonstrated to be essential for extremotolerant lichens and other organisms. Depending on the decomposition processes of whewellite under extraterrestrial environmental conditions, it may not only serve as a biomarker of recent life, but also of past and fossilized organisms.

  9. Phase transformations in a human tooth tissue at the initial stage of caries.

    PubMed

    Seredin, Pavel; Goloshchapov, Dmitry; Prutskij, Tatiana; Ippolitov, Yury

    2015-01-01

    The aim of the paper is to study phase transformations in solid tissues of the human teeth during the development of fissure caries by Raman and fluorescence microspectroscopy. The study of the areas with fissure caries confirmed the assumption of the formation of a weak interaction between phosphate apatite enamel and organic acids (products of microorganisms). The experimental results obtained with by Raman microspectroscopy showed the formation of dicalcium phosphate dihydrate - CaHPO4-2H2O in the area of mural demineralization of carious fissure. A comparative analysis of structural and spectroscopic data for the intact and carious enamel shows that emergence of a more soluble phase - carbonate-substituted hydroxyapatite - is typical for the initial stage of caries. It is shown that microareas of dental hard tissues in the carious fissure due to an emerging misorientation of apatite crystals have a higher fluorescence yield than the area of the intact enamel. These areas can be easily detected even prior to a deep demineralization (white spot stage) for the case of irreversibly changed organomineral complex and intensive removal of the mineral component.

  10. Plant-based Food and Feed Protein Structure Changes Induced by Gene-transformation heating and bio-ethanol processing: A Synchrotron-based Molecular Structure and Nutrition Research Program

    SciTech Connect

    P Yu

    2011-12-31

    Unlike traditional 'wet' analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-basedmore » food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.« less

  11. Large Ferrierite Crystals as Models for Catalyst Deactivation during Skeletal Isomerisation of Oleic Acid: Evidence for Pore Mouth Catalysis.

    PubMed

    Wiedemann, Sophie C C; Ristanović, Zoran; Whiting, Gareth T; Reddy Marthala, V R; Kärger, Jörg; Weitkamp, Jens; Wels, Bas; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2016-01-04

    Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes). The large crystals did show the desired activity, albeit only traces of the isomerisation product were obtained and low conversions were achieved compared to commercial ferrierite powders. This limited activity is in line with their lower external non-basal surface area, supporting the hypothesis of pore mouth catalysis. Further evidence for the latter comes from visible micro-spectroscopy, which shows that the accumulation of aromatic species is limited to the crystal edges, while fluorescence microscopy strongly suggests the presence of polyenylic carbocations. Light polarisation associated with the spatial resolution of fluorescence microscopy reveals that these carbonaceous deposits are aligned only in the larger 10-MR channels of ferrierite at all crystal edges. The reaction is hence further limited to these specific pore mouths. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

  12. Synchrotron DUV luminescence micro-imaging to identify and map historical organic coatings on wood.

    PubMed

    Echard, Jean-Philippe; Thoury, Mathieu; Berrie, Barbara H; Séverin-Fabiani, Tatiana; Vichi, Alessandra; Didier, Marie; Réfrégiers, Matthieu; Bertrand, Loïc

    2015-08-07

    Deep ultraviolet (DUV) photoluminescence (PL) microimaging is an emerging approach to characterise materials from historical artefacts (see M. Thoury, J.-P. Echard, M. Réfrégiers, B. H. Berrie, A. Nevin, F. Jamme and L. Bertrand, Anal. Chem., 2011, 83, 1737-1745). Here we further assess the potential of the method to access a deeper understanding of multi-layered varnishes coating wooden violins and lutes. Cross-section micro samples from important 16(th)- to 18(th)-century instruments were investigated using synchrotron PL microimaging and microspectroscopy. Excitation was performed in the DUV and the near ultraviolet (NUV) regions, and emission recorded from the DUV to the visible region, at a submicrometric spatial resolution. Intercomparison of microspectroscopy and microimaging was made possible by radiometrically correcting PL spectra both in excitation and emission. Based on an optimised selection of emission and excitation bands, the specific PL features of the organic binding materials allowed a vastly enhanced discrimination between collagen-based sizing layers and oil/resin-based layers compared to epiluminescence microscopy. PL therefore appears to be a very promising analytical tool to provide new insights into the diversity of surface coating techniques used by instrument-makers. More generally, our results demonstrate the potential of synchrotron PL for studying complex heterogeneous materials beyond the core application of the technique to life sciences.

