Leung, Carol S; Haigh, Tracey A; Mackay, Laura K; Rickinson, Alan B; Taylor, Graham S
2010-02-02
Whereas exogenously acquired proteins are the major source of antigens feeding the MHC class II pathway in antigen-presenting cells, some endogenously expressed antigens also access that pathway but the rules governing such access are poorly understood. Here we address this using Epstein-Barr virus (EBV)-coded nuclear antigen EBNA1, a protein naturally expressed in EBV-infected B lymphoblastoid cell lines (LCLs) and a source of multiple CD4(+) T cell epitopes. Using CD4(+) T cell clones against three indicator epitopes, we find that two epitopes are weakly displayed on the LCL surface whereas the third is undetectable, a pattern of limited epitope presentation that is maintained even when nuclear expression of EBNA1 is induced to high supraphysiological levels. Inhibitor and siRNA studies show that, of the two epitopes weakly presented under these conditions, one involves macroautophagy, and the second involves antigen delivery to the MHC II pathway by another endogenous route. In contrast, when EBNA1 is expressed as a cytoplasmic protein, all three CD4 epitopes are processed and presented much more efficiently, and all involve macroautophagy. We conclude that EBNA1's nuclear location limits its accessibility to the macroautophagy pathway and, in consequence, limits the level and range of EBNA1 CD4 epitopes naturally displayed on the infected cell surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakada, Ryohei; Hirano, Hidemi; Structural Biology Research Center, Graduate School of Science, Nagoya University
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is expressed in every EBV-positive tumor and is essential for the maintenance, replication, and transcription of the EBV genome in the nucleus of host cells. EBNA1 is a serine phosphoprotein, and it has been shown that phosphorylation of S385 in the nuclear localization signal (NLS) of EBNA1 increases the binding affinity to the nuclear import adaptor importin-α1 as well as importin-α5, and stimulates nuclear import of EBNA1. To gain insights into how phosphorylation of the EBNA1 NLS regulates nuclear import, we have determined the crystal structures of two peptide complexes of importin-α1: onemore » with S385-phosphorylated EBNA1 NLS peptide, determined at 2.0 Å resolution, and one with non-phosphorylated EBNA1 NLS peptide, determined at 2.2 Å resolution. The structures show that EBNA1 NLS binds to the major and minor NLS-binding sites of importin-α1, and indicate that the binding affinity of the EBNA1 NLS to the minor NLS-binding site could be enhanced by phosphorylation of S385 through electrostatic interaction between the phosphate group of phospho-S385 and K392 of importin-α1 (corresponding to R395 of importin-α5) on armadillo repeat 8. - Highlights: • Nuclear import of EBNA1 can be regulated by phosphorylation of NLS. • Crystal structures of importin-α1 bound to the NLS peptides of EBNA1 are solved. • Structures provide insights into how phosphorylation can regulate nuclear import.« less
Klein, G; Falk, L; Falk, K
1978-01-01
Herpesvirus papio(HVP)-carrying baboon lymphoblastoid lines do not express a nuclear antigen like the Epstein-Barr virus(EBV)-determined nuclear antigen (EBNA), as judged by in situ anticomplement fluorescence staining, although the carry multiple viral genomes and, in the case of producerlines, early antigen (EA) and viral capsid antigen (VCA) that cross-react with the corresponding human EBV-determined antigens. To test whether the lack of in situ nuclear antigen expression is a property innate to the baboon virus or the baboon cell, nonproducer HVP-carrying baboon lymphoid cells of the 26 CB-1 line were superinfected with two human EBV strains. B95-8-derived EBV induced brilliant EBNA staining, proving that the baboon lymphoid cell was competent to synthesize EBNA. In the mirror experiment, HVP derived from the 9B or the 18C baboon line was added to the EBV-carrying Raji line, the EBV-negative Ramos and BJAB lines and the HVP-carrying nonproducer 26 CB-1 line, respectively. HVP induced EA and VCA in Raji, and EA in BJAB and 26 CB-1. EBNA was not induced in any of the three EBNA-negative lines, BJAB, Ramos and 26 CB-1. It is concluded that the lack of in situ nuclear staining in HVP-carrying baboon lines is a HVP-associated property and is not due to any innate inability of the baboon lymphoid cell to synthesize an antigen of the EBNA type.
Ohno, S; Luka, J; Falk, L; Klein, G
1977-12-15
In agreement with the findings of previous authors, we could not detect a virally determined nuclear antigen in Herpesvirus papio (HVP)-transformed baboon lymphoid lines by anticomplementary staining in situ, as for EBNA. However, by means of our recently developed acid-fixed nuclear binding technique an EBNA-like antigen could be readily demonstrated, after extraction from both producer and non-producer lines. We propose to designate the antigen as HUPNA. It can be detected by a human anti-EBNA antibody, suggesting cross-reactivity, if not identity, between EBNA and HUPNA. HVP-DNA carrying non-producer lines, negative for in situ ACIF stainability but capable of yielding HUPNA by the nuclear binding technique, can be superinfected with EBV, with brilliant EBNA expression as the result, suggesting that the defective in situ staining is a property associated with the baboon HVP, rather than the baboon lymphoid cell per se.
Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sun Young; Song, Kyung-A; Samsung Biomedical Research Institute
Highlights: Black-Right-Pointing-Pointer Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. Black-Right-Pointing-Pointer A small molecule and a peptide as EBNA1 dimerization inhibitors identified. Black-Right-Pointing-Pointer Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. Black-Right-Pointing-Pointer Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)'s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation.more » In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459-607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-J{kappa} binding to the J{kappa} site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560-574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated with EBNA1 in vitro, and repressed EBNA1-dependent transcription in vivo. Collectively, this study describes two novel inhibitors of EBNA1 dimerization. This study demonstrates that EBNA1 homodimerization can be effectively targeted by a small molecule or peptide.« less
Yamazaki, M; Kitamura, R; Kusano, S; Eda, H; Sato, S; Okawa-Takatsuji, M; Aotsuka, S; Yanagi, K
2005-03-01
Associations of Epstein-Barr virus (EBV) and autoimmune diseases have been hypothesized. We have analysed IgG antibodies to EBV nuclear antigen (EBNA)-2 in sera from Japanese patients with autoimmune systemic connective tissue diseases (CTD), exemplified by systemic lupus erythematosus (SLE), primary Sjogren's syndrome (SS), rheumatoid arthritis (RA), systemic sclerosis (SSc) and secondary SS (classical CTDs complicated with SS). An enzyme-linked immunosorbent assay (ELISA) which uses glutathione-S-transferase polypeptides fused to EBV nuclear antigen (EBNA)-2 and EBNA-1 was developed. Ratios of IgG antibody reactivity to whole IgG concentrations of sera were calculated to normalize EBNA-2 and EBNA-1 antibody levels to the hypergammaglobulinaemia that occurs in CTD. The ELISA optical density OD(450) readings of IgG antibodies to both the amino-terminal aa 1-116 of EBNA-2 and carboxyl-terminal aa 451-641 of EBNA-1 were elevated significantly in patients with SLE, primary SS, RA, SSc and secondary SS when compared to EBNA-1. The OD readings were divided by serum IgG concentrations to normalize for the hypergammaglobulinaemia. The specific levels of IgG antibodies to the amino-terminal region of EBNA-2 were elevated in patients with SLE, primary SS or RA, as well as those with secondary SS complicated with SLE or RA. The EBNA-2 amino-terminal region contains a polyproline tract and a proline-rich sequence and has considerable amino acid sequence homology with many cellular proline-rich proteins. High ratios of EBNA-2 aa 1-116 to EBNA-1 aa 451-641 IgG antibody levels which probably suggest reactivation of EBV latent infection were associated significantly with pulmonary involvement in SS patients. These results are consistent with the hypothesis that the sequence similarity between the amino-terminal region of EBNA-2 and proline-rich cellular proteins is associated with pathogenesis in a subpopulation of CTD patients, possibly by the molecular mimicry-epitope shift mechanism.
Ito, Sayuri; Gotoh, Eisuke; Ozawa, Shigeru; Yanagi, Kazuo
2002-10-01
Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA-1), which binds to both the EBV origin of replication (oriP) and metaphase chromosomes, is essential for the replication/retention and segregation/partition of oriP-containing plasmids. Here the chromosomal localization of EBNA-1 fused to green fluorescent protein (GFP-EBNA-1) is examined by confocal microscopy combined with a 'premature chromosome condensation' (PCC) procedure. Analyses show that GFP-EBNA-1 expressed in living cells that lack oriP plasmids is associated with cellular chromatin that has been condensed rapidly by the PCC procedure into identifiable forms that are unique to each phase of interphase as well as metaphase chromosomes. Studies of cellular chromosomal DNAs labelled with BrdU or Cy3-dUTP indicate that GFP-EBNA-1 colocalizes highly with the labelled, newly replicated regions of interphase chromatin in cells. These results suggest that EBNA-1 is associated not only with cellular metaphase chromosomes but also with condensing chromatin/chromosomes and probably with interphase chromatin, especially with its newly replicated regions.
Schmitz, H
1981-01-01
An improved fixation method for antigen detection in lymphoblastoid cells is described. Herpesvirus papio nuclear antigen (HUPNA) could be stained in several transformed lymphoid cell lines by anti-complement immunofluorescence (ACIF). Antibody to HUPNA was detected in many human sera containing antibodies to Epstein-Barr virus capsid and nuclear antigen (EBNA). Rheumatoid arthritis sera showed a high incidence of both anti-EBNA and anti-HUPNA antibodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determinedmore » by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.« less
Al Sidairi, Hilal; Binkhamis, Khalifa; Jackson, Colleen; Roberts, Catherine; Heinstein, Charles; MacDonald, Jimmy; Needle, Robert; Hatchette, Todd F; LeBlanc, Jason J
2017-11-01
Serology remains the mainstay for diagnosis of Epstein-Barr virus (EBV) infection. This study compared two automated platforms (BioPlex 2200 and Architect i2000SR) to test three EBV serological markers: viral capsid antigen (VCA) immunoglobulins of class M (IgM), VCA immunoglobulins of class G (IgG) and EBV nuclear antigen-1 (EBNA-1) IgG. Using sera from 65 patients at various stages of EBV disease, BioPlex demonstrated near-perfect agreement for all EBV markers compared to a consensus reference. The agreement for Architect was near-perfect for VCA IgG and EBNA-1 IgG, and substantial for VCA IgM despite five equivocal results. Since the majority of testing in our hospital was from adults with EBNA-1 IgG positive results, post-implementation analysis of an EBNA-based algorithm showed advantages over parallel testing of the three serologic markers. This small verification demonstrated that both automated systems for EBV serology had good performance for all EBV markers, and an EBNA-based testing algorithm is ideal for an adult hospital.
Asymmetric Arginine dimethylation of Epstein-Barr virus nuclear antigen 2 promotes DNA targeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gross, Henrik; Barth, Stephanie; Palermo, Richard D.
The Epstein-Barr virus (EBV) growth-transforms B-lymphocytes. The virus-encoded nuclear antigen 2 (EBNA2) is essential for transformation and activates gene expression by association with DNA-bound transcription factors such as RBPJkappa (CSL/CBF1). We have previously shown that EBNA2 contains symmetrically dimethylated Arginine (sDMA) residues. Deletion of the RG-repeat results in a reduced ability of the virus to immortalise B-cells. We now show that the RG repeat also contains asymmetrically dimethylated Arginines (aDMA) but neither non-methylated (NMA) Arginines nor citrulline residues. We demonstrate that only aDMA-containing EBNA2 is found in a complex with DNA-bound RBPJkappa in vitro and preferentially associates with the EBNA2-responsivemore » EBV C, LMP1 and LMP2A promoters in vivo. Inhibition of methylation in EBV-infected cells results in reduced expression of the EBNA2-regulated viral gene LMP1, providing additional evidence that methylation is a prerequisite for DNA-binding by EBNA2 via association with the transcription factor RBPJkappa.« less
Szymula, Agnieszka; Palermo, Richard D; Bayoumy, Amr; Groves, Ian J; Ba Abdullah, Mohammed; Holder, Beth; White, Robert E
2018-02-01
The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells.
Szymula, Agnieszka; Palermo, Richard D.; Bayoumy, Amr; Groves, Ian J.
2018-01-01
The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1). EBNA-LP-mutant EBVs established lymphoblastoid cell lines (LCLs) from adult B cells at reduced efficiency, but not from umbilical cord B cells, which died approximately two weeks after infection. Adult B cells only established EBNA-LP-null LCLs with a memory (CD27+) phenotype. Quantitative PCR analysis of virus gene expression after infection identified both an altered ratio of the EBNA genes, and a dramatic reduction in transcript levels of both EBNA2-regulated virus genes (LMP1 and LMP2) and the EBNA2-independent EBER genes in the first 2 weeks. By 30 days post infection, LPKO transcription was the same as wild-type EBV. In contrast, EBNA2-regulated cellular genes were induced efficiently by LPKO viruses. Chromatin immunoprecipitation revealed that EBNA2 and the host transcription factors EBF1 and RBPJ were delayed in their recruitment to all viral latency promoters tested, whereas these same factors were recruited efficiently to several host genes, which exhibited increased EBNA2 recruitment. We conclude that EBNA-LP does not simply co-operate with EBNA2 in activating gene transcription, but rather facilitates the recruitment of several transcription factors to the viral genome, to enable transcription of virus latency genes. Additionally, our findings suggest that EBNA-LP is essential for the survival of EBV-infected naïve B cells. PMID:29462212
Epstein–Barr virus latent genes
Kang, Myung-Soo; Kieff, Elliott
2015-01-01
Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized. PMID:25613728
Schlager, S; Speck, S H; Woisetschläger, M
1996-06-01
The purpose of this study was to gain insights into the regulation of Epstein-Barr virus (EBV) gene transcription during the establishment of viral latency in B cells. During the early stages of EBV infection in B lymphocytes, transcription of six viral nuclear antigens (EBNAs) is initiated from an early promoter (Wp). This is followed by a switch of promoter usage to an upstream promoter, Cp, whose activity is autoregulated by both EBNA1 and EBNA2. Previously it was demonstrated that infection of primary B cells with EBNA2-negative (EBNA2-) EBNA4-mutant (EBNA4mut) virus resulted only in the expression of mutant EBNA4 protein and failure to express the other EBNA gene products (C. Rooney H. G. Howe, S. H. Speck, and G. Miller, J. Virol. 63:1531-1539, 1989). We extended this research to demonstrate that Wp-to-Cp switching did not occur upon infection of primary B cells with an EBNA2- EBNA4mut virus (M. Woisetschlaeger, X. W. Jin, C. N. Yandara, L. A. Furmanski, J. L. Strominger, and S. H. Speck, Proc. Natl. Acad. Sci. USA 88:3942-3946, 1991). Further characterization of this phenomenon led to the identification of an EBNA2-dependent enhancer upstream of Cp. On the basis of these data, a model was proposed in which initial transcription from Wp gives rise to the expression of EBNA2 and EBNA4, and then transcription is upregulated from Cp via the EBNA2- dependent enhancer (Woisetschlaeger et al., as noted above). Implicit in this model is that transcription of the EBNA1 and EBNA3a to -3c genes is dependent on the switch from Wp to Cp, since primary cells infected with EBNA2- EBNA4mut virus fail to switch and also fail to express these viral antigens. Here we critically evaluate this model and demonstrate, in contrast to the predictions of the model, that transcription of both the EBNA1 and EBNA2 genes precedes activation of Cp. Furthermore, the level of EBNA1 gene transcription was strongly reduced in primary B cells infected with EBNA2- EBNA4mut virus compared with that of cells infected with wild-type virus. Switching to Cp, as well as EBNA1 gene transcription, was observed upon infection of EBV-negative Burkitt's lymphoma (BL) cell lines with EBNA2- EBNA4mut virus, thus establishing a correlation between early EBNA1 gene transcription and upregulation of transcription initiation from Cp. However, in EBV-negative BL cell lines infected with EBNA2- EBNA4mut virus, transcription of the EBNA1 gene at early time points postinfection initiated from Qp, the EBNA1 gene promoter active in group I BL cells (B. C. Schaefer, J. L. Strominger, and S. H. Speck, Proc. Natl. Acad. Sci. USA 92:10565-10569, 1995), rather than from Wp. The data support a model in which EBNA1 plays an important role in the cascade of events leading to successful switching from Wp to Cp and subsequent immortalization of the infected B cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih
Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of amore » plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.« less
Hebner, Christy; Lasanen, Julie; Battle, Scott; Aiyar, Ashok
2003-07-05
Epstein-Barr virus (EBV) and the closely related Herpesvirus papio (HVP) are stably replicated as episomes in proliferating latently infected cells. Maintenance and partitioning of these viral plasmids requires a viral sequence in cis, termed the family of repeats (FR), that is bound by a viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). Upon binding FR, EBNA1 maintains viral genomes in proliferating cells and activates transcription from viral promoters required for immortalization. FR from either virus encodes multiple binding sites for the viral maintenance protein, EBNA1, with the FR from the prototypic B95-8 strain of EBV containing 20 binding sites, and FR from HVP containing 8 binding sites. In addition to differences in the number of EBNA1-binding sites, adjacent binding sites in the EBV FR are typically separated by 14 base pairs (bp), but are separated by 10 bp in HVP. We tested whether the number of binding sites, as well as the distance between adjacent binding sites, affects the function of EBNA1 in transcription activation or plasmid maintenance. Our results indicate that EBNA1 activates transcription more efficiently when adjacent binding sites are separated by 10 bp, the spacing observed in HVP. In contrast, using two separate assays, we demonstrate that plasmid maintenance is greatly augmented when adjacent EBNA1-binding sites are separated by 14 bp, and therefore, presumably lie on the same face of the DNA double helix. These results provide indication that the functions of EBNA1 in transcription activation and plasmid maintenance are separable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi Fuming; Saha, Abhik; Murakami, Masanao
The p53 tumor suppressor gene is one of the most commonly mutated genes in human cancers and the corresponding encoded protein induces apoptosis or cell-cycle arrest at the G1/S checkpoint in response to DNA damage. To date, previous studies have shown that antigens encoded by human tumor viruses such as SV40 large T antigen, adenovirus E1A and HPV E6 interact with p53 and disrupt its functional activity. In a similar fashion, we now show that EBNA3C, one of the EBV latent antigens essential for the B-cell immortalization in vitro, interacts directly with p53. Additionally, we mapped the interaction of EBNA3Cmore » with p53 to the C-terminal DNA-binding and the tetramerization domain of p53, and the region of EBNA3C responsible for binding to p53 was mapped to the N-terminal domain of EBNA3C (residues 130-190), previously shown to interact with a number of important cell-cycle components, specifically SCF{sup Skp2}, cyclin A, and cMyc. Furthermore, we demonstrate that EBNA3C substantially represses the transcriptional activity of p53 in luciferase based reporter assays, and rescues apoptosis induced by ectopic p53 expression in SAOS-2 (p53{sup -/-}) cells. Interestingly, we also show that the DNA-binding ability of p53 is diminished in the presence of EBNA3C. Thus, the interaction between the p53 and EBNA3C provides new insights into the mechanism(s) by which the EBNA3C oncoprotein can alter cellular gene expression in EBV associated human cancers.« less
Jha, Hem Chandra; Lu, Jie; Saha, Abhik; Cai, Qiliang; Banerjee, Shuvomoy; Prasad, Mahadesh A. J.
2013-01-01
Epstein-Barr virus (EBV) is an oncogenic gammaherpesvirus that is implicated in several human malignancies, including Burkitt's lymphoma (BL), posttransplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma (NPC), and AIDS-associated lymphomas. Epstein-Barr nuclear antigen 3C (EBNA3C), one of the essential EBV latent antigens, can induce mammalian cell cycle progression through its interaction with cell cycle regulators. Aurora kinase B (AK-B) is important for cell division, and deregulation of AK-B is associated with aneuploidy, incomplete mitotic exit, and cell death. Our present study shows that EBNA3C contributes to upregulation of AK-B transcript levels by enhancing the activity of its promoter. Further, EBNA3C also increased the stability of the AK-B protein, and the presence of EBNA3C leads to reduced ubiquitination of AK-B. Importantly, EBNA3C in association with wild-type AK-B but not with its kinase-dead mutant led to enhanced cell proliferation, and AK-B knockdown can induce nuclear blebbing and cell death. This phenomenon was rescued in the presence of EBNA3C. Knockdown of AK-B resulted in activation of caspase 3 and caspase 9, along with poly(ADP-ribose) polymerase 1 (PARP1) cleavage, which is known to be an important contributor to apoptotic signaling. Importantly, EBNA3C failed to stabilize the kinase-dead mutant of AK-B compared to wild-type AK-B, which suggests a role for the kinase domain in AK-B stabilization and downstream phosphorylation of the cell cycle regulator retinoblastoma protein (Rb). This study demonstrates the functional relevance of AK-B kinase activity in EBNA3C-regulated B-cell proliferation and apoptosis. PMID:23986604
Zhao, Bo; Zou, James; Wang, Hongfang; Johannsen, Eric; Peng, Chih-wen; Quackenbush, John; Mar, Jessica C; Morton, Cynthia Casson; Freedman, Matthew L; Blacklow, Stephen C; Aster, Jon C; Bernstein, Bradley E; Kieff, Elliott
2011-09-06
Epstein-Barr virus nuclear antigen 2 (EBNA2) regulation of transcription through the cell transcription factor RBPJ is essential for resting B-lymphocyte (RBL) conversion to immortal lymphoblast cell lines (LCLs). ChIP-seq of EBNA2 and RBPJ sites in LCL DNA found EBNA2 at 5,151 and RBPJ at 10,529 sites. EBNA2 sites were enriched for RBPJ (78%), early B-cell factor (EBF, 39%), RUNX (43%), ETS (39%), NFκB (22%), and PU.1 (22%) motifs. These motif associations were confirmed by LCL RBPJ ChIP-seq finding 72% RBPJ occupancy and Encyclopedia Of DNA Elements LCL ChIP-seq finding EBF, NFκB RELA, and PU.1 at 54%, 31%, and 17% of EBNA2 sites. EBNA2 and RBPJ were predominantly at intergene and intron sites and only 14% at promoter sites. K-means clustering of EBNA2 site transcription factors identified RELA-ETS, EBF-RUNX, EBF, ETS, RBPJ, and repressive RUNX clusters, which ranked from highest to lowest in H3K4me1 signals and nucleosome depletion, indicative of active chromatin. Surprisingly, although quantitatively less, the same genome sites in RBLs exhibited similar high-level H3K4me1 signals and nucleosome depletion. The EBV genome also had an LMP1 promoter EBF site, which proved critical for EBNA2 activation. LCL HiC data mapped intergenic EBNA2 sites to EBNA2 up-regulated genes. FISH and chromatin conformation capture linked EBNA2/RBPJ enhancers 428 kb 5' of MYC to MYC. These data indicate that EBNA2 evolved to target RBL H3K4me1 modified, nucleosome-depleted, nonpromoter sites to drive B-lymphocyte proliferation in primary human infection. The primed RBL program likely supports antigen-induced proliferation.
Ayoubian, Hiresh; Fröhlich, Thomas; Pogodski, Dagmar; Flatley, Andrew; Kremmer, Elisabeth; Schepers, Aloys; Feederle, Regina; Arnold, Georg J; Grässer, Friedrich A
2017-08-01
The Epstein-Barr virus is a human herpes virus with oncogenic potential. The virus-encoded nuclear antigen 2 (EBNA2) is a key mediator of viral tumorigenesis. EBNA2 features an arginine-glycine (RG) repeat at amino acids (aa)339-354 that is essential for the transformation of lymphocytes and contains symmetrically (SDMA) and asymmetrically (ADMA) di-methylated arginine residues. The SDMA-modified EBNA2 binds the survival motor neuron protein (SMN), thus mimicking SMD3, a cellular SDMA-containing protein that interacts with SMN. Accordingly, a monoclonal antibody (mAb) specific for the SDMA-modified RG repeat of EBNA2 also binds to SMD3. With the novel mAb 19D4 we now show that EBNA2 contains mono-methylated arginine (MMA) residues within the RG repeat. Using 19D4, we immune-precipitated and analysed by mass spectrometry cellular proteins in EBV-transformed B-cells that feature MMA motifs that are similar to the one in EBNA2. Among the cellular proteins identified, we confirmed by immunoprecipitation and/or Western blot analyses Aly/REF, Coilin, DDX5, FXR1, HNRNPK, LSM4, MRE11, NRIP, nucleolin, PRPF8, RBM26, SMD1 (SNRDP1) and THRAP3 proteins that are either known to contain MMA residues or feature RG repeat sequences that probably serve as methylation substrates. The identified proteins are involved in splicing, tumorigenesis, transcriptional activation, DNA stability and RNA processing or export. Furthermore, we found that several proteins involved in energy metabolism are associated with MMA-modified proteins. Interestingly, the viral EBNA1 protein that features methylated RG repeat motifs also reacted with the antibodies. Our results indicate that the region between aa 34-52 of EBNA1 contains ADMA or SDMA residues, while the region between aa 328-377 mainly contains MMA residues.
Munger, K. L.; Levin, L. I.; O’Reilly, E. J.; Falk, K. I.; Ascherio, A.
2011-01-01
Background Elevated Epstein-Barr virus (EBV) antibody titers are risk factors for MS, but the strength and consistency this association are not well characterized. Objectives To determine whether this association is confounded by vitamin D or modified by gender or race, and the usefulness of EBV nuclear antigen (EBNA) antibodies as a marker for MS. Methods We conducted a prospective study among US military personnel. Antibody titers against EBV antigens were measured in serum samples from 222 individuals who developed MS and 444 age, sex, and race/ethnicity matched controls. Conditional logistic regression was used to estimate relative risks. Results MS risk increased with increasing titers of anti-EBNA complex (p<10−9) and anti-EBNA-1 (p=5.8E-9) titers. MS risk was 36-fold higher among individuals with anti-EBNA complex IgG titers ≥320 than among those with titers <20 (95%CI:9.6-136), and 8-fold higher among those with anti-EBNA-1 ≥320 than among those with anti-EBNA-1 <20 (95%CI:2.6-23). These associations were consistent across gender and race/ethnicity groups and independent from 25-hydroxyvitamin D levels. Areas under the ROC curves were 0.67 for EBNA complex and 0.65 for EBNA-1. Conclusions Serum titers of pre-onset anti-EBNA antibodies are strong, robust markers of MS risk and could be useful in an MS risk score. PMID:21685232
Carcinoma-risk variant of EBNA1 deregulates Epstein-Barr Virus episomal latency.
Dheekollu, Jayaraju; Malecka, Kimberly; Wiedmer, Andreas; Delecluse, Henri-Jacques; Chiang, Alan K S; Altieri, Dario C; Messick, Troy E; Lieberman, Paul M
2017-01-31
Epstein-Barr Virus (EBV) latent infection is a causative co-factor for endemic Nasopharyngeal Carcinoma (NPC). NPC-associated variants have been identified in EBV-encoded nuclear antigen EBNA1. Here, we solve the X-ray crystal structure of an NPC-derived EBNA1 DNA binding domain (DBD) and show that variant amino acids are found on the surface away from the DNA binding interface. We show that NPC-derived EBNA1 is compromised for DNA replication and episome maintenance functions. Recombinant virus containing the NPC EBNA1 DBD are impaired in their ability to immortalize primary B-lymphocytes and suppress lytic transcription during early stages of B-cell infection. We identify Survivin as a host protein deficiently bound by the NPC variant of EBNA1 and show that Survivin depletion compromises EBV episome maintenance in multiple cell types. We propose that endemic variants of EBNA1 play a significant role in EBV-driven carcinogenesis by altering key regulatory interactions that destabilize latent infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Nikhil; Knight, Jason S.; Robertson, Erle S.
The gammaherpesviruses Rhesus lymphocryptovirus (LCV) and Epstein-Barr virus (EBV) are closely related phylogenetically. Rhesus LCV efficiently immortalizes Rhesus B cells in vitro. However, despite a high degree of conservation between the Rhesus LCV and EBV genomes, Rhesus LCV fails to immortalize human B cells in vitro. This species restriction may, at least in part, be linked to the EBV nuclear antigens (EBNAs) and latent membrane proteins (LMPs), known to be essential for B cell transformation. We compared specific properties of EBNA3C, a well-characterized and essential EBV protein, with its Rhesus counterpart to determine whether EBNA3C phenotypes which contribute to cellmore » cycle regulation are conserved in the Rhesus LCV. We show that both EBNA3C and Rhesus EBNA3C bind to a conserved region of mammalian cyclins, regulate pRb stability, and modulate SCF{sup Skp2}-dependent ubiquitination. These results suggest that Rhesus LCV restriction from human B cell immortalization is independent of the conserved cell cycle regulatory functions of the EBNA3C protein.« less
Wang, Chao; Wang, Huan; Zhang, Yaqian; Guo, Wei; Long, Cong; Wang, Jingchao; Liu, Limei; Sun, Xiaoping
2017-04-01
Nasopharyngeal carcinoma (NPC) is a malignancy derived from the epithelial cells of the nasopharynx cavity, and is closely associated with Epstein-Barr virus (EBV) infection. In addition to NPC, EBV causes various human malignancies, such as gastric cancer, hematological tumors and lymphoepithelioma-like carcinomas. Epstein-Barr nuclear antigen 1 (EBNA1) encoded by EBV is indispensable for replication, partition, transcription and maintenance of viral genomes. Berberine, a naturally occurring isoquinoline alkaloid, shows anti-inflammatory, anticholinergic, antioxidative, and anticancer activities. In the present study, the antitumor effect of berberine was studied. Cell Counting Kit-8 (CCK-8) assays were performed to demonstrate whether the proliferation of EBV-positive NPC cells was inhibited by berberine. Flow cytometric results revealed that berberine induced cell cycle arrest and apoptosis. Quantitative-PCR and western blotting results indicated that berberine decreased the expression of EBNA1 at both the mRNA and protein levels in the EBV-positive NPC cells. The function of EBNA1 promoter Qp which is to drive EBNA1 transcription in type Ⅱ latent infection was strongly suppressed by berberine. Overexpression of EBNA1 attenuated this inhibitory effect. Berberine also suppressed the activity of signal transducer and activator of transcription 3 which is a new therapeutic target in a series of malignancies, including NPC. Viral titer experiments demonstrated that berberine decreased the production of virions in HONE1 and HK1-EBV cells. In a mouse xenograft model of NPC induced by HONE1 cells, berberine significantly inhibited tumor formation. Altogether, these results indicate that berberine decreases the expression of EBNA1 and exhibits an antitumor effect against NPC both in vitro and in vivo.
Serological diagnosis of Epstein-Barr virus infection: Problems and solutions
De Paschale, Massimo; Clerici, Pierangelo
2012-01-01
Serological tests for antibodies specific for Epstein-Barr virus (EBV) antigens are frequently used to define infection status and for the differential diagnosis of other pathogens responsible for mononucleosis syndrome. Using only three parameters [viral capsid antigen (VCA) IgG, VCA IgM and EBV nuclear antigen (EBNA)-1 IgG],it is normally possible to distinguish acute from past infection: the presence of VCA IgM and VCA IgG without EBNA-1 IgG indicates acute infection, whereas the presence of VCA IgG and EBNA-1 IgG without VCA IgM is typical of past infection. However, serological findings may sometimes be difficult to interpret as VCA IgG can be present without VCA IgM or EBNA-1 IgG in cases of acute or past infection, or all the three parameters may be detected simultaneously in the case of recent infection or during the course of reactivation. A profile of isolated EBNA-1 IgG may also create some doubts. In order to interpret these patterns correctly, it is necessary to determine IgG avidity, identify anti-EBV IgG and IgM antibodies by immunoblotting, and look for heterophile antibodies, anti-EA (D) antibodies or viral genome using molecular biology methods. These tests make it possible to define the status of the infection and solve any problems that may arise in routine laboratory practice. PMID:24175209
1987-01-01
Viruses have been postulated to be involved in the induction of autoantibodies by: autoimmunization with tissue proteins released by virally induced tissue damage; immunization with virally encoded antigens bearing molecular similarities to normal tissue proteins; or nonspecific (polyclonal) B cell stimulation by the infection. Infectious mononucleosis (IM) is an experiment of nature that provides the opportunity for examining these possibilities. We show here that IgM antibodies produced in this disease react with at least nine normal tissue proteins, in addition to the virally encoded Epstein-Barr nuclear antigen (EBNA-1). The antibodies are generated to configurations in the glycine-alanine repeat region of EBNA-1 and are crossreactive with the normal tissue proteins through similar configurations, as demonstrated by the effectiveness of a synthetic glycine-alanine peptide in inhibiting the reactions. The antibodies are absent in preillness sera and gradually disappear over a period of months after illness, being replaced by IgG anti-EBNA-1 antibodies that do not crossreact with the normal tissue proteins but that are still inhibited by the glycine-alanine peptide. These findings are most easily explained by either a molecular mimicry model of IgM autoantibody production or by the polyclonal activation of a germline gene for a crossreactive antibody. It also indicates a selection of highly specific, non-crossreactive anti-EBNA-1 antibodies during IgM to IgG isotype switching. PMID:2435830
NASA Astrophysics Data System (ADS)
Gianti, Eleonora; Messick, Troy E.; Lieberman, Paul M.; Zauhar, Randy J.
2016-04-01
The Epstein-Barr Nuclear Antigen 1 (EBNA1) is a critical protein encoded by the Epstein-Barr Virus (EBV). During latent infection, EBNA1 is essential for DNA replication and transcription initiation of viral and cellular genes and is necessary to immortalize primary B-lymphocytes. Nonetheless, the concept of EBNA1 as drug target is novel. Two EBNA1 crystal structures are publicly available and the first small-molecule EBNA1 inhibitors were recently discovered. However, no systematic studies have been reported on the structural details of EBNA1 "druggable" binding sites. We conducted computational identification and structural characterization of EBNA1 binding pockets, likely to accommodate ligand molecules (i.e. "druggable" binding sites). Then, we validated our predictions by docking against a set of compounds previously tested in vitro for EBNA1 inhibition (PubChem AID-2381). Finally, we supported assessments of pocket druggability by performing induced fit docking and molecular dynamics simulations paired with binding affinity predictions by Molecular Mechanics Generalized Born Surface Area calculations for a number of hits belonging to druggable binding sites. Our results establish EBNA1 as a target for drug discovery, and provide the computational evidence that active AID-2381 hits disrupt EBNA1:DNA binding upon interacting at individual sites. Lastly, structural properties of top scoring hits are proposed to support the rational design of the next generation of EBNA1 inhibitors.
Wilson, Joanna B.; Manet, Evelyne; Fahraeus, Robin
2018-01-01
The presence of the Epstein-Barr virus (EBV)-encoded nuclear antigen-1 (EBNA1) protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC) class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another means to cripple the virus. PMID:29642420
Leskowitz, R.; Fogg, M. H.; Zhou, X. Y.; Kaur, A.; Silveira, E. L. V.; Villinger, F.; Lieberman, P. M.; Wang, F.
2014-01-01
ABSTRACT The impact of Epstein-Barr virus (EBV) on human health is substantial, but vaccines that prevent primary EBV infections or treat EBV-associated diseases are not yet available. The Epstein-Barr nuclear antigen 1 (EBNA-1) is an important target for vaccination because it is the only protein expressed in all EBV-associated malignancies. We have designed and tested two therapeutic EBV vaccines that target the rhesus (rh) lymphocryptovirus (LCV) EBNA-1 to determine if ongoing T cell responses during persistent rhLCV infection in rhesus macaques can be expanded upon vaccination. Vaccines were based on two serotypes of E1-deleted simian adenovirus and were administered in a prime-boost regimen. To further modulate the response, rhEBNA-1 was fused to herpes simplex virus glycoprotein D (HSV-gD), which acts to block an inhibitory signaling pathway during T cell activation. We found that vaccines expressing rhEBNA-1 with or without functional HSV-gD led to expansion of rhEBNA-1-specific CD8+ and CD4+ T cells in 33% and 83% of the vaccinated animals, respectively. Additional animals developed significant changes within T cell subsets without changes in total numbers. Vaccination did not increase T cell responses to rhBZLF-1, an immediate early lytic phase antigen of rhLCV, thus indicating that increases of rhEBNA-1-specific responses were a direct result of vaccination. Vaccine-induced rhEBNA-1-specific T cells were highly functional and produced various combinations of cytokines as well as the cytolytic molecule granzyme B. These results serve as an important proof of principle that functional EBNA-1-specific T cells can be expanded by vaccination. IMPORTANCE EBV is a common human pathogen that establishes a persistent infection through latency in B cells, where it occasionally reactivates. EBV infection is typically benign and is well controlled by the host adaptive immune system; however, it is considered carcinogenic due to its strong association with lymphoid and epithelial cell malignancies. Latent EBNA-1 is a promising target for a therapeutic vaccine, as it is the only antigen expressed in all EBV-associated malignancies. The goal was to determine if rhEBNA-1-specific T cells could be expanded upon vaccination of infected animals. Results were obtained with vaccines that target EBNA-1 of rhLCV, a virus closely related to EBV. We found that vaccination led to expansion of rhEBNA-1 immune cells that exhibited functions fit for controlling viral infection. This confirms that rhEBNA-1 is a suitable target for therapeutic vaccines. Future work should aim to generate more-robust T cell responses through modified vaccines. PMID:24522914
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhuri, Tathagata; Verma, Subhash C.; Lan, Ke
Epstein-Barr virus (EBV) is a lymphotrophic herpesvirus infecting most of the world's population. It is associated with a number of human lymphoid and epithelial tumors and lymphoproliferative diseases in immunocompromised patients. A subset of latent EBV antigens is required for immortalization of primary B-lymphocytes. The metastatic suppressor Nm23-H1 which is downregulated in human invasive breast carcinoma reduces the migration and metastatic activity of breast carcinoma cells when expressed from a heterologous promoter. Interestingly, the EBV nuclear antigen 3C (EBNA3C) reverses these activities of Nm23-H1. The alpha V integrins recognize a variety of ligands for signaling and are involved in cellmore » migration and proliferation and also serve as major receptors for extracellular-matrix-mediated cell adhesion and migration. The goal of this study was to determine if Nm23-H1 and EBNA3C can modulate alpha V integrin expression and downstream activities. The results of our studies indicate that Nm23-H1 downregulates alpha V intregrin expression in a dose responsive manner. In contrast, EBNA3C can upregulate alpha V integrin expression. Furthermore, the study showed that the association of the Sp1 and GATA transcription factors with Nm23-H1 is required for modulation of the alpha V integrin activity. Thus, these results suggest a direct correlation between the alpha V integrin expression and the interaction of Nm23-H1 with EBNA3C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Jie; Murakami, Masanao; Verma, Subhash C.
Resistance to apoptosis is an important component of the overall mechanism which drives the tumorigenic process. EBV is a ubiquitous human gamma-herpesvirus which preferentially establishes latent infection in viral infected B-lymphocytes. EBNA1 is typically expressed in most forms of EBV-positive malignancies and is important for replication of the latent episome in concert with replication of the host cells. Here, we investigate the effects of EBNA1 on survivin up-regulation in EBV-infected human B-lymphoma cells. We present evidence which demonstrates that EBNA1 forms a complex with Sp1 or Sp1-like proteins bound to their cis-element at the survivin promoter. This enhances the activitymore » of the complex and up-regulates survivin. Knockdown of survivin and EBNA1 showed enhanced apoptosis in infected cells and thus supports a role for EBNA1 in suppressing apoptosis in EBV-infected cells. Here, we suggest that EBV encoded EBNA1 can contribute to the oncogenic process by up-regulating the apoptosis suppressor protein, survivin in EBV-associated B-lymphoma cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ya-Lin; Tsai, Hsing-Lyn; Peng, Chih-Wen, E-mail: pengcw@mail.tcu.edu.tw
Highlights: Black-Right-Pointing-Pointer Two cell-based reporter platforms were established for screening of EBNA1 inhibitors. Black-Right-Pointing-Pointer EGCG acts as an inhibitor to block EBNA1 binding with the cognate oriP sequence. Black-Right-Pointing-Pointer EGCG debilitates EBNA1-dependent transcription enhancement and episome maintenance. Black-Right-Pointing-Pointer EGCG impairs persistence of EBV latency. Black-Right-Pointing-Pointer EGCG is a potent anti-EBV agent for targeting the latent cascade of EBV. -- Abstract: Because the expression of EBNA1 is prevalent in all EBV-associated tumors, it has become one of the most attractive drug targets for the discovery of anti-EBV compounds. In a cell-based reporter system, EBNA1 consistently upregulated the transcription of an oriP-Lucmore » mini-EBV episome by 6- to 8-fold. The treatment of cells with 50 {mu}M EGCG effectively blocked the binding of EBNA1 to oriP-DNA both in vivo and in vitro, which led to the abrogation of EBNA1-dependent episome maintenance and transcriptional enhancement. Importantly, the anti-EBNA1 effects caused by EGCG ultimately impaired the persistence of EBV latent infection. Our data suggest that the inhibition of EBNA1 activity by EGCG could be a promising starting point for the development of new protocols for anti-EBV therapy.« less
Yoshioka, Mikio; Kikuta, Hideaki; Ishiguro, Nobuhisa; Ma, Xiaoming; Kobayashi, Kunihiko
2003-05-01
Chronic active Epstein-Barr virus infection (CAEBV) has been considered to be a non-neoplastic T-cell lymphoproliferative disease associated with Epstein-Barr virus (EBV) infection. In EBV-associated diseases, the cell phenotype-dependent differences in EBV latent gene expression may reflect the strategy of the virus in relation to latent infection. We previously reported that EBV latent gene expression was restricted; EBV nuclear antigen 1 (EBNA1) transcripts were consistently detected in all spleen samples from five CAEBV patients, but EBNA2 transcripts were detected in only one sample. EBV latent gene expression is controlled by distinct usage of three EBNA promoters (Cp, Wp and Qp). In this study, we examined the EBNA promoter usage by RT-PCR and the methylation status in the Cp and Wp regions using bisulfite PCR analysis in spleen samples from CAEBV patients. EBNA1 transcripts were unexpectedly initiated not from Qp but from Cp in all samples in spite of the restricted form of latency. Furthermore, while Cp was active, Cp was heavily methylated, indicating that CAEBV has unique EBV latent gene expression, EBNA promoter usage and EBNA promoter methylation status, in part due to unique splicing of Cp-initiated transcripts and an activation mechanism in hypermethylated Cp.
Wagner, H J; Hornef, M; Middeldorp, J; Kirchner, H
1995-11-01
The frequency of Epstein-Barr virus (EBV) antigen-positive B cells in the peripheral blood of patients with infectious mononucleosis compared with that for latently EBV-infected individuals was examined by immunocytochemistry. B cells positive for Epstein-Barr nuclear antigen (EBNA) 1, EBNA2, and latent membrane protein were frequently found in all peripheral B lymphocyte preparations from 25 patients suffering for 3 to 28 days from infectious mononucleosis by using monoclonal antibodies and the alkaline phosphatase anti-alkaline technique. There was a significant decrease in the number of positive B cells during the course of disease. EBNA1-positive B cells were detected in 0.01 to 2.5% of total B cells (median, 0.8%), EBNA2-positive B cells were detected in 0.01 to 4.5% of total B cells (median, 0.9%), and latent membrane protein-positive B cells were detected in 0.01 to 1.8% of total B cells (median, 0.5%), depending on the duration of clinical signs. In contrast, we did not find any EBNA1- or EBNA2-positive B cells in 2 x 10(6) peripheral blood B lymphocytes of 10 latently EBV-infected individuals, whereas aliquots of the same cell preparations were EBV DNA positive by a PCR assay. Therefore, it appears to be possible to detect infectious mononucleosis by immunocytochemical determination of latent EBV products, which might be of relevance for the diagnosis of EBV reactivations in immunosuppressed patients.
Dalbiès-Tran, Rozenn; Stigger-Rosser, Evelyn; Dotson, Travis; Sample, Clare E.
2001-01-01
Epstein-Barr virus (EBV) nuclear antigen 3A (EBNA-3A) is essential for virus-mediated immortalization of B lymphocytes in vitro and is believed to regulate transcription of cellular and/or viral genes. One known mechanism of regulation is through its interaction with the cellular transcription factor Jκ. This interaction downregulates transcription mediated by EBNA-2 and Jκ. To identify the amino acids that play a role in this interaction, we have generated mutant EBNA-3A proteins. A mutant EBNA-3A protein in which alanine residues were substituted for amino acids 199, 200, and 202 no longer downregulated transcription. Surprisingly, this mutant protein remained able to coimmunoprecipitate with Jκ. Using a reporter gene assay based on the recruitment of Jκ by various regions spanning EBNA-3A, we have shown that this mutation abolished binding of Jκ to the N-proximal region (amino acids 125 to 222) and that no other region of EBNA-3A alone was sufficient to mediate an association with Jκ. To determine the biological significance of the interaction of EBNA-3A with Jκ, we have studied its conservation in the simian lymphocryptovirus herpesvirus papio (HVP) by cloning HVP-3A, the homolog of EBNA-3A encoded by this virus. This 903-amino-acid protein exhibited 37% identity with its EBV counterpart, mainly within the amino-terminal half. HVP-3A also interacted with Jκ through a region located between amino acids 127 and 223 and also repressed transcription mediated through EBNA-2 and Jκ. The evolutionary conservation of this function, in proteins that have otherwise significantly diverged, argues strongly for an important biological role in virus-mediated immortalization of B lymphocytes. PMID:11119577
Daikoku, Tohru; Kudoh, Ayumi; Fujita, Masatoshi; Sugaya, Yutaka; Isomura, Hiroki; Tsurumi, Tatsuya
2004-12-24
The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is required for maintenance of the viral genome DNA during the latent phase of EBV replication but continues to be synthesized after the induction of viral productive replication. An EBV genome-wide chromatin immunoprecipitation assay revealed that EBNA1 constantly binds to oriP of the EBV genome during not only latent but also lytic infection. Although the total levels of EBNA1 proved constant throughout the latter, the levels of the oriP-bound form were increased as lytic infection proceeded. EBV productive DNA replication occurs at discrete sites in nuclei, called replication compartments, where viral replication proteins are clustered. Confocal laser microscopic analyses revealed that whereas EBNA1 was distributed broadly in nuclei as fine punctate dots during the latent phase of infection, the protein became redistributed to the viral replication compartments and localized as distinct spots within and/or nearby the compartments after the induction of lytic replication. Taking these findings into consideration, oriP regions of the EBV genome might be organized by EBNA1 into replication domains that may set up scaffolding for lytic replication and transcription.
Transformation of lymphocytes by Herpesvirus papio.
Falk, L A; Henle, G; Henle, W; Deinhardt, F; Schudel, A
1977-08-15
Cotton-topped (CT) or white-lipped (WL) marmoset lymphocytes were transformed in vitro with herpesvirus papio (HVP) into permanently growing lymphoblastoid cell lines (LCL). Five of 9 HVP-transformed CT cell lines contained cells with antigens reacting with antibodies to Epstein-Barr virus (EBV) capsid antigen (VCA) and/or to EBV-induced early antigens (EA). None of 12 WL LCL revealed such antigen-producing cells. Cells from both groups of cultures failed to react with antibodies to the EBV-specified nuclear antigen (EBNA). Exposure of baboon circulating lymphocytes to X-irradiated HVP or EBV-carring cells, or to suspensions of EBV resulted in establishment of LCL which all contained VCA and/or EA-positive, but no EBNA-positive cells. Nuclear antigens were undetectable also with anti-VCA-positive sera from baboons, chimpanzees, or other non-human primates. DNA-complementary RNA (cRNA) filter hybridization with EBV cRNA showed that with one exception transformed CT or WL marmoset cells contained at least 1-2 virus genome equivalents per cell, while at least 12-25 virus genome equivalents per cell were detected in transformed baboon cells. These data need confirmation by DNA-DNA reassociation kinetics.
Koide, J; Takada, K; Sugiura, M; Sekine, H; Ito, T; Saito, K; Mori, S; Takeuchi, T; Uchida, S; Abe, T
1997-01-01
An Epstein-Barr virus (EBV)-infected fibroblast line, designated DSEK, was spontaneously established from synovial tissue of a patient with rheumatoid arthritis (RA). DSEK cells expressed EBV nuclear antigens EBNA-1 and EBNA-2 and latent membrane protein LMP-1. Cell surface markers of DSEK cells were similar to those of EBV-negative fibroblast clones derived from synoviocytes and were negative for lymphocyte and macrophage markers. DSEK cells expressed CD44, CD58, and HLA-DR antigens and spontaneously produced interleukin-10 basic fibroblast growth factor and transforming growth factor beta1. These results indicate that rheumatoid synoviocytes can be a target for EBV infection and suggest that EBV may play a role in the pathogenesis of RA. PMID:9032386
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Sushil Kumar; Mohanty, Suchitra; Kumar, Amit
The p73 protein has structural and functional homology with the tumor suppressor p53, which plays an important role in cell cycle regulation, apoptosis, and DNA repair. The p73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). p73 May play a significant role in p53-deficient lymphomas infected with Epstein–Barr virus (EBV). EBV produces an asymptomatic infection in the majority of the global population, but it is associated with several human B-cell malignancies. The EBV-encoded Epstein–Barr virus nuclear antigen 3C (EBNA3C) is thought to disrupt the cell cycle checkpoint by interacting directly with p53 family proteins. Doxorubicin, amore » commonly used chemotherapeutic agent, induces apoptosis through p53 and p73 signaling such that the lowΔNp73 level promotes the p73-mediated intrinsic pathway of apoptosis. In this report, we investigated the mechanism by which EBV infection counters p73α-induced apoptosis through EBNA3C. - Highlights: • EBV-encoded EBNA3C suppresses doxorubicin-induced apoptosis in B-cell lymphomas. • EBNA3C binds to p73 to suppress its apoptotic effect. • EBNA3C maintains latency by regulating downstream mitochondrial pathways.« less
Mueller, Nancy E.; Lennette, Evelyne T.; Dupnik, Kathryn; Birmann, Brenda M.
2013-01-01
A role for Epstein Barr virus (EBV) in Hodgkin lymphoma (HL) pathogenesis is supported by the detection of EBV genome in about one-third of HL cases, but is not well defined. We previously reported that an elevated pre-diagnosis antibody titer against EBV nuclear antigens (EBNA) was the strongest serologic predictor of subsequent HL. For the present analysis, we measured antibody levels against EBNA components EBNA1 and EBNA2 and computed their titer ratio (anti-EBNA1:2) in serum samples from HL cases and healthy siblings. We undertook this analysis to examine whether titer patterns atypical of well-resolved EBV infection, such as an anti-EBNA1:2 ratio ≤1.0, simply reflect history of infectious mononucleosis (IM), an HL risk factor, or independently predict HL risk. Participants were selected from a previous population-based case-control study according to their history of IM. We identified 55 EBV-seropositive persons with a history of IM (IM+; 33 HL cases, 22 siblings) and frequency-matched a comparison series of 173 IM history-negative, EBV-seropositive subjects on HL status, gender, age, and year of blood draw (IM−; 105 cases, 58 siblings). In multivariate logistic regression models, an anti-EBNA1:2 ratio ≤1.0 was significantly more prevalent in HL cases than siblings (odds ratio, 95% confidence interval=2.43, 1.05–5.65); similar associations were apparent within the IM+ and IM− groups. EBNA antibodies were not significantly associated with IM history in HL cases or siblings. These associations suggest that chronic or more severe EBV infection is a risk factor for HL, independent of IM history. PMID:21805472
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogg, Mark; Murphy, John R.; Lorch, Jochen
Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, asmore » well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients.« less
Takasaka, N; Tajima, M; Okinaga, K; Satoh, Y; Hoshikawa, Y; Katsumoto, T; Kurata, T; Sairenji, T
1998-08-01
We characterized the expression of Epstein-Barr virus (EBV) on two epithelial cell lines, GT38 and GT39, derived from human gastric tissues. The EBV nuclear antigen (EBNA) was detected in all cells of both cell lines. The EBV immediate-early BZLF 1 protein (ZEBRA), the early antigen diffuse component (EA-D), and one of the EBV envelope proteins (gp350/220) were expressed spontaneously in small proportions in the cells. EBNA 1, EBNA2, latent membrane protein 1, ZEBRA, and EA-D molecules were then observed by Western blotting in the cells. The lytic cycle was enhanced with treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) or n-butyrate. The virus particles were observed in the TPA treated GT38 cells by electron microscopy. Infectious EBV was detected with the transformation of cord blood lymphocytes and also with the induction of early antigen to Raji cells by the supernatants of both cells lines. A major single and minor multiple fused terminal fragments and a ladder of smaller fragments of the EBV genome were detected with a Xhol probe in both cell lines. These epithelial cells lines and viruses will be useful in studying their association with EBV in gastric epithelial cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konforte, Danijela; Department of Immunology, University of Toronto, Toronto, M5S 1A8; Simard, Nathalie
Epstein-Barr virus (EBV) persists for the life of the host by accessing the long-lived memory B cell pool. It has been proposed that EBV uses different combinations of viral proteins, known as latency types, to drive infected B cells to make the transition from resting B cells to memory cells. This process is normally antigen-driven. A major unresolved question is what factors coordinate expression of EBV latency proteins. We have recently described novel type III latency EBV{sup +} B cell lines (OCI-BCLs) that were induced to differentiate into late plasmablasts/early plasma cells in culture with interleukin-21 (IL-21), mimicking normal Bmore » cell development. The objective of this study was to determine whether IL-21-mediated signals also regulate the expression of key EBV latent proteins during this window of development. Here we show that IL-21-reduced gene and protein expression of growth-transforming EBV nuclear antigen 2 (EBNA2) in OCI-BCLs. By contrast, the expression of CD40-like, latent membrane protein 1 (LMP1) strongly increased in these cells suggesting an EBNA2-independent mode of regulation. Same results were also observed in Burkitt's lymphoma line Jijoye and B95-8 transformed lymphoblastoid cell lines. The effect of IL-21 on EBNA2 and LMP1 expression was attenuated by a pharmacological JAK inhibitor indicating involvement of JAK/STAT signalling in this process. Our study also shows that IL-21 induced transcription of ebna1 from the viral Q promoter (Qp)« less
Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashuba, Elena; Yurchenko, Mariya; Szirak, Krisztina
Epstein-Barr virus (EBV) transforms resting human B cells into immortalized immunoblasts. EBV-encoded nuclear antigens EBNA-5 (also called EBNA-LP) is one of the earliest viral proteins expressed in freshly infected B cells. We have recently shown that EBNA-5 binds p14ARF, a nucleolar protein that regulates the p53 pathway. Here, we report the identification of another protein with partially nucleolar localization, the v-fos transformation effector Fte-1 (Fte-1/S3a), as an EBNA-5 binding partner. In transfected cells, Fte-1/S3a and EBNA-5 proteins showed high levels of colocalization in extranucleolar inclusions. Fte-1/S3a has multiple biological functions. It enhances v-fos-mediated cellular transformation and is part of themore » small ribosomal subunit. It also interacts with the transcriptional factor CHOP and apoptosis regulator poly(ADP-ribose) polymerase (PARP). Fte-1/S3a is regularly expressed at high levels in both tumors and cancer cell lines. Its high expression favors the maintenance of malignant phenotype and undifferentiated state, whereas its down-regulation is associated with cellular differentiation and growth arrest. Here, we show that EBV-induced B cell transformation leads to the up-regulation of Fte-1/S3a. We suggest that EBNA-5 through binding may influence the growth promoting, differentiation inhibiting, or apoptosis regulating functions of Fte-1/S3a.« less
Fogg, Mark; Murphy, John R.; Lorch, Jochen; Posner, Marshall; Wang, Fred
2013-01-01
Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. PMID:23601786
The Epstein-Barr Virus Regulome in Lymphoblastoid Cells.
Jiang, Sizun; Zhou, Hufeng; Liang, Jun; Gerdt, Catherine; Wang, Chong; Ke, Liangru; Schmidt, Stefanie C S; Narita, Yohei; Ma, Yijie; Wang, Shuangqi; Colson, Tyler; Gewurz, Benjamin; Li, Guoliang; Kieff, Elliott; Zhao, Bo
2017-10-11
Epstein-Barr virus (EBV) transforms B cells to continuously proliferating lymphoblastoid cell lines (LCLs), which represent an experimental model for EBV-associated cancers. EBV nuclear antigens (EBNAs) and LMP1 are EBV transcriptional regulators that are essential for LCL establishment, proliferation, and survival. Starting with the 3D genome organization map of LCL, we constructed a comprehensive EBV regulome encompassing 1,992 viral/cellular genes and enhancers. Approximately 30% of genes essential for LCL growth were linked to EBV enhancers. Deleting EBNA2 sites significantly reduced their target gene expression. Additional EBV super-enhancer (ESE) targets included MCL1, IRF4, and EBF. MYC ESE looping to the transcriptional stat site of MYC was dependent on EBNAs. Deleting MYC ESEs greatly reduced MYC expression and LCL growth. EBNA3A/3C altered CDKN2A/B spatial organization to suppress senescence. EZH2 inhibition decreased the looping at the CDKN2A/B loci and reduced LCL growth. This study provides a comprehensive view of the spatial organization of chromatin during EBV-driven cellular transformation. Copyright © 2017 Elsevier Inc. All rights reserved.
Piolot, Tristan; Tramier, Marc; Coppey, Maité; Nicolas, Jean-Claude; Marechal, Vincent
2001-01-01
Human herpesvirus 8 is associated with all forms of Kaposi's sarcoma, AIDS-associated body cavity-based lymphomas, and some forms of multicentric Castleman's disease. Herpesvirus 8, like other gammaherpesviruses, can establish a latent infection in which viral genomes are stably maintained as multiple episomes. The latent nuclear antigen (LANA or LNAI) may play an essential role in the stable maintenance of latent episomes, notably by interacting concomitantly with the viral genomes and the metaphase chromosomes, thus ensuring an efficient transmission of the neoduplicated episomes to the daughter cells. To identify the regions responsible for its nuclear and subnuclear localization in interphase and mitotic cells, LNAI and various truncated forms were fused to a variant of green fluorescent protein. This enabled their localization and chromosome binding activity to be studied by low-light-level fluorescence microscopy in living HeLa cells. The results demonstrate that nuclear localization of LNAI is due to a unique signal, which maps between amino acids 24 and 30. Interestingly, this nuclear localization signal closely resembles those identified in EBNA1 from Epstein-Barr virus and herpesvirus papio. A region encompassing amino acids 5 to 22 was further proved to mediate the specific interaction of LNA1 with chromatin during interphase and the chromosomes during mitosis. The presence of putative phosphorylation sites in the chromosome binding sites of LNA1 and EBNA1 suggests that their activity may be regulated by specific cellular kinases. PMID:11264383
Bakos, Agnes; Banati, Ferenc; Koroknai, Anita; Takacs, Maria; Salamon, Daniel; Minarovits-Kormuta, Susanna; Schwarzmann, Fritz; Wolf, Hans; Niller, Hans Helmut; Minarovits, Janos
2007-10-01
Transcripts for the Epstein-Barr virus (EBV) encoded nuclear antigens (EBNAs) are initiated at alternative promoters (Wp, Cp, for EBNA 1-6 transcripts and Qp, for EBNA 1 transcripts only) located in the BamHI W, C or Q fragment of the viral genome. To understand the host-cell dependent expression of EBNAs in EBV-associated tumors (lymphomas and carcinomas) and in vitro transformed cell lines, it is necessary to analyse the regulatory mechanisms governing the activity of the alternative promoters of EBNA transcripts. Such studies focused mainly on lymphoid cell lines carrying latent EBV genomes, due to the lack of EBV-associated carcinoma cell lines maintaining latent EBV genomes during cultivation in tissue culture. We took advantage of the unique nasopharyngeal carcinoma cell line, C666-1, harboring EBV genomes, and undertook a detailed analysis of CpG methylation patterns and in vivo protein-DNA interactions at the latency promoters Qp and Cp. We found that the active, unmethylated Qp was marked with strong footprints of cellular transcription factors and the viral protein EBNA 1. In contrast, we could not detect binding of relevant transcription factors to the methylated, silent Cp. We concluded that the epigenetic marks at Qp and Cp in C666-1 cells of epithelial origin resemble those of group I Burkitt's lymphoma cell lines.
Lear, A L; Rowe, M; Kurilla, M G; Lee, S; Henderson, S; Kieff, E; Rickinson, A B
1992-01-01
In Epstein-Barr virus (EBV)-positive Burkitt's lymphoma cell lines exhibiting the latency I form of infection (i.e., EBV nuclear antigen 1 [EBNA1] positive in the absence of other latent proteins), the EBNA1 mRNA has a unique BamHI Q/U/K splice structure and is expressed from a novel promoter, Fp, located near the BamHI FQ boundary. This contrasts with the situation in EBV-transformed lymphoblastoid cell lines (LCLs) exhibiting the latency III form of infection (i.e., positive for all latent proteins), in which transcription from the upstream Cp or Wp promoters is the principal source of EBNA mRNAs. We carried out cDNA amplifications with oligonucleotide primer-probe combinations to determine whether Fp is ever active in an LCL environment. The results clearly showed that some LCLs express a Q/U/K-spliced EBNA1 mRNA in addition to the expected Cp/Wp-initiated transcripts; this seemed inconsistent with the concept of Cp/Wp and Fp as mutually exclusive promoters. Here we show that Fp is indeed silent in latency III cells but is activated at an early stage following the switch from latency III into the virus lytic cycle. Four pieces of evidence support this conclusion: (i) examples of coincident Cp/Wp and Fp usage in LCLs are restricted to those lines in which a small subpopulation of cells have spontaneously entered the lytic cycle; (ii) transcripts initiating from Fp can readily be demonstrated in spontaneously productive lines by S1 nuclease protection; (iii) the presence of Fp-initiated transcripts is not affected by acyclovir blockade of the late lytic cycle; and (iv) infection of latently infected LCLs with a recombinant vaccinia virus encoding the EBV immediate-early protein BZLF1, a transcriptional transactivator which normally initiates the lytic cycle, results in the appearance of the diagnostic Q/U/K-spliced transcripts. Images PMID:1331531
Fleisher, G R; Collins, M; Fager, S
1985-11-01
The antibody response to Epstein-Barr virus (EBV) antigens in patients with infectious mononucleosis (IM) was studied to assess antibody appearance to the restricted (R) component of the early antigen (EA) complex and to determine the effect of corticosteroids on all aspects of the humoral immune response. Sixty college students with heterophil-positive clinical IM, confirmed by EBV-specific serology, were followed for a period of 4-26 weeks, Half received prednisone for six days, and the remainder received no corticosteroid therapy. Regardless of therapy, 48% of the patients developed anti-EA(R) antibodies. The response to other antigens was similar in both groups with the exception that antibodies to the EB-associated nuclear antigen (EBNA) developed later during convalescence and at lower titers in the corticosteroid-treated group. We conclude that 1) anti-EA(R) antibodies develop with considerable frequency following IM and are not a marker, as previously proposed, of unusually severe disease, and 2) corticosteroid therapy may retard the formation of anti-EBNA antibodies but it does not otherwise influence the humoral immune response to EBV.
Banerjee, Shuvomoy; Lu, Jie; Cai, Qiliang; Sun, Zhiguo; Jha, Hem Chandra; Robertson, Erle S.
2014-01-01
Epstein–Barr virus (EBV), a ubiquitous human herpesvirus, can latently infect the human population. EBV is associated with several types of malignancies originating from lymphoid and epithelial cell types. EBV latent antigen 3C (EBNA3C) is essential for EBV-induced immortalization of B-cells. The Moloney murine leukemia provirus integration site (PIM-1), which encodes an oncogenic serine/threonine kinase, is linked to several cellular functions involving cell survival, proliferation, differentiation, and apoptosis. Notably, enhanced expression of Pim-1 kinase is associated with numerous hematological and non-hematological malignancies. A higher expression level of Pim-1 kinase is associated with EBV infection, suggesting a crucial role for Pim-1 in EBV-induced tumorigenesis. We now demonstrate a molecular mechanism which reveals a direct role for EBNA3C in enhancing Pim-1 expression in EBV-infected primary B-cells. We also showed that EBNA3C is physically associated with Pim-1 through its amino-terminal domain, and also forms a molecular complex in B-cells. EBNA3C can stabilize Pim-1 through abrogation of the proteasome/Ubiquitin pathway. Our results demonstrate that EBNA3C enhances Pim-1 mediated phosphorylation of p21 at the Thr145 residue. EBNA3C also facilitated the nuclear localization of Pim-1, and promoted EBV transformed cell proliferation by altering Pim-1 mediated regulation of the activity of the cell-cycle inhibitor p21/WAF1. Our study demonstrated that EBNA3C significantly induces Pim-1 mediated proteosomal degradation of p21. A significant reduction in cell proliferation of EBV-transformed LCLs was observed upon stable knockdown of Pim-1. This study describes a critical role for the oncoprotein Pim-1 in EBV-mediated oncogenesis, as well as provides novel insights into oncogenic kinase-targeted therapeutic intervention of EBV-associated cancers. PMID:25121590
Hochberg, Donna; Middeldorp, Jaap M.; Catalina, Michelle; Sullivan, John L.; Luzuriaga, Katherine; Thorley-Lawson, David A.
2004-01-01
Epstein-Barr virus (EBV) is a herpesvirus that establishes a lifelong, persistent infection. It was first discovered in the tumor Burkitt's lymphoma (BL). Despite intensive study, the role of EBV in BL remains enigmatic. One striking feature of the tumor is the unique pattern of viral latent protein expression, which is restricted to EBV-encoded nuclear antigen (EBNA) 1. EBNA1 is required to maintain the viral genome but is not recognized by cytotoxic T cells. Consequently, it was proposed that this expression pattern was used by latently infected B cells in vivo. This would be the site of long-term, persistent infection by the virus and, by implication, the progenitor of BL. We now know that EBV persists in memory B cells in the peripheral blood and that BL is a tumor of memory cells. However, a normal B cell expressing EBNA1 alone has been elusive. Here we show that most infected cells in the blood express no detectable latent mRNA or proteins. The exception is that when infected cells divide they express EBNA1 only. This is the first detection of the BL viral phenotype in a normal, infected B cell in vivo. It suggests that BL may be a tumor of a latently infected memory B cell that is stuck proliferating because it is a tumor and, therefore, constitutively expressing only EBNA1. PMID:14688409
Takimoto, T; Sato, H; Ogura, H
1986-01-01
The appearance of Epstein-Barr virus (EBV)-associated nuclear antigen (EBNA) and induction of EBV-induced early antigen (EA) in human umbilical cord blood lymphocytes (HUCLs) and two EBV genome-negative Burkitt's lymphoma (BL) lines (BJAB and Ramos) were studied by infection with EBVs prepared from three different cell lines: marmoset cell line (B95-8) derived from infections mononucleosis, BL-derived cell line (P3HR-1) and human epithelial hybrid cell line (NPC-KT) derived from nasopharyngeal carcinoma. B95-8 virus can transform HUCLs but cannot superinfect Raji cells. P3HR-1 virus can transform HUCLs cells but cannot transform HUCLs. NPC-KT virus can transform HUCLs and can superinfect Raji cells. We have examined the time sequence of EBNA appearance and EA induction in HUCLs, BJAB cells and Ramos cells, in order to determine if three different strains of EBV differ in their abilities to infect their cells. We found that all three strains of EBV can induce EBNA in HUCLs, BJAB cells and Ramos cells. On the other hand, we found that P3HR-1 virus and NPC-KT virus can induce EA in BJAB cells and Ramos cells, but B95-8 virus cannot induce EA in their cells.
Kalchschmidt, Jens S; Gillman, Adam C T; Paschos, Kostas; Bazot, Quentin; Kempkes, Bettina; Allday, Martin J
2016-01-01
It is well established that Epstein-Barr virus nuclear antigen 3C (EBNA3C) can act as a potent repressor of gene expression, but little is known about the sequence of events occurring during the repression process. To explore further the role of EBNA3C in gene repression-particularly in relation to histone modifications and cell factors involved-the three host genes previously reported as most robustly repressed by EBNA3C were investigated. COBLL1, a gene of unknown function, is regulated by EBNA3C alone and the two co-regulated disintegrin/metalloproteases, ADAM28 and ADAMDEC1 have been described previously as targets of both EBNA3A and EBNA3C. For the first time, EBNA3C was here shown to be the main regulator of all three genes early after infection of primary B cells. Using various EBV-recombinants, repression over orders of magnitude was seen only when EBNA3C was expressed. Unexpectedly, full repression was not achieved until 30 days after infection. This was accurately reproduced in established LCLs carrying EBV-recombinants conditional for EBNA3C function, demonstrating the utility of the conditional system to replicate events early after infection. Using this system, detailed chromatin immunoprecipitation analysis revealed that the initial repression was associated with loss of activation-associated histone modifications (H3K9ac, H3K27ac and H3K4me3) and was independent of recruitment of polycomb proteins and deposition of the repressive H3K27me3 modification, which were only observed later in repression. Most remarkable, and in contrast to current models of RBPJ in repression, was the observation that this DNA-binding factor accumulated at the EBNA3C-binding sites only when EBNA3C was functional. Transient reporter assays indicated that repression of these genes was dependent on the interaction between EBNA3C and RBPJ. This was confirmed with a novel EBV-recombinant encoding a mutant of EBNA3C unable to bind RBPJ, by showing this virus was incapable of repressing COBLL1 or ADAM28/ADAMDEC1 in newly infected primary B cells.
Rubicz, Rohina; Yolken, Robert; Drigalenko, Eugene; Carless, Melanie A.; Dyer, Thomas D.; Bauman, Lara; Melton, Phillip E.; Kent, Jack W.; Harley, John B.; Curran, Joanne E.; Johnson, Matthew P.; Cole, Shelley A.; Almasy, Laura; Moses, Eric K.; Dhurandhar, Nikhil V.; Kraig, Ellen; Blangero, John; Leach, Charles T.; Göring, Harald H. H.
2013-01-01
Infection with Epstein-Barr virus (EBV) is highly prevalent worldwide, and it has been associated with infectious mononucleosis and severe diseases including Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal lymphoma, and lymphoproliferative disorders. Although EBV has been the focus of extensive research, much still remains unknown concerning what makes some individuals more sensitive to infection and to adverse outcomes as a result of infection. Here we use an integrative genomics approach in order to localize genetic factors influencing levels of Epstein Barr virus (EBV) nuclear antigen-1 (EBNA-1) IgG antibodies, as a measure of history of infection with this pathogen, in large Mexican American families. Genome-wide evidence of both significant linkage and association was obtained on chromosome 6 in the human leukocyte antigen (HLA) region and replicated in an independent Mexican American sample of large families (minimum p-value in combined analysis of both datasets is 1.4×10−15 for SNPs rs477515 and rs2516049). Conditional association analyses indicate the presence of at least two separate loci within MHC class II, and along with lymphocyte expression data suggest genes HLA-DRB1 and HLA-DQB1 as the best candidates. The association signals are specific to EBV and are not found with IgG antibodies to 12 other pathogens examined, and therefore do not simply reveal a general HLA effect. We investigated whether SNPs significantly associated with diseases in which EBV is known or suspected to play a role (namely nasopharyngeal lymphoma, Hodgkin lymphoma, systemic lupus erythematosus, and multiple sclerosis) also show evidence of associated with EBNA-1 antibody levels, finding an overlap only for the HLA locus, but none elsewhere in the genome. The significance of this work is that a major locus related to EBV infection has been identified, which may ultimately reveal the underlying mechanisms by which the immune system regulates infection with this pathogen. PMID:23326239
Epstein-Barr virus in multiple sclerosis.
