The Activities of the European Consortium on Nuclear Data Development and Analysis for Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, U., E-mail: ulrich.fischer@kit.edu; Avrigeanu, M.; Avrigeanu, V.
This paper presents an overview of the activities of the European Consortium on Nuclear Data Development and Analysis for Fusion. The Consortium combines available European expertise to provide services for the generation, maintenance, and validation of nuclear data evaluations and data files relevant for ITER, IFMIF and DEMO, as well as codes and software tools required for related nuclear calculations.
Neural net controlled tag gas sampling system for nuclear reactors
Gross, Kenneth C.; Laug, Matthew T.; Lambert, John D. B.; Herzog, James P.
1997-01-01
A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.
Nuclear Safety. Technical progress journal, April--June 1996: Volume 37, No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhlheim, M D
1996-01-01
This journal covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.
Nuclear Safety. Technical progress journal, January--March 1994: Volume 35, No. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, E G
1994-01-01
This is a journal that covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, and nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.
Defense Threat Reduction Agency Radiochemical Needs
NASA Astrophysics Data System (ADS)
Walsh, Michael A. R.; Velazquez, Daniel L.
2009-08-01
The United States Government (USG) first developed nuclear forensics-related capabilities to analyze radiological and nuclear materials, including underground nuclear test debris and interdicted materials. Nuclear forensics is not a new mission for Department of Defense (DoD). The department's existing nuclear forensics capability is the result of programs that span six (6) decades and includes activities to assess foreign nuclear weapons testing activities, monitor and verify nuclear arms control treaties, and to support intelligence and law enforcement activities. Today, nuclear forensics must support not only weapons programs and nuclear smuggling incidents, but also the scientific analysis and subsequent attribution of terrorists' use of radiological or nuclear materials/devices. Nuclear forensics can help divulge the source of origin of nuclear materials, the type of design for an interdicted or detonated device, as well as the pathway of the materials or device to the incident. To accomplish this mission, the USG will need trained radiochemists and nuclear scientists to fill new positions and replace the retiring staff.
Cardarelli, Francesco; Tosti, Luca; Serresi, Michela; Beltram, Fabio; Bizzarri, Ranieri
2012-02-17
A quantitative description of carrier-mediated nuclear export in live cells is presented. To this end, we fused a prototypical leucine-rich nuclear export signal (NES) to GFP as a cargo model and expressed the fluorescent chimera in live CHO-K1 cells. By modeling FRAP data, we calculate the NES affinity for the export machinery and the maximum rate of nuclear export achievable at saturation of endogenous carriers. The measured active-export time through the Nuclear Pore Complex (NPC) is 18 ms, remarkably similar to the previously determined active-import rate. Also, our results reveal that active export/import and active export/passive diffusion fluxes are uncoupled, thus complementing previous reports on active import/passive diffusion uncoupling. These findings suggest differential gating at the NPC level.
Neural net controlled tag gas sampling system for nuclear reactors
Gross, K.C.; Laug, M.T.; Lambert, J.B.; Herzog, J.P.
1997-02-11
A method and system are disclosed for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod. 12 figs.
Analytical Chemistry Division. Annual progress report for period ending December 31, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyon, W.S.
1981-05-01
This report is divided into: analytical methodology; mass and emission spectrometry; technical support; bio/organic analysis; nuclear and radiochemical analysis; quality assurance, safety, and tabulation of analyses; supplementary activities; and presentation of research results. Separate abstracts were prepared for the technical support, bio/organic analysis, and nuclear and radiochemical analysis. (DLC)
Cardarelli, Francesco; Tosti, Luca; Serresi, Michela; Beltram, Fabio; Bizzarri, Ranieri
2012-01-01
A quantitative description of carrier-mediated nuclear export in live cells is presented. To this end, we fused a prototypical leucine-rich nuclear export signal (NES) to GFP as a cargo model and expressed the fluorescent chimera in live CHO-K1 cells. By modeling FRAP data, we calculate the NES affinity for the export machinery and the maximum rate of nuclear export achievable at saturation of endogenous carriers. The measured active-export time through the Nuclear Pore Complex (NPC) is 18 ms, remarkably similar to the previously determined active-import rate. Also, our results reveal that active export/import and active export/passive diffusion fluxes are uncoupled, thus complementing previous reports on active import/passive diffusion uncoupling. These findings suggest differential gating at the NPC level. PMID:22190681
Quantitative imaging assay for NF-κB nuclear translocation in primary human macrophages
Noursadeghi, Mahdad; Tsang, Jhen; Haustein, Thomas; Miller, Robert F.; Chain, Benjamin M.; Katz, David R.
2008-01-01
Quantitative measurement of NF-κB nuclear translocation is an important research tool in cellular immunology. Established methodologies have a number of limitations, such as poor sensitivity, high cost or dependence on cell lines. Novel imaging methods to measure nuclear translocation of transcriptionally active components of NF-κB are being used but are also partly limited by the need for specialist imaging equipment or image analysis software. Herein we present a method for quantitative detection of NF-κB rel A nuclear translocation, using immunofluorescence microscopy and the public domain image analysis software ImageJ that can be easily adopted for cellular immunology research without the need for specialist image analysis expertise and at low cost. The method presented here is validated by demonstrating the time course and dose response of NF-κB nuclear translocation in primary human macrophages stimulated with LPS, and by comparison with a commercial NF-κB activation reporter cell line. PMID:18036607
System Theoretic Frameworks for Mitigating Risk Complexity in the Nuclear Fuel Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Adam David; Mohagheghi, Amir H.; Cohn, Brian
In response to the expansion of nuclear fuel cycle (NFC) activities -- and the associated suite of risks -- around the world, this project evaluated systems-based solutions for managing such risk complexity in multimodal and multi-jurisdictional international spent nuclear fuel (SNF) transportation. By better understanding systemic risks in SNF transportation, developing SNF transportation risk assessment frameworks, and evaluating these systems-based risk assessment frameworks, this research illustrated interdependency between safety, security, and safeguards risks is inherent in NFC activities and can go unidentified when each "S" is independently evaluated. Two novel system-theoretic analysis techniques -- dynamic probabilistic risk assessment (DPRA) andmore » system-theoretic process analysis (STPA) -- provide integrated "3S" analysis to address these interdependencies and the research results suggest a need -- and provide a way -- to reprioritize United States engagement efforts to reduce global nuclear risks. Lastly, this research identifies areas where Sandia National Laboratories can spearhead technical advances to reduce global nuclear dangers.« less
Activation analysis study on Li-ion batteries for nuclear forensic applications
NASA Astrophysics Data System (ADS)
Johnson, Erik B.; Whitney, Chad; Holbert, Keith E.; Zhang, Taipeng; Stannard, Tyler; Christie, Anthony; Harper, Peter; Anderson, Blake; Christian, James F.
2015-06-01
The nuclear materials environment has been increasing significantly in complexity over the past couple of decades. The prevention of attacks from nuclear weapons is becoming more difficult, and nuclear forensics is a deterrent by providing detailed information on any type of nuclear event for proper attribution. One component of the nuclear forensic analysis is a measurement of the neutron spectrum. As an example, the neutron component provides information on the composition of the weapons, whether boosting is involved or the mechanisms used in creating a supercritical state. As 6Li has a large cross-section for thermal neutrons, the lithium battery is a primary candidate for assessing the neutron spectrum after detonation. The absorption process for 6Li yields tritium, which can be measured at a later point after the nuclear event, as long as the battery can be processed in a manner to successfully extract the tritium content. In addition, measuring the activated constituents after exposure provides a means to reconstruct the incident neutron spectrum. The battery consists of a spiral or folded layers of material that have unique, energy dependent interactions associated with the incident neutron flux. A detailed analysis on the batteries included a pre-irradiated mass spectrometry analysis to be used as input for neutron spectrum reconstruction. A set of batteries were exposed to a hard neutron spectrum delivered by the University of Massachusetts, Lowell research reactor Fast Neutron Irradiator (FNI). The gamma spectra were measured from the batteries within a few days and within a week after the exposure to obtain sufficient data on the activated materials in the batteries. The activity was calculated for a number of select isotopes, indicating the number of associated neutron interactions. The results from tritium extraction are marginal. A measurable increase in detected particles (gammas and betas) below 50 keV not self-attenuated by the battery was observed, yet as the spectra are coarse, the gamma information is not separable from tritium spectra. The activation analysis was successful, and the incident neutron spectrum was reconstructed using materials found in lithium batteries.
Propagation of nuclear data uncertainties for fusion power measurements
NASA Astrophysics Data System (ADS)
Sjöstrand, Henrik; Conroy, Sean; Helgesson, Petter; Hernandez, Solis Augusto; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri
2017-09-01
Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.
THE DETERMINATION OF TRACES OF IRON IN SAMPLES OF PLATINUM BY NE TRON- ACTIVATION ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, D.F.C.; Killick, R.A.
1963-11-01
A neutron-activation analysis method for the determination of traces of iron in samples of purified platinum is described. The nuclear reactor BEPO at Harwell was used as the neutron source. A rapid radiochemical separation procedure using carriers was employed to decontaminate the iron activity from most other induced activities. The analysis is completed by discriminated gamma scintillation counting. Results of analyses of seven samples of platinum are quoted. The method of analysis has the advantage that it obviates difficulties caused by reagent blanks or by contamination from traces of inactive iron after irradiation. Interference resulting from nuclear reactions of elementsmore » other than iron in the samples appears to be of no consequence. (auth)« less
NASA Astrophysics Data System (ADS)
Yussup, N.; Rahman, N. A. A.; Ibrahim, M. M.; Mokhtar, M.; Salim, N. A. A.; Soh@Shaari, S. C.; Azman, A.
2017-01-01
Neutron Activation Analysis (NAA) process has been established in Malaysian Nuclear Agency (Nuclear Malaysia) since 1980s. Most of the procedures established especially from sample registration to sample analysis are performed manually. These manual procedures carried out by the NAA laboratory personnel are time consuming and inefficient. Hence, a software to support the system automation is developed to provide an effective method to replace redundant manual data entries and produce faster sample analysis and calculation process. This paper describes the design and development of automation software for NAA process which consists of three sub-programs. The sub-programs are sample registration, hardware control and data acquisition; and sample analysis. The data flow and connection between the sub-programs will be explained. The software is developed by using National Instrument LabView development package.
Analysis of the resilience of team performance during a nuclear emergency response exercise.
Gomes, José Orlando; Borges, Marcos R S; Huber, Gilbert J; Carvalho, Paulo Victor R
2014-05-01
The current work presents results from a cognitive task analysis (CTA) of a nuclear disaster simulation. Audio-visual records were collected from an emergency room team composed of individuals from 26 different agencies as they responded to multiple scenarios in a simulated nuclear disaster. This simulation was part of a national emergency response training activity for a nuclear power plant located in a developing country. The objectives of this paper are to describe sources of resilience and brittleness in these activities, identify cues of potential improvements for future emergency simulations, and leveraging the resilience of the emergency response system in case of a real disaster. Multiple CTA techniques were used to gain a better understanding of the cognitive dimensions of the activity and to identify team coordination and crisis management patterns that emerged from the simulation exercises. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Fusion Advanced Design Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Guebaly, Laila; Henderson, Douglass; Wilson, Paul
2017-03-24
During the January 1, 2013 – December 31, 2015 contract period, the UW Fusion Technology Institute personnel have actively participated in the ARIES-ACT and FESS-FNSF projects, led the nuclear and thermostructural tasks, attended several project meetings, and participated in all conference calls. The main areas of effort and technical achievements include updating and documenting the nuclear analysis for ARIES-ACT1, performing nuclear analysis for ARIES-ACT2, performing thermostructural analysis for ARIES divertor, performing disruption analysis for ARIES vacuum vessel, and developing blanket testing strategy and Materials Test Module for FNSF.
An Analysis Framework for Understanding the Origin of Nuclear Activity in Low-power Radio Galaxies
NASA Astrophysics Data System (ADS)
Lin, Yen-Ting; Huang, Hung-Jin; Chen, Yen-Chi
2018-05-01
Using large samples containing nearly 2300 active galaxies of low radio luminosity (1.4 GHz luminosity between 2 × 1023 and 3 × 1025 W Hz‑1, essentially low-excitation radio galaxies) at z ≲ 0.3, we present a self-contained analysis of the dependence of the nuclear radio activity on both intrinsic and extrinsic properties of galaxies, with the goal of identifying the best predictors of the nuclear radio activity. While confirming the established result that stellar mass must play a key role on the triggering of radio activities, we point out that for the central, most massive galaxies, the radio activity also shows a strong dependence on halo mass, which is not likely due to enhanced interaction rates in denser regions in massive, cluster-scale halos. We thus further investigate the effects of various properties of the intracluster medium (ICM) in massive clusters on the radio activities, employing two standard statistical tools, principle component analysis and logistic regression. It is found that ICM entropy, local cooling time, and pressure are the most effective in predicting the radio activity, pointing to the accretion of gas cooling out of a hot atmosphere to be the likely origin in triggering such activities in galaxies residing in massive dark matter halos. Our analysis framework enables us to logically discern the mechanisms responsible for the radio activity separately for central and satellite galaxies.
A laser-induced repetitive fast neutron source applied for gold activation analysis
NASA Astrophysics Data System (ADS)
Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki
2012-12-01
A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 105 n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He4 nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T3.
A laser-induced repetitive fast neutron source applied for gold activation analysis.
Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki
2012-12-01
A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 10(5) n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He(4) nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T(3).
[Costing nuclear medicine diagnostic procedures].
Markou, Pavlos
2005-01-01
To the Editor: Referring to a recent special report about the cost analysis of twenty-nine nuclear medicine procedures, I would like to clarify some basic aspects for determining costs of nuclear medicine procedure with various costing methodologies. Activity Based Costing (ABC) method, is a new approach in imaging services costing that can provide the most accurate cost data, but is difficult to perform in nuclear medicine diagnostic procedures. That is because ABC requires determining and analyzing all direct and indirect costs of each procedure, according all its activities. Traditional costing methods, like those for estimating incomes and expenses per procedure or fixed and variable costs per procedure, which are widely used in break-even point analysis and the method of ratio-of-costs-to-charges per procedure may be easily performed in nuclear medicine departments, to evaluate the variability and differences between costs and reimbursement - charges.
NASA Astrophysics Data System (ADS)
Ródenas, José
2017-11-01
All materials exposed to some neutron flux can be activated independently of the kind of the neutron source. In this study, a nuclear reactor has been considered as neutron source. In particular, the activation of control rods in a BWR is studied to obtain the doses produced around the storage pool for irradiated fuel of the plant when control rods are withdrawn from the reactor and installed into this pool. It is very important to calculate these doses because they can affect to plant workers in the area. The MCNP code based on the Monte Carlo method has been applied to simulate activation reactions produced in the control rods inserted into the reactor. Obtained activities are introduced as input into another MC model to estimate doses produced by them. The comparison of simulation results with experimental measurements allows the validation of developed models. The developed MC models have been also applied to simulate the activation of other materials, such as components of a stainless steel sample introduced into a training reactors. These models, once validated, can be applied to other situations and materials where a neutron flux can be found, not only nuclear reactors. For instance, activation analysis with an Am-Be source, neutrography techniques in both medical applications and non-destructive analysis of materials, civil engineering applications using a Troxler, analysis of materials in decommissioning of nuclear power plants, etc.
National Center for Nuclear Security: The Nuclear Forensics Project (F2012)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klingensmith, A. L.
These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.
BACKGROUND: The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by h...
Analytical and Radiochemistry for Nuclear Forensics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, Robert Ernest; Dry, Donald E.; Kinman, William Scott
Information about nonproliferation nuclear forensics, activities in forensics at Los Alamos National Laboratory, radio analytical work at LANL, radiochemical characterization capabilities, bulk chemical and materials analysis capabilities, and future interests in forensics interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegalski, Steven R.; Buchholz, Bruce A.
2011-08-24
The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner.
NASA Astrophysics Data System (ADS)
Sugawara, Shin-Etsu; Shiroyama, Hideaki
This paper shows a comparative analysis between France and Japan on the way of the local governments' involvement in nuclear safety governance through some interviews. In France, a law came into force that requires related local governments to establish "Commision Locale d'Information" (CLI), which means the local governments officially involve in nuclear regulatory activity. Meanwhile, in Japan, related local governments substantially involve in the operation of nuclear facilities through the "safety agreements" in spite of the lack of legal authority. As a result of comparative analysis, we can point out some institutional input from French cases as follows: to clarify the local governments' roles in the nuclear regulation system, to establish the official channels of communication among nuclear utilities, national regulatory authorities and local governments, and to stipulate explicitly the transparency as a purpose of safety regulation.
Knowledge management: Role of the the Radiation Safety Information Computational Center (RSICC)
NASA Astrophysics Data System (ADS)
Valentine, Timothy
2017-09-01
The Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC's customers (scientists, engineers, and students from around the world) obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC's customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC's activities, services, and systems that support knowledge management and education and training in the nuclear field.
NASA Astrophysics Data System (ADS)
Rahman, Nur Aira Abd; Yussup, Nolida; Salim, Nazaratul Ashifa Bt. Abdullah; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh@Shaari, Syirrazie Bin Che; Azman, Azraf B.; Ismail, Nadiah Binti
2015-04-01
Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on `Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)'. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.
Neutron activation analysis of certified samples by the absolute method
NASA Astrophysics Data System (ADS)
Kadem, F.; Belouadah, N.; Idiri, Z.
2015-07-01
The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.
NASA Technical Reports Server (NTRS)
Darras, R.
1979-01-01
The various types of nuclear chemical analysis methods are discussed. The possibilities of analysis through activation and direct observation of nuclear reactions are described. Such methods make it possible to analyze trace elements and impurities with selectivity, accuracy, and a high degree of sensitivity. Such methods are used in measuring major elements present in materials which are available for analysis only in small quantities. These methods are well suited to superficial analyses and to determination of concentration gradients; provided the nature and energy of the incident particles are chosen judiciously. Typical examples of steels, pure iron and refractory metals are illustrated.
Measurement and analysis of gamma-rays emitted from spent nuclear fuel above 3 MeV.
Rodriguez, Douglas C; Anderson, Elaina; Anderson, Kevin K; Campbell, Luke W; Fast, James E; Jarman, Kenneth; Kulisek, Jonathan; Orton, Christopher R; Runkle, Robert C; Stave, Sean
2013-12-01
The gamma-ray spectrum of spent nuclear fuel in the 3-6 MeV energy range is important for active interrogation since gamma rays emitted from nuclear decay are not expected to interfere with measurements in this energy region. There is, unfortunately, a dearth of empirical measurements from spent nuclear fuel in this region. This work is an initial attempt to partially fill this gap by presenting an analysis of gamma-ray spectra collected from a set of spent nuclear fuel sources using a high-purity germanium detector array. This multi-crystal array possesses a large collection volume, providing high energy resolution up to 16 MeV. The results of these measurements establish the continuum count-rate in the energy region between 3 and 6 MeV. Also assessed is the potential for peaks from passive emissions to interfere with peak measurements resulting from active interrogation delayed emissions. As one of the first documented empirical measurements of passive emissions from spent fuel for energies above 3 MeV, this work provides a foundation for active interrogation model validation and detector development. © 2013 Elsevier Ltd. All rights reserved.
The nuclear-factor kappaB pathway is activated in pterygium.
Siak, Jay Jyh Kuen; Ng, See Liang; Seet, Li-Fong; Beuerman, Roger W; Tong, Louis
2011-01-05
Pterygium is a prevalent ocular surface disease with unknown pathogenesis. The authors investigated the role of nuclear factor kappa B (NF-κB) transcription factors in pterygium. Surgically excised primary pterygia were studied compared with uninvolved conjunctiva tissues. NF-κB activation was evaluated using Western blot analysis, ELISA, and DNA-binding assays. Primary pterygium fibroblasts were treated with TNF-α (20 ng/mL), and NF-κB activation was evaluated using immunocytochemistry, Western blot analysis, phospho-IκBα ELISA, and DNA-binding assays. TNF-α stimulation of NF-κB target genes RelB, NFKB2, RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 in pterygium fibroblasts was compared with that in primary tenon fibroblasts by real-time PCR. Phosphorylation of IκBα (Ser32) was increased in pterygia tissues compared with uninvolved conjunctiva tissues, as determined by Western blot analysis and ELISA. IκBα expression was decreased, whereas nuclear RelA and p50 DNA-binding capacities were increased. Within 30 minutes of treatment with TNF-α, pterygium fibroblasts showed increased IκBα phosphorylation and nuclear translocation of RelA and p50. Treatment with TNF-α beyond 12 hours resulted in increased nuclear expression of RelB, p100, and p52. Furthermore, the upregulation of RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 expression was more pronounced in TNF-α-treated pterygium fibroblasts than in tenon fibroblasts. The NF-κB pathway is shown for the first time to be activated in pterygia tissues compared with normal conjunctiva tissues. Stimulation by the inflammatory cytokine TNF-α can activate both canonical and noncanonical NF-κB pathways in pterygium fibroblasts with concomitant upregulation of NF-κB target genes.
Ege, Nil; Dowbaj, Anna M; Jiang, Ming; Howell, Michael; Hooper, Steven; Foster, Charles; Jenkins, Robert P; Sahai, Erik
2018-06-08
The transcriptional regulator YAP1 is critical for the pathological activation of fibroblasts. In normal fibroblasts, YAP1 is located in the cytoplasm, while in activated cancer-associated fibroblasts, it is nuclear and promotes the expression of genes required for pro-tumorigenic functions. Here, we investigate the dynamics of YAP1 shuttling in normal and activated fibroblasts, using EYFP-YAP1, quantitative photobleaching methods, and mathematical modeling. Imaging of migrating fibroblasts reveals the tight temporal coupling of cell shape change and altered YAP1 localization. Both 14-3-3 and TEAD binding modulate YAP1 shuttling, but neither affects nuclear import. Instead, we find that YAP1 nuclear accumulation in activated fibroblasts results from Src and actomyosin-dependent suppression of phosphorylated YAP1 export. Finally, we show that nuclear-constrained YAP1, upon XPO1 depletion, remains sensitive to blockade of actomyosin function. Together, these data place nuclear export at the center of YAP1 regulation and indicate that the cytoskeleton can regulate YAP1 within the nucleus. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
2016-03-01
Assessment of Non-traditional Isotopic Ratios by Mass Spectrometry for Analysis of Nuclear Activities Distribution Statement A. Approved for pubic...cubic meter (m 3 ) cubic foot (ft 3 ) 2.831 685 × 10 –2 cubic meter (m 3 ) Mass /Density pound (lb) 4.535 924 × 10 –1 kilogram (kg) unified...atomic mass unit (amu) 1.660 539 × 10 –27 kilogram (kg) pound- mass per cubic foot (lb ft –3 ) 1.601 846 × 10 1 kilogram per cubic meter (kg m –3
PAK1 translocates into nucleus in response to prolactin but not to estrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oladimeji, Peter, E-mail: Peter.Oladimeji@rockets.utoledo.edu; Diakonova, Maria, E-mail: mdiakon@utnet.utoledo.edu
2016-04-22
Tyrosyl phosphorylation of the p21-activated serine–threonine kinase 1 (PAK1) has an essential role in regulating PAK1 functions in breast cancer cells. We previously demonstrated that PAK1 serves as a common node for estrogen (E2)- and prolactin (PRL)-dependent pathways. We hypothesize herein that intracellular localization of PAK1 is affected by PRL and E2 treatments differently. We demonstrate by immunocytochemical analysis that PAK1 nuclear translocation is ligand-dependent: only PRL but not E2 stimulated PAK1 nuclear translocation. Tyrosyl phosphorylation of PAK1 is essential for this nuclear translocation because phospho-tyrosyl-deficient PAK1 Y3F mutant is retained in the cytoplasm in response to PRL. We confirmedmore » these data by Western blot analysis of subcellular fractions. In 30 min of PRL treatment, only 48% of pTyr-PAK1 is retained in the cytoplasm of PAK1 WT clone while 52% re-distributes into the nucleus and pTyr-PAK1 shuttles back to the cytoplasm by 60 min of PRL treatment. In contrast, PAK1 Y3F is retained in the cytoplasm. E2 treatment causes nuclear translocation of neither PAK1 WT nor PAK1 Y3F. Finally, we show by an in vitro kinase assay that PRL but not E2 stimulates PAK1 kinase activity in the nuclear fraction. Thus, PAK1 nuclear translocation is ligand-dependent: PRL activates PAK1 and induces translocation of activated pTyr-PAK1 into nucleus while E2 activates pTyr-PAK1 only in the cytoplasm. - Highlights: • Prolactin but not estrogen causes translocation of PAK1 into nucleus. • Tyrosyl phosphorylation of PAK1 is required for nuclear localization. • Prolactin but not estrogen stimulates PAK1 kinase activity in nucleus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gastelum, Zoe N.; Harvey, Julia B.
The International Atomic Energy Agency State Evaluation Process: The Role of Information Analysis in Reaching Safeguards Conclusions (Mathews et al. 2008), several examples of nonproliferation models using analytical software were developed that may assist the IAEA with collecting, visualizing, analyzing, and reporting information in support of the State Evaluation Process. This paper focuses on one of the examples a set of models developed in the Proactive Scenario Production, Evidence Collection, and Testing (ProSPECT) software that evaluates the status and nature of a state’s nuclear activities. The models use three distinct subject areas to perform this assessment: the presence of nuclearmore » activities, the consistency of those nuclear activities with national nuclear energy goals, and the geopolitical context in which those nuclear activities are taking place. As a proof-of-concept for the models, a crude case study was performed. The study, which attempted to evaluate the nuclear activities taking place in Syria prior to September 2007, yielded illustrative, yet inconclusive, results. Due to the inconclusive nature of the case study results, changes that may improve the model’s efficiency and accuracy are proposed.« less
Educational activities with a tandem accelerator
NASA Astrophysics Data System (ADS)
Casolaro, P.; Campajola, L.; Balzano, E.; D'Ambrosio, E.; Figari, R.; Vardaci, E.; La Rana, G.
2018-05-01
Selected experiments in fundamental physics have been proposed for many years at the Tandem Accelerator of the University of Napoli ‘Federico II’s Department of Physics as a part of a one-semester laboratory course for graduate students. The aim of this paper is to highlight the educational value of the experimental realization of the nuclear reaction 19F(p,α)16O. With the purpose of verifying the mass-energy equivalence principle, different aspects of both classical and modern physics can be investigated, e.g. conservation laws, atomic models, nuclear physics applications to compositional analysis, nuclear cross-section, Q-value and nuclear spectroscopic analysis.
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2007-01-01
In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments
IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs
Yu, Minjia; Qian, Wen; Wang, Han; Zhou, Gao; Chen, Xing; Yang, Hui; Hong, Lingzi; Zhao, Junjie; Qin, Luke; Fukuda, Koichi; Flotho, Annette; Gao, Ji; Dongre, Ashok; Carman, Julie A; Kang, Zizhen; Su, Bing; Kern, Timothy S; Smith, Jonathan D; Hamilton, Thomas A; Melchior, Frauke; Fox, Paul L
2017-01-01
Expression of inflammatory genes is determined in part by post-transcriptional regulation of mRNA metabolism but how stimulus- and transcript-dependent nuclear export influence is poorly understood. Here, we report a novel pathway in which LPS/TLR4 engagement promotes nuclear localization of IRAK2 to facilitate nuclear export of a specific subset of inflammation-related mRNAs for translation in murine macrophages. IRAK2 kinase activity is required for LPS-induced RanBP2-mediated IRAK2 sumoylation and subsequent nuclear translocation. Array analysis showed that an SRSF1-binding motif is enriched in mRNAs dependent on IRAK2 for nuclear export. Nuclear IRAK2 phosphorylates SRSF1 to reduce its binding to target mRNAs, which promotes the RNA binding of the nuclear export adaptor ALYREF and nuclear export receptor Nxf1 loading for the export of the mRNAs. In summary, LPS activates a nuclear function of IRAK2 that facilitates the assembly of nuclear export machinery to export selected inflammatory mRNAs to the cytoplasm for translation. PMID:28990926
IRAK2 directs stimulus-dependent nuclear export of inflammatory mRNAs.
Zhou, Hao; Bulek, Katarzyna; Li, Xiao; Herjan, Tomasz; Yu, Minjia; Qian, Wen; Wang, Han; Zhou, Gao; Chen, Xing; Yang, Hui; Hong, Lingzi; Zhao, Junjie; Qin, Luke; Fukuda, Koichi; Flotho, Annette; Gao, Ji; Dongre, Ashok; Carman, Julie A; Kang, Zizhen; Su, Bing; Kern, Timothy S; Smith, Jonathan D; Hamilton, Thomas A; Melchior, Frauke; Fox, Paul L; Li, Xiaoxia
2017-10-09
Expression of inflammatory genes is determined in part by post-transcriptional regulation of mRNA metabolism but how stimulus- and transcript-dependent nuclear export influence is poorly understood. Here, we report a novel pathway in which LPS/TLR4 engagement promotes nuclear localization of IRAK2 to facilitate nuclear export of a specific subset of inflammation-related mRNAs for translation in murine macrophages. IRAK2 kinase activity is required for LPS-induced RanBP2-mediated IRAK2 sumoylation and subsequent nuclear translocation. Array analysis showed that an SRSF1-binding motif is enriched in mRNAs dependent on IRAK2 for nuclear export. Nuclear IRAK2 phosphorylates SRSF1 to reduce its binding to target mRNAs, which promotes the RNA binding of the nuclear export adaptor ALYREF and nuclear export receptor Nxf1 loading for the export of the mRNAs. In summary, LPS activates a nuclear function of IRAK2 that facilitates the assembly of nuclear export machinery to export selected inflammatory mRNAs to the cytoplasm for translation.
Saporita, Anthony J.; Ai, Junkui; Wang, Zhou
2010-01-01
BACKGROUND Androgen receptor (AR) is the key molecule in androgen-refractory prostate cancer. Despite androgen ablative conditions, AR remains active and is necessary for the growth of androgen-refractory prostate cancer cells. Nuclear localization of AR is a prerequisite for its transcriptional activation. We examined AR localization in androgen-dependent and androgen-refractory prostate cancer cells. METHODS AND RESULTS We demonstrate increased nuclear localization of a GFP-tagged AR in the absence of hormone in androgen-refractory C4-2 cells compared to parental androgen-sensitive human prostate cancer LNCaP cells. Analysis of AR mutants impaired in ligand-binding indicates that the nuclear localization of AR in C4-2 cells is truly androgen-independent. The hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), inhibits basal PSA expression and disrupts the ligand-independent nuclear localization of AR at doses much lower than required to inhibit androgen-induced nuclear import. CONCLUSIONS Hsp90 is a key regulator of ligand-independent nuclear localization and activation of AR in androgen-refractory prostate cancer cells. PMID:17221841
Heisenberg and the critical mass
NASA Astrophysics Data System (ADS)
Bernstein, Jeremy
2002-09-01
An elementary treatment of the critical mass used in nuclear weapons is presented and applied to an analysis of the wartime activities of the German nuclear program. In particular, the work of Werner Heisenberg based on both wartime and postwar documents is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Nur Aira Abd, E-mail: nur-aira@nuclearmalaysia.gov.my; Yussup, Nolida; Ibrahim, Maslina Bt. Mohd
Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on ‘Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)’. The objective ofmore » the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.« less
Gervois, P; Torra, I P; Chinetti, G; Grötzinger, T; Dubois, G; Fruchart, J C; Fruchart-Najib, J; Leitersdorf, E; Staels, B
1999-09-01
The peroxisome proliferator-activated receptor alpha (PPARalpha) plays a key role in lipid and lipoprotein metabolism. However, important inter- and intraspecies differences exist in the response to PPARalpha activators. This incited us to screen for PPARalpha variants with different signaling functions. In the present study, using a RT-PCR approach a variant human PPARalpha mRNA species was identified, which lacks the entire exon 6 due to alternative splicing. This deletion leads to the introduction of a premature stop codon, resulting in the formation of a truncated PPARalpha protein (PPARalphatr) lacking part of the hinge region and the entire ligand-binding domain. RNase protection analysis demonstrated that PPARalphatr mRNA is expressed in several human tissues and cells, representing between 20-50% of total PPARalpha mRNA. By contrast, PPARalphatr mRNA could not be detected in rodent tissues. Western blot analysis using PPARalpha-specific antibodies demonstrated the presence of an immunoreactive protein migrating at the size of in vitro produced PPARalphatr protein both in human hepatoma HepG2 cells and in human hepatocytes. Both in the presence or absence of 9-cis-retinoic acid receptor, PPARalphatr did not bind to DNA in gel shift assays. Immunocytochemical analysis of transfected CV-1 cells indicated that, whereas transfected PPARalphawt was mainly nuclear localized, the majority of PPARalphatr resided in the cytoplasm, with presence in the nucleus depending on cell culture conditions. Whereas a chimeric PPARalphatr protein containing a nuclear localization signal cloned at its N-terminal localized into the nucleus and exhibited strong negative activity on PPARalphawt transactivation function, PPARalphatr interfered with PPARalphatr transactivation function only under culture conditions inducing its nuclear localization. Cotransfection of the coactivator CREB-binding protein relieved the transcriptional repression of PPARalphawt by PPARalphatr, suggesting that the dominant negative effect of PPARalphatr might occur through competition for essential coactivators. In addition, PPARalphatr interfered with transcriptional activity of other nuclear receptors such as PPARgamma, hepatic nuclear factor-4, and glucocorticoid receptor-alpha, which share CREB-binding protein/p300 as a coactivator. Thus, we have identified a human PPARalpha splice variant that may negatively interfere with PPARalphawt function. Factors regulating either the ratio of PPARalphawt vs. PPARalphatr mRNA or the nuclear entry of PPARalphatr protein should therefore lead to altered signaling via the PPARalpha and, possibly also, other nuclear receptor pathways.
2015-06-09
mi) northeast of Tokyo off the coast of Honshu Island. The tsunami triggered by the earthquake damaged the Fukushima Daiichi Nuclear Power Station...Concentration Data Collected in the Kanto Plain, Japan, following the 2011 Fukushima Daiichi Nuclear Accident 5a. CONTRACT NUMBER 5b. GRANT NUMBER...collected at three locations following the release of radioactive materials from the Fukushima Daiichi Nuclear Power Station. The time series at
Low nuclear body formation and tax SUMOylation do not prevent NF-kappaB promoter activation.
Bonnet, Amandine; Randrianarison-Huetz, Voahangy; Nzounza, Patrycja; Nedelec, Martine; Chazal, Maxime; Waast, Laetitia; Pene, Sabrina; Bazarbachi, Ali; Mahieux, Renaud; Bénit, Laurence; Pique, Claudine
2012-09-25
The Tax protein encoded by Human T-lymphotropic virus type 1 (HTLV-1) is a powerful activator of the NF-κB pathway, a property critical for HTLV-1-induced immortalization of CD4⁺ T lymphocytes. Tax permanently stimulates this pathway at a cytoplasmic level by activating the IκB kinase (IKK) complex and at a nuclear level by enhancing the binding of the NF-κB factor RelA to its cognate promoters and by forming nuclear bodies, believed to represent transcriptionally active structures. In previous studies, we reported that Tax ubiquitination and SUMOylation play a critical role in Tax localization and NF-κB activation. Indeed, analysis of lysine Tax mutants fused or not to ubiquitin or SUMO led us to propose a two-step model in which Tax ubiquitination first intervenes to activate IKK while Tax SUMOylation is subsequently required for promoter activation within Tax nuclear bodies. However, recent studies showing that ubiquitin or SUMO can modulate Tax activities in either the nucleus or the cytoplasm and that SUMOylated Tax can serve as substrate for ubiquitination suggested that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. In this study, we analyzed the properties of a new Tax mutant that is properly ubiquitinated, but defective for both nuclear body formation and SUMOylation. We report that reducing Tax SUMOylation and nuclear body formation do not alter the ability of Tax to activate IKK, induce RelA nuclear translocation, and trigger gene expression from a NF-κB promoter. Importantly, potent NF-κB promoter activation by Tax despite low SUMOylation and nuclear body formation is also observed in T cells, including CD4⁺ primary T lymphocytes. Moreover, we show that Tax nuclear bodies are hardly observed in HTLV-1-infected T cells. Finally, we provide direct evidence that the degree of NF-κB activation by Tax correlates with the level of Tax ubiquitination, but not SUMOylation. These data reveal that the formation of Tax nuclear bodies, previously associated to transcriptional activities in Tax-transfected cells, is dispensable for NF-κB promoter activation, notably in CD4⁺ T cells. They also provide the first evidence that Tax SUMOylation is not a key determinant for Tax-induced NF-κB activation.
Low nuclear body formation and tax SUMOylation do not prevent NF-kappaB promoter activation
2012-01-01
Background The Tax protein encoded by Human T-lymphotropic virus type 1 (HTLV-1) is a powerful activator of the NF-κB pathway, a property critical for HTLV-1-induced immortalization of CD4+ T lymphocytes. Tax permanently stimulates this pathway at a cytoplasmic level by activating the IκB kinase (IKK) complex and at a nuclear level by enhancing the binding of the NF-κB factor RelA to its cognate promoters and by forming nuclear bodies, believed to represent transcriptionally active structures. In previous studies, we reported that Tax ubiquitination and SUMOylation play a critical role in Tax localization and NF-κB activation. Indeed, analysis of lysine Tax mutants fused or not to ubiquitin or SUMO led us to propose a two-step model in which Tax ubiquitination first intervenes to activate IKK while Tax SUMOylation is subsequently required for promoter activation within Tax nuclear bodies. However, recent studies showing that ubiquitin or SUMO can modulate Tax activities in either the nucleus or the cytoplasm and that SUMOylated Tax can serve as substrate for ubiquitination suggested that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. Results In this study, we analyzed the properties of a new Tax mutant that is properly ubiquitinated, but defective for both nuclear body formation and SUMOylation. We report that reducing Tax SUMOylation and nuclear body formation do not alter the ability of Tax to activate IKK, induce RelA nuclear translocation, and trigger gene expression from a NF-κB promoter. Importantly, potent NF-κB promoter activation by Tax despite low SUMOylation and nuclear body formation is also observed in T cells, including CD4+ primary T lymphocytes. Moreover, we show that Tax nuclear bodies are hardly observed in HTLV-1-infected T cells. Finally, we provide direct evidence that the degree of NF-κB activation by Tax correlates with the level of Tax ubiquitination, but not SUMOylation. Conclusions These data reveal that the formation of Tax nuclear bodies, previously associated to transcriptional activities in Tax-transfected cells, is dispensable for NF-κB promoter activation, notably in CD4+ T cells. They also provide the first evidence that Tax SUMOylation is not a key determinant for Tax-induced NF-κB activation. PMID:23009398
NASA Astrophysics Data System (ADS)
Panczyk, E.; Ligeza, M.; Walis, L.
1999-01-01
In the Institute of Nuclear Chemistry and Technology in Warsaw in collaboration with the Department of Preservation and Restoration of Works of Art of the Academy of Fine Arts in Cracow and National Museum in Warsaw systematic studies using nuclear methods, particulary instrumental neutron activation analysis and X-ray fluorescence analysis, have been carried out on the panel paintings from the Krakowska- Nowosadecka School and Silesian School of the period from the XIV-XVII century, Chinese and Thai porcelains and mummies fillings of Egyptian sarcophagi. These studies will provide new data to the existing data base, will permit to compare materials used by various schools and individual artists.
Görner, Wolfram; Durchschlag, Erich; Wolf, Julia; Brown, Elizabeth L.; Ammerer, Gustav; Ruis, Helmut; Schüller, Christoph
2002-01-01
In yeast, environmental conditions control the transcription factor Msn2, the nuclear accumulation and function of which serve as a sensitive indicator of nutrient availablity and environmental stress load. We show here that the nuclear localization signal (NLS) of Msn2 is a direct target of cAMP-dependent protein kinase (cAPK). Genetic analysis suggests that Msn2-NLS function is inhibited by phosphorylation and activated by dephosphorylation. Msn2-NLS function is unaffected by many stress conditions that normally induce nuclear accumulation of full-length Msn2. The Msn2-NLS phosphorylation status is, however, highly sensitive to carbohydrate fluctuations during fermentative growth. Dephosphorylation occurs in >2 min after glucose withdrawal but the effect is reversed rapidly by refeeding with glucose. This response to glucose depletion is due to changes in cAPK activity rather than an increase in protein phosphatase activity. Surprisingly, the classical glucose-sensing systems are not connected to this rapid response system. Our results further imply that generic stress signals do not cause short-term depressions in cAPK activity. They operate on Msn2 by affecting an Msn5-dependent nuclear export and/or retention mechanism. PMID:11782433
Blumberg, Bruce; Kang, Heonjoong; Bolado, Jack; Chen, Hongwu; Craig, A. Grey; Moreno, Tanya A.; Umesono, Kazuhiko; Perlmann, Thomas; De Robertis, Eddy M.; Evans, Ronald M.
1998-01-01
Nuclear receptors are ligand-modulated transcription factors that respond to steroids, retinoids, and thyroid hormones to control development and body physiology. Orphan nuclear receptors, which lack identified ligands, provide a unique, and largely untapped, resource to discover new principles of physiologic homeostasis. We describe the isolation and characterization of the vertebrate orphan receptor, BXR, which heterodimerizes with RXR and binds high-affinity DNA sites composed of a variant thyroid hormone response element. A bioactivity-guided screen of embryonic extracts revealed that BXR is activatable by low-molecular-weight molecules with spectral patterns distinct from known nuclear receptor ligands. Mass spectrometry and 1H NMR analysis identified alkyl esters of amino and hydroxy benzoic acids as potent, stereoselective activators. In vitro cofactor association studies, along with competable binding of radiolabeled compounds, establish these molecules as bona fide ligands. Benzoates comprise a new molecular class of nuclear receptor ligand and their activity suggests that BXR may control a previously unsuspected vertebrate signaling pathway. PMID:9573044
NASA Astrophysics Data System (ADS)
Misawa, Tsuyoshi; Takahashi, Yoshiyuki; Yagi, Takahiro; Pyeon, Cheol Ho; Kimura, Masaharu; Masuda, Kai; Ohgaki, Hideaki
2015-10-01
For detection of hidden special nuclear materials (SNMs), we have developed an active neutron-based interrogation system combined with a D-D fusion pulsed neutron source and a neutron detection system. In the detection scheme, we have adopted new measurement techniques simultaneously; neutron noise analysis and neutron energy spectrum analysis. The validity of neutron noise analysis method has been experimentally studied in the Kyoto University Critical Assembly (KUCA), and was applied to a cargo container inspection system by simulation.
Cartoon Analysis of Peace Propaganda.
ERIC Educational Resources Information Center
Alexander, Mary, Ed.
1984-01-01
A cartoon for analysis and other learning activities is provided to help students study about peace propaganda, the nuclear freeze, and disarmament. A cartoon analysis worksheet, designed to help students analyze almost any political cartoon, is included. (RM)
Nayebosadri, Arman; Ji, Julie Y
2013-08-01
The lamina serves to maintain the nuclear structure and stiffness while acting as a scaffold for heterochromatin and many transcriptional proteins. Its role in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In this study, we successfully silenced lamin A/C in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to dexamethasone and shear stress. Nuclear translocation of GR, an anti-inflammatory nuclear receptor, in response to dexamethasone or shear stress (5, 10, and 25 dyn/cm(2)) was observed via time-lapse cell imaging and quantified using a Bayesian image analysis algorithm. Transcriptional activity of the GRE promoter was assessed using a dual-luciferase reporter plasmid. We found no dependence on nuclear lamina for GR translocation from the cytoplasm into the nucleus. However, the absence of lamin A/C led to significantly increased expression of luciferase under dexamethasone and shear stress induction as well as changes in histone protein function. PCR results for NF-κB inhibitor alpha (NF-κBIA) and dual specificity phosphatase 1 (DUSP1) genes further supported our luciferase data with increased expression in the absence of lamin. Our results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus, but nuclear lamina is important to properly regulate GRE transcription. Nuclear lamina, rather than histone deacetylase (HDAC), is a more significant mediator of shear stress-induced transcriptional activity, while dexamethasone-initiated transcription is more HDAC dependent. Our findings provide more insights into the molecular pathways involved in nuclear mechanotransduction.
Nayebosadri, Arman
2013-01-01
The lamina serves to maintain the nuclear structure and stiffness while acting as a scaffold for heterochromatin and many transcriptional proteins. Its role in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In this study, we successfully silenced lamin A/C in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to dexamethasone and shear stress. Nuclear translocation of GR, an anti-inflammatory nuclear receptor, in response to dexamethasone or shear stress (5, 10, and 25 dyn/cm2) was observed via time-lapse cell imaging and quantified using a Bayesian image analysis algorithm. Transcriptional activity of the GRE promoter was assessed using a dual-luciferase reporter plasmid. We found no dependence on nuclear lamina for GR translocation from the cytoplasm into the nucleus. However, the absence of lamin A/C led to significantly increased expression of luciferase under dexamethasone and shear stress induction as well as changes in histone protein function. PCR results for NF-κB inhibitor alpha (NF-κBIA) and dual specificity phosphatase 1 (DUSP1) genes further supported our luciferase data with increased expression in the absence of lamin. Our results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus, but nuclear lamina is important to properly regulate GRE transcription. Nuclear lamina, rather than histone deacetylase (HDAC), is a more significant mediator of shear stress-induced transcriptional activity, while dexamethasone-initiated transcription is more HDAC dependent. Our findings provide more insights into the molecular pathways involved in nuclear mechanotransduction. PMID:23703529
OECD/NEA Ongoing activities related to the nuclear fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornet, S.M.; McCarthy, K.; Chauvin, N.
2013-07-01
As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclearmore » systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)« less
Proton-induced Nuclear Reactions Using Compact High-Contrast High-Intensity Laser
NASA Astrophysics Data System (ADS)
Ogura, Koichi; Shizuma, Toshiyuki; Hayakawa, Takehito; Yogo, Akifumi; Nishiuchi, Mamiko; Orimo, Satoshi; Sagisaka, Akito; Pirozhkov, Alexander; Mori, Michiaki; Kiriyama, Hiromitsu; Kanazawa, Shuhei; Kondo, Shunji; Nakai, Yoshiki; Shimoura, Takuya; Tanoue, Manabu; Akutsu, Atsushi; Motomura, Tomohiro; Okada, Hajime; Kimura, Toyoaki; Oishi, Yuji; Nayuki, Takuya; Fujii, Takashi; Nemoto, Koshichi; Daido, Hiroyuki
2009-06-01
A multi-MeV proton beam driven by a compact laser with an intensity of ˜1020 W/cm2 is used to induce the nuclear reaction 11B(p,n)11C. The total activity of 11C produced after 60 shots of laser irradiation is found to be 11.1+/-0.4 Bq. The possibility of thin layer activation (TLA) analysis using a high-intensity ultrashort-pulse laser is discussed.
Jensen, Torben Heick; Neville, Megan; Rain, Jean Christophe; McCarthy, Terri; Legrain, Pierre; Rosbash, Michael
2000-01-01
Nuclear export of proteins containing leucine-rich nuclear export signals (NESs) is mediated by the NES receptor CRM1/Crm1p. We have carried out a yeast two-hybrid screen with Crm1p as a bait. The Crm1p-interacting clones were subscreened for nuclear export activity in a visual assay utilizing the Crm1p-inhibitor leptomycin B (LMB). This approach identified three Saccharomyces cerevisiae proteins not previously known to have nuclear export activity. These proteins are the 5′ RNA triphosphatase Ctl1p, the cell cycle-regulated transcription factor Ace2p, and a protein encoded by the previously uncharacterized open reading frame YDR499W. Mutagenesis analysis show that YDR499Wp contains an NES that conforms to the consensus sequence for leucine-rich NESs. Mutagenesis of Ctl1p and Ace2p were unable to identify specific NES residues. However, a 29-amino-acid region of Ace2p, rich in hydrophobic residues, contains nuclear export activity. Ace2p accumulates in the nucleus at the end of mitosis and activates early-G1-specific genes. We now provide evidence that Ace2p is nuclear not only in late M-early G1 but also during other stages of the cell cycle. This feature of Ace2p localization explains its ability to activate genes such as CUP1, which are not expressed in a cell cycle-dependent manner. PMID:11027275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makoto Kashiwagi; Garamszeghy, Mike; Lantes, Bertrand
Disposal of low-and intermediate-level activated waste generated at nuclear power plants is being planned or carried out in many countries. The radioactivity concentrations and/or total quantities of long-lived, difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63, Nb-94, α emitting nuclides etc., are often restricted by the safety case for a final repository as determined by each country's safety regulations, and these concentrations or amounts are required to be known and declared. With respect to waste contaminated by contact with process water, the Scaling Factor method (SF method), which is empirically based on sampling and analysis data, has been applied asmore » an important method for determining concentrations of DTM nuclides. This method was standardized by the International Organization for Standardization (ISO) and published in 2007 as ISO21238 'Scaling factor method to determine the radioactivity of low and intermediate-level radioactive waste packages generated at nuclear power plants' [1]. However, for activated metal waste with comparatively high concentrations of radioactivity, such as may be found in reactor control rods and internal structures, direct sampling and radiochemical analysis methods to evaluate the DTM nuclides are limited by access to the material and potentially high personnel radiation exposure. In this case, theoretical calculation methods in combination with empirical methods based on remote radiation surveys need to be used to best advantage for determining the disposal inventory of DTM nuclides while minimizing exposure to radiation workers. Pursuant to this objective a standard for the theoretical evaluation of the radioactivity concentration of DTM nuclides in activated waste, is in process through ISO TC85/SC5 (ISO Technical Committee 85: Nuclear energy, nuclear technologies, and radiological protection; Subcommittee 5: Nuclear fuel cycle). The project team for this ISO standard was formed in 2011 and is composed of experts from 11 countries. The project team has been conducting technical discussions on theoretical methods for determining concentrations of radioactivity, and has developed the draft International Standard of ISO16966 'Theoretical activation calculation method to evaluate the radioactivity of activated waste generated at nuclear reactors' [2]. This paper describes the international standardization process developed by the ISO project team, and outlines the following two theoretical activity evaluation methods:? Point method? Range method. (authors)« less
Mimura, Yasuhiro; Takemoto, Satoko; Tachibana, Taro; Ogawa, Yutaka; Nishimura, Masaomi; Yokota, Hideo; Imamoto, Naoko
2017-11-24
Nuclear pore complexes (NPCs) maintain cellular homeostasis by mediating nucleocytoplasmic transport. Although cyclin-dependent kinases (CDKs) regulate NPC assembly in interphase, the location of NPC assembly on the nuclear envelope is not clear. CDKs also regulate the disappearance of pore-free islands, which are nuclear envelope subdomains; this subdomain gradually disappears with increase in homogeneity of the NPC in response to CDK activity. However, a causal relationship between pore-free islands and NPC assembly remains unclear. Here, we elucidated mechanisms underlying NPC assembly from a new perspective by focusing on pore-free islands. We proposed a novel framework for image-based analysis to automatically determine the detailed 'landscape' of pore-free islands from a large quantity of images, leading to the identification of NPC intermediates that appear in pore-free islands with increased frequency in response to CDK activity. Comparison of the spatial distribution between simulated and the observed NPC intermediates within pore-free islands showed that their distribution was spatially biased. These results suggested that the disappearance of pore-free islands is highly related to de novo NPC assembly and indicated the existence of specific regulatory mechanisms for the spatial arrangement of NPC assembly on nuclear envelopes.
NASA Astrophysics Data System (ADS)
Martinez, David
2013-04-01
MINERvA is a few-GeV neutrino scattering experiment that has been taking data in the NuMI beam line at Fermilab since November 2009. The experiment will provide important inputs, both in support of neutrino oscillation searches and as a pure weak probe of the nuclear medium. For this, MINERvA employs a fine-grained detector, with an eight ton active target region composed of plastic scintillator and a suite of nuclear targets composed of helium, carbon, iron, lead and water placed upstream of the active region. In this talk, we present the current status of the charged current inclusive analysis for neutrinos and antineutrinos in plastic scintillator.
NASA Astrophysics Data System (ADS)
Fuseler, John W.; Merrill, Dana M.; Rogers, Jennifer A.; Grisham, Matthew B.; Wolf, Robert E.
2006-07-01
Nuclear factor kappa B (NF-[kappa]B) is a heterodimeric transcription factor typically composed of p50 and p65 subunits and is a pleiotropic regulator of various inflammatory and immune responses. In quiescent cells, p50/p65 dimers are sequestered in the cytoplasm bound to its inhibitors, the I-[kappa]Bs, which prevent entry into the nucleus. Following cellular stimulation, the I-[kappa]Bs are rapidly degraded, activating NF-[kappa]B. The active form of NF-[kappa]B rapidly translocates into the nucleus, binding to consensus sequences in the promoter/enhancer region of various genes, promoting their transcription. In human vascular endothelial cells activated with tumor necrosis factor-alpha, the activation and translocation of NF-[kappa]B is rapid, reaching maximal nuclear localization by 30 min. In this study, the appearance of NF-[kappa]B (p65 subunit, p65-NF-[kappa]B) in the nucleus visualized by immunofluorescence and quantified by morphometric image analysis (integrated optical density, IOD) is compared to the appearance of activated p65-NF-[kappa]B protein in the nucleus determined biochemically. The appearance of p65-NF-[kappa]B in the nucleus measured by fluorescence image analysis and biochemically express a linear correlation (R2 = 0.9477). These data suggest that localization and relative protein concentrations of NF-[kappa]B can be reliably determined from IOD measurements of the immunofluorescent labeled protein.
NASA Astrophysics Data System (ADS)
Yussup, N.; Ibrahim, M. M.; Rahman, N. A. A.; Mokhtar, M.; Salim, N. A. A.; Soh@Shaari, S. C.; Azman, A.; Lombigit, L.; Azman, A.; Omar, S. A.
2018-01-01
Most of the procedures in neutron activation analysis (NAA) process that has been established in Malaysian Nuclear Agency (Nuclear Malaysia) since 1980s were performed manually. These manual procedures carried out by the NAA laboratory personnel are time consuming and inefficient especially for sample counting and measurement process. The sample needs to be changed and the measurement software needs to be setup for every one hour counting time. Both of these procedures are performed manually for every sample. Hence, an automatic sample changer system (ASC) that consists of hardware and software is developed to automate sample counting process for up to 30 samples consecutively. This paper describes the ASC control software for NAA process which is designed and developed to control the ASC hardware and call GammaVision software for sample measurement. The software is developed by using National Instrument LabVIEW development package.
Nuclear Physics Laboratory technical progress report, November 1, 1972-- November 1, 1973
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-11-01
The experimental program was divided into the areas of nuclear physics (charged-particle experiments, gamma-ray experiments andd beta decay, neutron time-of-flight experiments, x-ray fluorescence analysis, other activities), intermediate enengy physics, and apparatus and facility development. The energy- loss spectrograph, rotating-beam neutron time-of-flight spectrometer, and cyclotron and the rearch done using these facilities are described. The theoretical program has concentrated on the effects of two-step processes in nuclear reactions. The trace element analysis program continued, and a neutron beam for cancer therapy is being developed. Lists of publications and personnel are also included. (RWR)
ERIC Educational Resources Information Center
Duggan, Jerome L.; And Others
The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…
Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control
NASA Astrophysics Data System (ADS)
Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.
2016-06-01
Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.
Using the nuclear activation AMS method for determining chlorine in solids at ppb-levels and below
NASA Astrophysics Data System (ADS)
Winkler, Stephan R.; Eigl, Rosmarie; Forstner, Oliver; Martschini, Martin; Steier, Peter; Sterba, Johannes H.; Golser, Robin
2015-10-01
Neutron activation analysis using decay counting of the activated element is a well-established method in elemental analysis. However, for chlorine there is a better alternative to measuring decay of the short-lived activation product chlorine-38 (t1/2 = 37.24 min) - accelerator mass spectrometry (AMS) of 36Cl: the relatively high neutron capture cross section of chlorine-35 for thermal neutrons (43.7 b) and combined the AMS technique for chlorine-36 (t1/2 = 301 ka) allow for determination of chlorine down to ppb-levels using practical sample sizes and common exposure durations. The combination of neutron activation and AMS can be employed for a few other elements (nitrogen, thorium, and uranium) as well. For bulk solid samples an advantage of the method is that lab contamination can be rendered irrelevant. The chlorine-35 in the sample is activated to chlorine-36, and surface chlorine can be removed after the irradiation. Subsequent laboratory contamination, however, will not carry a prominent chlorine-36 signature. After sample dissolution and addition of sufficient amounts of stable chlorine carrier the produced chlorine-36 and thus the original chlorine-35 of the sample can be determined using AMS. We have developed and applied the method for analysis of chlorine in steel samples. The chlorine content of steel is of interest to nuclear industry, precisely because of above mentioned high neutron capture cross section for chlorine-35, which leads to accumulation of chlorine-36 as long-term nuclear waste. The samples were irradiated at the TRIGA Mark II reactor of the Atominstitut in Vienna and the 36Cl-AMS setup at the Vienna Environmental Research Accelerator (VERA) was used for 36Cl/Cl analysis.
Anomaly detection applied to a materials control and accounting database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteson, R.; Spanks, L.; Yarbro, T.
An important component of the national mission of reducing the nuclear danger includes accurate recording of the processing and transportation of nuclear materials. Nuclear material storage facilities, nuclear chemical processing plants, and nuclear fuel fabrication facilities collect and store large amounts of data describing transactions that involve nuclear materials. To maintain confidence in the integrity of these data, it is essential to identify anomalies in the databases. Anomalous data could indicate error, theft, or diversion of material. Yet, because of the complex and diverse nature of the data, analysis and evaluation are extremely tedious. This paper describes the authors workmore » in the development of analysis tools to automate the anomaly detection process for the Material Accountability and Safeguards System (MASS) that tracks and records the activities associated with accountable quantities of nuclear material at Los Alamos National Laboratory. Using existing guidelines that describe valid transactions, the authors have created an expert system that identifies transactions that do not conform to the guidelines. Thus, this expert system can be used to focus the attention of the expert or inspector directly on significant phenomena.« less
Prognostic significance of nuclear pSTAT3 in oral cancer.