  13. Fourier Transform Infrared Imaging analysis of dental pulp inflammatory diseases.

    PubMed

    Giorgini, E; Sabbatini, S; Conti, C; Rubini, C; Rocchetti, R; Fioroni, M; Memè, L; Orilisi, G

    2017-05-01

    Fourier Transform Infrared microspectroscopy let characterize the macromolecular composition and distribution of tissues and cells, by studying the interaction between infrared radiation and matter. Therefore, we hypothesize to exploit this analytical tool in the analysis of inflamed pulps, to detect the different biochemical features related to various degrees of inflammation. IR maps of 13 irreversible and 12 hyperplastic pulpitis, together with 10 normal pulps, were acquired, compared with histological findings and submitted to multivariate (HCA, PCA, SIMCA) and statistical (one-way ANOVA) analysis. The fit of convoluted bands let calculate meaningful band area ratios (means ± s.d., P < 0.05). The infrared imaging analysis pin-pointed higher amounts of water and lower quantities of type I collagen in all inflamed pulps. Specific vibrational markers were defined for irreversible pulpitis (Lipids/Total Biomass, PhII/Total Biomass, CH 2 /CH 3 , and Ty/AII) and hyperplastic ones (OH/Total Biomass, Collagen/Total Biomass, and CH 3 Collagen/Total Biomass). The study confirmed that FTIR microspectroscopy let discriminate tissues' biological features. The infrared imaging analysis evidenced, in inflamed pulps, alterations in tissues' structure and composition. Changes in lipid metabolism, increasing amounts of tyrosine, and the occurrence of phosphorylative processes were highlighted in irreversible pulpitis, while high amounts of water and low quantities of type I collagen were detected in hyperplastic samples. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Plant-based food and feed protein structure changes induced by gene-transformation, heating and bio-ethanol processing: a synchrotron-based molecular structure and nutrition research program.

    PubMed

    Yu, Peiqiang

    2010-11-01

    Unlike traditional "wet" analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-based food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.

  15. Raman spectroscopic studies on bacteria

    NASA Astrophysics Data System (ADS)

    Maquelin, Kees; Choo-Smith, Lin-P'ing; Endtz, Hubert P.; Bruining, Hajo A.; Puppels, Gerwin J.

    2000-11-01

    Routine clinical microbiological identification of pathogenic micro-organisms is largely based on nutritional and biochemical tests. Laboratory results can be presented to a clinician after 2 - 3 days for most clinically relevant micro- organisms. Most of this time is required to obtain pure cultures and enough biomass for the tests to be performed. In the case of severely ill patients, this unavoidable time delay associated with such identification procedures can be fatal. A novel identification method based on confocal Raman microspectroscopy will be presented. With this method it is possible to obtain Raman spectra directly from microbial microcolonies on the solid culture medium, which have developed after only 6 hours of culturing for most commonly encountered organisms. Not only does this technique enable rapid (same day) identifications, but also preserves the sample allowing it to be double-checked with traditional tests. This, combined with the speed and minimal sample handling indicate that confocal Raman microspectroscopy has much potential as a powerful new tool in clinical diagnostic microbiology.