Abdelrahman, Hisham S; Selim, Heba S; Hashish, Mona H; Sultan, Lobna I
2014-08-01
Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system. Many diseases are associated with Epstein-Barr virus (EBV) infection, such as infectious mononucleosis and many types of malignancies, and it is thought to be related to some diseases of autoimmune origin, such as rheumatoid arthritis, systemic lupus erythematosis, and others. The present study aimed to assess EBV in patients with MS. This case-control study was conducted from October 2012 to September 2013 on 75 MS patients and non-MS controls. Both were tested quantitatively for immunoglobulin G (IgG) antibodies against Epstein-Barr nuclear antigen-1 (EBNA1) and viral capsid antigen (VCA) using the enzyme linked immunosorbent assay technique. Seventy MS patients (93.3%) were positive for EBNA1 IgG compared with 68 controls (90.7%). In MS patients, the mean EBNA1 IgG serum level was 310.91 (±131.05) U/ml; meanwhile, among controls the mean serum EBNA IgG level was 177.81 (±104.98) U/ml.All patients with MS were positive for VCA IgG, whereas only 60 (80.0%) controls were positive. In the MS group, the VCA IgG mean level was 302.19 (±152.11) U/ml compared with 167.94 (±111.79) U/ml in controls. The differences in the serum levels of both markers between the two groups were statistically significant (P<0.001). EBV proved to have a unique immunological pattern in MS patients when compared with non-MS controls. Further studies for more confirmation of the relation between EBV and MS on a large scale are recommended.
Lista, María José; Martins, Rodrigo Prado; Angrand, Gaelle; Quillévéré, Alicia; Daskalogianni, Chrysoula; Voisset, Cécile; Teulade-Fichou, Marie-Paule; Fåhraeus, Robin; Blondel, Marc
2017-08-31
The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1. Indeed, EBNA1 is essential for viral genome replication and maintenance but also highly antigenic. Hence, EBV evolved a system in which the glycine-alanine repeat (GAr) of EBNA1 limits the translation of its own mRNA at a minimal level to ensure its essential function thereby, at the same time, minimizing immune recognition. Defining intervention points where to interfere with EBNA1 immune evasion is an important step to trigger an immune response against EBV-carrying cancers. Thanks to a yeast-based assay that recapitulates all the aspects of EBNA1 self-limitation of expression, a recent study by Lista et al. [Nature Communications (2017) 7, 435-444] has uncovered the role of the host cell nucleolin (NCL) in this process via a direct interaction of this protein with G-quadruplexes (G4) formed in GAr-encoding sequence of EBNA1 mRNA. In addition, the G4 ligand PhenDC3 prevents NCL binding on EBNA1 mRNA and reverses GAr-mediated repression of translation and antigen presentation. This shows that the NCL-EBNA1 mRNA interaction is a relevant therapeutic target to unveil EBV-carrying cancers to the immune system and that the yeast model can be successfully used for uncovering drugs and host factors that interfere with EBV stealthiness.
François, Catherine; Segard, Christine; Bouvier, Maryline; Stefanski, Martine; Pannier, Christine; Zawadzki, Patricia; Roussel, Catherine; Hecquet, Denise; Duverlie, Gilles; Brochot, Etienne; Castelain, Sandrine
2018-02-01
This study compared the performance of 3 automated immunoassays, Architect ® (Abbott), Immulite ® (Siemens) and Liaison ® (Diasorin), for Epstein-Barr virus (EBV) serology. Ninety-one serum samples collected in Amiens University Hospital were analyzed for the presence of Viral Capsid Antigen (VCA) IgG and IgM and Epstein-Barr Nuclear Antigen (EBNA) IgG. The agreement between the 3 assays was calculated for each marker individually and for determination of the EBV profile, based on interpretation of the combination of these 3 EBV markers. Although similar results were obtained with Architect ® and Liaison ® , several discordant results were observed with Immulite ® , particularly for EBNA IgG. A large number of EBNA IgG-positive results were observed, which interfered with interpretation of the EBV profile. In contrast, Immulite ® performed similarly to the 2 other assays for detection of VCA IgM. Copyright © 2017 Elsevier Inc. All rights reserved.
Strong viral associations with SLE among Filipinos
Vista, Evan S; Weisman, Michael H; Ishimori, Mariko L; Chen, Hua; Bourn, Rebecka L; Bruner, Ben F; Hamijoyo, Laniyati; Tanangunan, Robelle D; Gal, Noga J; Robertson, Julie M; Harley, John B; Guthridge, Joel M; Navarra, Sandra V; James, Judith A
2017-01-01
Objectives Epstein-Barr virus (EBV) is considered an important environmental factor in SLE aetiology, but the relationship between SLE and EBV in the Filipino population is unknown. We tested associations between SLE, lupus-associated autoantibodies and seropositivity for EBV and other herpes viruses in the Filipino population. Methods Sera from Filipino patients with SLE (n=233), unaffected first-degree relatives (FDRs, n=543) and unrelated controls (n=221) were tested for antibodies against EBV, cytomegalovirus (CMV) and herpes simplex viruses (HSV-1 and HSV-2) by standardised ELISAs. Humoral specificity against EBV nuclear antigen (EBNA)-1 was compared by solid-phase epitope mapping. Autoantibodies were detected by a bead-based multiplex assay. Results were analysed by Fisher's exact test, Student's t-test, χ2 test and one-way analysis of variance, as appropriate for the question. Results Filipino patients with SLE had increased seroprevalence and elevated antibody concentrations against EBV viral capsid antigen (EBV-VCA), CMV, HSV-1 and HSV-2 compared with unrelated controls (p<0.05). Seropositivity for anti-EBV early antigen (EA), a marker of EBV reactivation, was dramatically increased in patients with SLE compared with unrelated controls (92.3% vs 40.4%; OR 17.15(95% CI 10.10, 30.66), p<0.0001) or unaffected FDRs (49.4%; OR 12.04(7.42, 20.74), p<0.0001), despite similar seroprevalence of EBV-VCA in patients and FDRs. In patients with SLE, EBV-EA seropositivity correlated with lupus-associated autoantibodies (p<0.001), most notably with autoantibodies against dsDNA, chromatin, Sm, SmRNP and RNP A (p<0.01). Patient and unrelated control sera reacted to the highly repetitive glycine and alanine domain of EBNA-1. An epitope spanning EBNA-1410-420 was identified in sera of patients with SLE and showed limited binding by FDR and control sera. Conclusions Filipino patients with SLE have elevated prevalence and concentrations of antibodies against EBV, CMV, HSV-1 and HSV-2 antigens, along with altered anti-EBNA-1 specificities. EBV reactivation is more common among Filipino patients with SLE compared with healthy Filipinos and may contribute to SLE pathogenesis in this population. PMID:29214036
Mendes, Thiago Marques; Oliveira, Léa Campos de; Yamamoto, Lídia; Del Negro, Gilda Maria Barbaro; Okay, Thelma Suely
2008-06-01
Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, plays a significant role as a cofactor in the process of tumorigenesis, and has consistently been associated with a variety of malignancies especially in immunocompromised patients. Forty-four children and adolescents (21 liver transplant patients, 7 heart transplant, 5 AIDS, 3 autoimmune hepatitis, 2 nephritic syndromes, 2 medullar aplasia, 2 primary immunodeficiency disorder patients, 1 thrombocytopenic purpura and 1 systemic lupus erythematosus) presenting with chronic active EBV infection (VCA-IgM persistently positive; VCA-IgG > 20 AU/mL and positive IgG _ EBNA) had peripheral blood samples obtained during clinically characterized EBV reactivation episodes. DNA samples were amplified in order to detect and type EBV on the basis of the EBNA-2 sequence (EBNA2 protein is essential for EBV-driven immortalization of B lymphocytes). Although we have found a predominance of type 1 EBNA-2 virus (33/44; 75%), 10 patients (22.73%) carried type 2 EBNA-2, and one liver transplant patient (2.27%) a mixture of the two types, the higher proportion of type 2 EBV, as well as the finding of one patient bearing the two types is in agreement with other reports held on lymphoproliferative disorder (LPD) patients, which analyzed tumor biopsies. We conclude that EBNA-2 detection and typing can be performed in peripheral blood samples, and the high prevalence of type 2 in our casuistic indicates that this population is actually at risk of developing LPD, and should be monitored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polonskaya, Zhanna; Benham, Craig J.; Hearing, Janet
The minimal replicator of the Epstein-Barr virus (EBV) latent cycle origin of DNA replication oriP is composed of two binding sites for the Epstein-Barr virus nuclear antigen-1 (EBNA-1) and flanking inverted repeats that bind the telomere repeat binding factor TRF2. Although not required for minimal replicator activity, additional binding sites for EBNA-1 and TRF2 and one or more auxiliary elements located to the right of the EBNA-1/TRF2 sites are required for the efficient replication of oriP plasmids. Another region of oriP that is predicted to be destabilized by DNA supercoiling is shown here to be an important functional component ofmore » oriP. The ability of DNA fragments of unrelated sequence and possessing supercoiled-induced DNA duplex destabilized (SIDD) structures, but not fragments characterized by helically stable DNA, to substitute for this component of oriP demonstrates a role for the SIDD region in the initiation of oriP-plasmid DNA replication.« less
Shin, Jae Il; Lee, Jae Seung; Jang, Young Ho; Kim, Sung Hun; Lee, Kang Hyuk; Lee, Chang Hoon
2009-01-01
A 16-month-old boy was admitted because of cough that had lasted for 10 days. The patient showed severe hepatomegaly incidentally, and dual positivity of Immunoglobulin (Ig) M to Epstein-Barr virus (EBV) viral capsid antigen (VCA) and cytomegalovirus (CMV). On the basis of seroconversion to Epstein-Barr nuclear antigen (EBNA) Ig G positivity and reduced CMV Ig M titer with persistently negative CMV Ig G, a definite diagnosis of EBV-induced infectious mononucleosis was established 1 year 2 month later. PMID:19881978
Park, Jee Min; Shin, Jae Il; Lee, Jae Seung; Jang, Young Ho; Kim, Sung Hun; Lee, Kang Hyuk; Lee, Chang Hoon
2009-10-31
A 16-month-old boy was admitted because of cough that had lasted for 10 days. The patient showed severe hepatomegaly incidentally, and dual positivity of Immunoglobulin (Ig) M to Epstein-Barr virus (EBV) viral capsid antigen (VCA) and cytomegalovirus (CMV). On the basis of seroconversion to Epstein-Barr nuclear antigen (EBNA) Ig G positivity and reduced CMV Ig M titer with persistently negative CMV Ig G, a definite diagnosis of EBV-induced infectious mononucleosis was established 1 year 2 month later.
A yeast-based assay identifies drugs that interfere with immune evasion of the Epstein-Barr virus.
Voisset, Cécile; Daskalogianni, Chrysoula; Contesse, Marie-Astrid; Mazars, Anne; Arbach, Hratch; Le Cann, Marie; Soubigou, Flavie; Apcher, Sébastien; Fåhraeus, Robin; Blondel, Marc
2014-04-01
Epstein-Barr virus (EBV) is tightly associated with certain human cancers, but there is as yet no specific treatment against EBV-related diseases. The EBV-encoded EBNA1 protein is essential to maintain viral episomes and for viral persistence. As such, EBNA1 is expressed in all EBV-infected cells, and is highly antigenic. All infected individuals, including individuals with cancer, have CD8(+) T cells directed towards EBNA1 epitopes, yet the immune system fails to detect and destroy cells harboring the virus. EBV immune evasion depends on the capacity of the Gly-Ala repeat (GAr) domain of EBNA1 to inhibit the translation of its own mRNA in cis, thereby limiting the production of EBNA1-derived antigenic peptides presented by the major histocompatibility complex (MHC) class I pathway. Here we establish a yeast-based assay for monitoring GAr-dependent inhibition of translation. Using this assay we identify doxorubicin (DXR) as a compound that specifically interferes with the GAr effect on translation in yeast. DXR targets the topoisomerase-II-DNA complexes and thereby causes genomic damage. We show, however, that the genotoxic effect of DXR and various analogs thereof is uncoupled from the effect on GAr-mediated translation control. This is further supported by the observation that etoposide and teniposide, representing another class of topoisomerase-II-DNA targeting drugs, have no effect on GAr-mediated translation control. DXR and active analogs stimulate, in a GAr-dependent manner, EBNA1 expression in mammalian cells and overcome GAr-dependent restriction of MHC class I antigen presentation. These results validate our approach as an effective high-throughput screening assay to identify drugs that interfere with EBV immune evasion and, thus, constitute candidates for treating EBV-related diseases, in particular EBV-associated cancers.
Brooks, Jill M.; Long, Heather M.; Tierney, Rose J.; Shannon-Lowe, Claire; Leese, Alison M.; Fitzpatrick, Martin; Taylor, Graham S.; Rickinson, Alan B.
2016-01-01
Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three “first wave” proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501), as well as subdominant responses through common class I alleles (e.g. B7 and C*0304). Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that “first wave” antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design. PMID:27096949
Time correlation between mononucleosis and initial symptoms of MS
Endriz, John; Ho, Peggy P.
2017-01-01
Objective: To determine the average age of MS onset vs the age at which Epstein-Barr infection has previously occurred and stratify this analysis by sex and the blood level of Epstein-Barr nuclear antigen 1 (EBNA1) antibody. Methods: Using infectious mononucleosis (IM) as a temporal marker in data from the Swedish epidemiologic investigation of MS, 259 adult IM/MS cases were identified and then augmented to account for “missing” childhood data so that the average age of MS onset could be determined for cases binned by age of IM (as stratified by sex and EBNA1 titer level). Results: Mean age of IM vs mean age of MS reveals a positive time correlation for all IM ages (from ∼5 to ∼30 years), with IM-to-MS delay decreasing with increased age. When bifurcated by sex or EBNA1 blood titer levels, males and high-titer subpopulations show even stronger positive time correlation, while females and low-titer populations show negative time correlation in early childhood (long IM/MS delay). The correlation becomes positive in females beyond puberty. Conclusions: IM/MS time correlation implies causality if IM is time random. Alternative confounding models seem implausible, in light of constraints imposed by time-invariant delay observed here. Childhood infection with Epstein-Barr virus (EBV) in females and/or those genetically prone to low EBNA1 blood titers will develop MS slowly. Males and/or high EBNA1-prone develop MS more rapidly following IM infection at all ages. For all, postpubescent EBV infection is critical for the initiation and rapid development of MS. PMID:28271078
Monoclonal IgG in MGUS and multiple myeloma targets infectious pathogens
Bosseboeuf, Adrien; Feron, Delphine; Tallet, Anne; Rossi, Cédric; Charlier, Cathy; Garderet, Laurent; Caillot, Denis; Moreau, Philippe; Cardó-Vila, Marina; Pasqualini, Renata; Nelson, Alfreda Destea; Wilson, Bridget S.; Perreault, Hélène; Piver, Eric; Weigel, Pierre; Harb, Jean; Bigot-Corbel, Edith; Hermouet, Sylvie
2017-01-01
Subsets of mature B cell neoplasms are linked to infection with intracellular pathogens such as Epstein-Barr virus (EBV), hepatitis C virus (HCV), or Helicobacter pylori. However, the association between infection and the immunoglobulin-secreting (Ig-secreting) B proliferative disorders remains largely unresolved. We investigated whether the monoclonal IgG (mc IgG) produced by patients diagnosed with monoclonal gammopathy of undetermined significance (MGUS) or multiple myeloma (MM) targets infectious pathogens. Antigen specificity of purified mc IgG from a large patient cohort (n = 244) was determined using a multiplex infectious-antigen array (MIAA), which screens for reactivity to purified antigens or lysates from 9 pathogens. Purified mc IgG from 23.4% of patients (57 of 244) specifically recognized 1 pathogen in the MIAA. EBV was the most frequent target (15.6%), with 36 of 38 mc IgGs recognizing EBV nuclear antigen-1 (EBNA-1). MM patients with EBNA-1–specific mc IgG (14.0%) showed substantially greater bone marrow plasma cell infiltration and higher β2-microglobulin and inflammation/infection–linked cytokine levels compared with other smoldering myeloma/MM patients. Five other pathogens were the targets of mc IgG: herpes virus simplex-1 (2.9%), varicella zoster virus (1.6%), cytomegalovirus (0.8%), hepatitis C virus (1.2%), and H. pylori (1.2%). We conclude that a dysregulated immune response to infection may underlie disease onset and/or progression of MGUS and MM for subsets of patients. PMID:28978808
Friberg, Anders; Thumann, Sybille; Hennig, Janosch; Zou, Peijian; Nössner, Elfriede; Ling, Paul D; Sattler, Michael; Kempkes, Bettina
2015-05-01
Epstein-Barr virus (EBV) is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2) is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END) domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four β-strands and an α-helix which form a parallel dimer by interaction of two β-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics.
Perez, Elizabeth M; Foley, Joslyn; Tison, Timelia; Silva, Rute; Ogembo, Javier Gordon
2017-03-21
Previous Epstein-Barr virus (EBV) prophylactic vaccines based on the major surface glycoprotein gp350/220 as an immunogen have failed to block viral infection in humans, suggesting a need to target other viral envelope glycoproteins. In this study, we reasoned that incorporating gH/gL or gB, critical glycoproteins for viral fusion and entry, on the surface of a virus-like particle (VLP) would be more immunogenic than gp350/220 for generating effective neutralizing antibodies to prevent viral infection of both epithelial and B cell lines. To boost the humoral response and trigger cell-mediated immunity, EBV nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2), intracellular latency proteins expressed in all EBV-infected cells, were also included as critical components of the polyvalent EBV VLP. gH/gL-EBNA1 and gB-LMP2 VLPs were efficiently produced in Chinese hamster ovary cells, an FDA-approved vehicle for mass-production of biologics. Immunization with gH/gL-EBNA1 and gB-LMP2 VLPs without adjuvant generated both high neutralizing antibody titers in vitro and EBV-specific T-cell responses in BALB/c mice. These data demonstrate that will be invaluable not only in preventing EBV infection, but importantly, in preventing and treating the 200,000 cases of EBV-associated cancers that occur globally every year.
Enzyme-linked immunosorbent assay for detection of antibodies to Epstein-Barr virus antigens.
Voevodin, A F; Pácsa, A S
1983-01-01
Enzyme-Linked Immunosorbent Assay (ELISA) was standardized for measurement of antibody activity of reference human and baboon (Papio hamadryas) sera to soluble Epstein-Barr virus (EBV) antigens. A comparison with the immunofluorescent (IF) method showed that ELISA detects antibody specifically and sensitivity. In ELISA, Herpesvirus Papio (HVP) nuclear antigen (HUPNA) positive baboon serum reacted with EBV nuclear antigen (EBNA), as a further indication of the antigenic similarity between HVP and EBV. Forty-two baboon sera were tested with EBV antigens in both ELISA and IF test. The results showed an agreement between the two methods and also that by the use of EBV antigens, ELISA measures anti-HVP activity of baboon sera. ELISA did not reveal significant difference in antibody activity of 23 baboons with lymphoma and that of 24 healthy baboons. Results provide further data that ELISA can be used effectively in the field of EBV serology.
Deficient EBV-specific B- and T-cell response in patients with chronic fatigue syndrome.
Loebel, Madlen; Strohschein, Kristin; Giannini, Carolin; Koelsch, Uwe; Bauer, Sandra; Doebis, Cornelia; Thomas, Sybill; Unterwalder, Nadine; von Baehr, Volker; Reinke, Petra; Knops, Michael; Hanitsch, Leif G; Meisel, Christian; Volk, Hans-Dieter; Scheibenbogen, Carmen
2014-01-01
Epstein-Barr virus (EBV) has long been discussed as a possible cause or trigger of Chronic Fatigue Syndrome (CFS). In a subset of patients the disease starts with infectious mononucleosis and both enhanced and diminished EBV-specific antibody titers have been reported. In this study, we comprehensively analyzed the EBV-specific memory B- and T-cell response in patients with CFS. While we observed no difference in viral capsid antigen (VCA)-IgG antibodies, EBV nuclear antigen (EBNA)-IgG titers were low or absent in 10% of CFS patients. Remarkably, when analyzing the EBV-specific memory B-cell reservoir in vitro a diminished or absent number of EBNA-1- and VCA-antibody secreting cells was found in up to 76% of patients. Moreover, the ex vivo EBV-induced secretion of TNF-α and IFN-γ was significantly lower in patients. Multicolor flow cytometry revealed that the frequencies of EBNA-1-specific triple TNF-α/IFN-γ/IL-2 producing CD4(+) and CD8(+) T-cell subsets were significantly diminished whereas no difference could be detected for HCMV-specific T-cell responses. When comparing EBV load in blood immune cells, we found more frequently EBER-DNA but not BZLF-1 RNA in CFS patients compared to healthy controls suggesting more frequent latent replication. Taken together, our findings give evidence for a deficient EBV-specific B- and T-cell memory response in CFS patients and suggest an impaired ability to control early steps of EBV reactivation. In addition the diminished EBV response might be suitable to develop diagnostic marker in CFS.
Horwitz, C A; Henle, W; Henle, G; Polesky, H; Wexler, H; Ward, P
1976-01-01
Over several years sera were collected from 14 heterophil-positive students or patients who did not fulfill minimal hematologic criteria for infectious mononucleosis (I.M.) The specificity of these heterophil reactions for I.M. was investigated by determining antibodies to Epstein-Barr virus-determined antigens, i.e., to viral capsid antigens (VCA), early antigens (EA), and EBV-associated nuclear antigens (EBNA). On the basis of detectable anti-EA and/or the early absence and late emergence of anti-EBNA, four of these 14 individuals showed evidence of a current or very recent primary Epstein-Barr virus infection. The other ten patients showed antibody patterns indicative of Epstein-Barr virus infections in the past, and no firm conclusions could be drawn with regard to the specificity of their heterophil reactions. It was assumed, however, that some represented atypical clinical forms of EBV infection and that timing of specimen collection was a factor in explaining the paucity of Downey cells. In three patients, the absorbed heterophil-positive reactions persisted with little change in titer for at least 22 mo and thus might represent false-positive tests.
Armero, Victoria E. S.; Tremblay, Marie-Pier; Allaire, Andréa; Boudreault, Simon; Martenon-Brodeur, Camille; Duval, Cyntia; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S.
2017-01-01
Multiple human diseases including cancer have been associated with a dysregulation in RNA splicing patterns. In the current study, modifications to the global RNA splicing landscape of cellular genes were investigated in the context of Epstein-Barr virus-associated gastric cancer. Global alterations to the RNA splicing landscape of cellular genes was examined in a large-scale screen from 295 primary gastric adenocarcinomas using high-throughput RNA sequencing data. RT-PCR analysis, mass spectrometry, and co-immunoprecipitation studies were also used to experimentally validate and investigate the differential alternative splicing (AS) events that were observed through RNA-seq studies. Our study identifies alterations in the AS patterns of approximately 900 genes such as tumor suppressor genes, transcription factors, splicing factors, and kinases. These findings allowed the identification of unique gene signatures for which AS is misregulated in both Epstein-Barr virus-associated gastric cancer and EBV-negative gastric cancer. Moreover, we show that the expression of Epstein–Barr nuclear antigen 1 (EBNA1) leads to modifications in the AS profile of cellular genes and that the EBNA1 protein interacts with cellular splicing factors. These findings provide insights into the molecular differences between various types of gastric cancer and suggest a role for the EBNA1 protein in the dysregulation of cellular AS. PMID:28493890
Armero, Victoria E S; Tremblay, Marie-Pier; Allaire, Andréa; Boudreault, Simon; Martenon-Brodeur, Camille; Duval, Cyntia; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Bisaillon, Martin
2017-01-01
Multiple human diseases including cancer have been associated with a dysregulation in RNA splicing patterns. In the current study, modifications to the global RNA splicing landscape of cellular genes were investigated in the context of Epstein-Barr virus-associated gastric cancer. Global alterations to the RNA splicing landscape of cellular genes was examined in a large-scale screen from 295 primary gastric adenocarcinomas using high-throughput RNA sequencing data. RT-PCR analysis, mass spectrometry, and co-immunoprecipitation studies were also used to experimentally validate and investigate the differential alternative splicing (AS) events that were observed through RNA-seq studies. Our study identifies alterations in the AS patterns of approximately 900 genes such as tumor suppressor genes, transcription factors, splicing factors, and kinases. These findings allowed the identification of unique gene signatures for which AS is misregulated in both Epstein-Barr virus-associated gastric cancer and EBV-negative gastric cancer. Moreover, we show that the expression of Epstein-Barr nuclear antigen 1 (EBNA1) leads to modifications in the AS profile of cellular genes and that the EBNA1 protein interacts with cellular splicing factors. These findings provide insights into the molecular differences between various types of gastric cancer and suggest a role for the EBNA1 protein in the dysregulation of cellular AS.
Iwata, Seiko; Wada, Kaoru; Tobita, Satomi; Gotoh, Kensei; Ito, Yoshinori; Demachi-Okamura, Ayako; Shimizu, Norio; Nishiyama, Yukihiro; Kimura, Hiroshi
2010-01-01
Chronic active Epstein-Barr virus (CAEBV) infection is a systemic Epstein-Barr virus (EBV)-positive lymphoproliferative disorder characterized by persistent or recurrent infectious mononucleosis-like symptoms in patients with no known immunodeficiency. The detailed pathogenesis of the disease is unknown and no standard treatment regimen has been developed. EBV gene expression was analysed in peripheral blood samples collected from 24 patients with CAEBV infection. The expression levels of six latent and two lytic EBV genes were quantified by real-time RT-PCR. EBV-encoded small RNA 1 and BamHI-A rightward transcripts were abundantly detected in all patients, and latent membrane protein (LMP) 2 was observed in most patients. EBV nuclear antigen (EBNA) 1 and LMP1 were detected less frequently and were expressed at lower levels. EBNA2 and the two lytic genes were not detected in any of the patients. The pattern of latent gene expression was determined to be latency type II. EBNA1 was detected more frequently and at higher levels in the clinically active patients. Quantifying EBV gene expression is useful in clarifying the pathogenesis of CAEBV infection and may provide information regarding a patient's disease prognosis, as well as possible therapeutic interventions.
Epstein-Barr virus-derived EBNA2 regulates STAT3 activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muromoto, Ryuta; Ikeda, Osamu; Okabe, Kanako
The Epstein-Barr virus (EBV)-encoded latency protein EBNA2 is a nuclear transcriptional activator that is essential for EBV-induced cellular transformation. Here, we show that EBNA2 interacts with STAT3, a signal transducer for an interleukin-6 family cytokine, and enhances the transcriptional activity of STAT3 by influencing its DNA-binding activity. Furthermore, EBNA2 cooperatively acts on STAT3 activation with LMP1. These data demonstrate that EBNA2 acts as a transcriptional coactivator of STAT3.
Bazot, Quentin; Paschos, Kostas; Allday, Martin J
2018-04-01
Epstein-Barr virus (EBV) establishes latent infection in human B cells and is associated with a wide range of cancers. The EBV nuclear antigen 3 (EBNA3) family proteins are critical for B cell transformation and function as transcriptional regulators. It is well established that EBNA3A and EBNA3C cooperate in the regulation of cellular genes. Here, we demonstrate that the gene STK39 is repressed only by EBNA3A. This is the first example of a gene regulated only by EBNA3A in EBV-transformed lymphoblastoid cell lines (LCLs) without the help of EBNA3C. This was demonstrated using a variety of LCLs carrying either knockout, revertant, or conditional EBNA3 recombinants. Investigating the kinetics of EBNA3A-mediated changes in STK39 expression showed that STK39 becomes derepressed quickly after EBNA3A inactivation. This derepression is reversible as EBNA3A reactivation represses STK39 in the same cells expressing a conditional EBNA3A. STK39 is silenced shortly after primary B cell infection by EBV, and no STK39 -encoded protein (SPAK) is detected 3 weeks postinfection. Chromatin immunoprecipitation (ChIP) analysis indicates that EBNA3A directly binds to a regulatory region downstream of the STK39 transcription start site. For the first time, we demonstrated that the polycomb repressive complex 2 with the deposition of the repressive mark H3K27me3 is not only important for the maintenance of an EBNA3A target gene ( STK39 ) but is also essential for the initial establishment of its silencing. Finally, we showed that DNA methyltransferases are involved in the EBNA3A-mediated repression of STK39 IMPORTANCE EBV is well known for its ability to transform B lymphocytes to continuously proliferating lymphoblastoid cell lines. This is achieved in part by the reprogramming of cellular gene transcription by EBV transcription factors, including the EBNA3 proteins that play a crucial role in this process. In the present study, we found that EBNA3A epigenetically silences STK39 This is the first gene where EBNA3A has been found to exert its repressive role by itself, without needing its coregulators EBNA3B and EBNA3C. Furthermore, we demonstrated that the polycomb repressor complex is essential for EBNA3A-mediated repression of STK39 Findings in this study provide new insights into the regulation of cellular genes by the transcription factor EBNA3A. Copyright © 2018 Bazot et al.
Perez, Elizabeth M.; Foley, Joslyn; Tison, Timelia; Silva, Rute; Ogembo, Javier Gordon
2017-01-01
Previous Epstein-Barr virus (EBV) prophylactic vaccines based on the major surface glycoprotein gp350/220 as an immunogen have failed to block viral infection in humans, suggesting a need to target other viral envelope glycoproteins. In this study, we reasoned that incorporating gH/gL or gB, critical glycoproteins for viral fusion and entry, on the surface of a virus-like particle (VLP) would be more immunogenic than gp350/220 for generating effective neutralizing antibodies to prevent viral infection of both epithelial and B cell lines. To boost the humoral response and trigger cell-mediated immunity, EBV nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2), intracellular latency proteins expressed in all EBV-infected cells, were also included as critical components of the polyvalent EBV VLP. gH/gL-EBNA1 and gB-LMP2 VLPs were efficiently produced in Chinese hamster ovary cells, an FDA-approved vehicle for mass-production of biologics. Immunization with gH/gL-EBNA1 and gB-LMP2 VLPs without adjuvant generated both high neutralizing antibody titers in vitro and EBV-specific T-cell responses in BALB/c mice. These data demonstrate that EBV glycoprotein(s)-based VLPs have excellent immunogenicity, and represent a potentially safe vaccine that will be invaluable not only in preventing EBV infection, but importantly, in preventing and treating the 200,000 cases of EBV-associated cancers that occur globally every year. PMID:27926486
Application of synthetic peptides for detection of anti-citrullinated peptide antibodies.
Trier, Nicole Hartwig; Holm, Bettina Eide; Slot, Ole; Locht, Henning; Lindegaard, Hanne; Svendsen, Anders; Nielsen, Christoffer Tandrup; Jacobsen, Søren; Theander, Elke; Houen, Gunnar
2016-02-01
Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA) and represent an important tool for the serological diagnosis of RA. In this study, we describe ACPA reactivity to overlapping citrullinated Epstein-Barr virus nuclear antigen-1 (EBNA-1)-derived peptides and analyze their potential as substrates for ACPA detection by streptavidin capture enzyme-linked immunosorbent assay. Using systematically overlapping peptides, containing a 10 amino acid overlap, labelled with biotin C-terminally or N-terminally, sera from 160 individuals (RA sera (n=60), healthy controls (n=40), systemic lupus erythematosus (n=20), Sjögren's syndrome (n=40)) were screened for antibody reactivity. Antibodies to a panel of five citrullinated EBNA-1 peptides were found in 67% of RA sera, exclusively of the IgG isotype, while 53% of the patient sera reacted with a single peptide, ARGGSRERARGRGRG-Cit-GEKR, accounting for more than half of the ACPA reactivity alone. Moreover, these antibodies were detected in 10% of CCP2-negative RA sera. In addition, 47% of the RA sera reacted with two or three citrullinated EBNA-1 peptides from the selected peptide panel. Furthermore, a negative correlation between the biotin attachment site and the location of citrulline in the peptides was found, i.e. the closer the citrulline was located to biotin, the lower the antibody reactivity. Our data suggest that citrullinated EBNA-1 peptides may be considered a substrate for the detection of ACPAs and that the presence of Epstein-Barr virus may play a role in the induction of these autoantibodies. Copyright © 2016 Elsevier Inc. All rights reserved.
Kim, Joo Hyun; Kim, Won Seog; Hong, Jung Yong; Ryu, Kung Ju; Kim, Seok Jin; Park, Chaehwa
2017-01-17
Epstein-Barr virus (EBV)-encoded nuclear antigen, EBNA2, expressed in EBV-infected B lymphocytes is critical for lymphoblastoid cell growth. Microarray profiling and cytokine array screening revealed that EBNA2 is associated with upregulation of the chemokines CCL3 and CCL4 in lymphoma cells. Depletion or inactivation of CCL3 or CCL4 sensitized DLBCL cells to doxorubicin. Our results indicate that EBV influences cell survival via an autocrine mechanism whereby EBNA2 increases CCL3 and CCL4, which in turn activate the Btk and NF-κB pathways, contributing to doxorubicin resistance of B lymphoma cells. Western blot data further confirmed that CCL3 and CCL4 direct activation of Btk and NF-κB. Based on these findings, we propose that a pathway involving EBNA2/Btk/NF-κB/CCL3/CCL4 plays a key role in doxorubicin resistance, and therefore, inhibition of specific components of this pathway may sensitize lymphoma cells to doxorubicin. Evaluation of the relationship between CCL3 expression and EBV infection revealed high CCL3 levels in EBV-positive patients. Our data collectively suggest that doxorubicin treatment for EBNA2-positive DLBCL cells may be effectively complemented with a NF-κB or Btk inhibitor. Moreover, evaluation of the CCL3 and CCL4 levels may be helpful for selecting DLBCL patients likely to benefit from doxorubicin treatment in combination with the velcade or ibrutinib.
Taylor, Graham S; Jia, Hui; Harrington, Kevin; Lee, Lip Wai; Turner, James; Ladell, Kristin; Price, David A; Tanday, Manjit; Matthews, Jen; Roberts, Claudia; Edwards, Ceri; McGuigan, Lesley; Hartley, Andrew; Wilson, Steve; Hui, Edwin P; Chan, Anthony T C; Rickinson, Alan B; Steven, Neil M
2014-10-01
Epstein-Barr virus (EBV) is associated with several cancers in which the tumor cells express EBV antigens EBNA1 and LMP2. A therapeutic vaccine comprising a recombinant vaccinia virus, MVA-EL, was designed to boost immunity to these tumor antigens. A phase I trial was conducted to demonstrate the safety and immunogenicity of MVA-EL across a range of doses. Sixteen patients in the United Kingdom (UK) with EBV-positive nasopharyngeal carcinoma (NPC) received three intradermal vaccinations of MVA-EL at 3-weekly intervals at dose levels between 5 × 10(7) and 5 × 10(8) plaque-forming units (pfu). Blood samples were taken at screening, after each vaccine cycle, and during the post-vaccination period. T-cell responses were measured using IFNγ ELISpot assays with overlapping EBNA1/LMP2 peptide mixes or HLA-matched epitope peptides. Polychromatic flow cytometry was used to characterize functionally responsive T-cell populations. Vaccination was generally well tolerated. Immunity increased after vaccination to at least one antigen in 8 of 14 patients (7/14, EBNA1; 6/14, LMP2), including recognition of epitopes that vary between EBV strains associated with different ethnic groups. Immunophenotypic analysis revealed that vaccination induced differentiation and functional diversification of responsive T-cell populations specific for EBNA1 and LMP2 within the CD4 and CD8 compartments, respectively. MVA-EL is safe and immunogenic across diverse ethnicities and thus suitable for use in trials against different EBV-positive cancers globally as well as in South-East Asia where NPC is most common. The highest dose (5 × 10(8) pfu) is recommended for investigation in current phase IB and II trials. ©2014 American Association for Cancer Research.
Guerrero-Ramos, Alvaro; Patel, Mauli; Kadakia, Kinjal; Haque, Tanzina
2014-06-01
The Architect EBV antibody panel is a new chemiluminescence immunoassay system used to determine the stage of Epstein-Barr virus (EBV) infection based on the detection of IgM and IgG antibodies to viral capsid antigen (VCA) and IgG antibodies against Epstein-Barr nuclear antigen 1 (EBNA-1). We evaluated its diagnostic accuracy in immunocompetent adolescents and young adults with clinical suspicion of infectious mononucleosis (IM) using the RecomLine EBV IgM and IgG immunoblots as the reference standard. In addition, the use of the antibody panel in a sequential testing algorithm based on initial EBNA-1 IgG analysis was assessed for cost-effectiveness. Finally, we investigated the degree of cross-reactivity of the VCA IgM marker during other primary viral infections that may present with an EBV IM-like picture. High sensitivity (98.3% [95% confidence interval {CI}, 90.7 to 99.7%]) and specificity (94.2% [95% CI, 87.9 to 97.8%]) were found after testing 162 precharacterized archived serum samples. There was perfect agreement between the use of the antibody panel in sequential and parallel testing algorithms, but substantial cost savings (23%) were obtained with the sequential strategy. A high rate of reactive VCA IgM results was found in primary cytomegalovirus (CMV) infections (60.7%). In summary, the Architect EBV antibody panel performs satisfactorily in the investigation of EBV IM in immunocompetent adolescents and young adults, and the application of an EBNA-1 IgG-based sequential testing algorithm is cost-effective in this diagnostic setting. Concomitant testing for CMV is strongly recommended to aid in the interpretation of EBV serological patterns. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Patel, Mauli; Kadakia, Kinjal; Haque, Tanzina
2014-01-01
The Architect EBV antibody panel is a new chemiluminescence immunoassay system used to determine the stage of Epstein-Barr virus (EBV) infection based on the detection of IgM and IgG antibodies to viral capsid antigen (VCA) and IgG antibodies against Epstein-Barr nuclear antigen 1 (EBNA-1). We evaluated its diagnostic accuracy in immunocompetent adolescents and young adults with clinical suspicion of infectious mononucleosis (IM) using the RecomLine EBV IgM and IgG immunoblots as the reference standard. In addition, the use of the antibody panel in a sequential testing algorithm based on initial EBNA-1 IgG analysis was assessed for cost-effectiveness. Finally, we investigated the degree of cross-reactivity of the VCA IgM marker during other primary viral infections that may present with an EBV IM-like picture. High sensitivity (98.3% [95% confidence interval {CI}, 90.7 to 99.7%]) and specificity (94.2% [95% CI, 87.9 to 97.8%]) were found after testing 162 precharacterized archived serum samples. There was perfect agreement between the use of the antibody panel in sequential and parallel testing algorithms, but substantial cost savings (23%) were obtained with the sequential strategy. A high rate of reactive VCA IgM results was found in primary cytomegalovirus (CMV) infections (60.7%). In summary, the Architect EBV antibody panel performs satisfactorily in the investigation of EBV IM in immunocompetent adolescents and young adults, and the application of an EBNA-1 IgG-based sequential testing algorithm is cost-effective in this diagnostic setting. Concomitant testing for CMV is strongly recommended to aid in the interpretation of EBV serological patterns. PMID:24695777
Homayouni, Maryam; Mohammad Arabzadeh, Seyed Ali; Nili, Fatemeh; Razi, Farideh; Amoli, Mahsa Mohammad
2017-07-01
Papillary thyroid carcinoma (PTC) is the most common thyroid cancer. EBV is one of the most important viruses related to different types of malignancies. This study investigated the relationship between EBV and papillary thyroid carcinoma. In this study the presence of Epstein-Barr Nuclear Antigen 1 (EBNA1) gene in papillary thyroid carcinoma tissues were examined by nested-PCR method. Paraffin-embedded tissues (N=41) blocks of thyroid cancer were used. DNA was extracted from all samples and then samples were evaluated for the presence of EBV gene. In 41 samples, EBNA1 was detected in 65.8% of patients with papillary thyroid carcinoma which was significantly higher in younger ages. The significant presence of EBV genome in papillary thyroid carcinoma suggests that this virus may play a role in this cancer especially in younger ages. As a result, monitoring of patients with EBV latent infection for PTC can be very important. Copyright © 2017 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calderwood, Michael A.; Lee, Sungwook; Holthaus, Amy M.
Association of EBV nuclear proteins EBNA2, EBNA3A and EBNA3C with RBP/CSL, is essential for lymphoblastoid cell line (LCL) proliferation. Conserved residues in the EBNA3 homology domain, required for RBP/CSL interaction, lack the W{Phi}P motif that mediates EBNA2 and Notch binding to the RBP/CSL beta-trefoil domain (BTD). We map RBP/CSL interacting residues within EBNA3A(aa128-204) and EBNA3C(aa211-233). The EBNA3A results are consistent with an earlier report (aa125-222), but the EBNA3C domain is unexpectedly small and includes a 'WTP' sequence. This EBNA3C WTP motif confers RBP/CSL binding in vitro, in yeast, and in mammalian cells. Further, an EBNA3C WTP {yields} STP(W227S) mutation impairedmore » BTD binding whereas EBNA3 homology domain mutations disrupted RBP/CSL N-terminal domain (NTD) binding. WTP was not essential for EBNA3C repression of EBNA2 in reporter assays or for maintenance of LCL growth. Our results indicate that EBNA3 proteins interact with multiple RBP/CSL domains, but only NTD interactions are required for LCL growth.« less
Elevated antinuclear antibodies and altered anti-Epstein-Barr virus immune responses.
Cuomo, Laura; Cirone, Mara; Di Gregorio, Ana Oliva; Vitillo, Marina; Cattivelli, Marina; Magliocca, Vittoria; Maiorano, Silvana; Meledandri, Marcello; Scagnolari, Carolina; La Rocca, Sebastiano; Trivedi, Pankaj
2015-01-02
It has been shown that Epstein-Barr virus (EBV) is able to alter the immune response towards self-antigens and may enhance risk of autoimmune diseases such as systemic lupus erythematosus (SLE) in genetically predisposed individuals. In this study, we evaluated the specific antibody immune response against EBV in patients with anti-nuclear autoantibodies (ANA) in comparison with ANA-negative healthy controls. For this purpose, 92 patients with an high anti-ANA reactivity with or without concomitant extractable nuclear antigen (ENA) or double stranded DNA (dsDNA) positivity were selected and compared with 146 healthy donors. We found that anti-EBV-VCA and EA IgG concentrations were significantly higher in ANA-positive patients in comparison to the controls (VCA P<0.0001 and EA P<0,03) as well as in those ANA-positive patients that showed a concomitant ENA positivity (P=0.0002). Interestingly, elevated anti-EBNA-1 IgG was found in a group of patients who had anti SSA/Ro antibodies. Anti-VCA IgM Abs were more frequently found in those patients with a very high titer of ANA (P=0.06); moreover detection of anti-VCA IgM/IgG in absence of anti-EBNA-1 IgG was more frequent in the patient than in the control group. Both these conditions correlate with a recent EBV infection or reactivation. The data suggest that EBV, particularly during acute infection or in its reactivation phase, could be involved in the ANA and ENA autoantibody formation. Copyright © 2014 Elsevier B.V. All rights reserved.
The curiously suspicious: a role for Epstein-Barr virus in lupus.
Harley, J B; Harley, I T W; Guthridge, J M; James, J A
2006-01-01
While the events initiating the development of autoantibodies in systemic lupus erythematosus (SLE) have not yet been convincingly established, newly developed tools for molecular investigation make such an undertaking increasingly practical. Applied to the earliest events in the sequence culminating in lupus autoimmunity, we present a critical potential role for Epstein-Barr virus (EBV) in the development and perhaps perpetuation of SLE. The expected properties for an environmental risk factor for SLE are found in this virus and the human host response against it. Existing data show the molecular progression to autoimmunity observed in SLE patient sera, the discovery of the first autoimmune epitopes in the Sm and Ro autoantigen systems, and the possible emergence of these autoantibodies from the heterologous antibodies against Epstein-Barr nuclear antigen-1 (EBNA-1). Further, existing data demonstrate association of SLE with EBV infection, even preceding the development of autoimmunity. Finally, the data are consistent with a proposed model of lupus pathogenesis that begins with antibodies to EBNA-1, predisposing to immune responses that develop crossreactive autoantibodies that culminate in the development of SLE autoimmunity.
Fujieda, M; Wakiguchi, H; Hisakawa, H; Kubota, H; Kurashige, T
1993-10-01
Antibodies of Epstein-Barr virus (EBV), EBV-specific cytotoxic T lymphocyte (EBVCTL) activity and the lymphocyte subset of CTL were examined in 13 Japanese children with chronic active EBV infection (CAEBV) and their parents (eight fathers and 10 mothers). Anti-virus-capsid antigen (VCA)-IgG antibody titers ranged from 1:640 to 1:5120 in the patients with CAEBV and from 1:40 to 1:640 in the parents. While anti-VCA-IgM antibody was detected in three patients, anti-VCA-IgA antibody in five and anti-early-antigen (EA)-IgG antibody in 11, no antibody was detected in the parents except anti-EA antibody, which was positive in the mothers of cases 5 and 13 (1:10 and 1:40). Anti-EBV-associated nuclear antigen (EBNA) antibody was < or = 1:10 in six out of 13 patients with CAEBV and in 10 out of 18 parents tested. Epstein-Barr virus activity was significantly lower (P < 0.005) both in the children with CAEBV and in their parents than in seropositive age-matched controls. Proportions of a CTL subset (CD8+ CD11- lymphocytes) in the patients with CAEBV were significantly higher (P < 0.005) than in controls, while those in the parents were at the same level as in controls. Defective EBVCTL activity and anti-EBNA-antibody responses were frequently observed both in children with CAEBV and in their parents, which may suggest that the abnormal immune response to EBV may be based on a familial disorder, though no familial involvement has been reported in Japanese children with CAEBV.
NASA Technical Reports Server (NTRS)
O'Sullivan, Cathal E.; Peng, RongSheng; Cole, Kelly Stefano; Montelaro, Ronald C.; Sturgeon, Timothy; Jenson, Hal B.; Ling, Paul D.; Butel, J. S. (Principal Investigator)
2002-01-01
Epstein-Barr virus (EBV) associated non-Hodgkin lymphoma is recognized as a complication of human immunodeficiency virus (HIV) infection. Little is known regarding the influence of highly active antiretroviral therapy (HAART) on the biology of EBV in this population. To characterize the EBV- and HIV-specific serological responses together with EBV DNA levels in a cohort of HIV-infected adults treated with HAART, a study was conducted to compare EBV and HIV serologies and EBV DNA copy number (DNAemia) over a 12-month period after the commencement of HAART. All patients were seropositive for EBV at baseline. Approximately 50% of patients had detectable EBV DNA at baseline, and 27/30 had detectable EBV DNA at some point over the follow-up period of 1 year. Changes in EBV DNA copy number over time for any individual were unpredictable. Significant increases in the levels of Epstein-Barr nuclear antigen (EBNA) and Epstein-Barr early antigen (EA) antibodies were demonstrated in the 17 patients who had a good response to HAART. Of 29 patients with paired samples tested, four-fold or greater increases in titers were detected for EA in 12/29 (41%), for EBNA in 7/29 (24%), for VCA-IgG in 4/29 (14%); four-fold decreases in titers were detected in 2/29 (7%) for EA and 12/29 (41%) for EBNA. A significant decline in the titer of anti-HIV antibodies was also demonstrated. It was concluded that patients with advanced HIV infection who respond to HAART have an increase in their EBV specific antibodies and a decrease in their HIV-specific antibodies. For the cohort overall, there was a transient increase in EBV DNA levels that had declined by 12 months. Copyright 2002 Wiley-Liss, Inc.
Wu, Liang; Ehlin-Henriksson, Barbro; Zhou, Xiaoying; Zhu, Hong; Ernberg, Ingemar; Kis, Lorand L; Klein, George
2017-12-01
Diffuse large B-cell lymphoma (DLBCL), the most common type of malignant lymphoma, accounts for 30% of adult non-Hodgkin lymphomas. Epstein-Barr virus (EBV) -positive DLBCL of the elderly is a newly recognized subtype that accounts for 8-10% of DLBCLs in Asian countries, but is less common in Western populations. Five DLBCL-derived cell lines were employed to characterize patterns of EBV latent gene expression, as well as response to cytokines and chemotaxis. Interleukin-4 and interleukin-21 modified LMP1, EBNA1 and EBNA2 expression depending on cell phenotype and type of EBV latent programme (type I, II or III). These cytokines also affected CXCR4- or CCR7-mediated chemotaxis in two of the cell lines, Farage (type III) and Val (type II). Further, we investigated the effect of EBV by using dominant-negative EBV nuclear antigen 1(dnEBNA1) to eliminate EBV genomes. This resulted in decreased chemotaxis. By employing an alternative way to eliminate EBV genomes, Roscovitine, we show an increase of apoptosis in the EBV-positive lines. These results show that EBV plays an important role in EBV-positive DLBCL lines with regard to survival and chemotactic response. Our findings provide evidence for the impact of microenvironment on EBV-carrying DLBCL cells and might have therapeutic implications. © 2017 John Wiley & Sons Ltd.
Epstein-Barr virus infection induces lupus autoimmunity.
Harley, John B; James, Judith A
2006-01-01
Systemic lupus erythematosus (SLE or lupus) is a systemic autoimmune disease characterized by a constellation of varied clinical presentations, although the nearly universal presence of autoantibodies is a salient unifying feature. Ongoing research efforts focus on understanding the complex combination of genetic and environmental factors that lead to SLE in select individuals. Our previous work has demonstrated that years before diagnosis abnormal autoantibody responses are present in the sera of patients who will subsequently develop lupus and, further, that the initial targets of two of these key responses (anti-Sm B' and anti-60 kD Ro alone) have been identified for some patients. Indeed, our results suggest that the first lupus-specific autoantibodies arise from particular antibodies directed against Epstein-Barr virus Nuclear Antigen-1 (EBNA-1) and that infection with Epstein-Barr virus (EBV) is an environmental risk factor for lupus. The predicted sequence of events is normal immunity, followed by Epstein- Barr virus infection, the generation of anti-EBNA-1 antibodies, then followed by those particular anti-EBNA-1 antibodies that also bind lupus-specific autoantigens (Sm or Ro), followed by the development of more complex autoimmune responses, and, finally, culminating in clinical disease. Studies from others and those underway suggest that lupus patients have unusual immune responses to Epstein-Barr virus. In aggregate, these results are consistent with an immune response against Epstein-Barr virus being important in at least some patients for the initiation of lupus autoimmunity.
Mahjour, Seyed Babak; Ghaffarpasand, Fariborz; Fattahi, Mohammad Javad; Ghaderi, Abbas; Fotouhi Ghiam, Alireza; Karimi, Mehran
2010-12-01
To investigate the seroprevalence of Herpes Simplex Viruses (HSV1 and HSV2), Ebstein-Barr Virus (EBV) and Hepatitis B Virus (HBV) in children with acute lymphoblastic leukemia (ALL) in southern Iran. 90 patients with ALL and 90 age-sex matched healthy participants were enrolled in this study. Antibodies (IgG) against HBsAg, HSV1, HSV2, EBV different antigens including Epstein-Barr nuclear antigen-1 (EBNA-1), viral capsid antigen (VCA) and early antigen (EA) were measured by enzyme-linked immunosorbent assay (ELISA). There were 54 (60%) male and 36 (40%) female in both study groups with mean age of 8.47 ± 3.61 and 8.61 ± 2.84 years in case and control group respectively (P = 0.812). The prevalence of antibodies against HBsAg (P = 0.002), HSV1 (P < 0.0001), VCA (P = 0.021) and EA (P < 0.0001) antigens of EBV were significantly higher in ALL patients. With the results of this study, we could not exclude a connection between these viral infections and later leukemogenesis in childhood ALL, although nor latent infection nor congenital infection cannot be excluded by this method.
Rhodes, G; Smith, R S; Rubin, R E; Vaughan, J; Horwitz, C A
1990-01-01
We studied antibody production in serial serum samples from patients with acute Epstein-Barr virus (EBV) and cytomegalovirus (CMV) infections. Sera were analyzed both by enzyme-linked immunosorbent assay (ELISA) using a synthetic peptide (P62) derived from the glycine-alanine repeating region of the Epstein-Barr nuclear antigen (EBNA-1) and by immunoblotting. In prior studies, we have shown that patients with acute EBV infection make IgM antibodies that react with this peptide, that recognize a viral-specific protein (EBNA-1), and that bind with a number of proteins present in uninfected cells; however, antibody binding to these autoantigens was inhibited by the peptide. IgG antibodies reactive with the peptide did not appear until months after the disease and were specific for the EBNA-1 protein. We now find that patients with acute CMV infection but not those with acute infections from a variety of other nonherpes organisms also produce IgM antibodies that recognize the EBV-derived peptide P62. These antibodies also appear to recognize the same cellular proteins as the EBV-induced IgM antibodies. The IgM antibodies appeared in all acutely infected CMV patients studied and occurred both in patients with previous EBV infections and in one patient studied who had not previously been exposed to EBV. It appears that infection with EBV or CMV can induce the synthesis of a very similar or identical set of IgM antibodies.
Lay, Meav-Lang J; Lucas, Robyn M; Ratnamohan, Mala; Taylor, Janette; Ponsonby, Anne-Louise; Dwyer, Dominic E
2010-09-22
Reactivation of Epstein-Barr virus (EBV) infection may cause serious, life-threatening complications in immunocompromised individuals. EBV DNA is often detected in EBV-associated disease states, with viral load believed to be a reflection of virus activity. Two separate real-time quantitative polymerase chain reaction (QPCR) assays using SYBR Green I dye and a single quantification standard containing two EBV genes, Epstein-Barr nuclear antigen-1 (EBNA-1) and BamHI fragment H rightward open reading frame-1 (BHRF-1), were developed to detect and measure absolute EBV DNA load in patients with various EBV-associated diseases. EBV DNA loads and viral capsid antigen (VCA) IgG antibody titres were also quantified on a population sample. EBV DNA was measurable in ethylenediaminetetraacetic acid (EDTA) whole blood, peripheral blood mononuclear cells (PBMCs), plasma and cerebrospinal fluid (CSF) samples. EBV DNA loads were detectable from 8.0 × 10(2) to 1.3 × 10(8) copies/ml in post-transplant lymphoproliferative disease (n = 5), 1.5 × 10(3) to 2.0 × 10(5) copies/ml in infectious mononucleosis (n = 7), 7.5 × 10(4) to 1.1 × 10(5) copies/ml in EBV-associated haemophagocytic syndrome (n = 1), 2.0 × 10(2) to 5.6 × 10(3) copies/ml in HIV-infected patients (n = 12), and 2.0 × 10(2) to 9.1 × 10(4) copies/ml in the population sample (n = 218). EBNA-1 and BHRF-1 DNA were detected in 11.0% and 21.6% of the population sample respectively. There was a modest correlation between VCA IgG antibody titre and BHRF-1 DNA load (rho = 0.13, p = 0.05) but not EBNA-1 DNA load (rho = 0.11, p = 0.11). Two sensitive and specific real-time PCR assays using SYBR Green I dye and a single quantification standard containing two EBV DNA targets, were developed for the detection and measurement of EBV DNA load in a variety of clinical samples. These assays have application in the investigation of EBV-related illnesses in immunocompromised individuals.
P32/TAP, a cellular protein that interacts with EBNA-1 of Epstein-Barr virus.
Wang, Y; Finan, J E; Middeldorp, J M; Hayward, S D
1997-09-15
The Epstein-Barr virus (EBV) EBNA-1 protein has a central role in the maintenance of a latent EBV infection and is the only virus-encoded protein expressed in all EBV-associated tumors. EBNA-1 is required for replication of the episomal form of the latent viral genome and transactivates the latency C and LMP-1 promoters. The mechanisms by which EBNA-1 performs these functions are not known. Here we describe the cloning, expression, and characterization of a cellular protein, P32/TAP, which strongly interacts with EBNA-1. We show that P32/TAP is expressed at high levels in Raji cells and is synthesized as a proprotein of 282 amino acids (aa) that is posttranslationally processed by a two-step cleavage process to yield a mature protein of 209 aa. It has been previously reported that P32/TAP is expressed on the cell surface. Our transient expression assays detected full-length P32/TAP (1-282 aa) in the cytoplasm while mature P32/TAP protein localized to the nucleus. Three lines of evidence support P32/TAP interaction with EBNA-1. First, in the yeast two-hybrid system we mapped two interactive N-terminal regions of EBNA-1, aa 40-60 and aa 325-376, each of which contains arginine-glycine repeats. These regions interact with the C-terminal half of P32/TAP. Second, the full-length cytoplasmic P32/TAP protein can translocate nuclear EBNA-1 into the cytoplasm. Third, P32/TAP co-immunoprecipitated with EBNA-1. We have confirmed that a Gal4 fusion protein containing the C-terminal region of P32/TAP (aa 244-282) transactivates expression from a reporter containing upstream Gal4-binding sites. Deletion of the P32/TAP interactive regions of EBNA-1 severely diminished EBNA-1 transactivation of FRTKCAT in transient expression assays. Our data suggest that interaction with P32/TAP may contribute to EBNA-1-mediated transactivation. Copyright 1997 Academic Press.
Trier, Nicole Hartwig; Holm, Bettina Eide; Heiden, Julie; Slot, Ole; Locht, Henning; Lindegaard, Hanne; Svendsen, Anders; Nielsen, Christoffer Tandrup; Jacobsen, Søren; Theander, Elke; Houen, Gunnar
2018-02-27
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Anti-citrullinated protein antibodies (ACPA) are crucial for the serological diagnosis of RA, where Epstein-Barr virus (EBV) has been suggested to be an environmental agent in triggering the onset of the disease. This study aimed to analyse antibody reactivity to citrullinated EBV nuclear antigen-2 (EBNA-2) peptides from three different EBV strains (B95-8, GD1 and AG876) using streptavidin capture enzyme-linked immunosorbent assay. One peptide, only found in a single strain (AG876), obtained a sensitivity and specificity of 77% and 95%, respectively and showed high sequence similarity to the filaggrin peptide originally used for ACPA detection. Comparison of antibody reactivity to commercial assays found that the citrullinated peptide was as effective in detecting ACPA as highly sensitive and specific commercial assays. The data presented demonstrate that the citrullinated EBNA-2 peptide indeed is recognised specifically by RA sera and that the single peptide is able to compete with assays containing multiple peptides. Furthermore, it could be hypothesized that RA may be caused by (a) specific strain(s) of EBV.
Epstein-Barr virus, cytomegalovirus, and multiple sclerosis susceptibility: A multiethnic study.
Langer-Gould, Annette; Wu, Jun; Lucas, Robyn; Smith, Jessica; Gonzales, Edlin; Amezcua, Lilyana; Haraszti, Samantha; Chen, Lie Hong; Quach, Hong; James, Judith A; Barcellos, Lisa F; Xiang, Anny H
2017-09-26
To determine whether Epstein-Barr virus (EBV) or cytomegalovirus (CMV) seropositivity is associated with multiple sclerosis (MS) in blacks and Hispanics and to what extent measures of the hygiene hypothesis or breastfeeding could explain these findings. EBV and CMV have been associated with MS risk in whites, and the timing and frequency of both viruses vary by factors implicated in the hygiene hypothesis. Incident cases of MS or its precursor, clinically isolated syndrome (CIS), and matched controls (blacks, 111 cases/128 controls; Hispanics, 173/187; whites, 235/256) were recruited from the membership of Kaiser Permanente Southern California. Logistic regression models accounted for HLA-DRB1*1501 status, smoking, socioeconomic status, age, sex, genetic ancestry, and country of birth. Epstein-Barr nuclear antigen-1 (EBNA-1) seropositivity was independently associated with an increased odds of MS/CIS in all 3 racial/ethnic groups ( p < 0.001 for blacks and whites, p = 0.02 for Hispanics). In contrast, CMV seropositivity was associated with a lower risk of MS/CIS in Hispanics ( p = 0.004) but not in blacks ( p = 0.95) or whites ( p = 0.96). Being born in a low/middle-income country was associated with a lower risk of MS in Hispanics ( p = 0.02) but not after accounting for EBNA-1 seropositivity. Accounting for breastfeeding did not diminish the association between CMV and MS in Hispanics. The consistency of EBNA-1 seropositivity with MS across racial/ethnic groups and between studies points to a strong biological link between EBV infection and MS risk. The association between past CMV infection and MS risk supports the broader hygiene hypothesis, but the inconsistency of this association across racial/ethnic groups implies noncausal associations. © 2017 American Academy of Neurology.
Epstein-Barr Virus Nuclear Antigen Leader Protein Coactivates EP300.
Wang, Chong; Zhou, Hufeng; Xue, Yong; Liang, Jun; Narita, Yohei; Gerdt, Catherine; Zheng, Amy Y; Jiang, Runsheng; Trudeau, Stephen; Peng, Chih-Wen; Gewurz, Benjamin E; Zhao, Bo
2018-05-01
Epstein-Barr virus nuclear antigen (EBNA) leader protein (EBNALP) is one of the first viral genes expressed upon B-cell infection. EBNALP is essential for EBV-mediated B-cell immortalization. EBNALP is thought to function primarily by coactivating EBNA2-mediated transcription. Chromatin immune precipitation followed by deep sequencing (ChIP-seq) studies highlight that EBNALP frequently cooccupies DNA sites with host cell transcription factors (TFs), in particular, EP300, implicating a broader role in transcription regulation. In this study, we investigated the mechanisms of EBNALP transcription coactivation through EP300. EBNALP greatly enhanced EP300 transcription activation when EP300 was tethered to a promoter. EBNALP coimmunoprecipitated endogenous EP300 from lymphoblastoid cell lines (LCLs). EBNALP W repeat serine residues 34, 36, and 63 were required for EP300 association and coactivation. Deletion of the EP300 histone acetyltransferase (HAT) domain greatly reduced EBNALP coactivation and abolished the EBNALP association. An EP300 bromodomain inhibitor also abolished EBNALP coactivation and blocked the EP300 association with EBNALP. EBNALP sites cooccupied by EP300 had significantly higher ChIP-seq signals for sequence-specific TFs, including SPI1, RelA, EBF1, IRF4, BATF, and PAX5. EBNALP- and EP300-cooccurring sites also had much higher H3K4me1 and H3K27ac signals, indicative of activated enhancers. EBNALP-only sites had much higher signals for DNA looping factors, including CTCF and RAD21. EBNALP coactivated reporters under the control of NF-κB or SPI1. EP300 inhibition abolished EBNALP coactivation of these reporters. Clustered regularly interspaced short palindromic repeat interference targeting of EBNALP enhancer sites significantly reduced target gene expression, including that of EP300 itself. These data suggest a previously unrecognized mechanism by which EBNALP coactivates transcription through subverting of EP300 and thus affects the expression of LCL genes regulated by a broad range of host TFs. IMPORTANCE Epstein-Barr virus was the first human DNA tumor virus discovered over 50 years ago. EBV is causally linked to ∼200,000 human malignancies annually. These cancers include endemic Burkitt lymphoma, Hodgkin lymphoma, lymphoma/lymphoproliferative disease in transplant recipients or HIV-infected people, nasopharyngeal carcinoma, and ∼10% of gastric carcinoma cases. EBV-immortalized human B cells faithfully model key aspects of EBV lymphoproliferative diseases and are useful models of EBV oncogenesis. EBNALP is essential for EBV to transform B cells and transcriptionally coactivates EBNA2 by removing repressors from EBNA2-bound DNA sites. Here, we found that EBNALP can also modulate the activity of the key transcription activator EP300, an acetyltransferase that activates a broad range of transcription factors. Our data suggest that EBNALP regulates a much broader range of host genes than was previously appreciated. A small-molecule inhibitor of EP300 abolished EBNALP coactivation of multiple target genes. These findings suggest novel therapeutic approaches to control EBV-associated lymphoproliferative diseases. Copyright © 2018 American Society for Microbiology.
Liang, C L; Tsai, C N; Chung, P J; Chen, J L; Sun, C M; Chen, R H; Hong, J H; Chang, Y S
2000-11-10
In Epstein-Barr virus (EBV)-infected BL cells, the oncogenic EBV-encoded nuclear antigen 1 (EBNA 1) gene is directed from the latent promoter Qp. Yeast one-hybrid screen analysis using the -50 to -37 sequence of Qp as the bait was carried out to identify transcriptional factors that may control Qp activity. Results showed that Smad4 binds the -50 to -37 sequence of Qp, indicating that this promoter is potentially regulated by TGF-beta. The association of Smad4 with Qp was further confirmed by supershift of EMSA complexes using Smad4-specific antibody. The transfection of a Qp reporter construct in two EBV(+) BL cell lines, Rael and WW2, showed that Qp activity is repressed in response to the TGF-beta treatment. This repression involves the interaction of a Smad3/Smad4 complex and the transcriptional repressor TGIF, as determined by cotransfection assay and coimmunoprecipitation analysis. Results suggest that TGF-beta may transcriptionally repress Qp through the Smad4-binding site in human BL cells. Copyright 2000 Academic Press.
Loebel, Madlen; Eckey, Maren; Sotzny, Franziska; Hahn, Elisabeth; Bauer, Sandra; Grabowski, Patricia; Zerweck, Johannes; Holenya, Pavlo; Hanitsch, Leif G; Wittke, Kirsten; Borchmann, Peter; Rüffer, Jens-Ulrich; Hiepe, Falk; Ruprecht, Klemens; Behrends, Uta; Meindl, Carola; Volk, Hans-Dieter; Reimer, Ulf; Scheibenbogen, Carmen
2017-01-01
Epstein-Barr-Virus (EBV) plays an important role as trigger or cofactor for various autoimmune diseases. In a subset of patients with Chronic Fatigue Syndrome (CFS) disease starts with infectious mononucleosis as late primary EBV-infection, whereby altered levels of EBV-specific antibodies can be observed in another subset of patients. We performed a comprehensive mapping of the IgG response against EBV comparing 50 healthy controls with 92 CFS patients using a microarray platform. Patients with multiple sclerosis (MS), systemic lupus erythematosus (SLE) and cancer-related fatigue served as controls. 3054 overlapping peptides were synthesised as 15-mers from 14 different EBV proteins. Array data was validated by ELISA for selected peptides. Prevalence of EBV serotypes was determined by qPCR from throat washing samples. EBV type 1 infections were found in patients and controls. EBV seroarray profiles between healthy controls and CFS were less divergent than that observed for MS or SLE. We found significantly enhanced IgG responses to several EBNA-6 peptides containing a repeat sequence in CFS patients compared to controls. EBNA-6 peptide IgG responses correlated well with EBNA-6 protein responses. The EBNA-6 repeat region showed sequence homologies to various human proteins. Patients with CFS had a quite similar EBV IgG antibody response pattern as healthy controls. Enhanced IgG reactivity against an EBNA-6 repeat sequence and against EBNA-6 protein is found in CFS patients. Homologous sequences of various human proteins with this EBNA-6 repeat sequence might be potential targets for antigenic mimicry.
Mameli, Giuseppe; Madeddu, Giordano; Mei, Alessandra; Uleri, Elena; Poddighe, Luciana; Delogu, Lucia G.; Maida, Ivana; Babudieri, Sergio; Serra, Caterina; Manetti, Roberto; Mura, Maria S.; Dolei, Antonina
2013-01-01
The etiology of multiple sclerosis (MS) is still unclear. The immuno-pathogenic phenomena leading to neurodegeneration are thought to be triggered by environmental (viral?) factors operating on predisposing genetic backgrounds. Among the proposed co-factors are the Epstein Barr virus (EBV), and the potentially neuropathogenic HERV-W/MSRV/Syncytin-1 endogenous retroviruses. The ascertained links between EBV and MS are history of late primary infection, possibly leading to infectious mononucleosis (IM), and high titers of pre-onset IgG against EBV nuclear antigens (anti-EBNA IgG). During MS, there is no evidence of MS-specific EBV expression, while a continuous expression of HERV-Ws occurs, paralleling disease behaviour. We found repeatedly extracellular HERV-W/MSRV and MSRV-specific mRNA sequences in MS patients (in blood, spinal fluid, and brain samples), and MRSV presence/load strikingly paralleled MS stages and active/remission phases. Aim of the study was to verify whether HERV-W might be activated in vivo, in hospitalized young adults with IM symptoms, that were analyzed with respect to expression of HERV-W/MSRV transcripts and proteins. Healthy controls were either EBV-negative or latently EBV-infected with/without high titers of anti-EBNA-1 IgG. The results show that activation of HERV-W/MSRV occurs in blood mononuclear cells of IM patients (2Log10 increase of MSRV-type env mRNA accumulation with respect to EBV-negative controls). When healthy controls are stratified for previous EBV infection (high and low, or no anti-EBNA-1 IgG titers), a direct correlation occurs with MSRV mRNA accumulation. Flow cytometry data show increased percentages of cells exposing surface HERV-Wenv protein, that occur differently in specific cell subsets, and in acute disease and past infection. Thus, the data indicate that the two main links between EBV and MS (IM and high anti-EBNA-1-IgG titers) are paralleled by activation of the potentially neuropathogenic HERV-W/MSRV. These novel findings suggest HERV-W/MSRV activation as the missing link between EBV and MS, and may open new avenues of intervention. PMID:24236019
Mameli, Giuseppe; Madeddu, Giordano; Mei, Alessandra; Uleri, Elena; Poddighe, Luciana; Delogu, Lucia G; Maida, Ivana; Babudieri, Sergio; Serra, Caterina; Manetti, Roberto; Mura, Maria S; Dolei, Antonina
2013-01-01
The etiology of multiple sclerosis (MS) is still unclear. The immuno-pathogenic phenomena leading to neurodegeneration are thought to be triggered by environmental (viral?) factors operating on predisposing genetic backgrounds. Among the proposed co-factors are the Epstein Barr virus (EBV), and the potentially neuropathogenic HERV-W/MSRV/Syncytin-1 endogenous retroviruses. The ascertained links between EBV and MS are history of late primary infection, possibly leading to infectious mononucleosis (IM), and high titers of pre-onset IgG against EBV nuclear antigens (anti-EBNA IgG). During MS, there is no evidence of MS-specific EBV expression, while a continuous expression of HERV-Ws occurs, paralleling disease behaviour. We found repeatedly extracellular HERV-W/MSRV and MSRV-specific mRNA sequences in MS patients (in blood, spinal fluid, and brain samples), and MRSV presence/load strikingly paralleled MS stages and active/remission phases. Aim of the study was to verify whether HERV-W might be activated in vivo, in hospitalized young adults with IM symptoms, that were analyzed with respect to expression of HERV-W/MSRV transcripts and proteins. Healthy controls were either EBV-negative or latently EBV-infected with/without high titers of anti-EBNA-1 IgG. The results show that activation of HERV-W/MSRV occurs in blood mononuclear cells of IM patients (2Log10 increase of MSRV-type env mRNA accumulation with respect to EBV-negative controls). When healthy controls are stratified for previous EBV infection (high and low, or no anti-EBNA-1 IgG titers), a direct correlation occurs with MSRV mRNA accumulation. Flow cytometry data show increased percentages of cells exposing surface HERV-Wenv protein, that occur differently in specific cell subsets, and in acute disease and past infection. Thus, the data indicate that the two main links between EBV and MS (IM and high anti-EBNA-1-IgG titers) are paralleled by activation of the potentially neuropathogenic HERV-W/MSRV. These novel findings suggest HERV-W/MSRV activation as the missing link between EBV and MS, and may open new avenues of intervention.