Macha, Muzafar A; Matta, Ajay; Kaur, Jatinder; Chauhan, S S; Thakar, Alok; Shukla, Nootan K; Gupta, Siddhartha Datta; Ralhan, Ranju
2011-04-01
Aberrant nuclear accumulation of proteins influences tumor development and may predict biologic aggressiveness and disease prognosis. This study determined the prognostic significance of pSTAT3 (phosphorylayed signal transducer and activator of transcription 3) in oral squamous cell carcinomas (OSCCs). Using immunohistochemistry, a significant increase in nuclear accumulation of pSTAT3 was observed in 49 of 90 leukoplakias (54.4%) and 63/94 OSCCs (67%) (p(trend) < .001). Increased pSTAT3 was associated with tumor stage (p = .01), nodal metastasis (p = .0018), and tobacco consumption (p = .004). Kaplan-Meier analysis demonstrated that OSCC with increased nuclear pSTAT3 showed significantly reduced disease-free survival (13 months), compared with the patients with no nuclear pSTAT3 expression (64 months, p = .019). Cox regression analysis revealed nuclear pSTAT3 as the most significant predictor of poor prognosis (p = .024, hazard ratio [HR] = 2.7). Increased nuclear accumulation of pSTAT3 occurs in early premalignant stages and is a marker for poor prognosis of OSCC. Copyright © 2010 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Ling; Reinach, Peter; Lu, Luo
2005-11-15
Tumor necrosis factor (TNF-{alpha}) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-{alpha} also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-{alpha} stimulation induced activation of a voltage-gated K{sup +} channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-{alpha} on downstream events included NF{kappa}B nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-{alpha} induced increases inmore » p21 expression resulting in partial cell cycle attenuation in the G{sub 1} phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-{alpha}-induced K{sup +} channel activity effectively prevented NF{kappa}B nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-{alpha}. In conclusion, TNF-{alpha} promotes survival of HCE cells through sequential stimulation of K{sup +} channel and NF{kappa}B activities. This response to TNF-{alpha} is dependent on stimulating K{sup +} channel activity because following suppression of K{sup +} channel activity TNF-{alpha} failed to activate NF{kappa}B nuclear translocation and binding to nuclear DNA.« less
Examination of psychological variables related to nuclear attitudes and nuclear activism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, P.J.
1985-01-01
It was hypothesized that knowledge about nuclear arms developments would not be correlated with nuclear attitudes, that sense of efficacy would be positively correlated with magnitude of nuclear activism, and that death anxiety would be correlated with high level of nuclear knowledge and anti-nuclear attitudes, but not with sense of power. It was also hypothesized that positive correlations would be found between nuclear activism and political activism, knowledge of nuclear facts, and degree of adherence to anti-nuclear attitudes. One hundred and forty three women and 90 men participated in this questionnaire study. Major findings are as follows. In general, themore » more people knew about nuclear developments, the more anti-nuclear were their attitudes. Also, regardless of nuclear attitudes, a positive correlation was found between knowledge of nuclear facts and nuclear activism. Death anxiety and powerlessness were not correlated. There was a positive correlation between anxiety and both nuclear knowledge and anti-nuclear attitudes. A strong positive correlation was found between nuclear activism and anti-nuclear attitudes, and between political activism and nuclear activism. Internal locus of control did not correlate significantly with high sense of power or with high degree of nuclear activism.« less
Application of modern autoradiography to nuclear forensic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc
Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary tomore » information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20 × 40 cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50 μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ~10 μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. Here in this article we present a summary of our setup, as modified for nuclear forensic sample analysis and related research, and provide examples of data from select samples from the nuclear fuel cycle and historical nuclear test debris.« less
Application of modern autoradiography to nuclear forensic analysis
Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; ...
2018-05-20
Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary tomore » information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20 × 40 cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50 μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ~10 μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. Here in this article we present a summary of our setup, as modified for nuclear forensic sample analysis and related research, and provide examples of data from select samples from the nuclear fuel cycle and historical nuclear test debris.« less
Application of modern autoradiography to nuclear forensic analysis.
Parsons-Davis, Tashi; Knight, Kim; Fitzgerald, Marc; Stone, Gary; Caldeira, Lee; Ramon, Christina; Kristo, Michael
2018-05-01
Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary to information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20×40cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (10 5 ) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50μm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ∼10μm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. In this paper we present a summary of our setup, as modified for nuclear forensic sample analysis and related research, and provide examples of data from select samples from the nuclear fuel cycle and historical nuclear test debris. Copyright © 2018 Elsevier B.V. All rights reserved.
Galaxy interactions and strength of nuclear activity
NASA Technical Reports Server (NTRS)
Simkin, S. M.
1990-01-01
Analysis of data in the literature for differential velocities and projected separations of nearby Seyfert galaxies with possible companions shows a clear difference in projected separations between type 1's and type 2's. This kinematic difference between the two activity classes reinforces other independent evidence that their different nuclear characteristics are related to a non-nuclear physical distinction between the two classes. The differential velocities and projected separations of the galaxy pairs in this sample yield mean galaxy masses, sizes, and mass to light ratios which are consistent with those found by the statistical methods of Karachentsev. Although the galaxy sample discussed here is too small and too poorly defined to provide robust support for these conclusions, the results strongly suggest that nuclear activity in Seyfert galaxies is associated with gravitational perturbations from companion galaxies, and that there are physical distinctions between the host companions of Seyfert 1 and Seyfert 2 nuclei which may depend both on the environment and the structure of the host galaxy itself.
Developing a Nuclear Grade of Alloy 617 for Gen IV Nuclear Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Weiju; Swindeman, Robert W; Santella, Michael L
2010-01-01
Alloy 617, an attractive material not particularly developed for nuclear use, is now being considered as a leading candidate alloy by several countries for applications in the Gen IV Nuclear Energy Systems. An extensive review of its existing data suggests that it would be beneficial to refine the alloy s specification to a nuclear grade for the intended Gen IV systems. In this paper, rationale for developing a nuclear grade of the alloy is first discussed through an analysis on existing data from various countries. Then initial experiments for refining the alloy specification are described. Preliminary results have suggested themore » feasibility of the refinement approach, as well as the possibility for achieving a desirable nuclear grade. Based on the results, further research activities are recommended.« less
The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key nuclear receptors involved in the regulation of cellular responses. to exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non genotoxic i...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heineke, J.M.
1978-12-20
This study examines and analyzes several classes of incidents in which decision makers are confronted with adversaries. The classes are analogous to adversaries in a material control system in a nuclear facility. Both internal threats (bank frauds and embezzlements) and external threats (aircraft hijackings and hostage-type terrorist events were analyzed. (DLC)
García-Santisteban, Iraia; Arregi, Igor; Alonso-Mariño, Marián; Urbaneja, María A; Garcia-Vallejo, Juan J; Bañuelos, Sonia; Rodríguez, Jose A
2016-12-01
The exportin CRM1 binds nuclear export signals (NESs), and mediates active transport of NES-bearing proteins from the nucleus to the cytoplasm. Structural and biochemical analyses have uncovered the molecular mechanisms underlying CRM1/NES interaction. CRM1 binds NESs through a hydrophobic cleft, whose open or closed conformation facilitates NES binding and release. Several cofactors allosterically modulate the conformation of the NES-binding cleft through intramolecular interactions involving an acidic loop and a C-terminal helix in CRM1. This current model of CRM1-mediated nuclear export has not yet been evaluated in a cellular setting. Here, we describe SRV100, a cellular reporter to interrogate CRM1 nuclear export activity. Using this novel tool, we provide evidence further validating the model of NES binding and release by CRM1. Furthermore, using both SRV100-based cellular assays and in vitro biochemical analyses, we investigate the functional consequences of a recurrent cancer-related mutation, which targets a residue near CRM1 NES-binding cleft. Our data indicate that this mutation does not necessarily abrogate the nuclear export activity of CRM1, but may increase its affinity for NES sequences bearing a more negatively charged C-terminal end.
Amati, B; Pick, L; Laroche, T; Gasser, S M
1990-01-01
Nuclei isolated from eukaryotic cells can be depleted of histones and most soluble nuclear proteins to isolate a structural framework called the nuclear scaffold. This structure maintains specific interactions with genomic DNA at sites known as scaffold attached regions (SARs), which are thought to be the bases of DNA loops. In both Saccharomyces cerevisiae and Schizosaccharomyces pombe, genomic ARS elements are recovered as SARs. In addition, SARs from Drosophila melanogaster bind to yeast nuclear scaffolds in vitro and a subclass of these promotes autonomous replication of plasmids in yeast. In the present report, we present fine mapping studies of the Drosophila ftz SAR, which has both SAR and ARS activities in yeast. The data establish a close relationship between the sequences involved in ARS activity and scaffold binding: ARS elements that can bind the nuclear scaffold in vitro promote more efficient plasmid replication in vivo, but scaffold association is not a strict prerequisite for ARS function. Efficient interaction with nuclear scaffolds from both yeast and Drosophila requires a minimal length of SAR DNA that contains reiteration of a narrow minor groove structure of the double helix. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:2123454
Insight into the functional organization of nuclear lamins in health and disease.
Tatli, Meltem; Medalia, Ohad
2018-05-22
Lamins are the main component of the nuclear lamina, a protein meshwork at the inner nuclear membrane which primarily provide mechanical stability to the nucleus. Lamins, type V intermediate filament proteins, are also involved in many nuclear activities. Structural analysis of nuclei revealed that lamins form 3.5nm thick filaments often interact with nuclear pore complexes. Mutations in the LMNA gene, encoding A-type lamins, have been associated with at least 15 distinct diseases collectively termed laminopathies, including muscle, metabolic and neurological disorders, and premature aging syndrome. It is unclear how laminopathic mutations lead to such a wide array of diseases, essentially affecting almost all tissues. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cheng, Yu Ti; Germain, Hugo; Wiermer, Marcel; Bi, Dongling; Xu, Fang; García, Ana V; Wirthmueller, Lennart; Després, Charles; Parker, Jane E; Zhang, Yuelin; Li, Xin
2009-08-01
Plant immune responses depend on dynamic signaling events across the nuclear envelope through nuclear pores. Nuclear accumulation of certain resistance (R) proteins and downstream signal transducers are critical for their functions, but it is not understood how these processes are controlled. Here, we report the identification, cloning, and analysis of Arabidopsis thaliana modifier of snc1,7 (mos7-1), a partial loss-of-function mutation that suppresses immune responses conditioned by the autoactivated R protein snc1 (for suppressor of npr1-1, constitutive 1). mos7-1 single mutant plants exhibit defects in basal and R protein-mediated immunity and in systemic acquired resistance but do not display obvious pleiotropic defects in development, salt tolerance, or plant hormone responses. MOS7 is homologous to human and Drosophila melanogaster nucleoporin Nup88 and resides at the nuclear envelope. In animals, Nup88 attenuates nuclear export of activated NF-kappaB transcription factors, resulting in nuclear accumulation of NF-kappaB. Our analysis shows that nuclear accumulation of snc1 and the defense signaling components Enhanced Disease Susceptibility 1 and Nonexpresser of PR genes 1 is significantly reduced in mos7-1 plants, while nuclear retention of other tested proteins is unaffected. The data suggest that specifically modulating the nuclear concentrations of certain defense proteins regulates defense outputs.
Dang, Van-Dinh; Levin, Henry L.
2000-01-01
Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein. PMID:11003674
Dang, V D; Levin, H L
2000-10-01
Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministicmore » and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.« less
Multi-lobulation of the nucleus in prolonged S phase by nuclear expression of Chk tyrosine kinase.
Nakayama, Yuji; Yamaguchi, Naoto
2005-04-01
Chk tyrosine kinase phosphorylates Src-family tyrosine kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. To investigate the role of nuclear Chk in proliferation, various Chk mutants were constructed and expressed. Nuclear localization of Chk-induced dynamic multi-lobulation of the nucleus and prolonged S phase of the cell cycle. The N-terminal domain of Chk and a portion of its kinase domain but not the kinase activity were responsible for induction of the multi-lobulation. Cell sorting analysis revealed that nuclear multi-lobulated cells were enriched in late S phase. Multi-lobulated nuclei were surrounded with lamin B1 that was particularly concentrated in concave regions of the nuclei. Furthermore, treatment with nocodazole or taxol disrupted multi-lobulation of the nucleus. These results suggest that nuclear multi-lobulation in late S phase, which is dependent on polymerization and depolymerization of microtubules, may be involved in nuclear Chk-induced inhibition of proliferation.
Nuclear Mitochondrial DNA Activates Replication in Saccharomyces cerevisiae
Chatre, Laurent; Ricchetti, Miria
2011-01-01
The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in. PMID:21408151
Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae.
Chatre, Laurent; Ricchetti, Miria
2011-03-08
The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.
Therapeutic hypolipidemic agents and industrial chemicals that cause peroxisome proliferation and induce liver tumors in rodents activate the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα). Research has elucidated the cellular and molecular events by w...
Chandra stacking analysis of CANDELS galaxies at z>1.5
NASA Astrophysics Data System (ADS)
Civano, Francesca
2016-09-01
The goal of this proposal is to study the X-ray emission of non-X-ray detected galaxies at z>1.5, beyond the peak of stellar and nuclear activity, in combination with galaxy global properties, such as stellar mass and star formation activity and their morphological classification. To achieve this goal, we will select galaxies in CANDELS. Making use of the 5 X-ray surveys with different depths (160 ks for COSMOS, 800 ks for AEGIS-XD and X-UDS, 2 Ms for GOODS-N and 4 (8) Ms GOODS-S) available in these famous fields, we will be able to reach X-ray luminosities where stellar emission dominate the nuclear one. This analysis will extend to z>1.5, the results obtained performing stacking analysis solely using the Chandra COSMOS Legacy Survey at lower redshift.
Yuan, Jun; Sera, Koichiro; Takatsuji, Toshihiro
2015-01-01
To investigate human health effects of radiation exposure due to possible future nuclear accidents in distant places and other various findings of analysis of the radioactive materials contaminating the atmosphere of Nagasaki due to the Fukushima Daiichi Nuclear Power Plant accident. The concentrations of radioactive materials in aerosols in the atmosphere of Nagasaki were measured using a germanium semiconductor detector from March 2011 to March 2013. Internal exposure dose was calculated in accordance with ICRP Publ. 72. Air trajectories were analyzed using NOAA and METEX web-based systems. (134)Cs and (137)Cs were repeatedly detected. The air trajectory analysis showed that (134)Cs and (137)Cs flew directly from the Fukushima Daiichi Nuclear Power Plant from March to April 2011. However, the direct air trajectories were rarely detected after this period even when (134)Cs and (137)Cs were detected after this period. The activity ratios ((134)Cs/(137)Cs) of almost all the samples converted to those in March 2011 were about unity. This strongly suggests that the (134)Cs and (137)Cs detected mainly originated from the Fukushima Daiichi Nuclear Power Plant accident in March 2011. Although the (134)Cs and (137)Cs concentrations per air volume were very low and the human health effects of internal exposure via inhalation is expected to be negligible, the specific activities (concentrations per aerosol mass) were relatively high. It was found that possible future nuclear accidents may cause severe radioactive contaminations, which may require radiation exposure control of farm goods to more than 1000 km from places of nuclear accidents.
Goodwin, Edward C.; Motamedi, Nasim; Lipovsky, Alex; Fernández-Busnadiego, Rubén; DiMaio, Daniel
2014-01-01
DNAJB12 and DNAJB14 are transmembrane proteins in the endoplasmic reticulum (ER) that serve as co-chaperones for Hsc70/Hsp70 heat shock proteins. We demonstrate that over-expression of DNAJB12 or DNAJB14 causes the formation of elaborate membranous structures within cell nuclei, which we designate DJANGOS for DNAJ-associated nuclear globular structures. DJANGOS contain DNAJB12, DNAJB14, Hsc70 and markers of the ER lumen and ER and nuclear membranes. Strikingly, they are evenly distributed underneath the nuclear envelope and are of uniform size in any one nucleus. DJANGOS are composed primarily of single-walled membrane tubes and sheets that connect to the nuclear envelope via a unique configuration of membranes, in which the nuclear pore complex appears anchored exclusively to the outer nuclear membrane, allowing both the inner and outer nuclear membranes to flow past the circumference of the nuclear pore complex into the nucleus. DJANGOS break down rapidly during cell division and reform synchronously in the daughter cell nuclei, demonstrating that they are dynamic structures that undergo coordinate formation and dissolution. Genetic studies showed that the chaperone activity of DNAJ/Hsc70 is required for the formation of DJANGOS. Further analysis of these structures will provide insight into nuclear pore formation and function, activities of molecular chaperones, and mechanisms that maintain membrane identity. PMID:24732912
Conformational analysis of a quinolonic ribonucleoside with anti-HSV-1 activity
NASA Astrophysics Data System (ADS)
Yoneda, Julliane D.; Velloso, Marcia Helena R.; Leal, Kátia Z.; Azeredo, Rodrigo B. de V.; Sugiura, Makiko; Albuquerque, Magaly G.; Santos, Fernanda da C.; Souza, Maria Cecília B. V. de; Cunha, Anna Claudia; Seidl, Peter R.; Alencastro, Ricardo B. de; Ferreira, Vitor F.
2011-01-01
The infections caused by the Herpes Simplex Virus are one of the most common sources of diseases in adults and several natural nucleoside analogues are currently used in the treatment of these infections. In vitro tests of a series of quinolonic ribonucleosides derivatives synthesized by part of our group indicated that some of them have antiviral activity against HSV-1. The conformational analysis of bioactive compounds is extremely important in order to better understand their chemical structures and biological activity. In this work, we have carried out a nuclear relaxation NMR study of 6-Me ribonucleoside derivative in order to determine if the syn or anti conformation is preferential. The NMR analysis permits the determination of inter-atomic distances by using techniques which are based on nuclear relaxation and related phenomena. Those techniques are non-selective longitudinal or spin-lattice relaxation rates and NULL pulse sequence, which allow the determination of distances between pairs of hydrogen atoms. The results of NMR studies were compared with those obtained by molecular modeling.
Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control
Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; ...
2016-05-11
Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. Our review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. Furthermore, the development of chronometric methods for age dating nuclearmore » materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.« less
Pro-Nuclear Environmentalism: Should We Learn to Stop Worrying and Love Nuclear Energy?
van Munster, Rens; Sylvest, Casper
2015-10-01
In light of repeated failures to reach political agreement on effective policies to combat climate change, pro-nuclear environmentalists have set out to reverse the traditionally anti-nuclear inclinations of environmentalists. This essay examines the ideological commitments and assumptions of pro-nuclear environmentalism by performing a critical, historical analysis of the nuclear-environment nexus through the prism of documentary film. We focus on the work and career of documentary filmmaker Rob Stone, whose most recent production, Pandora's Promise (PP) (2013), has emerged as a central statement of this creed. PP actively forges a new political imaginary that replaces the apocalyptic image of nuclear fallout with that of catastrophic climate change. In terms of its rhetorical and visual strategies, however, PP also reveals that pro-nuclear environmentalist arguments have a long lineage. A close study of such continuities reveals a number of political implications that call for reflection as well as caution.
Artiukhov, V G; Kalaev, V N; Sen'kevich, E V; Vakhtel', V M; Savko, A D
2004-01-01
Cytogenetic characteristics (mitotic activity, level and spectrum of pathological mitoses, nucleoly characteristics) of seed offspring of Quercus robur L. and Betula pendula Roth from Novovoronezh nuclear power station's 1-kilometer zone have been studied. It has been shown the change of time of passing though mitotic stages by cells, the increasing of bridges frequency occur in spectrum of mitotic aberrations (that shows activation of reparation systems), the change in nucleoly characteristics (the part of polynucleolaris cells increase in case of oak and decrease in case of birch, the rase of surface square of single nucleolies). The phenomena, mean above, probably, induced by synergic effects of Novovoronezh nuclear power station and environment pollutants. The most contaminated territories of 1-kilometer zone of Novovoronezh nuclear power station have been discovered by means of methods of cluster analysis of total cytogenetic characteristics of tree plants seed offspring.
Geisberger, Roland; Rada, Cristina; Neuberger, Michael S.
2009-01-01
The carboxyterminal region of activation-induced deaminase (AID) is required for its function in Ig class switch recombination (CSR) and also contains a nuclear-export sequence (NES). Here, based on an extensive fine-structure mutation analysis of the AID NES, as well as from AID chimeras bearing heterologous NESs, we show that while a functional NES is indeed essential for CSR, it is not sufficient. The precise nature of the NES is critical both for AID stabilization and CSR function: minor changes in the NES can perturb stabilization and CSR without jeopardizing nuclear export. The results indicate that the AID NES fulfills a function beyond simply providing a signal for nuclear export and suggest the possibility that the quality of exportin-binding may be critical to the stabilization of AID and its activity in CSR. PMID:19351893
Yamada, Kana; Noguchi, Chisato; Kamitori, Kazuyo; Dong, Youyi; Hirata, Yuko; Hossain, Mohammad A; Tsukamoto, Ikuko; Tokuda, Masaaki; Yamaguchi, Fuminori
2012-02-01
Oxidative stress modulates the osteoclast differentiation via redox systems, and thioredoxin 1 (Trx) promotes the osteoclast formation by regulating the activity of transcription factors. The function of Trx is known to be regulated by its binding partner, thioredoxin-interacting protein (TXNIP). We previously reported that the expression of TXNIP gene is strongly induced by a rare sugar D-allose. In this study, we tested the hypothesis that D-allose could inhibit the osteoclast differentiation by regulating the Trx function. We used a murine Raw264 cell line that differentiates to the osteoclast by the receptor activator of nuclear factor-κB ligand (RANKL) treatment. The effect of sugars was evaluated by tartrate-resistant acid phosphatase staining. The expression and localization of TXNIP and Trx protein were examined by Western blotting and immunohistochemisty. The activity of the nuclear factor-κB, nuclear factor of activated T cells, and activator protein 1 transcription factors was measured by the luciferase reporter assay. The addition of D-allose (25 mmol/L) inhibited the osteoclast differentiation down to 9.53% ± 1.27% of a receptor activator of nuclear factor-κB ligand-only treatment. During the osteoclast differentiation, a significant increase of TNXIP was observed by D-allose treatment. The immunohistochemical analysis showed that both Trx and TXNIP existed in the nucleus in preosteoclasts and osteoclasts. Overexpression of TXNIP by plasmid transfection also inhibited the osteoclast formation, indicating the functional importance of TXNIP for the osteoclast differentiation. Transcriptional activity of the activator protein 1, nuclear factor-κB, and nuclear factor of activated T cells, known to be modulated by Trx, were inhibited by D-allose. In conclusion, our data indicate that D-allose is a strong inhibitor of the osteoclast differentiation, and this effect could be caused by TXNIP induction and a resulting inhibition of the Trx function. Copyright © 2012 Elsevier Inc. All rights reserved.
Ju, Jin Young; Park, Chun Young; Gupta, Mukesh Kumar; Uhm, Sang Jun; Paik, Eun Chan; Ryoo, Zae Young; Cho, Youl Hee; Chung, Kil Saeng; Lee, Hoon Taek
2008-05-01
To establish embryonic stem cell lines from nuclear transfer of somatic cell nuclei isolated from the same oocyte donor and from parthenogenetic activation. The study also evaluated the effect of the micromanipulation procedure on the outcome of somatic cell nuclear transfer in mice. Randomized, prospective study. Hospital-based assisted reproductive technology laboratory. F(1) (C57BL/6 x 129P3/J) mice. Metaphase II-stage oocytes were either parthenogenetically activated or nuclear transferred with cumulus cell nuclei or parthenogenetically activated after a sham-manipulation procedure. Embryogenesis and embryonic stem cell establishment. The development rate to morula/blastocyst of nuclear transferred oocytes (27.9% +/- 5.9%) was significantly lower than that of the sham-manipulated (84.1% +/- 5.6%) or parthenogenetic (98.6% +/- 1.4%) groups. A sharp decrease in cleavage potential was obvious in the two- to four-cell transition for the nuclear transferred embryos (79.0% +/- 4.6% and 43.3% +/- 5.0%), implying incomplete nuclear reprogramming in arrested oocytes. However, the cleavage, as well as the development rate, of parthenogenetic and sham-manipulated groups did not differ significantly. The embryonic stem cell line establishment rate was higher from parthenogenetically activated oocytes (15.7%) than nuclear transferred (4.3%) or sham-manipulated oocytes (12.5%). Cell colonies from all groups displayed typical morphology of mice embryonic stem cells and could be maintained successfully with undifferentiated morphology after continuous proliferation for more than 120 passages still maintaining normal karyotype. All these cells were positive for mice embryonic stem cell markers such as Oct-4 and SSEA-1 based on immunocytochemistry and reverse transcriptase-polymerase chain reaction. The clonal origin of the ntES cell line and the parthenogenetic embryonic stem cell lines were confirmed by polymerase chain reaction analysis of the polymorphic markers. Blastocyst injection experiments demonstrated that these lines contributed to resulting chimeras and are germ-line competent. We report the establishment of ntES cell lines from somatic cells isolated from same individual. Our data also suggest that embryo micromanipulation procedure during the nuclear transfer procedure influences the developmental ability and embryonic stem cell establishment rate of nuclear transferred embryos.
Baek, Jong Min; Kim, Ju-Young; Ahn, Sung-Jun; Cheon, Yoon-Hee; Yang, Miyoung; Oh, Jaemin; Choi, Min Kyu
2016-03-01
Dendrobium moniliforme (DM) is a well-known plant-derived extract that is widely used in Oriental medicine. DM and its chemical constituents have been reported to have a variety of pharmacological effects, including anti-oxidative, anti-inflammatory, and anti-tumor activities; however, no reports discuss the beneficial effects of DM on bone diseases such as osteoporosis. Thus, we investigated the relationship between DM and osteoclasts, cells that function in bone resorption. We found that DM significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation; DM directly induced the down-regulation of c-Fos and nuclear factor of activated T cells c1 (NFATc1) without affecting other RANKL-dependent transduction pathways. In the later stages of osteoclast maturation, DM negatively regulated the organization of filamentous actin (F-actin), resulting in impaired bone-resorbing activity by the mature osteoclasts. In addition, micro-computed tomography (μ-CT) analysis of the murine model revealed that DM had a beneficial effect on lipopolysaccharide (LPS)-mediated bone erosion. Histological analysis showed that DM attenuated the degradation of trabecular bone matrix and formation of TRAP-positive osteoclasts in bone tissues. These results suggest that DM is a potential candidate for the treatment of metabolic bone disorders such as osteoporosis.
Shutdown Dose Rate Analysis for the long-pulse D-D Operation Phase in KSTAR
NASA Astrophysics Data System (ADS)
Park, Jin Hun; Han, Jung-Hoon; Kim, D. H.; Joo, K. S.; Hwang, Y. S.
2017-09-01
KSTAR is a medium size fully superconducting tokamak. The deuterium-deuterium (D-D) reaction in the KSTAR tokamak generates neutrons with a peak yield of 3.5x1016 per second through a pulse operation of 100 seconds. The effect of neutron generation from full D-D high power KSTAR operation mode to the machine, such as activation, shutdown dose rate, and nuclear heating, are estimated for an assurance of safety during operation, maintenance, and machine upgrade. The nuclear heating of the in-vessel components, and neutron activation of the surrounding materials have been investigated. The dose rates during operation and after shutdown of KSTAR have been calculated by a 3D CAD model of KSTAR with the Monte Carlo code MCNP5 (neutron flux and decay photon), the inventory code FISPACT (activation and decay photon) and the FENDL 2.1 nuclear data library.
Diagnostic Application of Absolute Neutron Activation Analysis in Hematology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamboni, C.B.; Oliveira, L.C.; Dalaqua, L. Jr.
2004-10-03
The Absolute Neutron Activation Analysis (ANAA) technique was used to determine element concentrations of Cl and Na in blood of healthy group (male and female blood donators), select from Blood Banks at Sao Paulo city, to provide information which can help in diagnosis of patients. This study permitted to perform a discussion about the advantages and limitations of using this nuclear methodology in hematological examinations.
NASA Astrophysics Data System (ADS)
Sahoo, Sarata Kumar; Kavasi, Norbert; Sorimachi, Atsuyuki; Arae, Hideki; Tokonami, Shinji; Mietelski, Jerzy Wojciech; Łokas, Edyta; Yoshida, Satoshi
2016-04-01
The radioactive fission product 90Sr has a long biological half-life (˜18 y) in the human body. Due to its chemical similarity to calcium it accumulates in bones and irradiates the bone marrow, causing its high radio-toxicity. Assessing 90Sr is therefore extremely important in case of a nuclear disaster. In this work 16 soil samples were collected from the exclusion zone (<30 km) of the earthquake-damaged Fukushima Daiichi nuclear power plant, to measure 90Sr activity concentration using liquid scintillation counting. 137Cs activity concentration was also measured with gamma-spectroscopy in order to investigate correlation with 90Sr. The 90Sr activity concentrations ranged from 3.0 ± 0.3 to 23.3 ± 1.5 Bq kg-1 while the 137Cs from 0.7 ± 0.1 to 110.8 ± 0.3 kBq kg-1. The fact that radioactive contamination originated from the Fukushima nuclear accident was obvious due to the presence of 134Cs. However, 90Sr contamination was not confirmed in all samples although detectable amounts of 90Sr can be expected in Japanese soils, as a background, stemming from global fallout due to the atmospheric nuclear weapon tests. Correlation analysis between 90Sr and 137Cs activity concentrations provides a potentially powerful tool to discriminate background 90Sr level from its Fukushima contribution.
Sahoo, Sarata Kumar; Kavasi, Norbert; Sorimachi, Atsuyuki; Arae, Hideki; Tokonami, Shinji; Mietelski, Jerzy Wojciech; Łokas, Edyta; Yoshida, Satoshi
2016-04-06
The radioactive fission product (90)Sr has a long biological half-life (˜18 y) in the human body. Due to its chemical similarity to calcium it accumulates in bones and irradiates the bone marrow, causing its high radio-toxicity. Assessing (90)Sr is therefore extremely important in case of a nuclear disaster. In this work 16 soil samples were collected from the exclusion zone (<30 km) of the earthquake-damaged Fukushima Daiichi nuclear power plant, to measure (90)Sr activity concentration using liquid scintillation counting. (137)Cs activity concentration was also measured with gamma-spectroscopy in order to investigate correlation with (90)Sr. The (90)Sr activity concentrations ranged from 3.0 ± 0.3 to 23.3 ± 1.5 Bq kg(-1) while the (137)Cs from 0.7 ± 0.1 to 110.8 ± 0.3 kBq kg(-1). The fact that radioactive contamination originated from the Fukushima nuclear accident was obvious due to the presence of (134)Cs. However, (90)Sr contamination was not confirmed in all samples although detectable amounts of (90)Sr can be expected in Japanese soils, as a background, stemming from global fallout due to the atmospheric nuclear weapon tests. Correlation analysis between (90)Sr and (137)Cs activity concentrations provides a potentially powerful tool to discriminate background (90)Sr level from its Fukushima contribution.
Sahoo, Sarata Kumar; Kavasi, Norbert; Sorimachi, Atsuyuki; Arae, Hideki; Tokonami, Shinji; Mietelski, Jerzy Wojciech; Łokas, Edyta; Yoshida, Satoshi
2016-01-01
The radioactive fission product 90Sr has a long biological half-life (˜18 y) in the human body. Due to its chemical similarity to calcium it accumulates in bones and irradiates the bone marrow, causing its high radio-toxicity. Assessing 90Sr is therefore extremely important in case of a nuclear disaster. In this work 16 soil samples were collected from the exclusion zone (<30 km) of the earthquake-damaged Fukushima Daiichi nuclear power plant, to measure 90Sr activity concentration using liquid scintillation counting. 137Cs activity concentration was also measured with gamma-spectroscopy in order to investigate correlation with 90Sr. The 90Sr activity concentrations ranged from 3.0 ± 0.3 to 23.3 ± 1.5 Bq kg−1 while the 137Cs from 0.7 ± 0.1 to 110.8 ± 0.3 kBq kg−1. The fact that radioactive contamination originated from the Fukushima nuclear accident was obvious due to the presence of 134Cs. However, 90Sr contamination was not confirmed in all samples although detectable amounts of 90Sr can be expected in Japanese soils, as a background, stemming from global fallout due to the atmospheric nuclear weapon tests. Correlation analysis between 90Sr and 137Cs activity concentrations provides a potentially powerful tool to discriminate background 90Sr level from its Fukushima contribution. PMID:27048779
Kim, Hiyoung; Kim, Kwang-Jin; Yeon, Jeong-Tae; Kim, Seong Hwan; Won, Dong Hwan; Choi, Hyukjae; Nam, Sang-Jip; Son, Young-Jin; Kang, Heonjoong
2014-01-01
A new inhibitor, placotylene A (1), of the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation, and a regioisomer of placotylene A, placotylene B (2), were isolated from a Korean marine sponge Placospongia sp. The chemical structures of placotylenes A and B were elucidated on the basis of 1D and 2D NMR, along with MS spectral analysis and revealed as an iodinated polyacetylene class of natural products. Placotylene A (1) displayed inhibitory activity against RANKL-induced osteoclast differentiation at 10 μM while placotylene B (2) did not show any significant activity up to 100 μM, respectively. PMID:24705502
Teaching Activities on Horizontal Nuclear Proliferation.
ERIC Educational Resources Information Center
Zola, John
1990-01-01
Provides learning activities concerning the horizontal proliferation of nuclear weapons. Includes step-by-step directions for four activities: (1) the life cycle of nuclear weapons; (2) nuclear nonproliferation: pros and cons; (3) the nuclear power/nuclear weapons connection; and (4) managing nuclear proliferation. (NL)
Vasilescu, Catalin; Giza, Dana Elena; Petrisor, Petre; Dobrescu, Radu; Popescu, Irinel; Herlea, Vlad
2012-01-01
Pancreatic cancer is a highly aggressive cancer with a rising incidence and poor prognosis despite active surgical treatment. Candidates for surgical resection should be carefully selected. In order to avoid unnecessary laparotomy it is useful to identify reliable factors that may predict resectability. Nuclear morphometry and fractal dimension of pancreatic nuclear features could provide important preoperative information in assessing pancreas resectability. Sixty-one patients diagnosed with pancreatic cancer were enrolled in this retrospective study between 2003 and 2005. Patients were divided into two groups: one resectable cancer group and one with non-resectable pancreatic cancer. Morphometric parameters measured were: nuclear area, length of minor axis and length of major axis. Nuclear shape and chromatin distribution of the pancreatic tumor cells were both estimated using fractal dimension. Morphometric measurements have shown significant differences between the nuclear area of the resectable group and the non-resectable group (61.9 ± 19.8µm vs. 42.2 ± 15.6µm). Fractal dimension of the nuclear outlines and chromatin distribution was found to have a higher value in the non-resectable group (p<0.05). Objective measurements should be performed to improve risk assessment and therapeutic decisions in pancreatic cancer. Nuclear morphometry of the pancreatic nuclear features can provide important pre-operative information in resectability assessment. The fractal dimension of the nuclear shape and chromatin distribution may be considered a new promising adjunctive tool for conventional pathological analysis.
Patel, Hansa; Truant, Ray; Rachubinski, Richard A; Capone, John P
2005-01-01
Peroxisome proliferator-activated nuclear hormone receptors (PPAR) are ligand-activated transcription factors that play pivotal roles in governing metabolic homeostasis and cell growth. PPARs are primarily in the nucleus but, under certain circumstances, can be found in the cytoplasm. We show here that PPAR(alpha) interacts with the centrosome-associated protein CAP350. CAP350 also interacts with PPAR(delta), PPAR(gamma) and liver-X-receptor alpha, but not with the 9-cis retinoic acid receptor, RXR(alpha). Immunofluorescence analysis indicated that PPAR(alpha) is diffusely distributed in the nucleus and excluded from the cytoplasm. However, in the presence of coexpressed CAP350, PPAR(alpha) colocalizes with CAP350 to discrete nuclear foci and to the centrosome, perinuclear region and intermediate filaments. In contrast, the subcellular distribution of RXR(alpha) or of thyroid hormone receptor alpha was not altered by coexpression of CAP350. An amino-terminal fragment of CAP350 was localized exclusively to nuclear foci and was sufficient to recruit PPAR(alpha) to these sites. Mutation of the single putative nuclear hormone receptor interacting signature motif LXXLL present in this fragment had no effect on its subnuclear localization but abrogated recruitment of PPAR(alpha) to nuclear foci. Surprisingly, mutation of the LXXLL motif in this CAP350 subfragment did not prevent its binding to PPAR(alpha) in vitro, suggesting that this motif serves some function other than PPAR(alpha) binding in recruiting PPAR(alpha) to nuclear spots. CAP350 inhibited PPAR(alpha)-mediated transactivation in an LXXLL-dependent manner, suggesting that CAP350 represses PPAR(alpha) function. Our findings implicate CAP350 in a dynamic process that recruits PPAR(alpha) to discrete nuclear and cytoplasmic compartments and suggest that altered intracellular compartmentalization represents a regulatory process that modulates PPAR function.
Nuclear analytical techniques in medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cesareo, R.
1988-01-01
This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and tomore » map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future.« less
NASA Astrophysics Data System (ADS)
Lavrinenko, S. V.; Polikarpov, P. I.
2017-11-01
The nuclear industry is one of the most important and high-tech spheres of human activity in Russia. The main cause of accidents in the nuclear industry is the human factor. In this connection, the need to constantly analyze the system of training of specialists and its optimization in order to improve safety at nuclear industry enterprises. To do this, you must analyze the international experience in the field of training in the field of nuclear energy leading countries. Based on the analysis criteria have been formulated to optimize the educational process of training specialists for the nuclear power industry and test their effectiveness. The most effective and promising is the introduction of modern information technologies of training of students, such as real-time simulators, electronic educational resources, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarisien, M.; Plaisir, C.; Gobet, F.
2011-02-15
We present a stand-alone system to characterize the high-energy particles emitted in the interaction of ultrahigh intensity laser pulses with matter. According to the laser and target characteristics, electrons or protons are produced with energies higher than a few mega electron volts. Selected material samples can, therefore, be activated via nuclear reactions. A multidetector, named NATALIE, has been developed to count the {beta}{sup +} activity of these irradiated samples. The coincidence technique used, designed in an integrated system, results in very low background in the data, which is required for low activity measurements. It, therefore, allows a good precision onmore » the nuclear activation yields of the produced radionuclides. The system allows high counting rates and online correction of the dead time. It also provides, online, a quick control of the experiment. Geant4 simulations are used at different steps of the data analysis to deduce, from the measured activities, the energy and angular distributions of the laser-induced particle beams. Two applications are presented to illustrate the characterization of electrons and protons.« less
Ok, Chi Young; Tzankov, Alexandar; Manyam, Ganiraju C.; Sun, Ruifan; Visco, Carlo; Zhang, Mingzhi; Montes-Moreno, Santiago; Dybkaer, Karen; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W.L.; van Krieken, J. Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J.M.; Møller, Michael B.; Wang, Jinfeng; Parsons, Ben M.; Winter, Jane N.; Piris, Miguel A.; Pham, Lan V.; Medeiros, L. Jeffrey; Young, Ken H.
2015-01-01
Dysregulated NF-κB signaling is critical for lymphomagenesis. The regulation, function, and clinical relevance of c-Rel/NF-κB activation in diffuse large B-cell lymphoma (DLBCL) have not been well studied. In this study we analyzed the prognostic significance and gene-expression signature of c-Rel nuclear expression as surrogate of c-Rel activation in 460 patients with de novo DLBCL. Nuclear c-Rel expression, observed in 137 (26.3%) DLBCL patients frequently associated with extranoal origin, did not show significantly prognostic impact in the overall- or germinal center B-like-DLBCL cohort, likely due to decreased pAKT and Myc levels, up-regulation of FOXP3, FOXO3, MEG3 and other tumor suppressors coincided with c-Rel nuclear expression, as well as the complicated relationships between NF-κB members and their overlapping function. However, c-Rel nuclear expression correlated with significantly poorer survival in p63+ and BCL-2− activated B-cell-like-DLBCL, and in DLBCL patients with TP53 mutations. Multivariate analysis indicated that after adjusting clinical parameters, c-Rel positivity was a significantly adverse prognostic factor in DLBCL patients with wild type TP53. Gene expression profiling suggested dysregulations of cell cycle, metabolism, adhesion, and migration associated with c-Rel activation. In contrast, REL amplification did not correlate with c-Rel nuclear expression and patient survival, likely due to co-amplification of genes that negatively regulate NF-κB activation. These insights into the expression, prognostic impact, regulation and function of c-Rel as well as its crosstalk with the p53 pathway underscore the importance of c-Rel and have significant therapeutic implications. PMID:26324762
Analytical Chemistry Division annual progress report for period ending November 30, 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyon, W.S.
1978-03-01
Activities for the year are summarized in sections on analytical methodology, mass and mass emission spectrometry, analytical services, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance and safety. Presentations of research results in publications and reports are tabulated. (JRD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattison, M.B.; Thatcher, T.A.; Knudsen, J.K.
The US Nuclear Regulatory Commission (NRC) has been using full-power. Level 1, limited-scope risk models for the Accident Sequence Precursor (ASP) program for over fifteen years. These models have evolved and matured over the years, as have probabilistic risk assessment (PRA) and computer technologies. Significant upgrading activities have been undertaken over the past three years, with involvement from the Offices of Nuclear Reactor Regulation (NRR), Analysis and Evaluation of Operational Data (AEOD), and Nuclear Regulatory Research (RES), and several national laboratories. Part of these activities was an RES-sponsored feasibility study investigating the ability to extend the ASP models to includemore » contributors to core damage from events initiated with the reactor at low power or shutdown (LP/SD), both internal events and external events. This paper presents only the LP/SD internal event modeling efforts.« less
The WPI reactor-readying for the next generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobek, L.M.
1993-01-01
Built in 1959, the 10-kW open-pool nuclear training reactor at Worcester Polytechnic Institute (WPI) was one of the first such facilities in the nation located on a university campus. Since then, the reactor and its related facilities have been used to train two generations of nuclear engineers and scientists for the nuclear industry. With the use of nuclear technology playing an increasing role in many segments of the economy, WPI with its nuclear reactor facility is committed to continuing its mission of training future nuclear engineers and scientists. The WPI reactor includes a 6-in. beam port, graphite thermal column, andmore » in-core sample facility. The reactor, housed in an open 8000-gal tank of water, is designed so that the core is readily accessible. Both the control console and the peripheral counting equipment used for student projects and laboratory exercises are located in the reactor room. This arrangement provides convenience and flexibility in using the reactor for foil activations in neutron flux measurements, diffusion measurements, radioactive decay measurements, and the neutron activation of samples for analysis. In 1988, the reactor was successfully converted to low-enriched uranium fuel.« less
Nuclear Society of Russia: Ten years in the world nuclear community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponomarev-Stepnoi, N.N.; Gagarinski, A.Yu.
2000-07-01
A nuclear society, which is a nongovernmental organization of nuclear professionals, appeared in the Soviet Union at the end of the 1980s--when social conditions for such a society had matured. Deep changes in the entire country's social consciousness had promoted the specialists understanding of the need to unite in order to overcome the nuclear community's dissociation, the monopoly of the nuclear ministry, and the secrecy syndrome of all nuclear issues. The new public association announced the guiding principles of its activities to be openness and glasnost and completeness and truthfulness of information supplied to decision makers and to the societymore » as a whole. Important to the information system of the NSR are topical meetings and seminars on quite varied but always actual problems of nuclear energy use, often with foreign participation. The variety of these NSR meeting subjects is illustrated by the titles of several meetings of the last 2 yr: Safety Culture in Nuclear Power, Youth and the Plutonium Challenge, Nuclear Fuel for Mankind, Nuclear Power in Space, Radiation Legacy of the Former-USSR, the Murmansk International Forum Nuclear Fleet and Ecology, and many others. A special place among NSR seminars belongs to the annual meeting, Nuclear Energy and Public Opinion, the Russian analog of the European PIME conference. Starting from distribution of ENS periodicals--the Nuclear Europe Worldscan magazine and Nucleus information sheet--among its members, the NSR soon began publishing its own Informational Bulletin (since 1989). Note that in the first years of the Nuclear Society's existence, it has been possible to publish periodicals, conference proceedings, and even books in English. Unfortunately, financial difficulties of the last years have frozen this most useful activity, which the NSR, however, hopes to resume. In the last period, the materials of the international information agency NucNet, which provides both regular information for the analysis of nuclear energy production trends and--most importantly for relations with the mass media and the public--crisis information (latest examples: Tokaimura, the virtual Y2K crisis, etc.), have become important sources of information for the NSR. It should be emphasized that the financial participation of the Russian Minatom (maintained at the insistent request of the NSR) in the NucNet system provides sufficiently wide dissemination of operative nuclear information not only through the NSR headquarters but also via its regional branches and separate enterprises. From its side, NSR has assumed the responsibility for the adequate flow of information on Russian nuclear events to NucNet. As a living and developing organism, the NSR wants to respond to its time's challenges. Several prospective directions could be among the NSR information exchange plans: (1) Independent international analysis of the problems of the use of nuclear energy, which is presently in a stagnation period but with future large-scale development, is as possible today as it never had been before. (2) In the field of public relations, many achievements of Russian and US specialists (in the form of articles, analyzing nuclear energy on the popular and highly professional level) stay inaccessible to others because of the language barrier. A possible joint ANS/NSR project on selection, translation, and exchange of such materials, with their further wide publication, represents an obvious reserve in their societies' information activities. (3) The International Youth Nuclear Congress project (proposed by the Russian nuclear youth and supported by ANS and ENS), conceived as a bridge between generations and a forum for opinion exchange between young nuclear specialists from various countries, deserves further development and appropriation of permanent status in the activities of the world nuclear societies.« less
Chandra and ALMA observations of the nuclear activity in two strongly lensed star-forming galaxies
NASA Astrophysics Data System (ADS)
Massardi, M.; Enia, A. F. M.; Negrello, M.; Mancuso, C.; Lapi, A.; Vignali, C.; Gilli, R.; Burkutean, S.; Danese, L.; Zotti, G. De
2018-02-01
Aim. According to coevolutionary scenarios, nuclear activity and star formation play relevant roles in the early stages of galaxy formation. We aim at identifying them in high-redshift galaxies by exploiting high-resolution and high-sensitivity X-ray and millimeter-wavelength data to confirm the presence or absence of star formation and nuclear activity and describe their relative roles in shaping the spectral energy distributions and in contributing to the energy budgets of the galaxies. Methods: We present the data, model, and analysis in the X-ray and millimeter (mm) bands for two strongly lensed galaxies, SDP.9 (HATLAS J090740.0-004200) and SDP.11 (HATLAS J091043.1-000322), which we selected in the Herschel-ATLAS catalogs for their excess emission in the mid-IR regime at redshift ≳1.5. This emission suggests nuclear activity in the early stages of galaxy formation. We observed both of them with Chandra ACIS-S in the X-ray regime and analyzed the high-resolution mm data that are available in the ALMA Science Archive for SDP.9. By combining the information available in mm, optical, and X-ray bands, we reconstructed the source morphology. Results: Both targets were detected in the X-ray, which strongly indicates highly obscured nuclear activity. ALMA observations for SDP.9 for the continuum and CO(6-5) spectral line with high resolution (0.02 arcsec corresponding to 65 pc at the distance of the galaxy) allowed us to estimate the lensed galaxy redshift to a better accuracy than pre-ALMA estimates (1.5753 ± 0.0003) and to model the emission of the optical, millimetric, and X-ray band for this galaxy. We demonstrate that the X-ray emission is generated in the nuclear environment, which strongly supports that this object has nuclear activity. On the basis of the X-ray data, we attempt an estimate of the black hole properties in these galaxies. Conclusions: By taking advantage of the lensing magnification, we identify weak nuclear activity associated with high-z galaxies with high star formation rates. This is useful to extend the investigation of the relationship between star formation and nuclear activity to two intrinsically less luminous high-z star-forming galaxies than was possible so far. Given our results for only two objects, they alone cannot constrain the evolutionary models, but provide us with interesting hints and set an observational path toward addressing the role of star formation and nuclear activity in forming galaxies. The reduced images and data cubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A53
Garcia-Belinchón, Mercè; Sánchez-Osuna, María; Martínez-Escardó, Laura; Granados-Colomina, Carla; Pascual-Guiral, Sònia; Iglesias-Guimarais, Victoria; Casanelles, Elisenda; Ribas, Judit; Yuste, Victor J
2015-08-21
Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as "apoptosis-necrosis continuum." To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Garcia-Belinchón, Mercè; Sánchez-Osuna, María; Martínez-Escardó, Laura; Granados-Colomina, Carla; Pascual-Guiral, Sònia; Iglesias-Guimarais, Victoria; Casanelles, Elisenda; Ribas, Judit; Yuste, Victor J.
2015-01-01
Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as “apoptosis-necrosis continuum.” To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death. PMID:26124276
Support of the Iraq nuclear facility dismantlement and disposal program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, Roger; Cochran, John; Danneels, Jeff
2007-07-01
Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDsmore » Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)« less
Gagnon, Keith T.; Li, Liande; Janowski, Bethany A.; Corey, David R.
2014-01-01
RNA interference (RNAi) is well known for its ability to regulate gene expression in the cytoplasm of mammalian cells. In mammalian cell nuclei, however, the impact of RNAi has remained more controversial. A key technical hurdle has been a lack of optimized protocols for the isolation and analysis of cell nuclei. Here we describe a simplified protocol for nuclei isolation from cultured cells that incorporates a method for obtaining nucleoplasmic and chromatin fractions and removing cytoplasmic contamination. Cell fractions can then be used to detect the presence and activity of RNAi factors in the nucleus. We present a protocol for investigating an early step in RNAi, Argonaute protein loading with small RNAs, which is enabled by our improved extract preparations. These protocols facilitate characterization of nuclear RNAi and can be applied to the analysis of other nuclear proteins and pathways. From cellular fractionation to analysis of Argonaute loading results, this protocol takes 4–6 d to complete. PMID:25079428
Mechanisms of nuclear lamina growth in interphase.
Zhironkina, Oxana A; Kurchashova, Svetlana Yu; Pozharskaia, Vasilisa A; Cherepanynets, Varvara D; Strelkova, Olga S; Hozak, Pavel; Kireev, Igor I
2016-04-01
The nuclear lamina represents a multifunctional platform involved in such diverse yet interconnected processes as spatial organization of the genome, maintenance of mechanical stability of the nucleus, regulation of transcription and replication. Most of lamina activities are exerted through tethering of lamina-associated chromatin domains (LADs) to the nuclear periphery. Yet, the lamina is a dynamic structure demonstrating considerable expansion during the cell cycle to accommodate increased number of LADs formed during DNA replication. We analyzed dynamics of nuclear growth during interphase and changes in lamina structure as a function of cell cycle progression. The nuclear lamina demonstrates steady growth from G1 till G2, while quantitative analysis of lamina meshwork by super-resolution microscopy revealed that microdomain organization of the lamina is maintained, with lamin A and lamin B microdomain periodicity and interdomain gap sizes unchanged. FRAP analysis, in contrast, demonstrated differences in lamin A and B1 exchange rates; the latter showing higher recovery rate in S-phase cells. In order to further analyze the mechanism of lamina growth in interphase, we generated a lamina-free nuclear envelope in living interphase cells by reversible hypotonic shock. The nuclear envelope in nuclear buds formed after such a treatment initially lacked lamins, and analysis of lamina formation revealed striking difference in lamin A and B1 assembly: lamin A reassembled within 30 min post-treatment, whereas lamin B1 did not incorporate into the newly formed lamina at all. We suggest that in somatic cells lamin B1 meshwork growth is coordinated with replication of LADs, and lamin A meshwork assembly seems to be chromatin-independent process.
Unprecedented NES non-antagonistic inhibitor for nuclear export of Rev from Sida cordifolia.
Tamura, Satoru; Kaneko, Masafumi; Shiomi, Atsushi; Yang, Guang-Ming; Yamaura, Toshiaki; Murakami, Nobutoshi
2010-03-15
Bioassay-guided separation from the MeOH extract of the South American medicinal plant Sida cordifolia resulted in isolation of (10E,12Z)-9-hydroxyoctadeca-10,12-dienoic acid (1) as an unprecedented NES non-antagonistic inhibitor for nuclear export of Rev. This mechanism of action was established by competitive experiment by the biotinylated probe derived from leptomycin B, the known NES antagonistic inhibitor. Additionally, structure-activity relationship analysis by use of the synthesized analogs clarified cooperation of several functionalities in the Rev-export inhibitory activity of 1. Copyright 2010 Elsevier Ltd. All rights reserved.
Nuclear analysis of structural damage and nuclear heating on enhanced K-DEMO divertor model
NASA Astrophysics Data System (ADS)
Park, J.; Im, K.; Kwon, S.; Kim, J.; Kim, D.; Woo, M.; Shin, C.
2017-12-01
This paper addresses nuclear analysis on the Korean fusion demonstration reactor (K-DEMO) divertor to estimate the overall trend of nuclear heating values and displacement damages. The K-DEMO divertor model was created and converted by the CAD (Pro-Engineer™) and Monte Carlo automatic modeling programs as a 22.5° sector of the tokamak. The Monte Carlo neutron photon transport and ADVANTG codes were used in this calculation with the FENDL-2.1 nuclear data library. The calculation results indicate that the highest values appeared on the upper outboard target (OT) area, which means the OT is exposed to the highest radiation conditions among the three plasma-facing parts (inboard, central and outboard) in the divertor. Especially, much lower nuclear heating values and displacement damages are indicated on the lower part of the OT area than others. These are important results contributing to thermal-hydraulic and thermo-mechanical analyses on the divertor and also it is expected that the copper alloy materials may be partially used as a heat sink only at the lower part of the OT instead of the reduced activation ferritic-martensitic steel due to copper alloy’s high thermal conductivity.
Nuclear Tools For Oilfield Logging-While-Drilling Applications
NASA Astrophysics Data System (ADS)
Reijonen, Jani
2011-06-01
Schlumberger is an international oilfield service company with nearly 80,000 employees of 140 nationalities, operating globally in 80 countries. As a market leader in oilfield services, Schlumberger has developed a suite of technologies to assess the downhole environment, including, among others, electromagnetic, seismic, chemical, and nuclear measurements. In the past 10 years there has been a radical shift in the oilfield service industry from traditional wireline measurements to logging-while-drilling (LWD) analysis. For LWD measurements, the analysis is performed and the instruments are operated while the borehole is being drilled. The high temperature, high shock, and extreme vibration environment of LWD imposes stringent requirements for the devices used in these applications. This has a significant impact on the design of the components and subcomponents of a downhole tool. Another significant change in the past few years for nuclear-based oilwell logging tools is the desire to replace the sealed radioisotope sources with active, electronic ones. These active radiation sources provide great benefits compared to the isotopic sources, ranging from handling and safety to nonproliferation and well contamination issues. The challenge is to develop electronic generators that have a high degree of reliability for the entire lifetime of a downhole tool. LWD tool testing and operations are highlighted with particular emphasis on electronic radiation sources and nuclear detectors for the downhole environment.
Current trends in gamma radiation detection for radiological emergency response
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard
2011-09-01
Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.
Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, W.J.; Husser, D.L.; Mohr, T.C.
2004-02-04
New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developedmore » to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.« less
Lim, Sheri; MacIntyre, David A.; Lee, Yun S.; Khanjani, Shirin; Terzidou, Vasso; Teoh, T. G.; Bennett, Phillip R.
2012-01-01
Background Prior to the onset of human labour there is an increase in the synthesis of prostaglandins, cytokines and chemokines in the fetal membranes, particular the amnion. This is associated with activation of the transcription factor nuclear factor kappa B (NFκB). In this study we characterised the level of NFκB activity in amnion epithelial cells as a measure of amnion activation in samples collected from women undergoing caesarean section at 39 weeks gestation prior to the onset of labour. Methodology/Principal Findings We found that a proportion of women exhibit low or moderate NFκB activity while other women exhibit high levels of NFκB activity (n = 12). This activation process does not appear to involve classical pathways of NFκB activation but rather is correlated with an increase in nuclear p65-Rel-B dimers. To identify the full range of genes upregulated in association with amnion activation, microarray analysis was performed on carefully characterised non-activated amnion (n = 3) samples and compared to activated samples (n = 3). A total of 919 genes were upregulated in response to amnion activation including numerous inflammatory genes such cyclooxygenase-2 (COX-2, 44-fold), interleukin 8 (IL-8, 6-fold), IL-1 receptor accessory protein (IL-1RAP, 4.5-fold), thrombospondin 1 (TSP-1, 3-fold) and, unexpectedly, oxytocin receptor (OTR, 24-fold). Ingenuity Pathway Analysis of the microarray data reveal the two main gene networks activated concurrently with amnion activation are i) cell death, cancer and morphology and ii) cell cycle, embryonic development and tissue development. Conclusions/Significance Our results indicate that assessment of amnion NFκB activation is critical for accurate sample classification and subsequent interpretation of data. Collectively, our data suggest amnion activation is largely an inflammatory event that occurs in the amnion epithelial layer as a prelude to the onset of labour. PMID:22485186
NASA Astrophysics Data System (ADS)
Ida, Mizuho; Chida, Teruo; Furuya, Kazuyuki; Wakai, Eiichi; Nakamura, Hiroo; Sugimoto, Masayoshi
2009-04-01
For long time operation of a liquid lithium target of the International Fusion Materials Irradiation Facility, annual replacement of a back-wall, a part of the flow channel, is planned, since the target suffers neutron damage of more than 50 dpa/fpy. Considering irradiation/activation conditions, remote weld on stainless steel 316L between a back-wall and a target assembly was employed. Furthermore, dissimilar weld between the 316L and a reduced-activation ferritic/martensitic steel F82H in the back-wall was employed. The objective of this study is to clarify structures and materials of the back-wall with acceptable thermal-stress under nuclear heating. Thermal-stress analysis was done using a code ABAQUS and data of the nuclear heating. As a result, thermal-stress in the back-wall is acceptable level, if thickness of the stress-mitigation part is more than 5 mm. With results of the analysis, necessity of material data for F82H and 316L under conditions of irradiation tests and mechanical tests are clarified.