  16. Microanalyzes of remarkable microfossils of the Late Mesoproterozoic-Early Neoproterozoic

    NASA Astrophysics Data System (ADS)

    Cornet, Yohan; Beghin, Jérémie; Baludikay, Blaise; François, Camille; Storme, Jean-Yves; Compère, Philippe; Javaux, Emanuelle

    2016-04-01

    The Late Mesoproterozoic-Early Neoproterozoic is an important period to investigate the diversification of early eukaryotes [1]. Following the first appearance of red algae in the Late Mesoproterozoic, other (morphological or molecular) fossils of crown groups are recorded during the Early Neoproterozoic, including green algae, sponges, amoebozoa and possibly fungi. Other microfossils also includes unambiguous eukaryotes, including several distinctive forms for that time period, such as the acritarchs Cerebrosphaera buickii (˜820-720 Ma), Trachyhystrichosphaera aimika and T . botula (1100-720 Ma), and the multicellular eukaryotic problematicum taxon Jacutianema solubila (1100-?720 Ma). To further characterize the taxonomy of these microfossils and to test hypotheses about their possible relationships to crown groups, we combine analyzes of their morphology, wall ultrastructure and microchemistry, using optical microscopy, Scanning and Transmission Electron microscopy (SEM and TEM), as well as Raman and FTIR microspectroscopy respectively. Cerebrosphaera populations from the Svanbergfjellet formation, Spitsbergen, and from the Kanpa Formation, Officer Basin, Australia, include organic vesicles with dark and robust walls ornamented by cerebroid folds [2]. Our study shows the occurrence of complex tri- or bi-layered wall ultrastructures and a highly aromatic composition [3]. The genus Trachyhystrichosphaera includes various species characterized by the presence of a variable number of hollow heteromorphic processes [2]. Preliminary infrared microspectroscopy analyzes performed on two species, T. aimika and T. botula, from the 1.1 Ga Taoudeni Basin, Mauritania, and from the ˜1.1 - 0.8 Ga Mbuji-Mayi Supergroup, RDC, indicate a strong aliphatic and carbonyl composition of the wall biopolymer, with some differences linked to thermal maturity between the two locations. TEM is also performed to characterize the wall ultrastructure of these two species. Various morphotypes

  17. Investigating the origins of rhythmic major-element zoning in HP/LT garnets from worldwide subduction mélanges

    NASA Astrophysics Data System (ADS)

    Viete, D. R.; Hacker, B. R.; Seward, G.; Allen, M. B.

    2016-12-01

    Rhythmic major-element zoning has been documented in garnets from high pressure/low temperature (HP/LT) lenses within a number of worldwide subduction mélanges (e.g. California, Chinese Tianshan, Cuba, Greek Cyclades, Guatemala, Japan, Venezuela). The origin of these features has implications for the nature of subduction-zone processes. Conditions of rhythmic zoning acquirement in HP/LT garnets of California and Venezuela were investigated by use of Raman and FTIR microspectroscopy, and thermodynamic modelling of phase equilibria. Quartz-in-garnet Raman barometry reveals varying P—on the order of 100­-300 MPa, over radial distances of 10s of µm—in association with the high-Mn (and low-Mg) bands that define the fine-scale rhythmic zoning. Results from FTIR microspectroscopy demonstrate association between the high-Mn bands and locally depressed (structural) OH and elevated (molecular) H2O concentrations. The microspectroscopy results suggest changes in P and fluid activity attended development of the cryptic rhythmic zoning. Perple_X modelling of phase equilibria shows that, for specific rock chemistry and subduction P-T conditions, garnet modal abundance is extremely sensitive to changes in P (e.g. 10-20 vol.% growth/dissolution for ΔP = 200 MPa). Rhythmic major-element zoning may reflect P- and/or fluid-driven cycles of garnet stability-instability and/or varying reaction progress/kinetics during subduction. Steep compositional gradients that define the rhythmic major-element zoning limit time scales at subduction T, requiring that such individual stability-instability and/or accelerated reaction cycles were extremely brief. Seismic cycles or porosity waves represent ephemeral phenomena capable of accounting for development of rhythmic major-element zoning in HP/LT garnet, during subduction, as a result of fluctuations in both P and fluids. Metamorphic rocks may well carry detailed records of the catastrophism that punctuates longer-term tectonometamorphic