Atypical prediagnosis Epstein-Barr virus serology restricted to EBV-positive Hodgkin lymphoma
Chang, Ellen T.; Ambinder, Richard F.; Lennette, Evelyne T.; Rubertone, Mark V.; Mann, Risa B.; Borowitz, Michael; Weir, Edward G.; Abbondanzo, Susan L.; Mueller, Nancy E.
2012-01-01
An altered anti–Epstein-Barr virus (EBV) serologic profile preceding diagnosis is associated with an increased risk of Hodgkin lymphoma. It is unknown whether this atypical pattern predicts Hodgkin lymphoma risk further subdivided by determination of EBV in tumor cells. A nested case-control study of 128 incident Hodgkin lymphoma cases and 368 matched controls from active-duty military personnel with archived serum in the US Department of Defense Serum Repository was conducted to determine whether a panel of anti-EBV antibody titers differed in EBV+ and EBV− Hodgkin lymphoma. Among 40 EBV+ Hodgkin lymphoma cases and matched controls, statistically significant increased risks were associated with elevated anti-EBV VCA IgG antibody titers (relative risk = 3.1; 95% confidence interval [CI], 1.1-8.7), and an anti–EBNA-1/anti–EBNA-2 antibody ratio ≤ 1.0 versus > 1.0 (relative risk = 4.7; 95% CI, 1.6-13.8). In contrast, no significant associations were found among 88 EBV− Hodgkin lymphoma cases relative to their matched controls. In case-case analysis, EBV+ disease was significantly associated with a low anti–EBNA-1/anti–EBNA-2 antibody ratio. This distinc-tive serologic response to EBV latent antigens, indicative of immune dysfunction in other clinical settings, is associated with an increased risk of developing EBV+ but not EBV− Hodgkin lymphoma. PMID:22972983
Impaired Cytokine Responses to Epstein-Barr Virus Antigens in Systemic Lupus Erythematosus Patients
Draborg, Anette Holck; Sandhu, Noreen; Larsen, Nanna; Lisander Larsen, Janni; Jacobsen, Søren; Houen, Gunnar
2016-01-01
We analyzed cytokine responses against latent and lytic Epstein-Barr virus (EBV) antigens in systemic lupus erythematosus (SLE) patients and healthy controls (HCs) to obtain an overview of the distinctive immune regulatory response in SLE patients and to expand the previously determined impaired EBV-directed T-cell response. The concentrations of 14 cytokines (IL2, IL4, IL5, IL6, IL10, IL12, IL17, IL18, IL1β, IFNγ, TNFα, TNFβ, TGFβ, and GM-CSF) were quantified upon stimulation of whole blood with latent state antigen EBNA1, lytic cycle antigen EBV-EA/D, and the superantigen SEB. To avoid results affected by lack of lymphocytes, we focused on SLE patients with normal levels. Decreased induction of IL12, IFNγ, IL17, and IL6 upon EBNA1 stimulation and that of IFNγ, IL6, TNFβ, IL1β, and GM-CSF upon EBV-EA/D stimulation were detected in SLE patients compared to HCs. IFNγ responses, especially, were shown to be reduced. Induction of several cytokines was furthermore impaired in SLE patients upon SEB stimulation, but no difference was observed in basic levels. Results substantiate the previously proposed impaired regulation of the immune response against latent and lytic cycle EBV infection in SLE patients without lymphopenia. Furthermore, results indicate general dysfunction of leukocytes and their cytokine regulations in SLE patients. PMID:27110576
Rajčáni, Julius; Szenthe, Kalman; Durmanová, Vladimira; Tóth, Agnes; Asványi, Balazs; Pitlik, Ervin; Stipkovits, Laszlo; Szathmary, Susan
2014-01-01
We report the infection of New Zealand white rabbits with Epstein-Barr virus (EBV). EBV prepared in B95-8 (producer) cells was inoculated to rabbits by combined intranasal and oral routes. Blood and white blood cell (WBC) samples were taken before infection, then on days 8, 28 and 98 post-infection (p.i.). Administration of either 3 × 10(8) (group A, 11 rabbits) or 1 × 10(9) (group B, 10 rabbits) EBV DNA copies per animal induced subacute and/or persistent infection. The IgG antibodies in plasma were detected by ELISA as well as by immunoblot (IB). The IB bands showed mainly antibodies to the BZRF1/Zta transactivation polypeptide (69.2%), the p54 early protein (53.4%) and to the p23 capsid protein (35.8%). No anti-EBNA1 antibody was detected throughout. Viral DNA could be detected by PCR in WBCs and/or spleen of 7 out of 21 infected rabbits (30%), while 60-80% of them showed serologic response. The transiently present EBV DNA was accompanied by LMP1 antigen. Rabbits developed persistent EBV infection in the absence of EBNA1 antibodies and by the lack of typical infectious mononucleosis-like syndrome. The absence of EBNA1 antibody may reflect the lack of EBNA1 in B cells of EBV-inoculated rabbits. © 2014 S. Karger AG, Basel
El-Naby, Noha Ed Hassab; Hassan Mohamed, Hameda; Mohamed Goda, Asmaa; El Sayed Mohamed, Ahmed
2017-06-01
A controversy of the role of Epstein-Barr virus (EBV) infection in breast carcinomas has been reported in the literature. We carried on this research to explore possible association between EBV infection and breast invasive ductal carcinoma (IDC) in Egyptian women attending our center. This study carried out at Sohag university hospital on 84 paraffin embedded samples of breast tissue, of them 42 breast IDC as the case group and 42 breast fibroadenomas as the control group. Nested PCRand immunohistochemistry (IHC) done separately for all samples to identify the Epstein-Barr nuclear antigen-1 (EBNA-1) gene and EBV latent membrane protein-1 (LMP-1) respectively, in breast cancer cells and controls. Specimen considered positive when both (EBNA-1) gene and LMP-1 were detected using PCR and IHC separately for the same sample, this was achieved by 10/42 (23.81%) of breast IDC (case group) and 6/42 (14.29%) of breast fibro-adenomas (control group) (P-value=0.4). Nodal involvement was the only parameter that demonstrated a significant statistical relationship with EBV presence in cancerous tissue with p-value=0.003. Our research could not find a significant statistical association between EBV infection and breast IDC in Egyptian women attending our center, but, there might be an association between the existence of EBV and tumor aggressiveness. Copyright © 2017 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gianti, Eleonora
Computer-Aided Drug Design (CADD) has deservedly gained increasing popularity in modern drug discovery (Schneider, G.; Fechner, U. 2005), whether applied to academic basic research or the pharmaceutical industry pipeline. In this work, after reviewing theoretical advancements in CADD, we integrated novel and stateof- the-art methods to assist in the design of small-molecule inhibitors of current cancer drug targets, specifically: Androgen Receptor (AR), a nuclear hormone receptor required for carcinogenesis of Prostate Cancer (PCa); Signal Transducer and Activator of Transcription 5 (STAT5), implicated in PCa progression; and Epstein-Barr Nuclear Antigen-1 (EBNA1), essential to the Epstein Barr Virus (EBV) during latent infections. Androgen Receptor. With the aim of generating binding mode hypotheses for a class (Handratta, V.D. et al. 2005) of dual AR/CYP17 inhibitors (CYP17 is a key enzyme for androgens biosynthesis and therefore implicated in PCa development), we successfully implemented a receptor-based computational strategy based on flexible receptor docking (Gianti, E.; Zauhar, R.J. 2012). Then, with the ultimate goal of identifying novel AR binders, we performed Virtual Screening (VS) by Fragment-Based Shape Signatures, an improved version of the original method developed in our Laboratory (Zauhar, R.J. et al. 2003), and we used the results to fully assess the high-level performance of this innovative tool in computational chemistry. STAT5. The SRC Homology 2 (SH2) domain of STAT5 is responsible for phospho-peptide recognition and activation. As a keystone of Structure-Based Drug Design (SBDD), we characterized key residues responsible for binding. We also generated a model of STAT5 receptor bound to a phospho-peptide ligand, which was validated by docking publicly known STAT5 inhibitors. Then, we performed Shape Signatures- and docking-based VS of the ZINC database (zinc.docking.org), followed by Molecular Mechanics Generalized Born Surface Area (MMGBSA) simulations, paired with Principal Component Analysis (PCA) of top-scoring hits to identify novel lead molecules likely to be active against STAT5. EBNA1 is the only viral protein consistently expressed in the many EBV-associated tumors, and is required for viral genome maintenance during latent infection. To immediately assist SBDD, we computationally identified "druggable" binding sites of EBNA1, and our predictions were later confirmed by experimental evidence (The Wistar Institute proprietary data).
Epstein-Barr Virus-Specific Humoral Immune Responses in Health and Disease.
Middeldorp, Jaap M
2015-01-01
Epstein-Barr virus (EBV) is widely distributed in the world and associated with a still increasing number of acute, chronic, malignant and autoimmune disease syndromes. Humoral immune responses to EBV have been studied for diagnostic, pathogenic and protective (vaccine) purposes. These studies use a range of methodologies, from cell-based immunofluorescence testing to antibody-diversity analysis using immunoblot and epitope analysis using recombinant or synthetic peptide-scanning. First, the individual EBV antigen complexes (VCA , MA, EA(D), EA(R) and EBNA) are defined at cellular and molecular levels, providing a historic overview. The characteristic antibody responses to these complexes in health and disease are described, and differences are highlighted by clinical examples. Options for EBV vaccination are briefly addressed. For a selected number of immunodominant proteins, in particular EBNA1, the interaction with human antibodies is further detailed at the epitope level, revealing interesting insights for structure, function and immunological aspects, not considered previously. Humoral immune responses against EBV-encoded tumour antigens LMP1, LMP2 and BARF1 are addressed, which provide novel options for targeted immunotherapy. Finally, some considerations on EBV-linked autoimmune diseases are given, and mechanisms of antigen mimicry are briefly discussed. Further analysis of humoral immune responses against EBV in health and disease in carefully selected patient cohorts will open new options for understanding pathogenesis of individual EBV-linked diseases and developing targeted diagnostic and therapeutic approaches.
The Role of Gammaherpesviruses in Cancer Pathogenesis
Jha, Hem Chandra; Banerjee, Shuvomoy; Robertson, Erle S.
2016-01-01
Worldwide, one fifth of cancers in the population are associated with viral infections. Among them, gammaherpesvirus, specifically HHV4 (EBV) and HHV8 (KSHV), are two oncogenic viral agents associated with a large number of human malignancies. In this review, we summarize the current understanding of the molecular mechanisms related to EBV and KSHV infection and their ability to induce cellular transformation. We describe their strategies for manipulating major cellular systems through the utilization of cell cycle, apoptosis, immune modulation, epigenetic modification, and altered signal transduction pathways, including NF-kB, Notch, Wnt, MAPK, TLR, etc. We also discuss the important EBV latent antigens, namely EBNA1, EBNA2, EBNA3’s and LMP’s, which are important for targeting these major cellular pathways. KSHV infection progresses through the engagement of the activities of the major latent proteins LANA, v-FLIP and v-Cyclin, and the lytic replication and transcription activator (RTA). This review is a current, comprehensive approach that describes an in-depth understanding of gammaherpes viral encoded gene manipulation of the host system through targeting important biological processes in viral-associated cancers. PMID:26861404
Reduced response to Epstein–Barr virus antigens by T-cells in systemic lupus erythematosus patients
Draborg, Anette Holck; Jacobsen, Søren; Westergaard, Marie; Mortensen, Shila; Larsen, Janni Lisander; Houen, Gunnar; Duus, Karen
2014-01-01
Objective Epstein–Barr virus (EBV) has for long been associated with systemic lupus erythematosus (SLE). In this study, we investigated the levels of latent and lytic antigen EBV-specific T-cells and antibodies in SLE patients. Methods T cells were analyzed by flow cytometry and antibodies were analyzed by enzyme-linked immunosorbent assay. Results SLE patients showed a significantly reduced number of activated (CD69) T-cells upon ex vivo stimulation with EBV nuclear antigen (EBNA) 1 or EBV early antigen diffuse (EBV-EA/D) in whole blood samples compared with healthy controls. Also, a reduced number of T-cells from SLE patients were found to produce interferon-γ upon stimulation with these antigens. Importantly, responses to a superantigen were normal in SLE patients. Compared with healthy controls, SLE patients had fewer EBV-specific T-cells but higher titres of antibodies against EBV. Furthermore, an inverse correlation was revealed between the number of lytic antigen EBV-specific T-cells and disease activity of the SLE patients, with high-activity SLE patients having fewer T-cells than low-activity SLE patients. Conclusions These results indicate a limited or a defective EBV-specific T-cell response in SLE patients, which may suggest poor control of EBV infection in SLE with an immune reaction shift towards a humoral response in an attempt to control viral reactivation. A role for decreased control of EBV as a contributing agent in the development or exacerbation of SLE is proposed. PMID:25396062
Ling, P D; Ryon, J J; Hayward, S D
1993-01-01
EBNA-2 contributes to the establishment of Epstein-Barr virus (EBV) latency in B cells and to the resultant alterations in B-cell growth pattern by up-regulating expression from specific viral and cellular promoters. We have taken a comparative approach toward characterizing functional domains within EBNA-2. To this end, we have cloned and sequenced the EBNA-2 gene from the closely related baboon virus herpesvirus papio (HVP). All human EBV isolates have either a type A or type B EBNA-2 gene. However, the HVP EBNA-2 gene falls into neither the type A category nor the type B category, suggesting that the separation into these two subtypes may have been a recent evolutionary event. Comparison of the predicted amino acid sequences indicates 37% amino acid identity with EBV type A EBNA-2 and 35% amino acid identity with type B EBNA-2. To define the domains of EBNA-2 required for transcriptional activation, the DNA binding domain of the GAL4 protein was fused to overlapping segments of EBV EBNA-2. This approach identified a 40-amino-acid (40-aa) EBNA-2 activation domain located between aa 437 and 477. Transactivation ability was completely lost when the amino-terminal boundary of this domain was moved to aa 441, indicating that the motif at aa 437 to 440, Pro-Ile-Leu-Phe, contains residues critical for function. The aa 437 boundary identified in these experiments coincides precisely with a block of conserved sequences in HVP EBNA-2, and the comparable carboxy-terminal region of HVP EBNA-2 also functioned as a strong transcriptional activation domain when fused to the Gal4(1-147) protein. The EBV and HVP EBNA-2 activation domains share a mixed proline-rich, negatively charged character with a striking conservation of positionally equivalent hydrophobic residues. The importance of the individual amino acids making up the Pro-Ile-Leu-Phe motif was examined by mutagenesis. Any alteration of these residues was found to reduce transactivation efficiency, with changes at the Pro-437 and Phe-440 positions producing the most deleterious effects. Activation of the EBV latency C promoter by EBNA-2 was shown to be dependent on the presence of the carboxy-terminal activation domain. However, this requirement was generic, rather than specific, since the EBNA-2 activation domain could be replaced with those from the herpes simplex virus (HSV) VP16 protein or the EBV Rta protein. Potential karyophilic signals within EBNA-2 were examined by introducing oligonucleotides encoding positively charged amino acid groupings that might serve in this capacity into a cytoplasmic test protein, HSV delta IE175, and by examining the intracellular localization of the resulting proteins. This assay identified a strong nuclear localization signal between EBV amino acids (aa) 478 to 485, which was conserved in HVP, and a weaker noncanonical signal between EBV aa 341 to 355, which was not conserved in HVP. Images PMID:8388484
Ling, P D; Ryon, J J; Hayward, S D
1993-06-01
EBNA-2 contributes to the establishment of Epstein-Barr virus (EBV) latency in B cells and to the resultant alterations in B-cell growth pattern by up-regulating expression from specific viral and cellular promoters. We have taken a comparative approach toward characterizing functional domains within EBNA-2. To this end, we have cloned and sequenced the EBNA-2 gene from the closely related baboon virus herpesvirus papio (HVP). All human EBV isolates have either a type A or type B EBNA-2 gene. However, the HVP EBNA-2 gene falls into neither the type A category nor the type B category, suggesting that the separation into these two subtypes may have been a recent evolutionary event. Comparison of the predicted amino acid sequences indicates 37% amino acid identity with EBV type A EBNA-2 and 35% amino acid identity with type B EBNA-2. To define the domains of EBNA-2 required for transcriptional activation, the DNA binding domain of the GAL4 protein was fused to overlapping segments of EBV EBNA-2. This approach identified a 40-amino-acid (40-aa) EBNA-2 activation domain located between aa 437 and 477. Transactivation ability was completely lost when the amino-terminal boundary of this domain was moved to aa 441, indicating that the motif at aa 437 to 440, Pro-Ile-Leu-Phe, contains residues critical for function. The aa 437 boundary identified in these experiments coincides precisely with a block of conserved sequences in HVP EBNA-2, and the comparable carboxy-terminal region of HVP EBNA-2 also functioned as a strong transcriptional activation domain when fused to the Gal4(1-147) protein. The EBV and HVP EBNA-2 activation domains share a mixed proline-rich, negatively charged character with a striking conservation of positionally equivalent hydrophobic residues. The importance of the individual amino acids making up the Pro-Ile-Leu-Phe motif was examined by mutagenesis. Any alteration of these residues was found to reduce transactivation efficiency, with changes at the Pro-437 and Phe-440 positions producing the most deleterious effects. Activation of the EBV latency C promoter by EBNA-2 was shown to be dependent on the presence of the carboxy-terminal activation domain. However, this requirement was generic, rather than specific, since the EBNA-2 activation domain could be replaced with those from the herpes simplex virus (HSV) VP16 protein or the EBV Rta protein. Potential karyophilic signals within EBNA-2 were examined by introducing oligonucleotides encoding positively charged amino acid groupings that might serve in this capacity into a cytoplasmic test protein, HSV delta IE175, and by examining the intracellular localization of the resulting proteins. This assay identified a strong nuclear localization signal between EBV amino acids (aa) 478 to 485, which was conserved in HVP, and a weaker noncanonical signal between EBV aa 341 to 355, which was not conserved in HVP.
Silveira, Eduardo L. V.; Fogg, Mark H.; Leskowitz, Rachel M.; Ertl, Hildegund C.; Wiseman, Roger W.; O'Connor, David H.; Lieberman, Paul; Wang, Fred
2013-01-01
Epstein-Barr virus (EBV) is a vaccine/immunotherapy target due to its association with several human malignancies. EBNA-1 is an EBV protein consistently expressed in all EBV-associated cancers. Herein, EBNA-1-specific T cell epitopes were evaluated after AdC–rhEBNA-1 immunizations in chronically lymphocryptovirus-infected rhesus macaques, an EBV infection model. Preexisting rhEBNA-1-specific responses were augmented in 4/12 animals, and new epitopes were recognized in 5/12 animals after vaccinations. This study demonstrated that EBNA-1-specific T cells can be expanded by vaccination. PMID:24089556
Kasahara, Y; Yachie, A; Takei, K; Kanegane, C; Okada, K; Ohta, K; Seki, H; Igarashi, N; Maruhashi, K; Katayama, K; Katoh, E; Terao, G; Sakiyama, Y; Koizumi, S
2001-09-15
Unusual Epstein-Barr virus (EBV) infection into T or natural killer cells plays a pivotal role in the pathogenesis of acute EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH) and chronic active EBV infection (CAEBV). The precise frequency and localization of EBV genome in lymphocyte subpopulations especially within T-cell subpopulations are unclear in these EBV-related disorders. This study analyzed the frequency of EBV-infected cells in circulating lymphocyte subpopulations from 4 patients with acute EBV-HLH and 4 with CAEBV. EBV- encoded small RNA-1 in situ hybridization examination of peripheral blood lymphocytes showed a significantly higher frequency of EBV-infected cells of 1.0% to 13.4% in EBV-HLH and 1.6% to 25.6% in CAEBV, respectively. The patterns of EBV infection in lymphocyte subpopulations were quite different between acute EBV-HLH and CAEBV. EBV infection was predominant in CD8(+) T cells in all EBV-HLH patients, whereas the dominant EBV-infected cell populations were non-CD8(+) lymphocyte subpopulations in CAEBV patients. Phenotypical analysis revealed that EBV-infected cell populations from both EBV-HLH and CAEBV were activated. There was no predominance of any EBV substrain of latent membrane protein-1, EBV-associated nuclear antigen (EBNA)-1, and EBNA-2 genes between the 2 abnormal EBV-associated disorders, and self-limited acute infectious mononucleosis. These results showing differential virus-cell interactions between acute EBV-HLH and CAEBV indicated different pathogenic mechanisms against EBV infection between the 2 EBV-associated diseases, which accounts for the difference in clinical manifestations between the 2 diseases.
Epstein-Barr Virus EBNA1 Protein Regulates Viral Latency through Effects on let-7 MicroRNA and Dicer
Mansouri, Sheila; Pan, Qun; Blencowe, Benjamin J.; Claycomb, Julie M.
2014-01-01
ABSTRACT The EBNA1 protein of Epstein-Barr virus (EBV) plays multiple roles in EBV latent infection, including altering cellular pathways relevant for cancer. Here we used microRNA (miRNA) cloning coupled with high-throughput sequencing to identify the effects of EBNA1 on cellular miRNAs in two nasopharyngeal carcinoma cell lines. EBNA1 affected a small percentage of cellular miRNAs in both cell lines, in particular, upregulating multiple let-7 family miRNAs, including let-7a. The effects of EBNA1 on let-7a were verified by demonstrating that EBNA1 silencing in multiple EBV-positive carcinomas downregulated let-7a. Accordingly, the let-7a target, Dicer, was found to be partially downregulated by EBNA1 expression (at the mRNA and protein levels) and upregulated by EBNA1 silencing in EBV-positive cells. Reporter assays based on the Dicer 3′ untranslated region with and without let-7a target sites indicated that the effects of EBNA1 on Dicer were mediated by let-7a. EBNA1 was also found to induce the expression of let-7a primary RNAs in a manner dependent on the EBNA1 transcriptional activation region, suggesting that EBNA1 induces let-7a by transactivating the expression of its primary transcripts. Consistent with previous reports that Dicer promotes EBV reactivation, we found that a let-7a mimic inhibited EBV reactivation to the lytic cycle, while a let-7 sponge increased reactivation. The results provide a mechanism by which EBNA1 could promote EBV latency by inducing let-7 miRNAs. IMPORTANCE The EBNA1 protein of Epstein-Barr virus (EBV) contributes in multiple ways to the latent mode of EBV infection that leads to lifelong infection. In this study, we identify a mechanism by which EBNA1 helps to maintain EBV infection in a latent state. This involves induction of a family of microRNAs (let-7 miRNAs) that in turn decreases the level of the cellular protein Dicer. We demonstrate that let-7 miRNAs inhibit the reactivation of latent EBV, providing an explanation for our previous observation that EBNA1 promotes latency. In addition, since decreased levels of Dicer have been associated with metastatic potential, EBNA1 may increase metastases by downregulating Dicer. PMID:25031339
Hammer, Diana; Wild, Jens; Ludwig, Christine; Asbach, Benedikt; Notka, Frank; Wagner, Ralf
2008-06-01
Trans-dominant human immunodeficiency virus type 1 (HIV-1) Gag derivatives have been shown to efficiently inhibit late steps of HIV-1 replication in vitro by interfering with Gag precursor assembly, thus ranking among the interesting candidates for gene therapy approaches. However, efficient antiviral activities of corresponding transgenes are likely to be counteracted in particular by cell-mediated host immune responses toward the transgene-expressing cells. To decrease this potential immunogenicity, a 24-amino acid Gly-Ala (GA) stretch derived from Epstein-Barr virus nuclear antigen-1 (EBNA1) and known to overcome proteasomal degradation was fused to a trans-dominant Gag variant (sgD1). To determine the capacity of this fusion polypeptide to repress viral replication, PM-1 cells were transduced with sgD1 and GAsgD1 transgenes, using retroviral gene transfer. Challenge of stably transfected permissive cell lines with various viral strains indicated that N-terminal GA fusion even enhanced the inhibitory properties of sgD1. Further studies revealed that the GA stretch increased protein stability by blocking proteasomal degradation of Gag proteins. Immunization of BALB/c mice with a DNA vaccine vector expressing sgD1 induced substantial Gag-specific immune responses that were, however, clearly diminished in the presence of GA. Furthermore, recognition of cells expressing the GA-fused transgene by CD8(+) T cells was drastically reduced, both in vitro and in vivo, resulting in prolonged survival of the transduced cells in recipient mice.
Mapping EBNA-1 Domains Involved in Binding to Metaphase Chromosomes
Marechal, Vincent; Dehee, Axelle; Chikhi-Brachet, Roxane; Piolot, Tristan; Coppey-Moisan, Maité; Nicolas, Jean-Claude
1999-01-01
The Epstein-Barr virus (EBV) genome can persist in dividing human B cells as multicopy circular episomes. Viral episomes replicate in synchrony with host cell DNA and are maintained at a relatively constant copy number for a long time. Only two viral elements, the replication origin OriP and the EBNA-1 protein, are required for the persistence of viral genomes during latency. EBNA-1 activates OriP during the S phase and may also contribute to the partition and/or retention of viral genomes during mitosis. Indeed, EBNA-1 has been shown to interact with mitotic chromatin. Moreover, viral genomes are noncovalently associated with metaphase chromosomes. This suggests that EBNA-1 may facilitate the anchorage of viral genomes on cellular chromosomes, thus ensuring proper partition and retention. In the present paper, we have investigated the chromosome-binding activity of EBV EBNA-1, herpesvirus papio (HVP) EBNA-1, and various derivatives of EBV EBNA-1, fused to a variant of the green fluorescent protein. The results show that binding to metaphase chromosomes is a common property of EBV and HVP EBNA-1. Further studies indicated that at least three independent domains (CBS-1, -2, and -3) mediate EBNA-1 binding to metaphase chromosomes. In agreement with the anchorage model, two of these domains mapped to a region that has been previously demonstrated to be required for the long-term persistence of OriP-containing plasmids. PMID:10196336
The Minimal Replicator of Epstein-Barr Virus oriP
Yates, John L.; Camiolo, Sarah M.; Bashaw, Jacqueline M.
2000-01-01
oriP is a 1.7-kb region of the Epstein-Barr virus (EBV) chromosome that supports the replication and stable maintenance of plasmids in human cells. oriP contains two essential components, called the DS and the FR, both of which contain multiple binding sites for the EBV-encoded protein, EBNA-1. The DS appears to function as the replicator of oriP, while the FR acts in conjunction with EBNA-1 to prevent the loss of plasmids from proliferating cells. Because of EBNA-1's role in stabilizing plasmids through the FR, it has not been entirely clear to what extent EBNA-1 might be required for replication from oriP per se, and a recent study has questioned whether EBNA-1 has any direct role in replication. In the present study we found that plasmids carrying oriP required EBNA-1 to replicate efficiently even when assayed only 2 days after plasmids were introduced into the cell lines 143B and 293. Significantly, using 293 cells it was demonstrated that the plasmid-retention function of EBNA-1 and the FR did not contribute significantly to the accumulation of replicated plasmids, and the DS supported efficient EBNA-1-dependent replication in the absence of the FR. The DS contains two pairs of closely spaced EBNA-1 binding sites, and a previous study had shown that both sites within either pair are required for activity. However, it was unclear from previous work what additional sequences within the DS might be required. We found that each “half” of the DS, including a pair of closely spaced EBNA-1 binding sites, had significant replicator activity when the other half had been deleted. The only significant DNA sequences that the two halves of the DS share in common, other than EBNA-1 binding sites, is a 9-bp sequence that is present twice in the “left half” and once in the “right half.” These nonamer repeats, while not essential for activity, contributed significantly to the activity of each half of the DS. Two thymines occur at unique positions within EBNA-1 binding sites 1 and 4 at the DS and become sensitive to oxidation by permanganate when EBNA-1 binds, but mutation of each to the consensus base, adenine, actually improved the activity of each half of the DS slightly. In conclusion, the DS of oriP is an EBNA-1-dependent replicator, and its minimal active core appears to be simply two properly spaced EBNA-1 binding sites. PMID:10775587
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwun, Hyun Jin; Ramos da Silva, Suzane; Department of Pathology, Botucatu School of Medicine at Sao Paulo State University, Sao Paulo
KSHV LANA1, a latent protein expressed during chronic infection to maintain a viral genome, inhibits major histocompatibility complex class I (MHC I) peptide presentation in cis as a means of immune evasion. Through deletional cloning, we localized this function to the LANA1 central repeat 1 (CR1) subregion. Other CR subregions retard LANA1 translation and proteasomal processing but do not markedly inhibit LANA1 peptide processing by MHC I. Inhibition of proteasomal processing ablates LANA1 peptide presentation. Direct expression of LANA1 within the endoplasmic reticulum (ER) overcomes CR1 inhibition suggesting that CR1 acts prior to translocation of cytoplasmic peptides into the ER.more » By physically separating CR1 from other subdomains, we show that LANA1 evades MHC I peptide processing by a mechanism distinct from other herpesviruses including Epstein-Barr virus (EBV). Although LANA1 and EBV EBNA1 are functionally similar, they appear to use different mechanisms to evade host cytotoxic T lymphocyte surveillance.« less
Prostate Tumor Antigen Discovery: Development of a Novel Genetic Approach
2001-12-01
HIV infection and AIDS), 20 MUC-1 (associated with breast cancer), EBNA-1 (associated with Epstein Barr Virus infection), CA19.9 (associated with... developed with DCs transfected with RNA from LNCaP cell lines. These studies established the feasibility of using PSA as a vaccine for prostate cancer...effective as an adjunct therapy for this malignancy. There are several road blocks to developing a successful cancer vaccine . Products of tumor cells that are
Arai, Ayako; Nakazawa, Atsuko; Kawano, Fuyuko; Ichikawa, Sayumi; Shimizu, Norio; Yamamoto, Naoki; Morio, Tomohiro; Ohga, Shouichi; Nakamura, Hiroyuki; Ito, Mamoru; Miura, Osamu; Komano, Jun; Fujiwara, Shigeyoshi
2011-01-01
Epstein-Barr virus (EBV), a ubiquitous B-lymphotropic herpesvirus, ectopically infects T or NK cells to cause severe diseases of unknown pathogenesis, including chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH). We developed xenograft models of CAEBV and EBV-HLH by transplanting patients' PBMC to immunodeficient mice of the NOD/Shi-scid/IL-2Rγnull strain. In these models, EBV-infected T, NK, or B cells proliferated systemically and reproduced histological characteristics of the two diseases. Analysis of the TCR repertoire expression revealed that identical predominant EBV-infected T-cell clones proliferated in patients and corresponding mice transplanted with their PBMC. Expression of the EBV nuclear antigen 1 (EBNA1), the latent membrane protein 1 (LMP1), and LMP2, but not EBNA2, in the engrafted cells is consistent with the latency II program of EBV gene expression known in CAEBV. High levels of human cytokines, including IL-8, IFN-γ, and RANTES, were detected in the peripheral blood of the model mice, mirroring hypercytokinemia characteristic to both CAEBV and EBV-HLH. Transplantation of individual immunophenotypic subsets isolated from patients' PBMC as well as that of various combinations of these subsets revealed a critical role of CD4+ T cells in the engraftment of EBV-infected T and NK cells. In accordance with this finding, in vivo depletion of CD4+ T cells by the administration of the OKT4 antibody following transplantation of PBMC prevented the engraftment of EBV-infected T and NK cells. This is the first report of animal models of CAEBV and EBV-HLH that are expected to be useful tools in the development of novel therapeutic strategies for the treatment of the diseases. PMID:22028658
Imadome, Ken-ichi; Yajima, Misako; Arai, Ayako; Nakazawa, Atsuko; Kawano, Fuyuko; Ichikawa, Sayumi; Shimizu, Norio; Yamamoto, Naoki; Morio, Tomohiro; Ohga, Shouichi; Nakamura, Hiroyuki; Ito, Mamoru; Miura, Osamu; Komano, Jun; Fujiwara, Shigeyoshi
2011-10-01
Epstein-Barr virus (EBV), a ubiquitous B-lymphotropic herpesvirus, ectopically infects T or NK cells to cause severe diseases of unknown pathogenesis, including chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH). We developed xenograft models of CAEBV and EBV-HLH by transplanting patients' PBMC to immunodeficient mice of the NOD/Shi-scid/IL-2Rγ(null) strain. In these models, EBV-infected T, NK, or B cells proliferated systemically and reproduced histological characteristics of the two diseases. Analysis of the TCR repertoire expression revealed that identical predominant EBV-infected T-cell clones proliferated in patients and corresponding mice transplanted with their PBMC. Expression of the EBV nuclear antigen 1 (EBNA1), the latent membrane protein 1 (LMP1), and LMP2, but not EBNA2, in the engrafted cells is consistent with the latency II program of EBV gene expression known in CAEBV. High levels of human cytokines, including IL-8, IFN-γ, and RANTES, were detected in the peripheral blood of the model mice, mirroring hypercytokinemia characteristic to both CAEBV and EBV-HLH. Transplantation of individual immunophenotypic subsets isolated from patients' PBMC as well as that of various combinations of these subsets revealed a critical role of CD4+ T cells in the engraftment of EBV-infected T and NK cells. In accordance with this finding, in vivo depletion of CD4+ T cells by the administration of the OKT4 antibody following transplantation of PBMC prevented the engraftment of EBV-infected T and NK cells. This is the first report of animal models of CAEBV and EBV-HLH that are expected to be useful tools in the development of novel therapeutic strategies for the treatment of the diseases.
Sawada, Akihisa; Croom-Carter, Deborah; Kondo, Osamu; Yasui, Masahiro; Koyama-Sato, Maho; Inoue, Masami; Kawa, Keisei; Rickinson, Alan B; Tierney, Rosemary J
2011-05-01
Polymorphisms in Epstein-Barr virus (EBV) latent genes can identify virus strains from different human populations and individual strains within a population. An Asian EBV signature has been defined almost exclusively from Chinese viruses, with little information from other Asian countries. Here we sequenced polymorphic regions of the EBNA1, 2, 3A, 3B, 3C and LMP1 genes of 31 Japanese strains from control donors and EBV-associated T/NK-cell lymphoproliferative disease (T/NK-LPD) patients. Though identical to Chinese strains in their dominant EBNA1 and LMP1 alleles, Japanese viruses were subtly different at other loci. Thus, while Chinese viruses mainly fall into two families with strongly linked 'Wu' or 'Li' alleles at EBNA2 and EBNA3A/B/C, Japanese viruses all have the consensus Wu EBNA2 allele but fall into two families at EBNA3A/B/C. One family has variant Li-like sequences at EBNA3A and 3B and the consensus Li sequence at EBNA3C; the other family has variant Wu-like sequences at EBNA3A, variants of a low frequency Chinese allele 'Sp' at EBNA3B and a consensus Sp sequence at EBNA3C. Thus, EBNA3A/B/C allelotypes clearly distinguish Japanese from Chinese strains. Interestingly, most Japanese viruses also lack those immune-escape mutations in the HLA-A11 epitope-encoding region of EBNA3B that are so characteristic of viruses from the highly A11-positive Chinese population. Control donor-derived and T/NK-LPD-derived strains were similarly distributed across allelotypes and, by using allelic polymorphisms to track virus strains in patients pre- and post-haematopoietic stem-cell transplant, we show that a single strain can induce both T/NK-LPD and B-cell-lymphoproliferative disease in the same patient.
McClellan, Michael J.; Wood, C. David; Ojeniyi, Opeoluwa; Cooper, Tim J.; Kanhere, Aditi; Arvey, Aaron; Webb, Helen M.; Palermo, Richard D.; Harth-Hertle, Marie L.; Kempkes, Bettina; Jenner, Richard G.; West, Michelle J.
2013-01-01
Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors. PMID:24068937
Deakyne, Julianna S; Malecka, Kimberly A; Messick, Troy E; Lieberman, Paul M
2017-10-01
Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding in vitro , minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP in vivo as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1. IMPORTANCE Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance. Copyright © 2017 American Society for Microbiology.
Fink, Susanne; Tsai, Ming-Han; Schnitzler, Paul; Zeier, Martin; Dreger, Peter; Wuchter, Patrick; Bulut, Olcay C; Behrends, Uta; Delecluse, Henri-Jacques
2017-01-01
Transplant recipients frequently exhibit an increased Epstein-Barr virus (EBV) load in the peripheral blood. Here, we quantitated the EBV-infected cells in the peripheral blood of these patients and defined the mode of viral infection, latent or lytic. These data indicated that there is no strong correlation between the number of infected cells and the EBV load (EBVL). This can be explained by a highly variable number of EBV copies per infected cell and by lytic replication in some cells. The plasma of these patients did not contain any free infectious viruses, but contained nevertheless EBV DNA, sometimes in large amounts, that probably originates from cell debris and contributed to the total EBVL. Some of the investigated samples carried a highly variable number of infected cells in active latency, characterized by an expression of the Epstein-Barr nuclear antigens (EBNA2) protein. However, a third of the samples expressed neither EBNA2 nor lytic proteins. Patients with an increased EBVL represent a heterogeneous group of patients whose infection cannot be characterized by this method alone. Precise characterization of the origin of an increased EBVL, in particular, in terms of the number of EBV-infected cells, requires additional investigations including the number of EBV-encoded small RNA-positive cells. © 2016 Steunstichting ESOT.
Cui, Jingtao; Yan, Wenjuan; Xu, Shaoxia; Wang, Qiaofeng; Zhang, Weihong; Liu, Wenjing; Ni, Anping
2018-01-01
Epstein-Barr virus (EBV) is associated with nasopharyngeal carcinoma (NPC) which is prevalent in South China, and its association with systemic lupus erythematosus (SLE) or other autoimmune diseases has not been studied in the mainland of China. The EBV serological tests have been performed on patients with various diseases or manifestations for years at our institution and their values need to be evaluated. For routine medical purposes, anti-EB viral capsid antigen (VCA) IgG, IgA and IgM antibodies, anti-EBV diffuse early antigen (EA-D) IgA antibodies, and anti-EBV nuclear antigen-1(EBNA-1) IgG antibodies were tested with commercial enzyme-linked immunosorbent assay (ELISA) in patients visiting Peking Union Medical College Hospital between 2013 and 2017. The test results were analyzed in this retrospective study. There were a total of 11122 serum samples available to be tested in the study. As indicators of past EBV infection, the prevalence of VCA-IgG/EBNA1-IgG were 66.6%/58.5%, 84.3%/78.8%, 92.9%/87.0% and 98.5%/95.4% in patients aged under 5 years, 6-10 years, 11-20 years and 21-30 years old, respectively, and these values maintained at this highest rate as age increased further. The prevalence of VCA-IgM, as a parameter of acute EBV infection, was 14.6%, 10.2%, 10.4%, 6.3% and 3.1% in patients aged under 5 years, 6-10 years,11-20 years, 21-30 years, 31-40 years old, respectively, and decreased to 2%~3% in older patients. Patients with elevated serum liver enzymes were more likely to have a higher prevalence of EA/D IgA antibody (P < 0.01) and young patients (≤30 years) with lymphadenopathy were more likely to have higher prevalence of VCA-IgM antibody (P < 0.01). The prevalence of VCA-IgA and EAD-IgA were 87.0% and 59.2% in NPC patients, respectively, and both were significantly higher (P < 0.001) than that in non-NPC patients. The prevalence of VCA-IgA was 45.4% and 25.6% in SLE patients and patients with other autoimmune diseases, respectively, which were significantly (P < 0.001) and mildly (P = 0.039) higher than their controls. In pediatric SLE patients between 6 and10 years old, the prevalence of VCA-IgG, VCA-IgA and EBNA1-IgG was 100%, 59.5% and 100%, respectively, all being significantly higher than the age (6-10y) related controls (P< 0.01). In the 705 cerebral spinal fluid (CSF) specimens, VCA-IgG, VCA-IgM, VCA-IgA and EAD-IgA were found to be positive in 12.1%, 0.15%, 0.25% and 0.25%, respectively. There were 157 paired specimens (CSF and serum were collected simultaneously) and VCA-IgG was identified as positive in 12.7% of the CSF and 100% of the serum specimens. Around 98% of Chinese patients were infected with EBV before 30 years of age and the highest rate of acute EBV infection were observed in patients under 5 years old. EBV infection was found to be associated with elevated serum liver enzymes, NPC and SLE. Acute anti-EBV antibody was valued for young patients with lymphadenopathy but limited value for CNS neuropathy.
Mameli, G; Madeddu, G; Cossu, D; Galleri, G; Manetti, R; Babudieri, S; Mura, M Stella; Sechi, L A
2016-01-01
Infectious mononucleosis (IM) caused by Epstein-Barr virus (EBV) has been associated with increased risk of multiple sclerosis (MS). However, the mechanism linking these pathologies is unclear. Different reports indicate the association of EBV, and recently Mycobacterium avium subsp. paratuberculosis (MAP), with MS. For a better understanding of the role of these pathogens, the host response induced by selected antigenic peptides in subjects with a history of IM that significantly increases the risk of MS was investigated. Both humoral and cell-mediated response against peptides able to induce a specific immune activation in MS patients deriving from lytic and latent EBV antigens BOLF1(305-320), EBNA1(400-413), from MAP MAP_4027(18-32), MAP_0106c(121-132) and from human proteins IRF5(424-434) and MBP(85-98) in subjects with current and past IM were examined. EBNA1 and MAP_0106c peptides were able to induce a humoral immune response in subjects with a history of clinical IM in an independent manner. Moreover, these peptides were capable of inducing pro-inflammatory cytokine interferon γ by CD4+ and CD8+ T lymphocytes and interleukin 6 and tumour necrosis factor α by CD14+ monocyte cells. Our results highlight that EBV and MAP may be involved independently in the same causal process leading to MS in subjects with a history of IM. © 2015 EAN.
Cancian, Laila; Bosshard, Rachel; Lucchesi, Walter; Karstegl, Claudio Elgueta; Farrell, Paul J.
2011-01-01
Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs. PMID:21857817
[Chronic active Epstein-Barr virus infection in an adult].
Kościelak, Jerzy
2009-01-01
A chronic active Epstein-Barr virus infection (CAEBV) following infectious mononucleosis in a 58 years old woman is reported. The disease lasted for one year, and in spite of an intensive search for its cause, was diagnosed only at the 8th months since its onset. A low frequency of CAEBV in caucasians and patient's age were likely responsible for the belated diagnosis. The disease presented with a high, intermittent fever, general lymphoadenopathy, splenomegalia, hypoalbuminemia, polyclonal gamma globulinemia and malaise. Starting from the 6th month, i.e. before the diagnosis was established, a high dose oral therapy with methylprednisolone was introduced. The improvement was significant but the disease recurred after drug withdrawal. Nevertheless its course was milder. At the 8th month since the disease onset elevated antibody to viral capsid antigen (VCA) together with antibody to early antigen (EA) and nuclear antigen (EBNA) were still found in patient's blood. DNA of EBV was detected by PCR in patient's blood and saliva. The patient recovered completely after one year, and as of today i.e. June 2009, is feeling well. A likely cause of the successful steroid therapy is discussed. A review part of the article describes etiopathogenesis, complications, occurrence and treatment of CAEBV, as well as its relation to various lymphoproliferation disorders.
Smatti, Maria K.; Yassine, Hadi M.; AbuOdeh, Raed; AlMarawani, Asmaa; Taleb, Sara A.; Althani, Asmaa A.
2017-01-01
Background The Epstein–Barr virus (EBV) is the causative agent of infectious mononucleosis. EBV is highly prevalent lymphotropic herpesvirus and has been linked to several malignancies. Transmission is generally by oral secretions, but can be through blood transfusions and organ transplantations. This study aimed to determine the seroprevalence, viremia rates, and circulating genotypes of EBV in healthy blood donors in Qatar. Methods Blood samples from 673 blood donors of different nationalities residing in Qatar (mainly Qatar, Egypt, Syria, Jordan, Pakistan, and India) were collected and tested for anti-EBV capsid (VCA; IgG & IgM), nuclear (EBNA; IgG), and early (EA-D; IgG) antigens. Avidity testing was determined when active infection was suspected. DNA was extracted from the buffy coat and subjected to EBV-DNA quantification using qRT-PCR. Genotyping was performed using nested-PCR targeting EBV-EBNA2 gene, and phylogeny by sequence analysis of the LMP-1 gene. Results 97.9% (673/659) of the samples were seropositive as indicated by the presence VCA-IgG, while 52.6% (354/673) had detectible EBV-DNA. EBV seroprevalence and viremia rates increased significantly with age. Genotyping of 51 randomly selected samples showed predominance of Genotype 1 (72.5%, 37/51) as compared to genotype 2 (3.5%), and mixed infections were detected in 4% of the samples. Sub-genotyping for these samples revealed that the Mediterranean strain was predominant (65.3%), followed by B95.8 prototype and North Carolina strains (12.2% each), and China1 strain (6%). Conclusion As a first study to evaluate EBV infection in highly diverse population in Qatar, where expatriates represent more than 85% of the population, our results indicated high seroprevalence and viremia rate of EBV in different nationalities, with genotype 1 and Mediterranean strain being predominant. Clinical significance of these finding have not been investigated and shall be evaluated in future studies. PMID:29228016
Smatti, Maria K; Yassine, Hadi M; AbuOdeh, Raed; AlMarawani, Asmaa; Taleb, Sara A; Althani, Asmaa A; Nasrallah, Gheyath K
2017-01-01
The Epstein-Barr virus (EBV) is the causative agent of infectious mononucleosis. EBV is highly prevalent lymphotropic herpesvirus and has been linked to several malignancies. Transmission is generally by oral secretions, but can be through blood transfusions and organ transplantations. This study aimed to determine the seroprevalence, viremia rates, and circulating genotypes of EBV in healthy blood donors in Qatar. Blood samples from 673 blood donors of different nationalities residing in Qatar (mainly Qatar, Egypt, Syria, Jordan, Pakistan, and India) were collected and tested for anti-EBV capsid (VCA; IgG & IgM), nuclear (EBNA; IgG), and early (EA-D; IgG) antigens. Avidity testing was determined when active infection was suspected. DNA was extracted from the buffy coat and subjected to EBV-DNA quantification using qRT-PCR. Genotyping was performed using nested-PCR targeting EBV-EBNA2 gene, and phylogeny by sequence analysis of the LMP-1 gene. 97.9% (673/659) of the samples were seropositive as indicated by the presence VCA-IgG, while 52.6% (354/673) had detectible EBV-DNA. EBV seroprevalence and viremia rates increased significantly with age. Genotyping of 51 randomly selected samples showed predominance of Genotype 1 (72.5%, 37/51) as compared to genotype 2 (3.5%), and mixed infections were detected in 4% of the samples. Sub-genotyping for these samples revealed that the Mediterranean strain was predominant (65.3%), followed by B95.8 prototype and North Carolina strains (12.2% each), and China1 strain (6%). As a first study to evaluate EBV infection in highly diverse population in Qatar, where expatriates represent more than 85% of the population, our results indicated high seroprevalence and viremia rate of EBV in different nationalities, with genotype 1 and Mediterranean strain being predominant. Clinical significance of these finding have not been investigated and shall be evaluated in future studies.
Banko, Ana; Lazarevic, Ivana; Stevanovic, Goran; Cirkovic, Andja; Karalic, Danijela; Cupic, Maja; Banko, Bojan; Milovanovic, Jovica; Jovanovic, Tanja
2016-09-01
Primary Epstein-Barr virus (EBV) infection is usually asymptomatic, although at times it results in the benign lymphoproliferative disease, infectious mononucleosis (IM), during which almost half of patients develop hepatitis. The aims of the present study are to evaluate polymorphisms of EBV genes circulating in IM isolates from this geographic region and to investigate the correlation of viral sequence patterns with the available IM biochemical parameters. The study included plasma samples from 128 IM patients. The genes EBNA2, LMP1 , and EBNA1 were amplified using nested-PCR. EBNA2 genotyping was performed by visualization of PCR products using gel electrophoresis. Investigation of LMP1 and EBNA1 included sequence, phylogenetic, and statistical analyses. The presence of EBV DNA in plasma samples showed correlation with patients' necessity for hospitalization (p=0.034). The majority of EBV isolates was genotype 1. LMP1 variability showed 4 known variants, and two new deletions (27-bp and 147-bp). Of the 3 analyzed attributes of LMP1 isolates, the number of 33-bp repeats less than the reference 4.5 was the only one that absolutely correlated with the elevated levels of transaminases. EBNA1 variability was presented by prototype subtypes. A particular combination of EBNA2, LMP1 , and EBNA1 polymorphisms, deleted LMP1/P-thr and non-deleted LMP1/P-ala , as well as genotype 1/ 4.5 33-bp LMP1 repeats or genotype 2/ 4.5 33-bp LMP1 repeats showed correlation with elevated AST (aspartate aminotransferase) and ALT (alanine transaminase). This is the first study which identified the association between EBV variability and biochemical parameters in IM patients. These results showed a possibility for the identification of hepatic related diagnostic EBV markers.
Al-Homsi, A S; Berger, C; van Baarle, D; Kersten, M J; Klein, M R; McQuain, C; van Oers, R; Knecht, H
1998-06-01
EBNA-2 is the first protein to be detected after infection of primary B lymphocytes by Epstein-Barr virus (EBV) and plays an essential role as transcriptional activator in EBV-induced lymphocyte transformation. We analysed by PCR and sequencing regions of the EBNA-2 type 1 gene from isolates from 13 children with infectious mononucleosis (IM), 6 children with tonsillar hyperplasia (TH), and 9 patients with HIV infection followed longitudinally. We found in all three groups of patients frequent non-silent point mutations at positions 48990, 48991, 49021, 49057, 49083, 49089, 49091, 49113, 49119, 49140, 49156, and a triplet insertion at position 49136. While 4 out of 13 samples from patients with IM showed a mosaic pattern suggesting co-existence of more than 1 substrain of EBNA-2 type 1, none of the samples from TH showed this pattern consistent with substrain selection during clinical latency. No sequence changes were noted over time in samples derived from patients with HIV infection. We conclude that in analogy to the coexistence of several subtypes of EBNA-1 in healthy EBV carriers, samples from IM can harbor more than one subtype of the EBNA-2 type 1 gene.
1996-01-01
The importance of cytotoxic T lymphocytes (CTLs) in the immunosurveillance of Epstein-Barr virus (EBV)-infected B cells is firmly established, and the viral antigens of CTL recognition in latent infection are well defined. The epitopes targeted by CTLs during primary infection have not been identified, however, and there is only limited information about T cell receptor (TCR) selection. In the present report, we have monitored the development of memory TCR-beta clonotypes selected in response to natural EBV infection in a longitudinal study of an HLA-B8+ individual with acute infectious mononucleosis (IM). By stimulating peripheral blood lymphocytes with HLA-B8+ EBV-transformed B lymphoblastoid cells, the primary virus- specific CTL response was shown to include specificities for two HLA-B8- restricted antigenic determinants, FLRGRAYGL and QAKWRLQTL, which are encoded within the latent EBV nuclear antigen EBNA-3. TCR-beta sequence analysis of CTL clones specific for each epitope showed polyclonal TCR- beta repertoire selection, with structural restrictions on recognition that indicated antigen-driven selection. Furthermore, longitudinal repertoire analysis revealed long-term preservation of a multiclonal effector response throughout convalescence, with the reemergence of distinct memory T cell clonotypes sharing similar structural restrictions. Tracking the progression of specific TCR-beta clonotypes and antigen-specific TCR-V beta family gene expression in the peripheral repertoire ex vivo using semiquantitative PCR strongly suggested that selective TCR-beta expansions were present at the clonotype level, but not at the TCR-V beta family level. Overall, in this first analysis of antigen-specific TCR development in IM, a picture of polyclonal TCR stimulation is apparent. This diversity may be especially important in the establishment of an effective CTL control during acute EBV infection and in recovery from disease. PMID:8920869
Scherrenburg, J; Piriou, E R W A N; Nanlohy, N M; van Baarle, D
2008-01-01
We studied simultaneously Epstein–Barr virus (EBV)-specific CD4+ and CD8+ T cell responses during and after infectious mononucleosis (IM), using a previously described 12-day stimulation protocol with EBNA1 or BZLF1 peptide pools. Effector function of EBV-specific T cells was determined after restimulation by measuring intracellular interferon-γ production. During IM, BZLF1-specifc CD4+ T cell responses were dominant compared with CD8+ T cell responses. EBNA1-specific CD4+ and CD8+ T cell responses were low and remained similar for 6 months. However, 6 months after IM, BZLF1-specific CD4+ T cell responses had declined, but CD8+ T cell responses had increased. At diagnosis, EBV-specific CD8+ T cells as studied by human leucocyte antigen class I tetramer staining comprised a tetramerbrightCD8bright population consisting mainly of CD27+ memory T cells and a tetramerdimCD8dim population consisting primarily of CD27- effector T cells. The remaining EBV-specific CD8+ T cell population 6 months after the diagnosis of IM consisted mainly of tetramerbrightCD8bright CD27+ T cells, suggesting preferential preservation of memory T cells after contraction of the EBV-specific T cell pool. PMID:18549439
Wang, F; Marchini, A; Kieff, E
1991-01-01
The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recovered. In these experiments we investigated whether a toxic drug resistance gene, guanine phosphoribosyltransferase or hygromycin phosphotransferase, driven by the simian virus 40 promoter can be recombined into the EBV genome and can function to identify B-lymphoma cells infected with recombinant virus. Two different strategies were used to recombine the drug resistance marker into the EBV genome. Both utilized transfection of partially permissive, EBV-infected B95-8 cells and positive selection for cells which had incorporated a functional drug resistance gene. In the first series of experiments, B95-8 clones were screened for transfected DNA that had recombined into the EBV genome. In the second series of experiments, the transfected drug resistance marker was linked to the plasmid and lytic EBV origins so that it was maintained as an episome and could recombine with the B95-8 EBV genome during virus replication. The recombinant EBV from either experiment could be recovered by infection and toxic drug selection of EBV-negative B-lymphoma cells. The EBV genome in these B-lymphoma cells is frequently an episome. Virus genes associated with latent infection of primary B lymphocytes are expressed. Expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) and the EBNA-3 genes is variable relative to that of EBNA-1, as is characteristic of some naturally infected Burkitt tumor cells. Moreover, the EBV-infected B-lymphoma cells are often partially permissive for early replicative cycle gene expression and virus replication can be induced, in contrast to previously reported in vitro infected B-lymphoma cells. These studies demonstrate that dominant selectable markers can be inserted into the EBV genome, are active in the context of the EBV genome, and can be used to recover recombinant EBV in B-lymphoma cells. This system should be particularly useful for recovering EBV genomes with mutations in essential transforming genes. Images PMID:1848303
Wang, F; Marchini, A; Kieff, E
1991-04-01
The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recovered. In these experiments we investigated whether a toxic drug resistance gene, guanine phosphoribosyltransferase or hygromycin phosphotransferase, driven by the simian virus 40 promoter can be recombined into the EBV genome and can function to identify B-lymphoma cells infected with recombinant virus. Two different strategies were used to recombine the drug resistance marker into the EBV genome. Both utilized transfection of partially permissive, EBV-infected B95-8 cells and positive selection for cells which had incorporated a functional drug resistance gene. In the first series of experiments, B95-8 clones were screened for transfected DNA that had recombined into the EBV genome. In the second series of experiments, the transfected drug resistance marker was linked to the plasmid and lytic EBV origins so that it was maintained as an episome and could recombine with the B95-8 EBV genome during virus replication. The recombinant EBV from either experiment could be recovered by infection and toxic drug selection of EBV-negative B-lymphoma cells. The EBV genome in these B-lymphoma cells is frequently an episome. Virus genes associated with latent infection of primary B lymphocytes are expressed. Expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) and the EBNA-3 genes is variable relative to that of EBNA-1, as is characteristic of some naturally infected Burkitt tumor cells. Moreover, the EBV-infected B-lymphoma cells are often partially permissive for early replicative cycle gene expression and virus replication can be induced, in contrast to previously reported in vitro infected B-lymphoma cells. These studies demonstrate that dominant selectable markers can be inserted into the EBV genome, are active in the context of the EBV genome, and can be used to recover recombinant EBV in B-lymphoma cells. This system should be particularly useful for recovering EBV genomes with mutations in essential transforming genes.
Chakera, A; Bennett, S; Lawrence, S; Morteau, O; Mason, P D; O'Callaghan, C A; Cornall, R J
2011-01-01
Infection with the polyoma virus BK (BKV) is a major cause of morbidity following renal transplantation. Limited understanding of the anti-viral immune response has prevented the design of a strategy that balances treatment with the preservation of graft function. The proven utility of interferon-gamma enzyme-linked immunospot (ELISPOT) assays to measure T cell responses in immunocompetent hosts was the basis for trying to develop a rational approach to the management of BKV following renal transplantation. In a sample of transplant recipients and healthy controls, comparisons were made between T cell responses to the complete panel of BKV antigens, the Epstein–Barr virus (EBV) antigens, BZLF1 and EBNA1, and the mitogen phytohaemagglutinin (PHA). Correlations between responses to individual antigens and immunosuppressive regimens were also analysed. Antigen-specific T cell responses were a specific indicator of recent or ongoing recovery from BKV infection (P < 0·05), with responses to different BKV antigens being highly heterogeneous. Significant BKV immunity was undetectable in transplant patients with persistent viral replication or no history of BKV reactivation. Responses to EBV antigens and mitogen were reduced in patients with BKV reactivation, but these differences were not statistically significant. The T cell response to BKV antigens is a useful and specific guide to recovery from BKV reactivation in renal transplant recipients, provided that the full range of antigenic responses is measured. PMID:21671906
Yahia, Radia; Zaoui, Chahinez; Derbale, Wafaa; Boudi, Hafsa; Chebloune, Yahia; Sahraoui, Tewfik; Elkebir, Fatima Zohra
2018-01-01
Breast cancer is the common malignancy that affects women worldwide, but conventional risk factors account for only a small proportion of these cases. A possible viral etiology for breast cancer has been proposed and Epstein-Barr virus (EBV) is a widely studied candidate virus. The objective of this study is to determine the association of EBV infection with infiltrating ductal carcinomas (IDC). This descriptive study was carried out in the laboratory of developmental biology and differentiation, from 2012 to 2014. Of 39 cases, we determined the clinicopathological characteristics of the population. Of the 23 cases of IDC, we implemented the techniques Elisa, immunohistochemistry and in situ hybridization. To determine the serological profile, overexpression of onco-proteins EBNA-1, HER2, the mitotic index Ki67 and detection of the presence of the viral genome. The mean age is 57.40±4, SBR II predominates with 70%, pN+ (27%), RE+ (58%), RP+ (52%), HER2 (81%), Luminal A (34%), Luminal B (14%), HER2 (24%), and triple negative (28%). The serological profile of IgG VCA + in IgG EBNA-1 (87%), EBNA-1 P79 (82%) with a positive relationship between the IgG EBNA-1 and EBNA-1 P79 serology profile (p=0.001), HER2 (p=0.003) and with the molecular profile (p=0.051), EBNA-1 overexpression in (13%). The viral genome (EBER) is found in the tumors 43% representing an inverse relationship with the overexpression of Ki67 and a positive relationship with the overexpression of HER2. In our study we found an association with the presence of the EBV virus and the IDC studied.
Lazarevic, Ivana; Stevanovic, Goran; Cirkovic, Andja; Karalic, Danijela; Cupic, Maja; Banko, Bojan; Milovanovic, Jovica; Jovanovic, Tanja
2016-01-01
Summary Background Primary Epstein-Barr virus (EBV) infection is usually asymptomatic, although at times it results in the benign lymphoproliferative disease, infectious mononucleosis (IM), during which almost half of patients develop hepatitis. The aims of the present study are to evaluate polymorphisms of EBV genes circulating in IM isolates from this geographic region and to investigate the correlation of viral sequence patterns with the available IM biochemical parameters. Methods The study included plasma samples from 128 IM patients. The genes EBNA2, LMP1, and EBNA1 were amplified using nested-PCR. EBNA2 genotyping was performed by visualization of PCR products using gel electrophoresis. Investigation of LMP1 and EBNA1 included sequence, phylogenetic, and statistical analyses. Results The presence of EBV DNA in plasma samples showed correlation with patients’ necessity for hospitalization (p=0.034). The majority of EBV isolates was genotype 1. LMP1 variability showed 4 known variants, and two new deletions (27-bp and 147-bp). Of the 3 analyzed attributes of LMP1 isolates, the number of 33-bp repeats less than the reference 4.5 was the only one that absolutely correlated with the elevated levels of transaminases. EBNA1 variability was presented by prototype subtypes. A particular combination of EBNA2, LMP1, and EBNA1 polymorphisms, deleted LMP1/P-thr and non-deleted LMP1/P-ala, as well as genotype 1/ 4.5 33-bp LMP1 repeats or genotype 2/ 4.5 33-bp LMP1 repeats showed correlation with elevated AST (aspartate aminotransferase) and ALT (alanine transaminase). Conclusions This is the first study which identified the association between EBV variability and biochemical parameters in IM patients. These results showed a possibility for the identification of hepatic related diagnostic EBV markers. PMID:28356886
Ambati, A; Poiret, T; Svahn, B-M; Valentini, D; Khademi, M; Kockum, I; Lima, I; Arnheim-Dahlström, L; Lamb, F; Fink, K; Meng, Q; Kumar, A; Rane, L; Olsson, T; Maeurer, M
2015-09-01
Type 1 narcolepsy is a neurological disorder characterized by excessive daytime sleepiness and cataplexy associated with the HLA allele DQB1*06:02. Genetic predisposition along with external triggering factors may drive autoimmune responses, ultimately leading to the selective loss of hypocretin-positive neurons. The aim of this study was to investigate potential aetiological factors in Swedish cases of postvaccination (Pandemrix) narcolepsy defined by interferon-gamma (IFNγ) production from immune cells in response to molecularly defined targets. Cellular reactivity defined by IFNγ production was examined in blood from 38 (HLA-DQB1*06:02(+) ) Pandemrix-vaccinated narcolepsy cases and 76 (23 HLA-DQB1*06:02(+) and 53 HLA-DQB1*06:02(-) ) control subjects, matched for age, sex and exposure, using a variety of different antigens: β-haemolytic group A streptococcal (GAS) antigens (M5, M6 and streptodornase B), influenza (the pandemic A/H1N1/California/7/09 NYMC X-179A and A/H1N1/California/7/09 NYMC X-181 vaccine antigens, previous Flu-A and -B vaccine targets, A/H1N1/Brisbane/59/2007, A/H1N1/Solomon Islands/3/2006, A/H3N2/Uruguay/716/2007, A/H3N2/Wisconsin/67/2005, A/H5N1/Vietnam/1203/2004 and B/Malaysia/2506/2004), noninfluenza viral targets (CMVpp65, EBNA-1 and EBNA-3) and auto-antigens (hypocretin peptide, Tribbles homolog 2 peptide cocktail and extract from rat hypothalamus tissue). IFN-γ production was significantly increased in whole blood from narcolepsy cases in response to streptococcus serotype M6 (P = 0.0065) and streptodornase B protein (P = 0.0050). T-cell recognition of M6 and streptodornase B was confirmed at the single-cell level by intracellular cytokine (IL-2, IFNγ, tumour necrosis factor-alpha and IL-17) production after stimulation with synthetic M6 or streptodornase B peptides. Significantly, higher (P = 0.02) titres of serum antistreptolysin O were observed in narcolepsy cases, compared to vaccinated controls. β-haemolytic GAS may be involved in triggering autoimmune responses in patients who developed narcolepsy symptoms after vaccination with Pandemrix in Sweden, characterized by a Streptococcus pyogenes M-type-specific IFN-γ cellular immune response. © 2015 The Association for the Publication of the Journal of Internal Medicine.
Ba Abdullah, Mohammed M; Palermo, Richard D; Palser, Anne L; Grayson, Nicholas E; Kellam, Paul; Correia, Samantha; Szymula, Agnieszka; White, Robert E
2017-12-01
Epstein-Barr virus (EBV) is a ubiquitous pathogen of humans that can cause several types of lymphoma and carcinoma. Like other herpesviruses, EBV has diversified through both coevolution with its host and genetic exchange between virus strains. Sequence analysis of the EBV genome is unusually challenging because of the large number and lengths of repeat regions within the virus. Here we describe the sequence assembly and analysis of the large internal repeat 1 of EBV (IR1; also known as the BamW repeats) for more than 70 strains. The diversity of the latency protein EBV nuclear antigen leader protein (EBNA-LP) resides predominantly within the exons downstream of IR1. The integrity of the putative BWRF1 open reading frame (ORF) is retained in over 80% of strains, and deletions truncating IR1 always spare BWRF1. Conserved regions include the IR1 latency promoter (Wp) and one zone upstream of and two within BWRF1. IR1 is heterogeneous in 70% of strains, and this heterogeneity arises from sequence exchange between strains as well as from spontaneous mutation, with interstrain recombination being more common in tumor-derived viruses. This genetic exchange often incorporates regions of <1 kb, and allelic gene conversion changes the frequency of small regions within the repeat but not close to the flanks. These observations suggest that IR1-and, by extension, EBV-diversifies through both recombination and breakpoint repair, while concerted evolution of IR1 is driven by gene conversion of small regions. Finally, the prototype EBV strain B95-8 contains four nonconsensus variants within a single IR1 repeat unit, including a stop codon in the EBNA-LP gene. Repairing IR1 improves EBNA-LP levels and the quality of transformation by the B95-8 bacterial artificial chromosome (BAC). IMPORTANCE Epstein-Barr virus (EBV) infects the majority of the world population but causes illness in only a small minority of people. Nevertheless, over 1% of cancers worldwide are attributable to EBV. Recent sequencing projects investigating virus diversity to see if different strains have different disease impacts have excluded regions of repeating sequence, as they are more technically challenging. Here we analyze the sequence of the largest repeat in EBV (IR1). We first characterized the variations in protein sequences encoded across IR1. In studying variations within the repeat of each strain, we identified a mutation in the main laboratory strain of EBV that impairs virus function, and we suggest that tumor-associated viruses may be more likely to contain DNA mixed from two strains. The patterns of this mixing suggest that sequences can spread between strains (and also within the repeat) by copying sequence from another strain (or repeat unit) to repair DNA damage. Copyright © 2017 Ba abdullah et al.
Hecker, Michael; Fitzner, Brit; Wendt, Matthias; Lorenz, Peter; Flechtner, Kristin; Steinbeck, Felix; Schröder, Ina; Thiesen, Hans-Jürgen; Zettl, Uwe Klaus
2016-01-01
Intrathecal immunoglobulin G (IgG) synthesis and oligoclonal IgG bands in cerebrospinal fluid (CSF) are hallmarks of multiple sclerosis (MS), but the antigen specificities remain enigmatic. Our study is the first investigating the autoantibody repertoire in paired serum and CSF samples from patients with relapsing-remitting MS (RRMS), primary progressive MS (PPMS), and other neurological diseases by the use of high-density peptide microarrays. Protein sequences of 45 presumed MS autoantigens (e.g. MOG, MBP, and MAG) were represented on the microarrays by overlapping 15mer peptides. IgG reactivities were screened against a total of 3991 peptides, including also selected viral epitopes. The measured antibody reactivities were highly individual but correlated for matched serum and CSF samples. We found 54 peptides to be recognized significantly more often by serum or CSF antibodies from MS patients compared with controls (p values <0.05). The results for RRMS and PPMS clearly overlapped. However, PPMS patients presented a broader peptide-antibody signature. The highest signals were detected for a peptide mapping to a region of the Epstein-Barr virus protein EBNA1 (amino acids 392–411), which is homologous to the N-terminal part of human crystallin alpha-B. Our data confirmed several known MS-associated antigens and epitopes, and they delivered additional potential linear epitopes, which await further validation. The peripheral and intrathecal humoral immune response in MS is polyspecific and includes antibodies that are also found in serum of patients with other diseases. Further studies are required to assess the pathogenic relevance of autoreactive and anti-EBNA1 antibodies as well as their combinatorial value as biomarkers for MS. PMID:26831522
Yoshioka, M; Ishiguro, N; Ishiko, H; Ma, X; Kikuta, H; Kobayashi, K
2001-10-01
Epstein-Barr virus (EBV) has been shown to infect T lymphocytes and to be associated with a chronic active infection (CAEBV), which has been recognized as a mainly non-neoplastic T-cell lymphoproliferative disorder (T-cell LPD). The systemic distribution of EBV genomes was studied, by real-time PCR, in multiple tissues from six patients with CAEBV, including three patients with T-cell LPD, one patient with B-cell LPD and two patients with undetermined cell-type LPD. There were extremely high loads of EBV genomes in all tissues from the patients. This reflects an abundance of circulating and infiltrating EBV-infected cells and a wide variety of clinical symptoms in the affected tissues. We chose one sample from each patient that was shown by real-time PCR to contain a high load of EBV genomes and examined the expression of EBV latent genes by RT-PCR. EBER1 and EBNA1 transcripts were detected in all samples. Only one sample also expressed EBNA2, LMP1 and LMP2A transcripts in addition to EBER1 and EBNA1 transcripts. Two of the remaining five samples expressed LMP1 and LMP2A transcripts. One sample expressed LMP2A but not LMP1 and EBNA2 transcripts. Another sample expressed EBNA2 but not LMP1 and LMP2A transcripts. The other sample did not express transcripts of any of the other EBNAs or LMPs. None of the samples expressed the viral immediate-early gene BZLF1. These results showed that EBV latent gene expression in CAEBV is heterogeneous and that restricted forms of EBV latency might play a pathogenic role in the development of CAEBV.