Cremer, Marion; Schmid, Volker J; Kraus, Felix; Markaki, Yolanda; Hellmann, Ines; Maiser, Andreas; Leonhardt, Heinrich; John, Sam; Stamatoyannopoulos, John; Cremer, Thomas
2017-08-07
The association of active transcription regulatory elements (TREs) with DNAse I hypersensitivity (DHS[+]) and an 'open' local chromatin configuration has long been known. However, the 3D topography of TREs within the nuclear landscape of individual cells in relation to their active or inactive status has remained elusive. Here, we explored the 3D nuclear topography of active and inactive TREs in the context of a recently proposed model for a functionally defined nuclear architecture, where an active and an inactive nuclear compartment (ANC-INC) form two spatially co-aligned and functionally interacting networks. Using 3D structured illumination microscopy, we performed 3D FISH with differently labeled DNA probe sets targeting either sites with DHS[+], apparently active TREs, or DHS[-] sites harboring inactive TREs. Using an in-house image analysis tool, DNA targets were quantitatively mapped on chromatin compaction shaped 3D nuclear landscapes. Our analyses present evidence for a radial 3D organization of chromatin domain clusters (CDCs) with layers of increasing chromatin compaction from the periphery to the CDC core. Segments harboring active TREs are significantly enriched at the decondensed periphery of CDCs with loops penetrating into interchromatin compartment channels, constituting the ANC. In contrast, segments lacking active TREs (DHS[-]) are enriched toward the compacted interior of CDCs (INC). Our results add further evidence in support of the ANC-INC network model. The different 3D topographies of DHS[+] and DHS[-] sites suggest positional changes of TREs between the ANC and INC depending on their functional state, which might provide additional protection against an inappropriate activation. Our finding of a structural organization of CDCs based on radially arranged layers of different chromatin compaction levels indicates a complex higher-order chromatin organization beyond a dichotomic classification of chromatin into an 'open,' active and 'closed,' inactive state.
Dilshara, Matharage Gayani; Kang, Chang-Hee; Choi, Yung Hyun; Kim, Gi-Young
2015-01-01
We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-α significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-α-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-α-induced invasion of LNCaP cells. Compared to untreated controls, TNF-α-stimulated LNCaP cells showed a significant increase in nuclear factor-κB (NF-κB) luciferase activity. However, mangiferin treatment markedly decreased TNF-α-induced NF-κB luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-κB subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-κB-mediated MMP-9 expression. [BMB Reports 2015; 48(10): 559-564] PMID:25739392
Dilshara, Matharage Gayani; Kang, Chang-Hee; Choi, Yung Hyun; Kim, Gi-Young
2015-10-01
We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-α significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-α-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-α-induced invasion of LNCaP cells. Compared to untreated controls, TNF-α-stimulated LNCaP cells showed a significant increase in nuclear factor-κB (NF-κB) luciferase activity. However, mangiferin treatment markedly decreased TNF-α-induced NF-κB luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-κB subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-κB-mediated MMP-9 expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, R O; Essington, E H; Brady, D N
Statistical design and analysis activities for the Nevada Applied Ecology Group (NAEG) during 1976 are briefly outlined. This is followed by a description of soil data collected thus far at nuclear study sites. Radionuclide concentrations in surface soil collected along a transect from ground zero (GZ) along the main fallout pattern are given for Nuclear Site (NS) 201. Concentrations in soil collected at 315 locations on a grid system at 200 foot spacings are also given for this site. The /sup 241/Am to /sup 137/Cs ratios change over NS 201 depending on location relative to GZ. They range from lessmore » than one where /sup 241/Am is at low levels, to more than fifty where /sup 241/Am levels are high (near GZ). The estimated median /sup 239/ /sup 240/Pu to /sup 241/Am ratio is 11 and appears to be relatively constant over the area (the 95 percent lower and upper limits on the true median ratio are about 8 and 14).« less
Kim, Hee-Jung; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jaeho; Park, A Young; Kang, Wonmo; Lee, Kong-Joo
2017-08-04
When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys 132 disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys 132 was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys 132 in hnRNP K is critical for this inhibition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Stress analysis for wall structure in mobile hot cell design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahrin, Muhammad Hannan, E-mail: hannan@nuclearmalaysia.gov.my; Rahman, Anwar Abdul, E-mail: anwar@nuclearmalaysia.gov.my; Hamzah, Mohd Arif, E-mail: arif@nuclearmalaysia.gov.my
Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effectmore » from the sand to the MHC wall structure.« less
Composition and properties of the so-called 'diamond-like' amorphous carbon films
NASA Technical Reports Server (NTRS)
Angus, J. C.; Stultz, J. E.; Shiller, P. J.; Macdonald, J. R.; Mirtich, M. J.
1984-01-01
The composition of amorphous 'diamond-like' films made by direct low energy ion beam deposition, R.F. discharge and sputtering was determined by nuclear reaction analysis, IR spectroscopy and microcombustion chemical analysis. The nuclear reaction analysis showed very similar hydrogen depth profiles for all three types of samples. The atomic ratio of hydrogen to carbon was approximately 0.2 at the film surface and rose to approximately 1.0 at a depth of 500 A. The integrated intensity of the C-H stretching band at about 2900 per cm indicates that the amount of chemically bonded hydrogen is less than the total hydrogen content. Combustion analysis confirmed the overall atomic ratio of hydrogen to carbon determined by nuclear reaction analysis. The chemical state of the non-bonded hydrogen was not determined; however, the effective diffusion coefficient computed from the hydrogen depth profile was extremely low. This indicates either that the films are exceedingly impermeable or that the non-bonded hydrogen requires an additional activated step to leave the films, e.g., desorption or chemical reaction.
Chueh, Fu-Yu; Leong, King-Fu; Cronk, Robert J; Venkitachalam, Srividya; Pabich, Samantha; Yu, Chao-Lan
2011-07-01
STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with co-factors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also raises the possibility of nuclear-mitochondrial crosstalk through the interaction between STAT5 and PDC-E2. Copyright © 2011 Elsevier Inc. All rights reserved.
Chueh, Fu-Yu; Leong, King-Fu; Cronk, Robert J.; Venkitachalam, Srividya; Pabich, Samantha; Yu, Chao-Lan
2011-01-01
STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with cofactors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also raises the possibility of nuclear-mitochondrial crosstalk through the interaction between STAT5 and PDC-E2. PMID:21397011
Johnson, R.G.; Wandless, G.A.
1984-01-01
A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.
Yu, Yan; Oberlaender, Kristin; Bengtson, C Peter; Bading, Hilmar
2017-07-01
Neurons undergo dramatic changes in their gene expression profiles in response to synaptic stimulation. The coupling of neuronal excitation to gene transcription is well studied and is mediated by signaling pathways activated by cytoplasmic and nuclear calcium transients. Despite this, the minimum synaptic activity required to induce gene expression remains unknown. To address this, we used cultured hippocampal neurons and cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) that allows detection of nascent transcripts in the cell nucleus. We found that a single burst of action potentials, consisting of 24.4±5.1 action potentials during a 6.7±1.9s depolarization of 19.5±2.0mV causing a 9.3±0.9s somatic calcium transient, is sufficient to activate transcription of the immediate early gene arc (also known as Arg3.1). The total arc mRNA yield produced after a single burst-induced nuclear calcium transient was very small and, compared to unstimulated control neurons, did not lead to a significant increase in arc mRNA levels measured using quantitative reverse transcriptase PCR (qRT-PCR) of cell lysates. Significantly increased arc mRNA levels became detectable in hippocampal neurons that had undergone 5-8 consecutive burst-induced nuclear calcium transients at 0.05-0.15Hz. These results indicate that a single burst-induced nuclear calcium transient can activate gene expression and that transcription is rapidly shut off after synaptic stimulation has ceased. Copyright © 2017 Elsevier Ltd. All rights reserved.
Savic, Daniel; Ramaker, Ryne C; Roberts, Brian S; Dean, Emma C; Burwell, Todd C; Meadows, Sarah K; Cooper, Sara J; Garabedian, Michael J; Gertz, Jason; Myers, Richard M
2016-07-11
The liver X receptors (LXRs, NR1H2 and NR1H3) and peroxisome proliferator-activated receptor gamma (PPARG, NR1C3) nuclear receptor transcription factors (TFs) are master regulators of energy homeostasis. Intriguingly, recent studies suggest that these metabolic regulators also impact tumor cell proliferation. However, a comprehensive temporal molecular characterization of the LXR and PPARG gene regulatory responses in tumor cells is still lacking. To better define the underlying molecular processes governing the genetic control of cellular growth in response to extracellular metabolic signals, we performed a comprehensive, genome-wide characterization of the temporal regulatory cascades mediated by LXR and PPARG signaling in HT29 colorectal cancer cells. For this analysis, we applied a multi-tiered approach that incorporated cellular phenotypic assays, gene expression profiles, chromatin state dynamics, and nuclear receptor binding patterns. Our results illustrate that the activation of both nuclear receptors inhibited cell proliferation and further decreased glutathione levels, consistent with increased cellular oxidative stress. Despite a common metabolic reprogramming, the gene regulatory network programs initiated by these nuclear receptors were widely distinct. PPARG generated a rapid and short-term response while maintaining a gene activator role. By contrast, LXR signaling was prolonged, with initial, predominantly activating functions that transitioned to repressive gene regulatory activities at late time points. Through the use of a multi-tiered strategy that integrated various genomic datasets, our data illustrate that distinct gene regulatory programs elicit common phenotypic effects, highlighting the complexity of the genome. These results further provide a detailed molecular map of metabolic reprogramming in cancer cells through LXR and PPARG activation. As ligand-inducible TFs, these nuclear receptors can potentially serve as attractive therapeutic targets for the treatment of various cancers.
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Benyo, Theresa L.; Pines, Vladimir; Pines, Marianna; Forsley, Lawrence P.; Westmeyer, Paul A.; Chait, Arnon; Becks, Michael D.; Martin, Richard E.; Hendricks, Robert C.;
2017-01-01
Exposure of highly deuterated materials to a low-energy (nom. 2 MeV) photon beam resulted in nuclear activity of both the parent metals of hafnium and erbium and a witness material (molybdenum) mixed with the reactants. Gamma spectral analysis of all deuterated materials, ErD2.8+C36D74+Mo and HfD2+C36D74+Mo, showed that nuclear processes had occurred as shown by unique gamma signatures. For the deuterated erbium specimens, posttest gamma spectra showed evidence of radioisotopes of erbium ((163)Er and (171)Er) and of molybdenum ((99)Mo and (101)Mo) and by beta decay, technetium (99mTc and 101Tc). For the deuterated hafnium specimens, posttest gamma spectra showed evidence of radioisotopes of hafnium (180mHf and 181Hf) and molybdenum ((99)Mo and (101)Mo), and by beta decay, technetium ((99m)Tc and (101)Tc). In contrast, when either the hydrogenated or non-gas-loaded erbium or hafnium materials were exposed to the gamma flux, the gamma spectra revealed no new isotopes. Neutron activation materials showed evidence of thermal and epithermal neutrons. CR-39 solid-state nuclear track detectors showed evidence of fast neutrons with energies between 1.4 and 2.5 MeV and several instances of triple tracks, indicating (is) greater than 10 MeV neutrons. Further study is required to determine the mechanism causing the nuclear activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck Colleen M,Edwards Susan R.,King Maureen L.
2011-09-01
This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck Colleen M.,Edwards Susan R.,King Maureen L.
2011-09-01
This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck Colleen M.,Edwards Susan R.,King Maureen L.
2011-09-01
This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less
Cardoso, Maira Arruda; Fontenele, Marcio; Lim, Bomyi; Bisch, Paulo Mascarello; Shvartsman, Stanislav Y; Araujo, Helena Marcolla
2017-08-15
The evolutionarily conserved Toll signaling pathway controls innate immunity across phyla and embryonic patterning in insects. In the Drosophila embryo, Toll is required to establish gene expression domains along the dorsal-ventral axis. Pathway activation induces degradation of the IκB inhibitor Cactus, resulting in a ventral-to-dorsal nuclear gradient of the NFκB effector Dorsal. Here, we investigate how cactus modulates Toll signals through its effects on the Dorsal gradient and on Dorsal target genes. Quantitative analysis using a series of loss- and gain-of-function conditions shows that the ventral and lateral aspects of the Dorsal gradient can behave differently with respect to Cactus fluctuations. In lateral and dorsal embryo domains, loss of Cactus allows more Dorsal to translocate to the nucleus. Unexpectedly, cactus loss-of-function alleles decrease Dorsal nuclear localization ventrally, where Toll signals are high. Overexpression analysis suggests that this ability of Cactus to enhance Toll stems from the mobilization of a free Cactus pool induced by the Calpain A protease. These results indicate that Cactus acts to bolster Dorsal activation, in addition to its role as a NFκB inhibitor, ensuring a correct response to Toll signals. © 2017. Published by The Company of Biologists Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-27
... Risk Before Maintenance Activities at Nuclear Power Plants'' AGENCY: Nuclear Regulatory Commission... Activities at Nuclear Power Plants,'' published in May 2000. The document is redundant due to the inclusion... Risk Before Maintenance Activities at Nuclear Power Plants,'' published in May 2000. The requirements...
SNIP1: a new activator of HSE signaling pathway.
Li, Qiang; An, Jian; Liu, Xianghua; Zhang, Mingjun; Ling, Yichen; Wang, Chenji; Zhao, Jing; Yu, Long
2012-03-01
In the last 10 years, more and more attention has been focused on SNIP1 (Smad nuclear interacting protein 1), which functions as a transcriptional coactivator. We report here that through quantitative real-time PCR analysis in 18 different human tissues, SNIP1 was found to be expressed ubiquitously. When overexpressed in HeLa cells, SNIP1-EGFP fused protein exhibited a nuclear localization with a characteristic subnuclear distribution in speckles or formed larger discrete nuclear bodies in some cells. Reporter gene assay showed that overexpression of SNIP1 in HEK 293 cells or H1299 cells strongly activated the HSE signaling pathway. Moreover, SNIP1 could selectively regulate the transcription of HSP70A1A and HSP27. Taken together, our findings suggest that SNIP1 might also be a positive regulator of HSE signaling pathway.
INF and IAEA: A comparative analysis of verification strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheinman, L.; Kratzer, M.
1992-07-01
This is the final report of a study on the relevance and possible lessons of Intermediate Range Nuclear Force (INF) verification to the International Atomic Energy Agency (IAEA) international safeguards activities.
Sensor Failure Detection of FASSIP System using Principal Component Analysis
NASA Astrophysics Data System (ADS)
Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina
2018-02-01
In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.
Database of prompt gamma rays from slow neutron capture forelemental analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.
2004-12-31
The increasing importance of Prompt Gamma-ray ActivationAnalysis (PGAA) in a broad range of applications is evident, and has beenemphasized at many meetings related to this topic (e.g., TechnicalConsultants' Meeting, Use of neutron beams for low- andmedium-fluxresearch reactors: radiography and materialscharacterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993).Furthermore, an Advisory Group Meeting (AGM) for the Coordination of theNuclear Structure and Decay Data Evaluators Network has stated that thereis a need for a complete and consistent library of cold- and thermalneutron capture gammaray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended theorganization of an IAEA CRPmore » on the subject. The International NuclearData Committee (INDC) is the primary advisory body to the IAEA NuclearData Section on their nuclear data programmes. At a biennial meeting in1997, the INDC strongly recommended that the Nuclear Data Section supportnew measurements andupdate the database on Neutron-induced PromptGamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As aconsequence of the various recommendations, a CRP on "Development of aDatabase for Prompt Gamma-ray Neutron Activation Analysis (PGAA)" wasinitiated in 1999. Prior to this project, several consultants had definedthe scope, objectives and tasks, as approved subsequently by the IAEA.Each CRP participant assumed responsibility for the execution of specifictasks. The results of their and other research work were discussed andapproved by the participants in research co-ordination meetings (seeSummary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; andINDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method,capable of rapid or simultaneous "in-situ" multi-element analyses acrossthe entire Periodic Table, from hydrogen to uranium. However, inaccurateand incomplete data were a significant hindrance in the qualitative andquantitative analysis of complicated capture-gamma spectra by means ofPGAA. Therefore, the main goal of the CRP was to improve the quality andquantity of the required data in order to make possible the reliableapplication of PGAA in fields such as materials science, chemistry,geology, mining, archaeology, environment, food analysis and medicine.This aim wasachieved thanks to the dedicated work and effort of theparticipants. The CD-ROM included with this publication contains thedatabase, the retrieval system, the three CRM reports, and otherimportant electronic documents related to the CRP. The IAEA wishes tothanks all CRP participants who contributed to the success of the CRP andthe formulation of this publication. Special thanks are due to R.B.Firestone for his leading roll in the development of this CRP and hiscomprehensive compilation, analysis and provision of the adopteddatabase, and to V. Zerkin for the software developments associatedwiththe retrieval system. An essential component of this data compilation isthe extensive sets of new measurements of capture gamma-ray energies andintensities undertaken at Budapest by Zs. Revay under the direction ofG.L. Molnar. The extensive participation and assistance of H.D. Choi isalso greatly appreciated. Other participants inthis CRP were: R.M.Lindstrom, S.M. Mughabghab, A.V.R. Reddy, V.H. Tan and C.M. Zhou. Thanksare also due to S.C. Frankle and M.A. Lone for their active participationas consultants at some of the meetings. Finally, the participants wish tothank R. Paviotti-Corcuera (Nuclear Data Section, Division of Physicaland Chemical Sciences), who was the IAEA responsible officer for the CRP,this publication and the resulting database. The participants aregrateful to D.L. Muir and A.L. Nichols, successive Heads of the NuclearData Section, for their active and enthusiastic encouragement infurthering the work of the CRP.« less
Szczurek, Aleksander; Klewes, Ludger; Xing, Jun; Gourram, Amine; Birk, Udo; Knecht, Hans; Dobrucki, Jurek W.; Mai, Sabine
2017-01-01
Abstract Advanced light microscopy is an important tool for nanostructure analysis of chromatin. In this report we present a general concept for Single Molecule localization Microscopy (SMLM) super-resolved imaging of DNA-binding dyes based on modifying the properties of DNA and the dye. By careful adjustment of the chemical environment leading to local, reversible DNA melting and hybridization control over the fluorescence signal of the DNA-binding dye molecules can be introduced. We postulate a transient binding as the basis for our variation of binding-activated localization microscopy (BALM). We demonstrate that several intercalating and minor-groove binding DNA dyes can be used to register (optically isolate) only a few DNA-binding dye signals at a time. To highlight this DNA structure fluctuation-assisted BALM (fBALM), we applied it to measure, for the first time, nanoscale differences in nuclear architecture in model ischemia with an anticipated structural resolution of approximately 50 nm. Our data suggest that this approach may open an avenue for the enhanced microscopic analysis of chromatin nano-architecture and hence the microscopic analysis of nuclear structure aberrations occurring in various pathological conditions. It may also become possible to analyse nuclear nanostructure differences in different cell types, stages of development or environmental stress conditions. PMID:28082388
Sun, Ya Nan; Li, Wei; Song, Seok Bean; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho
2016-01-01
Polygonum multiflorum is well-known as "Heshouwu" in traditional Chinese herbal medicine. In Northeast Asia, it is often used as a tonic to prevent premature aging of the kidney and liver, tendons, and bones and strengthening of the lower back and knees. To research the anti-inflammatory activities of components from P. multiflorum. The compounds were isolated by a combination of silica gel and YMC R-18 column chromatography, and their structures were identified by analysis of spectroscopic data (1D, 2D-nuclear magnetic resonance, and mass spectrometry). The anti-inflammatory activities of the isolated compounds 1-15 were evaluated by luciferase reporter gene assays. Fifteen compounds (1-15) were isolated from the roots of P. multiflorum. Compounds 1-5 and 14-15 significantly inhibited tumor necrosis factor-α-induced nuclear factor kappa B-luciferase activity, with IC50 values of 24.16-37.56 μM. Compounds 1-5 also greatly enhanced peroxisome proliferator-activated receptors transcriptional activity with EC50 values of 18.26-31.45 μM. The anthraquinone derivatives were the active components from the roots of P. multiflorum as an inhibitor on inflammation-related factors in human hepatoma cells. Therefore, we suggest that the roots of P. multiflorum can be used to treat natural inflammatory diseases. This study presented that fifteen compounds (1-15) isolated from the roots of Polygonum multiflrum exert signifiant anti inflmmatory effects by inhibiting TNF α induced NF κB activation and PPARs transcription. Abbreviation used: NF κB: Nuclear factor kappa B, PPARs: Peroxisome proliferator activated receptors, PPREs: Peroxisome proliferator response elements, TNF α: Tumor necrosis factor α, ESI-MS: Electrospray ionization mass spectrometry, HepG2: Human hepatoma cells.
Yang, Feng-Ming; Feng, Shan-Jung; Lai, Tsai-Chun; Hu, Meng-Chun
2015-10-15
As an orphan member of the nuclear receptor family, liver receptor homologue-1 (LRH-1) controls a tremendous range of transcriptional programmes that are essential for metabolism and hormone synthesis. Our previous studies have shown that nuclear localization of the LRH-1 protein is mediated by two nuclear localization signals (NLSs) that are karyopherin/importin-dependent. It is unclear whether LRH-1 can be actively exported from the nucleus to the cytoplasm. In the present study, we describe a nuclear export domain containing two leucine-rich motifs [named nuclear export signal (NES)1 and NES2] within the ligand-binding domain (LBD). Mutation of leucine residues in NES1 or NES2 abolished nuclear export, indicating that both NES1 and NES2 motifs are essential for full nuclear export activity. This NES-mediated nuclear export was insensitive to the chromosomal region maintenance 1 (CRM1) inhibitor leptomycin B (LMB) or to CRM1 knockdown. However, knockdown of calreticulin (CRT) prevented NES-mediated nuclear export. Furthermore, our data show that CRT interacts with LRH-1 and is involved in the nuclear export of LRH-1. With full-length LRH-1, mutation of NES1 led to perinuclear accumulation of the mutant protein. Immunofluorescence analysis showed that these perinuclear aggregates were co-localized with the centrosome marker, microtubule-associated protein 1 light chain 3 (LC3), ubiquitin and heat shock protein 70 (Hsp70), indicating that the mutant was misfolded and sequestered into aggresome-like structures via the autophagic clearance pathway. Our study demonstrates for the first time that LRH-1 has a CRT-dependent NES which is not only required for cytoplasmic trafficking, but also essential for correct protein folding to avoid misfolding-induced aggregation. © 2015 Authors; published by Portland Press Limited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin
2015-02-01
Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysismore » of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure. Figure 1: Project activities The study will consider a representative NPP reinforced concrete reactor building and representative plant safety system. This study will leverage existing research and development (R&D) activities at INL. Figure 1 shows the proposed study steps with the steps in blue representing activities already funded at INL and the steps in purple the activities that would be funded under this proposal. The following results will be documented: 1) Comparison of seismic risk for the non-seismically isolated (non-SI) and seismically isolated (SI) NPP, and 2) an estimate of construction cost savings when implementing SI at the site of the generic NPP.« less
Nuclear Cryogenic Propulsion Stage Conceptual Design and Mission Analysis
NASA Technical Reports Server (NTRS)
Kos, Larry D.; Russell, Tiffany E.
2014-01-01
The Nuclear Cryogenic Propulsion Stage (NCPS) is an in-space transportation vehicle, comprised of three main elements, designed to support a long-stay human Mars mission architecture beginning in 2035. The stage conceptual design and the mission analysis discussed here support the current nuclear thermal propulsion going on within partnership activity of NASA and the Department of Energy (DOE). The transportation system consists of three elements: 1) the Core Stage, 2) the In-line Tank, and 3) the Drop Tank. The driving mission case is the piloted flight to Mars in 2037 and will be the main point design shown and discussed. The corresponding Space Launch System (SLS) launch vehicle (LV) is also presented due to it being a very critical aspect of the NCPS Human Mars Mission architecture due to the strong relationship between LV lift capability and LV volume capacity.
Parvoviruses Cause Nuclear Envelope Breakdown by Activating Key Enzymes of Mitosis
Porwal, Manvi; Cohen, Sarah; Snoussi, Kenza; Popa-Wagner, Ruth; Anderson, Fenja; Dugot-Senant, Nathalie; Wodrich, Harald; Dinsart, Christiane; Kleinschmidt, Jürgen A.; Panté, Nelly; Kann, Michael
2013-01-01
Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca++ efflux from the lumen between inner and outer nuclear membrane we found that Ca++ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis. PMID:24204256
Adaptive and regulatory mechanisms in aged rats with postoperative cognitive dysfunction
Bi, Yanlin; Liu, Shuyun; Yu, Xinjuan; Wang, Mingshan; Wang, Yuelan
2014-01-01
Inflammation may play a role in postoperative cognitive dysfunction. 5′ Adenosine monophosphate-activated protein kinase, nuclear factor-kappa B, interleukin-1β, and tumor necrosis factor-α are involved in inflammation. Therefore, these inflammatory mediators may be involved in postoperative cognitive dysfunction. Western immunoblot analysis revealed 5′ adenosine monophosphate-activated protein kinase and nuclear factor-kappa B in the hippocampus of aged rats were increased 1–7 days after splenectomy. Moreover, interleukin-1β and tumor necrosis factor-α were upregulated and gradually decreased. Therefore, these inflammatory mediators may participate in the splenectomy model of postoperative cognitive dysfunction in aged rats. PMID:25206851
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T.; Jessee, Matthew Anderson
The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlomore » radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.« less
PDE4 and mAKAPβ are nodal organizers of β2-ARs nuclear PKA signaling in cardiac myocytes.
Bedioune, Ibrahim; Lefebvre, Florence; Lechêne, Patrick; Varin, Audrey; Domergue, Valérie; Kapiloff, Michael S; Fischmeister, Rodolphe; Vandecasteele, Grégoire
2018-05-03
β1- and β2-adrenergic receptors (β-ARs) produce different acute contractile effects on the heart partly because they impact on different cytosolic pools of cAMP-dependent protein kinase (PKA). They also exert different effects on gene expression but the underlying mechanisms remain unknown. The aim of this study was to understand the mechanisms by which β1- and β2-ARs regulate nuclear PKA activity in cardiomyocytes. We used cytoplasmic and nuclear targeted biosensors to examine cAMP signals and PKA activity in adult rat ventricular myocytes upon selective β1- or β2-ARs stimulation. Both β1- and β2-AR stimulation increased cAMP and activated PKA in the cytoplasm. While the two receptors also increased cAMP in the nucleus, only β1-ARs increased nuclear PKA activity and up-regulated the PKA target gene and pro-apoptotic factor, inducible cAMP element repressor (ICER). Inhibition of PDE4, but not Gi, PDE3, GRK2 nor caveolae disruption disclosed nuclear PKA activation and ICER induction by β2-ARs. Both nuclear and cytoplasmic PKI prevented nuclear PKA activation and ICER induction by β1-ARs, indicating that PKA activation outside the nucleus is required for subsequent nuclear PKA activation and ICER mRNA expression. Cytoplasmic PKI also blocked ICER induction by β2-AR stimulation (with concomitant PDE4 inhibition). However, in this case nuclear PKI decreased ICER up-regulation by only 30%, indicating that other mechanisms are involved. Down-regulation of mAKAPβ partially inhibited nuclear PKA activation upon β1-AR stimulation, and drastically decreased nuclear PKA activation upon β2-AR stimulation in the presence of PDE4 inhibition. β1- and β2-ARs differentially regulate nuclear PKA activity and ICER expression in cardiomyocytes. PDE4 insulates a mAKAPβ-targeted PKA pool at the nuclear envelope that prevents nuclear PKA activation upon β2-AR stimulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Blas, Alfredo; Tapia, Carlos; Riego, Albert
Presentation the Equipment for the Continuous Measurement and Identification of Gamma Radioactivity on Aerosols developed by the Nuclear Engineering Research Group (NERG) from the Technical University of Catalonia (UPC) and the Raditel Company. The device is based on a fixed filter of glass fiber (100% borosilicate), this allows determine the concentration of activity of gamma emitters on aerosols in air. A specifically developed Spectrometry Analysis System has been developed. The analysis of the spectra allows the identification of the emitters and determine the concentration of activity. Nowadays four Stations with this equipment are operating on the Environmental Radiological Surveillance Networkmore » of the Catalonian Generalitat (Spain): two near the Asco and Vandellos Nuclear Power Plants in the province of Tarragona and one in the city of Barcelona. Soon a fourth monitor will be incorporated at Roses (province of Girona) and a fifth in Puigcerda (province of Barcelona). We present measurements and analysis of the evolution of the emitters identified on different stations of the Network. (authors)« less
INF and IAEA: A comparative analysis of verification strategy. [Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheinman, L.; Kratzer, M.
1992-07-01
This is the final report of a study on the relevance and possible lessons of Intermediate Range Nuclear Force (INF) verification to the International Atomic Energy Agency (IAEA) international safeguards activities.
Shindo, Sawako; Numazawa, Satoshi; Yoshida, Takemi
2006-01-01
CAR (constitutive androstane receptor) is a nuclear receptor that regulates the transcription of target genes, including CYP (cytochrome P450) 2B and 3A. The transactivation by CAR is regulated by its subcellular localization; however, the mechanism that governs nuclear translocation has yet to be clarified. It has been reported recently that AMPK (AMP-activated protein kinase) is involved in phenobarbital-mediated CYP2B induction in a particular culture system. We therefore investigated in vivo whether AMPK is involved in the activation of CAR-dependent gene expression. Immunoblot analysis using an antibody which recognizes Thr-172-phosphorylated AMPKα1/2 revealed phenobarbital-induced AMPK activation in rat and mouse livers as well. Phenobarbital, however, failed to increase the liver phospho-AMPK level of tumour-bearing rats in which CAR nuclear translocation had been impaired. In in vivo reporter gene assays employing PBREM (phenobarbital-responsive enhancer module) from CYP2B1, an AMPK inhibitor 8-bromo-AMP abolished phenobarbital-induced transactivation. In addition, Cyp2b10 gene expression was attenuated by 8-bromo-AMP. Forced expression of a dominant-negative mutant and the wild-type of AMPKα2 in the mouse liver suppressed and further enhanced phenobarbital-induced PBREM-reporter activity respectively. Moreover, the AMPK activator AICAR (5-amino-4-imidazolecarboxamide riboside) induced PBREM transactivation and an accumulation of CAR in the nuclear fraction of the mouse liver. However, AICAR and metformin, another AMPK activator, failed to induce hepatic CYP2B in mice and rats. These observations suggest that AMPK is at least partly involved in phenobarbital-originated signalling, but the kinase activation by itself is not sufficient for CYP2B induction in vivo. PMID:17032173
Shyu, Yu-Chiau; Lee, Tung-Liang; Chen, Xin; Hsu, Pang-Hung; Wen, Shau-Ching; Liaw, Yi-Wei; Lu, Chi-Huan; Hsu, Po-Yen; Lu, Mu-Jie; Hwang, JauLang; Tsai, Ming-Daw; Hwang, Ming-Jing; Chen, Jim-Ray; Shen, Che-Kun James
2014-02-24
Erythropoiesis is a highly regulated process during which BFU-E are differentiated into RBCs through CFU-E, Pro-E, PolyCh-E, OrthoCh-E, and reticulocyte stages. Uniquely, most erythroid-specific genes are activated during the Pro-E to Baso-E transition. We show that a wave of nuclear import of the erythroid-specific transcription factor EKLF occurs during the Pro-E to Baso-E transition. We further demonstrate that this wave results from a series of finely tuned events, including timed activation of PKCθ, phosphorylation of EKLF at S68 by P-PKCθ(S676), and sumoylation of EKLF at K74. The latter EKLF modifications modulate its interactions with a cytoplasmic ankyrin-repeat-protein FOE and importinβ1, respectively. The role of FOE in the control of EKLF nuclear import is further supported by analysis of the subcellular distribution patterns of EKLF in FOE-knockout mice. This study reveals the regulatory mechanisms of the nuclear import of EKLF, which may also be utilized in the nuclear import of other factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Biegalski, S R; Bowyer, T W; Eslinger, P W; Friese, J A; Greenwood, L R; Haas, D A; Hayes, J C; Hoffman, I; Keillor, M; Miley, H S; Moring, M
2012-12-01
The March 11, 2011 9.0 magnitude undersea megathrust earthquake off the coast of Japan and subsequent tsunami waves triggered a major nuclear event at the Fukushima Dai-ichi nuclear power station. At the time of the event, units 1, 2, and 3 were operating and units 4, 5, and 6 were in a shutdown condition for maintenance. Loss of cooling capacity to the plants along with structural damage caused by the earthquake and tsunami resulted in a breach of the nuclear fuel integrity and release of radioactive fission products to the environment. Fission products started to arrive in the United States via atmospheric transport on March 15, 2011 and peaked by March 23, 2011. Atmospheric activity concentrations of (131)I reached levels of 3.0×10(-2) Bqm(-3) in Melbourne, FL. The noble gas (133)Xe reached atmospheric activity concentrations in Ashland, KS of 17 Bqm(-3). While these levels are not health concerns, they were well above the detection capability of the radionuclide monitoring systems within the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegalski, Steven R.; Bowyer, Ted W.; Eslinger, Paul W.
The March 11, 2011 9.0 magnitude undersea megathrust earthquake off the coast of Japan and subsequent tsunami waves triggered a major nuclear event at the Fukushima Dai-ichi nuclear power station. At the time of the event, units 1, 2, and 3 were operating and units 4, 5, and 6 were in a shutdown condition for maintenance. Loss of cooling capacity to the plants along with structural damage caused by the earthquake and tsunami resulted in a breach of the nuclear fuel integrity and release of radioactive fission products to the environment. Fission products started to arrive in the United Statesmore » via atmospheric transport on March 15, 2011 and peaked by March 23, 2011. Atmospheric activity concentrations of 131I reached levels of 3.0 * 10*2 Bqm*3 in Melbourne, FL. The noble gas 133Xe reached atmospheric activity concentrations in Ashland, KS of 17 Bqm*3. While these levels are not health concerns, they were well above the detection capability of the radionuclide monitoring systems within the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty.« less
Yan, Shi-Fang; Zou, Yu Shan; Gao, Yun; Zhai, Chao; Mackman, Nigel; Lee, Stephen L.; Milbrandt, Jeffrey; Pinsky, David; Kisiel, Walter; Stern, David
1998-01-01
Local hypoxemia and stasis trigger thrombosis. We have demonstrated previously that in a murine model of normobaric hypoxia pulmonary fibrin deposition is a result of expression of tissue factor, especially in oxygen-deprived mononuclear phagocytes (MPs). We now show that transcription factor early-growth-response gene product (Egr-1) is rapidly activated in hypoxia, both in vitro and in vivo, and is responsible for transcription and expression of tissue factor in hypoxic lung. MPs and HeLa cells subjected to hypoxia (pO2 ≈13 torr) had increased levels of tissue factor transcripts (≈18-fold) and an increased rate of transcription (≈15-fold), based on nuclear run-on analysis. Gel-shift analysis of nuclear extracts from hypoxic MPs and HeLa cells demonstrated increased DNA-binding activity at the serum response region (SRR; −111/+14 bp) of the tissue factor promoter at Egr-1 motifs. Using 32P-labeled Egr consensus oligonucleotide, we observed induction of DNA-binding activity in nuclear extracts from hypoxic lung and HeLa cells because of activation of Egr-1, by means of supershift analysis. Transient transfection of HeLa cells with chimeric plasmids containing wild-type or mutant SRR from the tissue factor promoter showed that intact Sp1 sites are necessary for basal promoter activity, whereas the integrity of Egr-1 sites was required for hypoxia-enhanced expression. A central role for Egr-1 in hypoxia-mediated tissue factor expression was confirmed by experiments with homozygous Egr-1 null mice; wild-type mice subjected to oxygen deprivation expressed tissue factor and showed fibrin deposition, but hypoxic homozygous Egr-1 null mice displayed neither tissue factor nor fibrin. These data delineate a novel biology for hypoxia-induced fibrin deposition, in which oxygen deprivation-induced activation of Egr-1, resulting in expression of tissue factor, has an unexpected and central role. PMID:9653181
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, G.D.; Kukielka, C.A.; Olson, L.M.
The engineering analysis group is responsible for all nuclear plant systems analysis and reactor analysis activities, excluding fuel management analysis, at Pennsylvania Power and Light Company. These activities include making pretest and posttest predictions of startup tests; analyzing unplanned or unexpected transient events; providing technical training to plant personnel; assisting in the development of emergency drill scenarios; providing engineering evaluations to support design and technical specification changes, and evaluating, assessing, and resolving a number of license conditions. Many of these activities have required the direct use of RETRAN models. Two RETRAN analyses that were completed to support plant operations -more » a pretest analysis of the turbine trip startup test, and a posttest analysis of the loss of startup transformer event - are investigated. For each case, RETRAN results are compared with available plant data and comparisons are drawn on the acceptability of the performance of the plant systems.« less
NASA Technical Reports Server (NTRS)
Floyd, Samuel R.; Keller, John W.; Dworkin, Jason P.; Mildner, David F. R.
2004-01-01
Prompt Gamma Ray Activation Analysis (PGAA) from neutron capture is an important experimental method that yields information on the elemental abundance of target materials. Gamma ray analysis has been used in planetary exploration missions by taking advantage of the production of neutrons as a result of Galactic Cosmic Ray interaction within the planetary surfaces. The .gamma ray signal that can be obtained from the GCR production of neutrons is very low, so we seek a superior neutron source. NASA s Project Prometheus and the Dept. of Energy aim to develop a nuclear power system for planetary exploration. This provides us with a tremendous opportunity to harness the reactor as a source of neutrons that can be used for PGAA. We envision a narrow stream of neutrons from the reactor directed toward the surface of an asteroid or comet producing the prompt gamma ray signal for analysis. Under ideal conditions of neutron flux and spacecraft orbit, both the signal strength and the spatial resolution will improved by several orders of magnitude over previously missions.
Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2005-01-01
The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.
NASA Astrophysics Data System (ADS)
Pritychenko, Boris; Hlavac, Stanislav; Schwerer, Otto; Zerkin, Viktor
2017-09-01
The Exchange Format (EXFOR) or experimental nuclear reaction database and the associated Web interface provide access to the wealth of low- and intermediate-energy nuclear reaction physics data. This resource includes numerical data sets and bibliographical information for more than 22,000 experiments since the beginning of nuclear science. Analysis of the experimental data sets, recovery and archiving will be discussed. Examples of the recent developments of the data renormalization, uploads and inverse reaction calculations for nuclear science and technology applications will be presented. The EXFOR database, updated monthly, provides an essential support for nuclear data evaluation, application development and research activities. It is publicly available at the National Nuclear Data Center website http://www.nndc.bnl.gov/exfor and the International Atomic Energy Agency mirror site http://www-nds.iaea.org/exfor. This work was sponsored in part by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 with Brookha ven Science Associates, LLC.
Alves, D S; Machado, A R T; Campos, V A C; Oliveira, D F; Carvalho, G A
2016-04-01
This study was performed to investigate the activity of 19 dichloromethane-soluble fractions obtained from the methanolic extracts of 10 Annonaceae species against the fall armyworm, Spodoptera frugiperda (J. E. Smith). The stem bark of Duguetia lanceolata A. St.-Hil. showed the highest insecticidal activity, with a median lethal time (LT50) of 61.4 h and a median lethal concentration (LC50) of 946.5 µg/ml of diet. The dichloromethane-soluble fractions from six D. lanceolata specimens were subjected to evaluation of their activities against S. frugiperda and metabolomic analysis using hydrogen (1H) nuclear magnetic resonance (NMR) spectroscopy. Although all of the samples affected S. frugiperda mortality, their insecticidal activities varied according to the sample used in the experiments. Using partial least squares regression of the results, the D. lanceolata specimens were grouped according to their metabolite profile and insecticidal activity. A detailed analysis via uni- and bidimensional NMR spectroscopy showed that the peaks in the 1H NMR spectra associated with increased insecticidal activity could be attributed to 2,4,5-trimethoxystyrene, which suggests that this substance is involved in the insecticidal activity of the stem bark fraction of D. lanceolata.
A Conceptual Working Paper on Arms Control Verification,
1981-08-01
AD-AlIO 748 OPIRATIONAL RESEARCH AND ANALYSIS ESTABLISMENT OTTA-ETC F/S 5/4 -A CONCEPTUAL WORKING PAP" ON ARMS CONTROL VERItFCATION.(U) AUG 81 F R... researched for the paper comes from ORAE Report No. R73, Compendium of Arms Control Verification Proposals, submitted simultaneously to the Committee on...nuclear activities within the territory" of the non -nuclear weapon state, or carried out under its control anywhere. Parties also undertake not to
Nuclear forensics: Soil content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beebe, Merilyn Amy
Nuclear Forensics is a growing field that is concerned with all stages of the process of creating and detonating a nuclear weapon. The main goal is to prevent nuclear attack by locating and securing nuclear material before it can be used in an aggressive manner. This stage of the process is mostly paperwork; laws, regulations, treaties, and declarations made by individual countries or by the UN Security Council. There is some preliminary leg work done in the form of field testing detection equipment and tracking down orphan materials; however, none of these have yielded any spectacular or useful results. Inmore » the event of a nuclear attack, the first step is to analyze the post detonation debris to aid in the identification of the responsible party. This aspect of the nuclear forensics process, while reactive in nature, is more scientific. A rock sample taken from the detonation site can be dissolved into liquid form and analyzed to determine its chemical composition. The chemical analysis of spent nuclear material can provide valuable information if properly processed and analyzed. In order to accurately evaluate the results, scientists require information on the natural occurring elements in the detonation zone. From this information, scientists can determine what percentage of the element originated in the bomb itself rather than the environment. To this end, element concentrations in soils from sixty-nine different cities are given, along with activity concentrations for uranium, thorium, potassium, and radium in various building materials. These data are used in the analysis program Python.« less
(Cardiology and nuclear medicine)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapp, F.F. Jr.
1988-10-27
The traveler was invited to serve as an external examiner for a doctoral thesis entitled Analysis of Myocardial Time-Activity Curves Related to Radiolabeled Free Fatty Acid Metabolism'' in the Cardiology Department at the Free University of Amsterdam, The Netherlands. The traveler also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, the Department of Nuclear Medicine in Aachen, West Germany, and the Cyclotron Research Center in Liege, Belgium. He led discussions, reviewed data, and coordinated further collaboration on the preclinical studies and clinical testing of radiopharmaceuticals being developed by the traveler's research group at the Oakmore » Ridge National Laboratory (ORNL).« less
HGF/c-Met related activation of β-catenin in hepatoblastoma
2011-01-01
Background Activation of beta-catenin is a hallmark of hepatoblastoma (HB) and appears to play a crucial role in its pathogenesis. While aberrant accumulation of the beta-catenin is a common event in HB, mutations or deletions in CTNNB1 (beta-catenin gene) do not always account for the high frequency of protein expression. In this study we have investigated alternative activation of beta-catenin by HGF/c-Met signaling in a large cohort of 98 HB patients enrolled in the SIOPEL-3 clinical trial. Methods We performed immunohistochemistry, using antibodies to total beta-catenin and tyrosine654-phosphorylated beta-catenin, which is a good surrogate marker of HGF/c-Met activation. CTNNB1 mutation analysis was also carried out on all samples. We also investigated beta-catenin pathway activation in two liver cancer cell lines, HuH-6 and HuH-7. Results Aberrant beta-catenin expression was seen in the cytoplasm and/or nucleus of 87% of tumour samples. Our results also revealed a large subset of HB, 83%, with cytoplasmic expression of tyrosine654-phosphorylated beta-catenin and 30% showing additional nuclear accumulation. Sequence analysis revealed mutations in 15% of our cohort. Statistical analysis showed an association between nuclear expression of c-Met-activated beta-catenin and wild type CTNNB1 (P-value = 0.015). Analysis of total beta-catenin and Y654-beta-catenin in response to HGF activation in the cell lines, mirrors that observed in our HB tumour cohort. Results We identified a significant subset of hepatoblastoma patients for whom targeting of the c-Met pathway may be a treatment option and also demonstrate distinct mechanisms of beta-catenin activation in HB. PMID:21992464
Transportation analyses for the lunar-Mars initiative
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.; Buddington, Patricia A.
1991-01-01
This paper focuses on certain results of an ongoing NASA-sponsored study by Boeing, including (1) a series of representative space exploration scenarios; (2) the levels of effort required to accomplish each; and (3) a range of candidate transportation system as partial implementations of the scenarios. This effort predated release of the Synthesis report; the three levels of activity described are not responses to the Synthesis architectures. These three levels (minimum, median and ambitious), do envelope the range of scope described in the four Synthesis architecture models. The level of analysis detail was to the current known level of detail of transportation hardware systems and mission scenarios. The study did not include detailed analysis of earth-to-orbit transportation, surface systems, or tracking and communications systems. The influence of earth-to-orbit systems was considered in terms of delivery capacity and cost. Aspects of additional options, such as in situ resource utilization are explored as needed to indicate potential benefits. Results favored cryogenic chemical propulsion for low activity levels and undemanding missions (such as cargo and some lunar missions), nuclear thermal propulsion for median activity levels similar to the Synthesis architectures, and nuclear thermal propulsion with aerobraking or nuclear electric propulsion for high activity levels. Solar electric propulsion was seen as having an important role if the present high unit cost (i.e., dollars per watt) of space photovoltaics could be reduced by a factor of five or more at production rates of megawatts per year.
Fišerová, Jindřiška; Efenberková, Michaela; Sieger, Tomáš; Maninová, Miloslava; Uhlířová, Jana; Hozák, Pavel
2017-06-15
The nuclear periphery (NP) plays a substantial role in chromatin organization. Heterochromatin at the NP is interspersed with active chromatin surrounding nuclear pore complexes (NPCs); however, details of the peripheral chromatin organization are missing. To discern the distribution of epigenetic marks at the NP of HeLa nuclei, we used structured illumination microscopy combined with a new MATLAB software tool for automatic NP and NPC detection, measurements of fluorescent intensity and statistical analysis of measured data. Our results show that marks for both active and non-active chromatin associate differentially with NPCs. The incidence of heterochromatin marks, such as H3K27me2 and H3K9me2, was significantly lower around NPCs. In contrast, the presence of marks of active chromatin such as H3K4me2 was only decreased very slightly around the NPCs or not at all (H3K9Ac). Interestingly, the histone demethylases LSD1 (also known as KDM1A) and KDM2A were enriched within the NPCs, suggesting that there was a chromatin-modifying mechanism at the NPCs. Inhibition of transcription resulted in a larger drop in the distribution of H1, H3K9me2 and H3K23me2, which implies that transcription has a role in the organization of heterochromatin at the NP. © 2017. Published by The Company of Biologists Ltd.
Huang, Xian-De; Wei, Guo-jian; Zhang, Hua; He, Mao-Xian
2015-01-01
Nuclear factor of activated T cells (NFAT) plays an important role in nonimmune cells and also in T cells and many other cells of the immune system, by regulating the expression of a variety of genes involved in the immune response, organ development, developmental apoptosis and angiogenesis. In the present study, the NFAT homology gene, PfNFAT, from the pearl oyster Pinctada fucata was cloned and its genomic structure and promoter were analyzed. PfNFAT encodes a putative protein of 1226 amino acids, and contains a highly conserved Rel homology region (RHR) with DNA-binding specificity, and a regulatory domain (NFAT homology region, NHR) containing a potent transactivation domain (TAD). The PfNFAT gene consists of 12 exons and 11 introns, and its promoter contains potential binding sites for transcription factors such as NF-κB (Nuclear factor κB), STATx (signal transducer and activator of transcription), AP-1 (activator protein-1) and Sox-5/9 (SRY type HMG box-5/9), MyoD (Myogenic Differentiation Antigen) and IRF (Interferon regulatory factor). Comparison and phylogenetic analysis revealed that PfNFAT shows high identity with other invertebrate NFAT, and clusters with the NFAT5 subgroup. Furthermore, gene expression analysis revealed that PfNFAT is involved in the immune response to lipopolysaccharide (LPS) and Polyinosinic-polycytidylic acid (poly I:C) stimulation and in the nucleus inserting operation. The study of PfNFAT may increase understanding of molluscan innate immunity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus
Wolfisberg, Raphael; Kempf, Christoph
2016-01-01
ABSTRACT Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. IMPORTANCE In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. PMID:27009963
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus.
Wolfisberg, Raphael; Kempf, Christoph; Ros, Carlos
2016-06-01
Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Zhang, Lei; Davies, Laura J; Elling, Axel A
2015-01-01
Root-knot nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands of nematodes and secreted into plant tissue through a needle-like stylet. Effectors characterized to date have been shown to mediate processes essential for nematode pathogenesis. To gain an insight into their site of action and putative function, the subcellular localization of 13 previously isolated Meloidogyne incognita effectors was determined. Translational fusions were created between effectors and EGFP-GUS (enhanced green fluorescent protein-β-glucuronidase) reporter genes, which were transiently expressed in tobacco leaf cells. The majority of effectors localized to the cytoplasm, with one effector, 7H08, imported into the nuclei of plant cells. Deletion analysis revealed that the nuclear localization of 7H08 was mediated by two novel independent nuclear localization domains. As a result of the nuclear localization of the effector, 7H08 was tested for the ability to activate gene transcription. 7H08 was found to activate the expression of reporter genes in both yeast and plant systems. This is the first report of a plant-parasitic nematode effector with transcriptional activation activity. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Kraus, Terry; Foster, Kevin
2014-08-01
The radiological assessment of the nuclear fallout (i.e., fission and neutron-activation radionuclides) from a nuclear detonation is complicated by the large number of fallout radionuclides. This paper provides the initial isotopic source term inventory of the fallout from a uranium-fueled nuclear detonation and identifies the significant and insignificant radiological dose producing radionuclides over 11 dose integration time periods (time phases) of interest. A primary goal of this work is to produce a set of consistent, time phase-dependent lists of the top dose-producing radionuclides that can be used to prepare radiological assessment calculations and data products (e.g., maps of areas that exceed protective action guidelines) in support of public and worker protection decisions. The ranked lists of top dose-producing radionuclides enable assessors to perform atmospheric dispersion modeling and radiological dose assessment modeling more quickly by using relatively short lists of radionuclides without significantly compromising the accuracy of the modeling and the dose projections. This paper also provides a superset-list of the top dose-producing fallout radionuclides from a uranium-fueled nuclear detonation that can be used to perform radiological assessments over any desired time phase. Furthermore, this paper provides information that may be useful to monitoring and sampling and laboratory analysis personnel to help understand which radionuclides are of primary concern. Finally, this paper may be useful to public protection decision makers because it shows the importance of quickly initiating public protection actions to minimize the radiological dose from fallout.
Radiological threat assessment and the Federal Response Plan--a gap analysis.
Conklin, W Craig; Liotta, Philip L
2005-11-01
The ability of the federal government to effectively and efficiently respond to nuclear or radiological terrorist attacks has been the subject of intense discussion and analysis for many years. Because of recent terrorist activities and intelligence information, there is strong sentiment that it is not a question of if, but when, a radiological or nuclear terrorist attack will occur. As a result, there is considerable concern that the federal government may not be adequately prepared to respond to an attack involving a radiological dispersal device or improvised nuclear device. In response to these concerns, federal departments and agencies have initiated actions to develop a better understanding of the magnitude of the radiological/nuclear terrorist threat, assess the ability of the federal government to support state and local responses to such attacks, and improve the Nation's ability to prepare for, respond to, and recover from these types of attacks. In an era of limited fiscal growth and competing priorities, the federal government will have to enhance its collaboration with state and local governments, the private sector, and academia to ensure that the Nation is capable of responding to a terrorist attack involving radioactive or nuclear material.
Honda, Akinobu; Chigwechokha, Petros Kingstone; Kamada-Futagami, Yuko; Komatsu, Masaharu; Shiozaki, Kazuhiro
2018-06-01
Sialidase catalyzes the removal of sialic acids from glycoconjugates. Different from Neu1 and Neu3 sialidases, Neu4 enzymatic properties such as substrate specificity and subcellular localization are not well-conserved among vertebrates. In fish only zebrafish and medaka neu4 genes have been cloned and their polypeptides have been characterized so far. Thus, characterization of Neu4 from other fish species is necessary to evaluate Neu4 physiological functions. Here, Nile tilapia was chosen for the characterization of Neu4 polypeptide considering that it is one of the major cultured fish all over the world and that its genomic sequences are now available. Coding DNA sequence of tilapia Neu4 was identified as 1,497 bp and its recombinant protein showed broad substrate specificity and optimal sialidase enzyme activity pH at 4.0. Neu4 activity was sustained even in neutral and alkali pH. Interestingly, immunofluorescence analysis revealed that major subcellular localization of tilapia Neu4 was nuclear, quite distinct from zebrafish (ER) and medaka Neu4 (lysosome). Bioinformatic analysis showed the existence of putative nuclear localization signal (NLS) in tilapia Neu4. In general, it is known that importin families bind to several proteins via NLS and transfer them into nucleus. Therefore, to determine the involvement of putative NLS in Neu4 nuclear localization, Neu4 mutant deleting NLS was constructed and expressed in cultured cells. As a result, NLS deletion significantly diminished the nuclear localization. Furthermore, treatment of importazole, interrupter of binding importin β and RanGTP, significantly suppressed Neu4 nuclear localization. In summary, tilapia Neu4 is a unique sialidase localized at nucleus and its transport system into nucleus is regulated by importin. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Nuclear Import of β-Dystroglycan Is Facilitated by Ezrin-Mediated Cytoskeleton Reorganization
Vásquez-Limeta, Alejandra; Wagstaff, Kylie M.; Ortega, Arturo; Crouch, Dorothy H.; Jans, David A.; Cisneros, Bulmaro
2014-01-01
The β-dystroglycan (β-DG) protein has the ability to target to multiple sites in eukaryotic cells, being a member of diverse protein assemblies including the transmembranal dystrophin-associated complex, and a nuclear envelope-localised complex that contains emerin and lamins A/C and B1. We noted that the importin α2/β1-recognised nuclear localization signal (NLS) of β-DG is also a binding site for the cytoskeletal-interacting protein ezrin, and set out to determine whether ezrin binding might modulate β-DG nuclear translocation for the first time. Unexpectedly, we found that ezrin enhances rather than inhibits β-DG nuclear translocation in C2C12 myoblasts. Both overexpression of a phosphomimetic activated ezrin variant (Ez-T567D) and activation of endogenous ezrin through stimulation of the Rho pathway resulted in both formation of actin-rich surface protrusions and significantly increased nuclear translocation of β-DG as shown by quantitative microscopy and subcellular fractionation/Western analysis. In contrast, overexpression of a nonphosphorylatable inactive ezrin variant (Ez-T567A) or inhibition of Rho signaling, decreased nuclear translocation of β-DG concomitant with a lack of cell surface protrusions. Further, a role for the actin cytoskeleton in ezrin enhancement of β-DG nuclear translocation was implicated by the observation that an ezrin variant lacking its actin-binding domain failed to enhance nuclear translocation of β-DG, while disruption of the actin cytoskeleton led to a reduction in β-DG nuclear localization. Finally, we show that ezrin-mediated cytoskeletal reorganization enhances nuclear translocation of the cytoplasmic but not the transmembranal fraction of β-DG. This is the first study showing that cytoskeleton reorganization can modulate nuclear translocation of β-DG, with the implication that β-DG can respond to cytoskeleton-driven changes in cell morphology by translocating from the cytoplasm to the nucleus to orchestrate nuclear processes in response to the functional requirements of the cell. PMID:24599031
NASA Astrophysics Data System (ADS)
Kolotkov, Gennady A.; Penin, Sergei
2017-11-01
The paper examines an update of comparative analysis of radionuclides released into the atmosphere from Beloyarsk nuclear power plant with fast-neutron reactor for nine years in a row, from 2008 to 2016. It has been shown that the main radionuclides throw out into the atmosphere from Beloyarsk nuclear power plant are beta-active radionuclides. Based on data releases of the RPA "Typhoon", it has been conclude that radiation situation become worse insignificantly; beside on the new reactor BN-800 was put in operation in 2016. Using Spencer-Fano's equation, it was carried out the summary spectrum of emitted radionuclides. On example of Beloyarsk nuclear power plant, it was considered a question about ability of remote detection of raised radioactivity in the atmospheric radioactive plume. It has been shown that it possible to detect raised radioactivity in the emission plume from Beloyarsk nuclear power plant.
NASA Astrophysics Data System (ADS)
Wahid, Kareem; Sanchez, Patrick; Hannan, Mohammad
2014-03-01
In the field of nuclear science, neutron flux is an intrinsic property of nuclear reaction facilities that is the basis for experimental irradiation calculations and analysis. In the Rio Grande Valley (Texas), the UTPA Neutron Research Facility (NRF) is currently the only neutron facility available for experimental research purposes. The facility is comprised of a 20-microgram californium-252 neutron source surrounded by a shielding cascade containing different irradiation cavities. Thermal and fast neutron flux values for the UTPA NRF have yet to be fully investigated and may be of particular interest to biomedical studies in low neutron dose applications. Though a variety of techniques exist for the characterization of neutron flux, neutron activation analysis (NAA) of metal and nonmetal foils is a commonly utilized experimental method because of its detection sensitivity and availability. The aim of our current investigation is to employ foil activation in the determination of neutron flux values for the UTPA NSRF for further research purposes. Neutron spectrum unfolding of the acquired experimental data via specialized software and subsequent comparison for consistency with computational models lends confidence to the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germain, Shawn St.; Farris, Ronald
2014-09-01
Advanced Outage Control Center (AOCC), is a multi-year pilot project targeted at Nuclear Power Plant (NPP) outage improvement. The purpose of this pilot project is to improve management of NPP outages through the development of an AOCC that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report documents the results of a benchmarking effort to evaluate the transferability of technologies demonstrated at Idaho National Laboratory and the primary pilot project partner, Palo Verde Nuclear Generating Station. The initial assumption for this pilot project was that NPPs generally domore » not take advantage of advanced technology to support outage management activities. Several researchers involved in this pilot project have commercial NPP experience and believed that very little technology has been applied towards outage communication and collaboration. To verify that the technology options researched and demonstrated through this pilot project would in fact have broad application for the US commercial nuclear fleet, and to look for additional outage management best practices, LWRS program researchers visited several additional nuclear facilities.« less
The citrus flavonone hesperetin attenuates the nuclear translocation of aryl hydrocarbon receptor.