  18. Raman spectroscopy based toolkit for mapping bacterial social interactions relevant to human and plant health

    NASA Astrophysics Data System (ADS)

    Couvillion, Sheha Polisetti

    Bacteria interact and co-exist with other microbes and with higher organisms like plants and humans, playing a major role in their health and well being. These ubiquitous single celled organisms are so successful, because they can form organized communities, called biofilms, that protect them from environmental stressors and enable communication and cooperation among members of the community. The work described in this thesis develops a toolkit of analytical techniques centered around Raman microspectroscopy and imaging representing a powerful approach to non-invasively investigate bacterial communities, yielding molecular information at the sub-micrometer length scale. Bacterial cellular components of non-pigmented and pigmented rhizosphere strains are characterized, and regiospecific SERS is used for cases where resonantly enhanced background signals obscure the spectra. Silver nanoparticle colloids were synthesized in situ, in the presence of the cells to form a proximal coating and principal component analysis (PCA) revealed features attributed to flavins. SERS enabled in situ acquisition of Raman spectra and chemical images in highly autofluorescent P.aeruginosa biofilms. In combination with PCA, this allowed for non-invasive spatial mapping of bacterial communities and revealed differences between strains and nutrients in the secretion of virulence factor pyocyanin. The rich potential of using Raman microspectroscopy to study plant-microbe interactions is demonstrated. Effect of exposure to oxidative stress, on both the wild type Pantoea sp. YR343 and carotenoid mutant Delta crtB, was assessed by following the intensity of the 1520 cm -1 and 1126 cm-1 Raman bands, respectively, after treatment with various concentrations of H2O2. Significant changes were observed in these marker bands even at concentrations (1 mM) below the point at which the traditional plate-based viability assay shows an effect (5-10 mM), thus establishing the value of Raman

  19. Photocathodes for High Repetition Rate Light Sources

    SciTech Connect

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus ismore » on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-­conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-­antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU -­ BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder-­ and single-­crystal diffraction, x-­ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark

  20. Mircobeam X-ray total scattering experiments at the high-pressure beamline X17B3 at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Hong, X.; Ehm, L.; Duffy, T. S.; Weidner, D. J.

    2013-12-01

    Structure of minerals under extreme conditions of high pressure and temperature is very important in Geosciences. The total scattering pair distribution function (PDF) technique using high energy X-ray microbeam to access a large range of scattering vector, e.g. 20Å-1-40Å-1, is an emerging structural analysis method in high pressure research, which allows simultaneous probing of local, intermediate and long-range structure in crystalline, amorphous or complex materials[1-3]. Using high-energy X-rays of 80 keV at X17B3 beamline, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, PDF measurements has been carried out by users from multiple disciplines [4]. At this AGU meeting, we will present the current status of high-pressure total scattering pair distribution function (PDF) measurements and recent achievements on the availability of high energy X-ray microbeam at X17B3 beamline, NSLS. Accurate X-ray energy calibration is indispensable for X-ray energy-sensitive scattering and diffraction experiments, but there is still a lack of effective methods to precisely calibrate the high energy X-ray beam, because precise energy calibration XAS is problematic due to the lack of suitable X-ray absorption edges at the desired high energy. We have recently proposed an iterative method [5] for a precise and fast X-ray energy calibration over a wide range, including high energy X-ray beam for PDF measurements. Some PDF measurements on the geophysical important materials, such as GeO2 and SiO2 materials, under ambient and high-pressure using diamond anvil cell will be presented. References: 1. Billinge, S.J.L., The atomic pair distribution function: past and present. Zeitschrift für Kristallographie, 2004. 219(3-2004): p. 117-121. 2. Billinge, S.J. and I. Levin, The problem with determining atomic structure at the nanoscale. Science, 2007. 316(5824): p. 561-5. 3. Billinge, S.J.L., et al., Characterisation of amorphous and nanocrystalline molecular