Chen, Hao; Chen, Shulin; Lu, Jie; Wang, Xueping; Li, Jianpei; Li, Linfang; Fu, Jihuan; Scheper, Thomas; Meyer, Wolfgang; Peng, Yu-Hui; Liu, Wanli
2017-09-01
In this study, we aimed to use the combined detection of multiple antibodies against Epstein-Barr virus (EBV) antigens to develop a model for screening and diagnosis of nasopharyngeal carcinoma (NPC). Samples of 300 nasopharyngeal carcinoma patients and 494 controls, including 294 healthy subjects (HC), 99 non-nasopharyngeal carcinoma cancer patients (NNPC), and 101 patients with benign nasopharyngeal lesions (BNL), were incubated with the EUROLINE Anti-EBV Profile 2, and band intensities were used to establish a risk prediction model. The nasopharyngeal carcinoma risk probability analysis based on the panel of VCAgp125 IgA, EBNA-1 IgA, EA-D IgA, EBNA-1 IgG, EAD IgG, and VCAp19 IgG displayed the best performance. When using 26.1% as the cutoff point in ROC analysis, the AUC value and sensitivity/specificity were 0.951 and 90.7%/86.2%, respectively, in nasopharyngeal carcinoma and all controls. In nasopharyngeal carcinoma and controls without the non-nasopharyngeal carcinoma and BNL groups, the AUC value and sensitivity/specificity were 0.957 and 90.7%/88.1%, respectively. The diagnostic specificity and sensitivity of the EUROLINE Anti-EBV Profile 2 assay for both nasopharyngeal carcinoma and early-stage nasopharyngeal carcinoma were higher than that of mono-antibody detection by immune-enzymatic assay and real-time PCR (EBV DNA). In the VCA-IgA-negative group, 82.6% of nasopharyngeal carcinoma patients showed high probability for nasopharyngeal carcinoma, and the negative predictive value was 97.1%. In the VCA-IgA-positive group, 73.3% of healthy subjects showed low probability. The positive predictive value reached 98.2% in this group. The nasopharyngeal carcinoma risk probability value determined by the EUROLINE Anti-EBV Profile 2 might be a suitable tool for nasopharyngeal carcinoma screening. Cancer Prev Res; 10(9); 542-50. ©2017 AACR . ©2017 American Association for Cancer Research.
Magin-Lachmann, Christine; Kotzamanis, George; D'Aiuto, Leonardo; Wagner, Ernst; Huxley, Clare
2003-01-01
Background Bacterial artificial chromosomes (BACs) have been used extensively for sequencing the human and mouse genomes and are thus readily available for most genes. The large size of BACs means that they can generally carry intact genes with all the long range controlling elements that drive full levels of tissue-specific expression. For gene expression studies and gene therapy applications it is useful to be able to retrofit the BACs with selectable genes such as G418 resistance, reporter genes such as luciferase, and oriP/EBNA-1 from Epstein Barr virus which allows long term episomal maintenance in mammalian cells. Results We describe a series of retrofitting plasmids and a protocol for in vivo loxP/Cre recombination. The vector pRetroNeo carries a G418 resistance cassette, pRetroNeoLuc carries G418 resistance and a luciferase expression cassette, pRetroNeoLucOE carries G418 resistance, luciferase and an oriP/EBNA-1 cassette and pRetroNeoOE carries G418 resistance and oriP/EBNA-1. These vectors can be efficiently retrofitted onto BACs without rearrangement of the BAC clone. The luciferase cassette is expressed efficiently from the retrofitting plasmids and from retrofitted BACs after transient transfection of B16F10 cells in tissue culture and after electroporation into muscles of BALB/c mice in vivo. We also show that a BAC carrying GFP, oriP and EBNA-1 can be transfected into B16F10 cells with Lipofectamine 2000 and can be rescued intact after 5 weeks. Conclusion The pRetro vectors allow efficient retrofitting of BACs with G418 resistance, luciferase and/or oriP/EBNA-1 using in vivo expression of Cre. The luciferase reporter gene is expressed after transient transfection of retrofitted BACs into cells in tissue culture and after electroporation into mouse muscle in vivo. OriP/EBNA-1 allows stable maintenance of a 150-kb BAC without rearrangement for at least 5 weeks. PMID:12609052
Anastasiadou, Eleni; Stroopinsky, Dina; Alimperti, Stella; Jiao, Alan L; Pyzer, Athalia R; Cippitelli, Claudia; Pepe, Giuseppina; Severa, Martina; Rosenblatt, Jacalyn; Etna, Marilena P; Rieger, Simone; Kempkes, Bettina; Coccia, Eliana M; Sui, Shannan J Ho; Chen, Christopher S; Uccini, Stefania; Avigan, David; Faggioni, Alberto; Trivedi, Pankaj; Slack, Frank J
2018-06-26
Cancer cells subvert host immune surveillance by altering immune checkpoint (IC) proteins. Some Epstein-Barr virus (EBV)-associated tumors have higher Programmed Cell Death Ligand, PD-L1 expression. However, it is not known how EBV alters ICs in the context of its preferred host, the B lymphocyte and in derived lymphomas. Here, we found that latency III-expressing Burkitt lymphoma (BL), diffuse large B-cell lymphomas (DLBCL) or their EBNA2-transfected derivatives express high PD-L1. In a DLBCL model, EBNA2 but not LMP1 is sufficient to induce PD-L1. Latency III-expressing DLBCL biopsies showed high levels of PD-L1. The PD-L1 targeting oncosuppressor microRNA miR-34a was downregulated in EBNA2-transfected lymphoma cells. We identified early B-cell factor 1 (EBF1) as a repressor of miR-34a transcription. Short hairpin RNA (shRNA)-mediated knockdown of EBF1 was sufficient to induce miR-34a transcription, which in turn reduced PD-L1. MiR-34a reconstitution in EBNA2-transfected DLBCL reduced PD-L1 expression and increased its immunogenicity in mixed lymphocyte reactions (MLR) and in three-dimensional biomimetic microfluidic chips. Given the importance of PD-L1 inhibition in immunotherapy and miR-34a dysregulation in cancers, our findings may have important implications for combinatorial immunotherapy, which include IC inhibiting antibodies and miR-34a, for EBV-associated cancers.
Kazama, Itsuro; Miura, Chieko; Nakajima, Toshiyuki
2016-02-14
Infectious mononucleosis is a clinical syndrome most commonly associated with primary Epstein-Barr virus (EBV) infection. In adults, the symptoms can often be severe and prolonged, sometimes causing serious complications. Analgesic or antipyretic drugs are normally used to relieve the symptoms. However, there is no causal treatment for the disease. Two cases of adult patients with atopic predispositions developed nocturnal fever, general fatigue, pharyngitis and lymphadenopathy after an exacerbation of atopic symptoms or those of allergic rhinitis. Due to the positive results for EBV viral-capsid antigen (VCA) IgM and negative results for EBV nuclear antigen (EBNA) IgG, diagnoses of infectious mononucleosis induced by EBV were made in both cases. Although oral antibiotics or acetaminophen alone did not improve the deteriorating symptoms, including fever, headache and general fatigue, nonsteroidal anti-inflammatory drugs (NSAIDs), such as tiaramide or loxoprofen, completely improved the symptoms quickly after the initiation. In these cases, given the atopic predispositions of the patients, an enhanced immunological response was likely to be mainly responsible for the pathogenesis of the symptoms. In such cases, NSAIDs, that are known to reduce the activity of EBV, may dramatically improve the deteriorating symptoms quickly after the initiation. In the present cases, the immunosuppressive property of these drugs was considered to suppress the activity of lymphocytes and thus provide the rapid and persistent remission of the disease.
Epstein-Barr virus strains and variations: Geographic or disease-specific variants?
Neves, Marco; Marinho-Dias, Joana; Ribeiro, Joana; Sousa, Hugo
2017-03-01
The Epstein-Barr Virus (EBV) is associated with the development of several diseases, including infectious mononucleosis (IM), Burkitt's Lymphoma (BL), Nasopharyngeal Carcinoma, and other neoplasias. The publication of EBV genome 1984 led to several studies regarding the identification of different viral strains. Currently, EBV is divided into EBV type 1 (B95-8 strain) and EBV type 2 (AG876 strain), also known as type A and type B, which have been distinguished based upon genetic differences in the Epstein-Barr nuclear antigens (EBNAs) sequence. Several other EBV strains have been described in the past 10 years considering variations on EBV genome, and many have attempted to clarify if these variations are ethnic or geographically correlated, or if they are disease related. Indeed, there is an increasing interest to describe possible specific disease associations, with emphasis on different malignancies. These studies aim to clarify if these variations are ethnic or geographically correlated, or if they are disease related, thus being important to characterize the epidemiologic genetic distribution of EBV strains on our population. Here, we review the current knowledge on the different EBV strains and variants and its association with different diseases. J. Med. Virol. 89:373-387, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
EBNA3C regulates p53 through induction of Aurora kinase B
Jha, Hem C.; Yang, Karren; El-Naccache, Darine W.; Sun, Zhiguo; Robertson, Erle S.
2015-01-01
In multicellular organisms p53 maintains genomic integrity through activation of DNA repair, and apoptosis. EBNA3C can down regulate p53 transcriptional activity. Aurora kinase (AK) B phosphorylates p53, which leads to degradation of p53. Aberrant expression of AK-B is a hallmark of numerous human cancers. Therefore changes in the activities of p53 due to AK-B and EBNA3C expression is important for understanding EBV-mediated cell transformation. Here we show that the activities of p53 and its homolog p73 are dysregulated in EBV infected primary cells which can contribute to increased cell transformation. Further, we showed that the ETS-1 binding site is crucial for EBNA3C-mediated up-regulation of AK-B transcription. Further, we determined the Ser 215 residue of p53 is critical for functional regulation by AK-B and EBNA3C and that the kinase domain of AK-B which includes amino acid residues 106, 111 and 205 was important for p53 regulation. AK-B with a mutation at residue 207 was functionally similar to wild type AK-B in terms of its kinase activities and knockdown of AK-B led to enhanced p73 expression independent of p53. This study explores an additional mechanism by which p53 is regulated by AK-B and EBNA3C contributing to EBV-induced B-cell transformation. PMID:25691063
Pim kinases are upregulated during Epstein-Barr virus infection and enhance EBNA2 activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rainio, Eeva-Marja; Turku Graduate School of Biomedical Sciences, 20520 Turku; Ahlfors, Helena
Latent Epstein-Barr virus (EBV) infection is strongly associated with B-cell proliferative diseases such as Burkitt's lymphoma. Here we show that the oncogenic serine/threonine kinases Pim-1 and Pim-2 enhance the activity of the viral transcriptional activator EBNA2. During EBV infection of primary B-lymphocytes, the mRNA expression levels of pim genes, especially of pim-2, are upregulated and remain elevated in latently infected B-cell lines. Thus, EBV-induced upregulation of Pim kinases and Pim-stimulated EBNA2 transcriptional activity may contribute to the ability of EBV to immortalize B-cells and predispose them to malignant growth.
Hayashi, K; Ohara, N; Teramoto, N; Onoda, S; Chen, H L; Oka, T; Kondo, E; Yoshino, T; Takahashi, K; Yates, J; Akagi, T
2001-04-01
Epstein-Barr virus-associated hemophagocytic syndrome (EBV-AHS) is often associated with fatal infectious mononucleosis. However, the animal model for EBV-AHS has not been developed. We reported the first animal model for EBV-AHS using rabbits infected with EBV-related herpesvirus of baboon (HVP). Eleven of 13 (85%) rabbits inoculated intravenously with HVP-producing cells developed fatal lymphoproliferative disorders (LPD) between 22 and 105 days after inoculation. LPD was also accompanied by hemophagocytic syndrome (HPS) in nine of these 11 rabbits. The peroral spray of cell-free HVP induced the virus infection with increased anti-EBV-viral capsid antigen-IgG titers in three of five rabbits, and two of these three infected rabbits died of LPD with HPS. Autopsy revealed hepatosplenomegaly and swollen lymph nodes. Atypical lymphoid T cells expressing EBV-encoded small RNA-1 infiltrated diffusely in many organs, frequently involving the lymph nodes, spleen, and liver. Hemophagocytic histiocytosis was observed in the lymph nodes, spleen, bone marrow, and thymus. HVP-DNA was detected in the tissues and peripheral blood from the infected rabbits by polymerase chain reaction or Southern blot analysis. Reverse transcriptase-polymerase chain reaction revealed both HVP-EBNA1 and HVP-EBNA2 transcripts, suggesting latency type III infection. These data indicate that the high rate of rabbit LPD with HPS induction is caused by HVP. This system is useful for studying the pathogenesis, prevention, and treatment of human EBV-AHS.
An Animal Model for Human EBV-Associated Hemophagocytic Syndrome
Hayashi, Kazuhiko; Ohara, Nobuya; Teramoto, Norihiro; Onoda, Sachiyo; Chen, Hong-Li; Oka, Takashi; Kondo, Eisaku; Yoshino, Tadashi; Takahashi, Kiyoshi; Yates, John; Akagi, Tadaatsu
2001-01-01
Epstein-Barr virus-associated hemophagocytic syndrome (EBV-AHS) is often associated with fatal infectious mononucleosis. However, the animal model for EBV-AHS has not been developed. We reported the first animal model for EBV-AHS using rabbits infected with EBV-related herpesvirus of baboon (HVP). Eleven of 13 (85%) rabbits inoculated intravenously with HVP-producing cells developed fatal lymphoproliferative disorders (LPD) between 22 and 105 days after inoculation. LPD was also accompanied by hemophagocytic syndrome (HPS) in nine of these 11 rabbits. The peroral spray of cell-free HVP induced the virus infection with increased anti-EBV-viral capsid antigen-IgG titers in three of five rabbits, and two of these three infected rabbits died of LPD with HPS. Autopsy revealed hepatosplenomegaly and swollen lymph nodes. Atypical lymphoid T cells expressing EBV-encoded small RNA-1 infiltrated diffusely in many organs, frequently involving the lymph nodes, spleen, and liver. Hemophagocytic histiocytosis was observed in the lymph nodes, spleen, bone marrow, and thymus. HVP-DNA was detected in the tissues and peripheral blood from the infected rabbits by polymerase chain reaction or Southern blot analysis. Reverse transcriptase-polymerase chain reaction revealed both HVP-EBNA1 and HVP-EBNA2 transcripts, suggesting latency type III infection. These data indicate that the high rate of rabbit LPD with HPS induction is caused by HVP. This system is useful for studying the pathogenesis, prevention, and treatment of human EBV-AHS. PMID:11290571
HLA class I associations with EBV+ post-transplant lymphoproliferative disorder.
Jones, Kimberley; Wockner, Leesa; Thornton, Alycia; Gottlieb, David; Ritchie, David S; Seymour, John F; Kumarasinghe, Gayathri; Gandhi, Maher K
2015-03-01
Epstein-Barr virus (EBV) is frequently associated with post-transplant lymphoproliferative disorders (EBV(+) PTLD). In these cases, impaired Epstein-Barr virus (EBV)-specific CD8(+) T-cell immunity is strongly implicated and antigen presentation within the malignant B-cell is intact. Interestingly, several studies have reported HLA class I alleles with protective or susceptibility associations. However, results are conflicting, likely influenced by methodology including inconsistent use of multiple hypothesis testing. By contrast, HLA class I associations have been repeatedly reported for classical Hodgkin Lymphoma (cHL), in which EBV is also implicated in a proportion of cases. In contrast to EBV(+) PTLD which expresses the immunodominant EBV latency III EBNA3A/B/C proteins, EBV(+) cHL is restricted to the subdominant EBNA1/LMP1/LMP2 proteins. Herein, we report a study of HLA class I associations in EBV(+) PTLD, with 263 patients with lymphoma (cHL or PTLD) evaluated. Two Australian population cohorts, n = 23,736 and n = 891 were used for comparison. Contrary to previous reports, no HLA class I associations with EBV(+) PTLD were found, whereas for cHL known HLA class I associations were confirmed, with HLA-A*02 homozygous individuals having the lowest odds of developing EBV(+) cHL. Our results suggest that HLA class I does not influence susceptibility to the viral latency III expressing lymphoma, EBV(+) PTLD. Further studies are required for definitive confirmation. Copyright © 2015. Published by Elsevier B.V.
Catalano, M A; Carson, D A; Niederman, J C; Feorino, P; Vaughan, J H
1980-05-01
Most patients with seropositive rheumatoid arthritis, and a variable but lesser percentage of normal subjects, have precipitating antibodies to a nuclear antigen, rheumatoid arthritis nuclear antigen, present in Epstein-Barr virus-infected human B lymphoblastoid cells. We have used a sensitive indirect immunofluorescence assay for antibody to rheumatoid arthritis nuclear antigen in a study of patients with infectious mononucleosis and healthy control subjects. Of 110 sera from normal, college-age cadets, 58 were from individuals without prior Epstein-Barr virus infection, as indicated by the lack of antibody to viral capsid antigen. All of these also lacked activity to rheumatoid arthritis nuclear antigen. 52 sera were positive for antibody to viral capsid antigen, and antibody to rheumatoid arthritis nuclear antigen was present in 26 (50%) of these. In 67 sequential sera from 11 college-age students with infectious mononucleosis who became positive for antibody to rheumatoid arthritis nuclear antigen, only 2 were positive during the 1 mo. Thereafter the incidence and titers increased progressively through the 1st yr after infection. This time-course resembled that for the development of antibody to Epstein-Barr nuclear antigen, another transformation antigen in Epstein-Barr virus-infected B lymphocytes. The development of positivity for both was much later than that of antibody to the structural viral capsid antigen, which in the current study was always positive by 1 wk. Thus, antibody to rheumatoid arthritis nuclear antigen is present in a large proportion of normal individuals and can now be clearly ascribed, from both in vivo and in vitro studies, to prior infection with Epstein-Barr virus.
Kwok, Hin; Chan, Koon Wing; Chan, Kwok Hung; Chiang, Alan Kwok Shing
2015-01-01
Our study aimed at investigating the distribution, persistence and interchange of viral strains among peripheral blood mononuclear cells (PBMC), plasma and saliva of primary Epstein-Barr virus (EBV) infection subjects. Twelve infectious mononucleosis (IM) patients and eight asymptomatic individuals (AS) with primary EBV infection were followed longitudinally at several time points for one year from the time of diagnosis, when blood and saliva samples were collected and separated into PBMC, plasma and saliva, representing circulating B cell, plasma and epithelial cell compartments, respectively. To survey the viral strains, genotyping assays for the natural polymorphisms in two latent EBV genes, EBNA2 and LMP1, were performed and consisted of real-time PCR on EBNA2 to distinguish type 1 and 2 viruses, fluorescent-based 30-bp typing assay on LMP1 to distinguish deletion and wild type LMP1, and fluorescent-based heteroduplex tracking assays on both EBNA2 and LMP1 to distinguish defined polymorphic variants. No discernible differences were observed between IM patients and AS. Multiple viral strains were acquired early at the start of infection. Stable persistence of dominant EBV strains in the same tissue compartment was observed throughout the longitudinal samples. LMP1-defined strains, China 1, China 2 and Mediterranean+, were the most common strains observed. EBNA2-defined groups 1 and 3e predominated the PBMC and saliva compartments. Concordance of EBNA2 and LMP1 strains between PBMC and saliva suggested ready interchange of viruses between circulating B cell and epithelial cell pools, whilst discordance of viral strains observed between plasma and PBMC/saliva indicated presence of viral pools in other undetermined tissue compartments. Taken together, the results indicated that the distribution, persistence and interchange of viral strains among the tissue compartments are more complex than those proposed by the current model of EBV life cycle.
Kwok, Hin; Chan, Koon Wing; Chan, Kwok Hung; Chiang, Alan Kwok Shing
2015-01-01
Our study aimed at investigating the distribution, persistence and interchange of viral strains among peripheral blood mononuclear cells (PBMC), plasma and saliva of primary Epstein-Barr virus (EBV) infection subjects. Twelve infectious mononucleosis (IM) patients and eight asymptomatic individuals (AS) with primary EBV infection were followed longitudinally at several time points for one year from the time of diagnosis, when blood and saliva samples were collected and separated into PBMC, plasma and saliva, representing circulating B cell, plasma and epithelial cell compartments, respectively. To survey the viral strains, genotyping assays for the natural polymorphisms in two latent EBV genes, EBNA2 and LMP1, were performed and consisted of real-time PCR on EBNA2 to distinguish type 1 and 2 viruses, fluorescent-based 30-bp typing assay on LMP1 to distinguish deletion and wild type LMP1, and fluorescent-based heteroduplex tracking assays on both EBNA2 and LMP1 to distinguish defined polymorphic variants. No discernible differences were observed between IM patients and AS. Multiple viral strains were acquired early at the start of infection. Stable persistence of dominant EBV strains in the same tissue compartment was observed throughout the longitudinal samples. LMP1-defined strains, China 1, China 2 and Mediterranean+, were the most common strains observed. EBNA2-defined groups 1 and 3e predominated the PBMC and saliva compartments. Concordance of EBNA2 and LMP1 strains between PBMC and saliva suggested ready interchange of viruses between circulating B cell and epithelial cell pools, whilst discordance of viral strains observed between plasma and PBMC/saliva indicated presence of viral pools in other undetermined tissue compartments. Taken together, the results indicated that the distribution, persistence and interchange of viral strains among the tissue compartments are more complex than those proposed by the current model of EBV life cycle. PMID:25807555
Chromatin reorganisation in Epstein-Barr virus-infected cells and its role in cancer development.
West, Michelle J
2017-10-01
The oncogenic Epstein-Barr virus (EBV) growth transforms B cells and drives lymphoma and carcinoma development. The virus encodes four key transcription factors (EBNA2, EBNA3A, EBNA3B and EBNA3C) that hijack host cell factors to bind gene control elements and reprogramme infected B cells. These viral factors predominantly target long-range enhancers to alter the expression of host cell genes that control B cell growth and survival and facilitate virus persistence. Enhancer and super-enhancer binding by these EBNAs results in large-scale reorganisation of three-dimensional enhancer-promoter architecture to drive the overexpression of oncogenes, the silencing of tumour suppressors and the modulation of transcription, cell-cycle progression, migration and adhesion. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Janani, Madhuravasal Krishnan; Malathi, Jambulingam; Appaswamy, Andal; Singha, Nishi Rani; Madhavan, Hajib Nariharirao
2015-10-29
Infectious mononucleosis (IM) caused by the Epstein-Barr virus (EBV) is commonly diagnosed by detection of antibodies in the patient's sera. Differentiation of acute from chronic and differential diagnosis of EBV-induced IM from IM-like syndrome caused by human cytomegalovirus (CMV) is important. The objective of this study was to standardize and use polymerase chain reaction (PCR) for diagnosis of EBV and evaluate it against enzyme-linked immunosorbent assay (ELISA). ELISA for detection of IgM and IgG antibodies to viral capsid antigen (VCA) and PCR targeting the VCA and EBNA1 gene of EBV and mtrII gene of CMV were performed on180 peripheral blood samples collected from 180 patients with suspected IM. The analytical sensitivity of PCR was evaluated against that of ELISA. Using the standard serological profile as the reference, the EBV-VCA gene was detected in 41 (95%) of 45 samples collected from patients with early primary infections, in 41 (54%) of 75 with recent primary infections, and in7 (17%) of 39 with past infections. The result of VCA PCR was statistically significant in virus detection during early or primary stage of infection. Nineteen (49%) EBV-seropositive samples were positive for CMV by PCR. All control samples tested negative for both VCA and EBNA1by PCR. VCA PCR is sensitive for the detection of EBV DNA in the early or primary stage of infection and can be considered a reliable method to rule out the cross-reactivity and differential diagnosis of EBV-induced IM from IM-like syndrome.
Allen, Upton D; Hu, Pingzhao; Pereira, Sergio L; Robinson, Joan L; Paton, Tara A; Beyene, Joseph; Khodai-Booran, Nasser; Dipchand, Anne; Hébert, Diane; Ng, Vicky; Nalpathamkalam, Thomas; Read, Stanley
2016-02-01
This study examines EBV strains from transplant patients and patients with IM by sequencing major EBV genes. We also used NGS to detect EBV DNA within total genomic DNA, and to evaluate its genetic variation. Sanger sequencing of major EBV genes was used to compare SNVs from samples taken from transplant patients vs. patients with IM. We sequenced EBV DNA from a healthy EBV-seropositive individual on a HiSeq 2000 instrument. Data were mapped to the EBV reference genomes (AG876 and B95-8). The number of EBNA2 SNVs was higher than for EBNA1 and the other genes sequenced within comparable reference coordinates. For EBNA2, there was a median of 15 SNV among transplant samples compared with 10 among IM samples (p = 0.036). EBNA1 showed little variation between samples. For NGS, we identified 640 and 892 variants at an unadjusted p value of 5 × 10(-8) for AG876 and B95-8 genomes, respectively. We used complementary sequence strategies to examine EBV genetic diversity and its application to transplantation. The results provide the framework for further characterization of EBV strains and related outcomes after organ transplantation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Natural Variation of Epstein-Barr Virus Genes, Proteins, and Primary MicroRNA.
Correia, Samantha; Palser, Anne; Elgueta Karstegl, Claudio; Middeldorp, Jaap M; Ramayanti, Octavia; Cohen, Jeffrey I; Hildesheim, Allan; Fellner, Maria Dolores; Wiels, Joelle; White, Robert E; Kellam, Paul; Farrell, Paul J
2017-08-01
Viral gene sequences from an enlarged set of about 200 Epstein-Barr virus (EBV) strains, including many primary isolates, have been used to investigate variation in key viral genetic regions, particularly LMP1, Zp, gp350, EBNA1, and the BART microRNA (miRNA) cluster 2. Determination of type 1 and type 2 EBV in saliva samples from people from a wide range of geographic and ethnic backgrounds demonstrates a small percentage of healthy white Caucasian British people carrying predominantly type 2 EBV. Linkage of Zp and gp350 variants to type 2 EBV is likely to be due to their genes being adjacent to the EBNA3 locus, which is one of the major determinants of the type 1/type 2 distinction. A novel classification of EBNA1 DNA binding domains, named QCIGP, results from phylogeny analysis of their protein sequences but is not linked to the type 1/type 2 classification. The BART cluster 2 miRNA region is classified into three major variants through single-nucleotide polymorphisms (SNPs) in the primary miRNA outside the mature miRNA sequences. These SNPs can result in altered levels of expression of some miRNAs from the BART variant frequently present in Chinese and Indonesian nasopharyngeal carcinoma (NPC) samples. The EBV genetic variants identified here provide a basis for future, more directed analysis of association of specific EBV variations with EBV biology and EBV-associated diseases. IMPORTANCE Incidence of diseases associated with EBV varies greatly in different parts of the world. Thus, relationships between EBV genome sequence variation and health, disease, geography, and ethnicity of the host may be important for understanding the role of EBV in diseases and for development of an effective EBV vaccine. This paper provides the most comprehensive analysis so far of variation in specific EBV genes relevant to these diseases and proposed EBV vaccines. By focusing on variation in LMP1, Zp, gp350, EBNA1, and the BART miRNA cluster 2, new relationships with the known type 1/type 2 strains are demonstrated, and a novel classification of EBNA1 and the BART miRNAs is proposed. Copyright © 2017 Correia et al.
Shimabuku, Tetsuya; Tamanaha, Ayumi; Kitamura, Bunta; Tanabe, Yasuka; Tawata, Natsumi; Ikehara, Fukino; Arakaki, Kazunari; Kinjo, Takao
2014-01-01
The prevalence of Epstein-Barr virus (EBV) and high-risk human papilloma virus (HPV) infections in patients with oral cancer in Okinawa, southwest islands of Japan, has led to the hypothesis that carcinogenesis is related to EBV and HPV co-infection. To explore the mechanisms of transformation induced by EBV and HPV co-infection, we analyzed the transformation of primary mouse embryonic fibroblasts (MEFs) expressing EBV and HPV-16 genes, alone or in combination. Expression of EBV latent membrane protein-1 (LMP-1) alone or in combination with HPV-16 E6 increased cell proliferation and decreased apoptosis, whereas single expression of EBV nuclear antigen-1 (EBNA-1), or HPV-16 E6 did not. Co-expression of LMP-1 and E6 induced anchorage-independent growth and tumor formation in nude mice, whereas expression of LMP-1 alone did not. Although the singular expression of these viral genes showed increased DNA damage and DNA damage response (DDR), co-expression of LMP-1 and E6 did not induce DDR, which is frequently seen in cancer cells. Furthermore, co-expression of LMP-1 with E6 increased NF-κB signaling, and the knockdown of LMP-1 or E6 in co-expressing cells decreased cell proliferation, anchorage independent growth, and NF-κB activation. These data suggested that expression of individual viral genes is insufficient for inducing transformation and that co-expression of LMP-1 and E6, which is associated with suppression of DDR and increased NF-κB activity, lead to transformation. Our findings demonstrate the synergistic effect by the interaction of oncogenes from different viruses on the transformation of primary MEFs.
Shatzer, Amber; Ali, Mir A; Chavez, Mayra; Dowdell, Kennichi; Lee, Min-Jung; Tomita, Yusuke; El-Hariry, Iman; Trepel, Jane B; Proia, David A; Cohen, Jeffrey I
2017-04-01
HSP90 inhibitors have been shown to kill Epstein-Barr virus (EBV)-infected cells by reducing the level of EBV EBNA-1 and/or LMP1. We treated virus-infected cells with ganetespib, an HSP90 inhibitor currently being evaluated in multiple clinical trials for cancer and found that the drug killed EBV-positive B and T cells and reduced the level of both EBV EBNA-1 and LMP1. Treatment of cells with ganetespib also reduced the level of pAkt. Ganetespib delayed the onset of EBV-positive lymphomas and prolonged survival in SCID mice inoculated with one EBV-transformed B-cell line, but not another B-cell line. The former cell line showed lower levels of EBNA-1 after treatment with ganetespib in vitro. Treatment of a patient with T-cell chronic active EBV with ganetespib reduced the percentage of EBV-positive cells in the peripheral blood. These data indicate that HSP90 inhibitors may have a role in the therapy of certain EBV-associated diseases.
Epstein-Barr virus recombinants from overlapping cosmid fragments.
Tomkinson, B; Robertson, E; Yalamanchili, R; Longnecker, R; Kieff, E
1993-12-01
Five overlapping type 1 Epstein-Barr virus (EBV) DNA fragments constituting a complete replication- and transformation-competent genome were cloned into cosmids and transfected together into P3HR-1 cells, along with a plasmid encoding the Z immediate-early activator of EBV replication. P3HR-1 cells harbor a type 2 EBV which is unable to transform primary B lymphocytes because of a deletion of DNA encoding EBNA LP and EBNA 2, but the P3HR-1 EBV can provide replication functions in trans and can recombine with the transfected cosmids. EBV recombinants which have the type 1 EBNA LP and 2 genes from the transfected EcoRI-A cosmid DNA were selectively and clonally recovered by exploiting the unique ability of the recombinants to transform primary B lymphocytes into lymphoblastoid cell lines. PCR and immunoblot analyses for seven distinguishing markers of the type 1 transfected DNAs identified cell lines infected with EBV recombinants which had incorporated EBV DNA fragments beyond the transformation marker-rescuing EcoRI-A fragment. Approximately 10% of the transforming virus recombinants had markers mapping at 7, 46 to 52, 93 to 100, 108 to 110, 122, and 152 kbp from the 172-kbp transfected genome. These recombinants probably result from recombination among the transfected cosmid-cloned EBV DNA fragments. The one recombinant virus examined in detail by Southern blot analysis has all the polymorphisms characteristic of the transfected type 1 cosmid DNA and none characteristic of the type 2 P3HR-1 EBV DNA. This recombinant was wild type in primary B-lymphocyte infection, growth transformation, and lytic replication. Overall, the type 1 EBNA 3A gene was incorporated into 26% of the transformation marker-rescued recombinants, a frequency which was considerably higher than that observed in previous experiments with two-cosmid EBV DNA cotransfections into P3HR-1 cells (B. Tomkinson and E. Kieff, J. Virol. 66:780-789, 1992). Of the recombinants which had incorporated the marker-rescuing cosmid DNA fragment and the fragment encoding the type 1 EBNA 3A gene, most had incorporated markers from at least two other transfected cosmid DNA fragments, indicating a propensity for multiple homologous recombinations. The frequency of incorporation of the nonselected transfected type 1 EBNA 3C gene, which is near the end of two of the transfected cosmids, was 26% overall, versus 3% in previous experiments using transfections with two EBV DNA cosmids. In contrast, the frequency of incorporation of a 12-kb EBV DNA deletion which was near the end of two of the transfected cosmids was only 13%.(ABSTRACT TRUNCATED AT 400 WORDS)
Fuentes-Pananá, Ezequiel M.; Swaminathan, Sankar; Ling, Paul D.
1999-01-01
The Epstein-Barr virus (EBV) EBNA2 protein is a transcriptional activator that controls viral latent gene expression and is essential for EBV-driven B-cell immortalization. EBNA2 is expressed from the viral C promoter (Cp) and regulates its own expression by activating Cp through interaction with the cellular DNA binding protein CBF1. Through regulation of Cp and EBNA2 expression, EBV controls the pattern of latent protein expression and the type of latency established. To gain further insight into the important regulatory elements that modulate Cp usage, we isolated and sequenced the Cp regions corresponding to nucleotides 10251 to 11479 of the EBV genome (−1079 to +144 relative to the transcription initiation site) from the EBV-like lymphocryptoviruses found in baboons (herpesvirus papio; HVP) and Rhesus macaques (RhEBV). Sequence comparison of the approximately 1,230-bp Cp regions from these primate viruses revealed that EBV and HVP Cp sequences are 64% conserved, EBV and RhEBV Cp sequences are 66% conserved, and HVP and RhEBV Cp sequences are 65% conserved relative to each other. Approximately 50% of the residues are conserved among all three sequences, yet all three viruses have retained response elements for glucocorticoids, two positionally conserved CCAAT boxes, and positionally conserved TATA boxes. The putative EBNA2 100-bp enhancers within these promoters contain 54 conserved residues, and the binding sites for CBF1 and CBF2 are well conserved. Cp usage in the HVP- and RhEBV-transformed cell lines was detected by S1 nuclease protection analysis. Transient-transfection analysis showed that promoters of both HVP and RhEBV are responsive to EBNA2 and that they bind CBF1 and CBF2 in gel mobility shift assays. These results suggest that similar mechanisms for regulation of latent gene expression are conserved among the EBV-related lymphocryptoviruses found in nonhuman primates. PMID:9847397
Fuentes-Pananá, E M; Swaminathan, S; Ling, P D
1999-01-01
The Epstein-Barr virus (EBV) EBNA2 protein is a transcriptional activator that controls viral latent gene expression and is essential for EBV-driven B-cell immortalization. EBNA2 is expressed from the viral C promoter (Cp) and regulates its own expression by activating Cp through interaction with the cellular DNA binding protein CBF1. Through regulation of Cp and EBNA2 expression, EBV controls the pattern of latent protein expression and the type of latency established. To gain further insight into the important regulatory elements that modulate Cp usage, we isolated and sequenced the Cp regions corresponding to nucleotides 10251 to 11479 of the EBV genome (-1079 to +144 relative to the transcription initiation site) from the EBV-like lymphocryptoviruses found in baboons (herpesvirus papio; HVP) and Rhesus macaques (RhEBV). Sequence comparison of the approximately 1,230-bp Cp regions from these primate viruses revealed that EBV and HVP Cp sequences are 64% conserved, EBV and RhEBV Cp sequences are 66% conserved, and HVP and RhEBV Cp sequences are 65% conserved relative to each other. Approximately 50% of the residues are conserved among all three sequences, yet all three viruses have retained response elements for glucocorticoids, two positionally conserved CCAAT boxes, and positionally conserved TATA boxes. The putative EBNA2 100-bp enhancers within these promoters contain 54 conserved residues, and the binding sites for CBF1 and CBF2 are well conserved. Cp usage in the HVP- and RhEBV-transformed cell lines was detected by S1 nuclease protection analysis. Transient-transfection analysis showed that promoters of both HVP and RhEBV are responsive to EBNA2 and that they bind CBF1 and CBF2 in gel mobility shift assays. These results suggest that similar mechanisms for regulation of latent gene expression are conserved among the EBV-related lymphocryptoviruses found in nonhuman primates.
Angelini, Daniela F.; Serafini, Barbara; Piras, Eleonora; Severa, Martina; Coccia, Eliana M.; Rosicarelli, Barbara; Ruggieri, Serena; Gasperini, Claudio; Buttari, Fabio; Centonze, Diego; Mechelli, Rosella; Salvetti, Marco; Borsellino, Giovanna; Aloisi, Francesca; Battistini, Luca
2013-01-01
It has long been known that multiple sclerosis (MS) is associated with an increased Epstein-Barr virus (EBV) seroprevalence and high immune reactivity to EBV and that infectious mononucleosis increases MS risk. This evidence led to postulate that EBV infection plays a role in MS etiopathogenesis, although the mechanisms are debated. This study was designed to assess the prevalence and magnitude of CD8+ T-cell responses to EBV latent (EBNA-3A, LMP-2A) and lytic (BZLF-1, BMLF-1) antigens in relapsing-remitting MS patients (n = 113) and healthy donors (HD) (n = 43) and to investigate whether the EBV-specific CD8+ T cell response correlates with disease activity, as defined by clinical evaluation and gadolinium-enhanced magnetic resonance imaging. Using HLA class I pentamers, lytic antigen-specific CD8+ T cell responses were detected in fewer untreated inactive MS patients than in active MS patients and HD while the frequency of CD8+ T cells specific for EBV lytic and latent antigens was higher in active and inactive MS patients, respectively. In contrast, the CD8+ T cell response to cytomegalovirus did not differ between HD and MS patients, irrespective of the disease phase. Marked differences in the prevalence of EBV-specific CD8+ T cell responses were observed in patients treated with interferon-β and natalizumab, two licensed drugs for relapsing-remitting MS. Longitudinal studies revealed expansion of CD8+ T cells specific for EBV lytic antigens during active disease in untreated MS patients but not in relapse-free, natalizumab-treated patients. Analysis of post-mortem MS brain samples showed expression of the EBV lytic protein BZLF-1 and interactions between cytotoxic CD8+ T cells and EBV lytically infected plasma cells in inflammatory white matter lesions and meninges. We therefore propose that inability to control EBV infection during inactive MS could set the stage for intracerebral viral reactivation and disease relapse. PMID:23592979
Ateyah, Mohamed E; Hashem, Mona E; Abdelsalam, Mohamed
2017-02-01
Acute B lymphoblastic leukaemia (B-ALL) is the most common type of childhood malignancy worldwide but little is known of its origin. Recently, many studies showed both a high incidence of Epstein-Barr virus (EBV) infection and high levels of CD4 + CD25 + Foxp3 + (Treg cells) in children with B-ALL. In our study, we investigated the possible relationship between EBV infection and the onset of B-ALL, and its relation to expression of CD4 + , CD25 high+ Foxp3+ T regulatory cells. We analysed expression and mean fluorescence intensity (MFI) of Treg cells in peripheral blood of 45 children with B-ALL and in 40 apparently healthy children as a control, using flow cytometry. Serum anti-EBV viral capsid antigen (VCA) IgG, anti-EBV nuclear antigen (EBNA) IgG (for latent infection) and anti-EBV VCA IgM (for acute infection) were investigated using ELISA. Analysis of the Treg cells population in patients and controls revealed that expression of CD4 + CD25 high+ T lymphocytes was higher in patients than in controls (mean±SD 15.7±4.1 and 10.61±2.6 in patients and controls, respectively, and MFI of Foxp3 was 30.1±7.1 and 16.7±3.7 in patients and controls, respectively (p<0.001)). There was a high incidence of latent EBV infection in patients (31%) compared with controls (10%) while the incidence of acute infection was 12% in patients and 0% in the control group. To study the role of latent EBV infection in the pathogenesis of acute B-ALL, OR was calculated (OR=4.06, coefficient index 1.2-13.6). These findings suggest a possible role for Treg cells and EBV in the pathogenesis of B-ALL. Further studies are needed on the possible mechanisms of tumour genesis related to Treg cells and EBV in children with B-ALL. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Viral Carcinogenesis Beyond Malignant Transformation: EBV in the Progression of Human Cancers
Müller-Coan, Bárbara G.; Pagano, Joseph S.
2017-01-01
Cancer progression begins when malignant cells colonize adjacent sites, and it is characterized by increasing tumor heterogeneity, invasion and dissemination of cancer cells. Clinically, progression is the most relevant stage in the natural history of cancers. A given virus is usually regarded as oncogenic because of its ability to induce malignant transformation of cells. Nonetheless, oncogenic viruses may also be important for the progression of infection-associated cancers. Recently this hypothesis has been addressed because of studies on the contribution of the Epstein–Barr virus (EBV) to the aggressiveness of nasopharyngeal carcinoma (NPC). Several EBV products modulate cancer progression phenomena, such as the epithelial–mesenchymal transition, cell motility, invasiveness, angiogenesis, and metastasis. In this regard, there are compelling data about the effects of EBV latent membrane proteins (LMPs) and EBV nuclear antigens (EBNAs), as well as nontranslated viral RNAs, such as the EBV-encoded small nonpolyadenylated RNAs (EBERs) and viral microRNAs, notably EBV miR-BARTs. The available data on the mechanisms and players involved in the contribution of EBV infection to the aggressiveness of NPC are discussed in this review. Overall, this conceptual framework may be valuable for the understanding of the contribution of some infectious agents in the progression of cancers. PMID:27068530
Kazama, Itsuro; Miura, Chieko; Nakajima, Toshiyuki
2016-01-01
Case series Patient: Female, 24 • Male, 35 Final Diagnosis: EBV-induced infectious mononucleosis Symptoms: Fever • general malaise • lymphadenopathy Medication: — Clinical Procedure: Physical examination and serological testing Specialty: Infectious diseases Objective: Rare co-existance of disease or pathology Background: Infectious mononucleosis is a clinical syndrome most commonly associated with primary Epstein-Barr virus (EBV) infection. In adults, the symptoms can often be severe and prolonged, sometimes causing serious complications. Analgesic or antipyretic drugs are normally used to relieve the symptoms. However, there is no causal treatment for the disease. Case Report: Two cases of adult patients with atopic predispositions developed nocturnal fever, general fatigue, pharyngitis and lymphadenopathy after an exacerbation of atopic symptoms or those of allergic rhinitis. Due to the positive results for EBV viral-capsid antigen (VCA) IgM and negative results for EBV nuclear antigen (EBNA) IgG, diagnoses of infectious mononucleosis induced by EBV were made in both cases. Although oral antibiotics or acetaminophen alone did not improve the deteriorating symptoms, including fever, headache and general fatigue, nonsteroidal anti-inflammatory drugs (NSAIDs), such as tiaramide or loxoprofen, completely improved the symptoms quickly after the initiation. Conclusions: In these cases, given the atopic predispositions of the patients, an enhanced immunological response was likely to be mainly responsible for the pathogenesis of the symptoms. In such cases, NSAIDs, that are known to reduce the activity of EBV, may dramatically improve the deteriorating symptoms quickly after the initiation. In the present cases, the immunosuppressive property of these drugs was considered to suppress the activity of lymphocytes and thus provide the rapid and persistent remission of the disease. PMID:26874639
Khabir, Abdelmajid; Ghorbel, Abdelmoneem; Daoud, Jamel; Frikha, Mounir; Drira, Mohamed Mokhtar; Laplanche, Agnès; Busson, Pierre; Jlidi, Rachid
2003-01-01
Nasopharyngeal carcinomas (NPCs) are consistently associated with the Epstein-Barr virus (EBV). As Bcl-2 and Bcl-X are co-expressed in EBV-transformed B-lymphocytes, we attempted to determine their status in malignant NPC cells. A retrospective series of 100 NPC specimens from untreated Tunisian patients was investigated by immuno-histochemistry. Twenty seven of the patients were below 30 years old and therefore classified in the "juvenile" form of north African NPCs. Bcl-2 and Bcl-X expression was assessed semi-quantitatively using a score based on the percentage of positive cells and staining intensity. Intense Bcl-X expression was detected in malignant cells of 100% biopsy samples with similar scores for patients below 30 years or those aged 30 or over. Bcl-2 was detected in 89% biopsies but its expression differed considerably between the samples. The average Bcl-2 score was much lower for patients under 30 years (4.4+/-1.5 compared to 6.5+/-2 for older patients; P<10(-6)). Multivariate analysis demonstrated that no other clinical parameter, except the primary tumor size, was correlated to the Bcl-2 score. Bcl-X and Bcl-2 are co-expressed in 89% of NPCs whereas their expression is mutually exclusive in other head and neck carcinomas (particularly squamous cell carcinomas, SCC). The constantly high expression of Bcl-X is consistent with it being induced by the EBV protein Epstein-Barr nuclear antigen 1 (EBNA1), as recently reported in a murine model. The contrasted levels of Bcl-2 expression in the two age groups strengthen the hypothesis that these clinical forms result from distinct oncogenic mechanisms.
Nutritional composition of different grades of edible bird's nest and its enzymatic hydrolysis
NASA Astrophysics Data System (ADS)
Noor, Hidayati Syamimi Mohd; Babji, Abdul Salam; Lim, Seng Joe
2018-04-01
Edible bird nest (EBN) is a powerful and nutritious food usually consumed by the Chinese Community and it is considered among the most expensive animal products which are made up by salivation of swiftlets (Aerodramus fuciphagus). The other 5% to 10% are made up of foreign matters such as feathers, faecal matter and dirt. The EBN is graded based on its aesthetics as well as its cleaning processes. The aim of this study were to determine and compare EBN of different grades (A, B, C, D) in terms of proximate composition and amino acid profile, and next to enzymatically hydrolyse and determine the degree of hydrolysis (DH) and the recovery percentage of EBN hydrolysates. The enzymatic hydrolysis were performed as an alternative cleaning process of the various grades of EBN, where the glycoproteins were hydrolysed to glycopeptides, making them soluble and leaving behind other insoluble impurities. The results in this study showed that EBN contained high crude protein content: 60.59% (EBNA), 59.50% (EBNB), 54.29% (EBNC) and 56.57% (EBND). Lower grade EBNs (EBNC and EBND) has much higher ash content, i.e. impurities, compared to higher grade EBNs (EBNA and EBNB). In terms of amino acid profile, EBND showed the highest total amino acids compared to EBNA, EBNB and EBNC, with serine and aspartic acid being the main amino acids. Treating the EBN with alcalase for 1.0 - 4.0 hours produced hydrolysates with different degree of hydrolysis (DH), ranging from 10.83 %DH (EBNA) to 13.79 %DH (EBNC). The recovery of EBN after enzymatic hydrolysis range from 89 % (EBNB) to 99% (EBNA). Overall, results showed nutritional composition and amino acid profile of EBN of various grades were significantly different in its nutritional quality, while the enzymatic hydrolysis has successfully separated the impurities from the lower grades EBN.
Epstein-Barr virus in the enlarged salivary tissues of patients with IgG4-related disease.
Furukawa, Takatoshi; Shimotai, Yoshitaka; Ohta, Nobuo; Ishida, Akihiro; Kurakami, Kazuya; Suzuki, Hitoshi; Yamakawa, Mitsunori; Hongo, Seiji; Kakehata, Seiji
2015-09-01
Immunoglobulin G4-related disease (IgG4-RD) is a recently recognized disease entity characterized by high-serum IgG4 concentration and IgG4-producing plasma cell production with fibrotic or sclerotic changes in affected organs. We aimed to clarify the roles of Epstein-Barr virus (EBV) in patients with IgG4-RDs. A retrospective clinical study at the Yamagata University School of Medicine, Yamagata, Japan. The patient group consisted of four males and four females with an average age of 62 years (range: 48-73). Expression of IgG4, latent member protein 1, EBV nuclear antigens-2, and EBV-encoded RNA in affected salivary glands from patients with IgG4-RD was examined by using immunohistochemistry and in situ hybridization. The copy number of EBV DNA in the salivary glands was also investigated by real-time polymerase chain reaction. All patients had hard masses in the salivary or lacrimal glands, or both, bilaterally. Serum concentrations of IgG4 were elevated in all cases (mean 589.1, range 129-1750), and IgG4-positive plasmacytes were observed in the involved salivary glands. Four patients developed potentially life-threatening systemic involvement after initial salivary gland swelling. EBV-associated molecules (EBNA and EBER) were overexpressed in the affected salivary glands. The copy number of EBV DNA was significantly higher in patients with potentially life-threatening systemic involvement than in patients without systemic involvement (P < 0.05). These results suggest that the copy number of EBV DNA could be useful as diagnostic findings in IgG4-RD to predict potentially life-threatening systemic involvement. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Epstein–Barr Virus Infection and Gastric Cancer
Chen, Xin-Zu; Chen, Hongda; Castro, Felipe A.; Hu, Jian-Kun; Brenner, Hermann
2015-01-01
Abstract Epstein–Barr virus (EBV) infection is found in a subset of gastric cancers. Previous reviews have exclusively focused on EBV-encoded small RNA (EBER) positivity in gastric cancer tissues, but a comprehensive evaluation of other type of studies is lacking. We searched the PubMed database up to September, 2014, and performed a systematic review. We considered studies comparing EBV nucleic acids positivity in gastric cancer tissue with positivity in either adjacent non-tumor tissue of cancer patients or non-tumor mucosa from healthy individuals, patients with benign gastric diseases, or deceased individuals. We also considered studies comparing EBV antibodies in serum from cancer patients and healthy controls. Selection of potentially eligible studies and data extraction were performed by 2 independent reviewers. Due to the heterogeneity of studies, we did not perform formal meta-analysis. Forty-seven studies (8069 cases and 1840 controls) were identified. EBER positivity determined by in situ hybridization (ISH) was significantly higher in cancer tissues (range 5.0%–17.9%) than in adjacent mucosa from the same patients or biopsies from all control groups (almost 0%). High EBV nuclear antigen-1 (EBNA-1) positivity by PCR was found in gastric cancer tissues, but most were not validated by ISH or adjusted for inflammatory severity and lymphocyte infiltration. Only 4 studies tested for EBV antibodies, with large variation in the seropositivities of different antibodies in both cases and controls, and did not find an association between EBV seropositivity and gastric cancer. In summary, tissue-based ISH methods strongly suggest an association between EBV infection and gastric cancer, but PCR method alone is invalid to confirm such association. Very limited evidence from serological studies and the lack of novel antibodies warrant further investigations to identify potential risk factors of EBV for gastric cancer. PMID:25997049
Sim, Adrian Chong Nyi; Too, Chien Tei; Oo, Min Zin; Lai, Junyun; Eio, Michelle Yating; Song, Zhenying; Srinivasan, Nalini; Tan, Diane Ai Lin; Pang, Shyue Wei; Gan, Shu Uin; Lee, Kok Onn; Loh, Thomas Kwok Seng; Chen, Jianzhu; Chan, Soh Ha; MacAry, Paul Anthony
2013-01-01
Epstein-Barr virus (EBV) is a gamma herpesvirus that causes a life-long latent infection in human hosts. The latent gene products LMP1, LMP2A and EBNA1 are expressed by EBV-associated tumors and peptide epitopes derived from these can be targeted by CD8 Cytotoxic T-Lymphocyte (CTL) lines. Whilst CTL-based methodologies can be utilized to infer the presence of specific latent epitopes, they do not allow a direct visualization or quantitation of these epitopes. Here, we describe the characterization of three TCR-like monoclonal antibodies (mAbs) targeting the latent epitopes LMP1125–133, LMP2A426–434 or EBNA1562–570 in association with HLA-A0201. These are employed to map the expression hierarchy of endogenously generated EBV epitopes. The dominance of EBNA1562–570 in association with HLA-A0201 was consistently observed in cell lines and EBV-associated tumor biopsies. These data highlight the discordance between MHC-epitope density and frequencies of associated CTL with implications for cell-based immunotherapies and/or vaccines for EBV-associated disease. PMID:24240815
Presence of infective Epstein-Barr virus in the urine of patients with infectious mononucleosis.
Landau, Z; Gross, R; Sanilevich, A; Friedmann, A; Mitrani-Rosenbaum, S
1994-11-01
The presence of Epstein-Barr virus (EBV) in the blood and urine of 20 patients with infectious mononucleosis (IM) was investigated together with the clinical course of the disease, and in 9 patients up to 2-7 months after recovery. EBV DNA, analyzed by the polymerase chain reaction (PCR), was detected in the blood of all 20 patients from the first sample obtained and detected between 3 to 42 days from the beginning of symptoms and up to 2-3 months after recovery. In the urine, EBV DNA was detected in 15 out of 16 (93%) patients in the first sample obtained and detected between 3 to 50 days during the clinical course of the disease. In four patients EBV DNA was detected in the urine up to 3 months after full recovery. Seventeen out of 26 (65%) urine samples including 3 which were obtained 2-7 months after recovery infected B cells as assessed by PCR. Nine out of 12 (75%) urine samples tested induced Epstein-Barr nuclear antigen (EBNA) in the infected B-cell line. In addition to the persistence of EBV in the blood of IM patients, these studies show for the first time the presence of infective EBV in the urine during the clinical course of the disease and up to 7 months after full clinical recovery.
Roth, Kjetil; Hardie, Jon Andrew; Andreassen, Alf Henrik; Leh, Friedemann; Eagan, Tomas Mikal Lind
2009-06-01
The choice of sampling techniques in bronchoscopy with sampling from a visible lesion will depend on the expected diagnostic yields and the costs of the sampling techniques. The aim of this study was to determine the most economical combination of sampling techniques when approaching endobronchial visible lesions. A cost minimization analysis was performed. All bronchoscopies from 2003 and 2004 at Haukeland university hospital, Bergen, Norway, were reviewed retrospectively for diagnostic yields. 162 patients with endobronchial disease were included. Potential sampling techniques used were biopsy, brushing, endobronchial needle aspiration (EBNA) and washings. Costs were estimated based on registration of equipment costs and personnel costs. Sensitivity analyses were performed to determine threshold values. The combination of biopsy, brushing and EBNA was the most economical strategy with an average cost of Euro 893 (95% CI: 657, 1336). The cost of brushing had to be below Euro 83 and it had to increase the diagnostic yield more than 2.2%, for biopsy and brushing to be more economical than biopsy alone. The combination of biopsy, brushing and EBNA was more economical than biopsy and brushing when the cost of EBNA was below Euro 205 and the increase in diagnostic yield was above 5.2%. In the current study setting, biopsy, brushing and EBNA was the most economical combination of sampling techniques for endobronchial visible lesions.
Palermo, Richard D.; Webb, Helen M.; West, Michelle J.
2011-01-01
Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ∼120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions. PMID:22046134
Chemotherapy Enhances Cross-Presentation of Nuclear Tumor Antigens
Anyaegbu, Chidozie C.; Lake, Richard A.; Heel, Kathy; Robinson, Bruce W.; Fisher, Scott A.
2014-01-01
Cross-presentation of tumor antigen is essential for efficient priming of naïve CD8+ T lymphocytes and induction of effective anti-tumor immunity. We hypothesized that the subcellular location of a tumor antigen could affect the efficiency of cross-presentation, and hence the outcome of anti-tumor responses to that antigen. We compared cross-presentation of a nominal antigen expressed in the nuclear, secretory, or cytoplasmic compartments of B16 melanoma tumors. All tumors expressed similar levels of the antigen. The antigen was cross-presented from all compartments but when the concentration was low, nuclear antigen was less efficiently cross-presented than antigen from other cellular locations. The efficiency of cross-presentation of the nuclear antigen was improved following chemotherapy-induced tumor cell apoptosis and this correlated with an increase in the proportion of effector CTL. These data demonstrate that chemotherapy improves nuclear tumor antigen cross-presentation and could be important for anti-cancer immunotherapies that target nuclear antigens. PMID:25243472
Adeno-associated virus capsid antigen presentation is dependent on endosomal escape
Li, Chengwen; He, Yi; Nicolson, Sarah; Hirsch, Matt; Weinberg, Marc S.; Zhang, Ping; Kafri, Tal; Samulski, R. Jude
2013-01-01
Adeno-associated virus (AAV) vectors are attractive for gene delivery-based therapeutics, but data from recent clinical trials have indicated that AAV capsids induce a cytotoxic T lymphocyte (CTL) response that eliminates transduced cells. In this study, we used traditional pharmacological agents and AAV mutants to elucidate the pathway of capsid cross-presentation in AAV-permissive cells. Endosomal acidification inhibitors blocked AAV2 antigen presentation by over 90%, while proteasome inhibitors completely abrogated antigen presentation. Using mutant viruses that are defective for nuclear entry, we observed a 90% decrease in capsid antigen presentation. Different antigen presentation efficiencies were achieved by selectively mutating virion nuclear localization signals. Low antigen presentation was demonstrated with basic region 1 (BR1) mutants, despite relatively high transduction efficiency, whereas there was no difference in antigen presentation between BR2 and BR3 mutants defective for transduction, as compared with wild-type AAV2. These results suggest that effective AAV2 capsid antigen presentation is dependent on AAV virion escape from the endosome/lysosome for antigen degradation by proteasomes, but is independent of nuclear uncoating. These results should facilitate the design of effective strategies to evade capsid-specific CTL-mediated elimination of AAV-transduced target cells in future clinical trials. PMID:23454772
Esen, Bahar Artım; Yılmaz, Gülden; Uzun, Sami; Ozdamar, Melda; Aksözek, Alper; Kamalı, Sevil; Türkoğlu, Salih; Gül, Ahmet; Ocal, Lale; Aral, Orhan; Inanç, Murat
2012-01-01
Previous studies showed a link between systemic lupus erythematosus (SLE) and Epstein-Barr virus (EBV) infection. We sought to determine the features of serologic response to EBV in SLE patients and whether this response differs from those of systemic sclerosis (SSc) and primary antiphospholipid syndrome (PAPS) patients as well as healthy individuals. Sera from 198 consecutive SLE patients have been tested to detect IgG antibodies to EA/D, EBNA-1, VCA P18 and for comparison, cytomegalovirus (CMV) using commercially available ELISA kits (Trinity Biotech, USA). Forty-six SSc patients and 38 PAPS patients were enrolled as diseased control groups and sixty-five individuals as healthy controls. Significantly more SLE (54%, P = 0.001, OR 5.77, 95% CI 2.8-11.6), SSc (41.3%, P = 0.005, OR 3.4, 95% CI 1.4-8.2) and PAPS sera (36.8%, P = 0.023, OR 2.86, 95% CI 1.14-7.22) reacted against EA/D than healthy controls (16.9%). The mean age of anti-EA/D-positive SLE patients was significantly higher, and their disease duration was longer compared to anti-EA/D-negative SLE patients (41 ± 14 vs. 33.8 ± 10.8 years, P < 0.001 and 100 ± 73 vs. 71 ± 62 months, P = 0.003). In SLE patients, EA/D reactivity was associated with Raynaud's phenomenon and the presence of any anti-ENA antibodies. Although it did not reach a statistical significance, anti-EBNA-1 reactivity was slightly lower in patients with SLE. The frequency of anti-CMV Ig G positivity was found significantly higher in SLE patients (100%) when compared to patients with SSc (95.7%), PAPS (94.7%) and healthy controls (95.4%) (P = 0.035, P = 0.025 and P = 0.015 respectively). Our results support the proposed link between EBV and SLE. The finding that SSc and PAPS patients also have increased frequency of anti-EA/D response has revealed that this immune interaction may not be unique to patients with SLE, and there may be a common mechanism involving EBV in these autoimmune diseases.
Karray, H; Ayadi, W; Fki, L; Hammami, A; Daoud, J; Drira, M M; Frikha, M; Jlidi, R; Middeldorp, J M
2005-04-01
Nasopharyngeal carcinoma (NPC) in Tunisia is characterized by its bimodal age distribution involving juvenile patients of 10-24 years and adult patients of 40-60 years. Three serological techniques were compared for primary diagnosis (N = 117) and post-treatment monitoring (N = 21) of NPC patients separated in two age groups. Immunofluorescence assay (IFA) was used as the "gold standard" for detection of IgG and IgA antibodies reactive with Epstein-Barr virus (EBV) early (EA) and viral capsid (VCA) antigens. Results were compared with ELISA measuring IgG and IgA antibody reactivity to defined EBNA1, EA, and VCA antigens. Immunoblot was used to reveal the molecular diversity underlying the anti-EBV IgG and IgA antibody responses. The results indicate that young NPC patients have significantly more restricted anti-EBV IgG and IgA antibody responses with aberrant IgG VCA/EA levels in 78% compared to 91.7% in elder patients. IgA VCA/EA was detected in 50% of young patients versus 89.4% for the elder group (P < 0.001). Immunoblot revealed a reduced overall diversity of EBV antigen recognition for both IgG and IgA in young patients. A good concordance was observed between ELISA and IFA for primary NPC diagnosis with 81-91% overall agreement. Even better agreement (95-100%) was found for antibody changes during follow-up monitoring, showing declining reactivity in patients in remission and increasing reactivity in patients with persistent disease or relapse. ELISA for IgA anti-VCA-p18 and immunoblot proved most sensitive for predicting tumor relapse. VCA-p18 IgA ELISA seems suitable for routine diagnosis and early detection of NPC complication. (c) 2005 Wiley-Liss, Inc.
Ito, W; Nishimura, M; Sakato, N; Fujio, H; Arata, Y
1987-09-01
A proton nuclear magnetic resonance (NMR) study is reported of the molecular structural basis of antigen-antibody interactions. An immunologically reactive proteolytic fragment corresponding to one of the antigenic regions on hen egg-white lysozyme (HEL) was used in combination with a monoclonal antibody that recognizes this site. Using spin diffusion, we prepared an antibody in which the magnetization of the antigen binding site was saturated by non-specific nuclear Overhauser effect. Under these conditions the effect of the saturation of the antibody was observed to spread over the peptide fragment through the antigen binding site. On the basis of the results obtained for the intermolecular nuclear Overhauser effect, we discuss how the peptide fragment interacts with the antibody. The side chains of aromatic residues, Trp, Tyr, and His, and of ionic residues, especially Arg, Lys, and Glu, are suggested to be important in the antigen-antibody interaction.
Mostafa, Aliehossadat; Jalilvand, Somayeh; Shoja, Zabihollah; Nejati, Ahmad; Shahmahmoodi, Shohreh; Sahraian, Mohammad Ali; Marashi, Sayed Mahdi
2017-07-01
The relationship between infections and autoimmune diseases is complex and there are several reports highlighting the role of human endogenous retroviruses (HERVs) in these patients. The levels of multiple sclerosis-associated retrovirus (MSRV)-type DNA of Env gene was measured in peripheral blood mononuclear cells from 52 patients with relapsing-remitting multiple sclerosis (RRMS) and 40 healthy controls using specific quantitative PCR (qPCR) analysis. Furthermore, we analyzed the status of HERV-W/MSRV in these patients with regards to both EBV (DNA load and anti-EBNA1 IgG antibody) and vitamin D concentration. MSRV DNA copy number were significantly higher in RRMS patients than healthy controls (P < 0.0001). Interestingly, an inverse correlation was found between MSRV DNA copy number and serum vitamin D concentration (P < 0.01), but not for EBV load or anti-EBNA-1 IgG antibody. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Schatten, G.; Schatten, H.; Simerly, C.; Maul, G. G.; Chaly, N.
1985-01-01
Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase.
High Levels of IL-10 and CD4+CD25hi+ Treg Cells in Endemic Burkitt’s Lymphoma Patients
Futagbi, Godfred; Gyan, Ben; Nunoo, Harriet; Tetteh, John K.A.; Welbeck, Jennifer E.; Renner, Lorna Awo; Ofori, Michael; Dodoo, Daniel; Edoh, Dominic A.; Akanmori, Bartholomew D.
2015-01-01
Background: The interplay between Epstein-Barr virus infection, malaria, and endemic Burkitt’s Lymphoma is not well understood. Reports show diminished EBV-specific Th1 responses in children living in malaria endemic areas and deficiency of EBNA1-specific IFN-γ T cell responses in children with endemic Burkitt’s Lymphoma (eBL). This study, therefore, examined some factors involved in the loss of EBNA-1-specific T cell responses in eBL. Methods: T-cell subset frequencies, activation, and IFN-γ- or IL-4-specific responses were analyzed by flow-cytometry. Plasma cytokine levels were measured by ELISA. Results: CD4+ and CD8+ cells in age- and sex-matched healthy controls (n = 3) expressed more IFN-γ in response to all immunostimulants than in pediatric endemic BL (eBL) patients (n = 4). In healthy controls, IFN-γ expression was higher than IL-4 expression, whereas in eBL patients the expression of IL-4 by CD4+ cells to EBNA-1 was slightly higher than IFN-γ. Moreover, the blood levels of TNF-α was significantly lower (p = 0.004) while IL-10 was significantly higher (p = 0.038), in eBL patients (n = 21) compared to controls (n = 16). Additionally, the frequency of CD4+CD25hi+ T cells was higher in both age-matched acute uncomplicated malaria (n = 26) and eBL (n = 14) patients compared to healthy controls (n = 19; p = 0.000 and p = 0.027, respectively). Conclusion: The data suggest that reduced Th1 response in eBL might be due to increased levels of IL-10 and T reg cells. PMID:28536409
High Levels of IL-10 and CD4+CD25hi+ Treg Cells in Endemic Burkitt's Lymphoma Patients.
Futagbi, Godfred; Gyan, Ben; Nunoo, Harriet; Tetteh, John K A; Welbeck, Jennifer E; Renner, Lorna Awo; Ofori, Michael; Dodoo, Daniel; Edoh, Dominic A; Akanmori, Bartholomew D
2015-08-04
The interplay between Epstein-Barr virus infection, malaria, and endemic Burkitt's Lymphoma is not well understood. Reports show diminished EBV-specific Th1 responses in children living in malaria endemic areas and deficiency of EBNA1-specific IFN-γ T cell responses in children with endemic Burkitt's Lymphoma (eBL). This study, therefore, examined some factors involved in the loss of EBNA-1-specific T cell responses in eBL. T-cell subset frequencies, activation, and IFN-γ- or IL-4-specific responses were analyzed by flow-cytometry. Plasma cytokine levels were measured by ELISA. CD4+ and CD8+ cells in age- and sex-matched healthy controls ( n = 3) expressed more IFN-γ in response to all immunostimulants than in pediatric endemic BL (eBL) patients ( n = 4). In healthy controls, IFN-γ expression was higher than IL-4 expression, whereas in eBL patients the expression of IL-4 by CD4+ cells to EBNA-1 was slightly higher than IFN-γ. Moreover, the blood levels of TNF-α was significantly lower ( p = 0.004) while IL-10 was significantly higher ( p = 0.038), in eBL patients ( n = 21) compared to controls ( n = 16). Additionally, the frequency of CD4+CD25hi+ T cells was higher in both age-matched acute uncomplicated malaria ( n = 26) and eBL ( n = 14) patients compared to healthy controls ( n = 19; p = 0.000 and p = 0.027, respectively). The data suggest that reduced Th1 response in eBL might be due to increased levels of IL-10 and T reg cells.
Shih, Ko-Nien; Chuang, Ya-Ting; Liu, Hsuan; Lo, Szecheng J
2004-04-01
During its life cycle, hepatitis D virus (HDV) produces two forms of delta antigen (HDAg), small delta antigen (SDAg) and large delta antigen (LDAg), which differ in their C-terminal 19 amino acids. Host enzymes termed ADARs (adenosine deaminases that act on double-stranded RNA) are required for LDAg production. These enzymes change the stop codon (UAG) of SDAg to a tryptophan codon (UGG). However, the temporal and spatial regulation of HDV RNA editing is largely unknown. In this study, we constructed three GFP fusion proteins containing different lengths of SDAg and characterized their cellular localization and effects on HDV replication. One of these fusion proteins, designated D(1-88)-GFP, inhibited LDAg but not SDAg production, suggesting that D(1-88)-GFP inhibits HDV RNA editing. Two experiments further supported this supposition: (i). RT-PCR analysis combined with NcoI restriction enzyme digestion revealed that HDV RNA editing was reduced by 42% in HeLa-D(1-88)-GFP when compared with HeLa cells; and (ii). the ratio of SDAg/LDAg production from the reporter RNAs was reduced in cells co-transfected with ADAR-expressing and reporter plasmids in the presence of D(1-88)-GFP. Double fluorescence microscopy found that D(1-88)-GFP was either associated with SC-35 or was adjacent to PML (premyelocytic leukaemia antigen) at nuclear speckles, but D(1-88)-GFP was not co-localized with ADAR, which was mainly located in the nucleolus. In situ hybridization showing co-localization of HDV RNA with D(1-88)-GFP at nuclear speckles suggested that HDV RNA editing might occur in the nuclear speckles and require other nuclear factor(s), in addition to ADAR.
Hesketh, J; Dobbelaere, D; Griffin, J F; Buchan, G
1993-01-01
The expression of interleukin-2 receptors (IL-2R) and proliferating cell nuclear antigens (PCNA) were compared for their usefulness as markers of lymphocyte activation. Heterologous polyclonal (anti-bovine IL-2R) and monoclonal (anti-human PCNA) antibodies were used to detect the expression of these molecules on activated deer lymphocytes. Both molecules were co-expressed on blast cells which had been activated with mitogen [concanavalin A (Con A)]. There was detectable up-regulation of IL-2R expression in response to antigen [Mycobacterium bovis-derived purified protein derivative (PPD)] stimulation while PCNA expression mimicked lymphocyte transformation (LT) reactivity. PCNA expression was found to more accurately reflect both antigen- and mitogen-activated lymphocyte activation, as estimated by LT activity. The expression of PCNA was used to identify antigen reactive cells from animals exposed to M. bovis. A very low percentage (1.1 +/- 0.4%) of peripheral blood lymphocytes from non-infected animals could be stimulated to express PCNA by in vitro culture with antigen (PPD). Within the infected group both diseased and healthy, 'in-contact', animals expressed significantly higher levels of PCNA upon antigen stimulation. PMID:8104884
Price, Alexander M; Dai, Joanne; Bazot, Quentin; Patel, Luv; Nikitin, Pavel A; Djavadian, Reza; Winter, Peter S; Salinas, Cristina A; Barry, Ashley Perkins; Wood, Kris C; Johannsen, Eric C; Letai, Anthony; Allday, Martin J; Luftig, Micah A
2017-04-20
Latent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFκB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFκB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis.
Nardi, Norma; Brito-Zerón, Pilar; Ramos-Casals, Manuel; Aguiló, Sira; Cervera, Ricard; Ingelmo, Miguel; Font, Josep
2006-05-01
The aim of this study was to analyze the prevalence and clinical significance of circulating auto-antibodies against nuclear and non-nuclear antigens in a large cohort of Spanish patients with primary Sjögren's syndrome (SS). We studied 335 patients diagnosed with primary SS seen consecutively in our department since 1994 and tested for anti-nuclear antibodies (ANA), anti-Ro/SS-A, anti-La/SS-B, anti-Sm, anti-ribonucleoprotein (anti-RNP), anti-smooth muscle antibodies (anti-SMA), anti-parietal cell antibodies (anti-PCA), anti-liver-kidney microsome type-1 (anti-LKM-1) antibodies and anti-mitochondrial antibodies (AMA). ANA were detected in 278 (83%) patients. The association of positive ANA with the presence of anti-Ro/SS-A and anti-La/SS-B antibodies reached statistical significance at a titre of ANA >1/80 (p<0.001), while the presence of anti-Sm and anti-RNP was associated with positive ANA at a titre > or =1/320 (p=0.037 for Sm and p=0.016 for RNP). ANA titres correlated with the number of positive antibodies against specific nuclear antigens (p<0.001) but not with the number of positive antibodies against non-nuclear antigens. We found positive anti-Ro/SS-A antibodies in 111 (33%) patients, anti-La/SS-B in 78 (23%), anti-RNP in 8 (2%) and anti-Sm in 4 (1%). Anti-SMA antibodies were detected in 208 (62%) patients, with no significant associations with clinical or analytical SS features, while anti-PCA antibodies were found in 90 (27%) patients and were associated with a higher prevalence of thyroiditis and liver involvement. AMA were detected in 28 (8%) patients, although only 14 presented clinical and/or analytical evidence of liver involvement. No patient presented anti-LKM antibodies. ANA play a central role in the immunological expression of primary SS, due to their frequency and close association with the underlying presence of one or more anti-ENA antibodies. Positivity for antibodies against non-nuclear antigens such as anti-PCA and AMA suggests an association with some organ-specific autoimmune diseases (thyroiditis and primary biliary cirrhosis), while the presence of anti-SMA, in spite of their high prevalence, has no clinical significance in primary SS.