Tan, Yan Qin; Chiu-Leung, Leo Clement; Lin, Shu-Mei; Leung, Lai K
2018-08-01
The environmental polycyclic aromatic hydrocarbons (PAH) and dioxins are carcinogens and their adverse effects have been largely attributed to the activation of AhR. Hesperetin is a flavonone found abundantly in citrus fruits and has been shown to be a biologically active agent. In the present study, the effect of hesperetin on the nuclear translocation of AhR and the downstream gene expression was investigated in MCF-7 cells. Confocal microscopy indicated that 7, 12-dimethylbenz[α]anthracene (DMBA) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) -induced nuclear translocation of AhR was deterred by hesperetin treatment. The reduced nuclear translocation could also be observed in Western analysis. Reporter-gene assay further illustrated that the induced XRE transactivation was weakened by the treatment of hesperetin. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay demonstrated that the gene expressions of CYP1A1, 1A2, and 1B1 followed the same pattern of AhR translocation. These results suggested that hesperetin counteracted AhR transactivation and suppressed the downstream gene expression. Copyright © 2018 Elsevier Inc. All rights reserved.
Analysis of the nuclear dependence of the νμ charged current inclusive cross section with MINERvA
NASA Astrophysics Data System (ADS)
Ransome, Ronald
2014-03-01
Neutrino experiments use heavy nuclei (Fe, Pb, C) to achieve necessary statistics. However, the use of heavy nuclei exposes these experiments to the nuclear dependence of neutrino-nucleus cross sections, which are poorly known and difficult to model. The MINERvA (Main INjector ExpeRiment for ?-A), a few-GeV neutrino nucleus scattering experiment at Fermilab, seeks to remedy the situation by directly studying the A-dependence of exclusive and inclusive channels. The MINERvA detector contains an 8 ton fully active fine-grained scintillator tracking core and targets of carbon, iron, lead, water and liquid helium which sit upstream of the tracking core. We present results from our analysis using the nuclear targets: ratios of the ?? charged-current inclusive cross section in carbon, iron, lead and plastic scintillator (CH). Supported in part by the US National Science Foundation and the Dept. of Energy.
Szafran, Adam T.; Szwarc, Maria; Marcelli, Marco; Mancini, Michael A.
2008-01-01
Background Understanding how androgen receptor (AR) function is modulated by exposure to steroids, growth factors or small molecules can have important mechanistic implications for AR-related disease therapies (e.g., prostate cancer, androgen insensitivity syndrome, AIS), and in the analysis of environmental endocrine disruptors. Methodology/Principal Findings We report the development of a high throughput (HT) image-based assay that quantifies AR subcellular and subnuclear distribution, and transcriptional reporter gene activity on a cell-by-cell basis. Furthermore, simultaneous analysis of DNA content allowed determination of cell cycle position and permitted the analysis of cell cycle dependent changes in AR function in unsynchronized cell populations. Assay quality for EC50 coefficients of variation were 5–24%, with Z' values reaching 0.91. This was achieved by the selective analysis of cells expressing physiological levels of AR, important because minor over-expression resulted in elevated nuclear speckling and decreased transcriptional reporter gene activity. A small screen of AR-binding ligands, including known agonists, antagonists, and endocrine disruptors, demonstrated that nuclear translocation and nuclear “speckling” were linked with transcriptional output, and specific ligands were noted to differentially affect measurements for wild type versus mutant AR, suggesting differing mechanisms of action. HT imaging of patient-derived AIS mutations demonstrated a proof-of-principle personalized medicine approach to rapidly identify ligands capable of restoring multiple AR functions. Conclusions/Significance HT imaging-based multiplex screening will provide a rapid, systems-level analysis of compounds/RNAi that may differentially affect wild type AR or clinically relevant AR mutations. PMID:18978937
Radial chromatin positioning is shaped by local gene density, not by gene expression
2009-01-01
G- and R-bands of metaphase chromosomes are characterized by profound differences in gene density, CG content, replication timing, and chromatin compaction. The preferential localization of gene-dense, transcriptionally active, and early replicating chromatin in the nuclear interior and of gene-poor, later replicating chromatin at the nuclear envelope has been demonstrated to be evolutionary-conserved in various cell types. Yet, the impact of different local chromatin features on the radial nuclear arrangement of chromatin is still not well understood. In particular, it is not known whether radial chromatin positioning is preferentially shaped by local gene density per se or by other related parameters such as replication timing or transcriptional activity. The interdependence of these distinct chromatin features on the linear deoxyribonucleic acid (DNA) sequence precludes a simple dissection of these parameters with respect to their importance for the reorganization of the linear DNA organization into the distinct radial chromatin arrangements observed in the nuclear space. To analyze this problem, we generated probe sets of pooled bacterial artificial chromosome (BAC) clones from HSA 11, 12, 18, and 19 representing R/G-band-assigned chromatin, segments with different gene density and gene loci with different expression levels. Using multicolor 3D flourescent in situ hybridization (FISH) and 3D image analysis, we determined their localization in the nucleus and their positions within or outside the corresponding chromosome territory (CT). For each BAC data on local gene density within 2- and 10-Mb windows, as well as GC (guanine and cytosine) content, replication timing and expression levels were determined. A correlation analysis of these parameters with nuclear positioning revealed regional gene density as the decisive parameter determining the radial positioning of chromatin in the nucleus in contrast to band assignment, replication timing, and transcriptional activity. We demonstrate a polarized distribution of gene-dense vs gene-poor chromatin within CTs with respect to the nuclear border. Whereas we confirm previous reports that a particular gene-dense and transcriptionally highly active region of about 2 Mb on 11p15.5 often loops out from the territory surface, gene-dense and highly expressed sequences were not generally found preferentially at the CT surface as previously suggested. PMID:17333233
Deng, Xu-Feng; Zhou, Dong; Liu, Quan-Xing; Zheng, Hong; Ding, Yan; Xu, Wen-Yue; Min, Jia-Xin; Dai, Ji-Gang
2018-05-01
Blocking the activation of nuclear factor κB (NF-κB) is a promising strategy for the treatment of non-small cell lung cancer. The circumsporozoite protein (CSP), a key component of the sporozoite stage of the malaria parasite, was previously reported to block NF-κB activation in hepatocytes. Therefore, in the present study, the effect of CSP on the growth of the human lung cancer cell line, A549, was investigated. It was demonstrated that transfection with a recombinant plasmid expressing CSP was able to inhibit the proliferation of A549 cells in a dose-dependent manner and induce the apoptosis of A549 cells. A NF-κB gene reporter assay indicated that CSP and its nuclear localization signal (NLS) motif were able to equally suppress the activation of NF-κB following stimulation with human recombinant tumor necrosis factor (TNF)-α in A549 cells. Furthermore, western blot analysis indicated that NLS did not affect the phosphorylation and degradation of IκB, but was able to markedly inhibit the nuclear translocation of NF-κB in TNF-α stimulated A549 cells. Therefore, the data suggest that CSP may be investigated as a potential novel NF-κB inhibitor for the treatment of lung cancer.
Standardizing Activation Analysis: New Software for Photon Activation Analysis
NASA Astrophysics Data System (ADS)
Sun, Z. J.; Wells, D.; Segebade, C.; Green, J.
2011-06-01
Photon Activation Analysis (PAA) of environmental, archaeological and industrial samples requires extensive data analysis that is susceptible to error. For the purpose of saving time, manpower and minimizing error, a computer program was designed, built and implemented using SQL, Access 2007 and asp.net technology to automate this process. Based on the peak information of the spectrum and assisted by its PAA library, the program automatically identifies elements in the samples and calculates their concentrations and respective uncertainties. The software also could be operated in browser/server mode, which gives the possibility to use it anywhere the internet is accessible. By switching the nuclide library and the related formula behind, the new software can be easily expanded to neutron activation analysis (NAA), charged particle activation analysis (CPAA) or proton-induced X-ray emission (PIXE). Implementation of this would standardize the analysis of nuclear activation data. Results from this software were compared to standard PAA analysis with excellent agreement. With minimum input from the user, the software has proven to be fast, user-friendly and reliable.
Nuclear magnetic resonance (NMR) based body composition analysis is an idea means of assessing changes in relative proportions of fat, lean, and fluid in rodents non invasively. While the data are not as accurate as convent ional chemical analysis, the systems allow one to follo...
Richardson, Jaime Stella Moses; Aminudin, Norhaniza; Abd Malek, Sri Nurestri
2017-10-01
Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer. A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells. Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique. Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis. Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent. This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal transducer and activation of transcription 3, and extrinsic apoptotic pathway and also its ability to arrest cell cycle in S phase. This compound was from the leaves of Ruta angustifolia L. Pers. It provides new insight on the ability of this plant in suppressing certain cancers, especially the nonsmall cell lung carcinoma according to this study. Abbreviations used: °C: Degree Celsius, ANOVA: Analysis of variance, ATCC: American Type Culture Collection, BCL-2: B-Cell CLL/Lymphoma 2, Bcl-xL: B-cell lymphoma extra-large, BH3: Bcl-2 homology 3, BID: BH3-interacting domain death agonist, BIR: Baculovirus inhibitor of apoptosis protein repeat, Caspases: Cysteinyl aspartate-specific proteases, CDK: Cyclin-dependent kinase, CO 2 : Carbon dioxide, CST: Cell signaling technologies, DISC: Death-inducing signaling complex, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DR4: Death receptor 4, DR5: Death receptor 5, E1a: Adenovirus early region 1A, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, etc.: Etcetera, FADD: Fas-associated protein with death domain, FBS: Fetal bovine serum, FITC: Fluorescein isothiocyanate, G1: Gap 1, G2: Gap 2, HPLC: High-performance liquid chromatography, HRP: Horseradish peroxidase, IAPs: Inhibitor of apoptosis proteins, IC50: Inhibitory concentration at half maximal inhibitory, IKK-α: Inhibitor of nuclear factor kappa-B kinase subunit alpha, IKK-β: Inhibitor of nuclear factor kappa-B kinase subunit beta, IKK-γ: Inhibitor of nuclear factor kappa-B kinase subunit gamma, IKK: IκB kinase, IkBα: Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, m: Meter, M: Mitotic, mm: Millimeter, mRNA: Messenger ribonucleic acid, NaCl: Sodium chloride, NaVO4: Sodium orthovanadate, NEMO: NF-Kappa-B essential modulator, NF-κB: Nuclear factor kappa-light chain-enhancer of activated B cells, NSCLC: Nonsmall cell lung carcinoma, PBS: Phosphate buffered saline, PGE2: Prostaglandin E2, PI: Propidium iodide, PMSF: Phenylmethylsulfonyl fluoride, pRB: Phosphorylated retinoblastoma, R. angustifolia : Ruta angustifolia L. Pers, Rb: Retinoblastoma, rpm: Rotation per minute, RPMI: Roswell Park Memorial Institute, S phase: Synthesis phase, SD: Standard deviation, SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Smac: Second mitochondria-derived activator of caspase, SPSS: Statistical Package for the Social Sciences, STAT3: Signal transducer and activation of transcription 3, tBID: Truncated BID, TNF: Tumor necrosis factor, TRADD: Tumor necrosis factor receptor type-1 associated death domain, TRAIL: TNF-related apoptosis- inducing ligand, USA: United States of America, v/v: Volume over volume.
NASA Astrophysics Data System (ADS)
Kosarev, V. A.; Kuznetsova, E. E.
2014-02-01
The possibility of applying dusty active media in nuclearpumped lasers has been considered. The amplification of 1790-nm radiation in a nuclear-excited dusty He - Ar plasma is studied by mathematical simulation. The influence of nanoclusters on the component composition of the medium and the kinetics of the processes occurring in it is analysed using a specially developed kinetic model, including 72 components and more than 400 reactions. An analysis of the results indicates that amplification can in principle be implemented in an active laser He - Ar medium containing 10-nm nanoclusters of metallic uranium and uranium dioxide.
In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, Noriko; Uchimura, Yasuhiro; The 21st Century Center of Excellence, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811
2006-05-01
SUMO modification plays a critical role in a number of cellular functions including nucleocytoplasmic transport, gene expression, cell cycle and formation of subnuclear structures such as promyelocytic leukemia (PML) bodies. In order to identify the sites where SUMOylation takes place in the cell, we developed an in situ SUMOylation assay using a semi-intact cell system and subsequently combined it with siRNA-based knockdown of nucleoporin RanBP2, also known as Nup358, which is one of the known SUMO E3 proteins. With the in situ SUMOylation assay, we found that both nuclear rim and PML bodies, besides mitotic apparatuses, are major targets formore » active SUMOylation. The ability to analyze possible SUMO conjugation sites would be a valuable tool to investigate where SUMO E3-like activities and/or SUMO substrates exist in the cell. Specific knockdown of RanBP2 completely abolished SUMOylation along the nuclear rim and dislocated RanGAP1 from the nuclear pore complexes. Interestingly, the loss of RanBP2 markedly reduced the number of PML bodies, in contrast to other, normal-appearing nuclear compartments including the nuclear lamina, nucleolus and chromatin, suggesting a novel link between RanBP2 and PML bodies. SUMOylation facilitated by RanBP2 at the nuclear rim may be a key step for the formation of a particular subnuclear organization. Our data imply that SUMO E3 proteins like RanBP2 facilitate spatio-temporal SUMOylation for certain nuclear structure and function.« less
Radiocarbon Releases from the 2011 Fukushima Nuclear Accident
Xu, Sheng; Cook, Gordon T.; Cresswell, Alan J.; Dunbar, Elaine; Freeman, Stewart P. H. T.; Hou, Xiaolin; Jacobsson, Piotr; Kinch, Helen R.; Naysmith, Philip; Sanderson, David C. W.; Tripney, Brian G.
2016-01-01
Radiocarbon activities were measured in annual tree rings for the years 2009 to 2015 from Japanese cedar trees (Cryptomeria japonica) collected at six sites ranging from 2.5–38 km northwest and north of the Fukushima Dai-ichi nuclear power plant. The 14C specific activity varied from 280.4 Bq kg−1 C in 2010 to 226.0 Bq kg−1 C in 2015. The elevated 14C activities in the 2009 and 2010 rings confirmed 14C discharges during routine reactor operations, whereas those activities that were indistinguishable from background in 2012–2015 coincided with the permanent shutdown of the reactors after the accident in 2011. High-resolution 14C analysis of the 2011 ring indicated 14C releases during the Fukushima accident. The resulted 14C activity decreased with increasing distance from the plant. The maximum 14C activity released during the period of the accident was measured 42.4 Bq kg−1 C above the natural ambient 14C background. Our findings indicate that, unlike other Fukushima-derived radionuclides, the 14C released during the accident is indistinguishable from ambient background beyond the local environment (~30 km from the plant). Furthermore, the resulting dose to the local population from the excess 14C activities is negligible compared to the dose from natural/nuclear weapons sources. PMID:27841312
Radiocarbon Releases from the 2011 Fukushima Nuclear Accident
NASA Astrophysics Data System (ADS)
Xu, Sheng; Cook, Gordon T.; Cresswell, Alan J.; Dunbar, Elaine; Freeman, Stewart P. H. T.; Hou, Xiaolin; Jacobsson, Piotr; Kinch, Helen R.; Naysmith, Philip; Sanderson, David C. W.; Tripney, Brian G.
2016-11-01
Radiocarbon activities were measured in annual tree rings for the years 2009 to 2015 from Japanese cedar trees (Cryptomeria japonica) collected at six sites ranging from 2.5-38 km northwest and north of the Fukushima Dai-ichi nuclear power plant. The 14C specific activity varied from 280.4 Bq kg-1 C in 2010 to 226.0 Bq kg-1 C in 2015. The elevated 14C activities in the 2009 and 2010 rings confirmed 14C discharges during routine reactor operations, whereas those activities that were indistinguishable from background in 2012-2015 coincided with the permanent shutdown of the reactors after the accident in 2011. High-resolution 14C analysis of the 2011 ring indicated 14C releases during the Fukushima accident. The resulted 14C activity decreased with increasing distance from the plant. The maximum 14C activity released during the period of the accident was measured 42.4 Bq kg-1 C above the natural ambient 14C background. Our findings indicate that, unlike other Fukushima-derived radionuclides, the 14C released during the accident is indistinguishable from ambient background beyond the local environment (~30 km from the plant). Furthermore, the resulting dose to the local population from the excess 14C activities is negligible compared to the dose from natural/nuclear weapons sources.
Kwon, Daekee; Koo, Ok-Jae; Kim, Min-Jung; Jang, Goo; Lee, Byeong Chun
2016-10-01
Monkey interorder somatic cell nuclear transfer (iSCNT) using enucleated cow oocytes yielded poor blastocysts development and contradictory results among research groups. Determining the reason for this low blastocyst development is a prerequisite for optimizing iSCNT in rhesus monkeys. The aim of this study was to elucidate nuclear-mitochondrial incompatibility of rhesus monkey-cow iSCNT embryos and its relationship to low blastocyst development. Cytochrome b is a protein of complex III of the electron transport chain (ETC). According to meta-analysis of amino acid sequences, the homology of cytochrome b is 75 % between rhesus monkeys and cattle. To maintain the function of ETC after iSCNT, 4n iSCNT embryos were produced by fusion of non-enucleated cow oocytes and rhesus monkey somatic cells. The blastocyst development rate of 4n iSCNT embryos was higher than that of 2n embryos (P < 0.01). Formation of reactive oxygen species (ROS) is an indirect indicator of ETC activity of cells. The ROS levels of 4n iSCNT embryos was higher than that of 2n embryos (P < 0.01). Collectively, rhesus monkey iSCNT embryos reconstructed with cow oocytes have nuclear-mitochondrial incompatibility due to fundamental species differences between rhesus monkeys and cattle. Nuclear-mitochondrial incompatibility seems to correlate with low ETC activity and extremely low blastocyst development of rhesus monkey-cow iSCNT embryos.
Hyper-dependence of breast cancer cell types on the nuclear transporter Importin β1.
Kuusisto, Henna V; Jans, David A
2015-08-01
We previously reported that overexpression of members of the Importin (Imp) superfamily of nuclear transporters results in increased nuclear trafficking through conventional transport pathways in tumour cells. Here we show for the first time that the extent of overexpression of Impβ1 correlates with disease state in the MCF10 human breast tumour progression system. Excitingly, we find that targeting Impβ1 activity through siRNA is >30 times more efficient in decreasing the viability of malignant ductal carcinoma cells compared to isogenic non-transformed counterparts, and is highly potent and tumour selective at subnanomolar concentrations. Tumour cell selectivity of the siRNA effects was unique to Impβ1 and not other Imps, with flow cytometric analysis showing >60% increased cell death compared to controls concomitant with reduced nuclear import efficiency as indicated by confocal microscopic analysis. This hypersensitivity of malignant cell types to Impβ1 knockdown raises the exciting possibility of anti-cancer therapies targeted at Impβ1. Copyright © 2015 Elsevier B.V. All rights reserved.
Nup53 Is Required for Nuclear Envelope and Nuclear Pore Complex Assembly
Hawryluk-Gara, Lisa A.; Platani, Melpomeni; Santarella, Rachel
2008-01-01
Transport across the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs). These structures are composed of various subcomplexes of proteins that are each present in multiple copies and together establish the eightfold symmetry of the NPC. One evolutionarily conserved subcomplex of the NPC contains the nucleoporins Nup53 and Nup155. Using truncation analysis, we have defined regions of Nup53 that bind to neighboring nucleoporins as well as those domains that target Nup53 to the NPC in vivo. Using this information, we investigated the role of Nup53 in NE and NPC assembly using Xenopus egg extracts. We show that both events require Nup53. Importantly, the analysis of Nup53 fragments revealed that the assembly activity of Nup53 depleted extracts could be reconstituted using a region of Nup53 that binds specifically to its interacting partner Nup155. On the basis of these results, we propose that the formation of a Nup53–Nup155 complex plays a critical role in the processes of NPC and NE assembly. PMID:18256286
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppersmith , Kevin J.; Bommer, Julian J.; Bryce, Robert W.
Under the sponsorship of the US Department of Energy (DOE) and the electric utility Energy Northwest, the Pacific Northwest National Laboratory (PNNL) is conducting a probabilistic seismic hazard analysis (PSHA) within the framework of a SSHAC Level 3 procedure (Senior Seismic Hazard Analysis Committee; Budnitz et al., 1997). Specifically, the project is being conducted following the guidelines and requirements specified in NUREG-2117 (USNRC, 2012b) and consistent with approach given in the American Nuclear Standard ANSI/ANS-2.29-2008 Probabilistic Seismic Hazard Analysis. The collaboration between DOE and Energy Northwest is spawned by the needs of both organizations for an accepted PSHA with highmore » levels of regulatory assurance that can be used for the design and safety evaluation of nuclear facilities. DOE committed to this study after performing a ten-year review of the existing PSHA, as required by DOE Order 420.1C. The study will also be used by Energy Northwest as a basis for fulfilling the NRC’s 10CFR50.54(f) requirement that the western US nuclear power plants conduct PSHAs in conformance with SSHAC Level 3 procedures. The study was planned and is being carried out in conjunction with a project Work Plan, which identifies the purpose of the study, the roles and responsibilities of all participants, tasks and their associated schedules, Quality Assurance (QA) requirements, and project deliverables. New data collection and analysis activities are being conducted as a means of reducing the uncertainties in key inputs to the PSHA. It is anticipated that the results of the study will provide inputs to the site response analyses at multiple nuclear facility sites within the Hanford Site and at the Columbia Generating Station.« less
Cytosol-nucleus traffic and colocalization with FXR of conjugated bile acids in rat hepatocytes.
Monte, Maria J; Rosales, Ruben; Macias, Rocio I R; Iannota, Valeria; Martinez-Fernandez, Almudena; Romero, Marta R; Hofmann, Alan F; Marin, Jose J G
2008-07-01
Bile acids (BAs) are natural ligands of nuclear receptors, in particular farnesoid X receptor (FXR). Whether, in addition to protein-mediated cytosolic-nuclear BA translocation, other mechanisms are involved in the access of BAs to nuclear FXR was investigated. When rat hepatocytes were incubated with radiolabeled taurocholic acid, taurodeoxycholic acid, taurochenodeoxycholic acid, and tauroursodeoxycholic acid, their nuclear accumulation was proportional to their intracellular levels. With the use of flow cytometry analysis, the accumulation by nuclei isolated from rat liver cells was found to differ for several fluorescent compounds of similar molecular weight and different charge, including fluorescein-tagged BAs [cholylglycyl amidofluorescein (CGamF), ursodeoxycholylglycyl amidofluorescein, or chenodeoxycholylglycyl amidofluorescein]. When we varied nuclear volume by incubation with different sucrose concentrations, a similar relationship between nuclear volume and content of FITC and 4-kDa FITC-dextran was found. In contrast, this relationship was markedly lower for CGamF. Confocal microscopy studies revealed that fluorescein-tagged BAs, but also FITC or 10-kDa FITC-dextran were found in the nuclear envelope and concentrated in regions where DNA was less densely packed. In contrast to the cytosolic subcellular localization of peroxisome proliferator-activated receptor-alpha, FXR and nucleolin (a marker of transcriptional active chromatin) were also localized by immunoreactivity in these intranuclear regions. In conclusion, although intranuclear levels of small organic molecules including conjugated BAs depend on their concentrations in the extranuclear space, the existence of certain molecular selectivity (not strictly dependent on molecular weight or charge) suggests that, in addition to simple diffusional exchange, other mechanisms may be also involved in determining their overall nuclear content in regions where these compounds coincide and may interact with nuclear receptors such as FXR.
Padmanabhan, Meenu S.; Ma, Shisong; Burch-Smith, Tessa M.; Czymmek, Kirk; Huijser, Peter; Dinesh-Kumar, Savithramma P.
2013-01-01
Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5. PMID:23516366
Lin, Jhih-Rong; Liu, Zhonghao; Hu, Jianjun
2014-10-01
The binding affinity between a nuclear localization signal (NLS) and its import receptor is closely related to corresponding nuclear import activity. PTM-based modulation of the NLS binding affinity to the import receptor is one of the most understood mechanisms to regulate nuclear import of proteins. However, identification of such regulation mechanisms is challenging due to the difficulty of assessing the impact of PTM on corresponding nuclear import activities. In this study we proposed NIpredict, an effective algorithm to predict nuclear import activity given its NLS, in which molecular interaction energy components (MIECs) were used to characterize the NLS-import receptor interaction, and the support vector regression machine (SVR) was used to learn the relationship between the characterized NLS-import receptor interaction and the corresponding nuclear import activity. Our experiments showed that nuclear import activity change due to NLS change could be accurately predicted by the NIpredict algorithm. Based on NIpredict, we developed a systematic framework to identify potential PTM-based nuclear import regulations for human and yeast nuclear proteins. Application of this approach has identified the potential nuclear import regulation mechanisms by phosphorylation of two nuclear proteins including SF1 and ORC6. © 2014 Wiley Periodicals, Inc.
Neutrino Charged Current Quasi-Elastic Analysis at MINERvA
NASA Astrophysics Data System (ADS)
Hurtado Anampa, Kenyi; Osta, Jyotsna
2014-03-01
MINERvA is a few GeV neutrino-nucleus scattering experiment designed to study low energy neutrino interactions both in support of neutrino oscillation experiments and as a pure weak probe of the nuclear medium. The experiment uses a fine-grained, high resolution detector. The active region is composed of plastic scintillator with additional targets of helium, carbon, iron, lead and water placed upstream of the active region. We present kinematic distributions from the double differential cross section analysis that aims to study quasi-elastic scattering of neutrinos in the active region as a function of the muon and proton observables. This analysis will use the low energy neutrino dataset recorded from November 2009 to April 2012.
Advanced Small Modular Reactor Economics Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.
2014-10-01
This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic andmore » nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation. Advanced fuel materials and fabrication costs have large uncertainties based on complexities of operation, such as contact-handled fuel fabrication versus remote handling, or commodity availability. Thus, this analytical work makes a good faith effort to quantify uncertainties and provide qualifiers, caveats, and explanations for the sources of these uncertainties. The overall result is that this work assembles the necessary information and establishes the foundation for future analyses using more precise data as nuclear technology advances.« less
Sakai, Eiko; Aoki, Yuri; Yoshimatsu, Masako; Nishishita, Kazuhisa; Iwatake, Mayumi; Fukuma, Yutaka; Okamoto, Kuniaki; Tanaka, Takashi; Tsukuba, Takayuki
2016-07-15
Osteoclasts are multinucleated bone-resorbing cells that differentiate in response to receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). Enhanced osteoclastogenesis contributes to bone diseases, such as osteoporosis and rheumatoid arthritis. Rubus parvifolius L. is traditionally used as an herbal medicine for rheumatism; however, its detailed chemical composition and the molecular mechanisms responsible for its biological action have not been elucidated. To investigate the mechanisms by which R. parvifolius L. extract and its major constituent sanguiin H-6, inhibit osteoclastogenesis and bone resorption. Cell proliferation, cell differentiation, and bone resorption were detected in vitro. Inhibition of signaling pathways, marker protein expression, and protein nuclear translocation were evaluated by western blot analysis. Tumor necrosis factor-α (TNF-α)-mediated osteoclastogenesis was examined in vivo. R. parvifolius L. extract inhibited the bone-resorption activity of osteoclasts. In addition, sanguiin H-6 markedly inhibited RANKL-induced osteoclast differentiation and bone resorption, reduced reactive oxygen species production, and inhibited the phosphorylation of inhibitor of NF-κB alpha (IκBα) and p38 mitogen-activated protein kinase. Sanguiin H-6 also decreased the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), cathepsin K, and c-Src. Moreover, sanguiin H-6 inhibited the nuclear translocation of NFATc1, c-Fos, and NF-κB in vitro, as well as TNF-α-mediated osteoclastogenesis in vivo. Our data revealed that R. parvifolius L. has anti-bone resorption activity and suggest that its constituent, sanguiin H-6, can potentially be used for the prevention and treatment of bone diseases associated with excessive osteoclast formation and subsequent bone destruction. Copyright © 2016 Elsevier GmbH. All rights reserved.
Chi, Feng; Bo, Tao; Wu, Chun-Hua; Jong, Ambrose; Huang, Sheng-He
2012-01-01
IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PSF is required for meningitic E. coli K1 penetration and leukocyte transmigration across the blood-brain barrier (BBB), which are the hallmarks of bacterial meningitis. However, it is unknown how vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB, which are required for bacteria-mediated pathogenicities. IbeA-induced E. coli K1 invasion, polymorphonuclear leukocyte (PMN) transmigration and IKK/NF-κB activation are blocked by Caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB. IKKα/β phosphorylation is blocked by ERK inhibitors. Co-immunoprecipitation analysis shows that vimentin forms a complex with IκB, NF-κB and tubulins in the resting cells. A dissociation of this complex and a simultaneous association of PSF with NF-κB could be induced by IbeA in a time-dependent manner. The head domain of vimentin is required for the complex formation. Two cytoskeletal components, vimentin filaments and microtubules, contribute to the regulation of NF-κB. SiRNA-mediated knockdown studies demonstrate that IKKα/β phosphorylation is completely abolished in HBMECs lacking vimentin and PSF. Phosphorylation of ERK and nuclear translocation of NF-κB are entirely dependent on PSF. These findings suggest that vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB activation. PSF is essential for translocation of NF-κB and ERK to the nucleus. These findings reveal previously unappreciated facets of the IbeA-binding proteins. Cooperative contributions of vimentin and PSF to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB may represent a new paradigm in pathogen-induced signal transduction and lead to the development of novel strategies for the prevention and treatment of bacterial meningitis.
Palmer, C.A.
1990-01-01
Twenty-nine elements have been determined in triplicate splits of the eight Argonne National Laboratory Premium Coal Samples by instrumental neutron activtaion analysis. Data for control samples NBS 1633 (fly ash) and NBS 1632b are also reported. The factors that could lead to errors in analysis for these samples, such as spectral overlaps, low sensitivity, and interfering nuclear reactions, are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, R.E.
Results are presented of studies conducted by Aerojet Nuclear Company (ANC) in FY 1975 to support the Nuclear Regulatory Commission (NRC) on the boiling water reactor blowdown heat transfer (BWR-BDHT) program. The support provided by ANC is that of an independent assessor of the program to ensure that the data obtained are adequate for verification of analytical models used for predicting reactor response to a postulated loss-of-coolant accident. The support included reviews of program plans, objectives, measurements, and actual data. Additional activity included analysis of experimental system performance and evaluation of the RELAP4 computer code as applied to the experiments.
NASA Astrophysics Data System (ADS)
Cao, Xinhua; Xu, Xiaoyin; Voss, Stephan
2017-03-01
In this paper, we describe an enhanced DICOM Secondary Capture (SC) that integrates Image Quantification (IQ) results, Regions of Interest (ROIs), and Time Activity Curves (TACs) with screen shots by embedding extra medical imaging information into a standard DICOM header. A software toolkit of DICOM IQSC has been developed to implement the SC-centered information integration of quantitative analysis for routine practice of nuclear medicine. Primary experiments show that the DICOM IQSC method is simple and easy to implement seamlessly integrating post-processing workstations with PACS for archiving and retrieving IQ information. Additional DICOM IQSC applications in routine nuclear medicine and clinic research are also discussed.
Geological and Inorganic Materials.
ERIC Educational Resources Information Center
Jackson, L. L.; And Others
1989-01-01
Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…
Improving Mode of Action Analysis Using Transcript Profiling in Nullizygous Mouse Models
A number of nuclear receptors (NR) mediate transcriptional, hepatocyte growth and carcinogenic effects in the rodent liver after chemical exposure. These receptors include the constitutive activated/androstane receptor (CAR), pregnane X receptor (PXR), and peroxisome proliferator...
Nuclear microscopy in trace-element biology — from cellular studies to the clinic
NASA Astrophysics Data System (ADS)
Lindh, Ulf
1993-05-01
The concentration and distribution of trace and major elements in cells are of great interest in cell biology. PIXE can provide elemental concentrations in the bulk of cells or organelles as other bulk techniques such as atomic absorption spectrophotometry and nuclear activation analysis. Supplementary information, perhaps more exciting, on the intracellular distributions of trace elements can be provided using nuclear microscopy. Intracellular distributions of trace elements in normal and malignant cells are presented. The toxicity of mercury and cadmium can be prevented by supplementation of the essential trace element selenium. Some results from an experimental animal model are discussed. The intercellular distribution of major and trace elements in isolated blood cells, as revealed by nuclear microscopy, provides useful clinical information. Examples are given concerning inflammatory connective-tissue diseases and the chronic fatigue syndrome.
Krzysik-Walker, Susan M.; González-Mariscal, Isabel; Scheibye-Knudsen, Morten; Indig, Fred E.
2013-01-01
The orphan nuclear receptor estrogen-related receptor alpha (ERRα) directs the transcription of nuclear genes involved in energy homeostasis control and the regulation of mitochondrial mass and function. A crucial role for controlling ERRα-mediated target gene expression has been ascribed to the biarylpyrazole compound 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide (AM251) through direct binding to and destabilization of ERRα protein. Here, we provide evidence that structurally related AM251 analogs also have negative impacts on ERRα protein levels in a cell-type-dependent manner while having no deleterious actions on ERRγ. We show that these off-target cellular effects of AM251 are mediated by proteasomal degradation of nuclear ERRα. Cell treatment with the nuclear export inhibitor leptomycin B did not prevent AM251-induced destabilization of ERRα protein, whereas proteasome inhibition with MG132 stabilized and maintained its DNA-binding function, indicative of ERRα being a target of nuclear proteasomal complexes. NativePAGE analysis revealed that ERRα formed a ∼220-kDa multiprotein nuclear complex that was devoid of ERRγ and the coregulator peroxisome proliferator-activated receptor γ coactivator-1. AM251 induced SUMO-2,3 incorporation in ERRα in conjunction with increased protein kinase C activity, whose activation by phorbol ester also promoted ERRα protein loss. Down-regulation of ERRα by AM251 or small interfering RNA led to increased mitochondria biogenesis while negatively impacting mitochondrial membrane potential. These results reveal a novel molecular mechanism by which AM251 and related compounds alter mitochondrial physiology through destabilization of ERRα. PMID:23066093
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yeon-Sook; Park, Jeong Ae; Kim, Jihye
2012-05-04
Highlights: Black-Right-Pointing-Pointer IL-33 as nuclear factor regulated expression of ICAM-1 and VCAM-1. Black-Right-Pointing-Pointer Nuclear IL-33 increased the transcription of NF-{kappa}B p65 by binding to the p65 promoter. Black-Right-Pointing-Pointer Nuclear IL-33 controls NF-{kappa}B-dependent inflammatory responses. -- Abstract: Interleukin (IL)-33, an IL-1 family member, acts as an extracellular cytokine by binding its cognate receptor, ST2. IL-33 is also a chromatin-binding transcriptional regulator highly expressed in the nuclei of endothelial cells. However, the function of IL-33 as a nuclear factor is poorly defined. Here, we show that IL-33 is a novel transcriptional regulator of the p65 subunit of the NF-{kappa}B complex and ismore » involved in endothelial cell activation. Quantitative reverse transcriptase PCR and Western blot analyses indicated that IL-33 mediates the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in endothelial cells basally and in response to tumor necrosis factor-{alpha}-treatment. IL-33-induced ICAM-1/VCAM-1 expression was dependent on the regulatory effect of IL-33 on the nuclear factor (NF)-{kappa}B pathway; NF-{kappa}B p65 expression was enhanced by IL-33 overexpression and, conversely, reduced by IL-33 knockdown. Moreover, NF-{kappa}B p65 promoter activity and chromatin immunoprecipitation analysis revealed that IL-33 binds to the p65 promoter region in the nucleus. Our data provide the first evidence that IL-33 in the nucleus of endothelial cells participates in inflammatory reactions as a transcriptional regulator of NF-{kappa}B p65.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.
2016-03-31
Finite element continuum damage models (FE-CDM) have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including results from dual-phase models and from cracked joint models.
Dickinson, Sally E.; Rusche, Jadrian J.; Bec, Sergiu L.; Horn, David J.; Janda, Jaroslav; Rim, So Hyun; Smith, Catharine L.; Bowden, G. Timothy
2015-01-01
Sulforaphane is a natural product found in broccoli which is known to exert many different molecular effects in the cell, including inhibition of histone deacetylase (HDAC) enzymes. Here we examine for the first time the potential for sulforaphane to inhibit HDACs in HaCaT keratinocytes and compare our results with those found using HCT116 colon cancer cells. Significant inhibition of HDAC activity in HCT116 nuclear extracts required prolonged exposure to sulforaphane in the presence of serum. Under the same conditions HaCaT nuclear extracts did not exhibit reduced HDAC activity with sulforaphane treatment. Both cell types displayed down-regulation of HDAC protein levels by sulforaphane treatment. Despite these reductions in HDAC family member protein levels, acetylation of marker proteins (acetylated Histone H3, H4 and tubulin) was decreased by sulforaphane treatment. Timecourse analysis revealed that HDAC6, HDAC3 and acetylated histone H3 protein levels are significantly inhibited as early as 6hr into sulforaphane treatment. Transcript levels of HDAC6 are also suppressed after 48hr of treatment. These results suggest that HDAC activity noted in nuclear extracts is not always translated as expected to target protein acetylation patterns, despite dramatic inhibition of some HDAC protein levels. In addition, our data suggest that keratinocytes are at least partially resistant to the nuclear HDAC inhibitory effects of sulforaphane which is exhibited in HCT116 and other cells. PMID:25307283
Probabilistic assessment of dynamic system performance. Part 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belhadj, Mohamed
1993-01-01
Accurate prediction of dynamic system failure behavior can be important for the reliability and risk analyses of nuclear power plants, as well as for their backfitting to satisfy given constraints on overall system reliability, or optimization of system performance. Global analysis of dynamic systems through investigating the variations in the structure of the attractors of the system and the domains of attraction of these attractors as a function of the system parameters is also important for nuclear technology in order to understand the fault-tolerance as well as the safety margins of the system under consideration and to insure a safemore » operation of nuclear reactors. Such a global analysis would be particularly relevant to future reactors with inherent or passive safety features that are expected to rely on natural phenomena rather than active components to achieve and maintain safe shutdown. Conventionally, failure and global analysis of dynamic systems necessitate the utilization of different methodologies which have computational limitations on the system size that can be handled. Using a Chapman-Kolmogorov interpretation of system dynamics, a theoretical basis is developed that unifies these methodologies as special cases and which can be used for a comprehensive safety and reliability analysis of dynamic systems.« less
Monte Carlo capabilities of the SCALE code system
Rearden, Bradley T.; Petrie, Jr., Lester M.; Peplow, Douglas E.; ...
2014-09-12
SCALE is a broadly used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a “plug-and-play” framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport asmore » well as activation, depletion, and decay calculations. SCALE’s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. Finally, an overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.« less
Charged particle induced delayed X-rays (DEX) for the analysis of intermediate and heavy elements
NASA Astrophysics Data System (ADS)
Pillay, A. E.; Erasmus, C. S.; Andeweg, A. H.; Sellschop, J. P. F.; Annegarn, H. J.; Dunn, J.
1988-12-01
The emission of K X-rays from proton-rich and metastable radionuclides, following proton activation of the stable isotopes of the elements of interest, has not been widely used as a means of analysis. The thrust of this paper proposes a nuclear technique using delayed X-rays for the analysis of low concentrations of intermediate and heavy elements. The method is similar to the delayed gamma-ray technique. Proton bombardment induces mainly (p, n) reactions whereas the delayed X-rays originate largely from e --capture and isomeric transition. Samples of rare earth and platinum group elements (PGE), in the form of compacted powders, were irradiated with an 11 MeV proton beam and delayed X-rays detected with a 100 mm 2 Ge detector. Single element spectra for a range of rare earths and PGEs are presented. Analytical conditions are demonstrated for Pd in the range 0.1-5%. Spectra from actual geological samples of a PGE ore, preconcentrated by fire-assay, and monazite are presented. All six platinum group elements are visible and interference-free in a single spectrum, a marked advance on other nuclear techniques for these elements, including PIXE and neutron activation analysis (NAA).
Advances in Geologic Disposal System Modeling and Application to Crystalline Rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.
The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic mediamore » (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.« less
The role of PRA in the safety assessment of VVER Nuclear Power Plants in Ukraine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, C.
1999-05-10
Ukraine operates thirteen (13) Soviet-designed pressurized water reactors, VVERS. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs), in accordance with new SAR content requirements issued in September 1995, by the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine. The requirements are in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. The last two requirements, on PRA and BDBA, are new, and the DBA requirements are an expanded version of the older SAR requirements. The US Departmentmore » of Energy (USDOE), as part of its Soviet-Designed Reactor Safety activities, is providing assistance and technology transfer to Ukraine to support their nuclear power plants (NPPs) in developing a Western-type technical basis for the new SARs. USDOE sponsored In-Depth Safety Assessments (ISAs) are in progress at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1, and a follow-on study has been initiated at Khmenytskyy Unit 1. The ISA projects encompass most areas of plant safety evaluation, but the initial emphasis is on performing a detailed, plant-specific Level 1 Internal Events PRA. This allows the early definition of the plant risk profile, the identification of risk significant accident sequences and plant vulnerabilities and provides guidance for the remainder of the safety assessments.« less
Stronger activation of SREBP-1a by nucleus-localized HBx
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qi; Qiao, Ling; Yang, Jian
2015-05-08
We previously showed that hepatitis B virus (HBV) X protein activates the sterol regulatory element-binding protein-1a (SREBP-1a). Here we examined the role of nuclear localization of HBx in this process. In comparison to the wild-type and cytoplasmic HBx, nuclear HBx had stronger effects on SREBP-1a and fatty acid synthase transcription activation, intracellular lipid accumulation and cell proliferation. Furthermore, nuclear HBx could activate HBV enhancer I/X promoter and was more effective on up-regulating HBV mRNA level in the context of HBV replication than the wild-type HBx, while the cytoplasmic HBx had no effect. Our results demonstrate the functional significance of themore » nucleus-localized HBx in regulating host lipogenic pathway and HBV replication. - Highlights: • Nuclear HBx is more effective on activating SREBP-1a and FASN transcription. • Nuclear HBx is more effective on enhancing intracellular lipid accumulation. • Nuclear HBx is more effective on enhancing cell proliferation. • Nuclear HBx up-regulates HBV enhancer I/X promoter activity. • Nuclear HBx increases HBV mRNA level in the context of HBV replication.« less
IBA studies of helium mobility in nuclear materials revisited
NASA Astrophysics Data System (ADS)
Trocellier, P.; Agarwal, S.; Miro, S.; Vaubaillon, S.; Leprêtre, F.; Serruys, Y.
2015-12-01
The aim of this paper is to point out and to discuss some features extracted from the study of helium migration in nuclear materials performed during the last fifteen years using ion beam analysis (IBA) measurements. The first part of this paper is devoted to a brief description of the two main IBA methods used, i.e. deuteron induced nuclear reaction for 3He depth profiling and high-energy heavy-ion induced elastic recoil detection analysis for 4He measurement. In the second part, we provide an overview of the different studies carried out on model nuclear waste matrices and model nuclear reactor structure materials in order to illustrate and discuss specific results in terms of key influence parameters in relation with thermal or radiation activated migration of helium. Finally, we show that among the key parameters we have investigated as able to influence the height of the helium migration barrier, the following can be considered as pertinent: the experimental conditions used to introduce helium (implanted ion energy and implantation fluence), the grain size of the matrix, the lattice cell volume, the Young's modulus, the ionicity degree of the chemical bond between the transition metal atom M and the non-metal atom X, and the width of the band gap.
NASA Astrophysics Data System (ADS)
Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.
2006-11-01
We assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized) explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. Our analysis shows that, per kiloton of yield, low yield weapons can produce 100 times as many fatalities and 100 times as much smoke from fires as high-yield weapons, if they are targeted at city centers. A single "small'' nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal). We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce'' nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2006) show that the smoke would subsequently rise deep into the stratosphere due to atmospheric heating, and then might induce significant climatic anomalies on global scales.We also anticipate substantial perturbations of global ozone. While there are many uncertainties in the predictions we make here, the principal unknowns are the type and scale of conflict that might occur. The scope and severity of the hazards identified pose a significant threat to the global community. They deserve careful analysis by governments worldwide advised by a broad section of the world scientific community, as well as widespread public debate.
SEQUENTIAL RADIOCHEMICAL ANALYSIS FOR RUTHENIUM, STRONTIUM AND CESIUM IN ENVIRONMENTAL AIR
In routine surveillance operations, the radionuclide measurement of air discharged from an operating nuclear facility involves the entrainment of radionuclides on selective filter or absorptive media, and the determination of their gross beta activity. However, a more sensitive t...
STEF/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear actin cap.
Woroniuk, Anna; Porter, Andrew; White, Gavin; Newman, Daniel T; Diamantopoulou, Zoi; Waring, Thomas; Rooney, Claire; Strathdee, Douglas; Marston, Daniel J; Hahn, Klaus M; Sansom, Owen J; Zech, Tobias; Malliri, Angeliki
2018-05-29
The perinuclear actin cap is an important cytoskeletal structure that regulates nuclear morphology and re-orientation during front-rear polarisation. The mechanisms regulating the actin cap are currently poorly understood. Here, we demonstrate that STEF/TIAM2, a Rac1 selective guanine nucleotide exchange factor, localises at the nuclear envelope, co-localising with the key perinuclear proteins Nesprin-2G and Non-muscle myosin IIB (NMMIIB), where it regulates perinuclear Rac1 activity. We show that STEF depletion reduces apical perinuclear actin cables (a phenotype rescued by targeting active Rac1 to the nuclear envelope), increases nuclear height and impairs nuclear re-orientation. STEF down-regulation also reduces perinuclear pMLC and decreases myosin-generated tension at the nuclear envelope, suggesting that STEF-mediated Rac1 activity regulates NMMIIB activity to promote stabilisation of the perinuclear actin cap. Finally, STEF depletion decreases nuclear stiffness and reduces expression of TAZ-regulated genes, indicating an alteration in mechanosensing pathways as a consequence of disruption of the actin cap.
Krishnakumar, Kavithanjali; Chakravorty, Ishani; Foy, Wendy; Allen, Steve; Justo, Tiago; Mukherjee, Abir; Dhoot, Gurtej K
2018-03-01
This study demonstrates highly dynamic spatial and temporal pattern of SULF1/SULF2 expression in a number of neuronal cell types growing in normal culture medium that included their transient nuclear mobilisation. Their nuclear translocation became particularly apparent during cell proliferation as both SULF1/SULF2 demonstrated not only cell membrane associated expression, their known site of function but also transient nuclear mobilisation during nuclear cell division. Nuclear localisation was apparent not only by immunocytochemical staining but also confirmed by immunoblotting staining of isolated nuclear fractions of C6, U87 and N2A cells. Immunocytochemical analysis demonstrated rapid nuclear exit of both SULF1/SULF2 following cell division that was slightly delayed but not blocked in a fraction of the polyploid cells observed in C6 cells. The overexpression of both Sulf1 and Sulf2 genes in C6 and U87 cells markedly promoted in vitro growth of these cells accompanied by nuclear mobilisation while inhibition of both these genes inhibited cell proliferation with little or no nuclear SULF1/SULF2 mobilisation. SULF1/SULF2 activity in these cells thus demonstrated a clear co-ordination of extracellular cell signalling with nuclear events related to cell proliferation. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Hargreaves, P; Rahman, S; Guthrie, P; Taanman, J W; Leonard, J V; Land, J M; Heales, S J R
2002-02-01
Mitochondrial DNA (mtDNA) depletion syndrome (McKusick 251880) is characterized by a progressive quantitative loss of mtDNA resulting in severe mitochondrial dysfunction. A diagnosis of mtDNA depletion can only be confirmed after Southern blot analysis of affected tissue. Only a limited number of centres have the facilities to offer this service, and this is frequently on an irregular basis. There is therefore a need for a test that can refine sample selection as well as complementing the molecular analysis. In this study we compared the activities of the nuclear-encoded succinate ubiquinone reductase (complex II) to the activities of the combined mitochondrial and nuclear-encoded mitochondrial electron transport chain (ETC) complexes; NADH:ubiquinone reductase (complex I), ubiquinol-cytochrome-c reductase (complex III), and cytochrome-c oxidase (complex IV), in skeletal muscle biopsies from 7 patients with confirmed mtDNA depletion. In one patient there was no evidence of an ETC defect. However, the remaining 6 patients exhibited reduced complex I and IV activities. Five of these patients also displayed reduced complex II-III (succinate:cytochrome-c reductase) activity. Individual measurement of complex II and complex III activities demonstrated normal levels of complex II activity compared to complex III, which was reduced in the 5 biopsies assayed. These findings suggest a possible diagnostic value for the detection of normal levels of complex II activity in conjunction with reduced complex I, III and IV activity in the identification of likely candidates for mtDNA depletion syndrome
NASA Astrophysics Data System (ADS)
Valentine, Timothy E.; Leal, Luiz C.; Guber, Klaus H.
2002-12-01
The Department of Energy established the Nuclear Criticality Safety Program (NCSP) in response to the Recommendation 97-2 by the Defense Nuclear Facilities Safety Board. The NCSP consists of seven elements of which nuclear data measurements and evaluations is a key component. The intent of the nuclear data activities is to provide high resolution nuclear data measurements that are evaluated, validated, and formatted for use by the nuclear criticality safety community to provide improved and reliable calculations for nuclear criticality safety evaluations. High resolution capture, fission, and transmission measurements are performed at the Oak Ridge Electron Linear Accelerator (ORELA) to address the needs of the criticality safety community and to address known deficiencies in nuclear data evaluations. The activities at ORELA include measurements on both light and heavy nuclei and have been used to identify improvements in measurement techniques that greatly improve the measurement of small capture cross sections. The measurement activities at ORELA provide precise and reliable high-resolution nuclear data for the nuclear criticality safety community.
NASA Astrophysics Data System (ADS)
Stefanik, Milan; Rataj, Jan; Huml, Ondrej; Sklenka, Lubomir
2017-11-01
The VR-1 training reactor operated by the Czech Technical University in Prague is utilized mainly for education of students and training of various reactor staff; however, R&D is also carried out at the reactor. The experimental instrumentation of the reactor can be used for the irradiation experiments and neutron activation analysis. In this paper, the neutron activation analysis (NAA) is used for a study of dietary supplements containing the zinc (one of the essential trace elements for the human body). This analysis includes the dietary supplement pills of different brands; each brand is represented by several different batches of pills. All pills were irradiated together with the standard activation etalons in the vertical channel of the VR-1 reactor at the nominal power (80 W). Activated samples were investigated by the nuclear gamma-ray spectrometry technique employing the semiconductor HPGe detector. From resulting saturated activities, the amount of mineral element (Zn) in the pills was determined using the comparative NAA method. The results show clearly that the VR-1 training reactor is utilizable for neutron activation analysis experiments.
Barshad, Gilad; Blumberg, Amit; Cohen, Tal; Mishmar, Dan
2018-06-14
Oxidative phosphorylation (OXPHOS), a fundamental energy source in all human tissues, requires interactions between mitochondrial (mtDNA)- and nuclear (nDNA)-encoded protein subunits. Although such interactions are fundamental to OXPHOS, bi-genomic coregulation is poorly understood. To address this question, we analyzed ∼8500 RNA-seq experiments from 48 human body sites. Despite well-known variation in mitochondrial activity, quantity, and morphology, we found overall positive mtDNA-nDNA OXPHOS genes' co-expression across human tissues. Nevertheless, negative mtDNA-nDNA gene expression correlation was identified in the hypothalamus, basal ganglia, and amygdala (subcortical brain regions, collectively termed the "primitive" brain). Single-cell RNA-seq analysis of mouse and human brains revealed that this phenomenon is evolutionarily conserved, and both are influenced by brain cell types (involving excitatory/inhibitory neurons and nonneuronal cells) and by their spatial brain location. As the "primitive" brain is highly oxidative, we hypothesized that such negative mtDNA-nDNA co-expression likely controls for the high mtDNA transcript levels, which enforce tight OXPHOS regulation, rather than rewiring toward glycolysis. Accordingly, we found "primitive" brain-specific up-regulation of lactate dehydrogenase B ( LDHB ), which associates with high OXPHOS activity, at the expense of LDHA , which promotes glycolysis. Analyses of co-expression, DNase-seq, and ChIP-seq experiments revealed candidate RNA-binding proteins and CEBPB as the best regulatory candidates to explain these phenomena. Finally, cross-tissue expression analysis unearthed tissue-dependent splice variants and OXPHOS subunit paralogs and allowed revising the list of canonical OXPHOS transcripts. Taken together, our analysis provides a comprehensive view of mito-nuclear gene co-expression across human tissues and provides overall insights into the bi-genomic regulation of mitochondrial activities. © 2018 Barshad et al.; Published by Cold Spring Harbor Laboratory Press.
78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0268] Review of Safety Analysis Reports for Nuclear Power... Analysis Reports for Nuclear Power Plants: LWR Edition.'' The new subsection is the Standard Review Plan... Nuclear Power Plants: Integral Pressurized Water Reactor (iPWR) Edition.'' DATES: Comments must be filed...
Di Maio, Francesco; Zio, Enrico; Smith, Curtis; ...
2015-07-06
The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore » activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less
Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups.
Sumazin, Pavel; Chen, Yidong; Treviño, Lisa R; Sarabia, Stephen F; Hampton, Oliver A; Patel, Kayuri; Mistretta, Toni-Ann; Zorman, Barry; Thompson, Patrick; Heczey, Andras; Comerford, Sarah; Wheeler, David A; Chintagumpala, Murali; Meyers, Rebecka; Rakheja, Dinesh; Finegold, Milton J; Tomlinson, Gail; Parsons, D Williams; López-Terrada, Dolores
2017-01-01
Despite being the most common liver cancer in children, hepatoblastoma (HB) is a rare neoplasm. Consequently, few pretreatment tumors have been molecularly profiled, and there are no validated prognostic or therapeutic biomarkers for HB patients. We report on the first large-scale effort to profile pretreatment HBs at diagnosis. Our analysis of 88 clinically annotated HBs revealed three risk-stratifying molecular subtypes that are characterized by differential activation of hepatic progenitor cell markers and metabolic pathways: high-risk tumors were characterized by up-regulated nuclear factor, erythroid 2-like 2 activity; high lin-28 homolog B, high mobility group AT-hook 2, spalt-like transcription factor 4, and alpha-fetoprotein expression; and high coordinated expression of oncofetal proteins and stem-cell markers, while low-risk tumors had low lin-28 homolog B and lethal-7 expression and high hepatic nuclear factor 1 alpha activity. Analysis of immunohistochemical assays using antibodies targeting these genes in a prospective study of 35 HBs suggested that these candidate biomarkers have the potential to improve risk stratification and guide treatment decisions for HB patients at diagnosis; our results pave the way for clinical collaborative studies to validate candidate biomarkers and test their potential to improve outcome for HB patients. (Hepatology 2017;65:104-121). © 2016 by the American Association for the Study of Liver Diseases.
Lee, Byung Lan; Lee, Hye Seung; Jung, Jieun; Cho, Sung Jin; Chung, Hee-Yong; Kim, Woo Ho; Jin, Young-Woo; Kim, Chong Soon; Nam, Seon Young
2005-04-01
Because the biological significance of constitutive nuclear factor-kappaB (NF-kappaB) activation in human gastric cancer is unclear, we undertook this study to clarify the regulatory mechanism of NF-kappaB activation and its clinical significance. Immunohistochemistry for NF-kappaB/RelA was done on 290 human gastric carcinoma specimens placed on tissue array slides. The correlations between NF-kappaB activation and clinicopathologic features, prognosis, Akt activation, tumor suppressor gene expression, or Bcl-2 expression were analyzed. We also did luciferase reporter assay, Western blot analysis, and reverse transcription-PCR using the SNU-216 human gastric cancer cell line transduced with retroviral vectors containing constitutively active Akt or the NF-kappaB repressor mutant of IkappaBalpha. Nuclear expression of RelA was found in 18% of the gastric carcinomas and was higher in early-stage pathologic tumor-node-metastasis (P = 0.019). A negative correlation was observed between NF-kappaB activation and lymphatic invasion (P = 0.034) and a positive correlation between NF-kappaB activation and overall survival rate of gastric cancer patients (P = 0.0228). In addition, NF-kappaB activation was positively correlated with pAkt (P = 0.047), p16 (P = 0.004), adenomatous polyposis coli (P < 0.001), Smad4 (P = 0.002), and kangai 1 (P < 0.001) expression. An in vitro study showed that NF-kappaB activity in gastric cancer cells is controlled by and controls Akt. NF-kappaB activation was frequently observed in early-stage gastric carcinoma and was significantly correlated with better prognosis and Akt activation. These findings suggest that NF-kappaB activation is a valuable prognostic variable in gastric carcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, M.D.; Saum-Manning, L.; Houck, F.
Events in Iraq at the beginning of the 1990s demonstrated that the safeguards system of the International Atomic Energy Agency (IAEA) needed to be improved. It had failed, after all, to detect Iraq's clandestine nuclear weapon program even though some of Iraq's's activities had been pursued at inspected facilities in buildings adjacent to ones being inspected by the IAEA. Although there were aspects of the implementation of safeguards where the IAEA needed to improve, the primary limitations were considered to be part of the safeguards system itself. That system was based on the Nuclear Nonproliferation Treaty of 1970, to whichmore » Iraq was a party, and implemented on the basis of a model NPT safeguards agreement, published by the IAEA 1972 as INFCIRC/153 (corrected). The agreement calls for states to accept and for the IAEA to apply safeguards to all nuclear material in the state. Iraq was a party to such an agreement, but it violated the agreement by concealing nuclear material and other nuclear activities from the IAEA. Although the IAEA was inspecting in Iraq, it was hindered by aspects of the agreement that essentially limited its access to points in declared facilities and provided the IAEA with little information about nuclear activities anywhere else in Iraq. As a result, a major review of the NPT safeguards system was initiated by its Director General and Member States with the objective of finding the best means to enable the IAEA to detect both diversions from declared stocks and any undeclared nuclear material or activities in the state. Significant improvements that could be made within existing legal authority were taken quickly, most importantly a change in 1992 in how and when and what design information would be reported to the IAEA. During 1991-1996, the IAEA pursued intensive study, legal and technical analysis, and field trials and held numerous consultations with Member States. The Board of Governors discussed the issue of strengthening safeguards at almost all of its meeting.« less
Koley, Sananda; Chakrabarti, Srabani; Pathak, Swapan; Manna, Asim Kumar; Basu, Siddhartha
2015-12-01
Our study was done to assess the cytological changes due to oncotherapy in breast carcinoma especially on morphometry and proliferative activity. Cytological aspirates were collected from a total of 32 cases of invasive ductal carcinoma both before and after oncotherapy. Morphometry was done on the stained cytological smears to assess the different morphological parameters of cell dimension by using the ocular morphometer and the software AutoCAD 2007. Staining was done with Ki-67 and proliferating cell nuclear antigen (PCNA) as proliferative markers. Different morphological parameters were compared before and after oncotherapy by unpaired Student's t test. Statistically significant differences were found in morphometric parameters, e.g., mean nuclear diameter, mean nuclear area, mean cell diameter, and mean cell area, and in the expression of proliferative markers (Ki-67 and PCNA). Statistical analysis was done by obtaining p values. There are statistically significant differences between morphological parameter of breast carcinoma cells before and after oncotherapy.