Dalgliesh, Ailsa J; Liu, Zhi Zhao; Griffiths, Leigh G
2017-07-01
Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are necessary to further facilitate solubility and removal of nuclear-associated antigenic proteins from xenogeneic ECM scaffolds, in addition to an in vivo assessing of the material.
The aliens inside us: HERV-W endogenous retroviruses and multiple sclerosis.
Dolei, Antonina
2018-01-01
Two human endogenous retroviruses of the HERV-W family are proposed as multiple sclerosis (MS) co-factors: MS-associated retrovirus (MSRV) and ERVWE1, whose env proteins showed several potentially neuropathogenic features, in vitro and in animal models. Phase II clinical trials against HERV-Wenv are ongoing. HERV-W/MSRV was repeatedly found in MS patients, in striking parallel with MS stages, active/remission phases, and therapy outcome. The HERV-Wenv protein is highly expressed in active MS plaques. Early MSRV presence in spinal fluids predicted worst MS progression 10 years in advance. Effective anti-MS therapies strongly reduced MSRV/Syncytin-1/HERV-W expression. The Epstein-Barr virus (EBV) activates HERV-W/MSRV in vitro and in vivo, in patients with infectious mononucleosis and controls with high anti-EBNA1-IgG titers. Thus, the two main EBV/MS links (infectious mononucleosis and high anti-EBNA1-IgG titers) are paralleled by activation of HERV-W/MSRV. It is hypothesized that EBV may act as initial trigger of future MS, years later, by activating MSRV, which would act as direct neuropathogenic effector, before and during MS.
Correlation between cytomegalovirus infection and Raynaud's phenomenon in lupus nephritis.
Stratta, P; Canavese, C; Ciccone, G; Santi, S; Quaglia, M; Ghisetti, V; Marchiaro, G; Barbui, A; Fop, F; Cavallo, R; Piccoli, G
1999-06-01
Relationships between viruses and autoimmune diseases such as systemic lupus erythematosus (SLE) are still elusive. Recent reports demonstrated the association of some viral infections with peculiar clinical events in the general population, such as cytomegalovirus (CMV) with arterial damage and Parvovirus B19 (PV-B19) with hematologic abnormalities. We planned to look for this kind of viral imprinting in SLE, hypothesizing that traces of specific features of some viral infections might be found in some subsets of seropositive SLE patients. In 60 SLE patients recruited at our nephrologic center, serology for CMV, PV-B19, Epstein-Barr virus viral capsid antigen (EBV-VCA), Epstein-Barr nuclear antigen (EBNA) and Epstein-Barr virus early antigen (EBV-EA) was performed. chi2 and ANOVA were employed to compare the frequency and titers of antiviral antibodies in SLE patients with groups of transplant, hemodialysis and blood donor subjects. chi2, Fisher's test, Bonferroni and Scheffe's test were employed to compare the different biochemical/clinical features between seropositive and seronegative SLE patients. Univariate and multivariate analysis (logistic regression models) were employed to evaluate the odds ratio (OR) of different risk factors for vascular events (including Raynaud's phenomenon, deep venous thrombosis) and hematologic abnormalities (including severe anemia, leukopenia and thrombocytopenia). Anti-CMV (82%), anti-PV-B19 (60%), anti-EBV-VCA (92%) and EBV-EA (45%) IgG antibodies were frequent in SLE, with higher prevalence in comparison with the blood donor group and higher titers in comparison with transplant and hemodialysis groups. CMV seropositivity was a highly significant risk factor for Raynaud's phenomenon (OR +alpha in univariate and multivariate analysis = 13.51 using a correction of 0.5 in case of a zero event), but not for venous vascular events (OR = 1.31). An increased though not significant risk factor was found for antiphospholipid antibodies (OR = 2.71, p = 0.19), while the presence of nephrotic syndrome during the follow-up was a significant protective factor (OR = 0.15, p = 0.035). There was no significantly increased OR for PV-B19 seropositivity in cases with severe anemia (OR = 2.09, p = 0. 29). No significant associations were found with the status of EBV reactivation. In conclusion, our results support the hypothesis that viral infection may imprint the course of SLE leading to specific clinical subsets (i.e. CMV and 'vascular' SLE, with more frequent Raynaud's phenomenon and a less frequent typical histological renal picture responsible for nephrotic syndrome). Further prospective studies are justified to validate these correlations, mainly dealing with associations between acute viral infections and vascular events, thus eventually leading to a better understanding of mutual relationships between viruses and SLE.
Development of Drugs for Epstein - Barr virus using High-Throughput in silico Virtual Screening
Li, Ning; Thompson, Scott; Jiang, Hualiang; Lieberman, Paul M.; Luo, Cheng
2010-01-01
Importance of the field Epstein-Barr virus (EBV) is a ubiquitious human herpesvirus that is causally associated with endemic forms of Burkitt’s lymphoma (BL), nasopharyngeal carcinoma, and lymphoproliferative disease in immunosuppressed individuals. On a global scale, EBV infects over 90% of the adult population and is responsible for ~1% of all human cancers. To date, there is no efficacious drug or therapy for the treatment of EBV infection and EBV-related diseases. Areas covered in this review In this review, we discuss the existing anti-EBV inhibitors and those under development. We discuss the value of different molecular targets, including EBV lytic DNA replication enzymes, as well as proteins that are expressed exclusively during latent infection, like EBNA1 and LMP1. Since the atomic structure of the EBNA1 DNA binding domain has been described, it is an attractive target for in silico methods of drug design and small molecule screening. We discuss the use of computational methods that can greatly facilitate the development of novel inhibitors and how in silico screening methods can be applied to target proteins with known structures, like EBNA1, to treat EBV infection and disease. What the reader will gain The reader will be familiarized with the problems in targeting of EBV for inhibition by small molecules and how computational methods can greatly facilitate this process. Take home message Despite the impressive efficacy of nucleoside analogues for the treatment of herpesvirus lytic infection, there remain few effective treatments for latent infections. Since EBV-latent infection persists within and contributes to the formation of EBV-associated cancers, targeting EBV latent proteins is an unmet medical need. High throughput in silico screening can accelerate the process of drug discovery for novel and selective agents that inhibit EBV latent infection and associated disease. PMID:22822721
Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Tomoyuki; Sato, Yuko; Watanabe, Daisuke
2010-03-15
To clarify whether mutations in the large T gene encoded by Merkel cell polyomavirus affect the expression and function of large T antigen in Merkel cell carcinoma cases, we investigated the expression of large T antigen in vitro and in vivo. Immunohistochemistry using a rabbit polyclonal antibody revealed that large T antigen was expressed in the nuclei of Merkel cell carcinoma cells with Merkel cell polyomavirus infection. Deletion mutant analyses identified an Arg-Lys-Arg-Lys sequence (amino acids 277-280) as a nuclear localization signal in large T antigen. Sequence analyses revealed that there were no mutations in the nuclear localization signal inmore » any of the eleven Merkel cell polyomavirus strains examined. Furthermore, stop codons were not observed in the upstream of the nuclear localization signal in any of the Merkel cell carcinoma cases examined. These data suggest that the nuclear localization signal is highly conserved and functional in Merkel cell carcinoma cases.« less
Crawford, A. M.; Kalmakoff, J.
1977-01-01
Polyhedron protein from Wiseana spp. nuclear polyhedrosis virus was found to be degraded by an alkali protease when polyhedra are dissolved in alkali. The protease activity did not occur at high pH (0.1 M NaOH) and was inactivated by heating polyhedra to 70°C for 3 h. The products from the protease degradation of Wiseana spp. nuclear polyhedrosis virus polyhedron protein retain the antigenicity of undegraded polyhedron protein as measured by the direct solid-phase radioimmunoassay and immunoadsorption. Degradation products below 27,000 daltons could not be detected by the sandwich radioimmunoassay, indicating that they are probably monovalent. PMID:16789167
Ikuta, Kazufumi; Saiga, Kyoko; Deguchi, Masanori; Sairenji, Takeshi
2003-01-01
We demonstrated Epstein-Barr virus (EBV) DNA in peripheral blood mononuclear cells (PBMCs) from infants with infectious mononucleosis- (IM) like symptoms. Thirteen of the 17 patients did not have EBV antibodies; however, EBV DNA was detected in 8 PBMC from the 13 seronegative patients by PCR. The 4 patients were retested in 6-12 months later. Three patients were still seronegative; however EBV DNA wasnot detected. One patient seroconverted and EBV DNA could still be detected. The transcript of EBNA1 was detected in one patient, but neither EBNA2 nor LMP2A were detected in all PBMC from the 4 tested patients. Type 1 EBV DNA was detected in 5 PBMC of 7 tested patients, and type 2 EBV DNA was detected in type 1 positive PBMC of one patient as well. The IL-1 beta polymorphism that is reported to be one of the immunological factors of EBV seronegativity revealed no difference in IM-like patients. These results indicated that EBV infection occurs in EBV-seronegative IM-like infants; however, the modes of infection are clearly different from IM.
Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal
2017-03-23
It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.
Vosse, Bettine A H; Seelentag, Walter; Bachmann, Astrid; Bosman, Fred T; Yan, Pu
2007-03-01
The aim of this study was to evaluate specific immunostaining and background staining in formalin-fixed, paraffin-embedded human tissues with the 2 most frequently used immunohistochemical detection systems, Avidin-Biotin-Peroxidase (ABC) and EnVision+. A series of fixed tissues, including breast, colon, kidney, larynx, liver, lung, ovary, pancreas, prostate, stomach, and tonsil, was used in the study. Three monoclonal antibodies, 1 against a nuclear antigen (Ki-67), 1 against a cytoplasmic antigen (cytokeratin), and 1 against a cytoplasmic and membrane-associated antigen and a polyclonal antibody against a nuclear and cytoplasmic antigen (S-100) were selected for these studies. When the ABC system was applied, immunostaining was performed with and without blocking of endogenous avidin-binding activity. The intensity of specific immunostaining and the percentage of stained cells were comparable for the 2 detection systems. The use of ABC caused widespread cytoplasmic and rare nuclear background staining in a variety of normal and tumor cells. A very strong background staining was observed in colon, gastric mucosa, liver, and kidney. Blocking avidin-binding capacity reduced background staining, but complete blocking was difficult to attain. With the EnVision+ system no background staining occurred. Given the efficiency of the detection, equal for both systems or higher with EnVision+, and the significant background problem with ABC, we advocate the routine use of the EnVision+ system.
Atalay, Altay; Gökahmetoğlu, Selma; Durmaz, Süleyman; Kandemir, Idris; Sağlam, Derya; Kaynar, Leylagül; Eser, Bülent; Cetin, Mustafa; Kılıç, Hüseyin
2014-06-01
We aimed to investigate posttransplant Epstein-Barr virus (EBV) and parvovirus B19 DNA in allogeneic stem cell transplant patients between 2009 and 2010. Forty-five adult patients in whom allogeneic stem cell transplantation was performed between April 2009 and November 2010 in the Erciyes University Faculty of Medicine, Department of Internal Medicine, Division of Hematology and Oncology, were included in the study. EBV and parvovirus B19 DNA positivity was investigated by using real-time polymerase chain reaction technique in 135 plasma samples obtained after transplantation at between 1 and 6 months. Pretransplant serological markers of EBV and parvovirus B19 were provided from patient files. In 32 (71.1%) of the patients, EBV antibodies in the pretransplantation period were as follows: anti-EBNA-1 IgG (+), VCA IgM (-), and VCA IgG (+). In 2 patients (4.45%), these antibodies were as follows: anti-EBNA-1 IgG (+), VCA IgM (-), and VCA IgG (-). In 1 patient (2.2%), they were as follows: anti-EBNA-1 IgG (-), VCA IgM (-), and VCA IgG (+). EBV serological markers were negative in 2 (2.2%) out of 45 patients before transplantation. There was low DNA positivity (<600 copies/mL) in 4 patients (8.9%), and VCA IgM was negative and VCA IgG was positive in these same 4 patients. In spite of low viral load, there were no symptoms related to EBV, and posttransplant lymphoproliferative disorder (PTLD) did not occur. While in 44 (99.7%) of 45 patients parvovirus B19 IgM was negative and IgG was positive, parvovirus B19 IgM was positive and IgG was negative in 1 (2.3%) patient. Parvovirus B19 DNA was not identified in any of the samples obtained from these 45 patients. In this study, EBV and parvovirus B19 DNA were investigated in allogeneic stem cell transplant patients. None of the patients developed PTLD and parvovirus B19 DNA positivity was not detected. However, this issue needs to be further evaluated in prospective, multicenter studies with larger series of patients.
Kang, Seong-Kwi; Park, Nam-Yong; Cho, Ho-Sung; Shin, Sung-Shik; Kang, Mun-Il; Kim, Sang-Ki; Hyun, Changbaig; Park, In-Chul; Kim, Jong-Tack; Jeong, Cheol; Park, Sung-Hee; Park, Su-Jin; Jeong, Jae-Ho; Kim, You-Jung; Ochiai, Kenji; Umemura, Takashi; Cho, Kyoung-Oh
2006-03-01
The mitotic index is reported to be correlated with recurrence, mean patient survival, and metastasis of canine hemangiopericytoma (CHP). However, to the authors' knowledge, studies investigating the parameters that can predict recurrence or metastasis of CHP with low mitotic index have not been done. To evaluate growth kinetics of CHP with low mitotic index, a retrospective analysis of the proliferative activity by antiproliferative cell nuclear antigen monoclonal antibody and DNA contents by flow cytometry (FCM) was performed with 21 formalin-fixed and paraffin-embedded CHP samples. Of the 21 tumors evaluated by FCM, 6 (26.6%) were aneuploid tumors, and 15 (71.4%) were diploid tumors. There was significant correlation between the PCNA index and ploidy pattern. The diploid group had 39.1 +/- 9.2 PCNA index, whereas the aneuploid group's proliferative cell nuclear antigen (PCNA) index was 63.1 +/- 8.2. The diploid group had mean mitotic index value of 1.140 +/- 0.855, and the aneuploid group had a mean value of 1.067 +/- 0.767. From these results, the CHP samples with low mitotic index were classified into either the aneuploid group with higher PCNA index or the diploid group with lower PCNA index, suggesting that DNA ploidy and proliferative activity may give an indication about malignancy of CHPs with a low mitotic index.
Lin, J C; Pagano, J S
1986-08-01
A dual antibody probing technique that permitted a color-coded identification of polypeptides representing different classes of Epstein-Barr virus (EBV) antigens as well as differentiation of the polypeptides induced by different herpesviruses in the same Western blot was developed. When the nitrocellulose sheet was probed first with monoclonal antibody against EBV early antigen diffuse component (EA-D) and then stained with 4-chloro-1-naphthol, four polypeptides specific for EA-D were identified by purple bands. Subsequently, the same nitrocellulose sheet was reprobed with human serum containing antibodies against EBV early antigen, viral capsid antigen, and nuclear antigen and stained with 3,3'-diaminobenzidine. Several brown bands corresponding to early, viral capsid, and nuclear antigen polypeptides were detected. The dual antibody probing technique was used in an analysis to differentiate polypeptides resulting from either EBV or herpes simplex virus infection, either in cells infected by individual virus or in a cell line dually infected by both viruses. On the basis of different colored bands in different lanes of the same gel, 20 polypeptides with molecular weights ranging from 31,000 to 165,000 were identified as herpes simplex virus-specific proteins. These results suggested that the dual antibody probing technique may be applicable in clinical diagnosis for detecting antigens and antibodies derived from different pathogens.
Epstein-Barr Virus Sequence Variation—Biology and Disease
Tzellos, Stelios; Farrell, Paul J.
2012-01-01
Some key questions in Epstein-Barr virus (EBV) biology center on whether naturally occurring sequence differences in the virus affect infection or EBV associated diseases. Understanding the pattern of EBV sequence variation is also important for possible development of EBV vaccines. At present EBV isolates worldwide can be grouped into Type 1 and Type 2, a classification based on the EBNA2 gene sequence. Type 1 EBV is the most prevalent worldwide but Type 2 is common in parts of Africa. Type 1 transforms human B cells into lymphoblastoid cell lines much more efficiently than Type 2 EBV. Molecular mechanisms that may account for this difference in cell transformation are now becoming clearer. Advances in sequencing technology will greatly increase the amount of whole EBV genome data for EBV isolated from different parts of the world. Study of regional variation of EBV strains independent of the Type 1/Type 2 classification and systematic investigation of the relationship between viral strains, infection and disease will become possible. The recent discovery that specific mutation of the EBV EBNA3B gene may be linked to development of diffuse large B cell lymphoma illustrates the importance that mutations in the virus genome may have in infection and human disease. PMID:25436768
Linscheid, C; Heitmann, E; Singh, P; Wickstrom, E; Qiu, L; Hodes, H; Nauser, T; Petroff, M G
2015-08-01
Maternal T-cells reactive towards paternally inherited fetal minor histocompatibility antigens are expanded during pregnancy. Placental trophoblast cells express at least four fetal antigens, including human minor histocompatibility antigen 1 (HA-1). We investigated oxygen as a potential regulator of HA-1 and whether HA-1 expression is altered in preeclamptic placentas. Expression and regulation of HA-1 mRNA and protein were examined by qRT-PCR and immunohistochemistry, using first, second, and third trimester placentas, first trimester placental explant cultures, and term purified cytotrophoblast cells. Low oxygen conditions were achieved by varying ambient oxygen, and were mimicked using cobalt chloride. HA-1 mRNA and protein expression levels were evaluated in preeclamptic and control placentas. HA-1 protein expression was higher in the syncytiotrophoblast of first trimester as compared to second trimester and term placentas (P<0.01). HA-1 mRNA was increased in cobalt chloride-treated placental explants and purified cytotrophoblast cells (P = 0.04 and P<0.01, respectively) and in purified cytotrophoblast cells cultured under 2% as compared to 8% and 21% oxygen (P<0.01). HA-1 mRNA expression in preeclamptic vs. control placentas was increased 3.3-fold (P = 0.015). HA-1 protein expression was increased in syncytial nuclear aggregates and the syncytiotrophoblast of preeclamptic vs. control placentas (P = 0.02 and 0.03, respectively). Placental HA-1 expression is regulated by oxygen and is increased in the syncytial nuclear aggregates and syncytiotrophoblast of preeclamptic as compared to control placentas. Increased HA-1 expression, combined with increased preeclamptic syncytiotrophoblast deportation, provides a novel potential mechanism for exposure of the maternal immune system to increased fetal antigenic load during preeclampsia. Published by Elsevier Ltd.
Suen, J L; Wu, C H; Chen, Y Y; Wu, W M; Chiang, B L
2001-07-01
Systemic lupus erythematosus (SLE) is characterized by the existence of a heterogeneous group of autoantibodies directed against nuclear intact structures, such as nucleosomes and small nuclear ribonucleoproteins (snRNPs). Autoantibodies against snRNPs are of special interest because they are detectable in the majority of SLE patients. Although the B-cell antigenic determinants have been well characterized, very limited data have been reported in regard to the T-cell epitopes of snRNPs. Furthermore, several studies have demonstrated that determination of the auto-T-cell epitopes recognized by freshly isolated T cells is difficult from unprimed lupus mice when self-antigen-pulsed B cells or macrophages are used as antigen-presenting cells (APCs) in vitro. In the present study, we showed a novel approach for determining the auto-T-cell epitopes, using bone marrow-derived dendritic cells (BMDCs) pulsed with the murine U1A protein - an immunodominant antigen of the U1 snRNPs - which is capable of activating freshly isolated T cells from unprimed (NZB x NZW) F1 (BWF1) mice in vitro. The T-cell epitope area was found to be located at the C-terminus of U1A, overlapping the T-cell epitope of human U1A that has been reported in human SLE. Identification of the autoreactive T-cell epitope(s) in snRNPs will help to elucidate how reciprocal T-B determinant spreading of snRNPs emerges in lupus. The results presented here also indicate that it is feasible to use this approach to further explore strategies to design immunotherapy for patients with lupus.
2017-06-22
This month: The role of fatty acids in sex determination; a probe to monitor and inhibit EBNA1 at the same time; a biological role for post-biotics; what happens when you mix microbes, hosts, and drugs; and an antibiotic that cross-protects with acid. Copyright © 2017. Published by Elsevier Ltd.
Epstein-Barr virus latency switch in human B-cells: a physico-chemical model.
Werner, Maria; Ernberg, Ingemar; Zou, Jiezhi; Almqvist, Jenny; Aurell, Erik
2007-08-31
The Epstein-Barr virus is widespread in all human populations and is strongly associated with human disease, ranging from infectious mononucleosis to cancer. In infected cells the virus can adopt several different latency programs, affecting the cells' behaviour. Experimental results indicate that a specific genetic switch between viral latency programs, reprograms human B-cells between proliferative and resting states. Each of these two latency programs makes use of a different viral promoter, Cp and Qp, respectively. The hypothesis tested in this study is that this genetic switch is controlled by both human and viral transcription factors; Oct-2 and EBNA-1. We build a physico-chemical model to investigate quantitatively the dynamical properties of the promoter regulation and experimentally examine protein level variations between the two latency programs. Our experimental results display significant differences in EBNA-1 and Oct-2 levels between resting and proliferating programs. With the model we identify two stable latency programs, corresponding to a resting and proliferating cell. The two programs differ in robustness and transcriptional activity. The proliferating state is markedly more stable, with a very high transcriptional activity from its viral promoter. We predict the promoter activities to be mutually exclusive in the two different programs, and our relative promoter activities correlate well with experimental data. Transitions between programs can be induced, by affecting the protein levels of our transcription factors. Simulated time scales are in line with experimental results. We show that fundamental properties of the Epstein-Barr virus involvement in latent infection, with implications for tumor biology, can be modelled and understood mathematically. We conclude that EBNA-1 and Oct-2 regulation of Cp and Qp is sufficient to establish mutually exclusive expression patterns. Moreover, the modelled genetic control predict both mono- and bistable behavior and a considerable difference in transition dynamics, based on program stability and promoter activities. Both these phenomena we hope can be further investigated experimentally, to increase the understanding of this important switch. Our results also stress the importance of the little known regulation of human transcription factor Oct-2.
Hobnail hemangioma reclassified as superficial lymphatic malformation: a study of 52 cases.
Trindade, Felicidade; Kutzner, Heinz; Tellechea, Óscar; Requena, Luis; Colmenero, Isabel
2012-01-01
Hobnail hemangioma (HH) is currently classified as a benign vascular tumor, although it is not well understood whether this lesion differentiates toward blood or lymphatic endothelial cells. Immunostaining with the endothelial marker Wilms tumor 1 (WT1) helps distinguish between vascular neoplasms and malformations, being positive in the former and negative in the latter. We sought to investigate WT1, human herpesvirus 8 latent nuclear antigen, D2-40, and Ki-67 immunoprofile in HH, to gain further insight into its histogenesis. We evaluated 52 HHs collected in Dermatohistopathologische Gemeinschaftslabor, Friedrichshafen, Germany. Immunohistochemical expression of WT1 was performed in all cases. Ten of 52 lesions were also studied for D2-40 and Ki-67 staining and 12 lesions were stained for human herpesvirus 8 latent nuclear antigen. All 52 HHs were completely negative for WT1 immunostaining. Immunohistochemistry performed in 10 HHs showed diffuse and strong positive staining for D2-40 in 8 lesions and focal positivity in two. All cases tested showed negative staining for Ki-67 and human herpesvirus 8 latent nuclear antigen. There are no limitations. Although the exact histogenesis of HH is unknown, most of the performed immunohistochemical studies support a lymphatic line of differentiation. However, on the basis of the WT1 negativity, we believe that HH is better considered as a lymphatic malformation rather than a lymphatic neoplasm. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Two Distinct Pathways in Mice Generate Antinuclear Antigen-Reactive B Cell Repertoires
Faderl, Martin; Klein, Fabian; Wirz, Oliver F.; Heiler, Stefan; Albertí-Servera, Llucia; Engdahl, Corinne; Andersson, Jan; Rolink, Antonius
2018-01-01
The escape of anti-self B cells from tolerance mechanisms like clonal deletion, receptor editing, and anergy results in the production of autoantibodies, which is a hallmark of many autoimmune disorders. In this study, we demonstrate that both germline sequences and somatic mutations contribute to autospecificity of B cell clones. For this issue, we investigated the development of antinuclear autoantibodies (ANAs) and their repertoire in two different mouse models. First, in aging mice that were shown to gain several autoimmune features over time including ANAs. Second, in mice undergoing a chronic graft-versus-host disease (GVHD), thereby developing systemic lupus erythematosus-like symptoms. Detailed repertoire analysis revealed that somatic hypermutations (SHM) were present in all Vh and practically all Vl regions of ANAs generated in these two models. The ANA B cell repertoire in aging mice was restricted, dominated by clonally related Vh1-26/Vk4-74 antibodies. In the collection of GVHD-derived ANAs, the repertoire was less restricted, but the usage of the Vh1-26/Vk4-74 combination was still apparent. Germline conversion showed that the SHM in the 4-74 light chain are deterministic for autoreactivity. Detailed analysis revealed that antinuclear reactivity of these antibodies could be induced by a single amino acid substitution in the CDR1 of the Vk4-74. In both aging B6 and young GVHD mice, conversion of the somatic mutations in the Vh and Vl regions of non Vh1-26/Vk4-74 using antibodies showed that B cells with a germline-encoded V gene could also contribute to the ANA-reactive B cell repertoire. These findings indicate that two distinct pathways generate ANA-producing B cells in both model systems. In one pathway, they are generated by Vh1-26/Vk4-74 expressing B cells in the course of immune responses to an antigen that is neither a nuclear antigen nor any other self-antigen. In the other pathway, ANA-producing B cells are derived from progenitors in the bone marrow that express B cell receptors (BCRs), which bind to nuclear antigens and that escape tolerance induction, possibly as a result of crosslinking of their BCRs by multivalent determinants of nuclear antigens. PMID:29403498
Rasmussen, N S; Nielsen, C T; Houen, G; Jacobsen, S
2016-12-01
We investigated if signs of active Epstein-Barr virus and cytomegalovirus infections associate with certain autoantibodies and a marker of type I interferon activity in patients with systemic lupus erythematosus. IgM and IgG plasma levels against Epstein-Barr virus early antigen diffuse and cytomegalovirus pp52 were applied as humoral markers of ongoing/recently active Epstein-Barr virus and cytomegalovirus infections, respectively. Plasma galectin-3 binding protein served as a surrogate marker of type I interferon activity. The measurements were conducted in 57 systemic lupus erythematosus patients and 29 healthy controls using ELISAs. Regression analyses and univariate comparisons were performed for associative evaluation between virus serology, plasma galectin-3 binding protein and autoantibodies, along with other clinical and demographic parameters. Plasma galectin-3 binding protein concentrations were significantly higher in systemic lupus erythematosus patients (P = 0.009) and associated positively with Epstein-Barr virus early antigen diffuse-directed antibodies and the presence of autoantibodies against extractable nuclear antigens in adjusted linear regressions (B = 2.02 and 2.02, P = 0.02 and P = 0.002, respectively). Furthermore, systemic lupus erythematosus patients with anti-extractable nuclear antigens had significantly higher antibody levels against Epstein-Barr virus early antigen diffuse (P = 0.02). Our study supports a link between active Epstein-Barr virus infections, positivity for anti-extractable nuclear antigens and increased plasma galectin-3 binding protein concentrations/type I interferon activity in systemic lupus erythematosus patients. © The Author(s) 2016.
Nagata, Keiko; Okuno, Keisuke; Ochi, Marika; Kumata, Keisuke; Sano, Hitoshi; Yoneda, Naohiro; Ueyama, Jun-Ichi; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Kanzaki, Susumu; Hayashi, Kazuhiko
2015-01-01
Various autoantibodies have been reported to be detected during the progression of infectious mononucleosis. We observed a case of infectious mononucleosis due to Epstein-Barr virus primary infection for 2 months, and noticed the transiently increased titer of thyrotropin receptor autoantibodies detected at the acute phase on the 3rd day after admission. At that time, real-time quantitative PCR also revealed the mRNA expressions of an immediate early lytic gene, BZLF1, and a latent gene, EBNA2. The expression of BZLF1 mRNA means that Epstein-Barr virus infects lytically, and EBNA2 protein has an important role in antibody production as well as the establishment of Epstein-Barr virus latency. These results suggest that Epstein-Barr virus lytic infection is relevant to thyrotropin receptor autoantibody production. Thyrotropin receptor autoantibodies stimulate thyroid follicular cells to produce excessive thyroid hormones and cause Graves' disease. Recently, we reported the thyrotropin receptor autoantibody production from thyrotropin receptor autoantibody-predisposed Epstein-Barr virus-infected B cells by the induction of Epstein-Barr virus lytic infection in vitro. This case showed in vivo findings consistent with our previous reports, and is important to consider the pathophysiology of Graves' disease and one of the mechanisms of autoimmunity.
Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.
Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J
2018-02-21
Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.
Somarelli, J A; Mesa, A; Rodriguez, R; Avellan, R; Martinez, L; Zang, Y J; Greidinger, E L; Herrera, R J
2011-03-01
Systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD) are autoimmune illnesses characterized by the presence of high titers of autoantibodies directed against a wide range of 'self ' antigens. Proteins of the U1 small nuclear ribonucleoprotein particle (U1 snRNP) are among the most immunogenic molecules in patients with SLE and MCTD. The recent release of a crystallized U1 snRNP provides a unique opportunity to evaluate the effects of tertiary and quaternary structures on autoantigenicity within the U1 snRNP. In the present study, an epitope map was created using the U1 snRNP crystal structure. A total of 15 peptides were tested in a cohort of 68 patients with SLE, 29 with MCTD and 26 healthy individuals and mapped onto the U1 snRNP structure. Antigenic sites were detected in a variety of structures and appear to include RNA binding domains, but mostly exclude regions necessary for protein-protein interactions. These data suggest that while some autoantibodies may target U1 snRNP proteins as monomers or apoptosis-induced, protease-digested fragments, others may recognize epitopes on assembled protein subcomplexes of the U1 snRNP. Although nearly all of the peptides are strong predictors of autoimmune illness, none were successful at distinguishing between SLE and MCTD. The antigenicity of some peptides significantly correlated with several clinical symptoms. This investigation implicitly highlights the complexities of autoimmune epitopes, and autoimmune illnesses in general, and demonstrates the variability of antigens in patient populations, all of which contribute to difficult clinical diagnoses.
Antigen Specific Responses and ANA production in B6.Sle1b mice: A role for SAP
Jennings, Paula; Chan, Alice; Schwartzberg, Pamela; Wakeland, Edward K.; Yuan, Dorothy
2010-01-01
B6.Sle1b mice, which contain the Sle1b gene interval derived from lupus prone NZM2410 mice on a C57BL/6 background, present with gender-biased, highly penetrant anti-nuclear antibody (ANA) production. To obtain some insight into the possible induction mechanism of autoantibodies in these mice we compared antigen specific T dependent (TD) and T independent (TI-II) responses between B6.Sle1b and B6 mice before the development of high ANA titers. Our results show that B6.Sle1b mice mount enhanced responses to a TI-II antigen. Additionally, the memory T cell response generated by a TD antigen was also increased. This enhancement correlates with the greater ability of B cells from B6.Sle1b mice to present antigen to T cells. The SLAM Associated Protein (SAP) is critical for signaling of many of the molecules encoded by the SLAM/CD2 gene cluster, candidates for mediating the Sle1b phenotype; therefore, we also investigated the effect of sap deletion in these strains on the TD and TI-II responses as well as on ANA production. The results of these studies of responses to non-self antigens provide further insight for the mechanism by which responses to self-antigens might be initiated in the context of specific genetic alterations. PMID:18845419
Prevention of bubonic and pneumonic plague using plant-derived vaccines.
Alvarez, M Lucrecia; Cardineau, Guy A
2010-01-01
Yersinia pestis, the causative agent of bubonic and pneumonic plague, is an extremely virulent bacterium but there are currently no approved vaccines for protection against this organism. Plants represent an economical and safer alternative to fermentation-based expression systems for the production of therapeutic proteins. The recombinant plague vaccine candidates produced in plants are based on the two most immunogenic antigens of Y. pestis: the fraction-1 capsular antigen (F1) and the low calcium response virulent antigen (V) either in combination or as a fusion protein (F1-V). These antigens have been expressed in plants using all three known possible strategies: nuclear transformation, chloroplast transformation and plant-virus-based expression vectors. These plant-derived plague vaccine candidates were successfully tested in animal models using parenteral, oral, or prime/boost immunization regimens. This review focuses on the recent research accomplishments towards the development of safe and effective pneumonic and bubonic plague vaccines using plants as bioreactors.
Behboodi, E; Ayres, S L; Memili, E; O'Coin, M; Chen, L H; Reggio, B C; Landry, A M; Gavin, W G; Meade, H M; Godke, R A; Echelard, Y
2005-01-01
Nuclear transfer (NT) using transfected primary cells is an efficient approach for the generation of transgenic goats. However, reprogramming abnormalities associated with this process might result in compromised animals. We examined the health, reproductive performance, and milk production of four transgenic does derived from somatic cell NT. Goats were derived from two fetal cell lines, each transfected with a transgene expressing a different version of the MSP-1(42) malaria antigen, either glycosylated or non-glycosylated. Two female kids were produced per cell line. Health and growth of these NT animals were monitored and compared with four age-matched control does. There were no differences in birth and weaning weights between NT and control animals. The NT does were bred and produced a total of nine kids. The control does delivered five kids. The NT does expressing the glycosylated antigen lactated only briefly, probably as a result of over-expression of the MSP-1(42) protein. However, NT does expressing the non-glycosylated antigen had normal milk yields and produced the recombinant protein. These data demonstrated that the production of healthy transgenic founder goats by somatic cell NT is readily achievable and that these animals can be used successfully for the production of a candidate Malaria vaccine.
Ohayon, Delphine; De Chiara, Alessia; Chapuis, Nicolas; Candalh, Céline; Mocek, Julie; Ribeil, Jean-Antoine; Haddaoui, Lamya; Ifrah, Norbert; Hermine, Olivier; Bouillaud, Frédéric; Frachet, Philippe; Bouscary, Didier; Witko-Sarsat, Véronique
2016-10-19
Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux.
Ohayon, Delphine; De Chiara, Alessia; Chapuis, Nicolas; Candalh, Céline; Mocek, Julie; Ribeil, Jean-Antoine; Haddaoui, Lamya; Ifrah, Norbert; Hermine, Olivier; Bouillaud, Frédéric; Frachet, Philippe; Bouscary, Didier; Witko-Sarsat, Véronique
2016-01-01
Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux. PMID:27759041
Common genetic variation within miR-146a predicts disease onset and relapse in multiple sclerosis.
Zhou, Yuan; Chen, Ming; Simpson, Steve; Lucas, Robyn M; Charlesworth, Jac C; Blackburn, Nicholas; van der Mei, Ingrid; Ponsonby, Anne-Louise; Taylor, Bruce V
2018-02-01
Despite extensive studies focusing on the changes in expression of microRNAs (miRNAs) in multiple sclerosis (MS) compared to healthy controls, few studies have evaluated the association of genetic variants of miRNAs with MS clinical course. We investigated whether a functional polymorphism in the MS associated miR-146a gene predicted clinical course (hazard of conversion to MS and of relapse, and annualized change in disability), using a longitudinal cohort study of persons with a first demyelinating event followed up to their 5-year review. We found the genotype (GC+CC) of rs2910164 predicted relapse compared with the GG genotype (HR=2.09 (95% CI 1.42, 3.06), p=0.0001), as well as a near-significant (p=0.07) association with MS conversion risk. Moreover, we found a significant additive interaction between rs2910164 and baseline anti-EBNA-1 IgG titers predicting risk of conversion to MS (relative excess risk due to interaction [RERI] 2.39, p=0.00002) and of relapse (RERI 1.20, p=0.006). Supporting these results, similar results were seen for the other EBV-correlated variables: anti-EBNA-2 IgG titers and past history of infectious mononucleosis. There was no association of rs2910164 genotype for disability progression. Our findings provide evidence for miR-146a and EBV infection in modulating MS clinical course.
Prang, N; Wolf, H; Schwarzmann, F
1999-12-01
The ability of the Epstein-Barr virus (EBV) to avoid lytic replication and to establish a latent infection in B-lymphocytes is fundamental for its lifelong persistence and the pathogenesis of various EBV-associated diseases. The viral immediate-early gene BZLF-1 plays a key role for the induction of lytic replication and its activity is strictly regulated on different levels of gene expression. Recently, it was demonstrated that BZLF-1 is also controlled by a posttranscriptional mechanism. Transient synthesis of a mutated competitor RNA saturated this mechanism and caused both expression of the BZLF-1 protein and the induction of lytic viral replication. Using short overlapping fragments of the competitor, it is shown that this control acts on the unspliced primary transcript. RT-PCR demonstrated unspliced BZLF-1 RNA in latently infected B-lymphocytes in the absence of BZLF-1 protein. Due to the complementarity of the gene BZLF-1 and the latency-associated gene EBNA-1 on the opposite strand of the genome, we propose an antisense-mediated mechanism. RNase protection assays demonstrated transcripts in antisense orientation to the BZLF-1 transcript during latency, which comprise a comparable constellation to other herpesviruses. A combined RNAse protection/RT-PCR assay detected the double-stranded hybrid RNA, consisting of the unspliced BZLF-1 transcript and a noncoding intron of the EBNA-1 gene. Binding of BZLF-1 transcripts is suggested to be an important backup control mechanism in addition to transcriptional regulation, stabilizing latency and preventing inappropriate lytic viral replication in vivo. Copyright 1999 Wiley-Liss, Inc.
Quantitative multi-target RNA profiling in Epstein-Barr virus infected tumor cells.
Greijer, A E; Ramayanti, O; Verkuijlen, S A W M; Novalić, Z; Juwana, H; Middeldorp, J M
2017-03-01
Epstein-Barr virus (EBV) is etiologically linked to multiple acute, chronic and malignant diseases. Detection of EBV-RNA transcripts in tissues or biofluids besides EBV-DNA can help in diagnosing EBV related syndromes. Sensitive EBV transcription profiling yields new insights on its pathogenic role and may be useful for monitoring virus targeted therapy. Here we describe a multi-gene quantitative RT-PCR profiling method that simultaneously detects a broad spectrum (n=16) of crucial latent and lytic EBV transcripts. These transcripts include (but are not restricted to), EBNA1, EBNA2, LMP1, LMP2, BARTs, EBER1, BARF1 and ZEBRA, Rta, BGLF4 (PK), BXLF1 (TK) and BFRF3 (VCAp18) all of which have been implicated in EBV-driven oncogenesis and viral replication. With this method we determine the amount of RNA copies per infected (tumor) cell in bulk populations of various origin. While we confirm the expected RNA profiles within classic EBV latency programs, this sensitive quantitative approach revealed the presence of rare cells undergoing lytic replication. Inducing lytic replication in EBV tumor cells supports apoptosis and is considered as therapeutic approach to treat EBV-driven malignancies. This sensitive multi-primed quantitative RT-PCR approach can provide broader understanding of transcriptional activity in latent and lytic EBV infection and is suitable for monitoring virus-specific therapy responses in patients with EBV associated cancers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle
2017-11-03
We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases ( e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G 1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Damania, Blossom; Mital, Renu; Alwine, James C.
1998-01-01
The TATA-binding protein (TBP) is common to the basal transcription factors of all three RNA polymerases, being associated with polymerase-specific TBP-associated factors (TAFs). Simian virus 40 large T antigen has previously been shown to interact with the TBP-TAFII complexes, TFIID (B. Damania and J. C. Alwine, Genes Dev. 10:1369–1381, 1996), and the TBP-TAFI complex, SL1 (W. Zhai, J. Tuan, and L. Comai, Genes Dev. 11:1605–1617, 1997), and in both cases these interactions are critical for transcriptional activation. We show a similar mechanism for activation of the class 3 polymerase III (pol III) promoter for the U6 RNA gene. Large T antigen can activate this promoter, which contains a TATA box and an upstream proximal sequence element but cannot activate the TATA-less, intragenic VAI promoter (a class 2, pol III promoter). Mutants of large T antigen that cannot activate pol II promoters also fail to activate the U6 promoter. We provide evidence that large T antigen can interact with the TBP-containing pol III transcription factor human TFIIB-related factor (hBRF), as well as with at least two of the three TAFs in the pol III-specific small nuclear RNA-activating protein complex (SNAPc). In addition, we demonstrate that large T antigen can cofractionate and coimmunoprecipitate with the hBRF-containing complex TFIIIB derived from HeLa cells infected with a recombinant adenovirus which expresses large T antigen. Hence, similar to its function with pol I and pol II promoters, large T antigen interacts with TBP-containing, basal pol III transcription factors and appears to perform a TAF-like function. PMID:9488448
Bronze-da-Rocha, E; Catita, J A; Sunkel, C E
1998-02-01
Systemic lupus erythematosus autoantibodies were used to identify and to characterize new human chromosome-associated proteins. Previous immunolocalization studies in human and murine tissue culture cells showed that some of these monoclonal antibodies recognize nuclear antigens that associate with condensed chromosomes during mitosis. One antibody was selected for screening a human HeLa S3 cDNA expression library, and cDNAs that code for an antigen of 31-33 kDa were isolated. Immunological, biochemical and cell fractionation data indicate that the 31- to 33-kDa antigen corresponds to the chromosome-associated protein recognized by the original monoclonal antibody. Sequence analysis shows that we isolated a novel human gene. Immunolocalization to human tissue culture cells shows that during interphase the antigen is dispersed in the nucleus and that during mitosis it associates exclusively with condensed chromosomes. A similar pattern of localization was also observed in mouse fibroblasts, suggesting that the antigen is conserved among different species. Finally, we show that part of the antigen remains bound to the scaffold/matrix component, even after high salt extraction.
Fatemi, Farnaz; Amini, Seyed Mohammad; Kharrazi, Sharmin; Rasaee, Mohammad Javad; Mazlomi, Mohammad Ali; Asadi-Ghalehni, Majid; Rajabibazl, Masoumeh; Sadroddiny, Esmaeil
2017-11-01
The most common techniques of antibody phage display are based on the use of M13 filamentous bacteriophages. This study introduces a new genetically engineered M13K07 helper phage displaying multiple copies of a known gold binding peptide on p8 coat proteins. The recombinant helper phages were used to rescue a phagemid vector encoding the p3 coat protein fused to the nuclear matrix protein 22 (NMP22) ScFv antibody. Transmission electron microscopy (TEM), UV-vis absorbance spectroscopy, and field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDX) analysis revealed that the expression of gold binding peptide 1 (GBP1) on major coat protein p8 significantly enhances the gold-binding affinity of M13 phages. The recombinant bacteriophages at concentrations above 5×10 4 pfu/ml red-shifted the UV-vis absorbance spectra of gold nanoparticles (AuNPs); however, the surface plasmon resonance of gold nanoparticles was not changed by the wild type bacteriophages at concentrations up to 10 12 pfu/ml. The phage ELISA assay demonstrated the high affinity binding of bifunctional bacteriophages to NMP22 antigen at concentrations of 10 5 and 10 6 pfu/ml. Thus, the p3 end of the bifunctional bacteriophages would be able to bind to specific target antigen, while the AuNPs were assembled along the coat of virus for signal generation. Our results indicated that the complex of antigen-bacteriophages lead to UV-vis spectral changes of AuNPs and NMP22 antigen in concentration range of 10-80μg/ml can be detected by bifunctional bacteriophages at concentration of 10 4 pfu/ml. The ability of bifunctional bacteriophages to bind to antigen and generate signal at the same time, makes this approach applicable for identifying different antigens in immunoassay techniques. Copyright © 2017 Elsevier B.V. All rights reserved.
Chou, Bin-Kuan; Gu, Haihui; Gao, Yongxing; Dowey, Sarah N.; Wang, Ying; Shi, Jun; Li, Yanxin; Ye, Zhaohui; Cheng, Tao
2015-01-01
Reprogramming human adult blood mononuclear cells (MNCs) cells by transient plasmid expression is becoming increasingly popular as an attractive method for generating induced pluripotent stem (iPS) cells without the genomic alteration caused by genome-inserting vectors. However, its efficiency is relatively low with adult MNCs compared with cord blood MNCs and other fetal cells and is highly variable among different adult individuals. We report highly efficient iPS cell derivation under clinically compliant conditions via three major improvements. First, we revised a combination of three EBNA1/OriP episomal vectors expressing five transgenes, which increased reprogramming efficiency by ≥10–50-fold from our previous vectors. Second, human recombinant vitronectin proteins were used as cell culture substrates, alleviating the need for feeder cells or animal-sourced proteins. Finally, we eliminated the previously critical step of manually picking individual iPS cell clones by pooling newly emerged iPS cell colonies. Pooled cultures were then purified based on the presence of the TRA-1-60 pluripotency surface antigen, resulting in the ability to rapidly expand iPS cells for subsequent applications. These new improvements permit a consistent and reliable method to generate human iPS cells with minimal clonal variations from blood MNCs, including previously difficult samples such as those from patients with paroxysmal nocturnal hemoglobinuria. In addition, this method of efficiently generating iPS cells under feeder-free and xeno-free conditions allows for the establishment of clinically compliant iPS cell lines for future therapeutic applications. PMID:25742692
Hayashida, Masahiko; Daibata, Masanori; Tagami, Erika; Taguchi, Takahiro; Maekawa, Fumiyo; Takeoka, Kayo; Fukutsuka, Katsuhiro; Shimomura, Daiki; Hayashi, Takamasa; Iwatani, Yoshinori; Ohno, Hitoshi
2017-12-01
We describe the establishment and characterization of a cell line, AM-HLH, obtained from a patient with Epstein-Barr virus-positive (EBV + ) nodular sclerosis-type Hodgkin lymphoma (HL). The cells were positive for CD2 and CD30 and negative for CD15. The immunoglobulin heavy- and κ light-chain genes were rearranged. The karyotype was of the triploid range. Southern blotting using the EBV terminal repeat probe detected 3 hybridizing bands that were identical to those of the parental HL material. The cells expressed EBV-encoded RNAs as well as latent genes (EBNA1, EBNA2, LMP1, and LMP2A) and lytic genes (BZLF1 and BALF2). Fluorescence in situ hybridization (FISH) with the cosmid pJB8 clone containing a fragment of EBV DNA as a probe revealed multiple hybridization signals at a marker chromosome. Additional FISH using whole chromosome painting and centromere probes in combination with multicolor FISH determined that multiple EBV copies were clustered within the chromosome 20 materials of the marker chromosome. Culture supernatants of AM-HLH contained IL-10 as measured by the bead-based immunoassay. It is possible that an integrated EBV genome and cellular genes on chromosome 20 were coamplified, leading to the enhanced expression of genes involved in cell growth control. The AM-HLH cell line will be useful to clarify the role of cytokines in the development of EBV + HL. Copyright © 2016 John Wiley & Sons, Ltd.
Jin, Yingkang; Xie, Zhengde; Lu, Gen; Yang, Shuang; Shen, Kunling
2010-05-10
Diseases associated with Epstein-Barr virus (EBV) infections, such as infectious mononucleosis (IM), EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH) and chronic active EBV infection (CAEBV) are not rare in Chinese children. The association of type 1 or type 2 EBV and variants of the EBV BZLF1 promoter zone (Zp) with these diseases is unclear. The objective of this study was to investigate the relationship between EBV genotypes (Zp variants and EBV type 1 and 2) and the clinical phenotypes of EBV-associated diseases in Chinese children. The Zp region was directly sequenced in 206 EBV-positive DNA samples from the blood of patients with IM, EBV-HLH, CAEBV, and healthy controls. Type 1 or type 2 EBV was examined by PCR for EBNA2 and EBNA3C subtypes. Four polymorphic Zp variants were identified: Zp-P, Zp-V3, Zp-P4 and Zp-V1, a new variant. The Zp-V3 variant was significantly associated with CAEBV (P
2010-01-01
Background Diseases associated with Epstein-Barr virus (EBV) infections, such as infectious mononucleosis (IM), EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH) and chronic active EBV infection (CAEBV) are not rare in Chinese children. The association of type 1 or type 2 EBV and variants of the EBV BZLF1 promoter zone (Zp) with these diseases is unclear. Results The objective of this study was to investigate the relationship between EBV genotypes (Zp variants and EBV type 1 and 2) and the clinical phenotypes of EBV-associated diseases in Chinese children. The Zp region was directly sequenced in 206 EBV-positive DNA samples from the blood of patients with IM, EBV-HLH, CAEBV, and healthy controls. Type 1 or type 2 EBV was examined by PCR for EBNA2 and EBNA3C subtypes. Four polymorphic Zp variants were identified: Zp-P, Zp-V3, Zp-P4 and Zp-V1, a new variant. The Zp-V3 variant was significantly associated with CAEBV (P ≤ 0.01). The frequency of co-infection with Zp variants was higher in patients with CAEBV and EBV-HLH, compared with IM and healthy controls, mostly as Zp-P+V3 co-infection. Type 1 EBV was predominant in all categories (81.3-95%) and there was no significant difference in the frequency of the EBV types 1 and 2 in different categories (P > 0.05). Conclusions Type 1 EBV and BZLF1 Zp-P of EBV were the predominant genotypes in nonmalignant EBV associated diseases in Chinese children and Zp-V3 variant may correlates with the developing of severe EBV infection diseases, such as CAEBV and EBV-HLH. PMID:20459737
Coelho, C M; Zucoloto, S
1999-01-01
Denture-induced fibrous inflammatory hyperplasia (FIH) occurs around the borders of an ill-fitting denture. There has been no report in the literature concerning epithelial proliferative activity in FIH. The purpose of this study was to observe the labeling of proliferating cell nuclear antigen (PCNA) and evaluate its clinicopathologic results. The labeling index (LI) was assessed by using the PCNA, a nuclear protein synthesized mainly in the G1-S stages of the cell cycle that could be detected immunohistochemically by the monoclonal antibody PC10. The PCNA LI was assessed in FIH specimens, in clinically normal specimens 1 cm from the FIH margin (adjacent group), and in clinically normal specimens located at least 2 cm from the adjacent group; the last were considered the control group. The mean PCNA LI values in the basal, parabasal, and overall epithelial layers were similar in FIH and in the adjacent group and were significantly higher than in the control group. These data support the importance of the surgical treatment of FIH with wide excision (about 1 cm) since the clinically normal tissue around the lesion could be histologically altered.
1990-01-01
The yeast RNA1 gene is required for RNA processing and nuclear transport of RNA. The rna1-1 mutation of this locus causes defects in pre-tRNA splicing, processing of the primary pre-rRNA transcript, production of mRNA and export of RNA from the nucleus to the cytosol. To understand how this gene product can pleiotropically affect these processes, we sought to determine the intracellular location of the RNA1 protein. As determined by indirect immunofluorescence localization and organelle fractionation, the RNA1 antigen is found exclusively or primarily in the cytoplasm. Only a tiny fraction of the endogenous protein could be localized to and functional in the nucleus. Furthermore, the RNA1 antigen does not localize differently under stress conditions. These findings suggest that the RNA1 protein is not directly involved in RNA processing but may modify nuclear proteins or otherwise transmit a signal from the cytosol to the nucleus or play a role in maintaining the integrity of the nucleus. PMID:2116418
The green vaccine: A global strategy to combat infectious and autoimmune diseases
Davoodi-Semiromi, Abdoreza; Samson, Nalapalli; Daniell, Henry
2009-01-01
Plant derived oral green vaccines eliminate expenses associated with fermenters, purification, cold storage/transportation and sterile delivery. Green vaccines are expressed via the plant nuclear or chloroplast genomes. Chloroplast expression has advantages of hyper-expression of therapeutic proteins (10,000 copies of trans-gene per cell), efficient oral delivery and transgene containment via maternal inheritance. To date, 23 vaccine antigens against 16 different bacterial, viral or protozoan pathogens have been expressed in chloroplasts. Mice subcutaneously immunized with the chloroplast derived anthrax protective antigen conferred 100% protection against lethal doses of the anthrax toxin. Oral immunization (ORV) of F1-V antigens without adjuvant conferred greater protection (88%) against 50-fold lethal dose of aerosolized plague (Yersinia pestis) than subcutaneous (SQV) immunization (33%). Oral immunization of malarial vaccine antigens fused to the cholera antigen (CTB-AMA1/CTB-Msp1) conferred prolonged immunity (50% life span), 100% protection against cholera toxin challenge and inhibited proliferation of the malarial parasite. Protection was correlated with antigen-specific titers of intestinal, serum IgA & IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. High level expression in edible plant chloroplasts ideal for oral delivery and long-term immunity observed should facilitate development of low cost human vaccines for large populations, at times of outbreak. PMID:19430198
Ucieklak, Karolina; Koj, Sabina; Pawelczyk, Damian; Niedziela, Tomasz
2017-11-29
The high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR) analysis of Plesiomonas shigelloides 78/89 lipopolysaccharide directly on bacteria revealed the characteristic structural features of the O -acetylated polysaccharide in the NMR spectra. The O -antigen profiles were unique, yet the pattern of signals in the, spectra along with their ¹H, 13 C chemical shift values, resembled these of d-galactan I of Klebsiella pneumoniae . The isolated O- specific polysaccharide (O-PS) of P. shigelloides strain CNCTC 78/89 was investigated by ¹H and 13 C NMR spectroscopy, mass spectrometry and chemical methods. The analyses demonstrated that the P. shigelloides 78/89 O- PS is composed of →3)-α-d-Gal p -(1→3)-β-d-Gal f 2OAc-(1→ disaccharide repeating units. The O- acetylation was incomplete and resulted in a microheterogeneity of the O- antigen. This O- acetylation generates additional antigenic determinants within the O- antigen, forms a new chemotype, and contributes to the epitopes recognized by the O- serotype specific antibodies. The serological cross-reactivities further confirmed the inter-specific structural similarity of these O- antigens.
Matsuo, Kouki; Isogai, Emiko; Araki, Yoshio
2000-01-01
Previously, Rhodotorula glutinis was reported to produce a large amount of exocellular mannan, having a repeating unit of →3)-d-Manp-(1→4)-d-Manp-(1→. Recently, we found that antigenic polysaccharides of Leptospira biflexa serovar patoc strain Patoc I have the same repeating unit and cross-react with antisera raised against extended strains of other leptospires (K. Matsuo, E. Isogai, and Y. Araki, Carbohydr. Res., in press). This structural identity and the difficulty of producing and isolating antigens led us to confirm the usefulness of Rhodotorula mannan as an immunoreactive antigen in a serological diagnosis of leptospirosis. In the present investigation, we confirmed the structural identity of an exocellular mannan isolated from R. glutinis AHU 3479 and tried to use it as an immunoreactive antigen in a serological diagnosis of leptospirosis. From its chemical analysis and 1H- and 13C-labeled nuclear magnetic resonance spectrometry, the Rhodotorula mannan was confirmed to consist of the same disaccharide units. Furthermore, such a preparation was shown to immunoreact to various sera from patients suffering with leptospirosis as well as to most rabbit antiserum preparations obtained from immunization with various strains of pathogenic leptospires. Therefore, the Rhodotorula mannan preparation is useful as an immunoreactive antigen in the serological diagnosis for leptospirosis. PMID:11015396
Hunt, N C; Attanoos, R; Jasani, B
1996-01-01
The use of high temperature antigen retrieval methods has been of major importance in increasing the diagnostic utility of immunocytochemistry. However, these techniques are not without their problems and in this report attention is drawn to a loss of nuclear morphological detail, including mitotic figures, following microwave antigen retrieval. This was not seen with an equivalent autoclave technique. This phenomenon was quantified using image analysis in a group of B cell lymphomas stained with the antibody L26. Loss of nuclear morphological detail may lead to difficulty in identifying cells accurately, which is important in the diagnostic setting-for example, when trying to distinguish a malignant lymphoid infiltrate within a mixed cell population. In such cases it would clearly be wise to consider the use of alternative high temperature retrieval methods and accept their slightly lower staining enhancement capability compared with the microwave technique. Images PMID:9038766
Host nuclear proteins expressed in simian virus 40-transformed and -infected cells.
Melero, J A; Tur, S; Carroll, R B
1980-01-01
Two new families of host proteins (Mr, 48,000 and 55,000), in additional to the viral large (T) and small tumor antigens, are precipitable, with anti-T antiserum, from cells transformed or infected by the DNA tumor virus simian virus 40 (SV40). Rabbit anti-mouse 48,000 protein antiserum reacts specifically with SV40-infected or -transformed mouse cells to give nuclear staining indistinguishable from T-antigen staining but does not react with SV40-transformed human cells which nevertheless have structurally analogous 48,000 proteins, nor does it give nuclear fluorescence with untransformed mouse cells. Comparison of the partial proteolytic digests of the 48,000 proteins from cultured cells of various mammalian species shows that they are structurally related but not related to the 55,000 or large T-antigen proteins. The 55,000 proteins from the various mammalian species were also structurally related. Images PMID:6244576
Almeida Junior, Gildasio Castello de; Frederico, Fabio Batista; Watanabe, Karina Paula; Garcia, Tatiana Vanucci; Iquejiri, Angela Yuri; Cury, Patrícia Maluf; Taboga, Sebastião Roberto; Azoubel, Reinaldo
2008-01-01
To evaluate the effectiveness of mitomycin C (MMC) in preventing recurrence of pterygium following conjunctival autograft transplantation (CAT). Ki-67 antigen to evaluate epithelial cell proliferation and fibroblast nuclear kariometry were used to assist treatment evaluation. Twenty-nine patients with recurrent pterygium were divided into three groups: Group (G) 1--CAT and placebo eyedrops (PED); G2--CAT, 0.015% MMC subconjunctivally, and PED; G3--CAT and 0.02% MMC eyedrops. Immunohistochemistry for the Ki-67 antigen and fibroblast nuclei kariometry were performed on the excised tissue, divided into nasal and temporal sides. Kariometry was evaluated in terms of volume (Vl) and area (Ar) using at least 50 cells/patient. The percentage of positive epithelial cells for the Ki-67 antigen on the nasal and temporal side after treatment of the three groups were: nasal (5.39% G1, 4.49% G2, and 3.88% G3); temporal (3.30% G1, 4.46% G2, 4.14% G3), did not show significant differences. Fibroblast nucleus kariometry was: nasal Vl (792.1 mu3 G1, 605.1 mu3 G2, and 549.9 mu3 G3) and Ar (100.58 mu2 G1, 83.13 mu2 G2, and 78.41 mu2 G3). The three groups showed significant differences: p=0.039 and p=0.035, for respectively Vl and Ar, on the nasal side. After a six month of treatment, the three groups presented the following recurrence rates: G1, 22.22%, G2, 18.18% and G3, 33.33%, respectively. MMC did not reduce the number of positive epithelial cells for the Ki-67 antigen in recurrent pterygium, but decreased fibroblast nucleus volume and area on the nasal side of the pterygia. The number of positive epithelial cells for the Ki-67 antigen seemed not to be related to pterygium recurrence observed over a six-month post-surgery period. The role of epithelial cell proliferation in pterygium recurrence should be evaluated by further studies.
Yeh, Chung-Hsin; Kuo, Pao-Lin; Wang, Ya-Yun; Wu, Ying-Yu; Chen, Mei-Feng; Lin, Ding-Yen; Lai, Tsung-Hsuan; Chiang, Han-Sun; Lin, Ying-Hung
2015-01-01
Male infertility affects approximately 50% of all infertile couples. The male-related causes of intracytoplasmic sperm injection failure include the absence of sperm, immotile or immature sperm, and sperm with structural defects such as those caused by premature chromosomal condensation and DNA damage. Our previous studies based on a knockout mice model indicated that SEPT12 proteins are critical for the terminal morphological formation of sperm. SEPT12 mutations in men result in teratozospermia and oligozospermia. In addition, the spermatozoa exhibit morphological defects of the head and tail, premature chromosomal condensation, and nuclear damage. However, the molecular functions of SEPT12 during spermatogenesis remain unclear. To determine the molecular functions of SEPT12, we applied a yeast 2-hybrid system to identify SEPT12 interactors. Seven proteins that interact with SEPT12 were identified: SEPT family proteins (SEPT4 and SEPT6), nuclear or nuclear membrane proteins (protamine 2, sperm-associated antigen 4, and NDC1 transmembrane nucleoproine), and sperm-related structural proteins (pericentriolar material 1 and obscurin-like 1). Sperm-associated antigen 4 (SPAG4; also known as SUN4) belongs to the SUN family of proteins and acts as a linker protein between nucleoskeleton and cytoskeleton proteins and localizes in the nuclear membrane. We determined that SEPT12 interacts with SPAG4 in a male germ cell line through coimmunoprecipitation. During human spermiogenesis, SEPT12 is colocalized with SPAG4 near the nuclear periphery in round spermatids and in the centrosome region in elongating spermatids. Furthermore, we observed that SEPT12/SPAG4/LAMINB1 formed complexes and were coexpressed in the nuclear periphery of round spermatids. In addition, mutated SEPT12, which was screened from an infertile man, affected the integration of these nuclear envelope complexes through coimmunoprecipitation. This was the first study that suggested that SEPT proteins link to the SUN/LAMIN complexes during the formation of nuclear envelopes and are involved in the development of postmeiotic germ cells.
Kannangai, R; Sachithanandham, J; Kandathil, A J; Ebenezer, D L; Danda, D; Vasuki, Z; Thomas, N; Vasan, S K; Sridharan, G
2010-01-01
Autoimmune diseases usually manifest in genetically predisposed individuals following an environmental trigger. There are several viral infections including Epstein-Barr virus (EBV) implicated in the pathogenesis of autoimmune disorders. The aim of this study was to look at the antibody pattern to EBV proteins in the plasma of both systemic and organ specific autoimmune disorders, estimate pro-inflammatory plasma cytokines (IL-8 and TNF-alpha) among these autoimmune patients and compare the observations with those in normal healthy controls. Samples from 44 rheumatoid arthritis patients, 25 Hashimoto's thyroiditis patients, appropriately age and sex matched healthy controls were tested for EBV IgM antibodies by an immunoblot assay and two cytokines (IL-8 and TNF-alpha) by commercial assays. Among the rheumatoid arthritis patients, 23 (52%) were positive for EBNA1 antibody, while 13 (52%) of the Hashimoto's thyroiditis patients and 12 (30%) of the healthy controls showed similar bands. The intensity of the bands was high in the autoimmune patients when compared to the bands seen in control samples. The difference in the EBNA1 reactivity between rheumatoid arthritis patients and controls were significant (P = 0.038). There was a significant difference in the IgM reactivity to VCAp19 protein between patients and controls (P = 0.011). Our study showed an increased EBV activation among the autoimmune patient groups compared to the normal healthy controls. Further studies are required to delineate the association between the aetiology of autoimmune disorders and EBV.
Ma, Wen-Juan; Wang, Xing; Yan, Wen-Ting; Zhou, Zhong-Guo; Pan, Zhi-Zhong; Chen, Gong; Zhang, Rong-Xin
2018-01-01
AIM To evaluate indoleamine-2,3-dioxygenase 1/cyclooxygenase 2 (IDO1/COX2) expression as an independent prognostic biomarker for colorectal cancer (CRC) patients. METHODS We retrospectively studied the medical records of 95 patients who received surgical resection from August 2008 to January 2010. All patients were randomly assigned to adjuvant treatment with or without celecoxib groups after surgery. We performed standard immunohistochemistry to assess the expression levels of IDO1/COX2 and evaluated the correlation of IDO1/COX2 with clinicopathological factors and overall survival (OS) outcomes. RESULTS The expression of nuclear IDO1 was significantly correlated with body mass index (P < 0.001), and IDO1 expression displayed no association with sex, age, tumor differentiation, T stage, N stage, carcinoembryonic antigen, cancer antigen 19-9, CD3+ and CD8+ tumor infiltrating lymphocytes, and COX2. In univariate analysis, we found that nuclear IDO1 (P = 0.039), nuclear/cytoplasmic IDO1 [hazard ratio (HR) = 2.044, 95% confidence interval (CI): 0.871-4.798, P = 0.039], nuclear IDO1/COX2 (HR = 3.048, 95%CI: 0.868-10.7, P = 0.0049) and cytoplasmic IDO1/COX2 (HR = 2.109, 95%CI: 0.976-4.558, P = 0.022) all yielded significantly poor OS outcomes. Nuclear IDO1 (P = 0.041), nuclear/cytoplasmic IDO1 (HR = 3.023, 95%CI: 0.585-15.61, P = 0.041) and cytoplasmic IDO1/COX2 (HR = 2.740, 95%CI: 0.764-9.831, P = 0.038) have significantly poor OS outcomes for the CRC celecoxib subgroup. In our multivariate Cox model, high coexpression of cytoplasmic IDO1/COX2 was found to be an independent predictor of poor outcome in CRC (HR = 2.218, 95%CI: 1.011-4.48, P = 0.047) and celecoxib subgroup patients (HR = 3.210, 95%CI: 1.074-9.590, P = 0.037). CONCLUSION Our results showed that cytoplasmic IDO1/COX2 coexpression could be used as an independent poor predictor for OS in CRC. PMID:29853736
GS143, an I{kappa}B ubiquitination inhibitor, inhibits allergic airway inflammation in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie
2008-09-26
Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-{kappa}B (NF-{kappa}B) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of I{kappa}B ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-{kappa}B activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil andmore » lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that I{kappa}B ubiquitination inhibitor may have therapeutic potential against asthma.« less
Can, Behzat; Atilgan, Remzi; Pala, Sehmus; Kuloğlu, Tuncay; Kiray, Sule; Ilhan, Nevin
2018-01-01
Aim The aim of this study was to examine the effect of amifostine on cellular injury in the ovarian tissue induced by hysterosalpingography (HSG). Methods In total, forty 4-month old female Wistar Albino rats were assigned into 8 groups. Each group contained 5 rats. Group 1 (G1): rats were decapitated without any procedure. Group 2 (G2): rats were decapitated after 3 hours of total body irradiation. Group 3 (G3): rats were decapitated 3 hours after HSG procedure. Group 4 (G4): rats were decapitated 3 hours after HSG procedure performed 30 min after receiving amifostine 200 mg/kg intraperitoneally. Group 5 (G5): rats were decapitated after 1 month without any procedure. Group 6 (G6): rats were decapitated after 1 month of total body irradiation. Group 7 (G7): rats were decapitated 1 month after HSG procedure. Group 8 (G8): rats were decapitated 1 month after HSG procedure performed 30 min after receiving amifostine 200 mg/kg intraperitoneally. After rats were decapitated under general anesthesia in all groups, blood samples were obtained and bilateral ovaries were removed. One of the ovaries was placed in 10% formaldehyde solution for histological germinal epithelial degeneration, apoptosis and proliferating cell nuclear antigen scoring. The other ovary and blood sera were stored at −80°C. TNF-α, total antioxidant status, total oxidant status, and malondialdehyde levels were studied in tissue samples and anti-mullerian hormone levels in blood samples. Results At the end of the first month, there was significant ovarian germinal epithelium degeneration. Proliferating cell nuclear antigen immunoreactivity was significantly reduced in all other groups when compared with G1 and G5. Conclusion In conclusion, amifostine could significantly reduce the ovarian cellular injury induced by HSG. PMID:29872271
Can, Behzat; Atilgan, Remzi; Pala, Sehmus; Kuloğlu, Tuncay; Kiray, Sule; Ilhan, Nevin
2018-01-01
The aim of this study was to examine the effect of amifostine on cellular injury in the ovarian tissue induced by hysterosalpingography (HSG). In total, forty 4-month old female Wistar Albino rats were assigned into 8 groups. Each group contained 5 rats. Group 1 (G1): rats were decapitated without any procedure. Group 2 (G2): rats were decapitated after 3 hours of total body irradiation. Group 3 (G3): rats were decapitated 3 hours after HSG procedure. Group 4 (G4): rats were decapitated 3 hours after HSG procedure performed 30 min after receiving amifostine 200 mg/kg intraperitoneally. Group 5 (G5): rats were decapitated after 1 month without any procedure. Group 6 (G6): rats were decapitated after 1 month of total body irradiation. Group 7 (G7): rats were decapitated 1 month after HSG procedure. Group 8 (G8): rats were decapitated 1 month after HSG procedure performed 30 min after receiving amifostine 200 mg/kg intraperitoneally. After rats were decapitated under general anesthesia in all groups, blood samples were obtained and bilateral ovaries were removed. One of the ovaries was placed in 10% formaldehyde solution for histological germinal epithelial degeneration, apoptosis and proliferating cell nuclear antigen scoring. The other ovary and blood sera were stored at -80°C. TNF-α, total antioxidant status, total oxidant status, and malondialdehyde levels were studied in tissue samples and anti-mullerian hormone levels in blood samples. At the end of the first month, there was significant ovarian germinal epithelium degeneration. Proliferating cell nuclear antigen immunoreactivity was significantly reduced in all other groups when compared with G1 and G5. In conclusion, amifostine could significantly reduce the ovarian cellular injury induced by HSG.
Sauer, Vanessa; Tchaikovskaya, Tatyana; Wang, Xia; Li, Yanfeng; Zhang, Wei; Tar, Krisztina; Polgar, Zsuzsanna; Ding, Jianqiang; Guha, Chandan; Fox, Ira J; Roy-Chowdhury, Namita; Roy-Chowdhury, Jayanta
2016-12-13
Although several types of somatic cells have been reprogrammed into induced pluripotent stem cells (iPSCs) and then differentiated to hepatocyte-like cells (iHeps), the method for generating such cells from renal tubular epithelial cells shed in human urine and transplanting them into animal livers has not been described systematically. We report reprogramming of human urinary epithelial cells into iPSCs and subsequent hepatic differentiation, followed by a detailed characterization of the newly generated iHeps. The epithelial cells were reprogrammed into iPSCs by delivering the pluripotency factors OCT3/4, SOX2, KLF4, and MYC using methods that do not involve transgene integration, such as nucleofection of episomal (oriP/EBNA-1) plasmids or infection with recombinant Sendai viruses. After characterization of stable iPSC lines, a three-step differentiation toward hepatocytes was performed. The iHeps expressed a large number of hepatocyte-preferred genes, including nuclear receptors that regulate genes involved in cholesterol homeostasis, bile acid transport, and detoxification. MicroRNA profile of the iHeps largely paralleled that of primary human hepatocytes. The iHeps engrafted into the livers of Scid mice transgenic for mutant human SERPINA1 after intrasplenic injection. Thus, urine is a readily available source for generating human iHeps that could be potentially useful for disease modeling, pharmacological development, and regenerative medicine.