Novikov, V D; Valova, T A; Iasakova, N T; Belan, I B
2000-01-01
Nuclear chromatine of peripheral blood lymphocytes was studied in 13 women with children suffering from Down's syndrome using optic structural computer analysis. In 12 cases significant increase of nuclear roundness coefficient was determined. Deformation coefficient was determined for heterochromatine structures in 8 cases. Integral optic density of nuclear chromatine was significantly decreased in 12 women. This indicates the reduction of felgen-positive material due to deficiency of its compact fraction (in 11 cases). The activity of lymphocyte cytoplasmic lactate, alpha-glycerophosphate and succinate dehydrogenases (SDG) was studied morphocytochemically in 5 women who had children with the disease. High activity of mitochondrial SDG was determined in all cases which probably indicates disorders in lymphocyte energy state. This is one of the reasons for retention of risk pregnancy. Further research in this area may serve as a base for complete cytoanalysis in order to distinguish risk groups among women including primagravida for consequent determination of embryonal karyotype.
Office for Analysis and Evaluation of Operational Data 1994-FY 95 annual report. Volume 9, Number 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This annual report of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) describes activities conducted during CY 1994 and FY 1995. The report is published in three parts. NUREG-1272, Vol. 9, No. 1, covers power reactors and presents an overview of the operating experience of the nuclear power industry from the NRC perspective, including comments about the trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year and summarizes information from such sources as licensee event reports, diagnostic evaluations, and reportsmore » to the NRC`s Operations Center. NUREG-1272, Vol. 9, No. 2, covers nuclear materials and presents a review of the events and concerns associated with the use of licensed material in nonreactor applications, such as personnel overexposures and medical misadministrations. Both reports also contain a discussion of the Incident Investigation Team program and summarize both the Incident Investigation Team and Augmented Inspection Team reports. Each volume contains a list of the AEOD reports issued from 1980 through FY 1995. NUREG-1272, Vol. 9, No. 3, covers technical training and presents the activities of the Technical Training Center in support of the NRC`s mission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-01
This annual report of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) describes activities conducted during 1996. The report is published in three parts. NUREG-1272, Vol. 10, No. 1, covers power reactors and presents an overview of the operating experience of the nuclear power industry from the NRC perspective, including comments about trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year and summarizes information from such sources as licensee event reports and reports to the NRC`s Operations Center. NUREG-1272, Vol.more » 10, No. 2, covers nuclear materials and presents a review of the events and concerns during 1996 associated with the use of licensed material in nonreactor applications, such as personnel overexposures and medical misadministrations. Both reports also contain a discussion of the Incident Investigation Team program and summarize both the Incident Investigation Team and Augmented Inspection Team reports. Each volume contains a list of the AEOD reports issued from CY 1980 through 1996. NUREG-1272, Vol. 10, No. 3, covers technical training and presents the activities of the Technical Training Center in support of the NRC`s mission in 1996.« less
Czubryt, M P; Russell, J C; Sarantopoulos, J; Gilchrist, J S; Pierce, G N
1997-11-01
The putative role of the nuclear nucleoside triphosphatase (NTPase) is to provide energy to the nuclear pore complex for poly A(+) mRNA export. Previous work has demonstrated that liver nuclear NTPase activity is greater in 6 month old corpulent (cp/cp) female JCR:LA rats, a hyperlipidemic rat model, compared to lean (+/?) animals. This increase appeared to be related to increases in nuclear membrane cholesterol content. The current study extended these initial data to compare NTPase activity as a function of age and sex in isolated JCR:LA-cp rat liver nuclei, to further test the hypothesis that nuclear membrane cholesterol may modulate NTPase activity. NTPase activity was increased in cp/cp female animals compared to +/? females at all ages studied, with Vmax values increased by 60-176%. Membrane integrity of cp/cp female nuclei was reduced compared to +/? female nuclei. Nuclear membrane cholesterol levels increased linearly with age by 50, 150 and 250% in 3, 6 and 9 month old cp/cp females over leans. In contrast, nuclei from cp/cp males exhibited only minor, isolated changes in NTPase activity. Furthermore, there were no significant changes in nuclear cholesterol content or membrane integrity in the less hyperlipidemic male animals at any age. These data suggest that altered lipid metabolism may lead to changes in nuclear membrane structure, which in turn may alter NTPase activity and functioning of the nuclear pore complex.
The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells.
Jackson, D A; Pombo, A; Iborra, F
2000-02-01
The control of RNA synthesis from protein-coding genes is fundamental in determining the various cell types of higher eukaryotes. The activation of these genes is driven by promoter complexes, and RNA synthesis is performed by an enzyme mega-complex-the RNA polymerase II holoenzyme. These two complexes are the fundamental components required to initiate gene expression and generate the primary transcripts that, after processing, yield mRNAs that pass to the cytoplasm where protein synthesis occurs. But although this gene expression pathway has been studied intensively, aspects of RNA metabolism remain difficult to comprehend. In particular, it is unclear why >95% of RNA polymerized by polymerase II remains in the nucleus, where it is recycled. To explain this apparent paradox, this review presents a detailed description of nuclear RNA (nRNA) metabolism in mammalian cells. We evaluate the number of active transcription units, discuss the distribution of polymerases on active genes, and assess the efficiency with which the products mature and pass to the cytoplasm. Differences between the behavior of mRNAs on this productive pathway and primary transcripts that never leave the nucleus lead us to propose that these represent distinct populations. We discuss possible roles for nonproductive RNAs and present a model to describe the metabolism of these RNAs in the nuclei of mammalian cells.-Jackson, D. A., Pombo, A., Iborra, F. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells.
Goudeau, V; Daniel, B; Dubot, D
2017-04-21
During the operation and the decommissioning of a nuclear site the operator must assure the protection of the workers and the environment. It must furthermore identify and classify the various wastes, while optimizing the associated costs. At all stages of the decommissioning radiological measurements are performed to determine the initial situation, to monitor the demolition and clean-up, and to verify the final situation. Radiochemical analysis is crucial for the radiological evaluation process to optimize the clean-up operations and to the respect limits defined with the authorities. Even though these types of analysis are omnipresent in activities such as the exploitation, the monitoring, and the cleaning up of nuclear plants, some nuclear sites do not have their own radiochemical analysis laboratory. Mobile facilities can overcome this lack when nuclear facilities are dismantled, when contaminated sites are cleaned-up, or in a post-accident situation. The current operations for the characterization of radiological soils of CEA nuclear facilities, lead to a large increase of radiochemical analysis. To manage this high throughput of samples in a timely manner, the CEA has developed a new mobile laboratory for the clean-up of its soils, called SMaRT (Shelter for Monitoring and nucleAR chemisTry). This laboratory is dedicated to the preparation and the radiochemical analysis (alpha, beta, and gamma) of potentially contaminated samples. In this framework, CEA and Eichrom laboratories has signed a partnership agreement to extend the analytical capacities and bring on site optimized and validated methods for different problematic. Gamma-emitting radionuclides can usually be measured in situ as little or no sample preparation is required. Alpha and beta-emitting radionuclides are a different matter. Analytical chemistry laboratory facilities are required. Mobile and transportable laboratories equipped with the necessary tools can provide all that is needed. The main advantage of a mobile laboratory is its portability; the shelter can be placed in the vicinity of nuclear facilities under decommissioning, or of contaminated sites with infrastructures unsuitable for the reception and treatment of radioactive samples. Radiological analysis can then be performed without the disadvantages of radioactive material transport. This paper describes how this solution allows a fast response and control of costs, with a high analytical capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor
Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...
Species-specific challenges in dog cloning.
Kim, G A; Oh, H J; Park, J E; Kim, M J; Park, E J; Jo, Y K; Jang, G; Kim, M K; Kim, H J; Lee, B C
2012-12-01
Somatic cell nuclear transfer (SCNT) is now an established procedure used in cloning of several species. SCNT in dogs involves multiple steps including the removal of the nuclear material, injection of a donor cell, fusion, activation of the reconstructed oocytes and finally transfer to a synchronized female recipient. There are therefore many factors that contribute to cloning efficiency. By performing a retrospective analysis of 2005-2012 published papers regarding dog cloning, we define the optimum procedure and summarize the specific feature for dog cloning. © 2012 Blackwell Verlag GmbH.
Rukavishnikov, V S; Efimova, N V; Katul'skaia, O Iu; Cherniago, B P; Matorova, N I; Beliaeva, T A; Medvedev, V I
2009-01-01
Analysis of archival records on the activity of diurnal plane-tables from the region's weather stations revealed local radioactive fall-out in the near-Baikal areas from the nuclear weapon tests carried out at the Semipalatinsk testing site. Examination of mortality rates in the settlements exposed to the tests showed that the maximum rates of overall and lung malignancy mortalities were observed in 1960-1979; the mean radiation dose in the exposed settlements were estimated to be 580-850 MeV.
Decommissioning of the Iraq former nuclear complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Mohammed; Helou, Tuama; Ahmead, Bushra
2007-07-01
Available in abstract form only. Full text of publication follows: A number of sites in Iraq have some degree of radiological contamination and require decommissioning and remediation in order to ensure radiological safety. Many of these sites in Iraq are located at the nuclear research centre at Al Tuwaitha. The International Atomic Energy Agency (IAEA) Board of Governors has approved a project to assist the Government of Iraq in the evaluation and decommissioning of former facilities that used radioactive materials. The project is divided into three phases: Phase 1: collect and analyze all available data and conduct training of themore » Iraqi staff, Phase 2: develop a decommissioning and remediation plan, and Phase 3: implement field activities relating to decommissioning, remediation and site selection suitable for final disposal of waste. Four working groups have been established to complete the Phase 1 work and significant progress has been made in drafting a new nuclear law which will provide the legal basis for the licensing of the decommissioning of the former nuclear complex. Work is also underway to collect and analysis existing date, to prioritize future activities and to develop a waste management strategy. This will be a long-term and costly project. (authors)« less
[Properties and localization of Mg- and Ca-ATpase activities in wheat embryo cell nuclei].
Vasil'eva, N A; Belkina, G G; Stepanenko, S Y; Atalykova, F I; Oparin, A I
1978-05-01
The isolated nuclei of wheat embryo possess the ATPase activity. The addition of Mg2+ and Ca2+ significantly increases the activities of nuclear ATPases, whereas Hg2+, Cu2+ and Mn2+ inhibit the activity. The activating effect of Mg2+ is enhanced by an addition of Na and K ions. The activity of wheat embryo nuclear Mg-ATPase is higher than its Ca-ATPase activity; both ATPases also differ in their pH optima. Separation of total nuclear protein according to the solubility of its individual protein components in wheat and strong salt solutions, using the detergents, as well as ammonium sulfate precipitation and dialysis do not result in separation of Mg-activated and Ca-activated ATPases, although their levels of activities and ratios change in the course of fractionation. The Mg- and Ca-ATPase activities of the wheat embryo nuclei were found in the nuclear fraction of albumin, in nonhistone proteins and nuclear membranes. In the albumin nuclear fraction and subfractions of non-histone proteins the higher level of activity is observed in Ca-ATPase, whereas in the nuclei and soluble fractions of residual proteins in Mg-ATPase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Z. J.; Wells, D.; Green, J.
Photon Activation Analysis (PAA) of environmental, archaeological and industrial samples requires extensive data analysis that is susceptible to error. For the purpose of saving time, manpower and minimizing error, a computer program was designed, built and implemented using SQL, Access 2007 and asp.net technology to automate this process. Based on the peak information of the spectrum and assisted by its PAA library, the program automatically identifies elements in the samples and calculates their concentrations and respective uncertainties. The software also could be operated in browser/server mode, which gives the possibility to use it anywhere the internet is accessible. By switchingmore » the nuclide library and the related formula behind, the new software can be easily expanded to neutron activation analysis (NAA), charged particle activation analysis (CPAA) or proton-induced X-ray emission (PIXE). Implementation of this would standardize the analysis of nuclear activation data. Results from this software were compared to standard PAA analysis with excellent agreement. With minimum input from the user, the software has proven to be fast, user-friendly and reliable.« less
Wang, Winston Yan; Wong, Jack Ho; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Cheung, Randy Chifai; Ng, Tzi Bun
2016-08-01
This study aimed to investigate fragments derived from human and bovine lactoferrins for ability to inhibit nuclear translocation of HIV-1 integrase. It was shown that human lactoferricin, human lactoferrin 1-11, and bovine lactoferrampin reduced nuclear distribution of HIV-1 integrase. Bovine lactoferrampin could inhibit both the activity and nuclear translocation of HIV-1 integrase. Human lactoferrampin, bovine lactoferricin, and bovine lactoferrin 1-11 had no effect on HIV-1 integrase nuclear translocation. Human lactoferrampin which inhibited the activity of integrase did not prevent its nuclear translocation. Human lactoferricin and lactoferrin 1-11 did not inhibit HIV-1 integrase nuclear translocation despite their ability to attenuate the enzyme activity. The discrepancy between the findings on reduction of HIV-1 activity and inhibition of nuclear translocation of HIV-1 integrase was due to the different mechanisms involved. A similar reasoning can also be applied to the different inhibitory potencies of the milk peptides on different HIV enzymes, i.e., nuclear translocation.
Secrecy vs. the need for ecological information: challenges to environmental activism in Russia.
Jandl, T
1998-01-01
This article identifies the lessons learned from the Nikitin case study in Russia. The Nikitin case involves the analysis of sources of radioactive contamination in several Russian counties and in the Russian Northern Fleet. Norway was interested in the issue due to proximity to the storage sites. The issue involved national security and environmental protection. It was learned that mixing national security issues with environmental issues offers dangerous and multiple challenges. Environmental groups must build relationships with a wide audience. International security policy must include the issues of globalization of trade and the spread of environmental problems into the global commons (oceans and atmosphere). The risk of an environmentally dangerous accident as a consequence of Cold War activities is greater than the risk of nuclear war. Secrecy in military affairs is not justified when there is inadequate storage of nuclear weapons and contaminated materials. In Russia, the concern is great due to their economic transition and shortages of funds for even the most basic needs, which excludes nuclear waste clean up. The Bellona Foundation studied the extent of nuclear pollution from military nuclear reactors in the Kola peninsula of northwest Russia, in 1994 and 1996. Russian security police arrested one of the report authors for alleged national security violations. A valuable lesson learned was that local Russian environmental groups needed international support. The military nuclear complex poses an enormous hazard. Limiting inspections is an unacceptable national security risk. The new Russian law on state secrets is too broad.
Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi
2002-01-01
We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells. PMID:12133007
Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi
2002-11-01
We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells.
Cheng, Chia-Pi; Sheu, Ming-Jen; Sytwu, Huey-Kang; Chang, Deh-Ming
2013-04-01
Decoy receptor 3 (DCR3) has been known to modulate immune functions of monocyte or macrophage. In the present study, we investigated the mechanism and the effect of DCR3 on RANK ligand (RANKL)-induced osteoclastogenesis. We treated cells with DCR3 in RANKL-induced osteoclastogenesis to monitor osteoclast formation by tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast activity was assessed by pit formation assay. The mechanism of inhibition was studied by biochemical analysis such as RT-PCR and immunoblotting. In addition, cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis and apoptosis signalling were evaluated by immunoblotting and using flow cytometry. DCR3 inhibited RANKL-induced TRAP(+) multinucleated cells and inhibited RANKL-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) nuclear translocation in RAW264.7 cells. Also, DCR3 significantly inhibited the bone-resorbing activity of mature osteoclasts. Moreover, DCR3 enhanced RANKL-induced cell apoptosis and enhanced RANKL-induced Fas ligand expression. The mechanisms were mediated via the intrinsic cytochrome c and activated caspase 9 apoptosis pathway. We postulated that the inhibitory activity of DCR3 on osteoclastogenesis occurs via down-regulation of RANKL-induced NFATc1 expression and induction of cell apoptosis. Our results postulated DCR3 as a possible new remedy against inflammatory bone destruction.
Rampias, Theodore; Boutati, Eleni; Pectasides, Eirini; Sasaki, Clarence; Kountourakis, Panteleimon; Weinberger, Paul; Psyrri, Amanda
2010-03-01
We sought to determine the role of human papillomavirus (HPV) E6 and E7 oncogenes in nuclear beta-catenin accumulation, a hallmark of activated canonical Wnt signaling pathway. We used HPV16-positive oropharyngeal cancer cell lines 147T and 090, HPV-negative cell line 040T, and cervical cell lines SiHa (bearing integrated HPV16) and HeLa (bearing integrated HPV18) to measure the cytoplasmic and nuclear beta-catenin levels and the beta-catenin/Tcf transcriptional activity before and after E6/E7 gene silencing. Repression of HPV E6 and E7 genes induced a substantial reduction in nuclear beta-catenin levels. Luciferase assay showed that transcriptional activation of Tcf promoter by beta-catenin was lower after silencing. The protein levels of beta-catenin are tightly regulated by the ubiquitin/proteasome system. We therefore performed expression analysis of regulators of beta-catenin degradation and nuclear transport and showed that seven in absentia homologue (Siah-1) mRNA and protein levels were substantially upregulated after E6/E7 repression. Siah-1 protein promotes the degradation of beta-catenin through the ubiquitin/proteasome system. To determine whether Siah-1 is important for the proteasomal degradation of beta-catenin in HPV16-positive oropharyngeal cancer cells, we introduced a Siah-1 expression vector into 147T and 090 cells and found substantial reduction of endogenous beta-catenin in these cells. Thus, E6 and E7 are involved in beta-catenin nuclear accumulation and activation of Wnt signaling in HPV-induced cancers. In addition, we show the significance of the endogenous Siah-1-dependent ubiquitin/proteasome pathway for beta-catenin degradation and its regulation by E6/E7 viral oncoproteins in HPV16-positive oropharyngeal cancer cells.
Photolysis of 4-Phenyl-1,3-dioxolan-2-one: An Undergraduate Experiment in Free Radical Chemistry.
ERIC Educational Resources Information Center
White, Rick C.; Ma, Sha
1988-01-01
Describes a photochemistry experiment designed to introduce photochemical techniques and experience free radical chemistry. Selects Nuclear Magnetic Resonance spectroscopy for the analysis. This activity is suggested for use in an upper level undergraduate organic course. (MVL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanov, Alexey; Simirskii, Iurii; Stepanov, Vyacheslav
2015-07-01
The Gas Plant complex is the experimental base of the Institute of Nuclear Reactors, which is part of the Kurchatov Institute. In 1954 the commissioning of the first Soviet water-cooled water-moderated research reactor VVR-2 on enriched uranium, and until 1983 the complex operated two research water-cooled water-moderated reactors 3 MW (VVR-2) and 300 kW (OR) capacity, which were dismantled in connection with the overall upgrades of the complex. The complex has three storage ponds in the reactor building. They are sub-surface vessels filled with water (the volume of water in each is about 6 m{sup 3}). In 2007-2013 the spentmore » nuclear fuel from storages was removed for processing to 'Mayk'. Survey of Storage Ponds by Underwater Collimated Spectrometric System shows a considerable layer of slime on the bottom of ponds and traces of spent nuclear fuel in one of the storage. For determination qualitative and the quantitative composition of radionuclide we made complex α-, β-, γ- spectrometric research of water and bottom slimes from Gas Plant complex storage ponds. We found the spent nuclear fuel in water and bottom slime in all storage ponds. Specific activity of radionuclides in the bottom slime exceeded specific activity of radionuclides in the ponds water and was closed to levels of high radioactive waste. Analysis of the obtained data and data from earlier investigation of reactor MR storage ponds showed distinctions of specific activity of uranium and plutonium radionuclides. (authors)« less
Information Services at the Nuclear Safety Analysis Center.
ERIC Educational Resources Information Center
Simard, Ronald
This paper describes the operations of the Nuclear Safety Analysis Center. Established soon after an accident at the Three Mile Island nuclear power plant near Harrisburg, Pennsylvania, its efforts were initially directed towards a detailed analysis of the accident. Continuing functions include: (1) the analysis of generic nuclear safety issues,…
Gallmetzer, Andreas; Silvestrini, Lucia; Schinko, Thorsten; Gesslbauer, Bernd; Hortschansky, Peter; Dattenböck, Christoph; Muro-Pastor, María Isabel; Kungl, Andreas; Brakhage, Axel A; Scazzocchio, Claudio; Strauss, Joseph
2015-07-01
The assimilation of nitrate, a most important soil nitrogen source, is tightly regulated in microorganisms and plants. In Aspergillus nidulans, during the transcriptional activation process of nitrate assimilatory genes, the interaction between the pathway-specific transcription factor NirA and the exportin KapK/CRM1 is disrupted, and this leads to rapid nuclear accumulation and transcriptional activity of NirA. In this work by mass spectrometry, we found that in the absence of nitrate, when NirA is inactive and predominantly cytosolic, methionine 169 in the nuclear export sequence (NES) is oxidized to methionine sulfoxide (Metox169). This oxidation depends on FmoB, a flavin-containing monooxygenase which in vitro uses methionine and cysteine, but not glutathione, as oxidation substrates. The function of FmoB cannot be replaced by alternative Fmo proteins present in A. nidulans. Exposure of A. nidulans cells to nitrate led to rapid reduction of NirA-Metox169 to Met169; this reduction being independent from thioredoxin and classical methionine sulfoxide reductases. Replacement of Met169 by isoleucine, a sterically similar but not oxidizable residue, led to partial loss of NirA activity and insensitivity to FmoB-mediated nuclear export. In contrast, replacement of Met169 by alanine transformed the protein into a permanently nuclear and active transcription factor. Co-immunoprecipitation analysis of NirA-KapK interactions and subcellular localization studies of NirA mutants lacking different parts of the protein provided evidence that Met169 oxidation leads to a change in NirA conformation. Based on these results we propose that in the presence of nitrate the activation domain is exposed, but the NES is masked by a central portion of the protein (termed nitrate responsive domain, NiRD), thus restricting active NirA molecules to the nucleus. In the absence of nitrate, Met169 in the NES is oxidized by an FmoB-dependent process leading to loss of protection by the NiRD, NES exposure, and relocation of the inactive NirA to the cytosol.
Methods for the Measurement of a Bacterial Enzyme Activity in Cell Lysates and Extracts
Mendz, George; Hazell, Stuart
1998-01-01
The kinetic characteristics and regulation of aspartate carbamoyltransferase activity were studied in lysates and cell extracts of Helicobacter pylori by three diffirent methods. Nuclear magnetic resonance spectroscopy, radioactive tracer analysis, and spectrophotometry were employed in conjunction to identify the properties of the enzyme activity and to validate the results obtained with each assay. NMR spectroscopy was the most direct method to provide proof of ACTase activity; radioactive tracer analysis was the most sensitive technique and a microtitre-based colorimetric assay was the most cost-and time-efficient for large scale analyses. Freeze-thawing was adopted as the preferred method for cell lysis in studying enzyme activity in situ. This study showed the benefits of employing several different complementary methods to investigate bacterial enzyme activity. PMID:12734591
Nuclear Security Education Program at the Pennsylvania State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uenlue, Kenan; The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304; Jovanovic, Igor
The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basismore » of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale Reactor (PSBR), gamma irradiation facilities (in-pool irradiator, dry irradiator, and hot cells), neutron beam laboratory, radiochemistry laboratories, and various radiation detection and measurement laboratories. A new nuclear security education laboratory was created with DOE NNSA- GTRI funds at RSEC. The nuclear security graduate level curriculum enables the PSU to educate and train future nuclear security experts, both within the United States as well as worldwide. The nuclear security education program at Penn State will grant a Master's degree in nuclear security starting fall 2015. The PSU developed two courses: Nuclear Security- Detector And Source Technologies and Nuclear Security- Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements (Laboratory). Course descriptions and course topics of these courses are described briefly: - Nuclear Security - Detector and Source Technologies; - Nuclear Security - Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Laboratory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritychenko, B.; Mughabghab, S.F.
We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present papermore » contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.« less
2005-12-01
purification scheme that appears most advantageous. The purest product obtained will be subjected to NMR analysis by Josh Kurutz and mass spectroscopy by...Phosphoenolpyruvate carboxykinase 2 Phosphomevalonate kinase Protein phosphatase 1A, magnesium dependent, alpha isoform Uridine- cytidine kinase 1-like 1...more purified preparation should permit structural analysis of the molecules responsible for the activity using mass spectroscopy and nuclear
Masterson, Claire; O'Toole, Daniel; Leo, Annemarie; McHale, Patricia; Horie, Shahd; Devaney, James; Laffey, John G
2016-04-01
Diverse effects of hypercapnic acidosis are mediated via inhibition of nuclear factor-κB, a pivotal transcription factor, in the setting of injury, inflammation, and repair, but the underlying mechanisms of action of hypercapnic acidosis on this pathway is unclear. We aim to examine the effect of hypercapnic acidosis on the nuclear factor-κB pathway in the setting of Escherichia coli-induced lung injury and characterize the underlying mechanisms in subsequent in vitro studies. In vivo animal study and subsequent in vitro studies. University Research Laboratory. Adult male Sprague-Dawley rats and pulmonary epithelial cells. Following pulmonary IκBα-SuperRepressor transgene overexpression or sham and intratracheal E. coli inoculation, rats underwent 4 hours of mechanical ventilation under normocapnia or hypercapnic acidosis, and nuclear factor-κB activation, animal survival, lung injury, and cytokine profile were assessed. Subsequent in vitro studies examined the effect of hypercapnic acidosis on specific nuclear factor-κB canonical pathway kinases via overexpression of these components and in vitro kinase activity assays. The effect of hypercapnic acidosis on the p50/p65 nuclear factor-κB heterodimer was then assessed. Hypercapnic acidosis and IκBα-SuperRepressor transgene overexpression reduced E. coli-induced lung inflammation and injury, decreased nuclear factor-κB activity, and increased animal survival. Hypercapnic acidosis inhibited canonical nuclear factor-κB signaling via reduced phosphorylative activation, reducing IκB kinase-β activation and intrinsic activity, thereby decreasing IκBα degradation, and subsequent nuclear factor-κB translocation. Hypercapnic acidosis also directly reduced DNA binding of the nuclear factor-κB p65 subunit, although this effect was less marked. Hypercapnic acidosis reduced E. coli inflammation and lung injury in vivo and reduced nuclear factor-κB activation predominantly by inhibiting the activation and intrinsic activity of IκB kinase-β.
Advanced Thermal Simulator Testing: Thermal Analysis and Test Results
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe
2008-01-01
Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.
Pawar, Sumit; Ungricht, Rosemarie; Tiefenboeck, Peter; Leroux, Jean-Christophe
2017-01-01
Newly synthesized membrane proteins are targeted to the inner nuclear membrane (INM) by diffusion within the membrane system of the endoplasmic reticulum (ER), translocation through nuclear pore complexes (NPCs) and retention on nuclear partners. Using a visual in vitro assay we previously showed that efficient protein targeting to the INM depends on nucleotide hydrolysis. We now reveal that INM targeting is GTP-dependent. Exploiting in vitro reconstitution and in vivo analysis of INM targeting, we establish that Atlastins, membrane-bound GTPases of the ER, sustain the efficient targeting of proteins to the INM by their continued activity in preserving ER topology. When ER topology is altered, the long-range diffusional exchange of proteins in the ER network and targeting efficiency to the INM are diminished. Highlighting the general importance of proper ER topology, we show that Atlastins also influence NPC biogenesis and timely exit of secretory cargo from the ER. PMID:28826471
Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less
Can Sisyphus succeed? Getting U.S. high-level nuclear waste into a geological repository.
North, D Warner
2013-01-01
The U.S. government has the obligation of managing the high-level radioactive waste from its defense activities and also, under existing law, from civilian nuclear power generation. This obligation is not being met. The January 2012 Final Report from the Blue Ribbon Commission on America's Nuclear Future provides commendable guidance but little that is new. The author, who served on the federal Nuclear Waste Technical Review Board from 1989 to 1994 and subsequently on the Board on Radioactive Waste Management of the National Research Council from 1994 to 1999, provides a perspective both on the Commission's recommendations and a potential path toward progress in meeting the federal obligation. By analogy to Sisyphus of Greek mythology, our nation needs to find a way to roll the rock to the top of the hill and have it stay there, rather than continuing to roll back down again. © 2012 Society for Risk Analysis.
Controlling nuclear JAKs and STATs for specific gene activation by IFNγ.
Noon-Song, Ezra N; Ahmed, Chulbul M; Dabelic, Rea; Canton, Johnathan; Johnson, Howard M
2011-07-08
We previously showed that gamma interferon (IFNγ) and its receptor subunit, IFNGR1, interacted with the promoter region of IFNγ-activated genes along with transcription factor STAT1α. Recent studies have suggested that activated Janus kinases pJAK2 and pJAK1 also played a role in gene activation by phosphorylation of histone H3 on tyrosine 41. This study addresses the question of the role of activated JAKs in specific gene activation by IFNγ. We carried out chromatin immunoprecipitation (ChIP) followed by PCR in IFNγ treated WISH cells and showed association of pJAK1, pJAK2, IFNGR1, and STAT1 on the same DNA sequence of the IRF-1 gene promoter. The β-actin gene, which is not activated by IFNγ, did not show this association. The movement of activated JAK to the nucleus and the IRF-1 promoter was confirmed by the combination of nuclear fractionation, confocal microscopy and DNA precipitation analysis using the biotinylated GAS promoter. Activated JAKs in the nucleus was associated with phosphorylated tyrosine 41 on histone H3 in the region of the GAS promoter. Unphosphorylated JAK2 was found to be constitutively present in the nucleus and was capable of undergoing activation in IFNγ treated cells, most likely via nuclear IFNGR1. Association of pJAK2 and IFNGR1 with histone H3 in IFNγ treated cells was demonstrated by histone H3 immunoprecipitation. Unphosphorylated STAT1 protein was associated with histone H3 of untreated cells. IFNγ treatment resulted in its disassociation and then re-association as pSTAT1. The results suggest a novel role for activated JAKs in epigenetic events for specific gene activation. Copyright © 2011 Elsevier Inc. All rights reserved.
Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration.
Croft, Daniel R; Coleman, Mathew L; Li, Shuixing; Robertson, David; Sullivan, Teresa; Stewart, Colin L; Olson, Michael F
2005-01-17
Membrane blebbing during the apoptotic execution phase results from caspase-mediated cleavage and activation of ROCK I. Here, we show that ROCK activity, myosin light chain (MLC) phosphorylation, MLC ATPase activity, and an intact actin cytoskeleton, but not microtubular cytoskeleton, are required for disruption of nuclear integrity during apoptosis. Inhibition of ROCK or MLC ATPase activity, which protect apoptotic nuclear integrity, does not affect caspase-mediated degradation of nuclear proteins such as lamins A, B1, or C. The conditional activation of ROCK I was sufficient to tear apart nuclei in lamin A/C null fibroblasts, but not in wild-type fibroblasts. Thus, apoptotic nuclear disintegration requires actin-myosin contractile force and lamin proteolysis, making apoptosis analogous to, but distinct from, mitosis where nuclear disintegration results from microtubule-based forces and from lamin phosphorylation and depolymerization.
Actin-myosin–based contraction is responsible for apoptotic nuclear disintegration
Croft, Daniel R.; Coleman, Mathew L.; Li, Shuixing; Robertson, David; Sullivan, Teresa; Stewart, Colin L.; Olson, Michael F.
2005-01-01
Membrane blebbing during the apoptotic execution phase results from caspase-mediated cleavage and activation of ROCK I. Here, we show that ROCK activity, myosin light chain (MLC) phosphorylation, MLC ATPase activity, and an intact actin cytoskeleton, but not microtubular cytoskeleton, are required for disruption of nuclear integrity during apoptosis. Inhibition of ROCK or MLC ATPase activity, which protect apoptotic nuclear integrity, does not affect caspase-mediated degradation of nuclear proteins such as lamins A, B1, or C. The conditional activation of ROCK I was sufficient to tear apart nuclei in lamin A/C null fibroblasts, but not in wild-type fibroblasts. Thus, apoptotic nuclear disintegration requires actin-myosin contractile force and lamin proteolysis, making apoptosis analogous to, but distinct from, mitosis where nuclear disintegration results from microtubule-based forces and from lamin phosphorylation and depolymerization. PMID:15657395
Vanacker, J M; Pettersson, K; Gustafsson, J A; Laudet, V
1999-01-01
The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classical estrogen response element (ERE) and the SF-1 response element (SFRE). In contrast, ERbeta DNA-binding and transcriptional activity is restricted to the ERE. Accordingly, the osteopontin gene promoter is stimulated through SFRE sequences, by ERRalpha as well as by ERalpha, but not by ERbeta. Analysis of the cross-talk within the ER/ERR subgroup of nuclear receptors thus revealed common targets but also functional differences between the two ERs. PMID:10428965
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The primary purpose of this report is to provide an archival record of the activities of the Engineering Physics and Mathematics Division during the period September 1, 1989 through March 31, 1991. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research on the mathematical sciences prior to 1984 when those activities moved into the division. As in previous reports, our research is described through abstracts of journal articles, technical reports, and presentations. Summary lists of publications and presentations, staff additions and departures, scientific and professional activities of division staff, andmore » technical conferences organized and sponsored by the division are included as appendices. The report is organized following the division of our research among four sections and information centers. These research areas are: Mathematical Sciences; Nuclear Data Measurement and Evaluations; Intelligent Systems; Nuclear Analysis and Shielding; and Engineering Physics Information Center.« less
Zhang, Wei; Zhang, Jing; Fang, Leiping; Zhou, Ling; Wang, Shuai; Xiang, Zhijun; Li, Yuan; Wisely, Bruce; Zhang, Guifeng; An, Gang; Wang, Yonghui; Leung, Stewart; Zhong, Zhong
2012-10-01
In a screen for small-molecule inhibitors of retinoid acid-related orphan receptor γ (RORγ), we fortuitously discovered that a class of aryl amide compounds behaved as functional activators of the interleukin 17 (IL-17) reporter in Jurkat cells. Three of these compounds were selected for further analysis and found to activate the IL-17 reporter with potencies of ∼0.1 μM measured by EC₅₀. These compounds were shown to directly bind to RORγ by circular dichroism-based thermal stability experiments. Furthermore, they can enhance an in vitro Th17 differentiation process in human primary T cells. As RORγ remains an orphan nuclear receptor, discovery of these aryl amide compounds as functional agonists will now provide pharmacological tools for us to dissect functions of RORγ and facilitate drug discovery efforts for immune-modulating therapies.
Aschrafi, Armaz; Kar, Amar N; Gale, Jenna R; Elkahloun, Abdel G; Vargas, Jose Noberto S; Sales, Naomi; Wilson, Gabriel; Tompkins, Miranda; Gioio, Anthony E; Kaplan, Barry B
2016-09-01
Mitochondria are enriched in subcellular regions of high energy consumption, such as axons and pre-synaptic nerve endings. Accumulating evidence suggests that mitochondrial maintenance in these distal structural/functional domains of the neuron depends on the "in-situ" translation of nuclear-encoded mitochondrial mRNAs. In support of this notion, we recently provided evidence for the axonal targeting of several nuclear-encoded mRNAs, such as cytochrome c oxidase, subunit 4 (COXIV) and ATP synthase, H+ transporting and mitochondrial Fo complex, subunit C1 (ATP5G1). Furthermore, we showed that axonal trafficking and local translation of these mRNAs plays a critical role in the generation of axonal ATP. Using a global gene expression analysis, this study identified a highly diverse population of nuclear-encoded mRNAs that were enriched in the axon and presynaptic nerve terminals. Among this population of mRNAs, fifty seven were found to be at least two-fold more abundant in distal axons, as compared with the parental cell bodies. Gene ontology analysis of the nuclear-encoded mitochondrial mRNAs suggested functions for these gene products in molecular and biological processes, including but not limited to oxidoreductase and electron carrier activity and proton transport. Based on these results, we postulate that local translation of nuclear-encoded mitochondrial mRNAs present in the axons may play an essential role in local energy production and maintenance of mitochondrial function. Published by Elsevier B.V.
Structural and Functional Impacts of ER Coactivator Sequential Recruitment.
Yi, Ping; Wang, Zhao; Feng, Qin; Chou, Chao-Kai; Pintilie, Grigore D; Shen, Hong; Foulds, Charles E; Fan, Guizhen; Serysheva, Irina; Ludtke, Steven J; Schmid, Michael F; Hung, Mien-Chie; Chiu, Wah; O'Malley, Bert W
2017-09-07
Nuclear receptors recruit multiple coactivators sequentially to activate transcription. This "ordered" recruitment allows different coactivator activities to engage the nuclear receptor complex at different steps of transcription. Estrogen receptor (ER) recruits steroid receptor coactivator-3 (SRC-3) primary coactivator and secondary coactivators, p300/CBP and CARM1. CARM1 recruitment lags behind the binding of SRC-3 and p300 to ER. Combining cryo-electron microscopy (cryo-EM) structure analysis and biochemical approaches, we demonstrate that there is a close crosstalk between early- and late-recruited coactivators. The sequential recruitment of CARM1 not only adds a protein arginine methyltransferase activity to the ER-coactivator complex, it also alters the structural organization of the pre-existing ERE/ERα/SRC-3/p300 complex. It induces a p300 conformational change and significantly increases p300 HAT activity on histone H3K18 residues, which, in turn, promotes CARM1 methylation activity on H3R17 residues to enhance transcriptional activity. This study reveals a structural role for a coactivator sequential recruitment and biochemical process in ER-mediated transcription. Copyright © 2017 Elsevier Inc. All rights reserved.
JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation
Lu, Ben; Antoine, Daniel J.; Kwan, Kevin; Lundbäck, Peter; Wähämaa, Heidi; Schierbeck, Hanna; Robinson, Melissa; Van Zoelen, Marieke A. D.; Yang, Huan; Li, Jianhua; Erlandsson-Harris, Helena; Chavan, Sangeeta S.; Wang, Haichao; Andersson, Ulf; Tracey, Kevin J.
2014-01-01
Extracellular high-mobility group box (HMGB)1 mediates inflammation during sterile and infectious injury and contributes importantly to disease pathogenesis. The first critical step in the release of HMGB1 from activated immune cells is mobilization from the nucleus to the cytoplasm, a process dependent upon hyperacetylation within two HMGB1 nuclear localization sequence (NLS) sites. The inflammasomes mediate the release of cytoplasmic HMGB1 in activated immune cells, but the mechanism of HMGB1 translocation from nucleus to cytoplasm was previously unknown. Here, we show that pharmacological inhibition of JAK/STAT1 inhibits LPS-induced HMGB1 nuclear translocation. Conversely, activation of JAK/STAT1 by type 1 interferon (IFN) stimulation induces HMGB1 translocation from nucleus to cytoplasm. Mass spectrometric analysis unequivocally revealed that pharmacological inhibition of the JAK/STAT1 pathway or genetic deletion of STAT1 abrogated LPS- or type 1 IFN-induced HMGB1 acetylation within the NLS sites. Together, these results identify a critical role of the JAK/STAT1 pathway in mediating HMGB1 cytoplasmic accumulation for subsequent release, suggesting that the JAK/STAT1 pathway is a potential drug target for inhibiting HMGB1 release. PMID:24469805
An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity
NASA Technical Reports Server (NTRS)
Randolph, Thomas M.; Polk, James E., Jr.
2004-01-01
The Nuclear Electric Xenon Ion System (NEXIS) research and development activity within NASA's Project Prometheus, was one of three proposals selected by NASA to develop thruster technologies for long life, high power, high specific impulse nuclear electric propulsion systems that would enable more robust and ambitious science exploration missions to the outer solar system. NEXIS technology represents a dramatic improvement in the state-of-the-art for ion propulsion and is designed to achieve propellant throughput capabilities >= 2000 kg and efficiencies >= 78% while increasing the thruster power to >= 20 kW and specific impulse to >= 6000 s. The NEXIS technology uses erosion resistant carbon-carbon grids, a graphite keeper, a new reservoir hollow cathode, a 65-cm diameter chamber masked to produce a 57-cm diameter ion beam, and a shared neutralizer architecture to achieve these goals. The accomplishments of the NEXIS activity so far include performance testing of a laboratory model thruster, successful completion of a proof of concept reservoir cathode 2000 hour wear test, structural and thermal analysis of a completed development model thruster design, fabrication of most of the development model piece parts, and the nearly complete vacuum facility modifications to allow long duration wear testing of high power ion thrusters.
77 FR 45697 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0149] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending U.S. Nuclear... Budget and solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites...
77 FR 29697 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0066] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending U.S. Nuclear... Budget and solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, M; Matthew02 Miller, M; Thomas Reilly, T
2007-04-30
Washington Safety Management Solutions (WSMS) provides criticality safety services to Washington Savannah River Company (WSRC) at the Savannah River Site. One activity at SRS is the Container Surveillance and Storage Capability (CSSC) Project, which will perform surveillances on 3013 containers (hereafter referred to as 3013s) to verify that they meet the Department of Energy (DOE) Standard (STD) 3013 for plutonium storage. The project will handle quantities of material that are greater than ANS/ANSI-8.1 single parameter mass limits, and thus required a Nuclear Criticality Safety Evaluation (NCSE). The WSMS methodology for conducting an NCSE is outlined in the WSMS methods manual.more » The WSMS methods manual currently follows the requirements of DOE-O-420.1B, DOE-STD-3007-2007, and the Washington Savannah River Company (WSRC) SCD-3 manual. DOE-STD-3007-2007 describes how a NCSE should be performed, while DOE-O-420.1B outlines the requirements for a Criticality Safety Program (CSP). The WSRC SCD-3 manual implements DOE requirements and ANS standards. NCSEs do not address the Nuclear Criticality Safety (NCS) of non-reactor nuclear facilities that may be affected by overt or covert activities of sabotage, espionage, terrorism or other security malevolence. Events which are beyond the Design Basis Accidents (DBAs) are outside the scope of a double contingency analysis.« less
Balasundaram, David; Benedik, Michael J.; Morphew, Mary; Dang, Van-Dinh; Levin, Henry L.
1999-01-01
The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag. PMID:10409764
Balasundaram, D; Benedik, M J; Morphew, M; Dang, V D; Levin, H L
1999-08-01
The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag.
75 FR 43865 - Licenses, Certifications, and Approvals for Material Licensees
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
.... Environmental Impact--Categorical Exclusion X. Paperwork Reduction Act Statement XI. Regulatory Analysis XII... the briefing, the Commission received a letter from the Nuclear Energy Institute (NEI) dated March 3... that such activities were conducted so as to minimize their environmental impact, and to conform the...
INDUSTRIAL/MILITARY ACTIVITY-INITIATED ACCIDENT SCREENING ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.A. Kalinich
1999-09-27
Impacts due to nearby installations and operations were determined in the Preliminary MGDS Hazards Analysis (CRWMS M&O 1996) to be potentially applicable to the proposed repository at Yucca Mountain. This determination was conservatively based on limited knowledge of the potential activities ongoing on or off the Nevada Test Site (NTS). It is intended that the Industrial/Military Activity-Initiated Accident Screening Analysis provided herein will meet the requirements of the ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987) in establishing whether this external event can be screened from further consideration or must be includedmore » as a design basis event (DBE) in the development of accident scenarios for the Monitored Geologic Repository (MGR). This analysis only considers issues related to preclosure radiological safety. Issues important to waste isolation as related to impact from nearby installations will be covered in the MGR performance assessment.« less
Li, Xiang; Anderson, Marie; Collin, Delphine; Muegge, Ingo; Wan, John; Brennan, Debra; Kugler, Stanley; Terenzio, Donna; Kennedy, Charles; Lin, Siqi; Labadia, Mark E; Cook, Brian; Hughes, Robert; Farrow, Neil A
2017-07-14
The nuclear receptor retinoid acid receptor-related orphan receptor γt (RORγt) is a master regulator of the Th17/IL-17 pathway that plays crucial roles in the pathogenesis of autoimmunity. RORγt has recently emerged as a highly promising target for treatment of a number of autoimmune diseases. Through high-throughput screening, we previously identified several classes of inverse agonists for RORγt. Here, we report the crystal structures for the ligand-binding domain of RORγt in both apo and ligand-bound states. We show that apo RORγt adopts an active conformation capable of recruiting coactivator peptides and present a detailed analysis of the structural determinants that stabilize helix 12 (H12) of RORγt in the active state in the absence of a ligand. The structures of ligand-bound RORγt reveal that binding of the inverse agonists disrupts critical interactions that stabilize H12. This destabilizing effect is supported by ab initio calculations and experimentally by a normalized crystallographic B-factor analysis. Of note, the H12 destabilization in the active state shifts the conformational equilibrium of RORγt toward an inactive state, which underlies the molecular mechanism of action for the inverse agonists reported here. Our findings highlight that nuclear receptor structure and function are dictated by a dynamic conformational equilibrium and that subtle changes in ligand structures can shift this equilibrium in opposite directions, leading to a functional switch from agonists to inverse agonists. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Prokova, Vassiliki; Mavridou, Sofia; Papakosta, Paraskevi; Kardassis, Dimitris
2005-01-01
Transforming growth factor beta (TGFbeta) regulates transcriptional responses via activation of cytoplasmic effector proteins termed Smads. Following their phosphorylation by the type I TGFbeta receptor, Smads form oligomers and translocate to the nucleus where they activate the transcription of TGFbeta target genes in cooperation with nuclear cofactors and coactivators. In the present study, we have undertaken a deletion analysis of human Smad3 protein in order to characterize domains that are essential for transcriptional activation in mammalian cells. With this analysis, we showed that Smad3 contains two domains with transcriptional activation function: the MH2 domain and a second middle domain that includes the linker region and the first two beta strands of the MH2 domain. Using a protein-protein interaction assay based on biotinylation in vivo, we were able to show that a Smad3 protein bearing an internal deletion in the middle transactivation domain is characterized by normal oligomerization and receptor activation properties. However, this mutant has reduced transactivation capacity on synthetic or natural promoters and is unable to interact physically and functionally with the histone acetyltransferase p/CAF. The loss of interaction with p/CAF or other coactivators could account, at least in part, for the reduced transactivation capacity of this Smad3 mutant. Our data support an essential role of the previously uncharacterized middle region of Smad3 for nuclear functions, such as transcriptional activation and interaction with coactivators.
Dickinson, Sally E; Rusche, Jadrian J; Bec, Sergiu L; Horn, David J; Janda, Jaroslav; Rim, So Hyun; Smith, Catharine L; Bowden, G Timothy
2015-11-01
Sulforaphane is a natural product found in broccoli, which is known to exert many different molecular effects in the cell, including inhibition of histone deacetylase (HDAC) enzymes. Here, we examine for the first time the potential for sulforaphane to inhibit HDACs in HaCaT keratinocytes and compare our results with those found using HCT116 colon cancer cells. Significant inhibition of HDAC activity in HCT116 nuclear extracts required prolonged exposure to sulforaphane in the presence of serum. Under the same conditions HaCaT nuclear extracts did not exhibit reduced HDAC activity with sulforaphane treatment. Both cell types displayed down-regulation of HDAC protein levels by sulforaphane treatment. Despite these reductions in HDAC family member protein levels, acetylation of marker proteins (acetylated Histone H3, H4, and tubulin) was decreased by sulforaphane treatment. Time-course analysis revealed that HDAC6, HDAC3, and acetylated histone H3 protein levels are significantly inhibited as early as 6 h into sulforaphane treatment. Transcript levels of HDAC6 are also suppressed after 48 h of treatment. These results suggest that HDAC activity noted in nuclear extracts is not always translated as expected to target protein acetylation patterns, despite dramatic inhibition of some HDAC protein levels. In addition, our data suggest that keratinocytes are at least partially resistant to the nuclear HDAC inhibitory effects of sulforaphane, which is exhibited in HCT116 and other cells. © 2014 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc.
Dynamics of passive and active particles in the cell nucleus.
Hameed, Feroz M; Rao, Madan; Shivashankar, G V
2012-01-01
Inspite of being embedded in a dense meshwork of nuclear chromatin, gene loci and large nuclear components are highly dynamic at 37°C. To understand this apparent unfettered movement in an overdense environment, we study the dynamics of a passive micron size bead in live cell nuclei at two different temperatures (25 and 37°C) with and without external force. In the absence of a force, the beads are caged over large time scales. On application of a threshold uniaxial force (about 10(2) pN), the passive beads appear to hop between cages; this large scale movement is absent upon ATP-depletion, inhibition of chromatin remodeling enzymes and RNAi of lamin B1 proteins. Our results suggest that the nucleus behaves like an active solid with a finite yield stress when probed at a micron scale. Spatial analysis of histone fluorescence anisotropy (a measure of local chromatin compaction, defined as the volume fraction of tightly bound chromatin) shows that the bead movement correlates with regions of low chromatin compaction. This suggests that the physical mechanism of the observed yielding is the active opening of free-volume in the nuclear solid via chromatin remodeling. Enriched transcription sites at 25°C also show caging in the absence of the applied force and directed movement beyond a yield stress, in striking contrast with the large scale movement of transcription loci at 37°C in the absence of a force. This suggests that at physiological temperatures, the loci behave as active particles which remodel the nuclear mesh and reduce the local yield stress.
NASA Astrophysics Data System (ADS)
Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.
2018-03-01
This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.
Safety Oversight of Decommissioning Activities at DOE Nuclear Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zull, Lawrence M.; Yeniscavich, William
2008-01-15
The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive materialmore » contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.« less
Guclu, Hasan; Ferrell Bjerke, Elizabeth; Galvan, Jared; Sweeney, Patricia; Potter, Margaret A
2014-01-01
This study explored if and to what extent the laws of U.S. states mirrored the U.S. federal laws for responding to nuclear-radiological emergencies (NREs). Emergency laws from a 12-state sample and the federal government were retrieved and translated into numeric codes representing acting agents, their partner agents, and the purposes of activity in terms of preparedness, response, and recovery. We used network analysis to explore the relationships among agents in terms of legally directed NRE activities. States' legal networks for NREs appear as not highly inclusive, involving an average of 28% of agents among those specified in the federal laws. Certain agents are highly central in NRE networks, so that their capacity and effectiveness might strongly influence an NRE response. State-level lawmakers and planners might consider whether or not greater inclusion of agents, modeled on the federal government laws, would enhance their NRE laws and if more agents should be engaged in planning and policy-making for NRE incidents. Further research should explore if and to what extent legislated NRE directives impose constraints on practical response activities including emergency planning.
NASA Astrophysics Data System (ADS)
Ayyad, Yassid; Mittig, Wolfgang; Bazin, Daniel; Cortesi, Marco
2017-07-01
The Active Target Time Projection Chamber (AT-TPC) project at the NSCL (National Superconducting Cyclotron Laboratory, Michigan State University) is a novel active target detector tailored for low-energy nuclear reactions in inverse kinematics with radioactive ion beams. The AT-TPC allows for a full three dimensional reconstruction of the reaction and provides high luminosity without degradation of resolution by the thickness of the target. Since all the particles (and also the reaction vertex) are tracked inside the detector, the AT-TPC has full 4π efficiency. The AT-TPC can operate under a magnetic field (2 T) that improves the identification of the particles and the energy resolution through the measurement of the magnetic rigidity. Another important characteristic of the AT-TPC is the high-gain operation achieved by the hybrid thick Gas Electron Multipliers (THGEM)-Micromegas pad plane, that allow operation also in pure elemental gas. These two features make the AT-TPC a unique high resolution spectrometer with full acceptance for nuclear physics reactions. This work presents an overview of the project, focused on the data analysis and the development of new micro-pattern gas detectors.
Building Foundations for Nuclear Security Enterprise Analysis Utilizing Nuclear Weapon Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josserand, Terry Michael; Young, Leone; Chamberlin, Edwin Phillip
The Nuclear Security Enterprise, managed by the National Nuclear Security Administration - a semiautonomous agency within the Department of Energy - has been associated with numerous assessments with respect to the estimating, management capabilities, and practices pertaining to nuclear weapon modernization efforts. This report identifies challenges in estimating and analyzing the Nuclear Security Enterprise through an analysis of analogous timeframe conditions utilizing two types of nuclear weapon data - (1) a measure of effort and (2) a function of time. The analysis of analogous timeframe conditions that utilizes only two types of nuclear weapon data yields four summary observations thatmore » estimators and analysts of the Nuclear Security Enterprise will find useful.« less
Sadowska, Agnieszka; Paukszto, Lukasz; Nynca, Anna; Szczerbal, Izabela; Orlowska, Karina; Swigonska, Sylwia; Ruszkowska, Monika; Molcan, Tomasz; Jastrzebski, Jan P; Panasiewicz, Grzegorz; Ciereszko, Renata E
2017-03-01
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor best known for mediating xenobiotic-induced toxicity. AhR requires aryl hydrocarbon receptor nuclear translocator (ARNT) to form an active transcription complex and promote the activation of genes which have dioxin responsive element in their regulatory regions. The present study was performed to determine the complete cDNA sequences of porcine AhR and ARNT genes and their chromosomal localization. Total RNA from porcine livers were used to obtain the sequence of the entire porcine transcriptome by next-generation sequencing (NGS; lllumina HiSeq2500). In addition, both, in silico analysis and fluorescence in situ hybridization (FISH) were used to determine chromosomal localization of porcine AhR and ARNT genes. In silico analysis of nucleotide sequences showed that there were two transcript variants of AhR and ARNT genes in the pig. In addition, computer analysis revealed that AhR gene in the pig is located on chromosome 9 and ARNT on chromosome 4. The results of FISH experiment confirmed the localization of porcine AhR and ARNT genes. In the present study, for the first time, the full cDNAs of AhR and ARNT were demonstrated in the pig. In future, it would be interesting to determine the tissue distribution of AhR and ARNT transcript variants in the pig and to test whether these variants are associated with different biological functions and/or different activation pathways.
Development of high flux thermal neutron generator for neutron activation analysis
NASA Astrophysics Data System (ADS)
Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.
2015-05-01
The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.
Cyclin D1 Determines Mitochondrial Function In Vivo†
Sakamaki, Toshiyuki; Casimiro, Mathew C.; Ju, Xiaoming; Quong, Andrew A.; Katiyar, Sanjay; Liu, Manran; Jiao, Xuanmao; Li, Anping; Zhang, Xueping; Lu, Yinan; Wang, Chenguang; Byers, Stephen; Nicholson, Robert; Link, Todd; Shemluck, Melvin; Yang, Jianguo; Fricke, Stanley T.; Novikoff, Phyllis M.; Papanikolaou, Alexandros; Arnold, Andrew; Albanese, Christopher; Pestell, Richard
2006-01-01
The cyclin D1 gene encodes a regulatory subunit of the holoenzyme that phosphorylates and inactivates the pRb tumor suppressor to promote nuclear DNA synthesis. cyclin D1 is overexpressed in human breast cancers and is sufficient for the development of murine mammary tumors. Herein, cyclin D1 is shown to perform a novel function, inhibiting mitochondrial function and size. Mitochondrial activity was enhanced by genetic deletion or antisense or small interfering RNA to cyclin D1. Global gene expression profiling and functional analysis of mammary epithelial cell-targeted cyclin D1 antisense transgenics demonstrated that cyclin D1 inhibits mitochondrial activity and aerobic glycolysis in vivo. Reciprocal regulation of these genes was observed in cyclin D1-induced mammary tumors. Cyclin D1 thus integrates nuclear DNA synthesis and mitochondrial function. PMID:16809779
Caulfield, Timothy; Bubela, Tania
2007-02-01
Somatic cell nuclear transfer (SCNT) remains a controversial technique, one that has elicited a variety of regulatory responses throughout the world. On March 29, 2005, Canada's Assisted Human Reproduction Act came into force. This law prohibits a number of research activities, including SCNT. Given the pluralistic nature of Canadian society, the creation of this law stands as an interesting case study of the policy-making process and how and why a liberal democracy ends up making the relatively rare decision to use a statutory prohibition, backed by severe penalties, to stop a particular scientific activity. In this article, we provide a comprehensive and systematic legal analysis of the legislative process and parliamentary debates associated with the passage of this law.
The US nuclear reaction data network. Summary of the first meeting, March 13 & 14 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
The first meeting of the US Nuclear Reaction Data Network (USNRDN) was held at the Colorado School of Mines, March 13-14, 1996 chaired by F. Edward Cecil. The Agenda of the meeting is attached. The Network, its mission, products and services; related nuclear data and data networks, members, and organization are described in Attachment 1. The following progress reports from the members of the USNRDN were distributed prior to the meeting and are given as Attachment 2. (1) Measurements and Development of Analytic Techniques for Basic Nuclear Physics and Nuclear Applications; (2) Nuclear Reaction Data Activities at the National Nuclearmore » Data Center; (3) Studies of nuclear reactions at very low energies; (4) Nuclear Reaction Data Activities, Nuclear Data Group; (5) Progress in Neutron Physics at Los Alamos - Experiments; (6) Nuclear Reaction Data Activities in Group T2; (7) Progress Report for the US Nuclear Reaction Data Network Meeting; (8) Nuclear Astrophysics Research Group (ORNL); (9) Progress Report from Ohio University; (10) Exciton Model Phenomenology; and (11) Progress Report for Coordination Meeting USNRDN.« less
Luks, Lisanne; Maier, Marcia Y; Sacchi, Silvia; Pollegioni, Loredano; Dietrich, Daniel R
2017-11-01
Proper subcellular trafficking is essential to prevent protein mislocalization and aggregation. Transport of the peroxisomal enzyme D-amino acid oxidase (DAAO) appears dysregulated by specific pharmaceuticals, e.g., the anti-overactive bladder drug propiverine or a norepinephrine/serotonin reuptake inhibitor (NSRI), resulting in massive cytosolic and nuclear accumulations in rat kidney. To assess the underlying molecular mechanism of the latter, we aimed to characterize the nature of peroxisomal and cyto-nuclear shuttling of human and rat DAAO overexpressed in three cell lines using confocal microscopy. Indeed, interference with peroxisomal transport via deletion of the PTS1 signal or PEX5 knockdown resulted in induced nuclear DAAO localization. Having demonstrated the absence of active nuclear import and employing variably sized mCherry- and/or EYFP-fusion proteins of DAAO and catalase, we showed that peroxisomal proteins ≤134 kDa can passively diffuse into mammalian cell nuclei-thereby contradicting the often-cited 40 kDa diffusion limit. Moreover, their inherent nuclear presence and nuclear accumulation subsequent to proteasome inhibition or abrogated peroxisomal transport suggests that nuclear localization is a characteristic in the lifecycle of peroxisomal proteins. Based on this molecular trafficking analysis, we suggest that pharmaceuticals like propiverine or an NSRI may interfere with peroxisomal protein targeting and import, consequently resulting in massive nuclear protein accumulation in vivo.