Antibody responses to Herpesvirus papio antigens in baboons with lymphoma.
Neubauer, R H; Rabin, H; Strnad, B C; Lapin, B A; Yakovleva, L A; Indzie, E
1979-02-01
An Epstein-Barr virus-related herpesvirus, termed Herpesvirus papio (HVP), was isolated from baboons (Papio hamadryas) at the Institute of Experimental Pathology and Therapy, Sukhumi, USSR, where there is a continuing outbreak of lymphoma. In the present study sera from diseased baboons and from age- and sex-matched control animals were examined for antibodies to HVP antigens. Results showed that animals with lymphoid disease had antibodies to HVP virus capsid, early, soluble, and nuclear antigens at higher frequencies and at higher titers than did control animals. Antibody titers were not age- or sex-related. No concordancy was detected for antibodies to soluble and nuclear antigens. The sera were also examined for antibodies to two other widely distributed viruses of hamadryas baboons, cytomegalovirus and foamy virus. The results of these studies did not indicate a disease-related role for either of these viruses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M.S.; Knauf, J.A.; Pendergrass, S.H.
1996-08-06
Xeroderma pigmentosum type G (XPG) is a human genetic disease exhibiting extreme sensitivity to sunlight. XPG patients are defective XPG endonuclease, which is an enzyme essential for DNA repair of the major kinds of solar ultraviolet (UV)-induced DNA damages. Here we describe a novel dynamics of this protein within the cell nucleus after UV irradiation of human cells. USing confocal microscopy, we have localized the immunofluorescent, antigenic signal of XPG protein to foci throughout the cell nucleus. Our biochemical studies also established that XPG protein forms a tight association with nuclear structure(s). In human skin fibroblast cells, the number ofmore » XPG foci decreased within 2 h after UV irradiation, whereas total nuclear XPG fluorescence intensity remained constant, suggesting redistribution of XPG from a limited number of nuclear foci to the nucleus overall. Within 8 h after UV, most XPG antigenic signal was found as foci. Using {beta}-galactosidase-XPG fusion constructs ({beta}-gal-XPG) transfected into HeLa cells, we have identified a single region of XPG that is evidently responsible both for foci formation and for the UV dynamic response. The fusion protein carrying the C terminus of XPG (amino acids 1146-1185) localized {beta}-gal specific antigenic signal to foci and to the nucleolus regions. After UV irradiation, antigenic {beta}-gal translocated reversibly from the subnuclear structures to the whole nucleus with kinetics very similar to the movements of XPG protein. These findings lead us to propose a model in which distribution of XPG protein may regulate the rate of DNA repair within transcriptionally active and inactive compartments of the cell nucleus. 50 refs., 5 figs., 1 tab.« less
Hyper-reactive cloned mice generated by direct nuclear transfer of antigen-specific CD4+ T cells.
Kaminuma, Osamu; Katayama, Kazufumi; Inoue, Kimiko; Saeki, Mayumi; Nishimura, Tomoe; Kitamura, Noriko; Shimo, Yusuke; Tofukuji, Soichi; Ishida, Satoru; Ogonuki, Narumi; Kamimura, Satoshi; Oikawa, Mami; Katoh, Shigeki; Mori, Akio; Shichijo, Michitaka; Hiroi, Takachika; Ogura, Atsuo
2017-06-01
T-cell receptor (TCR)-transgenic mice have been employed for evaluating antigen-response mechanisms, but their non-endogenous TCR might induce immune response differently than the physiologically expressed TCR Nuclear transfer cloning produces animals that retain the donor genotype in all tissues including germline and immune systems. Taking advantage of this feature, we generated cloned mice that carry endogenously rearranged TCR genes from antigen-specific CD4 + T cells. We show that T cells of the cloned mice display distinct developmental pattern and antigen reactivity because of their endogenously pre-rearranged TCRα (rTα) and TCRβ (rTβ) alleles. These alleles were transmitted to the offspring, allowing us to establish a set of mouse lines that show chronic-type allergic phenotypes, that is, bronchial and nasal inflammation, upon local administrations of the corresponding antigens. Intriguingly, the existence of either rTα or rTβ is sufficient to induce in vivo hypersensitivity. These cloned mice expressing intrinsic promoter-regulated antigen-specific TCR are a unique animal model with allergic predisposition for investigating CD4 + T-cell-mediated pathogenesis and cellular commitment in immune diseases. © 2017 The Authors.
In vitro V(D)J recombination: signal joint formation.
Cortes, P; Weis-Garcia, F; Misulovin, Z; Nussenzweig, A; Lai, J S; Li, G; Nussenzweig, M C; Baltimore, D
1996-11-26
The first step of V(D)J recombination, specific cleavage at the recombination signal sequence (RSS), can be carried out by the recombination activating proteins RAG1 and RAG2. In vivo, the cleaved coding and signal ends must be rejoined to generate functional antigen receptors and maintain chromosomal integrity. We have investigated signal joint formation using deletion and inversion substrates in a cell free system. RAG1 and RAG2 alone or in combination were unable to generate signal joints. However, RAG1 and RAG2 complemented with nuclear extracts were able to recombine an extrachromosomal substrate and form precise signal joints. The in vitro reaction resembled authentic V(D)J recombination in being Ku-antigen-dependent.
Genschel, Jochen; Kadyrova, Lyudmila Y.; Iyer, Ravi R.; Dahal, Basanta K.; Kadyrov, Farid A.; Modrich, Paul
2017-01-01
Eukaryotic MutLα (mammalian MLH1–PMS2 heterodimer; MLH1–PMS1 in yeast) functions in early steps of mismatch repair as a latent endonuclease that requires a mismatch, MutSα/β, and DNA-loaded proliferating cell nuclear antigen (PCNA) for activation. We show here that human PCNA and MutLα interact specifically but weakly in solution to form a complex of approximately 1:1 stoichiometry that depends on PCNA interaction with the C-terminal endonuclease domain of the MutLα PMS2 subunit. Amino acid substitution mutations within a PMS2 C-terminal 721QRLIAP motif attenuate or abolish human MutLα interaction with PCNA, as well as PCNA-dependent activation of MutLα endonuclease, PCNA- and DNA-dependent activation of MutLα ATPase, and MutLα function in in vitro mismatch repair. Amino acid substitution mutations within the corresponding yeast PMS1 motif (723QKLIIP) reduce or abolish mismatch repair in vivo. Coupling of a weak allele within this motif (723AKLIIP) with an exo1Δ null mutation, which individually confer only weak mutator phenotypes, inactivates mismatch repair in the yeast cell. PMID:28439008
Genschel, Jochen; Kadyrova, Lyudmila Y; Iyer, Ravi R; Dahal, Basanta K; Kadyrov, Farid A; Modrich, Paul
2017-05-09
Eukaryotic MutLα (mammalian MLH1-PMS2 heterodimer; MLH1-PMS1 in yeast) functions in early steps of mismatch repair as a latent endonuclease that requires a mismatch, MutSα/β, and DNA-loaded proliferating cell nuclear antigen (PCNA) for activation. We show here that human PCNA and MutLα interact specifically but weakly in solution to form a complex of approximately 1:1 stoichiometry that depends on PCNA interaction with the C-terminal endonuclease domain of the MutLα PMS2 subunit. Amino acid substitution mutations within a PMS2 C-terminal 721 QRLIAP motif attenuate or abolish human MutLα interaction with PCNA, as well as PCNA-dependent activation of MutLα endonuclease, PCNA- and DNA-dependent activation of MutLα ATPase, and MutLα function in in vitro mismatch repair. Amino acid substitution mutations within the corresponding yeast PMS1 motif ( 723 QKLIIP) reduce or abolish mismatch repair in vivo. Coupling of a weak allele within this motif ( 723 AKLIIP) with an exo1 Δ null mutation, which individually confer only weak mutator phenotypes, inactivates mismatch repair in the yeast cell.
Howard, Kellie; Cherezova, Lidia; DeMaster, Laura K; Rose, Timothy M
2017-11-01
The latency-associated nuclear antigens (LANA) of KSHV and macaque RFHVMn, members of the RV1 rhadinovirus lineage, are closely related with conservation of complex nuclear localization signals (NLS) containing bipartite KR-rich motifs and RG-rich domains, which interact distinctly with importins α and ß1 for nuclear import via classical and non-classical pathways, respectively. RV1 LANAs are expressed in the nucleus of latently-infected cells where they inhibit replication and establish a dominant RV1 latency. Here we show that LANA homologs of macaque RRV and MneRV2 from the more distantly-related RV2 lineage, lack the KR-rich NLS, and instead have a large RG-rich NLS with multiple RG dipeptides and a conserved RGG motif. The RG-NLS interacts uniquely with importin β1, which mediates nuclear import and accumulation of RV2 LANA in the nucleolus. The alternative nuclear import and localization of RV2 LANA homologs may contribute to the dominant RV2 lytic replication phenotype. Copyright © 2017. Published by Elsevier Inc.
Fujimura, Tatsuya; Takahagi, Yoichi; Shigehisa, Tamotsu; Nagashima, Hiroshi; Miyagawa, Shuji; Shirakura, Ryota; Murakami, Hiroshi
2008-09-01
The objective of the present study was to isolate alpha 1,3-galactosyltransferase (GalGT)-gene double knockout (DKO) cells using a novel simple method of cell selection method. To obtain GalGT-DKO cells, GalGT-gene single knockout (SKO) fetal fibroblast cells were cultured for three to nine passages and GalGT-null cells were separated using a biotin-labeled IB4 lectin attached to streptavidin-coated magnetic beads. After 15-17 days of additional cultivation, seven GalGT-DKO cell colonies were obtained from a total of 2.5 x 10(7) GalGT-SKO cells. A total of 926 somatic nuclear transferred embryos reconstructed with the DKO cells were transferred into eight recipient pigs, producing four farrowed, three liveborns, and six stillborns. Absence of GalGT gene in the cloned pigs was confirmed by PCR and Southern blotting. Flow cytometric analysis revealed that alphaGal antigens were not present in the cells of the cloned DKO pigs.
Lee, Do-Hun; Phi, Ji Hoon; Chung, You-Nam; Lee, Yun-Jin; Kim, Seung-Ki; Cho, Byung-Kyu; Kim, Dong Won; Park, Moon-Sik; Wang, Kyu-Chang
2010-05-01
The aims of this study were to elucidate the processes of neuronal differentiation and ventrodorsal patterning in the spinal cord of the chick embryo from embryonic day (E) 3 to E17 and to study the effect of a prenatal spinal open neural tube defect (ONTD) on these processes. Expression patterns of neuronal antigens (neuronal nuclear antigen, neurofilament-associated protein (NAP), and synaptophysin) and related ventral markers [sonic hedgehog, paired box gene (PAX)6, and islet-1], and dorsal markers (bone morphogenetic protein, Notch homolog 1, and PAX7) were investigated in the normal spinal cord and in a surgically induced spinal ONTD in chick embryos. Four normal and ONTD chick embryos were used for each antigen group. There were no differences in the expression of neuronal and ventrodorsal markers between the control and ONTD groups. NAP and synaptophysin were useful for identifying dorsal structures in the distorted anatomy of the ONTD chicks.
Anderson, Donald D; Woeller, Collynn F; Chiang, En-Pei; Shane, Barry; Stover, Patrick J
2012-03-02
The de novo thymidylate biosynthetic pathway in mammalian cells translocates to the nucleus for DNA replication and repair and consists of the enzymes serine hydroxymethyltransferase 1 and 2α (SHMT1 and SHMT2α), thymidylate synthase, and dihydrofolate reductase. In this study, we demonstrate that this pathway forms a multienzyme complex that is associated with the nuclear lamina. SHMT1 or SHMT2α is required for co-localization of dihydrofolate reductase, SHMT, and thymidylate synthase to the nuclear lamina, indicating that SHMT serves as scaffold protein that is essential for complex formation. The metabolic complex is enriched at sites of DNA replication initiation and associated with proliferating cell nuclear antigen and other components of the DNA replication machinery. These data provide a mechanism for previous studies demonstrating that SHMT expression is rate-limiting for de novo thymidylate synthesis and indicate that de novo thymidylate biosynthesis occurs at replication forks.
1978-01-01
This laboratory has previously isolated a fraction from rat liver nuclei consisting of nuclear pore complexes associated with the proteinaceous lamina which underlies the inner nuclear membrane. Using protein eluted from sodium dodecyl sulfate (SDS) gels, we have prepared antibodies in chickens to each of the three predominant pore complex- lamina bands. Ouchterlony double diffusion analysis shows that each of these individual bands cross-reacts strongly with all three antisera. In immunofluorescence localization performed on tissue culture cells with these antibodies, we obtain a pattern of intense staining at the periphery of the interphase nucleus, with little or no cytoplasmic reaction. Electron microscope immunoperoxidase staining of rat liver nuclei with these antibodies labels exclusively the nuclear periphery. Furthermore, reaction occurs in areas which contain the lamina, but not at the pore complexes. While our isolation procedure extracts the internal contents of nuclei completely, semiquantitative Ouchterlony analysis shows that it releases negligible amounts of these lamina antigens. Considered together, our results indicate that these three bands represent major components of a peripheral nuclear lamina, and are not structural elements of an internal "nuclear protein matrix." Fluorescence microscopy shows that the perinuclear interphase localization of these lamina proteins undergoes dramatic changes during mitosis. Concomitant with nuclear envelope disassembly in prophase, these antigens assume a diffuse localization throughout the cell. This distribution persists until telophase, when the antigens become progressively and completely localized at the surface of the daughter chromosome masses. We propose that the lamina is a biological polymer which can undergo reversible disassembly during mitosis. PMID:102651
The Epstein-Barr Virus Episome Maneuvers between Nuclear Chromatin Compartments during Reactivation
Moquin, Stephanie A.; Thomas, Sean; Whalen, Sean; Warburton, Alix; Fernandez, Samantha G.; McBride, Alison A.; Pollard, Katherine S.
2017-01-01
ABSTRACT The human genome is structurally organized in three-dimensional space to facilitate functional partitioning of transcription. We learned that the latent episome of the human Epstein-Barr virus (EBV) preferentially associates with gene-poor chromosomes and avoids gene-rich chromosomes. Kaposi's sarcoma-associated herpesvirus behaves similarly, but human papillomavirus does not. Contacts on the EBV side localize to OriP, the latent origin of replication. This genetic element and the EBNA1 protein that binds there are sufficient to reconstitute chromosome association preferences of the entire episome. Contacts on the human side localize to gene-poor and AT-rich regions of chromatin distant from transcription start sites. Upon reactivation from latency, however, the episome moves away from repressive heterochromatin and toward active euchromatin. Our work adds three-dimensional relocalization to the molecular events that occur during reactivation. Involvement of myriad interchromosomal associations also suggests a role for this type of long-range association in gene regulation. IMPORTANCE The human genome is structurally organized in three-dimensional space, and this structure functionally affects transcriptional activity. We set out to investigate whether a double-stranded DNA virus, Epstein-Barr virus (EBV), uses mechanisms similar to those of the human genome to regulate transcription. We found that the EBV genome associates with repressive compartments of the nucleus during latency and with active compartments during reactivation. This study advances our knowledge of the EBV life cycle, adding three-dimensional relocalization as a novel component to the molecular events that occur during reactivation. Furthermore, the data add to our understanding of nuclear compartments, showing that disperse interchromosomal interactions may be important for regulating transcription. PMID:29142137
Zhu, Jun; Koken, Marcel H. M.; Quignon, Frédérique; Chelbi-Alix, Mounira K.; Degos, Laurent; Wang, Zhen Yi; Chen, Zhu; de Thé, Hugues
1997-01-01
Acute promyelocytic leukemia (APL) is associated with the t(15;17) translocation, which generates a PML/RARα fusion protein between PML, a growth suppressor localized on nuclear matrix-associated bodies, and RARα, a nuclear receptor for retinoic acid (RA). PML/RARα was proposed to block myeloid differentiation through inhibition of nuclear receptor response, as does a dominant negative RARα mutant. In addition, in APL cells, PML/RARα displaces PML and other nuclear body (NB) antigens onto nuclear microspeckles, likely resulting in the loss of PML and/or NB functions. RA leads to clinical remissions through induction of terminal differentiation, for which the respective contributions of RARα (or PML/RARα) activation, PML/RARα degradation, and restoration of NB antigens localization are poorly determined. Arsenic trioxide also leads to remissions in APL patients, presumably through induction of apoptosis. We demonstrate that in non-APL cells, arsenic recruits the nucleoplasmic form of several NB antigens onto NB, but induces the degradation of PML only, identifying a powerful tool to approach NB function. In APL cells, arsenic targets PML and PML/RARα onto NB and induces their degradation. Thus, RA and arsenic target RARα and PML, respectively, but both induce the degradation of the PML/RARα fusion protein, which should contribute to their therapeutic effects. The difference in the cellular events triggered by these two agents likely stems from RA-induced transcriptional activation and arsenic effects on NB proteins. PMID:9108090
A novel mouse xenotransplantation model of EBV-T/NK-LPD and the application of the mouse model.
Imadome, Ken-Ichi
2013-01-01
Chronic active Epstein-Barr virus (EBV) infection (CAEBV), characterized by proliferation of EBV-infected T or NK cells, is a disease of unknown pathogenesis and requires hematopoietic stem cell transplantation for curative treatment. Here we show that intravenous injection of peripheral blood mononuclear cells (PBMCs) isolated from patients with CAEBV to NOD/Shi-scid/IL-2R γ(null) (NOG) mice leads to engraftment of EBV-infected T or NK cells. Analysis of TCR repertoire identified an identical predominant EBV-infected T-cell clone both in a patient and a mouse transplanted with his PBMCs. EBV-infected T or NK cells infiltrated to most major organs including the liver, spleen, lungs, kidneys, adrenal glands, and intestine, showing histological characteristics of CAEBV. Expression of EBNA1, LMP1, and LMP2A, but not EBNA2, in these cells indicated the latency II program of EBV gene characteristic to CAEBV. High levels of TNF-α, IFN-γ, and RANTES were detected in the peripheral blood of these mice. EBV-containing fractions of either CD8(+), γδT, or NK cell lineages failed to engraft, once they were isolated from PBMCs ; they could engraft only when CD4(+) cell fraction was transplanted in parallel. Isolated EBV-containing CD4(+) T cells, in contrast, did engraft on their own. This is the first report of an animal model of CAEBV and suggest that EBV-infected T or NK cells in CAEBV are not truly neoplastic but are dependent on CD4(+) T cells for their proliferation in vivo.
Diagnostic Markers of Ovarian Cancer by High-Throughput Antigen Cloning and Detection on Arrays
Chatterjee, Madhumita; Mohapatra, Saroj; Ionan, Alexei; Bawa, Gagandeep; Ali-Fehmi, Rouba; Wang, Xiaoju; Nowak, James; Ye, Bin; Nahhas, Fatimah A.; Lu, Karen; Witkin, Steven S.; Fishman, David; Munkarah, Adnan; Morris, Robert; Levin, Nancy K.; Shirley, Natalie N.; Tromp, Gerard; Abrams, Judith; Draghici, Sorin; Tainsky, Michael A.
2008-01-01
A noninvasive screening test would significantly facilitate early detection of epithelial ovarian cancer. This study used a combination of high-throughput selection and array-based serologic detection of many antigens indicative of the presence of cancer, thereby using the immune system as a biosensor. This high-throughput selection involved biopanning of an ovarian cancer phage display library using serum immunoglobulins from an ovarian cancer patient as bait. Protein macroarrays containing 480 of these selected antigen clones revealed 65 clones that interacted with immunoglobulins in sera from 32 ovarian cancer patients but not with sera from 25 healthy women or 14 patients having other benign or malignant gynecologic diseases. Sequence analysis data of these 65 clones revealed 62 different antigens. Among the markers, we identified some known antigens, including RCAS1, signal recognition protein-19, AHNAK-related sequence, nuclear autoantogenic sperm protein, Nijmegen breakage syndrome 1 (Nibrin), ribosomal protein L4, Homo sapiens KIAA0419 gene product, eukaryotic initiation factor 5A, and casein kinase II, as well as many previously uncharacterized antigenic gene products. Using these 65 antigens on protein microarrays, we trained neural networks on two-color fluorescent detection of serum IgG binding and found an average sensitivity and specificity of 55% and 98%, respectively. In addition, the top 6 of the most specific clones resulted in an average sensitivity and specificity of 32% and 94%, respectively. This global approach to antigenic profiling, epitomics, has applications to cancer and autoimmune diseases for diagnostic and therapeutic studies. Further work with larger panels of antigens should provide a comprehensive set of markers with sufficient sensitivity and specificity suitable for clinical testing in high-risk populations. PMID:16424057
Zhang, Z H; Chen, L Y; Wang, F; Wu, Y Q; Su, J Q; Huang, X H; Wang, Z C; Cheng, Y
2015-06-01
Hypoxia-inducible factor-1α (HIF-1α) has been identified as a transcription factor that is involved in diverse physiological and pathological processes in the ovary. In this study, we examined whether HIF-1α is expressed in a cell- and stage-specific manner during follicular growth and development in the mammalian ovaries. Using immunohistochemistry and Western blot analysis, HIF-1α expression was observed in granulosa cells specifically and was significantly increased during the follicular growth and development of postnatal rats. Furthermore, pregnant mare serum gonadotropin also induced HIF-1α expression in granulosa cells and ovaries during the follicular development of immature rats primed with gonadotropin. Moreover, we also examined proliferation cell nuclear antigen, a cell proliferation marker, during follicular growth and development and found that its expression pattern was similar to that of HIF-1α protein. Granulosa cell culture experiments revealed that proliferation cell nuclear antigen expression may be regulated by HIF-1α. These results indicated that HIF-1α plays an important role in the follicular growth and development of these 2 rat models. The HIF-1α-mediated signaling pathway may be an important mechanism regulating follicular growth and development in mammalian ovaries in vivo.
Leoncini, L.; Del Vecchio, M. T.; Kraft, R.; Megha, T.; Barbini, P.; Cevenini, G.; Poggi, S.; Pileri, S.; Tosi, P.; Cottier, H.
1990-01-01
The authors have examined cellular areas of lymphoma tissue in 28 cases of Hodgkin's disease (HD) or anaplastic large cell lymphoma (ALCL, 'Ki-1 cell lymphoma') to evaluate the boundaries between the two entities. Methods applied included conventional histology; test point analysis; semiautomated morphometry of nuclear profile features of Reed-Sternberg and other atypical large cells (RSALCs); and immunohistochemistry of these elements on all paraffin sections and, in 15 cases, on frozen sections. Mean nuclear profile morphotypes of RSALCs per case varied independently of immunophenotype and histologic diagnosis. Conversely, immunohistochemistry demonstrated significant, although not consistent, preferential positivities of these CD30+ elements for CD15 in HD, and for epithelial membrane antigen (EMA) and CD43 in ALCLs. In the latter, RSALCs also exhibited a tendency for CD45 and CD45RO positivity and for the expression of T-cell-associated antigens. However, there were considerable overlaps. This continuous spectrum of RSALC nuclear profile morphotypes and immunophenotypes, ranging from HD over questionable cases, intermediate between HD and ALCL, to ALCLs, was paralleled by differences in the reactive component of lymphomas. Lymphocytes and granulocytes were significantly deficient in ALCLs. Images Figure 1 PMID:2173409
Proteolysis, proteasomes and antigen presentation
NASA Technical Reports Server (NTRS)
Goldberg, A. L.; Rock, K. L.
1992-01-01
Proteins presented to the immune system must first be cleaved to small peptides by intracellular proteinases. Proteasomes are proteolytic complexes that degrade cytosolic and nuclear proteins. These particles have been implicated in ATP-ubiquitin-dependent proteolysis and in the processing of intracellular antigens for cytolytic immune responses.
TIF-IA and Ebp1 regulate RNA synthesis in T cells.
Saudemont, Aurore
2015-04-16
In this issue of Blood, Nguyen et al show that mycophenolic acid (MPA) induces GTP depletion, which inhibits the function of transcription initiation factor I (TIF-IA) and impacts the interaction of TIF-IA with ErbB3-binding protein 1 (Ebp1), a key in regulating proliferating cell nuclear antigen (PCNA) expression and ribosomal RNA (rRNA) synthesis in T cells during activation.
Hawkins, Charlene
2014-01-01
The Est1 (ever shorter telomeres 1) protein is an essential component of yeast telomerase, a ribonucleoprotein complex that restores the repetitive sequences at chromosome ends (telomeres) that would otherwise be lost during DNA replication. Previous work has shown that the telomerase RNA component (TLC1) transits through the cytoplasm during telomerase biogenesis, but mechanisms of protein import have not been addressed. Here we identify three nuclear localization sequences (NLSs) in Est1p. Mutation of the most N-terminal NLS in the context of full-length Est1p reduces Est1p nuclear localization and causes telomere shortening—phenotypes that are rescued by fusion with the NLS from the simian virus 40 (SV40) large-T antigen. In contrast to that of the TLC1 RNA, Est1p nuclear import is facilitated by Srp1p, the yeast homolog of importin α. The reduction in telomere length observed at the semipermissive temperature in a srp1 mutant strain is rescued by increased Est1p expression, consistent with a defect in Est1p nuclear import. These studies suggest that at least two nuclear import pathways are required to achieve normal telomere length homeostasis in yeast. PMID:24906415
Caviedes-Bucheli, J; Canales-Sánchez, P; Castrillón-Sarria, N; Jovel-Garcia, J; Alvarez-Vásquez, J; Rivero, C; Azuero-Holguín, M M; Diaz, E; Munoz, H R
2009-08-01
To quantify the expression of insulin-like growth factor-1 (IGF-1) and proliferating cell nuclear antigen (PCNA) in human pulp cells of teeth with complete or incomplete root development, to support the specific role of IGF-1 in cell proliferation during tooth development and pulp reparative processes. Twenty six pulp samples were obtained from freshly extracted human third molars, equally divided in two groups according to root development stage (complete or incomplete root development). All samples were processed and immunostained to determine the expression of IGF-1 and PCNA in pulp cells. Sections were observed with a light microscope at 80x and morphometric analyses were performed to calculate the area of PCNA and IGF-1 immunostaining using digital image software. Mann-Whitney's test was used to determine statistically significant differences between groups (P < 0.05) for each peptide and the co-expression of both. Expression of IGF-1 and PCNA was observed in all human pulp samples with a statistically significant higher expression in cells of pulps having complete root development (P = 0.0009). Insulin-like growth factor-1 and PCNA are expressed in human pulp cells, with a significant greater expression in pulp cells of teeth having complete root development.
HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
András, Ibolya E., E-mail: iandras@med.miami; Toborek, Michal, E-mail: mtoborek@med.miami.edu
Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity ofmore » dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zhen F.; Gai, Hui; Huang, You Z.
2006-11-01
Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ESmore » cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines.« less
Calderón, Aingeru; Ortiz-Espín, Ana; Iglesias-Fernández, Raquel; Carbonero, Pilar; Pallardó, Federico Vicente; Sevilla, Francisca; Jiménez, Ana
2017-04-01
Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferating cellular nuclear antigen (PCNA) as a PsTrxo1 target by means of affinity chromatography techniques using purified nuclei from pea leaves. Such protein-protein interaction was corroborated by dot-blot and bimolecular fluorescence complementation (BiFC) assays, which showed that both proteins interact in the nucleus. Moreover, PsTrxo1 showed disulfide reductase activity on previously oxidized recombinant PCNA protein. In parallel, we studied the effects of PsTrxo1 overexpression on Tobacco Bright Yellow-2 (TBY-2) cell cultures. Microscopy and flow-cytometry analysis showed that PsTrxo1 overexpression increases the rate of cell proliferation in the transformed lines, with a higher percentage of the S phase of the cell cycle at the beginning of the cell culture (days 1 and 3) and at the G2/M phase after longer times of culture (day 9), coinciding with an upregulation of PCNA protein. Furthermore, in PsTrxo1 overexpressed cells there is a decrease in the total cellular glutathione content but maintained nuclear GSH accumulation, especially at the end of the culture, which is accompanied by a higher mitotic index, unlike non-overexpressing cells. These results suggest that Trxo1 is involved in the cell cycle progression of TBY-2 cultures, possibly through its link with cellular PCNA and glutathione. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
The role of the transcription factor Ets1 in lupus and other autoimmune diseases
Garrett-Sinha, Lee Ann; Kearly, Alyssa; Satterthwaite, Anne B.
2017-01-01
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by excess B and T cell activation, the development of autoantibodies against self-antigens including nuclear antigens, and immune complex deposition in target organs which triggers an inflammatory response and tissue damage. The genetic and environmental factors that contribute to development of SLE have been extensively studied in both humans and mouse models of the disease. One of the important genetic contributions to SLE development is an alteration in the expression of the transcription factor Ets1, which regulates the functional differentiation of lymphocytes. Here we review the genetic, biochemical and immunological studies that have linked low levels of Ets1 to aberrant lymphocyte differentiation and to the pathogenesis of SLE. PMID:28845756
Eppstein, D A; Thoma, J A
1977-11-01
The intact matrix protein from a nuclear-polyhedrosis virus of the cabbage looper (Trichoplusia ni), isolated after inhibition of an endogenous serine-type proteinase, was further purified by molecular-sieve chromatography. The matrix protein was associated with carbohydrate moieties, and the carbohydrate content was determined for the two major peptides isolated after proteolysis by the endogenous proteinase. The association-dissociation interactions of the intact and proteinase-hydrolysed monomer units were characterized at high and low pH. At pH1.9, proteinase-degraded matrix protein dissociated into two different peptide fractions, FI and FII. Fraction FII, a single peptide of 9400 daltons, comprised one-third of the monomer unit of 28 000 daltons. At pH9.5, the degraded peptides were tightly associated in units equivalent to the intact monomer. These monomer equivalents associated to form a series of interconverting aggregates. The predominant aggregate sedimented at 11S and had a mol.wt greater than or equal to 200 000. Two non-cross-reacting antigens were present in the aggregate mixture. The presence of these two antigens does not reflect the presence of two different matrix proteins; rather, the expression of the antigens correlates with the degree of aggregation of the matrix protein.
Expression of the VP40 antigen from the Zaire ebolavirus in tobacco plants.
Monreal-Escalante, Elizabeth; Ramos-Vega, Abel A; Salazar-González, Jorge A; Bañuelos-Hernández, Bernardo; Angulo, Carlos; Rosales-Mendoza, Sergio
2017-07-01
The plant cell is able to produce the VP40 antigen from the Zaire ebolavirus , retaining the antigenicity and the ability to induce immune responses in BALB/c mice. The recent Ebola outbreak evidenced the need for having vaccines approved for human use. Herein we report the expression of the VP40 antigen from the Ebola virus as an initial effort in the development of a plant-made vaccine that could offer the advantages of being cheap and scalable, which is proposed to overcome the rapid need for having vaccines to deal with future outbreaks. Tobacco plants were transformed by stable DNA integration into the nuclear genome using the CaMV35S promoter and a signal peptide to access the endoplasmic reticulum, reaching accumulation levels up to 2.6 µg g -1 FW leaf tissues. The antigenicity of the plant-made VP40 antigen was evidenced by Western blot and an initial immunogenicity assessment in test animals that revealed the induction of immune responses in BALB/c mice following three weekly oral or subcutaneous immunizations at very low doses (125 and 25 ng, respectively) without accessory adjuvants. Therefore, this plant-based vaccination prototype is proposed as an attractive platform for the production of vaccines in the fight against Ebola virus disease outbreaks.
Zhang, Yang; Peng, Xueqin; Tang, Yunlian; Gan, Xiaoning; Wang, Chengkun; Xie, Lu; Xie, Xiaoli; Gan, Runliang; Wu, Yimou
2016-10-01
Epstein-Barr virus (EBV) is a human oncogenic herpesvirus associated with lymphoma and nasopharyngeal carcinoma. Because the susceptible hosts of EB virus are limited to human and cotton-top tamarins (Saguinus oedipus), there have been no appropriate animal models until the lymphoma model induced by EBV in human peripheral blood lymphocyte (hu-PBL)/SCID chimeric mice was reported. However, it is still controversial whether the EBV-associated lymphoma induced in hu-PBL/SCID mice is a monoclonal tumor. In this study, we transplanted normal human peripheral blood lymphocytes (hu-PBL) from six donors infected with EBV into SCID mice to construct hu-PBL/SCID chimeric mice. The induced tumors were found in the mediastinum or abdominal cavity of SCID mice. Microscopic observation exhibited tumor cells that were large and had a plasmablastic, centroblastic or immunoblastic-like appearance. Immunophenotyping assays showed the induced tumors were LCA-positive, CD20/CD79a-positive (markers of B cells), and CD3/CD45RO-negative (markers of T cells). A human-specific Alu sequence could be amplified by Alu-PCR. This confirmed that induced tumors were B-cell lymphomas originating from the transplanted human lymphocytes rather than mouse cells. EBER in situ hybridization detected positive signals in the nuclei of the tumor cells. Expression of EBV-encoded LMP1, EBNA-1, and EBNA-2 in the tumors was significantly positive. PCR-based capillary electrophoresis analysis of IgH gene rearrangement revealed a monoclonal peak and single amplification product in all six cases of induced tumors. This indicated that EBV can induce monoclonal proliferation of human B lymphocytes and promotes the development of lymphoma. J. Med. Virol. 88:1804-1813, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ishii, Takashi; Shiomi, Yasushi; Takami, Toshihiro; Murakami, Yusuke; Ohnishi, Naho; Nishitani, Hideo
2010-01-01
The licensing factor Cdt1 is degraded by CRL4Cdt2 ubiquitin ligase dependent on proliferating cell nuclear antigen (PCNA) during S phase and when DNA damage is induced in G1 phase. Association of both Cdt2 and PCNA with chromatin was observed in S phase and after UV irradiation. Here we used a micropore UV irradiation assay to examine Cdt2 accumulation at cyclobutane pyrimidine dimer-containing DNA-damaged sites in the process of Cdt1 degradation in HeLa cells. Cdt2, present in the nucleus throughout the cell cycle, accumulated rapidly at damaged DNA sites during G1 phase. The recruitment of Cdt2 is dependent on prior PCNA chromatin binding because Cdt2 association was prevented when PCNA was silenced. Cdt1 was also recruited to damaged sites soon after UV irradiation through its PIP-box. As Cdt1 was degraded, the Cdt2 signal at damaged sites was reduced, but PCNA, cyclobutane pyrimidine dimer, and XPA (xeroderma pigmentosum, complementation group A) signals remained at the same levels. These findings suggest that Cdt1 degradation following UV irradiation occurs rapidly at damaged sites due to PCNA chromatin loading and the recruitment of Cdt1 and CRL4Cdt2, before DNA damage repair is completed. PMID:20929861
Shimura, Tsutomu; Hamada, Nobuyuki; Sasatani, Megumi; Kamiya, Kenji; Kunugita, Naoki
2014-01-01
Cyclin D1 is a mitogenic sensor that responds to growth signals from the extracellular environment and regulates the G 1-to-S cell cycle transition. When cells are acutely irradiated with a single dose of 10 Gy, cyclin D1 is degraded, causing cell cycle arrest at the G 1/S checkpoint. In contrast, cyclin D1 accumulates in human tumor cells that are exposed to long-term fractionated radiation (0.5 Gy/fraction of X-rays). In this study we investigated the effect of fractionated low-dose radiation exposure on cyclin D1 localization in 3 strains of normal human fibroblasts. To specifically examine the nuclear accumulation of cyclin D1, cells were treated with a hypotonic buffer containing detergent to remove cytoplasmic cyclin D1. Proliferating cell nuclear antigen (PCNA) immunofluorescence was used to identify cells in S phase. With this approach, we observed S-phase nuclear retention of cyclin D1 following low-dose fractionated exposures, and found that cyclin D1 nuclear retention increased with exposure time. Cells that retained nuclear cyclin D1 were more likely to have micronuclei than non-retaining cells, indicating that the accumulation of nuclear cyclin D1 was associated with genomic instability. Moreover, inhibition of the v-akt murine thymoma viral oncogene homolog (AKT) pathway facilitated cyclin D1 degradation and eliminated cyclin D1 nuclear retention in cells exposed to fractionated radiation. Thus, cyclin D1 may represent a useful marker for monitoring long-term effects associated with exposure to low levels of radiation.
Shimura, Tsutomu; Hamada, Nobuyuki; Sasatani, Megumi; Kamiya, Kenji; Kunugita, Naoki
2014-01-01
Cyclin D1 is a mitogenic sensor that responds to growth signals from the extracellular environment and regulates the G1-to-S cell cycle transition. When cells are acutely irradiated with a single dose of 10 Gy, cyclin D1 is degraded, causing cell cycle arrest at the G1/S checkpoint. In contrast, cyclin D1 accumulates in human tumor cells that are exposed to long-term fractionated radiation (0.5 Gy/fraction of X-rays). In this study we investigated the effect of fractionated low-dose radiation exposure on cyclin D1 localization in 3 strains of normal human fibroblasts. To specifically examine the nuclear accumulation of cyclin D1, cells were treated with a hypotonic buffer containing detergent to remove cytoplasmic cyclin D1. Proliferating cell nuclear antigen (PCNA) immunofluorescence was used to identify cells in S phase. With this approach, we observed S-phase nuclear retention of cyclin D1 following low-dose fractionated exposures, and found that cyclin D1 nuclear retention increased with exposure time. Cells that retained nuclear cyclin D1 were more likely to have micronuclei than non-retaining cells, indicating that the accumulation of nuclear cyclin D1 was associated with genomic instability. Moreover, inhibition of the v-akt murine thymoma viral oncogene homolog (AKT) pathway facilitated cyclin D1 degradation and eliminated cyclin D1 nuclear retention in cells exposed to fractionated radiation. Thus, cyclin D1 may represent a useful marker for monitoring long-term effects associated with exposure to low levels of radiation. PMID:24583467
Us, Tercan; Cetin, Esin; Kaşifoğlu, Nilgün; Kaşifoğlu, Timuçin; Akgün, Yurdanur
2011-10-01
Rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) which are autoimmune diseases usually questioned for their association with many infectious agents have etiopathogenesis related to genetic, immunologic, hormonal and even environmental factors. The most commonly attributed etiologic agents are herpes group viruses. The aim of this study was to investigate the role of Epstein-Barr virus (EBV) and herpes simplex (HSV) viruses in the etiology of RA and SLE. A total of 137 patients (87 RA and 50 SLE; mean age: 33 ± 12 years) who were admitted to Eskisehir Osmangazi University Medical Faculty Rheumatology Department between January 2007-January 2008 and diagnosed according to 1987 ACR (American College of Rheumatology) criteria have been included in the study, together with 50 healthy blood donors (mean age: 35 ± 14 years) as control group. Serum samples obtained from all of the cases were tested for EBV VCA-IgG, VCA-IgM, EA/D-IgG and EBNA-IgG (Trinity Biotech, USA); IgM and IgG antibodies against HSV-1 and HSV-2 by ELISA method (Dia-Pro Diagnostic, Italy), and the presence of viral nucleic acids in blood samples were investigated by real-time quantitative polymerase chain reaction (RTPCR; Qiagen, USA). EBV VCA-IgM was negative in all of the RA, SLE and control group patients. VCA-IgG positivity were 98% and 96%, and for EBNA-IgG 98.5% and 100%, in patient and control groups, respectively. There was no statistically significant difference between the groups regarding VCA-IgG and EBNA- IgG positivity (p> 0.05). On the other hand, EBV EA/D-IgG positivity rate found in the SLE group (34%) was significantly higher than RA (7%) and control (12%) groups (p< 0.001 and p< 0.05, respectively). There was no significant difference between RA and control groups in terms of EA/D-IgG positivity (p> 0.05). Regarding herpes simplex virus serology, HSV1-IgG seropositivity were 99% and 94% and HSV2-IgG positivity were 8% and 12% in the patient and control groups, respectively. There was no statistically significant difference between the groups according to the positivity rates of IgM and IgG specific for HSV-1 and HSV-2 (p> 0.05). All of the cases were found negative in terms of EBV, HSV-1 and HSV- 2 DNAs according to double-checked RT-PCR results. In conclusion, no significant difference was determined for EBV and HSV serologic markers in RA and SLE patients compared to the control group. However, significantly higher rate of EBV EA/D-IgG positivity in SLE patients might have indicated a possible association between SLE and EBV infection. Larger scale, prospective studies including examination of the synovial fluid/tissue samples are required to enlighten the association between SLE and EBV.
Marks, Benjamin R.; Nowyhed, Heba N.; Choi, Jin-Young; Poholek, Amanda C.; Odegard, Jared M.; Flavell, Richard A.; Craft, Joe
2009-01-01
Interleukin 17 (IL-17)-producing CD4+ T (TH-17) cells share a developmental relationship with FoxP3+ regulatory T (Treg) cells. Here we show that a TH-17 population differentiates within the thymus in a manner influenced by self-antigen recognition, and by the cytokines IL-6 and transforming growth factor (TGF)-β. Like previously described TH-17 cells, TH-17 cells that develop in the thymus expressed the orphan nuclear receptor RORγt and the IL-23 receptor. These cells also expressed α4β1 integrins and the chemokine receptor CCR6, and were recruited to the lung, gut, and liver. In the liver these cells secreted IL-22 in response to self-antigen and mediated host protection during inflammation. Thus, TH-17 cells, like Treg cells, can be selected by self-antigens in the thymus. PMID:19734905
Chen, Ting; Myster, Françoise; Javaux, Justine; Vanderplasschen, Alain
2017-01-01
Alcelaphine herpesvirus 1 (AlHV-1) is a γ-herpesvirus (γ-HV) belonging to the macavirus genus that persistently infects its natural host, the wildebeest, without inducing any clinical sign. However, cross-transmission to other ruminant species causes a deadly lymphoproliferative disease named malignant catarrhal fever (MCF). AlHV-1 ORF73 encodes the latency-associated nuclear antigen (LANA)-homolog protein (aLANA). Recently, aLANA has been shown to be essential for viral persistence in vivo and induction of MCF, suggesting that aLANA shares key properties of other γ-HV genome maintenance proteins. Here we have investigated the evasion of the immune response by aLANA. We found that a glycin/glutamate (GE)-rich repeat domain was sufficient to inhibit in cis the presentation of an epitope linked to aLANA. Although antigen presentation in absence of GE was dependent upon proteasomal degradation of aLANA, a lack of GE did not affect protein turnover. However, protein self-synthesis de novo was downregulated by aLANA GE, a mechanism directly associated with reduced antigen presentation in vitro. Importantly, codon-modification of aLANA GE resulted in increased antigen presentation in vitro and enhanced induction of antigen-specific CD8+ T cell responses in vivo, indicating that mRNA constraints in GE rather than peptidic sequence are responsible for cis-limitation of antigen presentation. Nonetheless, GE-mediated limitation of antigen presentation in cis of aLANA was dispensable during MCF as rabbits developed the disease after virus infection irrespective of the expression of full-length or GE-deficient aLANA. Altogether, we provide evidence that inhibition in cis of protein synthesis through GE is likely involved in long-term immune evasion of AlHV-1 latent persistence in the wildebeest natural host, but dispensable in MCF pathogenesis. PMID:29059246
Naryzhny, Stanislav N; Lee, Hoyun
2010-10-22
Proliferating cell nuclear antigen (PCNA) is involved in a wide range of functions in the nucleus. However, a substantial amount of PCNA is also present in the cytoplasm, although their function is unknown. Here we show, through Far-Western blotting and mass spectrometry, that PCNA is associated with several cytoplasmic oncoproteins, including elongation factor, malate dehydrogenase, and peptidyl-prolyl isomerase. Surprisingly, PCNA is also associated with six glycolytic enzymes that are involved in the regulation of steps 4-9 in the glycolysis pathway. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells.
Herbst, H; Dallenbach, F; Hummel, M; Niedobitek, G; Pileri, S; Müller-Lantzsch, N; Stein, H
1991-01-01
Cryostat sections from lymph nodes of 47 Hodgkin disease patients were examined by immunohistology for the Epstein-Barr virus (EBV)-encoded latent membrane protein (LMP), nuclear antigen 2, and late viral glycoprotein gp350/250. A distinct LMP-specific membrane and cytoplasmic staining was detected exclusively in Hodgkin and Reed-Sternberg cells in 18 patients (38%); EBV nuclear antigen 2 and gp350/250 immunoreactivity was absent in all instances. Thirty-two of 47 (68%) cases contained EBV-specific DNA sequences as detected by PCR, all LMP-positive cases being in this category. Our results confirm previous studies establishing the presence of EBV genomes in Hodgkin and Reed-Sternberg cells by demonstrating expression of an EBV-encoded protein in the tumor-cell population. The finding of LMP expression in the absence of EBV nuclear antigen 2 suggests a pattern of EBV gene expression different from that of B-lymphoblastoid cell lines and Burkitt lymphoma, whereas this finding shows similarities with that seen in undifferentiated nasopharyngeal carcinoma. Because the LMP gene has transforming potential, our findings support the concept of a pathoetiological role of EBV in many cases of Hodgkin disease. Images PMID:1647016
Human herpesvirus 8 infection among various population groups in southern Israel.
Margalith, Miriam; Chatlynne, Louise G; Fuchs, Efrat; Owen, Carole; Lee, Cheng-Rei Ruth; Yermiyahu, Tikva; Whitman, James E; Ablashi, Dharam V
2003-12-15
To compare the prevalence of antibodies to human herpesvirus 8 (HHV-8) or Kaposi sarcoma-associated herpesvirus among Israeli and Ethiopian subjects. Serum samples were obtained from 98 Israeli Jewish students aged 18-30 years, 100 HIV-1-seronegative Ethiopian immigrants to Israel of the same age, and 100 HIV-1-seronegative Ethiopian children 1-12 years old upon their arrival in southern Israel. Plasma samples were obtained from 3 hospitalized patients with multicentric Castleman disease (MCD) as positive controls. All serum samples were tested for antibodies to both latent and lytic antigens. Antibodies to the lytic antigens and the latency-associated nuclear antigen (LANA) of HHV-8 were detected by enzyme linked immunosorbent assay and by immunofluorescence assay. HHV-8 DNA from serum or plasma samples was detected by polymerase chain reaction analysis. Antibodies to HHV-8 LANA were detected in 2.9% of the Israeli subjects aged 18-30 years and in 26% of the Ethiopian subjects from both age groups tested. Antibodies to the lytic antigens were detected in all 3 MCD patients, in 4% of the Ethiopian children, and in 2% of the 18- to 30-year-old Ethiopians. No antibodies to the lytic antigens were detected in the Israeli students. HHV-8 DNA was detected in all 3 MCD patients and in 2 of 4 of the Ethiopian children positive for the lytic antigens. HHV-8 is highly prevalent in Ethiopian immigrants to Israel as compared with Israeli students. Antibodies to HHV-8 in Ethiopia are acquired before puberty. The results of this study indicate the association of HHV-8 with MCD, as has been documented by many other researchers.
Yaniv, Gal; Twig, Gilad; Shor, Dana Ben-Ami; Furer, Ariel; Sherer, Yaniv; Mozes, Oshry; Komisar, Orna; Slonimsky, Einat; Klang, Eyal; Lotan, Eyal; Welt, Mike; Marai, Ibrahim; Shina, Avi; Amital, Howard; Shoenfeld, Yehuda
2015-01-01
Recent research in systemic lupus erythematosus (SLE) yielded new antigens and antibodies in SLE patients. We describe the various autoantibodies that can be detected in patients with SLE. A literature review, using the terms “autoantibody” and “systemic lupus erythematosus”, was conducted to search for articles on autoantibodies in SLE, their target antigens, association with disease activity and other clinical manifestations. One hundred and eighty autoantibodies were so far described in SLE patients. These include autoantibodies that target nuclear antigens, cytoplasmic antigens, cell membrane antigens, phospholipid-associated antigens, blood cells, endothelial cells, and nervous system antigens, plasma proteins, matrix proteins, and miscellaneous antigens. The target of an autoantibody, the autoantigen properties, autoantibody frequencies in SLE, as well as clinical associations, and correlation with disease activity are described for all 180 autoantibodies. SLE is so far the autoimmune disease with the largest number of detectable autoantibodies. Their production could be antigen-driven, the result of a polyclonal B cell activation, impaired apoptotic pathways, or the outcome of an idiotypic network dysregulation. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumeta, Masahiro, E-mail: kumeta@lif.kyoto-u.ac.jp; Hirai, Yuya; Yoshimura, Shige H.
2013-12-10
To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do notmore » take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. - Highlights: • A set of monoclonal antibodies were raised against nuclear scaffold proteins. • Helix-based cytoskeletal proteins were involved in nuclear scaffold. • Many cytoskeletal components shuttle into the nucleus in a CRM1-dependent manner. • Sets of antibodies distinguished distinct subcellular localization of a single isoform. • Nuclear keratin is soluble and does not form an obvious filamentous structure.« less
Namimatsu, Shigeki; Ghazizadeh, Mohammad; Sugisaki, Yuichi
2005-01-01
Formalin is a commonly used fixative for tissue preservation in pathology laboratories. A major adverse effect of this fixative is the concealing of tissue antigens by protein cross-linking. To achieve a universal antigen retrieval method for immunohistochemistry under a constant condition, we developed a new method in which the effects of formalin fixation were reversed with citraconic anhydride (a reversible protein cross-linking agent) plus heating. Formalin-fixed, paraffin-embedded tissues from various organs were examined for immunohistochemical localization of a wide variety of antigens. Deparaffinized tissue sections were placed in an electric kitchen pot containing 0.05% citraconic anhydride solution, pH 7.4, and the pot was set at "keep warm" temperature mode of 98C for 45 min. This mode allowed heating the sections at a constant temperature. The sections were then washed in buffer solution and immunostained using a labeled streptavidin-biotin method using an automated stainer. In general, formalin-fixed tissues demonstrated specific immunostainings comparable to that in fresh frozen tissues and significantly more enhanced than after conventional antigen retrieval methods. In particular, even difficult-to-detect antigens such as CD4, cyclin D1, granzyme beta, bcl-6, CD25, and lambda chain revealed distinct immunostainings. Different classes of antigens such as cellular markers and receptors, as well as cytoplasmic and nuclear proteins, consistently produced enhanced reactions. This method provides efficient antigen retrieval for successful immunostaining of a wide variety of antigens under an optimized condition. It also allows standardization of immunohistochemistry for formalin-fixed tissues in pathology laboratories, eliminating inter-laboratory discrepancies in results for accurate clinical and research studies.
Su, Shifeng; Parris, Amanda B; Grossman, Gail; Mohler, James L; Wang, Zengjun; Wilson, Elizabeth M
2017-04-01
High affinity androgen binding to the androgen receptor (AR) activates genes required for male sex differentiation and promotes the development and progression of prostate cancer. Human AR transcriptional activity involves interactions with coregulatory proteins that include primate-specific melanoma antigen-A11 (MAGE-A11), a coactivator that increases AR transcriptional activity during prostate cancer progression to castration-resistant/recurrent prostate cancer (CRPC). Microarray analysis and quantitative RT-PCR were performed to identify androgen-regulated MAGE-A11-dependent genes in LAPC-4 prostate cancer cells after lentivirus shRNA knockdown of MAGE-A11. Chromatin immunoprecipitation was used to assess androgen-dependent AR recruitment, and immunocytochemistry to localize an androgen-dependent protein in prostate cancer cells and tissue and in the CWR22 human prostate cancer xenograft. Microarray analysis of androgen-treated LAPC-4 prostate cancer cells indicated follistatin-like 1 (FSTL1) is up-regulated by MAGE-A11. Androgen-dependent up-regulation of FSTL1 was inhibited in LAPC-4 cells by lentivirus shRNA knockdown of AR or MAGE-A11. Chromatin immunoprecipitation demonstrated AR recruitment to intron 10 of the FSTL1 gene that contains a classical consensus androgen response element. Increased levels of FSTL1 protein in LAPC-4 cells correlated with higher levels of MAGE-A11 relative to other prostate cancer cells. FSTL1 mRNA levels increased in CRPC and castration-recurrent CWR22 xenografts in association with predominantly nuclear FSTL1. Increased nuclear localization of FSTL1 in prostate cancer was suggested by predominantly cytoplasmic FSTL1 in benign prostate epithelial cells and predominantly nuclear FSTL1 in epithelial cells in CRPC tissue and the castration-recurrent CWR22 xenograft. AR expression studies showed nuclear colocalization of AR and endogenous FSTL1 in response to androgen. AR and MAGE-A11 cooperate in the up-regulation of FSTL1 to promote growth and progression of CRPC. Prostate 77:505-516, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Xia, Yumin; Jiang, Shan; Weng, Shenhong; Lv, Xiaochun; Cheng, Hong; Fang, Chunhong
2011-12-01
Dendritic cells (DCs) can inhibit immune response by clonal anergy when immature. Recent studies have shown that immature DCs (iDCs) may serve as a live cell vaccine after specific antigen pulse based on its potential of blocking antibody production. In this study, we aimed to investigate the effects of nuclear antigen-pulsed iDCs in the treatment of lupus-like renal damages induced by anti-dsDNA antibodies. iDCs were generated from haemopoietic stem cells in bone marrow and then pulsed in vitro with nuclear antigen. The iDC vaccine and corresponding controls were injected into mice with lupus-like renal damages. The evaluation of disease was monitored by biochemical parameters and histological scores. Anti-dsDNA antibody isotypes and T-lymphocyte-produced cytokines were analysed for elucidating therapeutic mechanisms. RESULTS; The mice treated with antigen-pulsed iDCs had a sustained remission of renal damage compared with those injected with non-pulsed iDCs or other controls, including decreased anti-dsDNA antibody level, less proteinuria, lower blood urea nitrogen and serum creatinine values, and improved histological evaluation. Analysis on isotypes of anti-dsDNA antibody showed that iDC vaccine preferentially inhibited the production of IgG3, IgG2b and IgG2a. Furthermore, administration of antigen-treated iDCs to mice resulted in significantly reduced IL-2, IL-4 and IL-12 and IFN-γ produced by T-memory cells. Conversely, the vaccination of antigen-pulsed mature DCs led to increased anti-dsDNA antibody production and an aggravation of lupus-like disease in the model. CONCLUSIONS; These results suggested the high potency of iDC vaccine in preventing lupus-like renal injuries induced by pathogenic autoantibodies.
Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis
Worth, Danielle; Huang, Sherri
2018-01-01
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host. PMID:29718996
Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis.
Radke, Joshua B; Worth, Danielle; Hong, David; Huang, Sherri; Sullivan, William J; Wilson, Emma H; White, Michael W
2018-05-01
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host.
[Pulmonary pathology in fatal human influenza A (H1N1) infection].
Duan, Xue-jing; Li, Yong; Gong, En-cong; Wang, Jue; Lü, Fu-dong; Zhang, He-qiu; Sun, Lin; Yue, Zhu-jun; Song, Chen-chao; Zhang, Shi-Jie; Li, Ning; Dai, Jie
2011-12-01
To study the pulmonary pathology in patients died of fatal human influenza A(H1N1) infection. Eight cases of fatal human influenza A (H1N1) infection, including 2 autopsy cases and 6 paramortem needle puncture biopsies, were enrolled into the study. Histologic examination, immunohistochemitry, flow cytometry and Western blotting were carried out. The major pathologic changes included necrotizing bronchiolitis with surrounding inflammation, diffuse alveolar damage and pulmonary hemorrhage. Influenza viral antigen expression was detected in the lung tissue by Western blotting. Immunohistochemical study demonstrated the presence of nuclear protein and hemagglutinin virus antigens in parts of trachea, bronchial epithelium and glands, alveolar epithelium, macrophages and endothelium. Flow cytometry showed that the apoptotic rate of type II pneumocytes (32.15%, 78.15%) was significantly higher than that of the controls (1.93%, 3.77%). Necrotizing bronchiolitis, diffuse alveolar damage and pulmonary hemorrhage followed by pulmonary fibrosis in late stage are the major pathologic changes in fatal human influenza A (H1N1) infection.
Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxidant effects.
Kishimoto, Yasuaki; Kato, Taichi; Ito, Mikako; Azuma, Yoshiteru; Fukasawa, Yoshie; Ohno, Kinji; Kojima, Seiji
2015-09-01
The pathogenesis of pulmonary arterial hypertension (PAH) involves reactive oxygen species and inflammation. Beneficial effects of molecular hydrogen, which exerts both anti-inflammatory and antioxidative effects, have been reported for various pathologic conditions. We therefore hypothesized that molecular hydrogen would improve monocrotaline (MCT)-induced PAH in rats. Nineteen male Sprague-Dawley rats (body weight: 200-300 g) were divided into groups, receiving: (1) MCT + hydrogen-saturated water (group H); (2) MCT + dehydrogenized water (group M); or (3) saline + dehydrogenized water (group C). Sixteen days after substance administration, we evaluated hemodynamics, harvested the lungs and heart, and performed morphometric analysis of the pulmonary vasculature. Macrophage infiltration, antiproliferating cell nuclear antigen-positive cells, 8-hydroxy-deoxyguanosine (8-OHdG)-positive cells, and expressions of phosphorylated signal transducers and activators of transcription-3 (STAT3) and nuclear factor of activated T-cells (NFAT) were evaluated immunohistochemically. Stromal cell-derived factor-1 and monocyte chemoattractant protein-1 expressions were evaluated by quantitative reverse-transcription polymerase chain reaction. Pulmonary arterial hypertension was significantly exacerbated in group M compared to group C, but was significantly improved in group H. Vascular density was significantly reduced in group M, but not in group H. Adventitial macrophages, antiproliferating cell nuclear antigen - and 8-OHdG-positive cells, and stromal cell-derived factor-1 and monocyte chemoattractant protein-1 expressions were significantly increased in group M, but improved in group H. Expressions of phosphorylated STAT3 and NFAT were up-regulated in group M, but improved in group H. Molecular hydrogen ameliorates MCT-induced PAH in rats by suppressing macrophage accumulation, reducing oxidative stress and modulating the STAT3/NFAT axis. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes
Joshi, Meghnad; Patil, Pradeep B.; He, Zhong; Holgersson, Jan; Olausson, Michael; Sumitran-Holgersson, Suchitra
2012-01-01
Background aims One important problem commonly encountered after hepatocyte transplantation is the low numbers of transplanted cells found in the graft. If hepatocyte transplantation is to be a viable therapeutic approach, significant liver parenchyma repopulation is required. Mesenchymal stromal cells (MSC) produce high levels of various growth factors, cytokines and metalloproteinases, and have immunomodulatory effects. We therefore hypothesized that co-transplantation of MSC with human fetal hepatocytes (hFH) could augment in vivo expansion after transplantation. We investigated the ability of human fetal liver MSC (hFLMSC) to augment expansion of phenotypically and functionally well-characterized hFH. Methods Two million hFH (passage 6) were either transplanted alone or together (1:1 ratio) with green fluorescence protein-expressing hFLMSC into the spleen of C57BL/6 nude mice with retrorsine-induced liver injury. Results After 4 weeks, engraftment of cells was detected by fluorescence in situ hybridization using a human-specific DNA probe. Significantly higher numbers of cells expressing human cytokeratin (CK)8, CK18, CK19, Cysteine-rich MNNG HOS Transforming gene (c-Met), alpha-fetoprotein (AFP), human nuclear antigen, mitochondrial antigen, hepatocyte-specific antigen and albumin (ALB) were present in the livers of recipient animals co-transplanted with hFLMSC compared with those without. Furthermore, expression of human hepatocyte nuclear factor (HNF)-4α and HNF-1β, and cytochrome P450 (CYP) 3A7 mRNA was demonstrated by reverse transcriptase-polymerase chain reaction (RT-PCR) in these animals. In addition, significantly increased amounts of human ALB were detected. Importantly, hFLMSC did not transdifferentiate into hepatocytes. Conclusions Our study reports the use of a novel strategy for enhanced liver repopulation and thereby advances this experimental procedure closer to clinical liver cell therapy. PMID:22424216
No evidence for the presence of Epstein-Barr virus in squamous cell carcinoma of the mobile tongue.
Wilms, Torben; Khan, Gulfaraz; Coates, Philip J; Sgaramella, Nicola; Fåhraeus, Robin; Hassani, Asma; Philip, Pretty S; Norberg Spaak, Lena; Califano, Luigi; Colella, Giuseppe; Olofsson, Katarina; Loizou, Christos; Franco, Renato; Nylander, Karin
2017-01-01
Squamous cell carcinoma of the head and neck (SCCHN) comprises a large group of cancers in the oral cavity and nasopharyngeal area that typically arise in older males in association with alcohol/tobacco usage. Within the oral cavity, the mobile tongue is the most common site for tumour development. The incidence of tongue squamous cell carcinoma (TSCC) is increasing in younger people, which has been suggested to associate with a viral aetiology. Two common human oncogenic viruses, human papilloma virus (HPV) and Epstein-Barr virus (EBV) are known causes of certain types of SCCHN, namely the oropharynx and nasopharynx, respectively. EBV infects most adults worldwide through oral transmission and establishes a latent infection, with sporadic productive viral replication and release of virus in the oral cavity throughout life. In view of the prevalence of EBV in the oral cavity and recent data indicating that it infects tongue epithelial cells and establishes latency, we examined 98 cases of primary squamous cell carcinoma of the mobile tongue and 15 cases of tonsillar squamous cell carcinoma for the presence of EBV-encoded RNAs (EBERs), EBV DNA and an EBV-encoded protein, EBNA-1. A commercially available in situ hybridisation kit targeting EBER transcripts (EBER-ISH) showed a positive signal in the cytoplasm and/or nuclei of tumour cells in 43% of TSCCs. However, application of control probes and RNase A digestion using in-house developed EBER-ISH showed identical EBER staining patterns, indicating non-specific signals. PCR analysis of the BamH1 W repeat sequences did not identify EBV genomes in tumour samples. Immunohistochemistry for EBNA-1 was also negative. These data exclude EBV as a potential player in TSCC in both old and young patients and highlight the importance of appropriate controls for EBER-ISH in investigating EBV in human diseases.
No evidence for the presence of Epstein-Barr virus in squamous cell carcinoma of the mobile tongue
Wilms, Torben; Khan, Gulfaraz; Coates, Philip J.; Sgaramella, Nicola; Fåhraeus, Robin; Hassani, Asma; Philip, Pretty S.; Norberg Spaak, Lena; Califano, Luigi; Colella, Giuseppe; Olofsson, Katarina; Loizou, Christos; Franco, Renato
2017-01-01
Squamous cell carcinoma of the head and neck (SCCHN) comprises a large group of cancers in the oral cavity and nasopharyngeal area that typically arise in older males in association with alcohol/tobacco usage. Within the oral cavity, the mobile tongue is the most common site for tumour development. The incidence of tongue squamous cell carcinoma (TSCC) is increasing in younger people, which has been suggested to associate with a viral aetiology. Two common human oncogenic viruses, human papilloma virus (HPV) and Epstein-Barr virus (EBV) are known causes of certain types of SCCHN, namely the oropharynx and nasopharynx, respectively. EBV infects most adults worldwide through oral transmission and establishes a latent infection, with sporadic productive viral replication and release of virus in the oral cavity throughout life. In view of the prevalence of EBV in the oral cavity and recent data indicating that it infects tongue epithelial cells and establishes latency, we examined 98 cases of primary squamous cell carcinoma of the mobile tongue and 15 cases of tonsillar squamous cell carcinoma for the presence of EBV-encoded RNAs (EBERs), EBV DNA and an EBV-encoded protein, EBNA-1. A commercially available in situ hybridisation kit targeting EBER transcripts (EBER-ISH) showed a positive signal in the cytoplasm and/or nuclei of tumour cells in 43% of TSCCs. However, application of control probes and RNase A digestion using in-house developed EBER-ISH showed identical EBER staining patterns, indicating non-specific signals. PCR analysis of the BamH1 W repeat sequences did not identify EBV genomes in tumour samples. Immunohistochemistry for EBNA-1 was also negative. These data exclude EBV as a potential player in TSCC in both old and young patients and highlight the importance of appropriate controls for EBER-ISH in investigating EBV in human diseases. PMID:28926591
Abdul-Sada, Hussein; Müller, Marietta; Mehta, Rajni; Toth, Rachel; Arthur, J Simon C; Whitehouse, Adrian; Macdonald, Andrew
2017-04-11
Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with a high metastatic potential. The majority of MCC cases are caused by the Merkel cell polyomavirus (MCPyV), through expression of the virus-encoded tumour antigens. Whilst mechanisms attributing tumour antigen expression to transformation are being uncovered, little is known of the mechanisms by which MCPyV persists in the host. We previously identified the MCPyV small T antigen (tAg) as a novel inhibitor of nuclear factor kappa B (NF-kB) signalling and a modulator of the host anti-viral response. Here we demonstrate that regulation of NF-kB activation involves a previously undocumented interaction between tAg and regulatory sub-unit 1 of protein phosphatase 4 (PP4R1). Formation of a complex with PP4R1 and PP4c is required to bridge MCPyV tAg to the NEMO adaptor protein, allowing deactivation of the NF-kB pathway. Mutations in MCPyV tAg that fail to interact with components of this complex, or siRNA depletion of PP4R1, prevents tAg-mediated inhibition of NF-kB and pro-inflammatory cytokine production. Comparison of tAg binding partners from other human polyomavirus demonstrates that interactions with NEMO and PP4R1 are unique to MCPyV. Collectively, these data identify PP4R1 as a novel target for virus subversion of the host anti-viral response.
Emanuele, Michael J; Ciccia, Alberto; Elia, Andrew E H; Elledge, Stephen J
2011-06-14
The anaphase-promoting complex/cyclosome (APC/C) is a cell cycle-regulated E3 ubiquitin ligase that controls the degradation of substrate proteins at mitotic exit and throughout the G1 phase. We have identified an APC/C substrate and cell cycle-regulated protein, KIAA0101/PAF15. PAF15 protein levels peak in the G2/M phase of the cell cycle and drop rapidly at mitotic exit in an APC/C- and KEN-box-dependent fashion. PAF15 associates with proliferating cell nuclear antigen (PCNA), and depletion of PAF15 decreases the number of cells in S phase, suggesting a role for it in cell cycle regulation. Following irradiation, PAF15 colocalized with γH2AX foci at sites of DNA damage through its interaction with PCNA. Finally, PAF15 depletion led to an increase in homologous recombination-mediated DNA repair, and overexpression caused sensitivity to UV-induced DNA damage. We conclude that PAF15 is an APC/C-regulated protein involved in both cell cycle progression and the DNA damage response.
Chaumeil, Julie; Micsinai, Mariann; Ntziachristos, Panagiotis; Deriano, Ludovic; Wang, Joy M-H; Ji, Yanhong; Nora, Elphege P.; Rodesch, Matthew J.; Jeddeloh, Jeffrey A.; Aifantis, Iannis; Kluger, Yuval; Schatz, David G.; Skok, Jane A.
2013-01-01
SUMMARY V(D)J recombination is essential for generating a diverse array of B and T cell receptors that can recognize and combat foreign antigen. As with any recombination event, tight control is essential to prevent the occurrence of genetic anomalies that drive cellular transformation. One important aspect of regulation is directed targeting of the RAG recombinase. Indeed, RAG accumulates at the 3’ end of individual antigen receptor loci poised for rearrangement, however, it is not known whether focal binding is involved in regulating cleavage, and what mechanisms lead to enrichment of RAG in this region. Here we show that mono-allelic looping out of the 3’ end of Tcra, coupled with transcription and increased chromatin/nuclear accessibility, are linked to focal RAG binding and ATM-mediated regulated mono-allelic cleavage on looped out 3’ regions. Our data identify higher order loop formation as a key determinant of directed RAG targeting and the maintenance of genome stability. PMID:23416051
Fernandez-Pol, J Alberto
2016-01-01
The ribosomal protein metallopanstimulin-1 (MPS1/S27) serves critical survival purposes in cell division, in normal and cancerous cells; for this reason, selective pressures of evolution have conserved the DNA sequences encoding MPS1/S27 in Archaea and Eukariotic cells. The expression of MPS1/S27 protein in human adult cerebellum has not been established. The presence of MPS1/S27, was screened in paraffin-embedded human adult brain specimens processed for tissue inmunohistochemistry. Affinity-purified specific antibodies were directed against the N-terminus of MPS1. The antibodies to MPS1 detected Purkinje cells (PC) and their dendrites. In PC, MPS1 antigen-positive staining was found in: the nucleolus, which was strongly stained; ribosomes attached to the external nuclear membrane; cytoplasm of PC, with strong staining in a punctuate fashion; the soma-attached large dendrite trunks of PC, which were MPS1 antigen-positive; and the granular cell layer, where cellular staining in a few cells that appeared to resemble smaller PC was observed. Since MPS1 is involved in cell division, DNA repair, and ribosomal biogenesis, it may be a useful antigen for studying processes such as protein synthesis, oncogenesis, regeneration, aging, and perhaps diseases of the human cerebellum. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.
Vordenbäumen, Stefan; Lueking, Angelika; Budde, Petra; Zucht, Hans-Dieter; Goehler, Heike; Brinks, Ralph; Fischer-Betz, Rebecca; Richter, Jutta; Bleck, Ellen; Detert, Jacqueline; Langer, Hans-Eckhard; Sörgel, Anne; Burmester, Gerd-Rüdiger; Schulz-Knappe, Peter; Schneider, Matthias
2016-10-12
The aim was to identify novel diagnostic autoantibody candidates for rheumatoid arthritis (RA) by comprehensive screening for autoreactivity. We incubated 5892 recombinant proteins coupled to fluorescent beads, with patients' sera for the detection of IgG-autoantibodies in three independent patient cohorts: A (n = 72 patients with established RA); B/B- (n = 116 patients with early RA (B) and n = 51 CCP-negative patients with early RA from B (B-)); and C (n = 184 patients with early seronegative RA), in comparison to matched healthy controls. Intersects of significantly increased autoantibodies as determined by the Mann-Whitney test were sought. Screening of 5892 antigens in RA cohorts A and B, or the seronegative cohorts B- and C revealed intersects of 23 and 13 significantly increased autoantibodies, respectively. Reactivity to three antigens was increased in all cohorts tested: N-acetylglucosamine-1-phosphate transferase, gamma subunit (GNPTG), heterogeneous nuclear ribonucleoprotein A1-like 2 (HNRNPA1), and insulin-like growth factor binding protein 2 (IGFBP2). Comprehensive sequential screening for autoantibodies reveals novel candidates for diagnostic markers in both seropositive and seronegative RA and suggests new fields of research into the pathogenesis of RA.
Lemieux, Jacob E; Kyes, Sue A; Otto, Thomas D; Feller, Avi I; Eastman, Richard T; Pinches, Robert A; Berriman, Matthew; Su, Xin-zhuan; Newbold, Chris I
2013-01-01
Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking. Here we have used chromosome conformation capture and second-generation sequencing to study changes in chromosome folding and spatial positioning that occur during switches in var gene expression. We have generated maps of chromosomal spatial affinities within the P. falciparum nucleus at 25 Kb resolution, revealing a structured nucleolus, an absence of chromosome territories, and confirming previously identified clustering of heterochromatin foci. We show that switches in var gene expression do not appear to involve interaction with a distant enhancer, but do result in local changes at the active locus. These maps reveal the folding properties of malaria chromosomes, validate known physical associations, and characterize the global landscape of spatial interactions. Collectively, our data provide critical information for a better understanding of gene expression regulation and antigenic variation in malaria parasites. PMID:23980881
Oufir, Mouhssin; Bisset, Leslie R; Hoffmann, Stefan R K; Xue, Gongda; Klauser, Stephan; Bergamaschi, Bianca; Gervaix, Alain; Böni, Jürg; Schüpbach, Jörg; Gutte, Bernd
2011-01-01
An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.
Oufir, Mouhssin; Bisset, Leslie R.; Hoffmann, Stefan R. K.; Xue, Gongda; Klauser, Stephan; Bergamaschi, Bianca; Gervaix, Alain; Böni, Jürg; Schüpbach, Jörg; Gutte, Bernd
2011-01-01
An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo. PMID:22312334
Serafini, Anna; Lukas, Rimas V; VanHaerents, Stephen; Warnke, Peter; Tao, James X; Rose, Sandra; Wu, Shasha
2016-08-01
Epilepsy can be a manifestation of paraneoplastic syndromes which are the consequence of an immune reaction to neuronal elements driven by an underlying malignancy affecting other organs and tissues. The antibodies commonly found in paraneoplastic encephalitis can be divided into two main groups depending on the target antigen: 1) antibodies against neuronal cell surface antigens, such as against neurotransmitter (N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), gamma-aminobutyric acid (GABA)) receptors, ion channels (voltage-gated potassium channel (VGKC)), and channel-complex proteins (leucine rich, glioma inactivated-1 glycoprotein (LGI1) and contactin-associated protein-2 (CASPR2)) and 2) antibodies against intracellular neuronal antigens (Hu/antineuronal nuclear antibody-1 (ANNA-1), Ma2/Ta, glutamate decarboxylase 65 (GAD65), less frequently to CV2/collapsin response mediator protein 5 (CRMP5)). In this review, we provide a comprehensive survey of the current literature on paraneoplastic epilepsy indexed by the associated onconeuronal antibodies. While a range of seizure types can be seen with paraneoplastic syndromes, temporal lobe epilepsy is the most common because of the association with limbic encephalitis. Early treatment of the paraneoplastic syndrome with immune modulation/suppression may prevent the more serious potential consequences of paraneoplastic epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.
May, Randal; Riehl, Terrence E; Hunt, Clayton; Sureban, Sripathi M; Anant, Shrikant; Houchen, Courtney W
2008-03-01
In the gut, tumorigenesis arises from intestinal or colonic crypt stem cells. Currently, no definitive markers exist that reliably identify gut stem cells. Here, we used the putative stem cell marker doublecortin and CaM kinase-like-1 (DCAMKL-1) to examine radiation-induced stem cell apoptosis and adenomatous polyposis coli (APC)/multiple intestinal neoplasia (min) mice to determine the effects of APC mutation on DCAMKL-1 expression. Immunoreactive DCAMKL-1 staining was demonstrated in the intestinal stem cell zone. Furthermore, we observed apoptosis of the cells negative for DCAMKL-1 at 6 hours. We found DNA damage in all the cells in the crypt region, including the DCAMKL-1-positive cells. We also observed stem cell apoptosis and mitotic DCAMKL-1-expressing cells 24 hours after irradiation. Moreover, in APC/min mice, DCAMKL-1-expressing cells were negative for proliferating cell nuclear antigen and nuclear beta-catenin in normal-appearing intestine. However, beta-catenin was nuclear in DCAMKL-1-positive cells in adenomas. Thus, nuclear translocation of beta-catenin distinguishes normal and adenoma stem cells. Targeting DCAMKL-1 may represent a strategy for developing novel chemotherapeutic agents.
Hutajulu, Susanna Hilda; Kurnianda, Johan; Tan, I Bing; Middeldorp, Jaap M
2014-01-01
Nasopharyngeal carcinoma (NPC) is highly endemic in certain regions including the People’s Republic of China and Southeast Asia. Its etiology is unique and multifactorial, involving genetic background, epigenetic, and environment factors, including Epstein–Barr virus (EBV) infection. The presence of EBV in all tumor cells, aberrant pattern of antibodies against EBV antigens in patient sera, and elevated viral DNA in patient circulation as well as nasopharyngeal site underline the role of EBV during NPC development. In NPC tumors, EBV expresses latency type II, where three EBV-encoded proteins, Epstein–Barr nuclear antigen 1, latent membrane protein 1 and 2 (LMP1, 2), are expressed along with BamH1-A rightward reading frame 1, Epstein–Barr virus-encoded small nuclear RNAs, and BamH1-A rightward transcripts. Among all encoded proteins, LMP1 plays a central role in the propagation of NPC. Standard treatment of NPC consists of radiotherapy with or without chemotherapy for early stage, concurrent chemoradiotherapy in locally advanced tumors, and palliative systemic chemotherapy in metastatic disease. However, this standard care has limitations, allowing recurrences and disease progression in a certain proportion of cases. Although the pathophysiological link and molecular process of EBV-induced oncogenesis are not fully understood, therapeutic approaches targeting the virus may increase the cure rate and add clinical benefit. The promising results of early phase clinical trials on EBV-specific immunotherapy, epigenetic therapy, and treatment with viral lytic induction offer new options for treating NPC. PMID:25228810
Deppert, W; Hanke, K; Henning, R
1980-01-01
Simian virus 40 (SV40)-transformed monolayer cells were analyzed in situ by indirect immunofluorescence microscopy for the postulated cell surface location of SV40 T-antigen-related molecules. With antisera prepared against purified, sodium dodecyl sulfate-denatured SV40 T-antigen, positive surface staining was obtained when the cells had been treated with formaldehyde before immunofluorescence analysis. In contrast, living SV40-transformed cells analyzed in monolayer were surface fluorescence negative. The fixation procedure developed in this study combined with a double staining immunofluorescence technique allowed the simultaneous analysis of the same cells for the expression of both SV40 T-antigen-related surface antigen and nuclear T-antigen. The localization of SV40 T-antigen-related surface antigen on the outer surface of the plasma membrane of formaldehyde-fixed SV40-transformed cells was demonstrated directly by the protein A-mediated binding of Staphylococcus aureus bacteria on formaldehyde-fixed SV40-transformed cells precoated with antiserum against sodium dodecyl sulfate-denatured T-antigen. Both cell surface staining and S. aureus binding were found to be highly specific for SV40 T-antigen-related binding sites. These results indicate that T-antigen-related molecules in a cryptic form are located on the surface of SV40-transformed monolayer cells and can be detected in situ after modification of the cell surface architecture. Images PMID:6255189
Horsfall, A C; Venables, P J; Mumford, P A; Maini, R N
1981-01-01
The Raji cell assay is regarded as a test for the detection and quantitation of immune complexes. It is frequently positive in sera from patients with SLE. We have demonstrated a relationship between Raji cell binding and antibodies to DNA and soluble cellular antigens. In five sera containing high titres of antibodies of known single specificity, most of the Raji cell binding occurred in the 7S IgG fraction where the majority of anti-nuclear antibody was also found. When each of these sera was incubated with its specific antigen, Raji cell binding increased. Subsequent fractionation showed that this binding was in the high molecular weight fraction (greater than 200,000 daltons) and that Raji cell binding and antibody activity were abolished in the 7S fraction. These data confirm that Raji cell bind immune complexes but also indicate that 7S anti-nuclear antibodies may interact directly with Raji cells by an unknown mechanism. Therefore, in sera of patients with anti-nuclear antibodies, binding to Raji cells does not necessarily imply the presence of immune complexes alone. PMID:6975676
Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics
Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Joseph J.
2012-01-01
To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and 19F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan (5FW). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that 5FW incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when 5FW was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. 19F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each 5FW in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody–antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody–antigen complexes with altered function that may not be discernible by other biophysical techniques. PMID:22769726
Hansel, D E; DeMarzo, A M; Platz, E A; Jadallah, S; Hicks, J; Epstein, J I; Partin, A W; Netto, G J
2007-05-01
Early prostate cancer antigen is a nuclear matrix protein that was recently shown to be expressed in prostate adenocarcinoma and adjacent benign tissue. Previous studies have demonstrated early prostate cancer antigen expression in benign prostate tissue up to 5 years before a diagnosis of prostate carcinoma, suggesting that early prostate cancer antigen could be used as a potential predictive marker. We evaluated early prostate cancer antigen expression by immunohistochemistry using a polyclonal antibody (Onconome Inc., Seattle, Washington) on benign biopsies from 98 patients. Biopsies were obtained from 4 groups that included 39 patients with first time negative biopsy (group 1), 24 patients with persistently negative biopsies (group 2), 8 patients with initially negative biopsies who were subsequently diagnosed with prostate carcinoma (group 3) and negative biopsies obtained from 27 cases where other concurrent biopsies contained prostate carcinoma (group 4). Early prostate cancer antigen staining was assessed by 2 of the authors who were blind to the group of the examined sections. Staining intensity (range 0 to 3) and extent (range 1 to 3) scores were assigned. The presence of intensity 3 staining in any of the blocks of a biopsy specimen was considered as positive for early prostate cancer antigen for the primary outcome in the statistical analysis. In addition, as secondary outcomes we evaluated the data using the proportion of blocks with intensity 3 early prostate cancer antigen staining, the mean of the product of staining intensity and staining extent of all blocks within a biopsy, and the mean of the product of intensity 3 staining and extent. Primary outcome analysis revealed the proportion of early prostate cancer antigen positivity to be highest in group 3 (6 of 8, 75%) and lowest in group 2 (7 of 24, 29%, p=0.04 for differences among groups). A relatively higher than expected proportion of early prostate cancer antigen positivity was present in group 1 (23 of 39, 59%). Early prostate cancer antigen was negative in 41% of group 4 who were known to harbor prostate carcinoma. The proportion of early prostate cancer antigen positivity was statistically significantly lower in group 2 than in each of the other groups when compared pairwise. A lower proportion of early prostate cancer antigen positivity was encountered in older archival tissue blocks (p<0.0001) pointing to a potential confounding factor. Corrected for block age, group 3 was the only group to remain statistically significantly different in early prostate cancer antigen positivity compared to the reference group 2. Similar findings were obtained when adjustments for patient age were made and when analysis was based on secondary outcome measurements. Our study showed a higher proportion of early prostate cancer antigen expression in initial negative prostate biopsy of patients who were diagnosed with prostate carcinoma on subsequent followup biopsies. We found a relatively high proportion of early prostate cancer antigen positivity (59%) in the group with first time negative biopsies and a potential 41% rate of false-negative early prostate cancer antigen staining in benign biopsies from cases with documented prostate carcinoma on concurrent cores. The lower early prostate cancer antigen positivity in cases with older blocks raises the question of a confounding effect of block age. Additional studies on the antigenic properties of early prostate cancer antigen in archival material are required to further delineate the usefulness of early prostate cancer antigen immunostaining on biopsy material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G.
2012-02-08
Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeastmore » and parasitic protozoa.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha, Seho; Lim, Chunghun; Lee, Jae Young
2010-04-16
During latent infection, latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) plays important roles in episomal persistence and replication. Several host factors are associated with KSHV latent replication. Here, we show that the catalytic subunit of DNA protein kinase (DNA-PKcs), Ku70, and Ku86 bind the N-terminal region of LANA. LANA was phosphorylated by DNA-PK and overexpression of Ku70, but not Ku86, impaired transient replication. The efficiency of transient replication was significantly increased in the HCT116 (Ku86 +/-) cell line, compared to the HCT116 (Ku86 +/+) cell line, suggesting that the DNA-PK/Ku complex negatively regulates KSHV latent replication.
López Marín, L M; Lanéelle, M A; Promé, D; Daffé, M
1993-08-01
The structures of the major glycolipid antigens of two animal pathogens Mycobacterium senegalense and Mycobacterium porcinum were elucidated by a combination of fast-atom bombardment mass spectrometry, nuclear magnetic resonance spectroscopy, chemical analyses and radiolabeling experiments. Five glycoconjugates belonging to the class of C-mycoside glycopeptidolipids were characterized in each species. They shared with those recently described in M. peregrinum the same unusual distribution of the disaccharides on the alaninol end of the molecules. Both species showed the presence of the novel sulfated glycopeptidolipid. In addition, some acetylated forms of the glycolipids were also present in the species examined. Identical seroreactivities were observed between the glycolipid antigens extracted from M. senegalense, M. porcinum and M. peregrinum and an antiserum raised against the whole lipid antigens of M. peregrinum. These data reinforce the close taxonomic relationships between the three mycobacterial species and demonstrate the antigenicity of the new variants of mycobacterial glycopeptidolipids.
Hernádi, Katinka; Szalmás, Anita; Mogyorósi, Richárd; Czompa, Levente; Veress, György; Csoma, Eszter; Márton, Ildikó; Kónya, József
2010-09-01
Apical periodontitis is a polymicrobial inflammation with a dominant flora of opportunistic Gram-negative bacteria; however, a pathogenic role of human herpesviruses such as Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) has been implicated recently. The aims of this study were to determine the prevalence, activity, and disease association of EBV and HCMV in apical periodontitis in an Eastern Hungarian population. Forty samples with apical periodontitis (17 symptomatic and 23 asymptomatic) and 40 healthy pulp controls were collected. EBV and HCMV prevalences were measured by polymerase chain reaction (PCR) detection of the viral DNA and viral activity was tested by reverse-transcription PCR amplification of viral messenger RNA. EBV DNA and EBNA-2 messenger RNA were found in apical periodontitis lesions at significantly (p < 0.0001) higher frequencies (72.5% and 50%, respectively) than in controls (both 2.5%). The occurrence of HCMV infection was rare in both apical lesions (10%) and controls (0%). The presence of EBV DNA in apical lesions was associated significantly with large (> or = 5 mm) lesion size (p = 0.02) but not with symptoms (p = 0.30). Symptomatic manifestation was significantly associated with the co-occurrence (odds ratio [OR], 8.80; 95% confidence interval [CI], 1.69-45.76) but not the sole occurrences of EBNA-2 messenger RNA (OR, 2.29; 95% CI, 0.48-11.06) and large lesion size (OR, 4.02; 95% CI, 0.81-19.89). EBV infection is a frequent event in apical periodontitis, whereas the involvement of HCMV still remains to be elucidated. This study showed that symptomatic manifestation was likely to occur if a large-sized apical periodontitis lesion is aggravated with active EBV infection. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
The Regulatory Interactions of p21 and PCNA in Human Breast Cancer
2002-07-01
Proliferating cell nuclear antigen (PCNA) is a multifunctional enzyme involved in multiple cellular processes including DNA replication and repair...During DNA replication , PCNA function as an accessory factor- for the DNA polymerases E arid and are part of a multiprotein DNA replication complex...a cyclin-dependent kinase inhibitor, p21WAF1 ability to inhibit DNA replication in response to DNA damage has been wall characterized. Interestingly
Chen, Zhenchuan; Zhang, Wei; Yun, Zhimin; Zhang, Xue; Gong, Feng; Wang, Yunfang; Ji, Shouping; Leng, Ling
2018-06-01
In response to DNA damage, proliferating cell nuclear antigen (PCNA) has an important role as a positive regulator and as a scaffold protein associated with DNA damage bypass and repair pathways by serving as a platform for the recruitment of associated components. As demonstrated in the present study, the ubiquitin‑like modifier human leukocyte antigen F locus adjacent transcript 10 (FAT10), which binds to PCNA but has not previously been demonstrated to be associated with the DNA damage response (DDR), is induced by ultraviolet/ionizing radiation and VP‑16 treatment in HeLa cells. Furthermore, DNA damage enhances FAT10 expression. Immunoprecipitation analysis suggested PCNA is modified by FAT10, and the degradation of FATylated PCNA located in the cytoplasm is regulated by the 26S proteasome, which is also responsible for the upregulation of nuclear foci formation. Furthermore, immunofluorescence experiment suggested FAT10 co‑localizes with PCNA in nuclear foci, thus suggesting that FATylation of PCNA may affect DDR via the induction of PCNA degradation in the cytoplasm or nucleus. In addition, immunohistochemistry experiment suggested the expression levels of FAT10 and PCNA are enhanced in HCC tissues compared with healthy liver tissues; however, the expression of FAT10 is suppressed in regenerated liver tissues, which express high levels of PCNA, thus suggesting that the association between FAT10 and PCNA expression is only exhibited in tumor tissues. In conclusion, the results of the present study suggest that FAT10 may be involved in DDR and therefore the progression of tumorigenesis.
Markers of potential malignancy in chronic hyperplastic candidiasis.
Darling, Mark R; McCord, Christina; Jackson-Boeters, Linda; Copete, Maria
2012-08-01
To examine the presence of markers associated with malignancy, including p53, p21 cyclin-dependent kinase inhibitor 1A, murine double minutes-2, and others, in chronic hyperplastic candidiasis. Immunohistochemical methods were used to examine the expression of p53, murine double minutes-2, p21 cyclin-dependent kinase inhibitor 1A, metallothionein, and proliferating cell nuclear antigen in 42 chronic hyperplastic candidiasis lesions and 11 non-infected control tissues. Terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling was used to examine apoptosis, which was correlated with p53 expression. These markers were measured in lesions of chronic hyperplastic candidiasis that did not show any epithelial dysplasia or histological signs of malignancy. p53 scores were higher in chronic hyperplastic candidiasis than in controls (P = 0.0046). Murine double-minutes 2 levels were not elevated. p21 cyclin-dependent kinase inhibitor 1A was increased in parabasal (P < 0.0001) and basal epithelial cells. Chronic hyperplastic candidiasis lesions showed a similar basal/parabasal metallothionein staining pattern to that seen in normal squamous epithelium. Proliferating cell nuclear antigen was increased (P = 0.0007), as was apoptosis (P = 0.0033). Increased p53 in oral chronic hyperplastic candidiasis suggests an increased potential for malignant change in the epithelium, above that of normal tissues. Further functional investigation is required, as well as clinical follow-up studies. © 2012 Blackwell Publishing Asia Pty Ltd.
IgG and IgM autoantibody differences in discoid and systemic lupus patients.
Chong, Benjamin F; Tseng, Lin-chiang; Lee, Thomas; Vasquez, Rebecca; Li, Quan Z; Zhang, Song; Karp, David R; Olsen, Nancy J; Mohan, Chandra
2012-12-01
Systemic lupus erythematosus (SLE) patients with discoid lupus erythematosus (DLE) were reported to have milder disease. To test this observation, we used sandwich arrays containing 98 autoantigens to compare autoantibody profiles of SLE subjects without DLE (DLE-SLE+) (N=9), SLE subjects with DLE (DLE+SLE+) (N=10), DLE subjects without SLE (DLE+SLE-) (N=11), and healthy controls (N=11). We validated differentially expressed autoantibodies using immunoassays in DLE-SLE+ (N=18), DLE+SLE+ (N=17), DLE+SLE- (N=23), and healthy subjects (N=22). Arrays showed 15 IgG autoantibodies (10 against nuclear antigens) and 4 IgM autoantibodies that were differentially expressed (q-value<0.05). DLE-SLE+ subjects had higher IgG autoantibodies against double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), double-stranded RNA (dsRNA), histone H2A and H2B, and SS-A (52 kDa) compared with all other groups including DLE+SLE+ subjects (P<0.05). Immunoassays measuring anti-dsDNA, -ssDNA, and -SS-A (52 kDa) IgG autoantibodies showed similar trends (P<0.05). Healthy and DLE+SLE- subjects expressed higher IgM autoantibodies against alpha beta crystallin, lipopolysaccharide, heat-shock cognate 70, and desmoglein-3 compared with DLE+SLE+ and DLE-SLE+ subjects. IgG:IgM ratios of autoantibodies against nuclear antigens progressively rose from healthy to DLE-SLE+ subjects. In conclusion, lower IgG autoantibodies against nuclear antigens in DLE+SLE+ versus DLE-SLE+ subjects suggest that DLE indicates lower disease severity. Higher IgM autoantibodies against selected antigens in healthy and DLE+SLE- subjects may be nonpathogenic.
Novel Humoral Prognostic Markers in Small-Cell Lung Carcinoma: A Prospective Study
Gozzard, Paul; Chapman, Caroline; Vincent, Angela; Lang, Bethan; Maddison, Paul
2015-01-01
Purpose Favourable small cell lung carcinoma (SCLC) survival outcomes have been reported in patients with paraneoplastic neurological disorders (PNDs) associated with neuronal antibodies (Neur-Abs), but the presence of a PND might have expedited diagnosis. Our aim was to establish whether neuronal antibodies, independent of clinical neurological features, correlate with SCLC survival. Experimental Design 262 consecutive SCLC patients were examined: of these, 24 with neurological disease were excluded from this study. The remaining 238 were tested for a broad array of Neur-Abs at the time of cancer diagnosis; survival time was established from follow-up clinical data. Results Median survival of the non-PND cohort (n = 238) was 9.5 months. 103 patients (43%) had one or more antigen-defined Neur-Abs. We found significantly longer median survival in 23 patients (10%) with HuD/anti-neuronal nuclear antibody type 1 (ANNA-1, 13.0 months P = 0.037), but not with any of the other antigen-defined antibodies, including the PND-related SOX2 (n = 56, 24%). An additional 28 patients (12%) had uncharacterised anti-neuronal nuclear antibodies (ANNA-U); their median survival time was longer still (15.0 months, P = 0.0048), contrasting with the survival time in patients with non-neuronal anti-nuclear antibodies (detected using HEp-2 cells, n = 23 (10%), 9.25 months). In multivariate analyses, both ANNA-1 and ANNA-U independently reduced the mortality hazard by a ratio of 0.532 (P = 0.01) and 0.430 (P<0.001) respectively. Conclusions ANNAs, including the newly described ANNA-U, may be key components of the SCLC immunome and have a potential role in predicting SCLC survival; screening for them could add prognostic value that is similar in magnitude to that of limited staging at diagnosis. PMID:26606748
Delsol, G.; Meggetto, F.; Brousset, P.; Cohen-Knafo, E.; al Saati, T.; Rochaix, P.; Gorguet, B.; Rubin, B.; Voigt, J. J.; Chittal, S.
1993-01-01
Based on observations of 66 cases, in which tissues were specially processed to optimize the simultaneous preservation of cell membrane antigens and morphology, we provide evidence in favor of a relationship between follicular dendritic reticulum cells (FDRC) and Reed-Sternberg (RS) cells of Hodgkin's disease (HD) other than the lymphocyte predominance subtype. RS cells were intimately related to the FDRC network (75% of cases), and the expression of CD21 antigen was frequent (41% of cases). Exclusive expression of CD21 antigen was found in 11 cases of HD, while the expression of other B-cell-associated markers (CD19, CD20, CD22) was both variable and inconsistent. The expression of T-cell antigens (CD3, CD4, CD8) was rare. Null phenotype of RS cells was observed in 27 of 66 cases (41%). Epstein-Barr virus (EBV) nucleic acids were found in 34 of 66 (51.5%) cases. Double labeling techniques showed the presence of EBV-positive RS cells within the FDRC network. A non-B-cell origin of RS cells was supported by the differential expression of EBV latent antigens in HD (latent membrane protein+, EB nuclear antigen 2-), which is unusual in EBV-driven lymphoblastoid cell lines and EBV-positive B-cell lymphomas. FDRC and RS cells are known to share morphological traits (binucleated cells), and both cell types possess Fc receptor for IgG. The hypothesis is further backed by the findings of CD15 antigen expression by occasional RS-like dysplastic FDRC in Castleman's disease (five cases), which is characterized by hyperplasia of FDRC. Whether FDRC might be the only cells involved in the conversion to RS cells by the loss or gain of antigens remains to be determined. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7685151
Boehm, Elizabeth M.; Powers, Kyle T.; Kondratick, Christine M.; Spies, Maria; Houtman, Jon C. D.; Washington, M. Todd
2016-01-01
Y-family DNA polymerases, such as polymerase η, polymerase ι, and polymerase κ, catalyze the bypass of DNA damage during translesion synthesis. These enzymes are recruited to sites of DNA damage by interacting with the essential replication accessory protein proliferating cell nuclear antigen (PCNA) and the scaffold protein Rev1. In most Y-family polymerases, these interactions are mediated by one or more conserved PCNA-interacting protein (PIP) motifs that bind in a hydrophobic pocket on the front side of PCNA as well as by conserved Rev1-interacting region (RIR) motifs that bind in a hydrophobic pocket on the C-terminal domain of Rev1. Yeast polymerase η, a prototypical translesion synthesis polymerase, binds both PCNA and Rev1. It possesses a single PIP motif but not an RIR motif. Here we show that the PIP motif of yeast polymerase η mediates its interactions both with PCNA and with Rev1. Moreover, the PIP motif of polymerase η binds in the hydrophobic pocket on the Rev1 C-terminal domain. We also show that the RIR motif of human polymerase κ and the PIP motif of yeast Msh6 bind both PCNA and Rev1. Overall, these findings demonstrate that PIP motifs and RIR motifs have overlapping specificities and can interact with both PCNA and Rev1 in structurally similar ways. These findings also suggest that PIP motifs are a more versatile protein interaction motif than previously believed. PMID:26903512
Dowds, C. Marie; Kornell, Sabin-Christin
2014-01-01
Lipids are not only a central part of human metabolism but also play diverse and critical roles in the immune system. As such, they can act as ligands of lipid-activated nuclear receptors, control inflammatory signaling through bioactive lipids such as prostaglandins, leukotrienes, lipoxins, resolvins, and protectins, and modulate immunity as intracellular phospholipid- or sphingolipid-derived signaling mediators. In addition, lipids can serve as antigens and regulate immunity through the activation of lipid-reactive T cells, which is the topic of this review. We will provide an overview of the mechanisms of lipid antigen presentation, the biology of lipid-reactive T cells, and their contribution to immunity. PMID:23999493
NUP-1 Is a Large Coiled-Coil Nucleoskeletal Protein in Trypanosomes with Lamin-Like Functions
DuBois, Kelly N.; Alsford, Sam; Holden, Jennifer M.; Buisson, Johanna; Swiderski, Michal; Bart, Jean-Mathieu; Ratushny, Alexander V.; Wan, Yakun; Bastin, Philippe; Barry, J. David; Navarro, Miguel; Horn, David; Aitchison, John D.; Rout, Michael P.; Field, Mark C.
2012-01-01
A unifying feature of eukaryotic nuclear organization is genome segregation into transcriptionally active euchromatin and transcriptionally repressed heterochromatin. In metazoa, lamin proteins preserve nuclear integrity and higher order heterochromatin organization at the nuclear periphery, but no non-metazoan lamin orthologues have been identified, despite the likely presence of nucleoskeletal elements in many lineages. This suggests a metazoan-specific origin for lamins, and therefore that distinct protein elements must compose the nucleoskeleton in other lineages. The trypanosomatids are highly divergent organisms and possess well-documented but remarkably distinct mechanisms for control of gene expression, including polycistronic transcription and trans-splicing. NUP-1 is a large protein localizing to the nuclear periphery of Trypanosoma brucei and a candidate nucleoskeletal component. We sought to determine if NUP-1 mediates heterochromatin organization and gene regulation at the nuclear periphery by examining the influence of NUP-1 knockdown on morphology, chromatin positioning, and transcription. We demonstrate that NUP-1 is essential and part of a stable network at the inner face of the trypanosome nuclear envelope, since knockdown cells have abnormally shaped nuclei with compromised structural integrity. NUP-1 knockdown also disrupts organization of nuclear pore complexes and chromosomes. Most significantly, we find that NUP-1 is required to maintain the silenced state of developmentally regulated genes at the nuclear periphery; NUP-1 knockdown results in highly specific mis-regulation of telomere-proximal silenced variant surface glycoprotein (VSG) expression sites and procyclin loci, indicating a disruption to normal chromatin organization essential to life-cycle progression. Further, NUP-1 depletion leads to increased VSG switching and therefore appears to have a role in control of antigenic variation. Thus, analogous to vertebrate lamins, NUP-1 is a major component of the nucleoskeleton with key roles in organization of the nuclear periphery, heterochromatin, and epigenetic control of developmentally regulated loci. PMID:22479148
Rotondo, John Charles; Bononi, Ilaria; Puozzo, Andrea; Govoni, Marcello; Foschi, Valentina; Lanza, Giovanni; Gafà, Roberta; Gaboriaud, Pauline; Touzé, Françoise Antoine; Selvatici, Rita; Martini, Fernanda; Tognon, Mauro
2017-07-15
Purpose: The purpose of this investigation was to characterize Merkel cell carcinomas (MCC) arisen in patients affected by autoimmune diseases and treated with biologic drugs. Experimental Design: Serum samples from patients with MCC were analyzed for the presence and titer of antibodies against antigens of the oncogenic Merkel cell polyomavirus (MCPyV). IgG antibodies against the viral oncoproteins large T (LT) and small T (ST) antigens and the viral capsid protein-1 were analyzed by indirect ELISA. Viral antigens were recombinant LT/ST and virus-like particles (VLP), respectively. MCPyV DNA sequences were studied using PCR methods in MCC tissues and in peripheral blood mononuclear cells (PBMC). Immunohistochemical (IHC) analyses were carried out in MCC tissues to reveal MCPyV LT oncoprotein. Results: MCPyV DNA sequences identified in MCC tissues showed 100% homology with the European MKL-1 strain. PBMCs from patients tested MCPyV-negative. Viral DNA loads in the three MCC tissues were in the 0.1 to 30 copy/cell range. IgG antibodies against LT/ST were detected in patients 1 and 3, whereas patient 2 did not react to the MCPyV LT/ST antigen. Sera from the three patients with MCC contained IgG antibodies against MCPyV VP1. MCC tissues tested MCPyV LT-antigen-positive in IHC assays, with strong LT expression with diffuse nuclear localization. Normal tissues tested MCPyV LT-negative when employed as control. Conclusions: We investigated three new MCCs in patients affected by rheumatologic diseases treated with biologic drugs, including TNF. A possible cause-effect relationship between pharmacologic immunosuppressive treatment and MCC onset is suggested. Indeed, MCC is associated with MCPyV LT oncoprotein activity. Clin Cancer Res; 23(14); 3929-34. ©2017 AACR . ©2017 American Association for Cancer Research.
Schneider, T D
2001-12-01
The sequence logo for DNA binding sites of the bacteriophage P1 replication protein RepA shows unusually high sequence conservation ( approximately 2 bits) at a minor groove that faces RepA. However, B-form DNA can support only 1 bit of sequence conservation via contacts into the minor groove. The high conservation in RepA sites therefore implies a distorted DNA helix with direct or indirect contacts to the protein. Here I show that a high minor groove conservation signature also appears in sequence logos of sites for other replication origin binding proteins (Rts1, DnaA, P4 alpha, EBNA1, ORC) and promoter binding proteins (sigma(70), sigma(D) factors). This finding implies that DNA binding proteins generally use non-B-form DNA distortion such as base flipping to initiate replication and transcription.
Cytoplasmic p21Cip1/WAF1 regulates neurite remodeling by inhibiting Rho-kinase activity
Tanaka, Hiroyuki; Yamashita, Toshihide; Asada, Minoru; Mizutani, Shuki; Yoshikawa, Hideki; Tohyama, Masaya
2002-01-01
p21Cip1/WAF1 has cell cycle inhibitory activity by binding to and inhibiting both cyclin/Cdk kinases and proliferating cell nuclear antigen. Here we show that p21Cip1/WAF1 is induced in the cytoplasm during the course of differentiation of chick retinal precursor cells and N1E-115 cells. Ectopic expression of p21Cip1/WAF1 lacking the nuclear localization signal in N1E-115 cells and NIH3T3 cells affects the formation of actin structures, characteristic of inactivation of Rho. p21Cip1/WAF1 forms a complex with Rho-kinase and inhibits its activity in vitro and in vivo. Neurite outgrowth and branching from the hippocampal neurons are promoted if p21Cip1/WAF1 is expressed abundantly in the cytoplasm. These results suggest that cytoplasmic p21Cip1/WAF1 may contribute to the developmental process of the newborn neurons that extend axons and dendrites into target regions. PMID:12119358
Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity.
Tanaka, Hiroyuki; Yamashita, Toshihide; Asada, Minoru; Mizutani, Shuki; Yoshikawa, Hideki; Tohyama, Masaya
2002-07-22
p21(Cip1/WAF1) has cell cycle inhibitory activity by binding to and inhibiting both cyclin/Cdk kinases and proliferating cell nuclear antigen. Here we show that p21(Cip1/WAF1) is induced in the cytoplasm during the course of differentiation of chick retinal precursor cells and N1E-115 cells. Ectopic expression of p21(Cip1/WAF1) lacking the nuclear localization signal in N1E-115 cells and NIH3T3 cells affects the formation of actin structures, characteristic of inactivation of Rho. p21(Cip1/WAF1) forms a complex with Rho-kinase and inhibits its activity in vitro and in vivo. Neurite outgrowth and branching from the hippocampal neurons are promoted if p21(Cip1/WAF1) is expressed abundantly in the cytoplasm. These results suggest that cytoplasmic p21(Cip1/WAF1) may contribute to the developmental process of the newborn neurons that extend axons and dendrites into target regions.
Subasic, Djemo; Karamehic, Jasenko; Gavrankapetanovic, Faris; Hodzic, Harun; Kasumovic, Mersija; Delic-Sarac, Marina; Prljaca-Zecevic, Lamija
2009-01-01
The basis of autoimmune diseases such as SLE (Systemic Lupus Eritematodes), Sjogren's syndrome, scleroderma, dermatomyositis and polymiositis is the creation of auto-antibodies to the following specific extractable nuclear antigens (ENA):Jo-1, Ssl-70, SS-A, SS-B, Sm and Sm/RNPs. Some of these antigens are in fact enzymes (Jo-1-histidil-tRNA synthetase, Scl-70-topoisomerase) which are inhibited by specific autoantibodies--this leads to disturbance in the metabolism of DNA and protein biosynthesis. During 2009, we analyzed total of 87 serum samples of patients suspected for autoimmune disorder using ANA-IFA and ELISA-ENA-6 methods. After establishing IFA-ANA positivity (83.9%), all serum specimens; ANA positive and negative, were subtypized by ELISA ENA-6 test. Analysis showed the highest incidence of anti-SS-A (56%), and incidence of anti-SS-B (29.8%), anti-Sm/ RNP (11.5%), anti-Jo-1 (2.3%) and anti-Scl-70 (1,1%) auto-antibodies. Also, 78.5% of IFA-ANA negative serum specimens showed high level of positivity (212.50 and 277.0 IU/ml) to SS-A (78.5%) and SS-B (21.4%) antigenes using ELISA-ENA-6 subtypization. Following these results, we conclude that it is necessary to introduce Western blot confirmation testing. After comparing with other clinical findings, we diagnosed the following autoimmune diseases: SLE, Sjogren's syndrome and dermatomiosytis.
Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.
To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and {sup 19}F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ({sup 5F}W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that {sup 5F}W incorporation lowered binding affinity for themore » HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when {sup 5F}W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. {sup 19}F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each {sup 5F}W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.« less
Regulation and spatial organization of PCNA in Trypanosoma brucei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, Doris; Gassen, Alwine; Maiser, Andreas
2012-03-23
Highlights: Black-Right-Pointing-Pointer Characterization of the proliferating cell nuclear antigen in Trypanosoma brucei (TbPCNA). Black-Right-Pointing-Pointer TbPCNA is a suitable marker to detect replication in T. brucei. Black-Right-Pointing-Pointer TbPCNA distribution and regulation is different compared to closely related parasites T. cruzi and Leishmania donovani. -- Abstract: As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. bruceimore » (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.« less
Conservation of Matrix Attachment Region-Binding Filament-Like Protein 1 among Higher Plants1
Harder, Patricia A.; Silverstein, Rebecca A.; Meier, Iris
2000-01-01
The interaction of chromatin with the nuclear matrix via matrix attachment regions (MARs) on the DNA is considered to be of fundamental importance for higher-order chromatin organization and the regulation of gene expression. We have previously isolated a novel nuclear matrix-localized protein (MFP1) from tomato (Lycopersicon esculentum) that preferentially binds to MAR DNA. Tomato MFP1 has a predicted filament-protein-like structure and is associated with the nuclear envelope via an N-terminal targeting domain. Based on the antigenic relationship, we report here that MFP1 is conserved in a large number of dicot and monocot species. Several cDNAs were cloned from tobacco (Nicotiana tabacum) and shown to correspond to two tobacco MFP1 genes. Comparison of the primary and predicted secondary structures of MFP1 from tomato, tobacco, and Arabidopsis indicates a high degree of conservation of the N-terminal targeting domain, the overall putative coiled-coil structure of the protein, and the C-terminal DNA-binding domain. In addition, we show that tobacco MFP1 is regulated in an organ-specific and developmental fashion, and that this regulation occurs at the level of transcription or RNA stability. PMID:10631266
Galactosaminogalactan, a New Immunosuppressive Polysaccharide of Aspergillus fumigatus
Simenel, Catherine; Coddeville, Bernadette; van Vliet, Sandra J.; van Kooyk, Yvette; Bozza, Silvia; Moretti, Silvia; Schwarz, Flavio; Trichot, Coline; Aebi, Markus; Delepierre, Muriel; Elbim, Carole; Romani, Luigina; Latgé, Jean-Paul
2011-01-01
A new polysaccharide secreted by the human opportunistic fungal pathogen Aspergillus fumigatus has been characterized. Carbohydrate analysis using specific chemical degradations, mass spectrometry, 1H and 13C nuclear magnetic resonance showed that this polysaccharide is a linear heterogeneous galactosaminogalactan composed of α1-4 linked galactose and α1-4 linked N-acetylgalactosamine residues where both monosacharides are randomly distributed and where the percentage of galactose per chain varied from 15 to 60%. This polysaccharide is antigenic and is recognized by a majority of the human population irrespectively of the occurrence of an Aspergillus infection. GalNAc oligosaccharides are an essential epitope of the galactosaminogalactan that explains the universal antibody reaction due to cross reactivity with other antigenic molecules containing GalNAc stretches such as the N-glycans of Campylobacter jejuni. The galactosaminogalactan has no protective effect during Aspergillus infections. Most importantly, the polysaccharide promotes fungal development in immunocompetent mice due to its immunosuppressive activity associated with disminished neutrophil infiltrates. PMID:22102815
Okay, Thelma Suely; Del Negro, Gilda Maria Barbaro; Yamamoto, Lídia; Raiz Júnior, Roberto
2005-01-01
Twenty-four whole blood and serum samples were drawn from an eight year-old heart transplant child during a 36 months follow-up. EBV serology was positive for VCA-IgM and IgG, and negative for EBNA-IgG at the age of five years old when the child presented with signs and symptoms suggestive of acute infectious mononucleosis. After 14 months, serological parameters were: positive VCA-IgG, EBNA-IgG and negative VCA-IgM. This serological pattern has been maintained since then even during episodes suggestive of EBV reactivation. PCR amplified a specific DNA fragment from the EBV gp220 (detection limit of 100 viral copies). All twenty-four whole blood samples yielded positive results by PCR, while 12 out of 24 serum samples were positive. We aimed at analyzing whether detection of EBV-DNA in serum samples by PCR was associated with overt disease as stated by the need of antiviral treatment and hospitalization. Statistical analysis showed agreement between the two parameters evidenced by the Kappa test (value 0.750; p < 0.001). We concluded that detection of EBV-DNA in serum samples of immunosuppressed patients might be used as a laboratory marker of active EBV disease when a Real-Time PCR or another quantitative method is not available.
Ohkawara, Hiroshi; Ishibashi, Toshiyuki; Sugimoto, Koichi; Ikeda, Kazuhiko; Ogawa, Kazuei; Takeishi, Yasuchika
2014-01-01
Membrane type 1–matrix metalloproteinase (MT1-MMP) functions as a signaling molecule in addition to a proteolytic enzyme. Our hypothesis was that MT1-MMP cooperates with protein kinase B (Akt) in tumor necrosis factor (TNF)-α-induced signaling pathways of vascular responses, including tissue factor (TF) procoagulant activity and endothelial apoptosis, in cultured human aortic endothelial cells (ECs). TNF-α (10 ng/mL) induced a decrease in Akt phosphorylation within 60 minutes in ECs. A chemical inhibitor of MMP, TIMP-2 and selective small interfering RNA (siRNA)-mediated suppression of MT1-MMP reversed TNF-α-triggered transient decrease of Akt phosphorylation within 60 minutes, suggesting that MT1-MMP may be a key regulator of Akt phosphorylation in TNF-α-stimulated ECs. In the downstream events, TNF-α increased TF antigen and activity, and suppressed the expression of thrombomodulin (TM) antigen. Inhibition of Akt markedly enhanced TNF-α-induced expression of TF antigen and activity, and further reduced the expression of TM antigen. Silencing of MT1-MMP by siRNA also reversed the changed expression of TF and TM induced by TNF-α. Moreover, TNF-α induced apoptosis of ECs through Akt- and forkhead box protein O1 (FoxO1)-dependent signaling pathway and nuclear factor-kB (NF-kB) activation. Knockdown of MT1-MMP by siRNA reversed apoptosis of ECs by inhibiting TNF-α-induced Akt-dependent regulation of FoxO1 in TNF-α-stimulated ECs. Immunoprecipitation demonstrated that TNF-α induced the changes in the associations between the cytoplasmic fraction of MT1-MMP and Akt in ECs. In conclusion, we show new evidence that MT1-MMP/Akt signaling axis is a key modifier for TNF-α-induced signaling pathways for modulation of procoagulant activity and apoptosis of ECs. PMID:25162582
Inhibition of interferon-gamma expression by osmotic shrinkage of peripheral blood lymphocytes.
Lang, K S; Weigert, C; Braedel, S; Fillon, S; Palmada, M; Schleicher, E; Rammensee, H-G; Lang, F
2003-01-01
A hypertonic environment, as it prevails in renal medulla or in hyperosmolar states such as hyperglycemia of diabetes mellitus, has been shown to impair the immune response, thus facilitating the development of infection. The present experiments were performed to test whether hypertonicity influences activation of T lymphocytes. To this end, peripheral blood lymphocytes (PBL) of cytomegalovirus (CMV)-positive donors were stimulated by human leukocyte antigen (HLA)-A2-restricted CMV epitope NLVPMVATV to produce interferon (IFN)-gamma at varying extracellular osmolarity. As a result, increasing extracellular osmolarity during exposure to the CMV antigen indeed decreased IFN-gamma formation. Addition of NaCl was more effective than urea. A 50% inhibition was observed at 350 mosM by addition of NaCl. The combined application of the Ca(2+) ionophore ionomycin (1 microg/ml) and the phorbol ester phorbol 12-myristate 13-acetate (PMA; 5 microg/ml) stimulated IFN-gamma production, an effect again reversed by hyperosmolarity. Moreover, hyperosmolarity abrogated the stimulating effect of ionomycin (1 microg/ml) and PMA (5 microg/ml) on the transcription factors activator protein (AP)-1, nuclear factor of activated T cells (NFAT), and NF-kappaB but not Sp1. In conclusion, osmotic cell shrinkage blunts the stimulatory action of antigen exposure on IFN-gamma production, an effect explained at least partially by suppression of transcription factor activation.
Significance and outcome of nuclear anaplasia and mitotic index in prostatic adenocarcinomas.
Kır, Gozde; Sarbay, Billur Cosan; Gumus, Eyup
2016-10-01
The Gleason grading system measures architectural differentiation and disregards nuclear atypia and the cell proliferation index. Several studies have reported that nuclear grade and mitotic index (MI) are prognostically useful. This study included 232 radical prostatectomy specimens. Nuclear anaplasia (NA) was determined on the basis of nucleomegali (at least 20µm); vesicular chromatin; eosinophilic macronucleoli, nuclear lobulation, and irregular thickened nuclear membranei. The proportion of area of NA was recorded in each tumor in 10% increments. The MI was defined as the number of mitotic figures in 10 consecutive high-power fields (HPF). In univariate analysis, significant differences included associations between biochemical prostate-specific antigen recurrence (BCR) and Gleason score, extraprostatic extension, positive surgical margin, the presence of high-pathologic stage, NA≥10% of tumor area, MI≥3/10 HPF, and preoperative prostate-specific antigen. In a stepwise Cox regression model, a positive surgical margin, the presence of a NA≥10% of tumor area, and a MI of≥3/10 HPF were independent predictors of BCR after radical prostatectomy. NA≥10% of tumor area appeared to have a stronger association with outcome than MI≥3/10 HPF, as still associated with BCR when Gleason score was in the model. The results of our study showed that, in addition to the conventional Gleason grading system, NA, and MI are useful prognostic parameters while evaluating long-term prognosis in prostatic adenocarcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meissner, Torsten B.; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215; Li, Amy
Highlights: Black-Right-Pointing-Pointer NLRC5 requires an intact NLS for its function as MHC class I transactivator. Black-Right-Pointing-Pointer Nuclear presence of NLRC5 is required for MHC class I induction. Black-Right-Pointing-Pointer Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known,more » NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.« less
Kurth, Julia; Hansmann, Martin-Leo; Rajewsky, Klaus; Küppers, Ralf
2003-04-15
To assess the impact of the germinal center (GC) reaction on viral spread in Epstein-Barr virus (EBV) infection, we isolated EBV(+) GC B cells from the tonsils of two infectious mononucleosis patients, sequenced their rearranged V genes, and determined expression of the EBV latency genes EBV nuclear antigen 2 and latent membrane protein 1. Most EBV(+) GC B cells belonged to clones of cells harboring somatically mutated V gene rearrangements. Ongoing somatic hypermutation, the hallmark of the GC reaction, was seen only in uninfected GC B cell clones, not in EBV(+) B cell clones. Thus, in infectious mononucleosis, GC and/or memory B cells are directly infected by EBV and expand without somatic hypermutation, whereas the GC passage of EBV-infected naive B cells does not contribute detectably to the generation of infected memory B cells, the main reservoir of EBV during persistence. Most, if not all, EBV-infected cells in GCs exhibited an unusual EBV gene expression pattern in that they were positive for EBV nuclear antigen 2 but negative for latent membrane protein 1. Although the three main types of EBV-associated B cell lymphomas (Burkitt's, Hodgkin's, and posttransplant lymphomas) presumably are derived from GC B cells, EBV(+) GC B cells resembling these EBV(+) GC B cell lymphomas in terms of EBV gene expression and somatic hypermutation pattern could not be identified.
Albarracín, Romina M; Becher, Melina Laguía; Farran, Inmaculada; Sander, Valeria A; Corigliano, Mariana G; Yácono, María L; Pariani, Sebastián; López, Edwin Sánchez; Veramendi, Jon; Clemente, Marina
2015-05-01
Chloroplast transformation technology has emerged as an alternative platform offering many advantages over nuclear transformation. SAG1 is the main surface antigen of the intracellular parasite Toxoplasma gondii and a promising candidate to produce an anti-T. gondii vaccine. The aim of this study was to investigate the expression of SAG1 using chloroplast transformation technology in tobacco plants. In order to improve expression in transplastomic plants, we also expressed the 90-kDa heat shock protein of Leishmania infantum (LiHsp83) as a carrier for the SAG1 antigen. SAG1 protein accumulation in transplastomic plants was approximately 0.1-0.2 μg per gram of fresh weight (FW). Fusion of SAG1 to LiHsp83 significantly increased the level of SAG1 accumulation in tobacco chloroplasts (by up to 500-fold). We also evaluated the functionality of the chLiHsp83-SAG1. Three human seropositive samples reacted with SAG1 expressed in transplastomic chLiHsp83-SAG1 plants. Oral immunization with chLiHsp83-SAG1 elicited a significant reduction of the cyst burden that correlated with an increase of SAG1-specific antibodies. We propose the fusion of foreign proteins to LiHsp83 as a novel strategy to increase the expression level of the recombinant proteins using chloroplast transformation technology, thus addressing one of the current challenges for this approach in antigen protein production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Romanenko, Alina; Lee, Chyi Chia R.; Yamamoto, Shinji; Hori, Taka‐aki; Wanibuchi, Hideki; Zaparin, Wadim; Vinnichenko, Wladimir; Vozianov, Alexander
1999-01-01
During the 11‐year period subsequent to the Chernobyl accident, the incidence of urinary bladder cancer in Ukraine has increased from 26.2 to 36.1 per 100,000 population. Cesium‐137 (137Cs) accounts for 80–90% of the incorporated radioactivity in this population, which has been exposed to long‐term, low‐dose ionizing radiation, and 80% of the more labile pool of cesium is excreted via the urine. The present study was performed to evaluate the histopathological features and the immunohistochemical status of p53, p21WAF1/Cip1, cyclin D1 and PCNA (proliferating cell nuclear antigen) in urinary bladder mucos a of 55 males (49‐92 years old) with benign prostatic hyperplasia who underwent surgery in Kiev, Ukraine, in 1995 and 1996. Group I (28 patients) inhabiting radiocontaminated areas of the country, group II (17 patients) from Kiev city with less radiocontamination and a control group III (10 patients) living in so‐called “clean” areas of Ukraine were compared. In groups I and II, an increase in multiple areas of moderate or severe dysplasia or carcinoma in situ was seen in 42 (93%) of 45 cases. In addi tion, two small transitional cell carcinomas were found in one patient in each of groups I and II. Nuclear accumulation of p53, PCNA, cyclin D1, and to a lesser extent p21WAF1/Cip1, was significantly increased in both groups I and II as compared with the control group III, indicating possible transformation events or enhancement of repair activities, that may precede the defect in the regulatory pathway itself, at least in the G1 phase of the cell cycle. Our results suggest that early malignant transformation is taking place in the bladder urothelium of people in the radiocontaminated areas of Ukraine and that this could possibly lead sometime in the future to an increased incidence of urinary bladder cancer. PMID:10189884
MYC-induced nuclear antigen (MINA) and preeclampsia.
Martinez-Fierro, Margarita L; Reyes-Oliva, Edwin A; Cabral-Pacheco, Griselda A; Garza-Veloz, Idalia; Aceves-Medina, Maria C; Luevano, Martha; Barbosa-Cisneros, Olga Y; Galvan-Valencia, Marisol; Yahuaca-Mendoza, Patricia; Delgado-Enciso, Ivan; Zamudio-Osuna, Michelle; Rodriguez-Sanchez, Iram P; Vazquez-Castro, Rosbel; Guerrero-Saucedo, Marycruz
2016-05-01
Inadequate trophoblast invasion and the subsequent inflammatory response have been implicated in preeclampsia (PE) pathogenesis. Because MYC-induced nuclear antigen (MINA) gene expression is involved in cell proliferation and differentiation, inflammatory response modulation, and the unpaired regulation of which is associated with human diseases, we sought to investigate the connection between MINA and PE. The aim of this study was to evaluate the possible relationship between the MINA rs4857304 variant and susceptibility to PE development as well as to estimate placental MINA gene expression and its association with PE. About 242 pregnant women (126 PE cases and 116 controls) were included. MINA genotyping and gene expression were evaluated by quantitative real-time polymerase chain reaction using TaqMan probes. The G/G genotype of the MINA rs4857304 variant was associated with severe PE (p = 0.027, OR = 1.8, 95% CI = 1.8-3.2). Carriers of one G allele of the MINA rs4857304 variant exhibited a 1.7-fold increased risk of severe PE (p = 0.029, 95% CI = 1.1-3.0). MINA was underexpressed in preeclamptic placentas and MINA expression differed between the mild and severe PE groups. Differences in the expression levels of MINA were found among women with the T/T genotype of the rs4857304 polymorphism and carriers of at least one G allele (p = 0.024). PE and its severity are associated with the underexpression of placental MINA, and the G/G genotype of the MINA rs4857304 variant may modify the risk of severe PE among the PE cases evaluated.
Bajenova, Olga; Stolper, Eugenia; Gapon, Svetlana; Sundina, Natalia; Zimmer, Regis; Thomas, Peter
2003-11-15
Elevated concentrations of carcinoembryonic antigen (CEA) in the blood are associated with the development of hepatic metastases from colorectal cancers. Clearance of circulating CEA occurs through endocytosis by liver macrophages, Kupffer cells. Previously we identified heterogeneous nuclear ribonucleoproteins M4 (hnRNP M4) as a receptor (CEAR) for CEA. HnRNP M4 has two isoform proteins (p80, p76), the full-length hnRNP M4 (CEARL) and a truncated form (CEARS) with a deletion of 39 amino acids between RNA binding domains 1 and 2, generated by alternative splicing. The present study was undertaken to clarify any isoform-specific differences in terms of their function as CEA receptor and localization. We develop anti-CEAR isoform-specific antibodies and show that both CEAR splicing isoforms are expressed on the surface of Kupffer cells and can function as CEA receptor. Alternatively, in P388D1 macrophages CEARS protein has nuclear and CEARL has cytoplasmic localization. In MIP101 colon cancer and HeLa cells the CEARS protein is localized to the nucleus and CEARL to the cytoplasm. These findings imply that different functions are assigned to CEAR isoforms depending on the cell type. The search of 39 amino acids deleted region against the Prosite data base revealed the presence of N-myristylation signal PGGPGMITIP that may be involved in protein targeting to the plasma membrane. Overall, this report demonstrates that the cellular distribution, level of expression, and relative amount of CEARL and CEARS isoforms determine specificity for CEA binding and the expression of alternative spliced forms of CEAR is regulated in a tissue-specific manner.
Li, Yi; Zhu, Hong; Zhang, Huajun; Chen, Zhangran; Tian, Yun; Xu, Hong; Zheng, Tianling; Zheng, Wei
2014-08-15
Toxicity of algicidal extracts from Mangrovimonas yunxiaonensis strain LY01 on Alexandrium tamarense were measured through studying the algicidal procedure, nuclear damage and transcription of related genes. Medium components were optimized to improve algicidal activity, and characteristics of algicidal extracts were determined. Transmission electron microscope analysis revealed that the cell structure was broken. Cell membrane integrity destruction and nuclear structure degradation were monitored using confocal laser scanning microscope, and the rbcS, hsp and proliferating cell nuclear antigen (PCNA) gene expressions were studied. Results showed that 1.0% tryptone, 0.4% glucose and 0.8% MgCl2 were the optimal nutrient sources. The algicidal extracts were heat and pH stable, non-protein and less than 1kD. Cell membrane and nuclear structure integrity were lost, and the transcription of the rbcS and PCNA genes were significantly inhibited and there was up-regulation of hsp gene expression during the exposure procedure. The algicidal extracts destroyed the cell membrane and nuclear structure integrity, inhibited related gene expression and, eventually, lead to the inhibition of algal growth. All the results may elaborate firstly the cell death process and nuclear damage in A. tamarense which was induced by algicidal extracts, and the algicidal extracts could be potentially used as bacterial control of HABs in future. Copyright © 2014 Elsevier B.V. All rights reserved.
Cavalcante, Paola; Maggi, Lorenzo; Colleoni, Lara; Caldara, Rosa; Motta, Teresio; Giardina, Carmelo; Antozzi, Carlo; Berrih-Aknin, Sonia; Bernasconi, Pia; Mantegazza, Renato
2011-01-01
The thymus plays a major role in myasthenia gravis (MG). Our recent finding of a persistent Epstein-Barr (EBV) virus infection in some MG thymuses, combined with data showing that the thymus is in a proinflammatory state in most patients, supports a viral contribution to the pathogenesis of MG. Aim of this study was to gain further evidence for intrathymic chronic inflammation and EBV infection in MG patients. Transcriptional profiling by low density array and real-time PCR showed overexpression of genes involved in inflammatory and immune response in MG thymuses. Real-time PCR for EBV genome, latent (EBER1, EBNA1, LMP1) and lytic (BZLF1) transcripts, and immunohistochemistry for LMP1 and BZLF1 proteins confirmed an active intrathymic EBV infection, further supporting the hypothesis that EBV might contribute to onset or perpetuation of the autoimmune response in MG. Altogether, our results support a role of inflammation and EBV infection as pathogenic features of MG thymus. PMID:21961056
Setia, Shruti; Sanyal, Sankar Nath
2012-01-01
9,10-Dimethyl benz(a)anthracene (DMBA), when injected intratracheally once at a dose of 20 mg/kg body weight, is found to induce lung cancer in rats. Two nonsteroidal anti-inflammatory drugs (NSAIDs), indomethacin and etoricoxib, are given orally daily as chemopreventive agents at a dose of 0.6 mg/kg body weight and 2 mg/kg body weight, respectively, along with DMBA. Morphologic and histologic analysis revealed the occurence of tumors and intense cellular proliferation in the DMBA-treated animals, whereas no such features were observed in the other groups. Nuclear factor κB, a nuclear transcription factor, and proliferating cell nuclear antigen, a cell proliferation antigen, were studied by immunoblotting and immunohistochemistry and their levels were markedly elevated in the DMBA group compared with the others. Oxidative stress parameters, as studied by the inducible nitric oxide synthase activity, and the levels of reactive oxygen and nitrogen species were found to be suppressed in the DMBA group. Furthermore, fluorescent staining of the isolated lung cells from bronchoalveolar lavage was performed to study apoptosis and alterations in the mitochondrial membrane potential, and the DMBA-induced lung cancer was found to be associated with high inner mitochondrial membrane potential and a suppressed level of apoptosis.
AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liiv, Ingrid, E-mail: ingrid.liiv@ut.ee; Haljasorg, Uku; Kisand, Kai
2012-06-22
Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well asmore » doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.« less
Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells
NASA Astrophysics Data System (ADS)
Herce, Henry D.; Schumacher, Dominik; Schneider, Anselm F. L.; Ludwig, Anne K.; Mann, Florian A.; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M. Cristina; Hackenberger, Christian P. R.
2017-08-01
Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.
1994-01-01
Antinuclear antibodies (ANAs) reactive with a limited spectrum of nuclear antigens are characteristic of systemic lupus erythematosus (SLE) and other collagen vascular diseases, and are also associated with certain viral infections. The factors that initiate ANA production and determine ANA specificity are not well understood. In this study, high titer ANAs specific for the p53 tumor suppressor protein were induced in mice immunized with purified complexes of murine p53 and the Simian virus 40 large T antigen (SVT), but not in mice immunized with either protein separately. The autoantibodies to p53 in these mice were primarily of the IgG1 isotype, were not cross-reactive with SVT, and were produced at titers up to 1:25,000, without the appearance of other autoantibodies. The high levels of autoantibodies to p53 in mice immunized with p53/SVT complexes were transient, but low levels of the autoantibodies persisted. The latter may have been maintained by self antigen, since the anti-p53, but not the SVT, response in these mice could be boosted by immunizing with murine p53. Thus, once autoimmunity to p53 was established by immunizing with p53/SVT complexes, it could be maintained without a requirement for SVT. These data may be explained in at least two ways. First, altered antigen processing resulting from the formation of p53/SVT complexes might activate autoreactive T helper cells specific for cryptic epitopes of murine p53, driving anti-p53 autoantibody production. Alternatively, SVT- responsive T cells may provide intermolecular-intrastructural help to B cells specific for murine p53. In a second stage, these activated B cells might themselves process self p53, generating p53-responsive autoreactive T cells. The induction of autoantibodies during the course of an immune response directed against this naturally occurring complex of self and nonself antigens may be relevant to the generation of specific autoantibodies in viral infections, and may also have implications for understanding the pathogenesis of ANAs in SLE. In particular, our results imply that autoimmunity can be initiated by a "hit and run" mechanism in which the binding of a viral antigen to a self protein triggers an immune response that subsequently can be perpetuated by self antigen. PMID:8145041
Proliferating cell nuclear antigen (Pcna) as a direct downstream target gene of Hoxc8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Hyehyun; Lee, Ji-Yeon; Bok, Jinwoong
2010-02-19
Hoxc8 is a member of Hox family transcription factors that play crucial roles in spatiotemporal body patterning during embryogenesis. Hox proteins contain a conserved 61 amino acid homeodomain, which is responsible for recognition and binding of the proteins onto Hox-specific DNA binding motifs and regulates expression of their target genes. Previously, using proteome analysis, we identified Proliferating cell nuclear antigen (Pcna) as one of the putative target genes of Hoxc8. Here, we asked whether Hoxc8 regulates Pcna expression by directly binding to the regulatory sequence of Pcna. In mouse embryos at embryonic day 11.5, the expression pattern of Pcna wasmore » similar to that of Hoxc8 along the anteroposterior body axis. Moreover, Pcna transcript levels as well as cell proliferation rate were increased by overexpression of Hoxc8 in C3H10T1/2 mouse embryonic fibroblast cells. Characterization of 2.3 kb genomic sequence upstream of Pcna coding region revealed that the upstream sequence contains several Hox core binding sequences and one Hox-Pbx binding sequence. Direct binding of Hoxc8 proteins to the Pcna regulatory sequence was verified by chromatin immunoprecipitation assay. Taken together, our data suggest that Pcna is a direct downstream target of Hoxc8.« less
Amoroso, Alessandra; Concia, Lorenzo; Maggio, Caterina; Raynaud, Cécile; Bergounioux, Catherine; Crespan, Emmanuele; Cella, Rino; Maga, Giovanni
2011-01-01
The oxidized base 7,8-oxoguanine (8-oxo-G) is the most common DNA lesion generated by reactive oxygen species. This lesion is highly mutagenic due to the frequent misincorporation of A opposite 8-oxo-G during DNA replication. In mammalian cells, the DNA polymerase (pol) family X enzyme DNA pol λ catalyzes the correct incorporation of C opposite 8-oxo-G, together with the auxiliary factor proliferating cell nuclear antigen (PCNA). Here, we show that Arabidopsis thaliana DNA pol λ, the only member of the X family in plants, is as efficient in performing error-free translesion synthesis past 8-oxo-G as its mammalian homolog. Arabidopsis, in contrast with animal cells, possesses two genes for PCNA. Using in vitro and in vivo approaches, we observed that PCNA2, but not PCNA1, physically interacts with DNA pol λ, enhancing its fidelity and efficiency in translesion synthesis. The levels of DNA pol λ in transgenic plantlets characterized by overexpression or silencing of Arabidopsis POLL correlate with the ability of cell extracts to perform error-free translesion synthesis. The important role of DNA pol λ is corroborated by the observation that the promoter of POLL is activated by UV and that both overexpressing and silenced plants show altered growth phenotypes. PMID:21325140
Effects of menadione, a reactive oxygen generator, on leukotriene secretion from RBL-2H3 cells.
Kawamura, Fumio; Nakanishi, Mamoru; Hirashima, Naohide
2010-01-01
Reactive oxygen species (ROS) are produced in various cells and affect many biological processes. We previously reported that 2-methyl-1,4-naphtoquinone (menadione) inhibited Ca(2+) influx from the extracellular medium and exocytosis evoked by antigen stimulation in the mast cell line, RBL-2H3. Mast cells release various inflammatory mediators such as leukotrienes (LTs) and cytokines in addition to the exocytotic secretion of histamine. In this study, we investigated the effects of menadione on LT release in RBL-2H3. Treatment of RBL cells with menadione inhibited LTC(4) secretion induced by antigen stimulation. To elucidate the mechanism of this inhibition, we examined the effects of menadione on the activation process of 5-lipoxygenase that is responsible for the synthesis of LTs from arachidonic acid. Menadione did not affect the phosophorylation of mitogen activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK) and p38, which regulates phosphorylation of 5-lipoxygenase. However, menadione inhibited the translocation of 5-lipoxygenase from the cytoplasm to the nuclear membrane. Together with the result that LT secretion was severely impaired in the absence of extracellular Ca2(2+), it is suggested that ROS produced by menadione inhibited LT secretion through impaired Ca2(2+) influx and 5-lipoxygenase translocation to the nuclear membrane.
Analysis of differential protein expression by cisplatin treatment in cervical carcinoma cells.
Yim, E-K; Lee, K-H; Kim, C-J; Park, J-S
2006-01-01
Cisplatin (cis-diaminedichloroplatinum), a DNA-damaging agent, which readily induces apoptosis in vitro, is one of the widely used anticancer drug in the treatment of human malignancies. Cisplatin has played an important role in cervical cancer management for effective chemotherapeutic regimen, but the underlying mechanisms inducing cell death at protein level are unknown. Using proteome analysis, an investigation aimed at a better understanding of the antiproliferative mechanisms by cisplatin was carried out in HeLa cervical carcinoma cells. In total, 21 protein spots were found to be differentially expressed following cisplatin treatment, of which 12 were upregulated (eg, regulator of G-protein signaling, TRAF:TNF (tumor necrosis factor) receptor-associated factor-interacting protein [I-TRAF], and cyclin-dependent kinase inhibitor p27 [p27(kip1)]) and 9 were downregulated (eg, myc proto-oncoprotein [c-myc] and proliferating cell nuclear antigen). Interestingly, we found the upregulation of proliferating cell nuclear antigen, which used molecular marker in cervical cancer screening. On the basis of proteomic data, we showed that cisplatin induced TRAF2-mediated NF-kappaB downregulation. In addition, our study demonstrated that cisplatin induced membrane death receptor-mediated and mitochondria-mediated apoptosis pathway. Our findings may offer new insights into the antiproliferative mechanism by cisplatin and its mode of action in cervical carcinoma cells.
Havens, Courtney G.; Shobnam, Nadia; Guarino, Estrella; Centore, Richard C.; Zou, Lee; Kearsey, Stephen E.; Walter, Johannes C.
2012-01-01
The E3 ubiquitin ligase Cullin-ring ligase 4-Cdt2 (CRL4Cdt2) is emerging as an important cell cycle regulator that targets numerous proteins for destruction in S phase and after DNA damage, including Cdt1, p21, and Set8. CRL4Cdt2 substrates contain a “PIP degron,” which consists of a canonical proliferating cell nuclear antigen (PCNA) interaction motif (PIP box) and an adjacent basic amino acid. Substrates use their PIP box to form a binary complex with PCNA on chromatin and the basic residue to recruit CRL4Cdt2 for substrate ubiquitylation. Using Xenopus egg extracts, we identify an acidic residue in PCNA that is essential to support destruction of all CRL4Cdt2 substrates. This PCNA residue, which adjoins the basic amino acid of the bound PIP degron, is dispensable for substrate binding to PCNA but essential for CRL4Cdt2 recruitment to chromatin. Our data show that the interaction of CRL4Cdt2 with substrates requires molecular determinants not only in the substrate degron but also on PCNA. The results illustrate a potentially general mechanism by which E3 ligases can couple ubiquitylation to the formation of protein-protein interactions. PMID:22303007
Hayashi, Hiromitsu; Kuroki, Hideyuki; Higashi, Takaaki; Takeyama, Hideaki; Yokoyama, Naomi; Okabe, Hirohisa; Nitta, Hidetoshi; Beppu, Toru; Takamori, Hiroshi; Baba, Hideo
2017-07-01
Liver is an amazing organ that can undergo regenerative and atrophic changes inversely, depending on blood flow conditions. Although the regenerative mechanism has been extensively studied, the atrophic mechanism remains to be elucidated. To assess the molecular mechanism of liver atrophy due to reduced portal blood flow, we analyzed the gene expressions between atrophic and hypertrophic livers induced by portal vein embolization in three human liver tissues using microarray analyses. Thrombospondin (TSP)-1 is an extracellular protein and a negative regulator of liver regeneration through its activation of the transforming growth factor-β/Smad signaling pathway. TSP-1 was extracted as the most upregulated gene in atrophic liver compared to hypertrophic liver due to portal flow obstruction in human. Liver atrophic and hypertrophic changes were confirmed by HE and proliferating cell nuclear antigen staining and terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling. In an in vivo model with portal ligation, TSP-1 and phosphorylated Smad2 expression were continuously induced at 6 h and thereafter in the portal ligated liver, whereas the induction was transient at 6 h in the portal non-ligated liver. Indeed, while cell proliferation represented by proliferating cell nuclear antigen expression at 48 h was induced in the portal ligated liver, the sinusoidal dilatation and hepatocyte cell death with terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling was detectable at 48 h in the portal ligated liver. Obstructed portal flow induces persistent TSP-1 expression and transforming growth factor-β/Smad signal activation in atrophic liver. Thrombospondin-1 may be implicated in the liver atrophic change due to obstructed portal flow as a pro-atrophic factor. © 2016 The Japan Society of Hepatology.
Kopecný, V; Biggiogera, M; Pivko, J; Pavlok, A; Martin, T E; Kaufmann, S H; Shaper, J H; Fakan, S
2000-11-01
Nuclear bodies occurring during the 2-cell stage of bovine embryos (obtained either by in vitro fertilisation of in vitro matured ovarian oocytes, or collection after fertilisation and cleavage in vivo) were studied using ultrastructural cytochemistry and immunocytochemistry to determine whether their occurrence may be linked with the onset of embryonic transcription. In addition, the species-specific ultrastructural features of the interchromatin structures of the 2-cell bovine embryo were displayed. Three different types of nuclear bodies were distinguished: (i) nucleolus precursor bodies (NPBs), (ii) loose bodies (LBs) and (iii) dense bodies (DBs). In order to determine their possible functional significance, we considered parallels between these three nuclear entities and interchromatin compartments reported in other cells. As detected by their preferential ribonucleoprotein staining, all types of nuclear bodies contained ribonucleoproteins. In contrast to the other types of nuclear bodies studied, NPBs contained argyrophilic proteins but in no case they did show morphological features of functional nucleoli. Both compact and vacuolated forms of NPBs were seen in both in vivo and in vitro embryos, sometimes simultaneously in the same nucleus. LBs and DBs reacted with antibodies to Sm antigen, indicating the presence of a group of nucleoplasmic, non-nucleolar small nuclear ribonucleoproteins (snRNPs). The immunoreactivity for Sm antigen was more intense and homogeneous in DBs than in LBs. DBs were seen in both categories of embryo. A possible kinship of DBs with the sphere organelle known from oocytes of different animal species or the prominent spherical inclusions of the early mouse embryo nuclei is suggested. The last type of intranuclear body, the LBs, showed a composite structure. Their granular component, occurring in clusters and displaying immunoreactivity for Sm antigen, was similar to interchromatin granules and was therefore named IG-like granules. Another component forming the LBs showed a much finer structure and a lower immunoreactivity with anti-Sm antibodies. We suggest that this amorphous component may be related to the IG-associated zone. All three types of intranuclear bodies were often seen close together, suggesting their possible mutual functional relationship. From these and other observations we conclude that the intranuclear bodies in 2-cell bovine embryos correspond, with the exception of the NPB, to similar structures/compartments supposed to accumulate inactive spliceosomal components in certain phases of somatic cell nucleus functions. Accordingly, the occurrence of such nuclear bodies does not represent cytological evidence for RNA synthesis. In contrast to this, an important morphological feature revealing the status of the bovine 2-cell embryo is the vacuolisation of the NPB.