Arevalo, P.; Bauer, F. E.; Puccetti, S.; ...
2014-07-30
Here, the Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region,more » but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N H = (6-10) × 10 24 cm –2, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10 42 erg s –1. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L X versus L IR phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. Here, the lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.« less
Actinide targets for fundamental research in nuclear physics
NASA Astrophysics Data System (ADS)
Eberhardt, K.; Düllmann, Ch. E.; Haas, R.; Mokry, Ch.; Runke, J.; Thörle-Pospiech, P.; Trautmann, N.
2018-05-01
Thin actinide layers deposited on various substrates are widely used as calibration sources in nuclear spectroscopy. Other applications include fundamental research in nuclear chemistry and -physics, e.g., the chemical and physical properties of super-heavy elements (SHE, Z > 103) or nuclear reaction studies with heavy ions. For the design of future nuclear reactors like fast-fission reactors and accelerator-driven systems for transmutation of nuclear waste, precise data for neutron absorption as well as neutron-induced fission cross section data for 242Pu with neutrons of different energies are of particular importance, requiring suitable Pu-targets. Another application includes studies of nuclear transitions in 229Th harvested as α-decay recoil product from a thin layer of its 233U precursor. For this, a thin and very smooth layer of 233U is used. We report here on the production of actinide layers mostly obtained by Molecular Plating (MP). MP is currently the only fabrication method in cases where the desired actinide material is available only in very limited amounts or possesses a high specific activity. Here, deposition is performed from organic solution applying a current density of 1-2 mA/cm2. Under these conditions target thicknesses of 500-1000 μg/cm2 are possible applying a single deposition step with deposition yields approaching 100 %. For yield determination α-particle spectroscopy, γ-spectroscopy and Neutron Activation Analysis is routinely used. Layer homogeneity is checked with Radiographic Imaging. As an alternative technique to MP the production of thin lanthanide and actinide layers by the so-called "Drop on Demand"-technique applied e.g., in ink-jet printing is currently under investigation.
Zlopasa, Livija; Brachner, Andreas; Foisner, Roland
2016-06-01
Ankyrin repeats and LEM domain containing protein 1 (Ankle1) belongs to the LEM protein family, whose members share a chromatin-interacting LEM motif. Unlike most other LEM proteins, Ankle1 is not an integral protein of the inner nuclear membrane but shuttles between the nucleus and the cytoplasm. It contains a GIY-YIG-type nuclease domain, but its function is unknown. The mammalian genome encodes only one other GIY-YIG domain protein, termed Slx1. Slx1 has been described as a resolvase that processes Holliday junctions during homologous recombination-mediated DNA double strand break repair. Resolvase activity is regulated in a spatial and temporal manner during the cell cycle. We hypothesized that Ankle1 may have a similar function and its nucleo-cytoplasmic shuttling may contribute to the regulation of Ankle1 activity. Hence, we aimed at identifying the domains mediating Ankle1 shuttling and investigating whether cellular localization is affected during DNA damage response. Sequence analysis predicts the presence of two canonical nuclear import and export signals in Ankle1. Immunofluorescence microscopy of cells expressing wild-type and various mutated Ankle1-fusion proteins revealed a C-terminally located classical monopartite nuclear localization signal and a centrally located CRM1-dependent nuclear export signal that mediate nucleo-cytoplasmic shuttling of Ankle1. These sequences are also functional in heterologous proteins. The predominant localization of Ankle1 in the cytoplasm, however, does not change upon induction of several DNA damage response pathways throughout the cell cycle. We identified the domains mediating nuclear import and export of Ankle1. Ankle1's cellular localization was not affected following DNA damage.
Smith, Kate M; Di Antonio, Veronica; Bellucci, Luca; Thomas, David R; Caporuscio, Fabiana; Ciccarese, Francesco; Ghassabian, Hanieh; Wagstaff, Kylie M; Forwood, Jade K; Jans, David A; Palù, Giorgio; Alvisi, Gualtiero
2018-08-01
Nuclear import involves the recognition by importin (IMP) superfamily members of nuclear localization signals (NLSs) within protein cargoes destined for the nucleus, the best understood being recognition of classical NLSs (cNLSs) by the IMPα/β1 heterodimer. Although the cNLS consensus [K-(K/R)-X-(K/R) for positions P2-P5] is generally accepted, recent studies indicated that the contribution made by different residues at the P4 position can vary. Here, we apply a combination of microscopy, molecular dynamics, crystallography, in vitro binding, and bioinformatics approaches to show that the nature of residues at P4 indeed modulates cNLS function in the context of a prototypical Simian Virus 40 large tumor antigen-derived cNLS (KKRK, P2-5). Indeed, all hydrophobic substitutions in place of R impaired binding to IMPα and nuclear targeting, with the largest effect exerted by a G residue at P4. Substitution of R with neutral hydrophobic residues caused the loss of electrostatic and van der Waals interactions between the P4 residue side chains and IMPα. Detailed bioinformatics analysis confirmed the importance of the P4 residue for cNLS function across the human proteome, with specific residues such as G being associated with low activity. Furthermore, we validate our findings for two additional cNLSs from human cytomegalovirus (HCMV) DNA polymerase catalytic subunit UL54 and processivity factor UL44, where a G residue at P4 results in a 2-3-fold decrease in NLS activity. Our results thus showed that the P4 residue makes a hitherto poorly appreciated contribution to nuclear import efficiency, which is essential to determining the precise nuclear levels of cargoes. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebollo, L.
1992-04-01
Several beyond-design bases cold leg small-break LOCA postulated scenarios based on the lessons learned'' in the OECD-LOFT LP-SB-3 experiment have been analyzed for the Westinghouse single loop Jose Cabrera Nuclear Power Plant belonging to the Spanish utility UNION ELECTRICA FENOSA, S.A. The analysis has been done by the utility in the Thermal-Hydraulic Accident Analysis Section of the Engineering Department of the Nuclear Division. The RELAP5/MOD2/36.04 code has been used on a CYBER 180/830 computer and the simulation includes the 6 in. RHRS charging line, the 2 in. pressurizer spray, and the 1.5 in. CVCS make-up line piping breaks. The assumptionmore » of a total black-out condition'' coincident with the occurrence of the event has been made in order to consider a plant degraded condition with total active failure of the ECCS. As a result of the analysis, estimates of the time to core overheating startup'' as well as an evaluation of alternate operator measures to mitigate the consequences of the event have been obtained. Finally a proposal for improving the LOCA emergency operating procedure (E-1) has been suggested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebollo, L.
1992-04-01
Several beyond-design bases cold leg small-break LOCA postulated scenarios based on the ``lessons learned`` in the OECD-LOFT LP-SB-3 experiment have been analyzed for the Westinghouse single loop Jose Cabrera Nuclear Power Plant belonging to the Spanish utility UNION ELECTRICA FENOSA, S.A. The analysis has been done by the utility in the Thermal-Hydraulic & Accident Analysis Section of the Engineering Department of the Nuclear Division. The RELAP5/MOD2/36.04 code has been used on a CYBER 180/830 computer and the simulation includes the 6 in. RHRS charging line, the 2 in. pressurizer spray, and the 1.5 in. CVCS make-up line piping breaks. Themore » assumption of a ``total black-out condition`` coincident with the occurrence of the event has been made in order to consider a plant degraded condition with total active failure of the ECCS. As a result of the analysis, estimates of the ``time to core overheating startup`` as well as an evaluation of alternate operator measures to mitigate the consequences of the event have been obtained. Finally a proposal for improving the LOCA emergency operating procedure (E-1) has been suggested.« less
Automated three-dimensional quantification of myocardial perfusion and brain SPECT.
Slomka, P J; Radau, P; Hurwitz, G A; Dey, D
2001-01-01
To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.
Wu, Chun-Hua; Jong, Ambrose; Huang, Sheng-He
2012-01-01
Background IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PSF is required for meningitic E. coli K1 penetration and leukocyte transmigration across the blood-brain barrier (BBB), which are the hallmarks of bacterial meningitis. However, it is unknown how vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB, which are required for bacteria-mediated pathogenicities. Methodology/Principal Findings IbeA-induced E. coli K1 invasion, polymorphonuclear leukocyte (PMN) transmigration and IKK/NF-κB activation are blocked by Caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB. IKKα/β phosphorylation is blocked by ERK inhibitors. Co-immunoprecipitation analysis shows that vimentin forms a complex with IκB, NF-κB and tubulins in the resting cells. A dissociation of this complex and a simultaneous association of PSF with NF-κB could be induced by IbeA in a time-dependent manner. The head domain of vimentin is required for the complex formation. Two cytoskeletal components, vimentin filaments and microtubules, contribute to the regulation of NF-κB. SiRNA-mediated knockdown studies demonstrate that IKKα/β phosphorylation is completely abolished in HBMECs lacking vimentin and PSF. Phosphorylation of ERK and nuclear translocation of NF-κB are entirely dependent on PSF. These findings suggest that vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB activation. PSF is essential for translocation of NF-κB and ERK to the nucleus. Conclusion/Significance These findings reveal previously unappreciated facets of the IbeA-binding proteins. Cooperative contributions of vimentin and PSF to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB may represent a new paradigm in pathogen-induced signal transduction and lead to the development of novel strategies for the prevention and treatment of bacterial meningitis. PMID:22536447
A Teaching Module about Stellar Structure and Evolution
ERIC Educational Resources Information Center
Colantonio, Arturo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella; Testa, Italo
2017-01-01
In this paper, we present a teaching module about stellar structure, functioning and evolution. Drawing from literature in astronomy education, we designed the activities around three key ideas: spectral analysis, mechanical and thermal equilibrium, energy and nuclear reactions. The module is divided into four phases, in which the key ideas for…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
2016-09-30
Finite element (FE) continuum damage mechanics (CDM) models have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including preliminary thermomechanical analyses of cracked joints and implementation of dual-phase damage models.
Geospatial Image Mining For Nuclear Proliferation Detection: Challenges and New Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatsavai, Raju; Bhaduri, Budhendra L; Cheriyadat, Anil M
2010-01-01
With increasing understanding and availability of nuclear technologies, and increasing persuasion of nuclear technologies by several new countries, it is increasingly becoming important to monitor the nuclear proliferation activities. There is a great need for developing technologies to automatically or semi-automatically detect nuclear proliferation activities using remote sensing. Images acquired from earth observation satellites is an important source of information in detecting proliferation activities. High-resolution remote sensing images are highly useful in verifying the correctness, as well as completeness of any nuclear program. DOE national laboratories are interested in detecting nuclear proliferation by developing advanced geospatial image mining algorithms. Inmore » this paper we describe the current understanding of geospatial image mining techniques and enumerate key gaps and identify future research needs in the context of nuclear proliferation.« less
Automated analysis of cell migration and nuclear envelope rupture in confined environments.
Elacqua, Joshua J; McGregor, Alexandra L; Lammerding, Jan
2018-01-01
Recent in vitro and in vivo studies have highlighted the importance of the cell nucleus in governing migration through confined environments. Microfluidic devices that mimic the narrow interstitial spaces of tissues have emerged as important tools to study cellular dynamics during confined migration, including the consequences of nuclear deformation and nuclear envelope rupture. However, while image acquisition can be automated on motorized microscopes, the analysis of the corresponding time-lapse sequences for nuclear transit through the pores and events such as nuclear envelope rupture currently requires manual analysis. In addition to being highly time-consuming, such manual analysis is susceptible to person-to-person variability. Studies that compare large numbers of cell types and conditions therefore require automated image analysis to achieve sufficiently high throughput. Here, we present an automated image analysis program to register microfluidic constrictions and perform image segmentation to detect individual cell nuclei. The MATLAB program tracks nuclear migration over time and records constriction-transit events, transit times, transit success rates, and nuclear envelope rupture. Such automation reduces the time required to analyze migration experiments from weeks to hours, and removes the variability that arises from different human analysts. Comparison with manual analysis confirmed that both constriction transit and nuclear envelope rupture were detected correctly and reliably, and the automated analysis results closely matched a manual analysis gold standard. Applying the program to specific biological examples, we demonstrate its ability to detect differences in nuclear transit time between cells with different levels of the nuclear envelope proteins lamin A/C, which govern nuclear deformability, and to detect an increase in nuclear envelope rupture duration in cells in which CHMP7, a protein involved in nuclear envelope repair, had been depleted. The program thus presents a versatile tool for the study of confined migration and its effect on the cell nucleus.
Molecular targets and signaling pathways regulated by nuclear translocation of syndecan-1.
Szatmári, Tünde; Mundt, Filip; Kumar-Singh, Ashish; Möbus, Lena; Ötvös, Rita; Hjerpe, Anders; Dobra, Katalin
2017-12-08
The cell-surface heparan sulfate proteoglycan syndecan-1 is important for tumor cell proliferation, migration, and cell cycle regulation in a broad spectrum of malignancies. Syndecan-1, however, also translocates to the cell nucleus, where it might regulate various molecular functions. We used a fibrosarcoma model to dissect the functions of syndecan-1 related to the nucleus and separate them from functions related to the cell-surface. Nuclear translocation of syndecan-1 hampered the proliferation of fibrosarcoma cells compared to the mutant lacking nuclear localization signal. The growth inhibitory effect of nuclear syndecan-1 was accompanied by significant accumulation of cells in the G0/G1 phase, which indicated a possible G1/S phase arrest. We implemented multiple, unsupervised global transcriptome and proteome profiling approaches and combined them with functional assays to disclose the molecular mechanisms that governed nuclear translocation and its related functions. We identified genes and pathways related to the nuclear compartment with network enrichment analysis of the transcriptome and proteome. The TGF-β pathway was activated by nuclear syndecan-1, and three genes were significantly altered with the deletion of nuclear localization signal: EGR-1 (early growth response 1), NEK11 (never-in-mitosis gene a-related kinase 11), and DOCK8 (dedicator of cytokinesis 8). These candidate genes were coupled to growth and cell-cycle regulation. Nuclear translocation of syndecan-1 influenced the activity of several other transcription factors, including E2F, NFκβ, and OCT-1. The transcripts and proteins affected by syndecan-1 showed a striking overlap in their corresponding biological processes. These processes were dominated by protein phosphorylation and post-translation modifications, indicative of alterations in intracellular signaling. In addition, we identified molecules involved in the known functions of syndecan-1, including extracellular matrix organization and transmembrane transport. Collectively, abrogation of nuclear translocation of syndecan-1 resulted in a set of changes clustering in distinct patterns, which highlighted the functional importance of nuclear syndecan-1 in hampering cell proliferation and the cell cycle. This study emphasizes the importance of the localization of syndecan-1 when considering its effects on tumor cell fate.
Working Party on International Nuclear Data Evaluation Cooperation (WPEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, E., E-mail: wpec@oecd-nea.org; Chadwick, M.B.; Danon, Y.
The OECD Nuclear Energy Agency (NEA) organizes cooperation between the major nuclear data evaluation projects in the world. The NEA Working Party on International Nuclear Data Evaluation Cooperation (WPEC) was established to promote the exchange of information on nuclear data evaluation, measurement, nuclear model calculation, validation, and related topics, and to provide a framework for cooperative activities between the participating projects. The working party assesses nuclear data improvement needs and addresses these needs by initiating joint activities in the framework of dedicated WPEC subgroups. Studies recently completed comprise a number of works related to nuclear data covariance and associated processingmore » issues, as well as more specific studies related to the resonance parameter representation in the unresolved resonance region, the gamma production from fission product capture reactions, the {sup 235}U capture cross section, the EXFOR database, and the improvement of nuclear data for advanced reactor systems. Ongoing activities focus on the evaluation of {sup 239}Pu in the resonance region, scattering angular distribution in the fast energy range, and reporting/usage of experimental data for evaluation in the resolved resonance region. New activities include two subgroups on improved fission product yield evaluation methodologies and on modern nuclear database structures. Future activities under discussion include a pilot project for a Collaborative International Evaluated Library Organization (CIELO) and methods to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data. In addition to the above mentioned short-term task-oriented subgroups, WPEC also hosts a longer-term subgroup charged with reviewing and compiling the most important nuclear data requirements in a high priority request list (HPRL)« less
Working Party on International Nuclear Data Evaluation Cooperation (WPEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuseppe Palmiotti
The OECD Nuclear Energy Agency (NEA) is organizing the cooperation between the major nuclear data evaluation projects in the world. The NEA Working Party on International Nuclear Data Evaluation Cooperation (WPEC) was established to promote the exchange of information on nuclear data evaluation, measurement, nuclear model calculation, validation, and related topics, and to provide a framework for cooperative activities between the participating projects. The working party assesses nuclear data improvement needs and addresses these needs by initiating joint activities in the framework of dedicated WPEC subgroups. Studies recently completed comprise a number of works related to nuclear data covariance andmore » associated processing issues, as well as more specific studies related to the resonance parameter representation in the unresolved resonance region, the gamma production from fission-product capture reactions, the U-235 capture cross-section, the EXFOR database, and the improvement of nuclear data for advanced reactor systems. Ongoing activities focus on the evaluation of Pu-239 in the resonance region, scattering angular distribution in the fast energy range, and reporting/usage of experimental data for evaluation in the resolved resonance region. New activities include two new subgroups on improved fission product yield evaluation methodologies and on modern nuclear database structures. Future activities under discussion include a pilot project of a Collaborative International Evaluated Library (CIELO) and methods to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data. In addition to the above mentioned short-term, task-oriented subgroups, the WPEC also hosts a longer-term subgroup charged with reviewing and compiling the most important nuclear data requirements in a high priority request list (HPRL).« less
Working Party on International Nuclear Data Evaluation Cooperation (WPEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, E.; Herman, M.; Dupont, E.
The OECD Nuclear Energy Agency (NEA) organizes cooperation between the major nuclear data evaluation projects in the world. Moreover, the NEA Working Party on International Nuclear Data Evaluation Cooperation (WPEC) was established to promote the exchange of information on nuclear data evaluation, measurement, nuclear model calculation, validation, and related topics, and to provide a framework for cooperative activities between the participating projects. The working party assesses nuclear data improvement needs and addresses these needs by initiating joint activities in the framework of dedicated WPEC subgroups. Studies recently completed comprise a number of works related to nuclear data covariance and associatedmore » processing issues, as well as more specific studies related to the resonance parameter representation in the unresolved resonance region, the gamma production from fission product capture reactions, the 235U capture cross section, the EXFOR database, and the improvement of nuclear data for advanced reactor systems. Ongoing activities focus on the evaluation of 239Pu in the resonance region, scattering angular distribution in the fast energy range, and reporting/usage of experimental data for evaluation in the resolved resonance region. New activities include two subgroups on improved fission product yield evaluation methodologies and on modern nuclear database structures. Some future activities under discussion include a pilot project for a Collaborative International Evaluated Library Organization (CIELO) and methods to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data. In addition to the above mentioned short-term task-oriented subgroups, WPEC also hosts a longer-term subgroup charged with reviewing and compiling the most important nuclear data requirements in a high priority request list (HPRL).« less
NASA Astrophysics Data System (ADS)
Metairon, S.; Zamboni, C. B.; Suzuki, M. F.; Júnior, C. R. B.; Sant'Anna, O. A.
2011-08-01
The Br, Ca, Cl, K, Na and S concentrations in whole blood of DMDmdx/J and C57BL/6J mice were determined using Neutron Activation Analysis technique. Reference values obtained from twenty one whole blood samples of these strains were analyzed in the IEA-R1 nuclear reactor at IPEN (São Paulo, Brasil). These data contribute for applications in veterinary medicine related to biochemistry analyses using whole blood as well as to evaluate the performance of treatments in muscular dystrophy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Shaoping; Stauffer, Philip H.; Birdsell, Kay Hanson
The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility.
Demmerle, Justin; Koch, Adam J.; Holaska, James M.
2016-01-01
The spatial organization of chromatin is critical in establishing cell-type dependent gene expression programs. The inner nuclear membrane protein emerin has been implicated in regulating global chromatin architecture. We show emerin associates with genomic loci of muscle differentiation promoting factors in murine myogenic progenitors, including Myf5 and MyoD. Prior to their transcriptional activation Myf5 and MyoD loci localized to the nuclear lamina in proliferating progenitors and moved to the nucleoplasm upon transcriptional activation during differentiation. The Pax7 locus, which is transcribed in proliferating progenitors, localized to the nucleoplasm and Pax7 moved to the nuclear lamina upon repression during differentiation. Localization of Myf5, MyoD, and Pax7 to the nuclear lamina and proper temporal expression of these genes required emerin and HDAC3. Interestingly, activation of HDAC3 catalytic activity rescued both Myf5 localization to the nuclear lamina and its expression. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear lamina by activating the catalytic activity of HDAC3 to regulate the coordinated spatiotemporal expression of myogenic differentiation genes. PMID:24062260
The nuclear lamina and heterochromatin: a complex relationship.
Bank, Erin M; Gruenbaum, Yosef
2011-12-01
In metazoan cells, the heterochromatin is generally localized at the nuclear periphery, whereas active genes are preferentially found in the nuclear interior. In the present paper, we review current evidence showing that components of the nuclear lamina interact directly with heterochromatin, which implicates the nuclear lamina in a mechanism of specific gene retention at the nuclear periphery and release to the nuclear interior upon gene activation. We also discuss recent data showing that mutations in lamin proteins affect gene positioning and expression, providing a potential mechanism for how these mutations lead to tissue-specific diseases.
KIM, MINA; YANG, SU-GEUN; KIM, JOON MI; LEE, JIN-WOO; KIM, YOUNG SOO; LEE, JUNG IL
2012-01-01
Non-alcoholic steatohepatitis (NASH) is characterized by hepatocellular injury and initial fibrosis severity has been suggested as an important prognostic factor of NASH. Silymarin was reported to improve carbon tetrachloride-induced liver fibrosis and reduce the activation of hepatic stellate cells (HSC). We investigated whether silymarin could suppress the activation of HSCs in NASH induced by methionine- and choline-deficient (MCD) diet fed to insulin-resistant rats. NASH was induced by feeding MCD diet to obese diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Non-diabetic Long-Evans Tokushima Otsuka (LETO) rats were fed with standard chow and served as the control. OLETF rats were fed on either standard laboratory chow, or MCD diet or MCD diet mixed with silymarin. Histological analysis of the liver showed improved non-alcoholic fatty liver disease (NAFLD) activity score in silymarin-fed MCD-induced NASH. Silymarin reduced the activation of HSCs, evaluated by counting α-smooth muscle actin (SMA)-positive cells and measuring α-SMA mRNA expression in the liver lysates as well as in HSCs isolated from the experimental animals. Although silymarin decreased α1-procollagen mRNA expression in isolated HSCs, the anti-fibrogenic effect of silymarin was not prominent so as to show significant difference under histological analysis. Silymarin increased the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased tumor necrosis factor (TNF)-α mRNA expression in the liver. Our study suggested that the possible protective effect of silymarin in diet induced NASH by suppressing the activation of HSCs and disturbing the role of the inflammatory cytokine TNF-α. PMID:22710359
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong
2013-08-06
This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in termsmore » of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0113] Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB) Review; Comment Request AGENCY: U.S. Nuclear Regulatory... byproduct, source, or special nuclear material that are ceasing licensed activities and terminating the...
Hwang, Bo-Mi; Noh, Eun-Mi; Kim, Jong-Suk; Kim, Jeong-Mi; Hwang, Jin-Ki; Kim, Hye-Kyung; Kang, Jae-Seon; Kim, Do-Sung; Chae, Han-Jung; You, Yong-Ouk; Kwon, Kang-Beom; Lee, Young-Rae
2013-02-01
Decursin, a coumarin compound, was originally isolated from the roots of Angelica gigas almost four decades ago, and it was found to exhibit cytotoxicity against various types of human cancer cells and anti-amnesic activity in vivo through the inhibition of AChE activity. However, the anti-skin photoaging effects of decursin have not been reported to date. In the present study, we investigated the inhibitory effects of decursin on the expression of matrix metalloproteinase (MMP)-1 and MMP-3 in human dermal fibroblast (HDF) cells. Western blot analysis and real-time PCR revealed that decursin inhibited the ultraviolet (UV)B-induced expression of MMP-1 and MMP-3 in a dose-dependent manner. Decursin significantly blocked the UVB-induced activation of nuclear factor-κB (NF-κB). However, decursin showed no effect on MAPK or AP-1 activity. In this study, decursin prevented the UVB-induced expression of MMPs via the inhibition of NF-κB activation. In conclusion, decursin may be a potential agent for the prevention and treatment of skin photoaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wada, Takeyoshi; Asahi, Toru; Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480
2016-08-26
The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as amore » thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. - Highlights: • We found that CRBN is a nucleocytoplasmic shutting protein and identified the key domain for nucleocytoplasmic shuttling. • CRBN associates with the transcription factor Ikaros via the N-terminal domain. • CRBN modulates Ikaros-mediated transcriptional regulation and its downstream target, enkephalin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumioka, Akio; Saito, Yuhki; Sakuma, Megumi
2008-03-10
The X11/MINT family proteins are adaptor scaffolding proteins involved in formation of multiprotein complexes, and trafficking and metabolism of membrane proteins such as the beta-amyloid precursor protein. We found that a significant portion of X11L and X11L2 are recovered in nuclear fraction of mouse brain homogenates. EGFP-X11s were not detected in the nucleus of N2a neuroblastoma cells; however, administration of leptomycin B (LMB) induced substantial nuclear accumulation of EGFP-X11L and EGFP-X11L2, while EGFP-X11 showed little accumulation. Fluorescence loss in photobleaching (FLIP) analysis indicated that EGFP-X11L2 and EGFP-X11L are shuttled between the cytoplasm and nucleus, the former more effectively than themore » latter. We identified a nuclear export signal (NES) in the N-terminus of X11L2, mutation of which induces nuclear accumulation of EGFP-X11L2 in the absence of LMB. X11L2 fused to the Gal4 DNA binding domain (DBD) showed transcriptional activity, suggesting that X11L2 could function as a transcriptional activator if tethered near a promoter. Interestingly, attenuation of the nucleo-cytoplasmic shuttling of GAL4-DBD-X11L2 by mutating the NES or attaching the SV40 nuclear localization signal significantly decreased the apparent transcriptional activity. Our observations suggest that X11L2 functions in the nucleus by a mechanism distinct from conventional transactivators.« less
The veto system of the DarkSide-50 experiment
Agnes, P.
2016-03-16
Here, nuclear recoil events produced by neutron scatters form one of the most important classes of background in WIMP direct detection experiments, as they may produce nuclear recoils that look exactly like WIMP interactions. In DarkSide-50, we both actively suppress and measure the rate of neutron-induced background events using our neutron veto, composed of a boron-loaded liquid scintillator detector within a water Cherenkov detector. This paper is devoted to the description of the neutron veto system of DarkSide-50, including the detector structure, the fundamentals of event reconstruction and data analysis, and basic performance parameters.
The veto system of the DarkSide-50 experiment
NASA Astrophysics Data System (ADS)
Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Johnson, T.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.
2016-03-01
Nuclear recoil events produced by neutron scatters form one of the most important classes of background in WIMP direct detection experiments, as they may produce nuclear recoils that look exactly like WIMP interactions. In DarkSide-50, we both actively suppress and measure the rate of neutron-induced background events using our neutron veto, composed of a boron-loaded liquid scintillator detector within a water Cherenkov detector. This paper is devoted to the description of the neutron veto system of DarkSide-50, including the detector structure, the fundamentals of event reconstruction and data analysis, and basic performance parameters.
NASA Astrophysics Data System (ADS)
Blokhin, D. A.; Chernov, V. M.; Blokhin, A. I.
2017-12-01
Nuclear and physical properties (activation and transmutation of elements) of BN and Al2O3 dielectric materials subjected to neutron irradiation for up to 5 years in Russian fast (BN-600) and fusion (DEMO-S) reactors were calculated using the ACDAM-2.0 software complex for different post-irradiation cooling times (up to 10 years). Analytical relations were derived for the calculated quantities. The results may be used in the analysis of properties of irradiated dielectric materials and may help establish the rules for safe handling of these materials.
Modelisation and distribution of neutron flux in radium-beryllium source (226Ra-Be)
NASA Astrophysics Data System (ADS)
Didi, Abdessamad; Dadouch, Ahmed; Jai, Otman
2017-09-01
Using the Monte Carlo N-Particle code (MCNP-6), to analyze the thermal, epithermal and fast neutron fluxes, of 3 millicuries of radium-beryllium, for determine the qualitative and quantitative of many materials, using method of neutron activation analysis. Radium-beryllium source of neutron is established to practical work and research in nuclear field. The main objective of this work was to enable us harness the profile flux of radium-beryllium irradiation, this theoretical study permits to discuss the design of the optimal irradiation and performance for increased the facility research and education of nuclear physics.
Small plasma focus as neutron pulsed source for nuclides identification
NASA Astrophysics Data System (ADS)
Milanese, M.; Niedbalski, J.; Moroso, R.; Barbaglia, M.; Mayer, R.; Castillo, F.; Guichón, S.
2013-10-01
In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the "in situ" analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.
Small plasma focus as neutron pulsed source for nuclides identification.
Milanese, M; Niedbalski, J; Moroso, R; Barbaglia, M; Mayer, R; Castillo, F; Guichón, S
2013-10-01
In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the "in situ" analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linton, Kory D.; Parish, Chad M.; Smith, Quinlan B.
2017-09-01
This document outlines the results obtained by Oak Ridge National Laboratory (ORNL) in collaboration with the University of Michigan-led Consolidated Innovative Nuclear Research project, “Feasibility of combined ion-neutron irradiation for accessing high dose levels.” In this reporting period, neutron irradiated were prepared and shipped to the University of Michigan for subsequent ion irradiation. The specimens were returned to ORNL’s Low Activation Materials Development and Analysis facility, prepared via focused ion beam for examination using scanning/transmission electron microscopy (S/TEM), and then examined using S/TEM to measure the as-irradiated microstructure. This report briefly summarizes the S/TEM results obtained at ORNL’s Low Activationmore » Materials Development and Analysis facility.« less
NASA Astrophysics Data System (ADS)
Leonardo, Lucio; Damatto, Sandra Regina; Mazzilli, Barbara Paci; Saiki, Mitiko
2008-08-01
Lichens have been used in studies of environmental pollution monitoring of various air pollutants, especially heavy metals. This paper aims to study the possibility of using this specimen for the assessment of radionuclides deposition in the vicinity of a nuclear research institute, Instituto de Pesquisas Energéticas e Nucleares (IPEN) located in São Paulo, Brazil. This Institute has as major activity to perform research in the field of the nuclear fuel cycle, and therefore deals with considerable amounts of natural radionuclides of the U and Th series. The activity of the naturally occurring radionuclides U-238, Ra-226, Ra-226 and Pb-210 was determined in samples of lichen (Canoparmelia texana) and soil collected at IPEN campus. The concentrations of Ra-228, Ra-226 and Pb-210 were determined by measuring alpha and beta gross counting in a gas flow proportional detector; U and Th were determined by neutron activation analysis. The values obtained varied from 164 Bq/kg to 864 Bq/kg, 13 Bq/kg to 50 Bq/kg, and from 287 Bq/kg to 730 Bq/kg for Ra-228, Ra-226 and Pb-210 respectively. For natural U and Th the values obtained varied from 1.2 Bq/kg to 162 Bq/kg and 1.84 Bq/kg to 5.17 Bq/kg respectively. The results obtained so far suggest that the Canoparmelia texana can be used as radionuclide monitor in the vicinity of nuclear installations.
Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brent Dixon
Thirteen countries participated in the Collaborative Project GAINS “Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle”, which was the primary activity within the IAEA/INPRO Program Area B: “Global Vision on Sustainable Nuclear Energy” for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energymore » systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.« less
Application of Microchip Electrophoresis for Clinical Tests
NASA Astrophysics Data System (ADS)
Yatsushiro, Shouki; Kataoka, Masatoshi
Microchip electrophoresis has recently attracted much attention in the field of nuclear acid analysis due to its high efficiency, ease of operation, low consumption of samples and reagents, and relatively low costs. In addition, the analysis has expanded to an analytical field like not only the analysis of DNA but also the analysis of RNA, the protein, the sugar chain, and the cellular function, etc. In this report, we showed that high-performance monitoring systems for human blood glucose levels and α-amylase activity in human plasma using microchip electrophoresis.
Expert System for Analysis of Spectra in Nuclear Metrology
NASA Astrophysics Data System (ADS)
Petrović, Ivan; Petrović, V.; Krstić, D.; Nikezić, D.; Bočvarski, V.
In this paper is described an expert system (ES) developed in order to enable the analysis of emission spectra, which are obtained by measurements of activities of radioactive elements, i.e., isotopes, actually cesium. In the structure of those spectra exists two parts: first on lower energies, which originates from the Compton effect, and second on higher energies, which contains the photopeak. The aforementioned ES is made to perform analysis of spectra in whole range of energies. Analysis of those spectra is very interesting because of the problem of environmental contamination by radio nuclides.
NASA Astrophysics Data System (ADS)
Manikandan, Ramar; Manikandan, Beulaja; Raman, Thiagarajan; Arunagirinathan, Koodalingam; Prabhu, Narayanan Marimuthu; Jothi Basu, Muthuramalingam; Perumal, Muthulakshmi; Palanisamy, Subramanian; Munusamy, Arumugam
2015-03-01
The present study was aimed at biosynthesis of silver nanoparticles (AgNPs) using ethanolic extract of rose (Rosa indica) petals and testing their potential antibacterial activity using selective human pathogenic microbes, anticancer activity using human colon adenocarcinoma cancer cell line HCT 15 as well as anti-inflammatory activity using rat peritoneal macrophages in vitro. The biologically synthesized AgNPs were also characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The characterized AgNPs showed an effective antibacterial activity against Gram negative (Escherichia coli, Klebsiella pneumoniae) than Gram positive (Streptococcus mutans, Enterococcus faecalis) bacteria. MTT assay, analysis of nuclear morphology, mRNA expression of Bcl-2, Bax and protein expression of caspase 3 as well as 9, indicated potential anticancer activity. In addition, green synthesized AgNPs also attenuated cytotoxicity, nuclear morphology and free radical generation (O2- and NO) by rat peritoneal macrophages in vitro. The results of our study show the potential green synthesis of silver nanoparticles in mitigating their toxicity while retaining their antibacterial activities.
Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation.
Münch, Christian; Harper, J Wade
2016-06-30
The mitochondrial matrix is unique in that it must integrate the folding and assembly of proteins derived from the nuclear and mitochondrial genomes. In Caenorhabditis elegans, the mitochondrial unfolded protein response (UPRmt) senses matrix protein misfolding and induces a program of nuclear gene expression, including mitochondrial chaperonins, to promote mitochondrial proteostasis. While misfolded mitochondrial-matrix-localized ornithine transcarbamylase induces chaperonin expression, our understanding of mammalian UPRmt is rudimentary, reflecting a lack of acute triggers for UPRmt activation. This limitation has prevented analysis of the cellular responses to matrix protein misfolding and the effects of UPRmt on mitochondrial translation to control protein folding loads. Here we combine pharmacological inhibitors of matrix-localized HSP90/TRAP1 (ref. 8) or LON protease, which promote chaperonin expression, with global transcriptional and proteomic analysis to reveal an extensive and acute response of human cells to UPRmt. This response encompasses widespread induction of nuclear genes, including matrix-localized proteins involved in folding, pre-RNA processing and translation. Functional studies revealed rapid but reversible translation inhibition in mitochondria occurring concurrently with defects in pre-RNA processing caused by transcriptional repression and LON-dependent turnover of the mitochondrial pre-RNA processing nuclease MRPP3 (ref. 10). This study reveals that acute mitochondrial protein folding stress activates both increased chaperone availability within the matrix and reduced matrix-localized protein synthesis through translational inhibition, and provides a framework for further dissection of mammalian UPRmt.
Kukic, Predrag; Lundström, Patrik; Camilloni, Carlo; Evenäs, Johan; Akke, Mikael; Vendruscolo, Michele
2016-01-12
Calmodulin is a two-domain signaling protein that becomes activated upon binding cooperatively two pairs of calcium ions, leading to large-scale conformational changes that expose its binding site. Despite significant advances in understanding the structural biology of calmodulin functions, the mechanistic details of the conformational transition between closed and open states have remained unclear. To investigate this transition, we used a combination of molecular dynamics simulations and nuclear magnetic resonance (NMR) experiments on the Ca(2+)-saturated E140Q C-terminal domain variant. Using chemical shift restraints in replica-averaged metadynamics simulations, we obtained a high-resolution structural ensemble consisting of two conformational states and validated such an ensemble against three independent experimental data sets, namely, interproton nuclear Overhauser enhancements, (15)N order parameters, and chemical shift differences between the exchanging states. Through a detailed analysis of this structural ensemble and of the corresponding statistical weights, we characterized a calcium-mediated conformational transition whereby the coordination of Ca(2+) by just one oxygen of the bidentate ligand E140 triggers a concerted movement of the two EF-hands that exposes the target binding site. This analysis provides atomistic insights into a possible Ca(2+)-mediated activation mechanism of calmodulin that cannot be achieved from static structures alone or from ensemble NMR measurements of the transition between conformations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutt, M.; Nuclear Engineering Division
2010-05-25
The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less
The Nuclear Barcode: a New Taggant for Identifying Explosives
NASA Astrophysics Data System (ADS)
Seman, James; Johnson, Catherine; Castaño, Carlos
2017-06-01
Creating an effective taggant system for explosives is a challenging problem since the taggant used must be designed to endure the detonation process. A new taggant for use in explosives has been recently developed and named the `nuclear barcode'. The nuclear barcode tags explosives by adding low concentrations of eight different elements to the explosive, and then reads the tag from the post-blast residue using neutron activation analysis (NAA) to identify the elements and their concentrations. The nuclear barcode can be used to identify explosives after detonation by sampling the post-blast residue that is deposited due to incomplete reaction of the explosives. This method of tagging explosives creates an identifying taggant that survives detonation as NAA detects atomic nuclei as opposed to using any chemical or physical properties of the taggant that don't always survive the detonation process. Additional advantages this taggant method offers is ease of recovery of the taggant after detonation, and a total of 25.6 billion possible taggants as currently conceived, which enables the nuclear barcode to be used to tag individual batches of explosives. This paper describes the development of the nuclear barcode taggant system and its potential use in the explosives industry.
Y-12 Integrated Materials Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alspaugh, D. H.; Hickerson, T. W.
2002-06-03
The Integrated Materials Management System, when fully implemented, will provide the Y-12 National Security Complex with advanced inventory information and analysis capabilities and enable effective assessment, forecasting and management of nuclear materials, critical non-nuclear materials, and certified supplies. These capabilities will facilitate future Y-12 stockpile management work, enhance interfaces to existing National Nuclear Security Administration (NNSA) corporate-level information systems, and enable interfaces to planned NNSA systems. In the current national nuclear defense environment where, for example, weapons testing is not permitted, material managers need better, faster, more complete information about material properties and characteristics. They now must manage non-special nuclearmore » material at the same high-level they have managed SNM, and information capabilities about both must be improved. The full automation and integration of business activities related to nuclear and non-nuclear materials that will be put into effect by the Integrated Materials Management System (IMMS) will significantly improve and streamline the process of providing vital information to Y-12 and NNSA managers. This overview looks at the kinds of information improvements targeted by the IMMS project, related issues, the proposed information architecture, and the progress to date in implementing the system.« less
Fallout Deposition in the Marshall Islands from Bikini and Enewetak Nuclear Weapons Tests
Beck, Harold L.; Bouville, André; Moroz, Brian E.; Simon, Steven L.
2009-01-01
Deposition densities (Bq m-2) of all important dose-contributing radionuclides occurring in nuclear weapons testing fallout from tests conducted at Bikini and Enewetak Atolls (1946-1958) have been estimated on a test-specific basis for all the 31 atolls and separate reef islands of the Marshall Islands. A complete review of various historical and contemporary data, as well as meteorological analysis, was used to make judgments regarding which tests deposited fallout in the Marshall Islands and to estimate fallout deposition density. Our analysis suggested that only 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in substantial fallout deposition on any of the 25 inhabited atolls. This analysis was confirmed by the fact that the sum of our estimates of 137Cs deposition from these 20 tests at each atoll is in good agreement with the total 137Cs deposited as estimated from contemporary soil sample analyses. The monitoring data and meteorological analyses were used to quantitatively estimate the deposition density of 63 activation and fission products for each nuclear test, plus the cumulative deposition of 239+240Pu at each atoll. Estimates of the degree of fractionation of fallout from each test at each atoll, as well as of the fallout transit times from the test sites to the atolls were used in this analysis. The estimates of radionuclide deposition density, fractionation, and transit times reported here are the most complete available anywhere and are suitable for estimations of both external and internal dose to representative persons as described in companion papers. PMID:20622548
Fallout deposition in the Marshall Islands from Bikini and Enewetak nuclear weapons tests.
Beck, Harold L; Bouville, André; Moroz, Brian E; Simon, Steven L
2010-08-01
Deposition densities (Bq m(-2)) of all important dose-contributing radionuclides occurring in nuclear weapons testing fallout from tests conducted at Bikini and Enewetak Atolls (1946-1958) have been estimated on a test-specific basis for 32 atolls and separate reef islands of the Marshall Islands. A complete review of various historical and contemporary data, as well as meteorological analysis, was used to make judgments regarding which tests deposited fallout in the Marshall Islands and to estimate fallout deposition density. Our analysis suggested that only 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in substantial fallout deposition on any of the 23 inhabited atolls. This analysis was confirmed by the fact that the sum of our estimates of 137Cs deposition from these 20 tests at each atoll is in good agreement with the total 137Cs deposited as estimated from contemporary soil sample analyses. The monitoring data and meteorological analyses were used to quantitatively estimate the deposition density of 63 activation and fission products for each nuclear test, plus the cumulative deposition of 239+240Pu at each atoll. Estimates of the degree of fractionation of fallout from each test at each atoll, as well as of the fallout transit times from the test sites to the atolls were used in this analysis. The estimates of radionuclide deposition density, fractionation, and transit times reported here are the most complete available anywhere and are suitable for estimations of both external and internal dose to representative persons as described in companion papers.
Office for Analysis and Evaluation of Operational Data. Annual report, 1994-FY 95
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1996-07-01
The United States Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) has published reports of its activities since 1984. The first report covered January through June of 1984, and the second report covered July through December 1984. Since those first two semiannual reports, AEOD has published annual reports of its activities from 1985 through 1993. Beginning with the report for 1986, AEOD Annual Reports have been published as NUREG-1272. Beginning with the report for 1987, NUREG-1272 has been published in two parts, No. 1 covering power reactors and No. 2 covering nonreactors (changed to {open_quotes}nuclear materials{close_quotes}more » with the 1993 report). The 1993 AEOD Annual Report was NUREG-1272, Volume 8. AEOD has changed its annual report from a calendar year to a fiscal year report to be consistent with the NRC Annual Report and to conserve staff resources. NUREG-1272, Volume 9, No. 1 and No. 2, therefore, are combined calendar year 1994 (1994) and fiscal year 1995 (FY 95) reports which describe activities conducted between January 1, 1994, and September 30, 1995. Certain data which have historically been reported on a calendar year basis, however, are complete through calendar year 1995. Throughout this report, whenever information is presented for fiscal year 1995, it is designated as FY 95 data. Calendar year information is always designated by the four digits of the calendar year. This report, NUREG-1272, Volume 9, No. 1, covers power reactors and presents an overview of the operating experience of the nuclear power industry from the NRC perspective. NUREG-1272, Vol. 9, No. 2, covers nuclear materials and presents a review of the events and concerns associated with the use of licensed material in non-power reactor applications. A new part has been added, NUREG-1272, Volume 9, No. 3, which covers technical training and presents the activities of the Technical Training Center in FY 95 in support of the NRC`s mission.« less
Region of Nipah virus C protein responsible for shuttling between the cytoplasm and nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horie, Ryo; Yoneda, Misako, E-mail: yone@ims.u-tok
Nipah virus (NiV) causes severe encephalitis in humans, with high mortality. NiV nonstructural C protein (NiV-C) is essential for its pathogenicity, but its functions are unclear. In this study, we focused on NiV-C trafficking in cells and found that it localizes predominantly in the cytoplasm but partly in the nucleus. An analysis of NiV-C mutants showed that amino acids 2, 21–24 and 110–139 of NiV-C are important for its localization in the cytoplasm. Inhibitor treatment indicates that the nuclear export determinant is not a classical CRM1-dependent nuclear export signal. We also determined that amino acids 60–75 and 72–75 were importantmore » for nuclear localization of NiV-C. Furthermore, NiV-C mutants that had lost their capacity for nuclear localization inhibited the interferon (IFN) response more strongly than complete NiV-C. These results indicate that the IFN-antagonist activity of NiV-C occurs in the cytoplasm. -- Highlights: •Nipah virus (NiV) infection resulted in high mortality, but effective treatment has not been established. •Several reports revealed that NiV nonstructural C protein (NiV-C) was essential for NiV pathogenicity, however, whole of NiV-C function is still unknown. •Although nonstructural C proteins of other Paramyxoviruses are expressed in similar mechanism and exert similar activity, subcellular localization and cellular targets are different. In this study, we evaluated the subcellular localization of NiV-C. •To our knowledge, this is the first report showing that NiV-C shuttles between the nucleus and cytoplasm. We also clarified that NiV-C has nuclear export signal and nuclear localization signal using NiV-C deleted, alanine substitution mutants and enhanced green fluorescent protein (EGFP) fused proteins. •And we also showed that interferon (IFN) antagonist activity of NiV-C related to its subcellular localization. Our results indicate that NiV-C exert IFN antagonist activity in the cytoplasm.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0237] Cost-Benefit Analysis for Radwaste Systems for Light... (RG) 1.110, ``Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors... components for light water nuclear power reactors. ADDRESSES: Please refer to Docket ID NRC-2013-0237 when...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Kaushik; Clarity, Justin B; Cumberland, Riley M
This will be licensed via RSICC. A new, integrated data and analysis system has been designed to simplify and automate the performance of accurate and efficient evaluations for characterizing the input to the overall nuclear waste management system -UNF-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). A relational database within UNF-ST&DARDS provides a standard means by which UNF-ST&DARDS can succinctly store and retrieve modeling and simulation (M&S) parameters for specific spent nuclear fuel analysis. A library of various analysis model templates provides the ability to communicate the various set of M&S parameters to the most appropriate M&S application.more » Interactive visualization capabilities facilitate data analysis and results interpretation. UNF-ST&DARDS current analysis capabilities include (1) assembly-specific depletion and decay, (2) and spent nuclear fuel cask-specific criticality and shielding. Currently, UNF-ST&DARDS uses SCALE nuclear analysis code system for performing nuclear analysis.« less
Occupational Employment in Nuclear-Related Activities, 1981.
ERIC Educational Resources Information Center
Baker, Joe G.; Olsen, Kathryn
Employment in nuclear- and nuclear energy-related activities in 1981 was examined and compared to that in previous years. Survey instruments were returned by 784 establishments. Total 1981 nuclear-related employment was estimated to be 249,500--a growth of 22,600 (10%) workers over the 1977 total. Government-owned, contractor-operated (GOCO)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-19
This report discusses the following topics: US Nuclear Data Network Meeting; TUNL A=3--20 Data Project Activity Report 1993; INEL Mass-chain Evaluation Project Activity Report for 1993; 1993 Isotopes; Nuclear Data Project Activity Report; The NNDC Activity Report Parts A and B; Minutes of the Formats and Procedures Subcommittee; Evaluation of High-spin Nuclear Data for ENSDF and Table of Superdeformed Nuclear Bands; Proposal for Support of a Experimental High-spin; Data File/Data-Network Coordinator; Radioactive Decay and Applications; A Plan for a Horizontal Evaluation of Decay Data; ENSDF On-line System; The MacNuclide Project Expanding the Scope of the Nuclear Structure Reference File; ENSDAT:more » Evaluated Nuclear Structure Drawings and Tables; Cross Section Evaluation Working Group (CSEWG) and CSEWG Strategy Session; A Draft Proposal for a USNDN Program Advisory Council; Recommendations of Focus Group 1; Recommendations of Focus Group 2; Recommendations of Focus Group 3; Recommendations of Focus Group 4; The Table of Isotopes; The Isotopes CD-ROM; Electronic Table of Isotopes (ETOI); and Electronic Access to Nuclear Data.« less
Desset, Sophie; Poulet, Axel; Tatout, Christophe
2018-01-01
Image analysis is a classical way to study nuclear organization. While nuclear organization used to be investigated by colorimetric or fluorescent labeling of DNA or specific nuclear compartments, new methods in microscopy imaging now enable qualitative and quantitative analyses of chromatin pattern, and nuclear size and shape. Several procedures have been developed to prepare samples in order to collect 3D images for the analysis of spatial chromatin organization, but only few preserve the positional information of the cell within its tissue context. Here, we describe a whole mount tissue preparation procedure coupled to DNA staining using the PicoGreen ® intercalating agent suitable for image analysis of the nucleus in living and fixed tissues. 3D Image analysis is then performed using NucleusJ, an open source ImageJ plugin, which allows for quantifying variations in nuclear morphology such as nuclear volume, sphericity, elongation, and flatness as well as in heterochromatin content and position in respect to the nuclear periphery.
Dynamics and Function of Nuclear Bodies during Embryogenesis.
Arias Escayola, Dahyana; Neugebauer, Karla M
2018-05-01
Nuclear bodies are RNA-rich membraneless organelles in the cell nucleus that concentrate specific sets of nuclear proteins and RNA-protein complexes. Nuclear bodies such as the nucleolus, Cajal body (CB), and the histone locus body (HLB) concentrate factors required for nuclear steps of RNA processing. Formation of these nuclear bodies occurs on genomic loci and is frequently associated with active sites of transcription. Whether nuclear body formation is dependent on a particular gene element, an active process such as transcription, or the nascent RNA present at gene loci is a topic of debate. Recently, this question has been addressed through studies in model organisms and their embryos. The switch from maternally provided RNA and protein to zygotic gene products in early embryos has been well characterized in a variety of organisms. This process, termed maternal-to-zygotic transition, provides an excellent model for studying formation of nuclear bodies before, during, and after the transcriptional activation of the zygotic genome. Here, we review findings in embryos that reveal key principles in the study of the formation and function of nucleoli, CBs, and HLBs. We propose that while particular gene elements may contribute to formation of these nuclear bodies, active transcription promotes maturation of nuclear bodies and efficient RNA processing within them.
Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S
1999-03-05
Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1990. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis. The Chemical Analysis Group uses wet-chemical and instrumental methods for elemental, compositional, and isotopic analyses of solid, liquid, and gaseous samples and provides specialized analytical services. The Instrumental Analysis Group uses nuclear counting techniques in radiochemical analyses over a wide range of sample types from low-level environmental samples to samples of high radioactivity. The Organic Analysis Group uses amore » number of complementary techniques to separate and to quantitatively and qualitatively analyze complex organic mixtures and compounds at the trace level, including synthetic fuels, toxic substances, fossil-fuel residues and emissions, pollutants, biologically active compounds, pesticides, and drugs. The Environmental Analysis Group performs analyses of inorganic environmental and hazardous waste and coal samples.« less
Critical Role for the Protons in FRTL-5 Thyroid Cells: Nuclear Sphingomyelinase Induced-Damage
Albi, Elisabetta; Perrella, Giuseppina; Lazzarini, Andrea; Cataldi, Samuela; Lazzarini, Remo; Floridi, Alessandro; Ambesi-Impiombato, Francesco Saverio; Curcio, Francesco
2014-01-01
Proliferating thyroid cells are more sensitive to UV-C radiations than quiescent cells. The effect is mediated by nuclear phosphatidylcholine and sphingomyelin metabolism. It was demonstrated that proton beams arrest cell growth and stimulate apoptosis but until now there have been no indications in the literature about their possible mechanism of action. Here we studied the effect of protons on FRTL-5 cells in culture. We showed that proton beams stimulate slightly nuclear neutral sphingomyelinase activity and inhibit nuclear sphingomyelin-synthase activity in quiescent cells whereas stimulate strongly nuclear neutral sphingomyelinase activity and do not change nuclear sphingomyelin-synthase activity in proliferating cells. The study of neutral sphingomyelinase/sphingomyelin-synthase ratio, a marker of functional state of the cells, indicated that proton beams induce FRTL-5 cells in a proapoptotic state if the cells are quiescent and in an initial apoptotic state if the cells are proliferating. The changes of cell life are accompanied by a decrease of nuclear sphingomyelin and increase of bax protein. PMID:24979136
NASA Astrophysics Data System (ADS)
Takahashi, Tsuyoshi
Recently, in Japan, the number of students who hope for finding employment at the nuclear power company has decreased as students‧ concern for the nuclear power industry decreases. To improve the situation, Ministry of Education, Culture, Sports, Science and Technology launched the program of cultivating talent for nuclear power which supports research and education of nuclear power in the academic year of 2007. Supported by the program, Kushiro College of Technology conducted several activities concerning nuclear power for about a year. The students came to be interested in nuclear engineering through these activities and its results.
Dewitz, Carola; Pimpinella, Sofia; Hackel, Patrick; Akalin, Altuna; Jessell, Thomas M; Zampieri, Niccolò
2018-02-13
Motor neurons in the spinal cord are found grouped in nuclear structures termed pools, whose position is precisely orchestrated during development. Despite the emerging role of pool organization in the assembly of spinal circuits, little is known about the morphogenetic programs underlying the patterning of motor neuron subtypes. We applied three-dimensional analysis of motor neuron position to reveal the roles and contributions of cell adhesive function by inactivating N-cadherin, catenin, and afadin signaling. Our findings reveal that nuclear organization of motor neurons is dependent on inside-out positioning, orchestrated by N-cadherin, catenin, and afadin activities, controlling cell body layering on the medio-lateral axis. In addition to this lamination-like program, motor neurons undergo a secondary, independent phase of organization. This process results in segregation of motor neurons along the dorso-ventral axis of the spinal cord, does not require N-cadherin or afadin activity, and can proceed even when medio-lateral positioning is perturbed. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Sims, K S; Williams, R S
1990-01-01
We examined the distribution of acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase enzyme activity in the human amygdala using histochemical techniques. Both methods revealed compartments of higher or lower enzyme activity, in cells or neuropil, which corresponded to the nuclear subdivisions of the amygdala as defined with classical Nissl and myelin methods. The boundaries between the histochemical compartments were usually so sharp that the identification of these nuclear subdivisions was enhanced. There was also variation of staining intensity within many of the nuclear subdivisions, such as the lateral and central nuclei, anterior amygdaloid area and the intercalated groups. This histochemical difference corresponded to more subtle differences in Nissl and myelin staining patterns, and suggests further structural subdivisions of potential functional significance. We present a revised scheme of anatomical parcellation of the human amygdala based upon serial analysis with all four techniques. Our expectation is that this will allow the delineation of a clearer homology between the cytoarchitectonic subdivisions of the human amygdala and those of experimental animals.
Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program.
Matsushita, Akane; Inoue, Haruhiko; Goto, Shingo; Nakayama, Akira; Sugano, Shoji; Hayashi, Nagao; Takatsuji, Hiroshi
2013-01-01
The transcriptional activator WRKY45 plays a major role in the salicylic acid/benzothiadiazole-induced defense program in rice. Here, we show that the nuclear ubiquitin-proteasome system (UPS) plays a role in regulating the function of WRKY45. Proteasome inhibitors induced accumulation of polyubiquitinated WRKY45 and transient up-regulation of WRKY45 target genes in rice cells, suggesting that WRKY45 is constantly degraded by the UPS to suppress defense responses in the absence of defense signals. Mutational analysis of the nuclear localization signal indicated that UPS-dependent WRKY45 degradation occurs in the nuclei. Interestingly, the transcriptional activity of WRKY45 after salicylic acid treatment was impaired by proteasome inhibition. The same C-terminal region in WRKY45 was essential for both transcriptional activity and UPS-dependent degradation. These results suggest that UPS regulation also plays a role in the transcriptional activity of WRKY45. It has been reported that AtNPR1, the central regulator of the salicylic acid pathway in Arabidopsis, is regulated by the UPS. We found that OsNPR1/NH1, the rice counterpart of NPR1, was not stabilized by proteasome inhibition under uninfected conditions. We discuss the differences in post-translational regulation of salicylic acid pathway components between rice and Arabidopsis. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
Galaxy interactions and the stimulation of nuclear activity
NASA Technical Reports Server (NTRS)
Heckman, Timothy M.
1990-01-01
The author discusses the idea that interactions between galaxies can lead to enhanced galactic activity. He discusses whether, apart from the observational evidence, there is a strong theoretical or heuristic motivation for investigating galaxy interactions as stimulators of nuclear activity in galaxies. Galactic interactions as mechanisms for triggering nuclear starbursts are covered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carla Miller; Mary Adamic; Stacey Barker
Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that canmore » quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.« less
Hughes, Maria L. R.; Liu, Bonan; Halls, Michelle L.; Wagstaff, Kylie M.; Patil, Rahul; Velkov, Tony; Jans, David A.; Bunnett, Nigel W.; Scanlon, Martin J.; Porter, Christopher J. H.
2015-01-01
Nuclear hormone receptors (NHRs) regulate the expression of proteins that control aspects of reproduction, development and metabolism, and are major therapeutic targets. However, NHRs are ubiquitous and participate in multiple physiological processes. Drugs that act at NHRs are therefore commonly restricted by toxicity, often at nontarget organs. For endogenous NHR ligands, intracellular lipid-binding proteins, including the fatty acid-binding proteins (FABPs), can chaperone ligands to the nucleus and promote NHR activation. Drugs also bind FABPs, raising the possibility that FABPs similarly regulate drug activity at the NHRs. Here, we investigate the ability of FABP1 and FABP2 (intracellular lipid-binding proteins that are highly expressed in tissues involved in lipid metabolism, including the liver and intestine) to influence drug-mediated activation of the lipid regulator peroxisome proliferator-activated receptor (PPAR) α. We show by quantitative fluorescence imaging and gene reporter assays that drug binding to FABP1 and FABP2 promotes nuclear localization and PPARα activation in a drug- and FABP-dependent manner. We further show that nuclear accumulation of FABP1 and FABP2 is dependent on the presence of PPARα. Nuclear accumulation of FABP on drug binding is driven largely by reduced nuclear egress rather than an increased rate of nuclear entry. Importin binding assays indicate that nuclear access occurs via an importin-independent mechanism. Together, the data suggest that specific drug-FABP complexes can interact with PPARα to effect nuclear accumulation of FABP and NHR activation. Because FABPs are expressed in a regionally selective manner, this may provide a means to tailor the patterns of NHR drug activation in a tissue-specific manner. PMID:25847235
Hughes, Maria L R; Liu, Bonan; Halls, Michelle L; Wagstaff, Kylie M; Patil, Rahul; Velkov, Tony; Jans, David A; Bunnett, Nigel W; Scanlon, Martin J; Porter, Christopher J H
2015-05-29
Nuclear hormone receptors (NHRs) regulate the expression of proteins that control aspects of reproduction, development and metabolism, and are major therapeutic targets. However, NHRs are ubiquitous and participate in multiple physiological processes. Drugs that act at NHRs are therefore commonly restricted by toxicity, often at nontarget organs. For endogenous NHR ligands, intracellular lipid-binding proteins, including the fatty acid-binding proteins (FABPs), can chaperone ligands to the nucleus and promote NHR activation. Drugs also bind FABPs, raising the possibility that FABPs similarly regulate drug activity at the NHRs. Here, we investigate the ability of FABP1 and FABP2 (intracellular lipid-binding proteins that are highly expressed in tissues involved in lipid metabolism, including the liver and intestine) to influence drug-mediated activation of the lipid regulator peroxisome proliferator-activated receptor (PPAR) α. We show by quantitative fluorescence imaging and gene reporter assays that drug binding to FABP1 and FABP2 promotes nuclear localization and PPARα activation in a drug- and FABP-dependent manner. We further show that nuclear accumulation of FABP1 and FABP2 is dependent on the presence of PPARα. Nuclear accumulation of FABP on drug binding is driven largely by reduced nuclear egress rather than an increased rate of nuclear entry. Importin binding assays indicate that nuclear access occurs via an importin-independent mechanism. Together, the data suggest that specific drug-FABP complexes can interact with PPARα to effect nuclear accumulation of FABP and NHR activation. Because FABPs are expressed in a regionally selective manner, this may provide a means to tailor the patterns of NHR drug activation in a tissue-specific manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Shackleford, Gregory M; Ganguly, Amit; MacArthur, Craig A
2001-01-01
Background Studies suggest that the related proteins nucleoplasmin and nucleophosmin (also called B23, NO38 or numatrin) are nuclear chaperones that mediate the assembly of nucleosomes and ribosomes, respectively, and that these activities are accomplished through the binding of basic proteins via their acidic domains. Recently discovered and less well characterized members of this family of acidic phosphoproteins include mouse nucleophosmin/nucleoplasmin 3 (Npm3) and Xenopus NO29. Here we report the cloning and initial characterization of the human ortholog of Npm3. Results Human genomic and cDNA clones of NPM3 were isolated and sequenced. NPM3 lies 5.5 kb upstream of FGF8 and thus maps to chromosome 10q24-26. In addition to amino acid similarities, NPM3 shares many physical characteristics with the nucleophosmin/nucleoplasmin family, including an acidic domain, multiple potential phosphorylation sites and a putative nuclear localization signal. Comparative analyses of 14 members of this family from various metazoans suggest that Xenopus NO29 is a candidate ortholog of human and mouse NPM3, and they further group both proteins closer with the nucleoplasmins than with the nucleophosmins. Northern blot analysis revealed that NPM3 was strongly expressed in all 16 human tissues examined, with especially robust expression in pancreas and testis; lung displayed the lowest level of expression. An analysis of subcellular fractions of NIH3T3 cells expressing epitope-tagged NPM3 revealed that NPM3 protein was localized solely in the nucleus. Conclusions Human NPM3 is an abundant and widely expressed protein with primarily nuclear localization. These biological activities, together with its physical relationship to the chaparones nucleoplasmin and nucleophosmin, are consistent with the proposed function of NPM3 as a molecular chaperone functioning in the nucleus. PMID:11722795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyse, J.; Becker, B.; Kopecky, S.
Neutrons can be used as a tool to study properties of materials and objects. An evolving activity in this field focusses on neutron induced reaction cross sections. The probability that a neutron interacts with nuclei strongly depends on the energy of the neutron. The cross sections reveal the presence of resonance structures, the energy and width of which are isotope specific. As such, these resonance structures can be used as fingerprints to determine the elemental and isotopic composition of materials and objects. They are the basis of two analytical methods which have been developed at Institute for Reference Materials andmore » Measurements of the European Commission's Joint Research Centre (EC-JRC-IRMM): Neutron Resonance Capture Analysis (NRCA) and Neutron Resonance Transmission Analysis (NRTA). The first technique is based on the detection of gamma rays emitted during a neutron capture reaction in the sample being studied; the latter determines the fraction of neutrons transmitted through a sample positioned in a neutron beam. In the past both techniques have been applied to determine the composition of archaeological objects and to characterize nuclear reference materials. More recently a combination of NRTA and NRCA is being studied as a non-destructive method to determine the heavy metal content of particle-like debris of melted fuel that is formed in severe nuclear accidents such as the one which occurred at the Fukushima Daiichi nuclear power plant in Japan. This study is part of a collaboration between the Japan Atomic Energy Agency (JAEA) and ECJRC- IRMM and is a spin-off from the core activity of IRMM, i.e. the production of nuclear data for nuclear technology applications. This contribution focusses on a newly developed NRTA measurement station that has been set up recently at one of the flight paths of the neutron time-of-flight facility GELINA at the EC-JRC-IRMM. The basic principles of NRTA and first results of measurements at the new set up will be discussed. (authors)« less
Serotonin is an endogenous regulator of intestinal CYP1A1 via AhR.
Manzella, Christopher; Singhal, Megha; Alrefai, Waddah A; Saksena, Seema; Dudeja, Pradeep K; Gill, Ravinder K
2018-04-17
Aryl hydrocarbon receptor (AhR) is a nuclear receptor that controls xenobiotic detoxification via induction of cytochrome P450 1A1 (CYP1A1) and regulates immune responses in the intestine. Metabolites of L-tryptophan activate AhR, which confers protection against intestinal inflammation. We tested the hypothesis that serotonin (5-HT) is an endogenous activator of AhR in intestinal epithelial cells. Treatment of Caco-2 monolayers with 5-HT induced CYP1A1 mRNA in a time- and concentration-dependent manner and also stimulated CYP1A1 activity. CYP1A1 induction by 5-HT was dependent upon uptake via serotonin transporter (SERT). Antagonism of AhR and knockdown of AhR and its binding partner aryl hydrocarbon receptor nuclear translocator (ARNT) attenuated CYP1A1 induction by 5-HT. Activation of AhR was evident by its nuclear translocation after 5-HT treatment and by induction of an AhR-responsive luciferase reporter. In vivo studies showed a dramatic decrease in CYP1A1 expression and other AhR target genes in SERT KO ileal mucosa by microarray analysis. These results suggest that intracellular accumulation of 5-HT via SERT induces CYP1A1 expression via AhR in intestinal epithelial cells, and SERT deficiency in vivo impairs activation of AhR. Our studies provide a novel link between the serotonergic and AhR pathways which has implications in xenobiotic metabolism and intestinal inflammation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin Leigh; Kammerer, Annie M.; Whittaker, Andrew S.
Over the last decade, particularly since implementation of the certified design regulatory approaches outlined in 10 CFR 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” interest has been increasing in the use of seismic isolation (SI) technology to support seismic safety in nuclear facilities. In 2009, the United States (U.S.) Nuclear Regulatory Commission (NRC) initiated research activities to develop new guidance targeted at isolated facilities because SI is being considered for nuclear power plants in the U.S. One product of that research, which was developed around a risk-informed regulatory approach, is a draft NRC NUREG series (NUREG/CR) report thatmore » investigates and discusses considerations for use of SI in otherwise traditionally founded large light water reactors (LWRs). A coordinated effort led to new provisions for SI of LWRs in the American Society of Civil Engineers standard ASCE/SEI 4-16, “Seismic Analysis of Safety Related Nuclear Structures.” The risk-informed design philosophy that underpinned development of the technical basis for these documents led to a set of proposed performance objectives and acceptance criteria intended to serve as the foundation for future NRC guidance on the use of SI and related technology. Although the guidance provided in the draft SI NUREG/CR report and ASCE/SEI 4 16 provides a sound basis for further development of nuclear power plant designs incorporating SI, these initial documents were focused on surface-founded or near-surface-founded LWRs and were, necessarily, limited in scope. For example, there is limited information in both the draft NUREG/CR report and ASCE/SEI 4-16 related to nonlinear analysis of soil-structure systems for deeply-embedded reactors, the isolation of components, and the use of vertical isolation systems. Also not included in the draft SI NUREG/CR report are special considerations for licensing of isolated facilities using the certified design approach in 10 CFR 52 and a detailed discussion of seismic probabilistic risk assessments for isolated facilities.« less
Garapaty, Shivani; Mahajan, Muktar A; Samuels, Herbert H
2008-03-14
CCR4-NOT is an evolutionarily conserved, multicomponent complex known to be involved in transcription as well as mRNA degradation. Various subunits (e.g. CNOT1 and CNOT7/CAF1) have been reported to be involved in influencing nuclear hormone receptor activities. Here, we show that CCR4/CNOT6 and RCD1/CNOT9, members of the CCR4-NOT complex, potentiate nuclear receptor activity. RCD1 interacts in vivo and in vitro with NIF-1 (NRC-interacting factor), a previously characterized nuclear receptor cotransducer that activates nuclear receptors via its interaction with NRC. As with NIF-1, RCD1 and CCR4 do not directly associate with nuclear receptors; however, they enhance ligand-dependent transcriptional activation by nuclear hormone receptors. CCR4 mediates its effect through the ligand binding domain of nuclear receptors and small interference RNA-mediated silencing of endogenous CCR4 results in a marked decrease in nuclear receptor activation. Furthermore, knockdown of CCR4 results in an attenuated stimulation of RARalpha target genes (e.g. Sox9 and HoxA1) as shown by quantitative PCR assays. The silencing of endogenous NIF-1 also resulted in a comparable decrease in the RAR-mediated induction of both Sox9 and HoxA1. Furthermore, CCR4 associates in vivo with NIF-1. In addition, the CCR4-enhanced transcriptional activation by nuclear receptors is dependent on NIF-1. The small interference RNA-mediated knockdown of NIF-1 blocks the ligand-dependent potentiating effect of CCR4. Our results suggest that CCR4 plays a role in the regulation of certain endogenous RARalpha target genes and that RCD1 and CCR4 might mediate their function through their interaction with NIF-1.
Integral isolation valve systems for loss of coolant accident protection
Kanuch, David J.; DiFilipo, Paul P.
2018-03-20
A nuclear reactor includes a nuclear reactor core comprising fissile material disposed in a reactor pressure vessel having vessel penetrations that exclusively carry flow into the nuclear reactor and at least one vessel penetration that carries flow out of the nuclear reactor. An integral isolation valve (IIV) system includes passive IIVs each comprising a check valve built into a forged flange and not including an actuator, and one or more active IIVs each comprising an active valve built into a forged flange and including an actuator. Each vessel penetration exclusively carrying flow into the nuclear reactor is protected by a passive IIV whose forged flange is directly connected to the vessel penetration. Each vessel penetration carrying flow out of the nuclear reactor is protected by an active IIV whose forged flange is directly connected to the vessel penetration. Each active valve may be a normally closed valve.
Saetta, Angelica A; Levidou, Georgia; El-Habr, Elias A; Panayotidis, Ioannis; Samaras, Vassilis; Thymara, Irene; Sakellariou, Stratigoula; Boviatsis, Efstathios; Patsouris, Efstratios; Korkolopoulou, Penelope
2011-06-01
Although pERK and pAKT are reportedly activated in various neoplasms, little information is available about their significance in astrocytomas. Paraffin-embedded tissue from 82 patients with diffuse infiltrating astrocytomas (grades II to IV) was investigated for the association of pERK and pAKT activation with clinicopathological features, vascular endothelial growth factor (VEGF), isocitrate dehydrogenase 1 and microvascular parameters. Nuclear pERK labelling index (LI) increased with increasing cytoplasmic pERK LI and nuclear and cytoplasmic pAKT LI (p = 0.0019, p = 0.0260 and p = 0.0012, respectively). Accordingly, cytoplasmic pERK increased with increasing levels of nuclear (p = 0.0001) and marginally with cytoplasmic pAKT LI (p = 0.0526). Nuclear and cytoplasmic pERK LI and nuclear pAKT LI were positively correlated with tumour histological grade (p = 0.0040, p = 0.0238 for pERK and p = 0.0004 for pAKT, respectively). VEGF expression was correlated with nuclear pERK (p = 0.0099) and nuclear pAKT LI (p = 0.0002). Interestingly, pERK cytoplasmic LI increased with microvessel calibre (p = 0.0287), whereas pAKT nuclear LI was marginally related to microvessel density (p = 0.0685). The presence of IDH1-R132H was related only to histological grade and lower microvessel calibre. Multivariate survival analysis in the entire cohort selected cytoplasmic pAKT LI (p = 0.045), histological grade, microvessel calibre (p = 0.028), patients' age, gender and surgical excision as independent predictors of survival. Moreover, in glioblastomas, pERK nuclear LI emerged as a favourable prognosticator in the presence of IDH1-R132H. pERK and pAKT in astrocytomas are interrelated and associated with tumour grade and angiogenesis. Moreover, the importance of cytoplasmic pAKT immunoexpression in patients' prognosis and nuclear pERK immunoexpression in glioblastomas is confirmed.
Oh, Eun-Yeong; Lerwill, Melinda F.; Brachtel, Elena F.; Jones, Nicholas C.; Knoblauch, Nicholas W.; Montaser-Kouhsari, Laleh; Johnson, Nicole B.; Rao, Luigi K. F.; Faulkner-Jones, Beverly; Wilbur, David C.; Schnitt, Stuart J.; Beck, Andrew H.
2014-01-01
The categorization of intraductal proliferative lesions of the breast based on routine light microscopic examination of histopathologic sections is in many cases challenging, even for experienced pathologists. The development of computational tools to aid pathologists in the characterization of these lesions would have great diagnostic and clinical value. As a first step to address this issue, we evaluated the ability of computational image analysis to accurately classify DCIS and UDH and to stratify nuclear grade within DCIS. Using 116 breast biopsies diagnosed as DCIS or UDH from the Massachusetts General Hospital (MGH), we developed a computational method to extract 392 features corresponding to the mean and standard deviation in nuclear size and shape, intensity, and texture across 8 color channels. We used L1-regularized logistic regression to build classification models to discriminate DCIS from UDH. The top-performing model contained 22 active features and achieved an AUC of 0.95 in cross-validation on the MGH data-set. We applied this model to an external validation set of 51 breast biopsies diagnosed as DCIS or UDH from the Beth Israel Deaconess Medical Center, and the model achieved an AUC of 0.86. The top-performing model contained active features from all color-spaces and from the three classes of features (morphology, intensity, and texture), suggesting the value of each for prediction. We built models to stratify grade within DCIS and obtained strong performance for stratifying low nuclear grade vs. high nuclear grade DCIS (AUC = 0.98 in cross-validation) with only moderate performance for discriminating low nuclear grade vs. intermediate nuclear grade and intermediate nuclear grade vs. high nuclear grade DCIS (AUC = 0.83 and 0.69, respectively). These data show that computational pathology models can robustly discriminate benign from malignant intraductal proliferative lesions of the breast and may aid pathologists in the diagnosis and classification of these lesions. PMID:25490766
Cdk5 Regulates Activity-Dependent Gene Expression and Dendrite Development.
Liang, Zhuoyi; Ye, Tao; Zhou, Xiaopu; Lai, Kwok-On; Fu, Amy K Y; Ip, Nancy Y
2015-11-11
The proper growth and arborization of dendrites in response to sensory experience are essential for neural connectivity and information processing in the brain. Although neuronal activity is important for sculpting dendrite morphology, the underlying molecular mechanisms are not well understood. Here, we report that cyclin-dependent kinase 5 (Cdk5)-mediated transcriptional regulation is a key mechanism that controls activity-dependent dendrite development in cultured rat neurons. During membrane depolarization, Cdk5 accumulates in the nucleus to regulate the expression of a subset of genes, including that of the neurotrophin brain-derived neurotrophic factor, for subsequent dendritic growth. Furthermore, Cdk5 function is mediated through the phosphorylation of methyl-CpG-binding protein 2, a key transcriptional repressor that is mutated in the mental disorder Rett syndrome. These findings collectively suggest that the nuclear import of Cdk5 is crucial for activity-dependent dendrite development by regulating neuronal gene transcription during neural development. Neural activity directs dendrite development through the regulation of gene transcription. However, how molecular signals link extracellular stimuli to the transcriptional program in the nucleus remains unclear. Here, we demonstrate that neuronal activity stimulates the translocation of the kinase Cdk5 from the cytoplasmic compartment into the nucleus; furthermore, the nuclear localization of Cdk5 is required for dendrite development in cultured neurons. Genome-wide transcriptome analysis shows that Cdk5 deficiency specifically disrupts activity-dependent gene transcription of bdnf. The action of Cdk5 is mediated through the modulation of the transcriptional repressor methyl-CpG-binding protein 2. Therefore, this study elucidates the role of nuclear Cdk5 in the regulation of activity-dependent gene transcription and dendritic growth. Copyright © 2015 the authors 0270-6474/15/3515127-08$15.00/0.
Manuvakhova, Marina S.; Johnson, Guyla G.; White, Misti C.; Ananthan, Subramaniam; Sosa, Melinda; Maddox, Clinton; McKellip, Sara; Rasmussen, Lynn; Wennerberg, Krister; Hobrath, Judith V.; White, E. Lucile; Maddry, Joseph A.; Grimaldi, Maurizio
2012-01-01
Neuronal noncytokine-dependent p50/p65 nuclear factor-κB (the primary NF-κB complex in the brain) activation has been shown to exert neuroprotective actions. Thus neuronal activation of NF-κB could represent a viable neuroprotective target. We have developed a cell-based assay able to detect NF-κB expression enhancement, and through its use we have identified small molecules able to up-regulate NF-κB expression and hence trigger its activation in neurons. We have successfully screened approximately 300,000 compounds and identified 1,647 active compounds. Cluster analysis of the structures within the hit population yielded 14 enriched chemical scaffolds. One high-potency and chemically attractive representative of each of these 14 scaffolds and four singleton structures were selected for follow-up. The experiments described here highlighted that seven compounds caused noncanonical long-lasting NF-κB activation in primary astrocytes. Molecular NF-κB docking experiments indicate that compounds could be modulating NF-κB-induced NF-κB expression via enhancement of NF-κB binding to its own promoter. Prototype compounds increased p65 expression in neurons and caused its nuclear translocation without affecting the inhibitor of NF-κB (I-κB). One of the prototypical compounds caused a large reduction of glutamate-induced neuronal death. In conclusion, we have provided evidence that we can use small molecules to activate p65 NF-κB expression in neurons in a cytokine receptor-independent manner, which results in both long-lasting p65 NF-κB translocation/activation and decreased glutamate neurotoxicity. PMID:21046675
Crosstalk between ERK2 and RXR regulates nuclear import of transcription factor NGFI-B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Chris M.; Paulsen, Ragnhild E.
2005-10-21
Transcription factor NGFI-B initiates apoptosis when allowed to translocate to mitochondria. Retinoid-X receptor (RXR), another member of the nuclear receptor family, regulates NGFI-B signaling through heterodimerization and nuclear export. Growth factor EGF activates ERK2, which phosphorylates NGFI-B and determines if NGFI-B is allowed to translocate to mitochondria. In the present study, EGF treatment resulted in an increased nuclear import of NGFI-B. Likewise, active ERK2 resulted in a preferential nuclear localization of NGFI-B. When coexpressed with RXR the nuclear import and nuclear localization induced by active ERK2 were strongly reduced. In the presence of its ligand 9-cis-retinoic acid, RXR no longermore » inhibited ERK2-induced nuclear import. Thus, RXR serves a permissive role for ERK2-mediated nuclear accumulation of NGFI-B. This finding represents a novel crosstalk between ERK2 and RXR signaling pathways, and explains how two independent inhibitors of apoptosis (EGF and 9-cis-retinoic acid) may cooperate to regulate nuclear targeting of apoptosis inducer NGFI-B.« less
Böhm, Jennifer; Thavaraja, Ramya; Giehler, Susanne; Nalaskowski, Marcus M
2017-09-15
Regulated transport of proteins between nucleus and cytoplasm is an important process in the eukaryotic cell. In most cases, active nucleo-cytoplasmic protein transport is mediated by nuclear localization signal (NLS) and/or nuclear export signal (NES) motifs. In this study, we developed a set of vectors expressing enhanced GFP (EGFP) concatemers ranging from 2 to 12 subunits (2xEGFP to 12xEGFP) for analysis of NLS strength. As shown by in gel GFP fluorescence analysis and αGFP Western blotting, EGFP concatemers are expressed as fluorescent full-length proteins in eukaryotic cells. As expected, nuclear localization of concatemeric EGFPs decreases with increasing molecular weight. By oligonucleotide ligation this set of EGFP concatemers can be easily fused to NLS motifs. After determination of intracellular localization of EGFP concatemers alone and fused to different NLS motifs we calculated the size of a hypothetic EGFP concatemer showing a defined distribution of EGFP fluorescence between nucleus and cytoplasm (n/c ratio = 2). Clear differences of the size of the hypothetic EGFP concatemer depending on the fused NLS motif were observed. Therefore, we propose to use the size of this hypothetic concatemer as quantitative indicator for comparing strength of different NLS motifs. Copyright © 2017 Elsevier Inc. All rights reserved.
Proteomics Analysis of Nucleolar SUMO-1 Target Proteins upon Proteasome Inhibition*
Matafora, Vittoria; D'Amato, Alfonsina; Mori, Silvia; Blasi, Francesco; Bachi, Angela
2009-01-01
Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity. PMID:19596686
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Kimberly A.
2009-08-01
The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.
Chromatinized Protein Kinase C-θ: Can It Escape the Clutches of NF-κB?
Sutcliffe, Elissa L.; Li, Jasmine; Zafar, Anjum; Hardy, Kristine; Ghildyal, Reena; McCuaig, Robert; Norris, Nicole C.; Lim, Pek Siew; Milburn, Peter J.; Casarotto, Marco G.; Denyer, Gareth; Rao, Sudha
2012-01-01
We recently provided the first description of a nuclear mechanism used by Protein Kinase C-theta (PKC-θ) to mediate T cell gene expression. In this mode, PKC-θ tethers to chromatin to form an active nuclear complex by interacting with proteins including RNA polymerase II, the histone kinase MSK-1, the demethylase LSD1, and the adaptor molecule 14-3-3ζ at regulatory regions of inducible immune response genes. Moreover, our genome-wide analysis identified many novel PKC-θ target genes and microRNAs implicated in T cell development, differentiation, apoptosis, and proliferation. We have expanded our ChIP-on-chip analysis and have now identified a transcription factor motif containing NF-κB binding sites that may facilitate recruitment of PKC-θ to chromatin at coding genes. Furthermore, NF-κB association with chromatin appears to be a prerequisite for the assembly of the PKC-θ active complex. In contrast, a distinct NF-κB-containing module appears to operate at PKC-θ targeted microRNA genes, and here NF-κB negatively regulates microRNA gene transcription. Our efforts are also focusing on distinguishing between the nuclear and cytoplasmic functions of PKCs to ascertain how these kinases may synergize their roles as both cytoplasmic signaling proteins and their functions on the chromatin template, together enabling rapid induction of eukaryotic genes. We have identified an alternative sequence within PKC-θ that appears to be important for nuclear translocation of this kinase. Understanding the molecular mechanisms used by signal transduction kinases to elicit specific and distinct transcriptional programs in T cells will enable scientists to refine current therapeutic strategies for autoimmune diseases and cancer. PMID:22969762
NASA Astrophysics Data System (ADS)
Nasrabadi, M. N.; Bakhshi, F.; Jalali, M.; Mohammadi, A.
2011-12-01
Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma 10.8 MeV following radioactive neutron capture by 14N nuclei. We aimed to study the feasibility of using field-portable prompt gamma neutron activation analysis (PGNAA) along with improved nuclear equipment to detect and identify explosives, illicit substances or landmines. A 252Cf radio-isotopic source was embedded in a cylinder made of high-density polyethylene (HDPE) and the cylinder was then placed in another cylindrical container filled with water. Measurements were performed on high nitrogen content compounds such as melamine (C3H6N6). Melamine powder in a HDPE bottle was placed underneath the vessel containing water and the neutron source. Gamma rays were detected using two NaI(Tl) crystals. The results were simulated with MCNP4c code calculations. The theoretical calculations and experimental measurements were in good agreement indicating that this method can be used for detection of explosives and illicit drugs.
NASA Astrophysics Data System (ADS)
Gai, E. V.; Ignatyuk, A. V.; Lunev, V. P.; Shubin, Yu. N.
2001-11-01
General problems arising in development of intense neutron sources as a part of accelerator-driven systems and first experience accumulated in IPPE during last several years are briefly discussed. The calculation and analysis of nuclear-physical properties of the targets, such as the accumulation of spallation reaction products, activity and heat release for various versions of heavy liquid metal targets were performed in IPPE. The sensitivity of the results of calculations to the various sets of nuclear data was considered. The main radiology characteristics of the lead-bismuth target, which is now under construction in the frame of ISTC Project # 559, are briefly described. The production of short-lived nuclides was estimated, the total activity and volatile nuclide accumulation, residual heat release, the energies of various decay modes were analysed.
Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors
Caldwell, J.T.; Kunz, W.E.; Atencio, J.D.
1982-03-31
A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify /sup 233/U, /sup 235/U and /sup 239/Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as /sup 240/Pu, /sup 244/Cm and /sup 252/Cf, and the spontaneous alpha particle emitter /sup 241/Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether permanent low-level burial is appropriate for the waste sample.
Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors
Caldwell, John T.; Kunz, Walter E.; Atencio, James D.
1984-01-01
A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify .sup.233 U, .sup.235 U and .sup.239 Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as .sup.240 Pu, .sup.244 Cm and .sup.252 Cf, and the spontaneous alpha particle emitter .sup.241 Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether "permanent" low-level burial is appropriate for the waste sample.
Use of High Throughput Screening Data in IARC Monograph ...
Purpose: Evaluation of carcinogenic mechanisms serves a critical role in IARC monograph evaluations, and can lead to “upgrade” or “downgrade” of the carcinogenicity conclusions based on human and animal evidence alone. Three recent IARC monograph Working Groups (110, 112, and 113) pioneered analysis of high throughput in vitro screening data from the U.S. Environmental Protection Agency’s ToxCast program in evaluations of carcinogenic mechanisms. Methods: For monograph 110, ToxCast assay data across multiple nuclear receptors were used to test the hypothesis that PFOA acts exclusively through the PPAR family of receptors, with activity profiles compared to several prototypical nuclear receptor-activating compounds. For monographs 112 and 113, ToxCast assays were systematically evaluated and used as an additional data stream in the overall evaluation of the mechanistic evidence. Specifically, ToxCast assays were mapped to 10 “key characteristics of carcinogens” recently identified by an IARC expert group, and chemicals’ bioactivity profiles were evaluated both in absolute terms (number of relevant assays positive for bioactivity) and relative terms (ranking with respect to other compounds evaluated by IARC, using the ToxPi methodology). Results: PFOA activates multiple nuclear receptors in addition to the PPAR family in the ToxCast assays. ToxCast assays offered substantial coverage for 5 of the 10 “key characteristics,” with the greates
Radiation resistant concrete for applications in nuclear power and radioactive waste industries
NASA Astrophysics Data System (ADS)
Burnham, Steven Robert
Elemental components of ordinary concrete contain a variety of metals and rare earth elements that are susceptible to neutron activation. This activation occurs by means of radiative capture, a neutron interaction that results in formation of radioisotopes such as Co-60, Eu-152, and Eu-154. Studies have shown that these three radioisotopes are responsible for the residual radioactivity found in nuclear power plant concrete reactor dome and shielding walls. Such concrete is classified as Low Level Radioactive Waste (LLRW) and Very Low Level Waste (VLLW) by International Atomic Energy Agency (IAEA) standards and requires disposal at appropriate disposal sites. There are only three such sites in the USA, and every nuclear power plant will produce at the time of decommissioning approximately 1,500 tonnes of activated concrete classified as LLRW and VLLW. NAVA ALIGA (ancient word for a new stone) is a new concrete mixture developed mainly by research as presented in this thesis. The purpose of NAVA ALIGA is to satisfy IAEA clearance levels if used as a material for reactor dome, spent fuel pool, or radioactive waste canisters. NAVA ALIGA will never be activated above the IAEA clearance level after long-term exposure to neutron radiation when used as a material for reactor dome, spent fuel pool, and radioactive waste canisters. Components of NAVA ALIGA were identified using Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ISP-MS) to determine trace element composition. In addition, it was tested for compressive strength and permeability, important for nuclear infrastructure. The studied mixture had a high water to cement ratio of 0.56, which likely resulted in the high measured permeability, yet the mixture also showed a compressive strength greater than 6 000 psi after 28 days. In addition to this experimental analysis, which goal was to develop a standard approach to define the concrete mixtures in satisfying the IAEA radiation clearance levels, the NAVA ALIGA concrete was analyzed as to potentially be used together with depleted uranium. This study was purely computational (based on MCNP6 models) and was twofold: to find if this new concrete mix would enhance the radiation shielding properties when combined with depleted uranium and to find if this will be an effective and useful way of using the existing large quantities of disposed depleted uranium.
Ródenas, J; Abarca, A; Gallardo, S
2011-08-01
BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool. 2010 Elsevier Ltd. All rights reserved.
Common radiation analysis model for 75,000 pound thrust NERVA engine (1137400E)
NASA Technical Reports Server (NTRS)
Warman, E. A.; Lindsey, B. A.
1972-01-01
The mathematical model and sources of radiation used for the radiation analysis and shielding activities in support of the design of the 1137400E version of the 75,000 lbs thrust NERVA engine are presented. The nuclear subsystem (NSS) and non-nuclear components are discussed. The geometrical model for the NSS is two dimensional as required for the DOT discrete ordinates computer code or for an azimuthally symetrical three dimensional Point Kernel or Monte Carlo code. The geometrical model for the non-nuclear components is three dimensional in the FASTER geometry format. This geometry routine is inherent in the ANSC versions of the QAD and GGG Point Kernal programs and the COHORT Monte Carlo program. Data are included pertaining to a pressure vessel surface radiation source data tape which has been used as the basis for starting ANSC analyses with the DASH code to bridge into the COHORT Monte Carlo code using the WANL supplied DOT angular flux leakage data. In addition to the model descriptions and sources of radiation, the methods of analyses are briefly described.
Burkhalter, Rebecca J.; Westfall, Suzanne D.; Liu, Yueying; Stack, M. Sharon
2015-01-01
During tumor progression, epithelial ovarian cancer (EOC) cells undergo epithelial-to-mesenchymal transition (EMT), which influences metastatic success. Mutation-dependent activation of Wnt/β-catenin signaling has been implicated in gain of mesenchymal phenotype and loss of differentiation in several solid tumors; however, similar mutations are rare in most EOC histotypes. Nevertheless, evidence for activated Wnt/β-catenin signaling in EOC has been reported, and immunohistochemical analysis of human EOC tumors demonstrates nuclear staining in all histotypes. This study addresses the hypothesis that the bioactive lipid lysophosphatidic acid (LPA), prevalent in the EOC microenvironment, functions to regulate EMT in EOC. Our results demonstrate that LPA induces loss of junctional β-catenin, stimulates clustering of β1 integrins, and enhances the conformationally active population of surface β1 integrins. Furthermore, LPA treatment initiates nuclear translocation of β-catenin and transcriptional activation of Wnt/β-catenin target genes resulting in gain of mesenchymal marker expression. Together these data suggest that LPA initiates EMT in ovarian tumors through β1-integrin-dependent activation of Wnt/β-catenin signaling, providing a novel mechanism for mutation-independent activation of this pathway in EOC progression. PMID:26175151
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... Monitoring Activities for F-Area Tank Farm at the Savannah River Site, Revision 0 AGENCY: Nuclear Regulatory... carrying out its responsibilities for monitoring DOE's waste disposal activities at the F-Area Tank Farm at... the availability of ``U.S. Nuclear Regulatory Commission Plan for Monitoring Disposal Actions Taken by...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kartashov,V.V.; Pratt,W.; Romanov, Y.A.
The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Departmentmore » of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.« less
Shiota, Masa; Knobel, Susan M.; Piston, David W.; Cherrington, Alan D.; Magnuson, Mark A.
2001-01-01
Hepatic glucokinase (GK) is acutely regulated by binding to its nuclear-anchored regulatory protein (GKRP). Although GK release by GKRP is tightly coupled to the rate of glycogen synthesis, the nature of this association is obscure. To gain insight into this coupling mechanism under physiological stimulating conditions in primary rat hepatocytes, we analyzed the subcellular distribution of GK and GKRP with immunofluorescence, and glycogen deposition with glycogen cytochemical fluorescence, using confocal microscopyand quantitative image analysis. Following stimulation, a fraction of the GK signal translocated from the nucleus to the cytoplasm. The reduction in the nuclear to cytoplasmic ratio of GK, an index of nuclear export, correlated with a >50% increase in glycogen cytochemical fluorescence over a 60min stimulation period. Furthermore, glycogen accumulation was initially deposited in a peripheral pattern in hepatocytes similar to that of GK. These data suggest that a compartmentalization exists of both active GK and the initial sites of glycogen deposition at the hepatocyte surface. PMID:12369705
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.
2013-02-24
Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasbarro, Christina; Bello, Job; Bryan, Samuel
2013-07-01
Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippek, H.E.; Schuller, C.R.
1979-03-01
A study was conducted to identify major legal and institutional problems and issues in the transportation of spent fuel and associated processing wastes at the back end of the LWR nuclear fuel cycle. (Most of the discussion centers on the transportation of spent fuel, since this activity will involve virtually all of the legal and institutional problems likely to be encountered in moving waste materials, as well.) Actions or approaches that might be pursued to resolve the problems identified in the analysis are suggested. Two scenarios for the industrial-scale transportation of spent fuel and radioactive wastes, taken together, high-light mostmore » of the major problems and issues of a legal and institutional nature that are likely to arise: (1) utilizing the Allied General Nuclear Services (AGNS) facility at Barnwell, SC, as a temporary storage facility for spent fuel; and (2) utilizing AGNS for full-scale commercial reprocessing of spent LWR fuel.« less
1993-01-01
We have developed a cell-free system that induces the morphological transformations characteristic of apoptosis in isolated nuclei. The system uses extracts prepared from mitotic chicken hepatoma cells following a sequential S phase/M phase synchronization. When nuclei are added to these extracts, the chromatin becomes highly condensed into spherical domains that ultimately extrude through the nuclear envelope, forming apoptotic bodies. The process is highly synchronous, and the structural changes are completed within 60 min. Coincident with these morphological changes, the nuclear DNA is cleaved into a nucleosomal ladder. Both processes are inhibited by Zn2+, an inhibitor of apoptosis in intact cells. Nuclear lamina disassembly accompanies these structural changes in added nuclei, and we show that lamina disassembly is a characteristic feature of apoptosis in intact cells of mouse, human and chicken. This system may provide a powerful means of dissecting the biochemical mechanisms underlying the final stages of apoptosis. PMID:8408207
The Naples University 3 MV tandem accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campajola, L.; Brondi, A.
2013-07-18
The 3 MV tandem accelerator of the Naples University is used for research activities and applications in many fields. At the beginning of operation (1977) the main utilization was in the field of nuclear physics. Later, the realization of new beam lines allowed the development of applied activities as radiocarbon dating, ion beam analysis, biophysics, ion implantation etc. At present, the availability of different ion sources and many improvements on the accelerator allow to run experiments in a wide range of subjects. An overview of the characteristics and major activities of the laboratory is presented.
Synthesis and anti-microbial activity of hydroxylammonium ionic liquids.
Ismail Hossain, M; El-Harbawi, Mohanad; Noaman, Yousr Abdulhadi; Bustam, Mohd Azmi B; Alitheen, Noorjahan Banu Mohamed; Affandi, Nor Azrin; Hefter, Glenn; Yin, Chun-Yang
2011-06-01
Eight hydroxylammonium-based room temperature ionic liquids (ILs) have been synthesized by acid-base neutralization of ethanolamines with organic acids. The ILs were characterized by infrared and nuclear magnetic resonance spectroscopies and elemental analysis. Their anti-microbial activities were determined using the well-diffusion method. All eight ILs were toxic to Staphylococcus aureus, while 2-hydroxyethylammonium lactate and 2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium acetate showed high anti-microbial activity against a wide range of human pathogens. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gallardo, Athena Marie
Past nuclear accidents, such as Chernobyl, resulted in a large release of radionuclides into the atmosphere. Radiological assessment of the vicinity of the site of the incident is vital to assess the exposure levels and dose received by the population and workers. Therefore, it is critical to thoroughly understand the situation and risks associated with a particular event in a timely manner in order to properly manage the event. Current atmospheric radiological assessments of alpha emitting radioisotopes include acquiring large quantities of air samples, chemical separation of radionuclides, sample mounting, counting through alpha spectrometry, and analysis of the data. The existing methodology is effective, but time consuming and labor intensive. Autoradiography, and the properties of phosphor imaging films, may be used as an additional technique to facilitate and expedite the alpha analysis process in these types of situations. Although autoradiography is not as sensitive to alpha radiation as alpha spectrometry, autoradiography may benefit alpha analysis by providing information about the activity as well as the spatial distribution of radioactivity in the sample under investigation. The objective for this research was to develop an efficient method for quantification and visualization of air filter samples taken in the aftermath of a nuclear emergency through autoradiography using 241Am and 239Pu tracers. Samples containing varying activities of either 241Am or 239Pu tracers were produced through microprecipitation and assayed by alpha spectroscopy. The samples were subsequently imaged and an activity calibration curve was produced by comparing the digital light units recorded from the image to the known activity of the source. The usefulness of different phosphor screens was examined by exposing each type of film to the same standard nuclide for varying quantities of time. Unknown activity samples created through microprecipiation containing activities of either 241Am or 239Pu as well as air filters doped with beta and alpha emitting nuclides were imaged and activities were determined by comparing the image to the activity calibration curve.
Nuclear Proliferation: A Historical Overview
2008-03-01
Talbert, “Nuclear Proliferation Technology Trends Analysis ,” Pacific Northwest National Laboratory, PNNL -14480 (September 2005), p. 92. 1973: Closed...L. Coles, and R. J. Talbert, “Nuclear Proliferation Technology Trends Analysis ,” Pacific Northwest National Laboratory, PNNL -14480 (September 2005...D. Zentner, G. L. Coles, and R. J. Talbert, “Nuclear Proliferation Technology Trends Analysis ,” Pacific Northwest National Laboratory, PNNL -14480
A visual grading study for different administered activity levels in bone scintigraphy.
Gustafsson, Agnetha; Karlsson, Henrik; Nilsson, Kerstin A; Geijer, Håkan; Olsson, Anna
2015-05-01
The aim of the study is to assess the administered activity levels versus visual-based image quality using visual grading regression (VGR) including an assessment of the newly stated image criteria for whole-body bone scintigraphy. A total of 90 patients was included and grouped in three levels of administered activity: 400, 500 and 600 MBq. Six clinical image criteria regarding image quality was formulated by experienced nuclear medicine physicians. Visual grading was performed in all images, where three physicians rated the fulfilment of the image criteria on a four-step ordinal scale. The results were analysed using VGR. A count analysis was also made where the total number of counts in both views was registered. The administered activity of 600 MBq gives significantly better image quality than 400 MBq in five of six criteria (P<0·05). Comparing the administered activity of 600 MBq to 500 MBq, four criteria of six show significantly better image quality (P<0·05). The administered activity of 500 MBq gives no significantly better image quality than 400 Mbq (P<0·05). The count analysis shows that none of the three levels of administrated activity fulfil the recommendations by the EANM. There was a significant improvement in perceived image quality using an activity level of 600 MBq compared to lower activity levels in whole-body bone scintigraphy for the gamma camera equipment end set-up used in this study. This type of visual-based grading study seems to be a valuable tool and easy to implement in the clinical environment. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
^10B analysis using Charged Particle Activation Analysis
NASA Astrophysics Data System (ADS)
Guo, B. N.; Jin, J. Y.; Duggan, J. D.; McDaniel, F. D.
1997-10-01
Charged Particle Activation analysis (CPAA) is an analytic technique that is used to determine trace quantities of an element usually on the surface of a substrate. The beam from the accelerator is used to make the required nuclear reaction that leaves the residual activity with a measurable half life. Gamma rays from the residual activity are measured to determine the trace quantities of the elements being studied. We have used this technique to study re-entry cloth coatings for space and aircraft vehicles. The clothes made of 20μ m SiC fibers are coated with Boron Nitride. CPAA was used to determine the relative thicknesses of the boron coatings. In particular the ^10B(p,γ)^11C reaction was used. A fast coincidence set up was used to measure the 0.511 MeV annihilation radiation from the 20.38 minute ^11C activity. Rutherford Back Scattering (RBS) results will be presented as a comparison. Details of the process and the experiment will be discussed.
Cai, Min; Tong, Li; Dong, Beibei; Hou, Wugang; Shi, Likai; Dong, Hailong
2017-03-01
The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2-related factor 2 through multiple pathways. However, whether nuclear factor-E2-related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown. Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2-related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2-related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH-associated protein 1-nuclear factor-E2-related factor 2 signal was modulated by nuclear factor-E2-related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed. Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2-related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2-related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch-like ECH-associated protein 1 overexpression reversed nuclear factor-E2-related factor 2 up-regulation and abolished the neuroprotection induced by sevoflurane preconditioning. Kelch-like ECH-associated protein 1 small interfering RNA administration improved nuclear factor-E2-related factor 2 expression and the outcome of mice subjected to ischemia/reperfusion injury. Kelch-like ECH-associated protein 1 down-regulation-dependent nuclear factor-E2-related factor 2 activation underlies the ability of sevoflurane preconditioning to activate the endogenous antioxidant response, which elicits its neuroprotection.
Structural Basis for Activation of Fatty Acid-binding Protein 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillilan,R.; Ayers, S.; Noy, N.
2007-01-01
Fatty acid-binding protein 4 (FABP4) delivers ligands from the cytosol to the nuclear receptor PPAR{gamma} in the nucleus, thereby enhancing the transcriptional activity of the receptor. Notably, FABP4 binds multiple ligands with a similar affinity but its nuclear translocation is activated only by specific compounds. To gain insight into the structural features that underlie the ligand-specificity in activation of the nuclear import of FABP4, we solved the crystal structures of the protein complexed with two compounds that induce its nuclear translocation, and compared these to the apo-protein and to FABP4 structures bound to non-activating ligands. Examination of these structures indicatesmore » that activation coincides with closure of a portal loop phenylalanine side-chain, contraction of the binding pocket, a subtle shift in a helical domain containing the nuclear localization signal of the protein, and a resultant change in oligomeric state that exposes the nuclear localization signal to the solution. Comparisons of backbone displacements induced by activating ligands with a measure of mobility derived from translation, libration, screw (TLS) refinement, and with a composite of slowest normal modes of the apo state suggest that the helical motion associated with the activation of the protein is part of the repertoire of the equilibrium motions of the apo-protein, i.e. that ligand binding does not induce the activated configuration but serves to stabilize it. Nuclear import of FABP4 can thus be understood in terms of the pre-existing equilibrium hypothesis of ligand binding.« less
Levine, Paul M.; Lee, Eugine; Greenfield, Alex; Bonneau, Richard; Logan, Susan K.; Garabedian, Michael J.; Kirshenbaum, Kent
2013-01-01
Sustained treatment of prostate cancer with Androgen Receptor (AR) antagonists can evoke drug resistance, leading to castrate-resistant disease. Elevated activity of the AR is often associated with this highly aggressive disease state. Therefore, new therapeutic regimens that target and modulate AR activity could prove beneficial. We previously introduced a versatile chemical platform to generate competitive and non-competitive multivalent peptoid oligomer conjugates that modulate AR activity. In particular, we identified a linear and a cyclic divalent ethisterone conjugate that exhibit potent anti-proliferative properties in LNCaP-abl cells, a model of castrate-resistant prostate cancer. Here, we characterize the mechanism of action of these compounds utilizing confocal microscopy, time-resolved fluorescence resonance energy transfer, chromatin immunoprecipitation, flow cytometry, and microarray analysis. The linear conjugate competitively blocks AR action by inhibiting DNA binding. In addition, the linear conjugate does not promote AR nuclear localization or co-activator binding. In contrast, the cyclic conjugate promotes AR nuclear localization and induces cell-cycle arrest, despite its inability to compete against endogenous ligand for binding to AR in vitro. Genome-wide expression analysis reveals that gene transcripts are differentially affected by treatment with the linear or cyclic conjugate. Although the divalent ethisterone conjugates share extensive chemical similarities, we illustrate that they can antagonize the AR via distinct mechanisms of action, establishing new therapeutic strategies for potential applications in AR pharmacology. PMID:22871957
Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W. Y.; Li, Zhen; Fu, Amy K. Y.; Ip, Nancy Y.
2014-01-01
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators. PMID:25329792
Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y
2014-01-01
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.
2012-01-01
Background As major regulators of normal chondrogenesis, the bone morphogenic protein (BMP) and transforming growth factor β (TGFB) signaling pathways may be involved in the development and progression of central chondrosarcoma. In order to uncover their possible implication, the aim of this study was to perform a systematic quantitative study of the expression of BMPs, TGFBs and their receptors and to assess activity of the corresponding pathways in central chondrosarcoma. Methods Gene expression analysis was performed by quantitative RT-PCR in 26 central chondrosarcoma and 6 healthy articular cartilage samples. Expression of endoglin and nuclear localization of phosphorylated Smad1/5/8 and Smad2 was assessed by immunohistochemical analysis. Results The expression of TGFB3 and of the activin receptor-like kinase ALK2 was found to be significantly higher in grade III compared to grade I chondrosarcoma. Nuclear phosphorylated Smad1/5/8 and Smad2 were found in all tumors analyzed and the activity of both signaling pathways was confirmed by functional reporter assays in 2 chondrosarcoma cell lines. Immunohistochemical analysis furthermore revealed that phosphorylated Smad1/5/8 and endoglin expression were significantly higher in high-grade compared to low-grade chondrosarcoma and correlated to each other. Conclusions The BMP and TGFβ signaling pathways were found to be active in central chondrosarcoma cells. The correlation of Smad1/5/8 activity to endoglin expression suggests that, as described in other cell types, endoglin could enhance Smad1/5/8 signaling in high-grade chondrosarcoma cells. Endoglin expression coupled to Smad1/5/8 activation could thus represent a functionally important signaling axis for the progression of chondrosarcoma and a regulator of the undifferentiated phenotype of high-grade tumor cells. PMID:23088614
tRNAs promote nuclear import of HIV-1 intracellular reverse transcription complexes.
Zaitseva, Lyubov; Myers, Richard; Fassati, Ariberto
2006-10-01
Infection of non-dividing cells is a biological property of HIV-1 crucial for virus transmission and AIDS pathogenesis. This property depends on nuclear import of the intracellular reverse transcription and pre-integration complexes (RTCs/PICs). To identify cellular factors involved in nuclear import of HIV-1 RTCs, cytosolic extracts were fractionated by chromatography and import activity examined by the nuclear import assay. A near-homogeneous fraction was obtained, which was active in inducing nuclear import of purified and labeled RTCs. The active fraction contained tRNAs, mostly with defective 3' CCA ends. Such tRNAs promoted HIV-1 RTC nuclear import when synthesized in vitro. Active tRNAs were incorporated into and recovered from virus particles. Mutational analyses indicated that the anticodon loop mediated binding to the viral complex whereas the T-arm may interact with cellular factors involved in nuclear import. These tRNA species efficiently accumulated into the nucleus on their own in a energy- and temperature-dependent way. An HIV-1 mutant containing MLV gag did not incorporate tRNA species capable of inducing HIV-1 RTC nuclear import and failed to infect cell cycle-arrested cells. Here we provide evidence that at least some tRNA species can be imported into the nucleus of human cells and promote HIV-1 nuclear import.
Nuclear Receptor SHP Activates miR-206 Expression via a Cascade Dual Inhibitory Mechanism
Song, Guisheng; Wang, Li
2009-01-01
MicroRNAs play a critical role in many essential cellular functions in the mammalian species. However, limited information is available regarding the regulation of miRNAs gene transcription. Microarray profiling and real-time PCR analysis revealed a marked down-regulation of miR-206 in nuclear receptor SHP−/− mice. To understand the regulatory function of SHP with regard to miR-206 gene expression, we determined the putative transcriptional initiation site of miR-206 and also its full length primary transcript using a database mining approach and RACE. We identified the transcription factor AP1 binding sites on the miR-206 promoter and further showed that AP1 (c-Jun and c-Fos) induced miR-206 promoter transactivity and expression which was repressed by YY1. ChIP analysis confirmed the physical association of AP1 (c-Jun) and YY1 with the endogenous miR-206 promoter. In addition, we also identified nuclear receptor ERRγ (NR3B3) binding site on the YY1 promoter and showed that YY1 promoter was transactivated by ERRγ, which was inhibited by SHP (NROB2). ChIP analysis confirmed the ERRγ binding to the YY1 promoter. Forced expression of SHP and AP1 induced miR-206 expression while overexpression of ERRγ and YY1 reduced its expression. The effects of AP1, ERRγ, and YY1 on miR-206 expression were reversed by siRNA knockdown of each gene, respectively. Thus, we propose a novel cascade “dual inhibitory” mechanism governing miR-206 gene transcription by SHP: SHP inhibition of ERRγ led to decreased YY1 expression and the de-repression of YY1 on AP1 activity, ultimately leading to the activation of miR-206. This is the first report to elucidate a cascade regulatory mechanism governing miRNAs gene transcription. PMID:19721712
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, Fawzy A.; Harvard Medical School, Boston, MA 02115; Torres, Marie
LOX, the principal enzyme involved in crosslinking of collagen, was the first of several lysyl oxidase isotypes to be characterized. Its active form was believed to be exclusively extracellular. Active LOX was later reported to be present in cell nuclei; its function there is unknown. LOX expression opposes the effect of mutationally activated Ras, which is present in about 30% of human cancers. The mechanism of LOX in countering the action of Ras is also unknown. In the present work, assessment of nuclear protein for possible effects of lysyl oxidase activity led to the discovery that proliferating cells dramatically increasemore » their nuclear protein content when exposed to BAPN ({beta}-aminopropionitrile), a highly specific lysyl oxidase inhibitor that reportedly blocks LOX inhibition of Ras-induced oocyte maturation. In three cell types (PC12 cells, A7r5 smooth muscle cells, and NIH 3T3 fibroblasts), BAPN caused a 1.8-, 1.7-, and 2.1-fold increase in total nuclear protein per cell, respectively, affecting all major components in both nuclear matrix and chromatin fractions. Since nuclear size is correlated with proliferative status, enzyme activity restricting nuclear growth may be involved in the lysyl oxidase tumor suppressive effect. Evidence is also presented for the presence of apparent lysyl oxidase isotype(s) containing a highly conserved LOX active site sequence in the nuclei of PC12 cells, which do not manufacture extracellular lysyl oxidase substrates. Results reported here support the hypothesis that nuclear lysyl oxidase regulates nuclear growth, and thereby modulates cell proliferation.« less
77 FR 6827 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0280] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC action to... public comment. SUMMARY: The Nuclear Regulatory Commission (NRC) invites public comment about our...
Nuclear spin relaxation of methane in solid xenon
NASA Astrophysics Data System (ADS)
Sugimoto, Takeru; Arakawa, Ichiro; Yamakawa, Koichiro
2018-03-01
Nuclear spin relaxation of methane in solid xenon has been studied by infrared spectroscopy. From the analysis of the temporal changes of the rovibrational peaks, the rates of the nuclear spin relaxation of I = 2 ← 1 correlated to the rotational relaxation of J = 0 ← 1 were obtained at temperatures of 5.1-11.5 K. On the basis of the temperature dependence of the relaxation rate, the activation energy of the indirect two-phonon process was determined to be 50 ± 6 K, which is in good agreement with the rotational transition energies of J = 2 ← 1 and J = 3 ← 1. Taking into account this result and the spin degeneracy, we argue that the lowest J = 3 level in which the I = 1 and I = 2 states are degenerate acts as the intermediate point of the indirect process.
Commercial Satellite Imagery Analysis for Countering Nuclear Proliferation
NASA Astrophysics Data System (ADS)
Albright, David; Burkhard, Sarah; Lach, Allison
2018-05-01
High-resolution commercial satellite imagery from a growing number of private satellite companies allows nongovernmental analysts to better understand secret or opaque nuclear programs of countries in unstable or tense regions, called proliferant states. They include North Korea, Iran, India, Pakistan, and Israel. By using imagery to make these countries’ aims and capabilities more transparent, nongovernmental groups like the Institute for Science and International Security have affected the policies of governments and the course of public debate. Satellite imagery work has also strengthened the efforts of the International Atomic Energy Agency, thereby helping this key international agency build its case to mount inspections of suspect sites and activities. This work has improved assessments of the nuclear capabilities of proliferant states. Several case studies provide insight into the use of commercial satellite imagery as a key tool to educate policy makers and affect policy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masuda, Kouhei; Katagiri, Chiaki; Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo
2010-03-05
MAPK phosphatase-7 (MKP-7) was identified as a JNK-specific phosphatase. However, despite its high specificity for JNK, MKP-7 interacts also with ERK. We previously showed that as a physiological consequence of their interaction, activated ERK phosphorylates MKP-7 at Ser-446, and stabilizing MKP-7. In the present study, we analyzed MKP-7 function in activation of ERK. A time-course experiment showed that both MKP-7 and its phosphatase-dead mutant prolonged mitogen-induced ERK phosphorylation, suggesting that MKP-7 functions as a scaffold for ERK. An important immunohistological finding was that nuclear translocation of phospho-ERK following PMA stimulation was blocked by co-expressed MKP-7 and, moreover, that phospho-ERK co-localizedmore » with MKP-7 in the cytoplasm. Reporter gene analysis indicated that MKP-7 blocks ERK-mediated transcription. Overall, our data indicate that MKP-7 down-regulates ERK-dependent gene expression by blocking nuclear accumulation of phospho-ERK.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaiboullina, Svetlana F., E-mail: sv.khaiboullina@gmail.com; Morzunov, Sergey P.; Boichuk, Sergei V.
2013-09-01
Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirusmore » triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.« less
Wu, Hongtan; Zhang, Gang; Huang, Lisen; Pang, Haiyue; Zhang, Na; Chen, Yupei; Wang, Gueyhorng
2017-01-01
Folium Microcos (FM), the leaves of Microcos paniculata L., shows various biological functions including antioxidant activity and α -glucosidase inhibitory effect. However, its therapeutic potential in acute liver injury is still unknown. This study investigated the hepatoprotective effect and underlying mechanisms of the polyphenol-enriched fraction (FMF) from Folium Microcos . FMF exhibited strong free radical scavenging activities and prevented HepG2/Hepa1-6 cells from hydrogen peroxide- (H 2 O 2 -) induced ROS production and apoptosis in vitro. Antioxidant activity and cytoprotective effects were further verified by alleviating APAP-induced hepatotoxicity in mice. Western blot analysis revealed that FMF pretreatment significantly abrogated APAP-mediated phosphorylation of MAPKs, activation of proapoptotic protein caspase-3/9 and Bax, and restored expression of antiapoptotic protein Bcl2. APAP-intoxicated mice pretreated with FMF showed increased nuclear accumulation of nuclear factor erythroid 2-related factor (Nrf2) and elevated hepatic expression of its target genes, NAD(P)H:quinine oxidoreductase 1 (NQO1) and hemeoxygenase-1(HO-1). HPLC analysis revealed the four predominantly phenolic compounds present in FMF: narcissin, isorhamnetin-3-O- β -D-glucoside, isovitexin, and vitexin. Consequently, these findings indicate that FMF possesses a hepatoprotective effect against APAP-induced hepatotoxicity mainly through dual modification of ROS/MAPKs/apoptosis axis and Nrf2-mediated antioxidant response, which may be attributed to the strong antioxidant activity of phenolic components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernald, M.C.
This study undertook to assess the degree to which a person's sense of interconnectedness with others may have a mediating effect on whether one reacts to the consciousness of nuclear threat with feelings of despair (helplessness and hopelessness) or with a sense of empowerment (hope, efficacy, and action for change). Subjects included 119 public high school students and 14 Friends' school students, ranging from 12-18 years of age; 58 university students ranging from 18-25 years of age; and 24 parents of public school students, 10 adult Friends, and 38 members of Physicians for Social Responsibility, ranging from 20-83 years ofmore » age. A self-rating questionnaire was administered to assess subjects' conscious level of concern about nuclear issues, feelings of connectedness with others in general and about nuclear concerns, feelings of hope and efficacy in general and with regard to nuclear issues, and participation in activities reflecting concerns about nuclear threat. Correlational analyses (multiple regression, Spearman Rho, Kendall's Tau) showed that general feelings of hope, level of activity, and feelings of connectedness about nuclear concerns were the best predictors of hope about nuclear concerns. Conscious level of concern and feelings of connectedness about nuclear concerns, along with age and SES were the best predictors of an active response to nuclear threat; additionally, parents' level of concern about nuclear issues was predictive of their children's degree of activity in response to nuclear threat. Adolescents' level of concern and degree of connectedness with others was predicted by their parents' degree of connectedness.« less
Analysis of a developmentally regulated nuclear localization signal in Xenopus
1992-01-01
The 289 residue nuclear oncoprotein encoded by the adenovirus 5 Ela gene contains two peptide sequences that behave as nuclear localization signals (NLS). One signal, located at the carboxy terminus, is like many other known NLSs in that it consists of a short stretch of basic residues (KRPRP) and is constitutively active in cells. The second signal resides within an internal 45 residue region of E1a that contains few basic residues or sequences that resemble other known NLSs. Moreover, this internal signal functions in injected Xenopus oocytes, but not in transfected Xenopus A6 cells, suggesting that it could be regulated developmentally (Slavicek et al. 1989. J. Virol. 63:4047). In this study, we show that the activity of this signal is sensitive to ATP depletion in vivo, efficiently directs the import of a 50 kD fusion protein and can compete with the E1a carboxy-terminal NLS for nuclear import. In addition, we have delineated the precise amino acid residues that comprise the second E1a NLS, and have assessed its utilization during Xenopus embryogenesis. Using amino acid deletion and substitution analyses, we show that the signal consists of the sequence FV(X)7-20MXSLXYM(X)4MF. By expressing in Xenopus embryos a truncated E1a protein that contains only the second NLS and by monitoring its cytoplasmic/nuclear distribution during development with indirect immunofluorescence, we find that the second NLS is utilized up to the early neurula stage. In addition, there appears to be a hierarchy among the embryonic germ layers as to when the second NLS becomes nonfunctional. For this reason, we refer to this NLS as the developmentally regulated nuclear localization signal (drNLS). The implications of these findings for early development are discussed. PMID:1387407
Tilton, Susan C.; Menachery, Vineet D.; Gralinski, Lisa E.; Schäfer, Alexandra; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Chang, Jean; Luna, Maria L.; Long, Casey E.; Shukla, Anil K.; Bankhead, Armand R.; Burkett, Susan E.; Zornetzer, Gregory; Tseng, Chien-Te Kent; Metz, Thomas O.; Pickles, Raymond; McWeeney, Shannon; Smith, Richard D.; Katze, Michael G.; Waters, Katrina M.; Baric, Ralph S.
2013-01-01
The severe acute respiratory syndrome coronavirus accessory protein ORF6 antagonizes interferon signaling by blocking karyopherin-mediated nuclear import processes. Viral nuclear import antagonists, expressed by several highly pathogenic RNA viruses, likely mediate pleiotropic effects on host gene expression, presumably interfering with transcription factors, cytokines, hormones, and/or signaling cascades that occur in response to infection. By bioinformatic and systems biology approaches, we evaluated the impact of nuclear import antagonism on host expression networks by using human lung epithelial cells infected with either wild-type virus or a mutant that does not express ORF6 protein. Microarray analysis revealed significant changes in differential gene expression, with approximately twice as many upregulated genes in the mutant virus samples by 48 h postinfection, despite identical viral titers. Our data demonstrated that ORF6 protein expression attenuates the activity of numerous karyopherin-dependent host transcription factors (VDR, CREB1, SMAD4, p53, EpasI, and Oct3/4) that are critical for establishing antiviral responses and regulating key host responses during virus infection. Results were confirmed by proteomic and chromatin immunoprecipitation assay analyses and in parallel microarray studies using infected primary human airway epithelial cell cultures. The data strongly support the hypothesis that viral antagonists of nuclear import actively manipulate host responses in specific hierarchical patterns, contributing to the viral pathogenic potential in vivo. Importantly, these studies and modeling approaches not only provide templates for evaluating virus antagonism of nuclear import processes but also can reveal candidate cellular genes and pathways that may significantly influence disease outcomes following severe acute respiratory syndrome coronavirus infection in vivo. PMID:23365422
Nuclear calcium is required for human T cell activation
Samstag, Yvonne
2016-01-01
Calcium signals in stimulated T cells are generally considered single entities that merely trigger immune responses, whereas costimulatory events specify the type of reaction. Here we show that the “T cell calcium signal” is a composite signal harboring two distinct components that antagonistically control genomic programs underlying the immune response. Using human T cells from healthy individuals, we establish nuclear calcium as a key signal in human T cell adaptogenomics that drives T cell activation and is required for signaling to cyclic adenosine monophosphate response element–binding protein and the induction of CD25, CD69, interleukin-2, and γ-interferon. In the absence of nuclear calcium signaling, cytosolic calcium activating nuclear factor of activated T cells translocation directed the genomic response toward enhanced expression of genes that negatively modulate T cell activation and are associated with a hyporesponsive state. Thus, nuclear calcium controls the T cell fate decision between a proliferative immune response and tolerance. Modulators of nuclear calcium–driven transcription may be used to develop a new type of pro-tolerance immunosuppressive therapy. PMID:27810914
Polaron hopping in olivine phosphates studied by nuclear resonant scattering
NASA Astrophysics Data System (ADS)
Tracy, Sally June
Valence fluctuations of Fe2+ and Fe3+ were studied in a solid solution of LixFePO4 by nuclear resonant forward scattering of synchrotron x rays while the sample was heated in a diamond-anvil pressure cell. The spectra acquired at different temperatures and pressures were analyzed for the frequencies of valence changes using the Blume-Tjon model of a system with a fluctuating Hamiltonian. These frequencies were analyzed to obtain activation energies and an activation volume for polaron hopping. There was a large suppression of hopping frequency with pressure, giving an anomalously large activation volume. This large, positive value is typical of ion diffusion, which indicates correlated motions of polarons, and Li+ ions that alter the dynamics of both. In a parallel study of NaxFePO4, the interplay between sodium ordering and electron mobility was investigated using a combination of synchrotron x-ray diffraction and nuclear resonant scattering. Conventional Mossbauer spectra were collected while the sample was heated in a resistive furnace. An analysis of the temperature evolution of the spectral shapes was used to identify the onset of fast electron hopping and determine the polaron hopping rate. Synchrotron x-ray diffraction measurements were carried out in the same temperature range. Reitveld analysis of the diffraction patterns was used to determine the temperature of sodium redistribution on the lattice. The diffraction analysis also provides new information about the phase stability of the system. The temperature evolution of the iron site occupancies from the Mossbauer measurements, combined with the synchrotron diffraction results give strong evidence for a relationship between the onset of fast electron dynamics and the redistribution of sodium in the lattice. Measurements of activation barriers for polaron hopping gave fundamental insights about the correlation between electronic carriers and mobile ions. This work established that polaron-ion interactions can alter the local dynamics of electron and ion transport. These types of coupled processes may be common in many materials used for battery electrodes, and new details concerning the influence of polaron-ion interactions on the charge dynamics are relevant to optimizing their electrochemical performance.
77 FR 70192 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-23
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0263] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
76 FR 72982 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-28
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2011-0271] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
77 FR 69661 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-20
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0230] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
78 FR 70353 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2013-0248] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
77 FR 21813 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0058] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
77 FR 58872 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-24
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0198] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
78 FR 66078 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2013-0238] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
78 FR 42112 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2013-0116] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
78 FR 28244 - Agency Information Collection Activities; Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2013-0085] Agency Information Collection Activities; Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
77 FR 44289 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-27
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0150] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
77 FR 5279 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0009] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The Nuclear Regulatory Commission (NRC) invites public comment about...
76 FR 72983 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-28
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2011-0250] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
77 FR 54617 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0184] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
76 FR 33788 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-09
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2011-0009] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... (OMB) and solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites...
77 FR 44290 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-27
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0155] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
77 FR 48555 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-14
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0172] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
78 FR 79500 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2013-0279] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) invites public comment...
Nuclear Data Needs for Generation IV Nuclear Energy Systems
NASA Astrophysics Data System (ADS)
Rullhusen, Peter
2006-04-01
Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S. Kozier, G. R. Dyck. The lead cooled fast reactor benchmark BREST-300: analysis with sensitivity method / V. Smirnov ... [et al.]. Sensitivity analysis of neutron cross-sections considered for design and safety studies of LFR and SFR generation IV systems / K. Tucek, J. Carlsson, H. Wider -- Experiments. INL capabilities for nuclear data measurements using the Argonne intense pulsed neutron source facility / J. D. Cole ... [et al.]. Cross-section measurements in the fast neutron energy range / A. Plompen. Recent measurements of neutron capture cross sections for minor actinides by a JNC and Kyoto University Group / H. Harada ... [et al.]. Determination of minor actinides fission cross sections by means of transfer reactions / M. Aiche ... [et al.] -- Evaluated data libraries. Nuclear data services from the NEA / H. Henriksson, Y. Rugama. Nuclear databases for energy applications: an IAEA perspective / R. Capote Noy, A. L. Nichols, A. Trkov. Nuclear data evaluation for generation IV / G. Noguère ... [et al.]. Improved evaluations of neutron-induced reactions on americium isotopes / P. Talou ... [et al.]. Using improved ENDF-based nuclear data for candu reactor calculations / J. Prodea. A comparative study on the graphite-moderated reactors using different evaluated nuclear data / Do Heon Kim ... [et al.].
Silva, Lindsey; Oh, Hyung Suk; Chang, Lynne; Yan, Zhipeng; Triezenberg, Steven J; Knipe, David M
2012-01-01
Little is known about the mechanisms of gene targeting within the nucleus and its effect on gene expression, but most studies have concluded that genes located near the nuclear periphery are silenced by heterochromatin. In contrast, we found that early herpes simplex virus (HSV) genome complexes localize near the nuclear lamina and that this localization is associated with reduced heterochromatin on the viral genome and increased viral immediate-early (IE) gene transcription. In this study, we examined the mechanism of this effect and found that input virion transactivator protein, virion protein 16 (VP16), targets sites adjacent to the nuclear lamina and is required for targeting of the HSV genome to the nuclear lamina, exclusion of heterochromatin from viral replication compartments, and reduction of heterochromatin on the viral genome. Because cells infected with the VP16 mutant virus in1814 showed a phenotype similar to that of lamin A/C(-/-) cells infected with wild-type virus, we hypothesized that the nuclear lamina is required for VP16 activator complex formation. In lamin A/C(-/-) mouse embryo fibroblasts, VP16 and Oct-1 showed reduced association with the viral IE gene promoters, the levels of VP16 and HCF-1 stably associated with the nucleus were lower than in wild-type cells, and the association of VP16 with HCF-1 was also greatly reduced. These results show that the nuclear lamina is required for stable nuclear localization and formation of the VP16 activator complex and provide evidence for the nuclear lamina being the site of assembly of the VP16 activator complex. The targeting of chromosomes in the cell nucleus is thought to be important in the regulation of expression of genes on the chromosomes. The major documented effect of intranuclear targeting has been silencing of chromosomes at sites near the nuclear periphery. In this study, we show that targeting of the herpes simplex virus DNA genome to the nuclear periphery promotes formation of transcriptional activator complexes on the viral genome, demonstrating that the nuclear periphery also has sites for activation of transcription. These results highlight the importance of the nuclear lamina, the structure that lines the inner nuclear membrane, in both transcriptional activation and repression. Future studies defining the molecular structures of these two types of nuclear sites should define new levels of gene regulation.
Activation of Beta-Catenin Signaling in Androgen Receptor–Negative Prostate Cancer Cells
Wan, Xinhai; Liu, Jie; Lu, Jing-Fang; Tzelepi, Vassiliki; Yang, Jun; Starbuck, Michael W.; Diao, Lixia; Wang, Jing; Efstathiou, Eleni; Vazquez, Elba S.; Troncoso, Patricia; Maity, Sankar N.; Navone, Nora M.
2012-01-01
Purpose To study Wnt/beta-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the beta-catenin–androgen receptor (AR) interaction. Experimental Design We performed beta-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of beta-catenin–mediated transcription), and sequenced the beta-catenin gene in MDA PCa 118a, MDA PCa 118b, MDA PCa 2b, and PC-3 prostate cancer (PCa) cells. We knocked down beta-catenin in AR-negative MDA PCa 118b cells and performed comparative gene-array analysis. We also immunohistochemically analyzed beta-catenin and AR in 27 bone metastases of human CRPCs. Results Beta-catenin nuclear accumulation and TOP-flash reporter activity were high in MDA PCa 118b but not in MDA PCa 2b or PC-3 cells. MDA PCa 118a and 118b cells carry a mutated beta-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA PCa 118b cells with downregulated beta-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant beta-catenin. Finally, we found nuclear localization of beta-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher’s exact test), suggesting that reduced AR expression enables Wnt/beta-catenin signaling. Conclusion We identified a previously unknown downstream target of beta-catenin, HAS2, in PCa, and found that high beta-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone-metastatic PCa. These findings may guide physicians in managing these patients. PMID:22298898
Fiedler, M A; Wernke-Dollries, K; Stark, J M
1998-08-01
The working hypothesis of the studies described herein was that inhibition of proteasome-mediated IkappaB degradation would inhibit TNF-alpha-induced nuclear factor-kappaB (NF-kappaB) activation, interleukin-8 (IL-8) gene transcription, and IL-8 protein release in A549 cells. Mutational analysis of the 5' flanking region of the IL-8 gene confirmed that an intact NF-kappaB site is necessary for TNF-alpha-induced IL-8 gene transcription. The addition of TNF-alpha to A549 cells resulted in rapid loss of IkappaB from the cytoplasm of cells, associated with a corresponding increase in NF-kappaB-binding activity in nuclear extracts from the cells. However, pretreatment of the cells with the proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132, 10 microM) reversed the effects of TNF-alpha on IL-8 release from A549 cells (as determined with an enzyme-linked immunosorbent assay [ELISA]) and on IL-8 gene transcription (as determined with reporter-gene assays). MG-132 reversed the effects of TNF-alpha on IkappaB degradation as determined by Western blot analysis. IkappaB phosphorylation and ubiquination were not altered by MG-132, which implies that the effects of MG-132 were secondary to proteasome inhibition. MG-132 also reversed the increase in NF-kappaB binding in nuclear extracts from TNF-alpha-treated cells. These studies show that inhibition of proteasome-mediated IkappaB degradation results in inhibition of TNF-alpha induced IL-8 production in A549 cells by limiting NF-kappaB-mediated gene transcription.
Sugatani, T; Alvarez, U M; Hruska, K A
2003-09-01
Recent studies have reported that activin A enhances osteoclastogenesis in cultures of mouse bone marrow cells stimulated with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). However, the exact mechanisms by which activin A functions during osteoclastogenesis are not clear. RANKL stimulation of RANK/TRAF6 signaling increases nuclear factor-kappaB (NFkappaB) nuclear translocation and activates the Akt/PKB cell survival pathway. Here we report that activin A alone activates IkappaB-alpha, and stimulates nuclear translocation of NFkappaB and receptor activator of nuclear factor-kappaB (RANK) expression for osteoclastogenesis, but not Akt/PKB survival signal transduction including BAD and mammalian target of rapamycin (mTOR) for survival in osteoclast precursors in vitro. Activin A alone failed to activate Akt, BAD, and mTOR by immunoblotting, and it also failed to prevent apoptosis in osteoclast precursors. While activin A activated IkappaB-alpha and induced nuclear translocation of phosphorylated-NFkappaB, and it also enhanced RANK expression in osteoclast precursors. Moreover, activin A enhanced RANKL- and M-CSF-stimulated nuclear translocation of NFkappaB. Our data suggest that activin A enhances osteoclastogenesis treated with RANKL and M-CSF via stimulation of RANK, thereby increasing the RANKL stimulation. Activin A alone activated the NFkappaB pathway, but not survival in osteoclast precursors in vitro, but it is, thus, insufficient as a sole stimulus to osteoclastogenesis. Copyright 2003 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonardo, Lucio; Damatto, Sandra Regina; Mazzilli, Barbara Paci
2008-08-07
Lichens have been used in studies of environmental pollution monitoring of various air pollutants, especially heavy metals. This paper aims to study the possibility of using this specimen for the assessment of radionuclides deposition in the vicinity of a nuclear research institute, Instituto de Pesquisas Energeticas e Nucleares (IPEN) located in Sao Paulo, Brazil. This Institute has as major activity to perform research in the field of the nuclear fuel cycle, and therefore deals with considerable amounts of natural radionuclides of the U and Th series. The activity of the naturally occurring radionuclides U-238, Ra-226, Ra-226 and Pb-210 was determinedmore » in samples of lichen (Canoparmelia texana) and soil collected at IPEN campus. The concentrations of Ra-228, Ra-226 and Pb-210 were determined by measuring alpha and beta gross counting in a gas flow proportional detector; U and Th were determined by neutron activation analysis. The values obtained varied from 164 Bq/kg to 864 Bq/kg, 13 Bq/kg to 50 Bq/kg, and from 287 Bq/kg to 730 Bq/kg for Ra-228, Ra-226 and Pb-210 respectively. For natural U and Th the values obtained varied from 1.2 Bq/kg to 162 Bq/kg and 1.84 Bq/kg to 5.17 Bq/kg respectively. The results obtained so far suggest that the Canoparmelia texana can be used as radionuclide monitor in the vicinity of nuclear installations.« less
Audit Report Office of the Inspector General: Defense Nuclear Agency Activities at Johnston Atoll
1989-12-15
DEPARTMENT OF DEFENSE AUDIT REPORT DEFENSE NUCLEAR AGENCY ACTIVITIES AT JOHNSTON ATOLL NO. 90-020 December 15, 1989 A&piored tea ggabiic release...a 5330 Accession Number: 5320 Publication Date: Dec 15, 1989 Title: Audit Report Office Of The Inspector General: Defense Nuclear Agency...Descriptors, Keywords: DNA Johnston Atoll Audit Management Economy Efficiency BOS Administration Oversight DOE Nuclear Atmospheric Testing Safeguard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasche, George P.
2009-10-01
Cambio is an application intended to automatically read and display any spectrum file of any format in the world that the nuclear emergency response community might encounter. Cambio also provides an analysis capability suitable for HPGe spectra when detector response and scattering environment are not well known. Why is Cambio needed: (1) Cambio solves the following problem - With over 50 types of formats from instruments used in the field and new format variations appearing frequently, it is impractical for every responder to have current versions of the manufacturer's software from every instrument used in the field; (2) Cambio convertsmore » field spectra to any one of several common formats that are used for analysis, saving valuable time in an emergency situation; (3) Cambio provides basic tools for comparing spectra, calibrating spectra, and isotope identification with analysis suited especially for HPGe spectra; and (4) Cambio has a batch processing capability to automatically translate a large number of archival spectral files of any format to one of several common formats, such as the IAEA SPE or the DHS N42. Currently over 540 analysts and members of the nuclear emergency response community worldwide are on the distribution list for updates to Cambio. Cambio users come from all levels of government, university, and commercial partners around the world that support efforts to counter terrorist nuclear activities. Cambio is Unclassified Unlimited Release (UUR) and distributed by internet downloads with email notifications whenever a new build of Cambio provides for new formats, bug fixes, or new or improved capabilities. Cambio is also provided as a DLL to the Karlsruhe Institute for Transuranium Elements so that Cambio's automatic file-reading capability can be included at the Nucleonica web site.« less
Development of Innovative Design Processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Y.S.; Park, C.O.
2004-07-01
The nuclear design analysis requires time-consuming and erroneous model-input preparation, code run, output analysis and quality assurance process. To reduce human effort and improve design quality and productivity, Innovative Design Processor (IDP) is being developed. Two basic principles of IDP are the document-oriented design and the web-based design. The document-oriented design is that, if the designer writes a design document called active document and feeds it to a special program, the final document with complete analysis, table and plots is made automatically. The active documents can be written with ordinary HTML editors or created automatically on the web, which ismore » another framework of IDP. Using the proper mix-up of server side and client side programming under the LAMP (Linux/Apache/MySQL/PHP) environment, the design process on the web is modeled as a design wizard style so that even a novice designer makes the design document easily. This automation using the IDP is now being implemented for all the reload design of Korea Standard Nuclear Power Plant (KSNP) type PWRs. The introduction of this process will allow large reduction in all reload design efforts of KSNP and provide a platform for design and R and D tasks of KNFC. (authors)« less
Vélez-Aguilera, Griselda; de Dios Gómez-López, Juan; Jiménez-Gutiérrez, Guadalupe E; Vásquez-Limeta, Alejandra; Laredo-Cisneros, Marco S; Gómez, Pablo; Winder, Steve J; Cisneros, Bulmaro
2018-02-01
β-Dystroglycan (β-DG) is a plasma membrane protein that has ability to target to the nuclear envelope (NE) to maintain nuclear architecture. Nevertheless, mechanisms controlling β-DG nuclear localization and the physiological consequences of a failure of trafficking are largely unknown. We show that β-DG has a nuclear export pathway in myoblasts that depends on the recognition of a nuclear export signal located in its transmembrane domain, by CRM1. Remarkably, NES mutations forced β-DG nuclear accumulation resulting in mislocalization and decreased levels of emerin and lamin B1 and disruption of various nuclear processes in which emerin (centrosome-nucleus linkage and β-catenin transcriptional activity) and lamin B1 (cell cycle progression and nucleoli structure) are critically involved. In addition to nuclear export, the lifespan of nuclear β-DG is restricted by its nuclear proteasomal degradation. Collectively our data show that control of nuclear β-DG content by the combination of CRM1 nuclear export and nuclear proteasome pathways is physiologically relevant to preserve proper NE structure and activity. Copyright © 2017 Elsevier B.V. All rights reserved.
75 FR 63866 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-18
... special nuclear material. The information in the applications, reports, and records is used by NRC to make... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2010-0322] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission (NRC). ACTION: Notice of pending...
10 CFR 810.7 - Generally authorized activities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... determined that the following activities are generally authorized, provided no sensitive nuclear technology... continuing programs, to enhance the operational safety of an existing civilian nuclear power plant in a... off-site population posed by a civilian nuclear power plant in such a country; provided the Department...
10 CFR 810.7 - Generally authorized activities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... determined that the following activities are generally authorized, provided no sensitive nuclear technology... continuing programs, to enhance the operational safety of an existing civilian nuclear power plant in a... off-site population posed by a civilian nuclear power plant in such a country; provided the Department...
77 FR 63893 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-17
... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0228] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC... solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the Commission) invites...
78 FR 67204 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... special nuclear material. The information in the applications, reports, and records is used by NRC to make... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2013-0239] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission. ACTION: Notice of pending NRC...
75 FR 9444 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-02
... applications for licenses and amendments thereto to construct and operate nuclear power plants, preliminary or... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2010-0063] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: U.S. Nuclear Regulatory Commission (NRC). ACTION: Notice of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... seven public meetings to gather stakeholder feedback. Further, the Nuclear Energy Institute provided... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0047] Agency Information Collection Activities...: Nuclear Regulatory Commission. ACTION: Notice of pending NRC action to submit an information collection...
Mitochondrial gene polymorphisms that protect mice from colitis.
Bär, Florian; Bochmann, Wiebke; Widok, Andrea; von Medem, Kilian; Pagel, Rene; Hirose, Misa; Yu, Xinhua; Kalies, Kathrin; König, Peter; Böhm, Ruwen; Herdegen, Thomas; Reinicke, Anna T; Büning, Jürgen; Lehnert, Hendrik; Fellermann, Klaus; Ibrahim, Saleh; Sina, Christian
2013-11-01
Dysregulated energy homeostasis in the intestinal mucosa frequently is observed in patients with ulcerative colitis (UC). Intestinal tissues from these patients have reduced activity of the mitochondrial oxidative phosphorylation (OXPHOS) complex, so mitochondrial dysfunction could contribute to the pathogenesis of UC. However, little is known about the mechanisms by which OXPHOS activity could be altered. We used conplastic mice, which have identical nuclear but different mitochondrial genomes, to investigate activities of the OXPHOS complex. Colitis was induced in C57BL/6J wild-type (B6.B6) and 3 strains of conplastic mice (B6.NZB, B6.NOD, and B6.AKR) by administration of dextran sodium sulfate or rectal application of trinitrobenzene sulfonate. Colon tissues were collected and analyzed by histopathology, immunohistochemical analysis, and immunoblot analysis; we also measured mucosal levels of adenosine triphosphate (ATP) and reactive oxygen species, OXPHOS complex activity, and epithelial cell proliferation and apoptosis. We identified mice with increased mucosal OXPHOS complex activities and levels of ATP. These mice developed less-severe colitis after administration of dextran sodium sulfate or trinitrobenzene sulfonate than mice with lower mucosal levels of ATP. Colon tissues from these mice also had increased enterocyte proliferation and transcription factor nuclear factor-κB activity, which have been shown to protect the mucosal barrier-defects in these processes have been associated with inflammatory bowel disease. Variants in mitochondrial DNA that increase mucosal levels of ATP protect mice from colitis. Increasing mitochondrial ATP synthesis in intestinal epithelial cells could be a therapeutic approach for UC. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
Kim, Jae Kyung; Mun, Sukyeong; Kim, Myung-Suk; Kim, Mi-Bo; Sa, Bo-Kyung; Hwang, Jae-Kwan
2012-03-01
Peroxisome proliferator-activated receptors (PPARs), which are members of the nuclear hormone receptor superfamily, are a family of ligand-activated transcription factors that consist of three isotypes (PPAR α, δ and γ). PPAR activity was previously thought to be limited to lipid metabolism and glucose homeostasis; however, intensive studies of PPARα/γ in recent years have revealed their importance in age-related inflammation and photoaging as regulators of cytokines, matrix metalloproteinases (MMPs) and nuclear factor-kappa B (NF-κB). We evaluated the ability of the PPARα/γ activator 5,7-dimethoxyflavone (5,7-DMF) to inhibit ultraviolet B (UVB)-induced MMP expression in Hs68 human skin fibroblasts. Hs68 cells were treated with 5,7-DMF and then exposed to UVB irradiation. MMP expression, production and activity were determined by reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay and gelatin zymography. PPARα/γ expression, catalase expression, and mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1) and NF-κB signalling were evaluated by Western blot analysis. PPARα/γ activity was assessed with the GAL4/PPARα/γ transactivation assay. We found that 5,7-DMF strongly decreased MMP expression, production and activity. In addition, 5,7-DMF significantly increased PPARα/γ activation and catalase expression, thereby downregulating UVB-induced reactive oxygen species (ROS) production, ROS-induced MAPK signalling and downstream transcription factors. Finally, 5,7-DMF reduced IκBα phosphorylation, blocked NF-κB p65 nuclear translocation, strongly suppressed proinflammatory cytokines such as interleukin-6 (IL-6) and IL-8. 5,7-DMF prevents UVB-induced MMP expression by suppressing UVB-induced oxidative stress and age-related inflammation via NF-κB and MAPK/AP-1 pathways. Our findings suggest the usefulness of 5,7-DMF for preventing and treating skin photoaging. © 2011 John Wiley & Sons A/S.
Nuclear Explosion Monitoring History and Research and Development
NASA Astrophysics Data System (ADS)
Hawkins, W. L.; Zucca, J. J.
2008-12-01
Within a year after the nuclear detonations over Hiroshima and Nagasaki the Baruch Plan was presented to the newly formed United Nations Atomic Energy Commission (June 14, 1946) to establish nuclear disarmament and international control over all nuclear activities. These controls would allow only the peaceful use of atomic energy. The plan was rejected through a Security Council veto primarily because of the resistance to unlimited inspections. Since that time there have been many multilateral, and bilateral agreements, and unilateral declarations to limit or eliminate nuclear detonations. Almost all of theses agreements (i.e. treaties) call for some type of monitoring. We will review a timeline showing the history of nuclear testing and the more important treaties. We will also describe testing operations, containment, phenomenology, and observations. The Comprehensive Nuclear Test Ban Treaty (CTBT) which has been signed by 179 countries (ratified by 144) established the International Monitoring System global verification regime which employs seismic, infrasound, hydroacoustic and radionuclide monitoring techniques. The CTBT also includes on-site inspection to clarify whether a nuclear explosion has been carried out in violation of the Treaty. The US Department of Energy (DOE) through its National Nuclear Security Agency's Ground-Based Nuclear Explosion Monitoring R&D Program supports research by US National Laboratories, and universities and industry internationally to detect, locate, and identify nuclear detonations. This research program builds on the broad base of monitoring expertise developed over several decades. Annually the DOE and the US Department of Defense jointly solicit monitoring research proposals. Areas of research include: seismic regional characterization and wave propagation, seismic event detection and location, seismic identification and source characterization, hydroacoustic monitoring, radionuclide monitoring, infrasound monitoring, and data processing and analysis. Reports from the selected research projects are published in the proceedings of the annual Monitoring Research Review conference.
Department of Energy Operational Readiness Review for the Waste Isolation Pilot Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The U.S. Department of Energy (DOE) has completed an Operational Readiness Review (ORR) for the restart of Contact Handled (CH) waste emplacement at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The ORR team assessed the readiness of Nuclear Waste Partnership, LLC (NWP) to manage and perform receipt through CH waste emplacement, and associated waste handling and management activities, including the ability of the National TRU Program (NTP) to evaluate the waste currently stored at the WIPP site against the revised and enhanced Waste Acceptance Criteria (WAC). Field work for this review began on November 14, 2015more » and was completed on November 30, 2016. The DOE ORR was conducted in accordance with the Department of Energy Operational Readiness Review Implementation Plan for the Waste Isolation Pilot Plant, dated November 8, 2016, and DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities. The review activities included personnel interviews, record reviews, direct observation of operations and maintenance demonstrations, and observation of multiple operational and emergency drills/exercises. The DOE ORR also evaluated the adequacy of the contractor’s ORR (CORR) and the readiness of the DOE Carlsbad field Office (CBFO) to oversee the startup and execution of CH waste emplacement activities at the WIPP facility. The WIPP facility is categorized as a Hazard Category 2 DOE Nonreactor Nuclear Facility for all surface and Underground (UG) operations per DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. In addition, the WIPP experienced two events in February, 2014 that resulted in Accident Investigations being performed in accordance with the requirements of DOE Order 225.1B, Accident Investigations. Based upon the results of the accident investigations and hazard categorization of the facility, the team placed significant emphasis on the following areas: fire protection, emergency preparedness, radiological protection, nuclear safety, and operations. The identification of specific focus areas was not intended to diminish the importance of other areas of the review, but to ensure that these areas received a particularly thorough and in-depth evaluation due to their significance with respect to the safe operation of the facility.« less
Differential Sox10 Genomic Occupancy in Myelinating Glia
Lopez-Anido, Camila; Sun, Guannan; Koenning, Matthias; Srinivasan, Rajini; Hung, Holly A.; Emery, Ben; Keles, Sunduz; Svaren, John
2015-01-01
Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type-specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP-Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type-specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells, and are found within super-enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type-specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. PMID:25974668
NASA Astrophysics Data System (ADS)
Åberg Lindell, M.; Andersson, P.; Grape, S.; Håkansson, A.; Thulin, M.
2018-07-01
In addition to verifying operator declared parameters of spent nuclear fuel, the ability to experimentally infer such parameters with a minimum of intrusiveness is of great interest and has been long-sought after in the nuclear safeguards community. It can also be anticipated that such ability would be of interest for quality assurance in e.g. recycling facilities in future Generation IV nuclear fuel cycles. One way to obtain information regarding spent nuclear fuel is to measure various gamma-ray intensities using high-resolution gamma-ray spectroscopy. While intensities from a few isotopes obtained from such measurements have traditionally been used pairwise, the approach in this work is to simultaneously analyze correlations between all available isotopes, using multivariate analysis techniques. Based on this approach, a methodology for inferring burnup, cooling time, and initial fissile content of PWR fuels using passive gamma-ray spectroscopy data has been investigated. PWR nuclear fuels, of UOX and MOX type, and their gamma-ray emissions, were simulated using the Monte Carlo code Serpent. Data comprising relative isotope activities was analyzed with decision trees and support vector machines, for predicting fuel parameters and their associated uncertainties. From this work it may be concluded that up to a cooling time of twenty years, the 95% prediction intervals of burnup, cooling time and initial fissile content could be inferred to within approximately 7 MWd/kgHM, 8 months, and 1.4 percentage points, respectively. An attempt aiming to estimate the plutonium content in spent UOX fuel, using the developed multivariate analysis model, is also presented. The results for Pu mass estimation are promising and call for further studies.
2015-06-01
OF A CONTINUOUS WAVE LASER FOR RESONANCE IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS by Sunny G. Lau June 2015 Thesis...IONIZATION MASS SPECTROSCOPY ANALYSIS IN NUCLEAR FORENSICS 5. FUNDING NUMBERS 6. AUTHOR(S) Sunny G. Lau 7. PERFORMING ORGANIZATION NAME(S) AND...200 words) The application of resonance ionization mass spectroscopy (RIMS) to nuclear forensics involves the use of lasers to selectively ionize
Carlow, Chevonne E; Faultless, J Trent; Lee, Christine; Siddiqua, Mahbuba; Edge, Alison; Nassuth, Annette
2017-09-01
The highly conserved CBF pathway is crucial in the regulation of plant responses to low temperatures. Extensive analysis of Arabidopsis CBF proteins revealed that their functions rely on several conserved amino acid domains although the exact function of each domain is disputed. The question was what functions similar domains have in CBFs from other, overwintering woody plants such as Vitis, which likely have a more involved regulation than the model plant Arabidopsis. A total of seven CBF genes were cloned and sequenced from V. riparia and the less frost tolerant V. vinifera. The deduced species-specific amino acid sequences differ in only a few amino acids, mostly in non-conserved regions. Amino acid sequence comparison and phylogenetic analysis showed two distinct groups of Vitis CBFs. One group contains CBF1, CBF2, CBF3 and CBF8 and the other group contains CBF4, CBF5 and CBF6. Transient transactivation assays showed that all Vitis CBFs except CBF5 activate via a CRT or DRE promoter element, whereby Vitis CBF3 and 4 prefer a CRT element. The hydrophobic domains in the C-terminal end of VrCBF6 were shown to be important for how well it activates. The putative nuclear localization domain of Vitis CBF1 was shown to be sufficient for nuclear localization, in contrast to previous reports for AtCBF1, and also important for transactivation. The latter highlights the value of careful analysis of domain functions instead of reliance on computer predictions and published data for other related proteins. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhang, Li-Juan; Cai, Wan-Zhi; Luo, Jun-Yu; Zhang, Shuai; Wang, Chun-Yi; Lv, Li-Min; Zhu, Xiang-Zhen; Wang, Li; Cui, Jin-Jie
2017-01-01
Lygus pratensis (L.) is an important cotton pest in China, especially in the northwest region. Nymphs and adults cause serious quality and yield losses. However, the genetic structure and geographic distribution of L. pratensis is not well known. We analyzed genetic diversity, geographical structure, gene flow, and population dynamics of L. pratensis in northwest China using mitochondrial and nuclear sequence datasets to study phylogeographical patterns and demographic history. L. pratensis (n = 286) were collected at sites across an area spanning 2,180,000 km2, including the Xinjiang and Gansu-Ningxia regions. Populations in the two regions could be distinguished based on mitochondrial criteria but the overall genetic structure was weak. The nuclear dataset revealed a lack of diagnostic genetic structure across sample areas. Phylogenetic analysis indicated a lack of population level monophyly that may have been caused by incomplete lineage sorting. The Mantel test showed a significant correlation between genetic and geographic distances among the populations based on the mtDNA data. However the nuclear dataset did not show significant correlation. A high level of gene flow among populations was indicated by migration analysis; human activities may have also facilitated insect movement. The availability of irrigation water and ample cotton hosts makes the Xinjiang region well suited for L. pratensis reproduction. Bayesian skyline plot analysis, star-shaped network, and neutrality tests all indicated that L. pratensis has experienced recent population expansion. Climatic changes and extensive areas occupied by host plants have led to population expansion of L. pratensis. In conclusion, the present distribution and phylogeographic pattern of L. pratensis was influenced by climate, human activities, and availability of plant hosts.
2014-01-01
Background A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion. Conclusions 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi. PMID:25057298
Integrated Response Time Evaluation Methodology for the Nuclear Safety Instrumentation System
NASA Astrophysics Data System (ADS)
Lee, Chang Jae; Yun, Jae Hee
2017-06-01
Safety analysis for a nuclear power plant establishes not only an analytical limit (AL) in terms of a measured or calculated variable but also an analytical response time (ART) required to complete protective action after the AL is reached. If the two constraints are met, the safety limit selected to maintain the integrity of physical barriers used for preventing uncontrolled radioactivity release will not be exceeded during anticipated operational occurrences and postulated accidents. Setpoint determination methodologies have actively been developed to ensure that the protective action is initiated before the process conditions reach the AL. However, regarding the ART for a nuclear safety instrumentation system, an integrated evaluation methodology considering the whole design process has not been systematically studied. In order to assure the safety of nuclear power plants, this paper proposes a systematic and integrated response time evaluation methodology that covers safety analyses, system designs, response time analyses, and response time tests. This methodology is applied to safety instrumentation systems for the advanced power reactor 1400 and the optimized power reactor 1000 nuclear power plants in South Korea. The quantitative evaluation results are provided herein. The evaluation results using the proposed methodology demonstrate that the nuclear safety instrumentation systems fully satisfy corresponding requirements of the ART.
NASA Astrophysics Data System (ADS)
Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.
2007-04-01
We assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized) explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. We find that low yield weapons, which new nuclear powers are likely to construct, can produce 100 times as many fatalities and 100 times as much smoke from fires per kt yield as previously estimated in analyses for full scale nuclear wars using high-yield weapons, if the small weapons are targeted at city centers. A single "small" nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal). We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce" nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2007) show that the smoke would subsequently rise deep into the stratosphere due to atmospheric heating, and then might induce significant climatic anomalies on global scales. We also anticipate substantial perturbations of global ozone. While there are many uncertainties in the predictions we make here, the principal unknowns are the type and scale of conflict that might occur. The scope and severity of the hazards identified pose a significant threat to the global community. They deserve careful analysis by governments worldwide advised by a broad section of the world scientific community, as well as widespread public debate.
Manikandan, Ramar; Manikandan, Beulaja; Raman, Thiagarajan; Arunagirinathan, Koodalingam; Prabhu, Narayanan Marimuthu; Jothi Basu, Muthuramalingam; Perumal, Muthulakshmi; Palanisamy, Subramanian; Munusamy, Arumugam
2015-03-05
The present study was aimed at biosynthesis of silver nanoparticles (AgNPs) using ethanolic extract of rose (Rosa indica) petals and testing their potential antibacterial activity using selective human pathogenic microbes, anticancer activity using human colon adenocarcinoma cancer cell line HCT 15 as well as anti-inflammatory activity using rat peritoneal macrophages in vitro. The biologically synthesized AgNPs were also characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The characterized AgNPs showed an effective antibacterial activity against Gram negative (Escherichia coli, Klebsiella pneumoniae) than Gram positive (Streptococcus mutans, Enterococcus faecalis) bacteria. MTT assay, analysis of nuclear morphology, mRNA expression of Bcl-2, Bax and protein expression of caspase 3 as well as 9, indicated potential anticancer activity. In addition, green synthesized AgNPs also attenuated cytotoxicity, nuclear morphology and free radical generation (O2(-) and NO) by rat peritoneal macrophages in vitro. The results of our study show the potential green synthesis of silver nanoparticles in mitigating their toxicity while retaining their antibacterial activities. Copyright © 2014 Elsevier B.V. All rights reserved.
Decreased expression of peroxisome proliferator activated receptor gamma in cftr-/- mice.
Ollero, Mario; Junaidi, Omer; Zaman, Munir M; Tzameli, Iphigenia; Ferrando, Adolfo A; Andersson, Charlotte; Blanco, Paola G; Bialecki, Eldad; Freedman, Steven D
2004-08-01
Some of the pathological manifestations of cystic fibrosis are in accordance with an impaired expression and/or activity of PPARgamma. We hypothesized that PPARgamma expression is altered in tissues lacking the normal cystic fibrosis transmembrane regulator protein (CFTR). PPARgamma mRNA levels were measured in colonic mucosa, ileal mucosa, adipose tissue, lung, and liver from wild-type and cftr-/- mice by quantitative RT-PCR. PPARgamma expression was decreased twofold in CFTR-regulated tissues (colon, ileum, and lung) from cftr-/- mice compared to wild-type littermates. In contrast, no differences were found in fat and liver. Immunohistochemical analysis of PPARgamma in ileum and colon revealed a predominantly nuclear localization in wild-type mucosal epithelial cells while tissues from cftr-/- mice showed a more diffuse, lower intensity labeling. A significant decrease in PPARgamma expression was confirmed in nuclear extracts of colon mucosa by Western blot analysis. In addition, binding of the PPARgamma/RXR heterodimer to an oligonucletotide containing a peroxisome proliferator responsive element (PPRE) was also decreased in colonic mucosa extracts from cftr-/- mice. Treatment of cftr-/- mice with the PPARgamma ligand rosiglitazone restored both the nuclear localization and binding to DNA, but did not increase RNA levels. We conclude that PPARgamma expression in cftr-/- mice is downregulated at the RNA and protein levels and its function diminished. These changes may be related to the loss of function of CFTR and may be relevant to the pathogenesis of metabolic abnormalities associated with cystic fibrosis in humans. Copyright 2004 Wiley-Liss, Inc.
Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boring, Ronald L.; Joe, Jeffrey C.
2015-02-01
For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative—intendedmore » to catalog final products—rather than formative—intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.« less
NASA Astrophysics Data System (ADS)
Lasche, George; Coldwell, Robert; Metzger, Robert
2017-09-01
A new application (known as "VRF", or "Visual RobFit") for analysis of high-resolution gamma-ray spectra has been developed using non-linear fitting techniques to fit full-spectrum nuclide shapes. In contrast to conventional methods based on the results of an initial peak-search, the VRF analysis method forms, at each of many automated iterations, a spectrum-wide shape for each nuclide and, also at each iteration, it adjusts the activities of each nuclide, as well as user-enabled parameters of energy calibration, attenuation by up to three intervening or self-absorbing materials, peak width as a function of energy, full-energy peak efficiency, and coincidence summing until no better fit to the data can be obtained. This approach, which employs a new and significantly advanced underlying fitting engine especially adapted to nuclear spectra, allows identification of minor peaks that are masked by larger, overlapping peaks that would not otherwise be possible. The application and method are briefly described and two examples are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Jian-Ching; Rebrin, Igor; Klichko, Vladimir
2010-10-08
Research highlights: {yields} Cytochrome c oxidase loses catalytic activity during the aging process. {yields} Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. {yields} Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H{sub 2}O{sub 2} generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-,more » and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.« less
Chang, Ji Suk; Huypens, Peter; Zhang, Yubin; Black, Chelsea; Kralli, Anastasia; Gettys, Thomas W
2010-06-04
Peroxisome proliferator-activated receptor gamma co-activator-1alpha (PGC-1alpha) plays a central role in the regulation of cellular energy metabolism and metabolic adaptation to environmental and nutritional stimuli. We recently described a novel, biologically active splice variant of PGC-1alpha (NT-PGC-1alpha, amino acids 1-270) that retains the ability to interact with and transactivate nuclear hormone receptors through its N-terminal transactivation domain. Whereas PGC-1alpha is an unstable nuclear protein sensitive to ubiquitin-mediated targeting to the proteasome, NT-PGC-1alpha is relatively stable and predominantly cytoplasmic, suggesting that its ability to interact with and activate nuclear receptors and transcription factors is dependent upon regulated access to the nucleus. We provide evidence that NT-PGC-1alpha interacts with the nuclear exportin, CRM1, through a specific leucine-rich domain (nuclear export sequence) that regulates its export to the cytoplasm. The nuclear export of NT-PGC-1alpha is inhibited by protein kinase A-dependent phosphorylation of Ser-194, Ser-241, and Thr-256 on NT-PGC-1alpha, which effectively increases its nuclear concentration. Using site-directed mutagenesis to prevent or mimic phosphorylation at these sites, we show that the transcriptional activity of NT-PGC-1alpha is regulated in part through regulation of its subcellular localization. These findings suggest that the function of NT-PGC-1alpha as a transcriptional co-activator is regulated by protein kinase A-dependent inhibition of CRM1-mediated export from the nucleus.
Management of Naturally Occurring Radioactive Materials (NORM) in Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baweja, Anar S.; Tracy, Bliss L.
2008-08-07
In Canada, nuclear and radiological regulatory responsibilities are shared between the provinces/territories and the federal government. The Canadian Nuclear Safety Commission (CNSC) regulates nuclear fuel cycle materials and man-made radionuclides under the Nuclear Safety and Control Act (2000). The provinces and territories regulate NORM arising from industrial activities, not involving the nuclear fuel cycle materials. Present guideline--Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM)--was published in 2000 in order to bring uniformity to the management of NORM-related procedures to provide adequate radiation protection for workers and the general public. The basic premise of these guidelines is thatmore » the NORM-related activities should not be posing any greater hazard than those activities regulated under the Nuclear Safety and Control Act; these concepts are described in this paper.« less
Protoparvovirus Knocking at the Nuclear Door.
Mäntylä, Elina; Kann, Michael; Vihinen-Ranta, Maija
2017-10-02
Protoparvoviruses target the nucleus due to their dependence on the cellular reproduction machinery during the replication and expression of their single-stranded DNA genome. In recent years, our understanding of the multistep process of the capsid nuclear import has improved, and led to the discovery of unique viral nuclear entry strategies. Preceded by endosomal transport, endosomal escape and microtubule-mediated movement to the vicinity of the nuclear envelope, the protoparvoviruses interact with the nuclear pore complexes. The capsids are transported actively across the nuclear pore complexes using nuclear import receptors. The nuclear import is sometimes accompanied by structural changes in the nuclear envelope, and is completed by intranuclear disassembly of capsids and chromatinization of the viral genome. This review discusses the nuclear import strategies of protoparvoviruses and describes its dynamics comprising active and passive movement, and directed and diffusive motion of capsids in the molecularly crowded environment of the cell.
Nuclear CD38 in retinoic acid-induced HL-60 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalcintepe, Leman; Albeniz, Isil; Adin-Cinar, Suzan
2005-02-01
The cell surface antigen, CD38, is a 45-kDa transmembrane protein which is predominantly expressed on hematopoietic cells during differentiation. As a bifunctional ectoenzyme, it catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD{sup +} and hydrolysis of either NAD{sup +} or cADPR to ADP-ribose. All-trans-retinoic acid (RA) is a potent and specific inducer of CD38 in myeloid cells. In this report, we demonstrate that the nuclei of RA-treated human HL-60 myeloblastic cells reveal enzymatic activities inherent to CD38. Thus, GDP-ribosyl cyclase and NAD{sup +} glycohydrolase activities in the nuclear fraction increased very significantly in response to incubation with RA. Withmore » Western blotting, we detected in the nuclear protein fraction from RA-treated cells a {approx}43-kDa protein band which was reactive with the CD38-specific monoclonal antibody OKT10. The expression of CD38 in HL-60 nuclei was also shown with FACScan analysis. RA treatment gave rise to an increase in in vitro ADP ribosylation of the {approx}43-kDa nuclear protein. Moreover, nuclei isolated from RA-treated HL-60 cells revealed calcium release in response to cADPR, whereas a similar response was not observed in control nuclei. These results suggest that CD38 is expressed in HL-60 cell nuclei during RA-induced differentiation.« less
A Task Analysis of Selected Nuclear Technician Occupations.
ERIC Educational Resources Information Center
Braden, Paul V.; Paul, Krishan K.
A task analysis of nuclear technician occupations in selected organizations in the Southern Interstate Nuclear Board Region was conducted as part of a research and development project leading to a nuclear technician manpower information system for these 17 states. In order to answer 11 questions focusing on task performance frequency and…
Hamirally, Sofia; Kamil, Jeremy P; Ndassa-Colday, Yasmine M; Lin, Alison J; Jahng, Wan Jin; Baek, Moon-Chang; Noton, Sarah; Silva, Laurie A; Simpson-Holley, Martha; Knipe, David M; Golan, David E; Marto, Jarrod A; Coen, Donald M
2009-01-01
The nuclear lamina is a major obstacle encountered by herpesvirus nucleocapsids in their passage from the nucleus to the cytoplasm (nuclear egress). We found that the human cytomegalovirus (HCMV)-encoded protein kinase UL97, which is required for efficient nuclear egress, phosphorylates the nuclear lamina component lamin A/C in vitro on sites targeted by Cdc2/cyclin-dependent kinase 1, the enzyme that is responsible for breaking down the nuclear lamina during mitosis. Quantitative mass spectrometry analyses, comparing lamin A/C isolated from cells infected with viruses either expressing or lacking UL97 activity, revealed UL97-dependent phosphorylation of lamin A/C on the serine at residue 22 (Ser(22)). Transient treatment of HCMV-infected cells with maribavir, an inhibitor of UL97 kinase activity, reduced lamin A/C phosphorylation by approximately 50%, consistent with UL97 directly phosphorylating lamin A/C during HCMV replication. Phosphorylation of lamin A/C during viral replication was accompanied by changes in the shape of the nucleus, as well as thinning, invaginations, and discrete breaks in the nuclear lamina, all of which required UL97 activity. As Ser(22) is a phosphorylation site of particularly strong relevance for lamin A/C disassembly, our data support a model wherein viral mimicry of a mitotic host cell kinase activity promotes nuclear egress while accommodating viral arrest of the cell cycle.
Breast Tumorigenesis: Interaction of Two Signaling Pathways- -TGF- -beta versus Estrogen Receptor.
1997-08-01
on the functional role of Smad3 and Smad4 as tumor suppressors in mediating the TGF-B signal in transactivating downstream target genes. We have...extended our analysis of the biological activity of the Smad proteins in TGF-B signaling by studying the nuclear activity of Smad2, Smad3 and Sliad4...groups using in vitro phosphorylation assays. Taken together these data suggest that Smad2 and Smad3 are inducibly phosphorylated in response to TGF-P3 and
Bidinosti, C P; Kravchuk, I S; Hayden, M E
2005-11-01
We provide an exact expression for the magnetic field produced by cylindrical saddle-shaped coils and their ideal shield currents in the low-frequency limit. The stream function associated with the shield surface current is also determined. The results of the analysis are useful for the design of actively shielded radio-frequency (RF) coils. Examples pertinent to very low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimoto, Arata, E-mail: anishimo@yamaguchi-u.ac.jp; Kugimiya, Naruji; Hosoyama, Toru
2013-08-30
Highlights: •JAB1 interacted with unphosphorylated STAT3 in the nucleus. •JAB1 knockdown tended to increase nuclear STAT3 expression. •JAB1 knockdown significantly decreased unphosphorylated STAT3 DNA-binding activity. •JAB1 knockdown significantly decreased MDR1, NANOG, and VEGF expressions. •Nuclear JAB1, but not nuclear STAT3, correlated with STAT3 DNA-binding activity. -- Abstract: Recent studies have revealed that unphosphorylated STAT3 forms a dimer, translocates to the nucleus, binds to the STAT3 binding site, and activates the transcription of STAT3 target genes, thereby playing an important role in oncogenesis in addition to phosphorylated STAT3. Among signaling steps of unphosphorylated STAT3, nuclear translocation and target DNA-binding are themore » critical steps for its activation. Therefore, elucidating the regulatory mechanism of these signaling steps of unphosphorylated STAT3 is a potential step in the discovery of a novel cancer drug. However, the mechanism of unphosphorylated STAT3 binding to the promoter of target genes remains unclear. In this study, we focused on Jun activation domain-binding protein 1 (JAB1) as a candidate protein that regulates unphosphorylated STAT3 DNA-binding activity. Initially, we observed that both unphosphorylated STAT3 and JAB1 existed in the nucleus of human colon cancer cell line COLO205 at the basal state (no cytokine stimulation). On the other hand, phosphorylated STAT3 did not exist in the nucleus of COLO205 cells at the basal state. Immunoprecipitation using nuclear extract of COLO205 cells revealed that JAB1 interacted with unphosphorylated STAT3. To investigate the effect of JAB1 on unphosphorylated STAT3 activity, RNAi studies were performed. Although JAB1 knockdown tended to increase nuclear STAT3 expression, it significantly decreased unphosphorylated STAT3 DNA-binding activity. Subsequently, JAB1 knockdown significantly decreased the expression levels of MDR1, NANOG, and VEGF, which are STAT3 target genes. Furthermore, the expression level of nuclear JAB1, but not nuclear STAT3, correlated with unphosphorylated STAT3 DNA-binding activity between COLO205 and LoVo cells. Taken together, these results suggest that nuclear JAB1 positively regulates unphosphorylated STAT3 DNA-binding activity through protein–protein interaction in human colon cancer cell line COLO205.« less
76 FR 39906 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... collection is required: There is a one-time application for any licensee wishing to renew its nuclear power... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2011-0130] Agency Information Collection Activities: Proposed Collection; Comment Request AGENCY: Nuclear Regulatory Commission (NRC). ACTION: Notice of pending...
Multidimensional Analysis of Nuclear Detonations
2015-09-17
Features on the nuclear weapons testing films because of the expanding and emissive nature of the nuclear fireball. The use of these techniques to produce...Treaty (New Start Treaty) have reduced the acceptable margins of error. Multidimensional analysis provides the modern approach to nuclear weapon ...scientific community access to the information necessary to expand upon the knowledge of nuclear weapon effects. This data set has the potential to provide
Kang, Seok Yong; Jung, Hyo Won; Lee, Mi-Young; Lee, Hye Won; Chae, Seong Wook; Park, Yong-Ki
2014-08-01
To investigate the anti-inflammatory activities of the semen extract of Cuscuta chinensis Lam. (Cuscutae Semen; CS) on the production of inflammatory mediators, nitric oxide (NO), prostaglandin 2 (PGE2), and proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated BV-2 microglia. BV-2 cells were treated with CS extract for 30 min, and then stimulated with LPS or without for 24 h. The levels of NO, PGE2 and proinflammatory cytokines were measured by Griess assay and ELISA. The expression of inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 mRNA and protein was determined by RT-PCR and Western blot, respectively. The phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK), and the nuclear expression of nuclear factor (NF)-κB p65 were investigated by Western blot analysis. CS extract significantly decreased the production of NO and PGE2 by suppressing the expression of iNOS and COX-2 in activated microglia. CS extract decreased the production of TNF-α, IL-1β, and IL-6 by down-regulating their transcription levels. In addition, CS extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of NF-κB p65 in activated microglia. These results indicate that CS extract is capable of suppressing the inflammatory response by microglia activation, suggesting that CS extract has potential in the treatment of brain inflammation. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Bachala, Daisy; El-Refai, Nivine; Greenfield, Edward; Aminoshariae, Anita; Mickel, Andre
2018-06-01
To date, no study has investigated the antiresorptive property of lunasin. Hence, the present study aimed to assess the ability of lunasin to inhibit the osteoclast formation using RAW 264.7 cells. We hypothesized that lunasin is able to inhibit osteoclast formation. In the present study, the murine monocytic cell line RAW 264.7 was induced to differentiate into mature osteoclasts in the presence of recombinant receptor activator of nuclear factor kappa-B ligand. Tartrate-resistant acid phosphatase, a marker of osteoclasts, was used to identify osteoclasts. Cell lines were divided into different groups and exposed to different concentrations of 50 μmol/L, 75 μmol/L, and 100 μmol/L active and inactive lunasin. The control group was RAW 264.7 cells with receptor activator of nuclear factor kappa-B ligand. Tartrate-resistant acid phosphatase-positive cells of 3 or more nuclei, indicative of mature osteoclasts, were counted by 3 observers. The mean number of the data collected was analyzed using 1-way analysis of variance and the multiple comparison post hoc Bonferroni correction. There was a significant difference in the reduction of osteoclast formation in all the active lunasin groups (P < .001) compared with the control group and the inactive lunasin group (P < .001). Considering the suppressive effect of lunasin on osteoclastogenesis, the use of lunasin as a potential antiresorptive agent can be evaluated in future studies. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Goh, Fera Y; Upton, Nadine; Guan, Shouping; Cheng, Chang; Shanmugam, Muthu K; Sethi, Gautam; Leung, Bernard P; Wong, W S Fred
2012-03-15
Persistent activation of nuclear factor-κB (NF-κB) has been associated with the development of asthma. Fisetin (3,7,3',4'-tetrahydroxyflavone), a naturally occurring bioactive flavonol, has been shown to inhibit NF-κB activity. We hypothesized that fisetin may attenuate allergic asthma via negative regulation of the NF-κB activity. Female BALB/c mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Fisetin dose-dependently inhibited ovalbumin-induced increases in total cell count, eosinophil count, and IL-4, IL-5 and IL-13 levels recovered in bronchoalveolar lavage fluid. It attenuated ovalbumin-induced lung tissue eosinophilia and airway mucus production, mRNA expression of adhesion molecules, chitinase, IL-17, IL-33, Muc5ac and inducible nitric oxide synthase in lung tissues, and airway hyperresponsiveness to methacholine. Fisetin blocked NF-κB subunit p65 nuclear translocation and DNA-binding activity in the nuclear extracts from lung tissues of ovalbumin-challenged mice. In normal human bronchial epithelial cells, fisetin repressed TNF-α-induced NF-κB-dependent reporter gene expression. Our findings implicate a potential therapeutic value of fisetin in the treatment of asthma through negative regulation of NF-κB pathway. Copyright © 2012 Elsevier B.V. All rights reserved.
Shi, Yiwei; Wang, Gang; Li, Jinyuan; Yu, Wenli
2017-12-06
Anesthesia neurotoxicity in developing brain has gained increasing attention. However, knowledge regarding its mitigating strategies remains scant. Sevoflurane, a commonly used anesthetic, is responsible for learning and memory deficits in neonates. Molecular hydrogen is reported to be a potential neuroprotective agent because of its antioxidative and anti-inflammatory activities. This study aimed to investigate the effect of hydrogen gas on sevoflurane neurotoxicity. The newborn rats were treated with sevoflurane and/or hydrogen gas for 2 h. Spatial recognition memory and fear memory were determined by Y-maze and fear conditioning tests at 10 weeks of age. Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and proinflammatory cytokine levels were detected using western blot analysis. The data showed that the spatial recognition memory and fear memory of the rats treated with sevoflurane decreased compared with the control, and the cognitive function of the rats treated with sevoflurane and hydrogen gas significantly increased in comparison with treatment with sevoflurane alone. Moreover, hydrogen gas suppressed NF-κB phosphorylation and nuclear translocation and reduced the production of interleukin-1β, interleukin-6, and tumor necrosis factor-α following sevoflurane administration. Thus, the results proposed that hydrogen gas might protect against sevoflurane neurotoxicity by inhibiting NF-κB activation and proinflammatory cytokine release, providing a novel therapeutic strategy for anesthesia neurotoxicity.