Duhlin, Amanda; Chen, Yunying; Wermeling, Fredrik; Sedimbi, Saikiran K; Lindh, Emma; Shinde, Rahul; Halaby, Marie Jo; Kaiser, Ylva; Winqvist, Ola; McGaha, Tracy L; Karlsson, Mikael C I
2016-10-01
Autoimmune diseases are characterized by pathogenic immune responses to self-antigens. In systemic lupus erythematosus (SLE), many self-antigens are found in apoptotic cells (ACs), and defects in removal of ACs from the body are linked to a risk for developing SLE. This includes pathological memory that gives rise to disease flares. In this study, we investigated how memory to AC-derived self-antigens develops and the contribution of self-memory to the development of lupus-related pathology. Multiple injections of ACs without adjuvant into wild-type mice induce a transient primary autoimmune response without apparent anti-nuclear Ab reactivity or kidney pathology. Interestingly, as the transient Ab response reached baseline, a single boost injection fully recalled the immune response to ACs, and this memory response was furthermore transferable into naive mice. Additionally, the memory response contains elements of pathogenicity, accompanied by selective memory to selective Ags. Thus, we provide evidence for a selective self-memory that underlies progression of the response to self-antigens with implications for SLE development therapy. Copyright © 2016 by The American Association of Immunologists, Inc.
Radioimmune localization of occult carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duda, R.B.; Zimmer, A.M.; Rosen, S.T.
1990-07-01
Patients with a rising serum carcinoembryonic antigen level and no clinical or roentgenographic evidence of recurrent or metastatic cancer present a treatment dilemma. Eleven such patients, 10 with a previously treated colorectal carcinoma and 1 with a previously treated breast carcinoma, received an injection of the anticarcinoembryonic antigen monoclonal antibody ZCE-025 labeled with the radioisotope indium 111. Nuclear scintigraphy was performed on days 3 and 5 through 7 to detect potential sites of tumor recurrence. The monoclonal antibody scan accurately predicted the presence or absence of occult malignancy in 7 (64%) patients. Second-look laparotomy confirmed the monoclonal antibody scan resultsmore » in the patients with colorectal cancer, and magnetic resonance imaging confirmed metastatic breast cancer. This study demonstrates that In-ZCE-025 can localize occult carcinoma and may assist the surgeon in facilitating the operative exploration. In-ZCE-025 assisted in the initiation of adjuvant therapy for the patient with breast cancer.« less
Iacono-Connors, L C; Schmaljohn, C S; Dalrymple, J M
1990-01-01
The gene encoding Bacillus anthracis protective antigen (PA) was modified by site-directed mutagenesis, subcloned into baculovirus and vaccinia virus plasmid transfer vectors (pAcYM1 and pSC-11, respectively), and inserted via homologous recombinations into baculovirus Autographa californica nuclear polyhedrosis virus or vaccinia virus (strains WR and Connaught). Expression of PA was detected in both systems by immunofluorescence assays with antisera from rabbits immunized with B. anthracis PA. Western blot (immunoblot) analysis showed that the expressed product of both systems was slightly larger (86 kilodaltons) than B. anthracis-produced PA (83.5 kilodaltons). Analysis of trypsin digests of virus-expressed and authentic PA suggested that the size difference was due to the presence of a signal sequence remaining with the virus-expressed protein. Immunization of mice with either recombinant baculovirus-infected Spodoptera frugiperda cells or with vaccinia virus recombinants elicited a high-titer, anti-PA antibody response. Images PMID:2105271
[The antibacterial immunity of people under dynamic observation in an altered radiation situation].
Bidnenko, S I; Nazarchuk, L V; Fedorovskaia, E A; Liutko, O B; Open'ko, L B
1992-01-01
The comparative study of the isolation rate, level, antigenic and class specificity of serum antibodies to the causative agents of purulent septic infections (Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis) and acute enteric infections in healthy adults with different ABO blood groups before (836 persons) and after (1,429 persons) the catastrophe at the Chernobyl nuclear power station was made. The study revealed the fact that the genesis of antibodies directed against different microorganisms can be stimulated without additional antigenic challenge in the form of disease or immunization, which was definitely indicative of the influence of small radiation doses in Kiev on the humoral immunity of the population. The multifactor character of the dependence of antibacterial antibody formation under altered radiation conditions on the specific features of the infective agent and the intensity of its circulation among the population, individual immune responsiveness of the body and concrete radiation conditions was established.
Expression and significance of Ki-67 in lung cancer.
Folescu, Roxana; Levai, Codrina Mihaela; Grigoraş, Mirela Loredana; Arghirescu, Teodora Smaranda; Talpoş, Ioana Cristina; Gîndac, Ciprian Mihai; Zamfir, Carmen Lăcrămioara; Poroch, Vladimir; Anghel, Mirella Dorina
2018-01-01
Ki-67 parameter is a proliferation marker in malignant tumors. The increased proliferation activity and the decreased prognosis in lung cancer determined us to investigate different parameters connected to the tumor's aggression, such as cellularity, Ki-67 positivity rate, and proliferating cell nuclear antigen (PCNA). We evaluated the proliferative activity in 62 primary lung tumors by determining the cell's percentage of Ki-67 and immunoreactive PCNA (using MIB-1 and PCNA monoclonal antibodies), classifying Ki-67 and PCNA immunoreactivity into three score groups. The results obtained emphasized a linkage between Ki-67 score with the histological tumor subtype, tumor cellularity and degree of differentiation and with other proliferation immunohistochemistry (IHC) markers, such as p53 cellular tumor antigen. The tumor's cellularity, the Ki-67 positivity rate and PCNA, together with the clinical stage and the histological differentiation bring extra pieces of useful information in order to anticipate the evolution and the prognosis of lung cancer.
Pan, Wei; Wu, Zuoqiao; Wu, Shuwen; Guo, Deyin; Gong, Xiaoyan; Po, Tien
2015-04-01
Chronic hepatitis B virus (HBV) infection could cause severe liver disease including cirrhosis, hepatocellular carcinoma, and end-stage liver failure in HIV-positive individuals. The available data from clinical studies suggest that HIV infection modulates the HBV-specific T cell response. However, the virological and molecular aspects of HIV-HBV coinfection are currently poorly understood due to the lack of appropriate model systems. In this study, the effect of HIV infection on the life cycle of HBV was explored using an in vitro model system. The present data show that the extracellular and intracellular hepatitis B surface antigen (HBsAg) and e antigen (HBeAg) decrease significantly in HepG2 cells cotransfected with HIV NL4-3 and pHBV1.3 as compared to those cells transfected only with pHBV1.3. Moreover, a significant decrease in HBV DNA and mRNA expression was also observed in the cotransfected cells. HIV Rev protein, an RNA-bound regulatory protein, could significantly decrease the expression levels of extracellular and intracellular HBsAg and HBeAg by mediating the expression of HBV mRNA in cells cotransfected with plasmids containing HIV-1 Rev and pHBV1.3. Further experiments demonstrate that HIV Rev manipulated neither the promoters of HBV nor the nuclear export of HBV mRNA. These results from the in vitro model system might provide clues to further understand the rapid progression of liver disease in HIV-HBV-coinfected patients.
Xie, J; Briggs, J A; Morris, S W; Olson, M O; Kinney, M C; Briggs, R C
1997-10-01
The myeloid cell nuclear differentiation antigen (MNDA) is a nuclear protein expressed specifically in developing cells of the human myelomonocytic lineage, including the end-stage monocytes/macrophages and granulocytes. Nuclear localization, lineage- and stage-specific expression, association with chromatin, and regulation by interferon alpha indicate that this protein is involved in regulating gene expression uniquely associated with the differentiation process and/or function of the monocyte/macrophage. MNDA does not bind specific DNA sequences, but rather a set of nuclear proteins that includes nucleolin (C23). Both in vitro binding assays and co-immunoprecipitation were used to demonstrate that MNDA also binds protein B23 (nucleophosmin/NPM). Three reciprocal chromosome translocations found in certain cases of leukemia/lymphoma involve fusions with the NPM/B23 gene, t(5;17) NPM-RARalpha, t(2;5) NPM-ALK, and the t(3;5) NPM-MLF1. In the current study, MNDA was not able to bind the NPM-ALK chimera originating from the t(2;5) and containing residues 1-117 of NPM. However, MNDA did bind the NPM-MLF1 product of the t(3;5) that contains the N-terminal 175 residues of NPM. The additional 58 amino acids (amino acids 117-175) of the NPM sequence that are contained in the product of the NPM-MLF1 fusion gene relative to the product of the NPM-ALK fusion appear responsible for MNDA binding. This additional NPM sequence contains a nuclear localization signal and clusters of acidic residues believed to bind nuclear localization signals of other proteins. Whereas NPM and nucleolin are primarily localized within the nucleolus, MNDA is distributed throughout the nucleus including the nucleolus, suggesting that additional interactions define overall MNDA localization.
Antibodies to P450IID6, SLA, PDH-E2 and BCKD-E2 in Japanese patients with chronic hepatitis.
Nishioka, M; Morshed, S A; Parveen, S; Kono, K; Matsuoka, H; Manns, M P
1997-12-01
Auto-antibodies specific to various antigens in chronic hepatitis (CH) have been detected but their specificities and implications were uncertain. The aims of the present study were to investigate the frequency and the significance of seropositivity of antibodies to P450IID6 or liver/kidney microsome 1 (LKM1), soluble liver antigen (SLA), pyruvate dehydrogenase (PDH) and branched-chain keto acid dehydrogenase (BCKD) in 188 Japanese patients with different forms of CH by western blot or enzyme immunoassay (EIA). Anti-LKM1 was also measured by indirect immunofluorescent test. Anti-P450IID6 was found in 6/188 (3.2%) CH patients including 5/104 (4.8%) with hepatitis C virus (C) infection and 1/12 (8.3%) CH-C patients with antibodies to nuclear and smooth muscle antigens and hypergammaglobulinaemia (> 2.5 g/dL). This patient was the only one diagnosed with autoimmune hepatitis (AIH). All CH patients with hepatitis B (B), hepatitis non-B non-C (NBNC) and AIH were seronegative for anti-LKM1. Antibodies to soluble liver antigen were found in two of 188 (1%) patients, one with AIH and one with CH-B. Anti-BCKD-E2 but not anti-PDH-E2 was found in four patients (2.5%), one with AIH, two with CH-C, and one with NBNC. There was no obvious difference in age, sex ratio and laboratory findings in patients with or without anti-SLA and anti-BCKD-E2. Antibodies to P450IID6, SLA, PDH-E2 and BCKD-E2 are uncommon in adult CH-C, CH-B, CH-NBNC and AIH patients in Japan. Some of these patients positive for auto-antibodies appear to have autoimmune features and might require a careful follow up. The heterogeneity of these antibodies in CH preclude further justification for subtyping of AIH by the presence of the distinct auto-antibodies.
Felix, A; El-Naggar, A K; Press, M F; Ordonez, N G; Fonseca, I; Tucker, S L; Luna, M A; Batsakis, J G
1996-06-01
Salivary duct carcinoma (SDC), a rare neoplasm of the major salivary glands, is a high-grade carcinoma with a predilection for elderly men. The authors investigated the prognostic role of p53, c-erbB2, proliferating cell nuclear antigen (PCNA), and DNA flow cytometry in a pathobiological evaluation of a cohort of 30 patients with these neoplasms. The patient group comprised 24 men and 6 women, with ages ranging from 22 to 87 years (mean = 61 years). Twenty-eight tumors were located in the parotid gland and two in the submandibular gland. Tumor size ranged from 1.0 to 8.0 cm (mean = 3.48 cm). Regional metastases were found in 73.3% (22 patients), systemic metastases in 43.3% (13 patients), and recurrences in 8 (26.6%) patients. DNA aneuploidy was found in 18 tumors (58.0%) and DNA diploidy in 12 (42%), with proliferative fractions ranging from 8.60% to 15.5 (mean = 10.6%). p53 protein nuclear immunostaining was positive in 56.6% and c-erbB2 overexpression was observed in 63% of the tumors. PCNA positivity ranged from 16.5% to 91.0%, with a mean of 49.5%. p53 immunopositivity, DNA aneuploidy, high growth, and proliferative fractions by PCNA and flow cytometry did not correlate with patient outcome. These results indicate that tumor size (P = .05), distant metastasis (P = .006), and C-erbB2 amplification (P = .04) are independent prognostic parameters in patients with salivary duct carcinoma.
1985-01-01
An immunocolloidal gold electron microscopy method is described allowing the ultrastructural localization and quantitation of the regulatory subunits RI and RII and the catalytic subunit C of cAMP- dependent protein kinase. Using a postembedding indirect immunogold labeling procedure that employs specific antisera, the catalytic and regulatory subunits were localized in electron-dense regions of the nucleus and in cytoplasmic areas with a minimum of nonspecific staining. Antigenic domains were localized in regions of the heterochromatin, nucleolus, interchromatin granules, and in the endoplasmic reticulum of different cell types, such as rat hepatocytes, ovarian granulosa cells, and spermatogonia, as well as cultured H4IIE hepatoma cells. Morphometric quantitation of the relative staining density of nuclear antigens indicated a marked modulation of the number of subunits per unit area under various physiologic conditions. For instance, following partial hepatectomy in rats, the staining density of the nuclear RI and C subunits was markedly increased 16 h after surgery. Glucagon treatment of rats increased the staining density of only the nuclear catalytic subunit. Dibutyryl cAMP treatment of H4IIE hepatoma cells led to a marked increase in the nuclear staining density of all three subunits of cAMP-dependent protein kinase. These studies demonstrate that specific antisera against cAMP-dependent protein kinase subunits may be used in combination with immunogold electron microscopy to identify the ultrastructural location of the subunits and to provide a semi-quantitative estimate of their relative cellular density. PMID:2993318
Parveen, S; Morshed, S A; Arima, K; Nishioka, M; Czaja, A J; Chow, W C; Ng, H S
1998-06-01
To assess whether demography is one of the important factors determining antibody response to nuclear antigens [ANA: SSA-Ro (52K and 60K), SSB-La, snRNPs (A, 70K, B'/B), and Cenp-B], we investigated 95 and 47 sera of autoimmune hepatitis (AIH) from North America and Asia, respectively, by immunofluorescent (IF) and recombinant ELISA. Correlations among nuclear IF patterns, ELISA, and disease indices were analyzed. The frequency and titer of individual antibodies differed significantly between the groups. Patients with speckled patterns were younger in both regions and had higher aspartate aminotransferase levels only in North America. HLA-A1, B8, DQ2, and DR4 or DR3 or both in North America, and A2, B61, DQ7, and DR4 in Asia were predominant. In Asia, B61 correlated with anti-70K, and DQ7 correlated with antibodies to 52K, Cenp-B, and B'/B. In North America, A1, B8, DR3 haplotype, and DQ2 correlated with antibodies to A and 70K. Anti-B'/B and DR4 in North America, and A2 in Asia, were associated with concurrent immunologic disorder. Individual ANA clusters correlated with individual HLA in the demography, and different HLA alleles might determine disease expression as well as different ANA being produced in AIH.
Khan, Gulfaraz; Ahmed, Waqar; Philip, Pretty S; Ali, Mahmoud H; Adem, Abdu
2015-02-18
Epstein-Barr virus (EBV) is an oncogenic virus implicated in the pathogenesis of several human malignancies. However, due to the lack of a suitable animal model, a number of fundamental questions pertaining to the biology of EBV remain poorly understood. Here, we explore the potential of rabbits as a model for EBV infection and investigate the impact of immunosuppression on viral proliferation and gene expression. Six healthy New Zealand white rabbits were inoculated intravenously with EBV and blood samples collected prior to infection and for 7 weeks post-infection. Three weeks after the last blood collection, animals were immunosuppressed with daily intramuscular injections of cyclosporin A at doses of 20 mg/kg for 15 days and blood collected twice a week from each rabbit. The animals were subsequently sacrificed and tissues from all major organs were collected for subsequent analysis. Following intravenous inoculation, all 6 rabbits seroconverted with raised IgG and IgM titres to EBV, but viral DNA in peripheral blood mononuclear cells (PBMCs) could only be detected intermittently. Following immunosuppression however, EBV DNA could be readily detected in PBMCs from all 4 rabbits that survived the treatment. Quantitative PCR indicated an increase in EBV viral load in PBMCs as the duration of immunosuppression increased. At autopsy, splenomegaly was seen in 3/4 rabbits, but spleens from all 4 rabbit were EBV PCR positive. EBER-in situ hybridization and immunoshistochemistry revealed the presence of a large number of EBER-positive and LMP-1 positive lymphoblasts in the spleens of 3/4 rabbits. To a lesser extent, EBER-positive cells were also seen in the portal tract regions of the liver of these rabbits. Western blotting indicated that EBNA-1 and EBNA-2 were also expressed in the liver and spleen of infected animals. EBV can infect healthy rabbits and the infected cells proliferate when the animals are immunocompromised. The infected cells expressed several EBV-latent gene products which are probably driving the proliferation, reminiscent of what is seen in immunocompromised individuals. Further work is required to explore the potential of rabbits as an animal model for studying EBV biology and tumorigenesis.
Wang, Xiaoyu; Hayashi, Shusaku; Umezaki, Masahito; Yamamoto, Takeshi; Kageyama-Yahara, Natsuko; Kondo, Takashi; Kadowaki, Makoto
2014-12-05
Over the last few decades, food allergy (FA) has become a common disease in infants in advanced countries. However, anti-allergic medicines available in the market have no effect on FA, and consequently effective drug therapies for FA are not yet available. We have already demonstrated that mucosal mast cells play an essential role in the development of FA in a murine model. Thus, we screened many constituents from medicinal herbs for the ability to inhibit rat basophilic leukemia-2H3 mast-like cell degranulation, and found that shikonin, a naphthoquinone dye from Lithospermum erythrorhizon, exhibited the most potent inhibitory effect among them. Furthermore, shikonin extremely inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of tumor necrosis factor (TNF)-α mRNA expression in mucosal-type bone marrow-derived mast cells (mBMMCs). Global gene expression analysis confirmed by real-time PCR revealed that shikonin drastically inhibited the IgE/antigen-induced and calcium ionophore-induced upregulation of mRNA expression of the nuclear orphan receptor 4a family (Nr4a1, Nr4a2 and Nr4a3) in mBMMCs, and knockdown of Nr4a1 or Nr4a2 suppressed the IgE/antigen-induced upregulation of TNF-α mRNA expression. Computational docking simulation of a small molecule for a target protein is a useful technique to elucidate the molecular mechanisms underlying the effects of drugs. Therefore, the simulation revealed that the predicted binding sites of shikonin to immunophilins (cyclophilin A and FK506 binding protein (FKBP) 12) were almost the same as the binding sites of immunosuppressants (cyclosporin A and FK506) to immunophilins. Indeed, shikonin inhibited the calcineurin activity to a similar extent as cyclosporin A that markedly suppressed the IgE/antigen-enhanced mRNA expression of TNF-α and the Nr4a family in mBMMCs. These findings suggest that shikonin suppresses mucosal mast cell activation by reducing Nr4a family gene expression through the inhibition of calcineurin activity. Therefore, shikonin has therapeutic potential for the treatment of allergic diseases as a new calcineurin inhibitor. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Wang, Shuo; Hao, Youai; Lam, Joseph S; Vlahakis, Jason Z; Szarek, Walter A; Vinnikova, Anna; Veselovsky, Vladimir V; Brockhausen, Inka
2015-06-15
The opportunistic pathogen Pseudomonas aeruginosa produces two major cell surface lipopolysaccharides, characterized by distinct O antigens, called common polysaccharide antigen (CPA) and O-specific antigen (OSA). CPA contains a polymer of D-rhamnose (D-Rha) in α1-2 and α1-3 linkages. Three putative glycosyltransferase genes, wbpX, wbpY, and wbpZ, are part of the CPA biosynthesis cluster. To characterize the enzymatic function of the wbpZ gene product, we chemically synthesized the donor substrate GDP-D-Rha and enzymatically synthesized GDP-D-[(3)H]Rha. Using nuclear magnetic resonance (NMR) spectroscopy, we showed that WbpZ transferred one D-Rha residue from GDP-D-Rha in α1-3 linkage to both GlcNAc- and GalNAc-diphosphate-lipid acceptor substrates. WbpZ is also capable of transferring D-mannose (D-Man) to these acceptors. Therefore, WbpZ has a relaxed specificity with respect to both acceptor and donor substrates. The diphosphate group of the acceptor, however, is required for activity. WbpZ does not require divalent metal ion for activity and exhibits an unusually high pH optimum of 9. WbpZ from PAO1 is therefore a GDP-D-Rha:GlcNAc/GalNAc-diphosphate-lipid α1,3-D-rhamnosyltransferase that has significant activity of GDP-D-Man:GlcNAc/GalNAc-diphosphate-lipid α1,3-D-mannosyltransferase. We used site-directed mutagenesis to replace the Asp residues of the two DXD motifs with Ala. Neither of the mutant constructs of wbpZ (D172A or D254A) could be used to rescue CPA biosynthesis in the ΔwbpZ knockout mutant in a complementation assay. This suggested that D172 and D254 are essential for WbpZ function. This work is the first detailed characterization study of a D-Rha-transferase and a critical step in the development of CPA synthesis inhibitors. This is the first characterization of a D-rhamnosyltransferase and shows that it is essential in Pseudomonas aeruginosa for the synthesis of the common polysaccharide antigen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Plant-based immunocontraceptive control of wildlife--"potentials, limitations, and possums".
Polkinghorne, Ian; Hamerli, Denes; Cowan, Phil; Duckworth, Janine
2005-03-07
Possums (Trichosurus vulpecula), originally introduced from Australia, are spread over 90% of New Zealand and cause major economic and environmental damage. Immunocontraception has been suggested as a humane means to control them. Marsupial-specific reproductive antigens expressed at high levels in edible transgenic plant tissue might provide a safe, effective, and cheap oral delivery bait for immunocontraceptive control. As proof of concept, female possums vaccinated with immunocontraceptive antigens showed reduced fertility, and possums fed with potato-expressed heat labile toxin-B (LT-B) had mucosal and systemic immune responses to the antigen. This demonstrated that immunocontraception was effective in possums and that oral delivery in edible plant material might be possible. Nuclear transformation with reporter genes showed that transgenic carrot roots accumulate high levels of foreign protein in edible tissues, indicating their potential as a delivery vector. However, prior to attempts at large scale production, more effective immunocontraceptive antigen-adjuvant formulations are probably required before plant-based immunocontraception can become a major tool for immunocontraceptive control of overabundant vertebrate pests.
Brett, Paul J; Burtnick, Mary N; Heiss, Christian; Azadi, Parastoo; DeShazer, David; Woods, Donald E; Gherardini, Frank C
2011-02-01
Previous studies have shown that the O polysaccharides (OPS) expressed by Burkholderia mallei are similar to those produced by Burkholderia thailandensis except that they lack the 4-O-acetyl modifications on their 6-deoxy-α-l-talopyranosyl residues. In the present study, we describe the identification and characterization of an open reading frame, designated oacA, expressed by B. thailandensis that accounts for this phenomenon. Utilizing the B. thailandensis and B. mallei lipopolysaccharide (LPS)-specific monoclonal antibodies Pp-PS-W and 3D11, Western immunoblot analyses demonstrated that the LPS antigens expressed by the oacA mutant, B. thailandensis ZT0715, were antigenically similar to those produced by B. mallei ATCC 23344. In addition, immunoblot analyses demonstrated that when B. mallei ATCC 23344 was complemented in trans with oacA, it synthesized B. thailandensis-like LPS antigens. To elucidate the structure of the OPS moieties expressed by ZT0715, purified samples were analyzed via nuclear magnetic resonance spectroscopy. As predicted, these studies demonstrated that the loss of OacA activity influenced the O acetylation phenotype of the OPS moieties. Unexpectedly, however, the results indicated that the O methylation status of the OPS antigens was also affected by the loss of OacA activity. Nonetheless, it was revealed that the LPS moieties expressed by the oacA mutant reacted strongly with the B. mallei LPS-specific protective monoclonal antibody 9C1-2. Based on these findings, it appears that OacA is required for the 4-O acetylation and 2-O methylation of B. thailandensis OPS antigens and that ZT0715 may provide a safe and cost-effective source of B. mallei-like OPS to facilitate the synthesis of glanders subunit vaccine candidates.
Jarius, S; Wildemann, B
2015-09-17
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa head antibodies' due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.
Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Gary L., E-mail: gary.l.thompson.3@gmail.com; Roth, Caleb C.; Kuipers, Marjorie A.
2016-01-29
Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known tomore » be sequestered for cellular chromosomal function within the nucleus – histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn in 24 h viability, measured by MTT assay, is observed at the number of pulses required to induce permeabilization of the nucleus. - Highlights: • The ability of nsPEF to damage nuclear structures within cells is investigated. • Leakage of proliferating nuclear antigen from nuclei is induced by nsPEF. • High doses of nsPEF disrupt cortical lamin and cause chromatin decompaction. • Histone H2B remains attached to chromatin following nsPEF exposure. • DNA does not leak out of nsPEF-permeabilized nuclei.« less
Plant-made oral vaccines against human infectious diseases—Are we there yet?
Chan, Hui-Ting; Daniell, Henry
2016-01-01
Summary Although the plant-made vaccine field started three decades ago with the promise of developing low-cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, this goal has not yet been achieved. Plants offer several major advantages in vaccine generation, including low-cost production by eliminating expensive fermentation and purification systems, sterile delivery and cold storage/transportation. Most importantly, oral vaccination using plant-made antigens confers both mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 years have made significant progress in expressing vaccine antigens in edible leaves (especially lettuce), processing leaves or seeds through lyophilization and achieving antigen stability and efficacy after prolonged storage at ambient temperatures. Bioencapsulation of antigens in plant cells protects them from the digestive system; the fusion of antigens to transmucosal carriers enhances efficiency of their delivery to the immune system and facilitates successful development of plant vaccines as oral boosters. However, the lack of oral priming approaches diminishes these advantages because purified antigens, cold storage/transportation and limited shelf life are still major challenges for priming with adjuvants and for antigen delivery by injection. Yet another challenge is the risk of inducing tolerance without priming the host immune system. Therefore, mechanistic aspects of these two opposing processes (antibody production or suppression) are discussed in this review. In addition, we summarize recent progress made in oral delivery of vaccine antigens expressed in plant cells via the chloroplast or nuclear genomes and potential challenges in achieving immunity against infectious diseases using cold-chain-free vaccine delivery approaches. PMID:26387509
Initiation of DNA replication requires actin dynamics and formin activity.
Parisis, Nikolaos; Krasinska, Liliana; Harker, Bethany; Urbach, Serge; Rossignol, Michel; Camasses, Alain; Dewar, James; Morin, Nathalie; Fisher, Daniel
2017-11-02
Nuclear actin regulates transcriptional programmes in a manner dependent on its levels and polymerisation state. This dynamics is determined by the balance of nucleocytoplasmic shuttling, formin- and redox-dependent filament polymerisation. Here, using Xenopus egg extracts and human somatic cells, we show that actin dynamics and formins are essential for DNA replication. In proliferating cells, formin inhibition abolishes nuclear transport and initiation of DNA replication, as well as general transcription. In replicating nuclei from transcriptionally silent Xenopus egg extracts, we identified numerous actin regulators, and disruption of actin dynamics abrogates nuclear transport, preventing NLS (nuclear localisation signal)-cargo release from RanGTP-importin complexes. Nuclear formin activity is further required to promote loading of cyclin-dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) onto chromatin, as well as initiation and elongation of DNA replication. Therefore, actin dynamics and formins control DNA replication by multiple direct and indirect mechanisms. © 2017 The Authors.
Fujimuro, Masahiro; Liu, Jianyong; Zhu, Jian; Yokosawa, Hideyoshi; Hayward, S. Diane
2005-01-01
The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein stabilizes β-catenin by the novel mechanism of binding to the negative regulator, glycogen synthase kinase 3 (GSK-3), and depleting cytoplasmic GSK-3 levels. The two domains of LANA required for interaction with GSK-3 were further characterized. Evidence for similarity between the C-terminal LANA interaction domain and the axin GSK-3 interaction domain was obtained using GSK-3 and LANA mutants. GSK-3(F291L), which does not interact with axin, also failed to bind to LANA, and a mutation in the axin homology domain of LANA, L1132P, destroyed binding to GSK-3. The N-terminal LANA interaction domain was found to mediate interaction by acting as a substrate for GSK-3. GSK-3(R96A), a priming pocket mutant, did not bind to LANA, suggesting that LANA was a primed GSK-3 substrate. Phosphorylation of endogenous LANA precipitated from primary effusion lymphoma cells was inhibited by the GSK-3 inhibitor LiCl. GST-LANA(1-340) was phosphorylated by GSK-3, and mitogen-activated protein kinase (MAPK) and casein kinase I functioned as priming kinases in vitro. Mutation of consensus GSK-3 sites revealed that sites between LANA amino acids 219 and 268 were important for GSK-3 phosphorylation. Immunoprecipitation assays revealed that loss of GSK-3 phosphorylation of this N-terminal domain correlated with loss of GSK-3 interaction. Although LANA-associated GSK-3 actively phosphorylated LANA, GSK-3 coprecipitated with LANA was unable to phosphorylate an exogenous peptide substrate. LANA sequestration of GSK-3 may explain the ability of KSHV-infected cells to tolerate increased levels of nuclear GSK-3. PMID:16051835
Toyota, Kazuhiro; Murakami, Yoshiaki; Kondo, Naru; Uemura, Kenichiro; Nakagawa, Naoya; Takahashi, Shinya; Sueda, Taijiro
2018-05-01
Hu-antigen R (HuR) is an RNA-binding protein that regulates the stability, translation, and nucleus-to-cytoplasm translocation of messenger RNAs (mRNAs). The aim of this study was to investigate the prognostic significance of HuR in cholangiocarcinoma patients who received adjuvant gemcitabine-based chemotherapy (AGC) after surgical resection. Nuclear and cytoplasmic HuR expression was investigated immunohistochemically in 131 patients with resected cholangiocarcinoma, including 91 patients administered AGC and 40 patients who did not receive adjuvant chemotherapy. The correlation between HuR expression and survival was evaluated by statistical analysis. High nuclear and cytoplasmic HuR expression was observed in 67 (51%) and 45 (34%) patients, respectively. Cytoplasmic HuR expression was significantly associated with lymph node metastasis (p < 0.01), while high cytoplasmic HuR expression was significantly associated with poor disease-free survival [DFS] (p = 0.03) and overall survival [OS] (p = 0.001) in the 91 patients who received AGC, but not in the 40 patients who did not receive AGC (DFS p = 0.17; OS p = 0.07). In the multivariate analysis of patients who received AGC, high cytoplasmic HuR expression was an independent predictor of poor DFS (hazard ratio [HR] 1.77; p = 0.04) and OS (HR 2.09; p = 0.02). Nuclear HuR expression did not affect the survival of enrolled patients. High cytoplasmic HuR expression was closely associated with the efficacy of AGC in patients with cholangiocarcinoma. The current findings warrant further investigations to optimize adjuvant chemotherapy regimens for resectable cholangiocarcinoma.
Identification of B Cells as a Major Site for Cyprinid Herpesvirus 3 Latency
Reed, Aimee N.; Izume, Satoko; Dolan, Brian P.; LaPatra, Scott; Kent, Michael; Dong, Jing
2014-01-01
ABSTRACT Cyprinid herpesvirus 3 (CyHV-3), commonly known as koi herpesvirus (KHV), is a member of the Alloherpesviridae, and is a recently discovered emerging herpesvirus that is highly pathogenic for koi and common carp. Our previous study demonstrated that CyHV-3 becomes latent in peripheral white blood cells (WBC). In this study, CyHV-3 latency was further investigated in IgM+ WBC. The presence of the CyHV-3 genome in IgM+ WBC was about 20-fold greater than in IgM− WBC. To determine whether CyHV-3 expressed genes during latency, transcription from all eight open reading frames (ORFs) in the terminal repeat was investigated in IgM+ WBC from koi with latent CyHV-3 infection. Only a spliced ORF6 transcript was found to be abundantly expressed in IgM+ WBC from CyHV-3 latently infected koi. The spliced ORF6 transcript was also detected in vitro during productive infection as early as 1 day postinfection. The ORF6 transcript from in vitro infection begins at −127 bp upstream of the ATG codon and ends +188 bp downstream of the stop codon, +20 bp downstream of the polyadenylation signal. The hypothetical protein of ORF6 contains a consensus sequence with homology to a conserved domain of EBNA-3B and ICP4 from Epstein-Barr virus and herpes simplex virus 1, respectively, both members of the Herpesviridae. This is the first report of latent CyHV-3 in B cells and identification of gene transcription during latency for a member of the Alloherpesviridae. IMPORTANCE This is the first demonstration that a member of the Alloherpesviridae, cyprinid herpesvirus 3 (CyHV-3), establishes a latent infection in the B cells of its host, Cyprinus carpio. In addition, this is the first report of identification of gene transcription during latency for a member of Herpesvirales outside Herpesviridae. This is also the first report that the hypothetical protein of latent transcript of CyHV-3 contains a consensus sequence with homology to a conserved domain of EBNA-3B from Epstein-Barr virus and ICP4 from herpes simplex virus 1, which are genes important for latency. These strongly suggest that latency is evolutionally conserved across vertebrates. PMID:24899202
Identification of B cells as a major site for cyprinid herpesvirus 3 latency.
Reed, Aimee N; Izume, Satoko; Dolan, Brian P; LaPatra, Scott; Kent, Michael; Dong, Jing; Jin, Ling
2014-08-01
Cyprinid herpesvirus 3 (CyHV-3), commonly known as koi herpesvirus (KHV), is a member of the Alloherpesviridae, and is a recently discovered emerging herpesvirus that is highly pathogenic for koi and common carp. Our previous study demonstrated that CyHV-3 becomes latent in peripheral white blood cells (WBC). In this study, CyHV-3 latency was further investigated in IgM(+) WBC. The presence of the CyHV-3 genome in IgM(+) WBC was about 20-fold greater than in IgM(-) WBC. To determine whether CyHV-3 expressed genes during latency, transcription from all eight open reading frames (ORFs) in the terminal repeat was investigated in IgM(+) WBC from koi with latent CyHV-3 infection. Only a spliced ORF6 transcript was found to be abundantly expressed in IgM(+) WBC from CyHV-3 latently infected koi. The spliced ORF6 transcript was also detected in vitro during productive infection as early as 1 day postinfection. The ORF6 transcript from in vitro infection begins at -127 bp upstream of the ATG codon and ends +188 bp downstream of the stop codon, +20 bp downstream of the polyadenylation signal. The hypothetical protein of ORF6 contains a consensus sequence with homology to a conserved domain of EBNA-3B and ICP4 from Epstein-Barr virus and herpes simplex virus 1, respectively, both members of the Herpesviridae. This is the first report of latent CyHV-3 in B cells and identification of gene transcription during latency for a member of the Alloherpesviridae. This is the first demonstration that a member of the Alloherpesviridae, cyprinid herpesvirus 3 (CyHV-3), establishes a latent infection in the B cells of its host, Cyprinus carpio. In addition, this is the first report of identification of gene transcription during latency for a member of Herpesvirales outside Herpesviridae. This is also the first report that the hypothetical protein of latent transcript of CyHV-3 contains a consensus sequence with homology to a conserved domain of EBNA-3B from Epstein-Barr virus and ICP4 from herpes simplex virus 1, which are genes important for latency. These strongly suggest that latency is evolutionally conserved across vertebrates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Davis, David A; Naiman, Nicole E; Wang, Victoria; Shrestha, Prabha; Haque, Muzammel; Hu, Duosha; Anagho, Holda A; Carey, Robert F; Davidoff, Katharine S; Yarchoan, Robert
2015-07-01
Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causative agent of three hyperproliferative disorders: Kaposi's sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman's disease. During viral latency a small subset of viral genes are produced, including KSHV latency-associated nuclear antigen (LANA), which help the virus thwart cellular defense responses. We found that exposure of KSHV-infected cells to oxidative stress, or other inducers of apoptosis and caspase activation, led to processing of LANA and that this processing could be inhibited with the pan-caspase inhibitor Z-VAD-FMK. Using sequence, peptide, and mutational analysis, two caspase cleavage sites within LANA were identified: a site for caspase-3 type caspases at the N-terminus and a site for caspase-1 and-3 type caspases at the C-terminus. Using LANA expression plasmids, we demonstrated that mutation of these cleavage sites prevents caspase-1 and caspase-3 processing of LANA. This indicates that these are the principal sites that are susceptible to caspase cleavage. Using peptides spanning the identified LANA cleavage sites, we show that caspase activity can be inhibited in vitro and that a cell-permeable peptide spanning the C-terminal cleavage site could inhibit cleavage of poly (ADP-ribose) polymerase and increase viability in cells undergoing etoposide-induced apoptosis. The C-terminal peptide of LANA also inhibited interleukin-1 beta (IL-1β) production from lipopolysaccharide-treated THP-1 cells by more than 50%. Furthermore, mutation of the two cleavage sites in LANA led to a significant increase in IL-1β production in transfected THP-1 cells; this provides evidence that these sites function to blunt the inflammasome, which is known to be activated in latently infected PEL cells. These results suggest that specific caspase cleavage sites in KSHV LANA function to blunt apoptosis as well as interfere with the caspase-1-mediated inflammasome, thus thwarting key cellular defense mechanisms.
Latgé, J P; Kobayashi, H; Debeaupuis, J P; Diaquin, M; Sarfati, J; Wieruszeski, J M; Parra, E; Bouchara, J P; Fournet, B
1994-01-01
The galactomannan (GM) produced extracellularly by Aspergillus fumigatus has been purified by a double sequential hydrazine-nitrous acid treatment of the ethanol precipitate of the culture filtrate. Nuclear magnetic resonance and gas-liquid chromatography-mass spectrometry analysis have been performed on intact GM, acid-hydrolyzed GM, and oligomers resulting from the acetolysis of the acid-hydrolyzed GM. Results show that A. fumigatus GM is composed of a linear mannan core with an alpha-(1-2)-linked mannotetraose repeating unit attached via alpha-(1-6) linkage. Side chains composed of an average of 4 to 5 beta-(1-5)-galactofuranose units are linked to C-6 and C-3 positions of alpha-(1-2)-linked mannose units of the mannan. The immunoreactivity of GM and HCl-hydrolyzed GM was studied by use of human sera from aspergillosis patients and an antigalactofuran monoclonal antibody. The alpha-(1-2) (1-6)-mannan core is not antigenic. The immunogenic galactofuran is found amongst several exocellular glycoproteins. According to a direct enzyme-linked immunosorbent assay with GM as the detector antigen, only 26% of the serum samples from aspergilloma patients (all positive by immunodiffusion assays) give optical density values superior to a cutoff estimated as the mean +/- 3 standard deviations of values obtained with control sera. Images PMID:7960122
Chan, Elizabeth A. W.; Teng, Grace; Corbett, Elizabeth; Choudhury, Kingshuk Roy; Bassing, Craig H.; Schatz, David G.; Krangel, Michael S.
2013-01-01
Allelic exclusion requires that the two alleles at antigen-receptor loci attempt to recombine variable (V), diversity (D), and joining (J) gene segments [V(D)J recombination] asynchronously in nuclei of developing lymphocytes. It previously was shown that T-cell receptor β (Tcrb) alleles frequently and stochastically associate with the nuclear lamina and pericentromeric heterochromatin in CD4−CD8− thymocytes. Moreover, rearranged alleles were underrepresented at these locations. Here we used 3D immunofluorescence in situ hybridization to identify recently rearranged Tcrb alleles based on the accumulation of the DNA-repair protein 53BP1. We found that Tcrb alleles recombine asynchronously in double-negative thymocytes and that V(D)J recombination is suppressed on peripheral as compared with central Tcrb alleles. Moreover, the recombination events that did take place at the nuclear periphery preferentially occurred on Tcrb alleles that were partially dissociated from the nuclear lamina. To understand better the mechanism by which V(D)J recombination is suppressed at the nuclear periphery, we evaluated the subnuclear distribution of recombination-activating gene 2 (RAG2) protein. We found that RAG2 abundance was reduced at the nuclear periphery. Moreover, RAG2 was distributed differently from RNA polymerase II and histone H3K4 trimethylation. Our data suggest that the nuclear periphery suppresses V(D)J recombination, at least in part, by segregating Tcrb alleles from RAG proteins. PMID:24218622
Chan, Elizabeth A W; Teng, Grace; Corbett, Elizabeth; Choudhury, Kingshuk Roy; Bassing, Craig H; Schatz, David G; Krangel, Michael S
2013-11-26
Allelic exclusion requires that the two alleles at antigen-receptor loci attempt to recombine variable (V), diversity (D), and joining (J) gene segments [V(D)J recombination] asynchronously in nuclei of developing lymphocytes. It previously was shown that T-cell receptor β (Tcrb) alleles frequently and stochastically associate with the nuclear lamina and pericentromeric heterochromatin in CD4(-)CD8(-) thymocytes. Moreover, rearranged alleles were underrepresented at these locations. Here we used 3D immunofluorescence in situ hybridization to identify recently rearranged Tcrb alleles based on the accumulation of the DNA-repair protein 53BP1. We found that Tcrb alleles recombine asynchronously in double-negative thymocytes and that V(D)J recombination is suppressed on peripheral as compared with central Tcrb alleles. Moreover, the recombination events that did take place at the nuclear periphery preferentially occurred on Tcrb alleles that were partially dissociated from the nuclear lamina. To understand better the mechanism by which V(D)J recombination is suppressed at the nuclear periphery, we evaluated the subnuclear distribution of recombination-activating gene 2 (RAG2) protein. We found that RAG2 abundance was reduced at the nuclear periphery. Moreover, RAG2 was distributed differently from RNA polymerase II and histone H3K4 trimethylation. Our data suggest that the nuclear periphery suppresses V(D)J recombination, at least in part, by segregating Tcrb alleles from RAG proteins.
Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.; ...
2015-03-01
In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein inToxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops.more » The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated n vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Lastly, enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.« less
Pessina, P; Castillo, V; Sartore, I; Borrego, J; Meikle, A
2016-09-01
Immunoreactive proteins in follicular cells, fibroblasts and endothelial cells were assessed in canine thyroid carcinomas and healthy thyroid glands. No differences were detected in thyrotropin receptor and thyroglobulin staining between cancer and normal tissues, but expression was higher in follicular cells than in fibroblasts. Fibroblast growth factor-2 staining was more intense in healthy follicular cells than in those of carcinomas. Follicular cells in carcinomas presented two- to three-fold greater staining intensity of thyroid transcription factor-1 and proliferating cell nuclear antigen, respectively, than healthy cells, and a similar trend was found for the latter antigen in fibroblasts. Vascular endothelial growth factor staining was more intense in the endothelial cells of tumours than in those of normal tissues. In conclusion, greater expression of factors related to proliferation and angiogenesis was demonstrated in several cell types within thyroid carcinomas compared to healthy tissues, which may represent mechanisms of tumour progression in this disease. © 2014 John Wiley & Sons Ltd.
Zargar-Shoshtari, Kamran; Sharma, Pranav; Spiess, Philippe E
2017-11-02
Biomarkers are increasingly used in the diagnosis and management of various malignancies. Selected biomarkers may also play a role in management of certain cases of penile carcinoma. In this article, we provide an overview of the clinical role of such markers in the management of penile cancer. This is a nonsystematic review of relevant literature assessing biomarkers in penile carcinoma. Evidence of infections with human papillomavirus and its surrogate markers may have important prognostic value in patients with localized or metastatic penile cancer. Squamous cell carcinoma antigen, p53, C-reactive protein, Ki-67, proliferating cell nuclear antigen, cyclin D1, as well as other markers have been studied with various degree of evidence in support of clinical utility in penile cancer. No single marker may have all the answers, and future research should focus on genomic analysis of individual penile tumors, attempting to identify specific targets for treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Autoimmune liver serology: current diagnostic and clinical challenges.
Bogdanos, Dimitrios-P; Invernizzi, Pietro; Mackay, Ian-R; Vergani, Diego
2008-06-07
Liver-related autoantibodies are crucial for the correct diagnosis and classification of autoimmune liver diseases (AiLD), namely autoimmune hepatitis types 1 and 2 (AIH-1 and 2), primary biliary cirrhosis (PBC), and the sclerosing cholangitis variants in adults and children. AIH-1 is specified by anti-nuclear antibody (ANA) and smooth muscle antibody (SMA). AIH-2 is specified by antibody to liver kidney microsomal antigen type-1 (anti-LKM1) and anti-liver cytosol type 1 (anti-LC1). SMA, ANA and anti-LKM antibodies can be present in de-novo AIH following liver transplantation. PBC is specified by antimitochondrial antibodies (AMA) reacting with enzymes of the 2-oxo-acid dehydrogenase complexes (chiefly pyruvate dehydrogenase complex E2 subunit) and disease-specific ANA mainly reacting with nuclear pore gp210 and nuclear body sp100. Sclerosing cholangitis presents as at least two variants, first the classical primary sclerosing cholangitis (PSC) mostly affecting adult men wherein the only (and non-specific) reactivity is an atypical perinuclear antineutrophil cytoplasmic antibody (p-ANCA), also termed perinuclear anti-neutrophil nuclear antibodies (p-ANNA) and second the childhood disease called autoimmune sclerosing cholangitis (ASC) with serological features resembling those of type 1 AIH. Liver diagnostic serology is a fast-expanding area of investigation as new purified and recombinant autoantigens, and automated technologies such as ELISAs and bead assays, become available to complement (or even compete with) traditional immunofluorescence procedures. We survey for the first time global trends in quality assurance impacting as it does on (1) manufacturers/purveyors of kits and reagents, (2) diagnostic service laboratories that fulfill clinicians' requirements, and (3) the end-user, the physician providing patient care, who must properly interpret test results in the overall clinical context.
Autoimmune liver serology: Current diagnostic and clinical challenges
Bogdanos, Dimitrios P; Invernizzi, Pietro; Mackay, Ian R; Vergani, Diego
2008-01-01
Liver-related autoantibodies are crucial for the correct diagnosis and classification of autoimmune liver diseases (AiLD), namely autoimmune hepatitis types 1 and 2 (AIH-1 and 2), primary biliary cirrhosis (PBC), and the sclerosing cholangitis variants in adults and children. AIH-1 is specified by anti-nuclear antibody (ANA) and smooth muscle antibody (SMA). AIH-2 is specified by antibody to liver kidney microsomal antigen type-1 (anti-LKM1) and anti-liver cytosol type 1 (anti-LC1). SMA, ANA and anti-LKM antibodies can be present in de-novo AIH following liver transplantation. PBC is specified by antimitochondrial antibodies (AMA) reacting with enzymes of the 2-oxo-acid dehydrogenase complexes (chiefly pyruvate dehydrogenase complex E2 subunit) and disease-specific ANA mainly reacting with nuclear pore gp210 and nuclear body sp100. Sclerosing cholangitis presents as at least two variants, first the classical primary sclerosing cholangitis (PSC) mostly affecting adult men wherein the only (and non-specific) reactivity is an atypical perinuclear antineutrophil cytoplasmic antibody (p-ANCA), also termed perinuclear anti-neutrophil nuclear antibodies (p-ANNA) and second the childhood disease called autoimmune sclerosing cholangitis (ASC) with serological features resembling those of type 1 AIH. Liver diagnostic serology is a fast-expanding area of investigation as new purified and recombinant autoantigens, and automated technologies such as ELISAs and bead assays, become available to complement (or even compete with) traditional immunofluorescence procedures. We survey for the first time global trends in quality assurance impacting as it does on (1) manufacturers/purveyors of kits and reagents, (2) diagnostic service laboratories that fulfill clinicians’ requirements, and (3) the end-user, the physician providing patient care, who must properly interpret test results in the overall clinical context. PMID:18528935
The cdk7-cyclin H-MAT1 complex associated with TFIIH is localized in coiled bodies.
Jordan, P; Cunha, C; Carmo-Fonseca, M
1997-01-01
TFIIH is a general transcription factor for RNA polymerase II that in addition is involved in DNA excision repair. TFIIH is composed of eight or nine subunits and we show that at least four of them, namely cdk7, cyclin H, MAT1, and p62 are localized in the coiled body, a distinct subnuclear structure that is transcription dependent and highly enriched in small nuclear ribonucleoproteins. Although coiled bodies do not correspond to sites of transcription, in vivo incorporation of bromo-UTP shows that they are surrounded by transcription foci. Immunofluorescence analysis using antibodies directed against the essential repair factors proliferating cell nuclear antigen and XPG did not reveal labeling of the coiled body in either untreated cells or cells irradiated with UV light, arguing that coiled bodies are probably not involved in DNA repair mechanisms. The localization of cyclin H in the coiled body was predominantly detected during the G1 and S-phases of the cell cycle, whereas in G2 coiled bodies were very small or not detected. Finally, both cyclin H and cdk7 did not colocalize with P80 coilin after disruption of the coiled body, indicating that these proteins are specifically targeted to the small nuclear ribonucleoprotein-containing domain. Images PMID:9243502
Delcayre, A X; Fiandino, A; Barel, M; Frade, R
1987-12-01
gp140, the EB/C3d receptor (EBV/C3dR; CR2), is a membrane site involved in human B cell regulation. Cross-linking of this receptor on the cell surface by its specific ligands led to the enhancement of B cell proliferation in synergy with T cell factors. In vitro activation of human peripheral B lymphocytes by cross-linking membrane immunoglobulins with anti-mu antibody induced EBV/C3dR phosphorylation. These studies were pursued by analyzing cell-free phosphorylation of EBV/C3dR isolated from Raji cell fractions, and immobilized on OKB7, a monoclonal anti-EBV/C3dR antibody. Three EBV/C3dR-related antigens which could be cell-free phosphorylated were detected: gp140, the EBV/C3dR, p130 and p120. gp140, the mature form of EBV/C3dR, was isolated from plasma membrane and from purified nuclei. p130 was identified as an intracellular intermediate of EBV/C3dR glycosylation, localized in low-density microsomes. Phosphoamino acid analysis of EBV/C3dR allowed the detection of phosphotyrosine and phosphoserine residues. These data suggest that EBV/C3dR could carry an autophosphorylation activity and could be associated to serine kinases. Using polyclonal anti-p120 antibody and anti-120 kDa nuclear ribonucleoprotein monoclonal antibody (mAb), p120 was identified as a nuclear ribonucleoprotein antigenically not related to EBV/C3dR. Detection of p120 on EBV/C3dR, immobilized on OKB7, was due to interactions between both antigens, instead of anti-EBV/C3dR mAb cross-reactivity with p120. Cell-free phosphorylation of p120 was under the control of EBV/C3dR. However, it is not yet established whether other nuclear or membrane components were involved in the control of p120 cell-free phosphorylation by EBV/C3dR. From the data presented herein, we propose that phosphorylation of a 120-kDa nuclear ribonucleoprotein by EBV/C3dR-associated kinases could represent a crucial step in in vivo regulation of human B cell activation.
Practical Integration-Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells.
Kime, Cody; Rand, Tim A; Ivey, Kathryn N; Srivastava, Deepak; Yamanaka, Shinya; Tomoda, Kiichiro
2015-10-06
The advent of induced pluripotent stem (iPS) cell technology has revolutionized biomedicine and basic research by yielding cells with embryonic stem (ES) cell-like properties. The use of iPS-derived cells for cell-based therapies and modeling of human disease holds great potential. While the initial description of iPS cells involved overexpression of four transcription factors via viral vectors that integrated within genomic DNA, advances in recent years by our group and others have led to safer and higher quality iPS cells with greater efficiency. Here, we describe commonly practiced methods for non-integrating induced pluripotent stem cell generation using nucleofection of episomal reprogramming plasmids. These methods are adapted from recent studies that demonstrate increased hiPS cell reprogramming efficacy with the application of three powerful episomal hiPS cell reprogramming factor vectors and the inclusion of an accessory vector expressing EBNA1. Copyright © 2015 John Wiley & Sons, Inc.
Ritthaphai, Alisa; Wattanapanitch, Methichit; Pithukpakorn, Manop; Heepchantree, Worapa; Soi-Ampornkul, Rungtip; Mahaisavariya, Panchalee; Triwongwaranat, Daranporn; Pattanapanyasat, Kovit; Vatanashevanopakorn, Chinnavuth
2018-05-21
Dermal fibroblasts were obtained from a 48-year-old female patient with spinocerebellar ataxia type 3 (SCA3). Fibroblasts were reprogrammed by nucleofection with episomal plasmids, carrying L-MYC, LIN28, OCT4, SOX2, KLF4, EBNA-1 and shRNA against p53. The SCA3 patient-specific iPSC line, MUSIi004-A, was characterized by immunofluorescence staining to verify the expression of pluripotent markers. The iPSC line exhibited an ability to differentiate into three germ layers by embryoid body (EB) formation. Karyotypic analysis of the MUSIi004-A line was normal. The mutant allele was still present in the iPSC line. This iPSC line represents a useful tool for studying neurodegeneration in SCA3. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
PCNA-dependent accumulation of CDKN1A into nuclear foci after ionizing irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiese, Claudia; Rudolph, Jeanette Heede; Jakob, Burkhard
2012-03-26
The cyclin-dependent kinase inhibitor CDKN1A/p21 confers cell-cycle arrest in response to DNA damage and inhibits DNA replication through its direct interaction with the proliferating cell nuclear antigen (PCNA) and cyclin/cyclin-dependent kinase complexes. Previously, we reported that in response to densely ionizing radiation CDKN1A rapidly is recruited to the sites of particle traversal, and that CDKN1A foci formation in response to heavy ions is independent of its transactivation by TP53. In this paper, we show that exposure of normal human fibroblasts to X-rays or to H 2O 2 also induces nuclear accumulations of CDKN1A. We find that CDKN1A foci formation inmore » response to radiation damage is dependent on its dephosphorylation and on its direct physical interaction with PCNA. Live cell imaging analyses of ectopically expressed EGFP-CDKN1A and dsRed-PCNA show rapid recruitment of both proteins into foci after radiation damage. Detailed dynamic measurements reveal a slightly delayed recruitment of CDKN1A compared to PCNA, which is best described by bi-exponential curve fitting, taking the preceding binding of PCNA to DNA into account. Finally, we propose a regulatory role for CDKN1A in mediating PCNA function after radiation damage, and provide evidence that this role is distinct from its involvement in nucleotide excision repair and unrelated to double-strand break repair.« less
COX-2 and Prostate Cancer Angiogenesis
2002-03-01
papilloma virus -18 ing cell nuclear antigen staining), but induced ap- immortalization of PIN cell areas of radical-pros- optosis (TdT-mediated dUTP...the COX-2 surrounding basal cells (75%).3cA human PIN cell inhibitor had no effect on proliferation (proliferat- line was established by human
sirt1-null mice develop an autoimmune-like condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sequeira, Jedon; Boily, Gino; Bazinet, Stephanie
2008-10-01
The sirt1 gene encodes a protein deacetylase with a broad spectrum of reported substrates. Mice carrying null alleles for sirt1 are viable on outbred genetic backgrounds so we have examined them in detail to identify the biological processes that are dependent on SIRT1. Sera from adult sirt1-null mice contain antibodies that react with nuclear antigens and immune complexes become deposited in the livers and kidneys of these animals. Some of the sirt1-null animals develop a disease resembling diabetes insipidus when they approach 2 years of age although the relationship to the autoimmunity remains unclear. We interpret these observations as consistentmore » with a role for SIRT1 in sustaining normal immune function and in this way delaying the onset of autoimmune disease.« less
Immunoelectron Microscopy of Cryofixed Freeze-Substituted Yeast Saccharomyces cerevisiae.
Fišerová, Jindřiška; Richardson, Christine; Goldberg, Martin W
2016-01-01
Immunolabeling electron microscopy is a challenging technique with demands for perfect ultrastructural and antigen preservation. High-pressure freezing offers an excellent way to fix cellular structure. However, its use for immunolabeling has remained limited because of the low frequency of labeling due to loss of protein antigenicity or accessibility. Here we present a protocol for immunogold labeling of the yeast Saccharomyces cerevisiae that gives specific and multiple labeling while keeping the finest structural details. We use the protocol to reveal the organization of individual nuclear pore complex proteins and the position of transport factors in the yeast Saccharomyces cerevisiae in relation to actual transport events.
[Detection of antigen structures in blood cells in various prepared plasma transfusions].
Barz, D
1994-01-01
We investigated the content of antigen-bearing cells and cell fragments in Fresh Frozen Plasma (FFP) from blood centers, in Octaplas (virus-inactivated fresh plasma produced with the solvent/detergent technique by the Octapharma Company) and in MB-plasma (virus-inactivated fresh plasma after photodynamic treatment with methylen blue coming from the German Red Cross in Springe, Lower Saxony). With the aid of an immunoassay (MAIPA-test) these plasmas were tested regarding Rhesus-D-antigen, HLA-class-I- and HLA-class-II-antigens, platelet specific antigens HPA-1a/HPA-1b and granulocyte specific antigens NA1/NA2. In Octaplas (n = 10) we did not find cells or cell fragments and no antigen-bearing blood cell structures. In FFP (n = 28) there were platelet specific antigens in 27 cases (96.4%) and HLA-class-I-antigens in 4 cases (14.3%). In MB-plasma (n = 14) we found platelet specific antigens in all cases, HLA-class-I-antigens in 4 cases (18.6%), HLA-class-II-antigens and granulocyte specific antigens in 1 case (7.1%) and Rhesus-D-antigen in 3 cases (21.4%). Plasma derived from whole blood showed lower levels of cells and antigens than plasma which was produced with the aid of the cell separator.
The effects of variations in the number and sequence of targeting signals on nuclear uptake
1988-01-01
To determine if the number of targeting signals affects the transport of proteins into the nucleus, Xenopus oocytes were injected with colloidal gold particles, ranging in diameter from 20 to 280 A, that were coated with BSA cross-linked with synthetic peptides containing the SV-40 large T-antigen nuclear transport signal. Three BSA conjugate preparations were used; they had an average of 5, 8, and 11 signals per molecule of carrier protein. In addition, large T-antigen, which contains one signal per monomer, was used as a coating agent. The cells were fixed at various times after injection and subsequently analyzed by electron microscopy. Gold particles coated with proteins containing the SV-40 signal entered the nucleus through central channels located within the nuclear pores. Analysis of the intracellular distribution and size of the tracers that entered the nucleus indicated that the number of signals per molecule affect both the relative uptake of particles and the functional size of the channels available for translocation. In control experiments, gold particles coated with BSA or BSA conjugated with inactive peptides similar to the SV-40 transport signal were virtually excluded from the nucleus. Gold particles coated with nucleoplasmin, an endogenous karyophilic protein that contains five targeting signals per molecule, was transported through the nuclear pores more effectively than any of the BSA-peptide conjugates. Based on a correlation between the peri-envelope density of gold particles and their relative uptake, it is suggested that the differences in the activity of the two targeting signals is related to their binding affinity for envelope receptors. It was also determined, by performing coinjection experiments, that individual pores are capable of recognizing and transporting proteins that contain different nuclear targeting signals. PMID:3170630
Dendrimeric Antigens for Drug Allergy Diagnosis: A New Approach for Basophil Activation Tests.
Molina, Noemi; Martin-Serrano, Angela; Fernandez, Tahia D; Tesfaye, Amene; Najera, Francisco; Torres, María J; Mayorga, Cristobalina; Vida, Yolanda; Montañez, Maria I; Perez-Inestrosa, Ezequiel
2018-04-24
Dendrimeric Antigens (DeAns) consist of dendrimers decorated with multiple units of drug antigenic determinants. These conjugates have been shown to be a powerful tool for diagnosing penicillin allergy using in vitro immunoassays, in which they are recognized by specific IgE from allergic patients. Here we propose a new diagnostic approach using DeAns in cellular tests, in which recognition occurs through IgE bound to the basophil surface. Both IgE molecular recognition and subsequent cell activation may be influenced by the tridimensional architecture and size of the immunogens. Structural features of benzylpenicilloyl-DeAn and amoxicilloyl-DeAn (G2 and G4 PAMAM) were studied by diffusion Nuclear Magnetic Resonance (NMR) experiments and are discussed in relation to molecular dynamics simulation (MDS) observations. IgE recognition was clinically evaluated using the basophil activation test (BAT) for allergic patients and tolerant subjects. Diffusion NMR experiments, MDS and cellular studies provide evidence that the size of the DeAn, its antigen composition and tridimensional distribution play key roles in IgE-antigen recognition at the effector cell surface. These results indicate that the fourth generation DeAns induce a higher level of basophil activation in allergic patients. This approach can be considered as a potential complementary diagnostic method for evaluating penicillin allergy.
2012-01-01
modulate cell cycle progression and apoptosis. INTRODUCTION Because of the increasing threat posed by nuclear weapons [1], there is a pressing need for both...were per- formed using the iCycler iQ Sequence Detection System ( Bio -Rad Laboratories, Hercules CA) on 96-well microtiter plates with optical caps...Thoss K, Petrow PK et al. Amelioration of murine antigen -induced arthritis by dehydroepiandrosterone (DHEA). Inflamm Res 2004;53:189–98. 56. Auci D
2012-07-22
modulate cell cycle progression and apoptosis. INTRODUCTION Because of the increasing threat posed by nuclear weapons [1], there is a pressing need for both...Detection System ( Bio -Rad Laboratories, Hercules CA) on 96-well microtiter plates with optical caps. Reactions were performed in a total volume of 50 µL... antigen -induced arthritis by dehydroepiandrosterone (DHEA). Inflamm Res 2004;53:189–98. 56. Auci D, Nicoletti F, Mangano K et al. Anti-inflammatory and
de Abreu da Silva, Isabel Caetano; Carneiro, Vitor Coutinho; Maciel, Renata de Moraes; da Costa, Rodrigo Furtado Madeiro; Furtado, Daniel Rodrigues; de Oliveira, Francisco Meirelles Bastos; da Silva-Neto, Mário Alberto Cardoso; Rumjanek, Franklin David; Fantappié, Marcelo Rosado
2011-01-01
The helminth Schistosoma mansoni parasite resides in mesenteric veins where fecundated female worms lay hundred of eggs daily. Some of the egg antigens are trapped in the liver and induce a vigorous granulomatous response. High Mobility Group Box 1 (HMGB1), a nuclear factor, can also be secreted and act as a cytokine. Schistosome HMGB1 (SmHMGB1) is secreted by the eggs and stimulate the production of key cytokines involved in the pathology of schistosomiasis. Thus, understanding the mechanism of SmHMGB1 release becomes mandatory. Here, we addressed the question of how the nuclear SmHMGB1 can reach the extracellular space. We showed in vitro and in vivo that CK2 phosphorylation was involved in the nucleocytoplasmic shuttling of SmHMGB1. By site-directed mutagenesis we mapped the two serine residues of SmHMGB1 that were phosphorylated by CK2. By DNA bending and supercoiling assays we showed that CK2 phosphorylation of SmHMGB1 had no effect in the DNA binding activities of the protein. We showed by electron microscopy, as well as by cell transfection and fluorescence microscopy that SmHMGB1 was present in the nucleus and cytoplasm of adult schistosomes and mammalian cells. In addition, we showed that treatments of the cells with either a phosphatase or a CK2 inhibitor were able to enhance or block, respectively, the cellular traffic of SmHMGB1. Importantly, we showed by confocal microscopy and biochemically that SmHMGB1 is significantly secreted by S. mansoni eggs of infected animals and that SmHMGB1 that were localized in the periovular schistosomotic granuloma were phosphorylated. We showed that secretion of SmHMGB1 is regulated by phosphorylation. Moreover, our results suggest that egg-secreted SmHMGB1 may represent a new egg antigen. Therefore, the identification of drugs that specifically target phosphorylation of SmHMGB1 might block its secretion and interfere with the pathogenesis of schistosomiasis.
Band 3 in aging and neurological disease.
Kay, M M
1991-01-01
Senescent cell antigen appears on old cells and marks them for death by initiating the binding of IgG autoantibody and subsequent removal by phagocytes in mammals and other vertebrates. We have created a synthetic aging antigen that blocks binding of IgG to senescent cells in vitro. Synthetic senescent cell antigen might be effective in preventing cellular destruction in vivo in certain diseases, and can be used to manipulate cellular life span in situ. Senescent cell antigen is generated by the modification of an important structural and transport membrane molecule, protein band 3. Band 3 is present in cellular, nuclear, Golgi, and mitochondrial membranes as well as in cell membranes. Band 3 proteins in nucleated cells participate in cell surface patching and capping. Band 3 maintains acid-base balance by mediating the exchange of anions (e.g., chloride, bicarbonate), and is the binding site for glycolytic enzymes. It is responsible for CO2 exchange in all tissues and organs. Thus, it is the most heavily used anion transport system in the body. Band 3 is a major transmembrane structural protein which attaches the plasma membrane to the internal cell cytoskeleton by binding to band 2.1 (ankyrin). Oxidation generates senescent cell antigen in situ. Band 3 is present in the central nervous system, and differences have been described in band 3 between young and aging brain tissue. One autosomal recessive neurological disease, choreoacanthocytosis, is associated with band 3 abnormalities. The 150 residues of the carboxyl terminus segment of band 3 appear to be altered. In brains from Alzheimer's disease patients, antibodies to aged band 3 label the amyloid core of classical plaques and the microglial cells located in the middle of the plaque in tissue sections, and an abnormal band 3 in immunoblots. Band 3 protein(s) in mammalian brain performs the same functions as that of erythroid band 3. These functions is anion transport, ankyrin binding, and generation of senescent cell antigen, an aging antigen that terminates the life of cells. Structural similarity of brain and erythroid band 3 is suggested by the reaction of antibodies to synthetic peptides of erythroid band 3 with brain band 3, the inhibition of anion transport by the same inhibitors, and an equal degree of inhibition of brain and erythrocyte anion transport by synthetic peptides of erythroid band 3. One of these segments, pep-COOH, contains antigenic determinants of senescent cell antigen.(ABSTRACT TRUNCATED AT 400 WORDS)
Holec-Gąsior, Lucyna; Ferra, Bartłomiej; Drapała, Dorota; Lautenbach, Dariusz
2012-01-01
This study presents an evaluation of the MIC1 (microneme protein 1)-MAG1 (matrix antigen 1) Toxoplasma gondii recombinant chimeric antigen for the serodiagnosis of human toxoplasmosis for the first time. The recombinant MIC1-MAG1 antigen was obtained as a fusion protein containing His tags at the N- and C-terminal ends using an Escherichia coli expression system. After purification by metal affinity chromatography, the chimeric protein was tested for usefulness in an enzyme-linked immunosorbent assay (ELISA) for the detection of anti-T. gondii immunoglobulin G (IgG). One hundred ten sera from patients at different stages of infection and 40 sera from seronegative patients were examined. The results obtained for the MIC1-MAG1 chimeric antigen were compared with those of IgG ELISAs using a Toxoplasma lysate antigen (TLA), a combination of recombinant antigens (rMIC1ex2-rMAG1) and single recombinant proteins (rMIC1ex2 and rMAG1). The sensitivity of the IgG ELISA calculated from all of the positive serum samples was similar for the MIC1-MAG1 chimeric antigen (90.8%) and the TLA (91.8%), whereas the sensitivities of the other antigenic samples used were definitely lower, at 69.1% for the mixture of antigens, 75.5% for the rMIC1ex2, and 60% for rMAG1. This study demonstrates that the MIC1-MAG1 recombinant chimeric antigen can be used instead of the TLA in the serodiagnosis of human toxoplasmosis. PMID:22116686
Diab, M; Nguyen, F; Berthaud, M; Maurel, C; Gaschet, J; Verger, E; Ibisch, C; Rousseau, C; Chérel, M; Abadie, J; Davodeau, F
2017-09-01
We isolated 11 antibodies specific for canine CD138 (cCD138) to validate the interest of CD138 antigen targeting in dogs with spontaneous mammary carcinoma. The affinity of the monoclonal antibodies in the nanomolar range is suitable for immunohistochemistry and nuclear medicine applications. Four distinct epitopes were recognized on cCD138 by this panel of antibodies. CD138 expression in canine healthy tissues is comparable to that reported in humans. CD138 is frequently expressed in canine mammary carcinomas corresponding to the human triple negative breast cancer subtype, with cytoplasmic and membranous expression. In canine diffuse large B-cell lymphoma, CD138 expression is associated with the 'non-germinal center' phenotype corresponding to the most aggressive subtype in humans. This homology of CD138 expression between dogs and humans confirms the relevance of tumour-bearing dogs as spontaneous models for nuclear medicine applications, especially for the evaluation of new tumour targeting strategies for diagnosis by phenotypic imaging and radio-immunotherapy. © 2016 John Wiley & Sons Ltd.
Nuclear transfer to study the nuclear reprogramming of human stem cells.
Saito, Shigeo; Sawai, Ken; Murayama, Yoshinobu; Fukuda, Keiichi; Yokoyama, Kazunari
2008-01-01
Research of stem cells will enable us to understand the development and function of tissues and organs in mammals. The ability to induce regeneration of new tissues from embryonic stem (ES) cells derived from cloned blastocysts via nuclear transfer can be expected in the not-too-distant future. The fact that there is no way except nuclear cloning for the return of differentiated cells to undifferentiated cells remains an interesting problem to be solved. We describe protocols for the production of cloned calves from bovine ES cells to study nuclear reprogramming ability of stem cells. The frequency of term pregnancies for blastocysts from ES cells is higher than those of early pregnancies and maintained pregnancies after nuclear transfer with bovine somatic cells. We also describe protocols for gene introduction into bovine ES cells in vitro, particularly the human leukocyte antigens (HLA). Bovine ES cells provide a powerful tool for the generation of transgenic clonal offspring. This technique, when perfected for humans, may be critical for neural stem cell transplantation.
Cuppoletti, John; Chakrabarti, Jayati; Tewari, Kirti; Malinowska, Danuta H
2013-05-01
In clinical trials, methadone, but not morphine, appeared to prevent beneficial effects of lubiprostone, a ClC-2 Cl(-) channel activator, on opioid-induced constipation. Effects of methadone and morphine on lubiprostone-stimulated Cl(-) currents were measured by short circuit current (Isc) across T84 cells. Whole cell patch clamp of human ClC-2 (hClC-2) stably expressed in HEK293 cells and in a high expression cell line (HEK293EBNA) as well as human CFTR (hCFTR) stably expressed in HEK293 cells was used to study methadone and morphine effects on recombinant hClC-2 and hCFTR Cl(-) currents. Methadone but not morphine inhibited lubiprostone-stimulated Isc in T84 cells with half-maximal inhibition at 100 nM. Naloxone did not affect lubiprostone stimulation or methadone inhibition of Isc. Lubiprostone-stimulated Cl(-) currents in hClC-2/HEK293 cells, but not forskolin/IBMX-stimulated Cl(-) currents in hCFTR/HEK293 cells, were inhibited by methadone, but not morphine. HEK293EBNA cells expressing hClC-2 showed time-dependent, voltage-activated, CdCl2-inhibited Cl(-) currents in the absence (control) and the presence of lubiprostone. Methadone, but not morphine, inhibited control and lubiprostone-stimulated hClC-2 Cl(-) currents with half-maximal inhibition at 100 and 200-230 nM, respectively. Forskolin/IBMX-stimulated hClC-2 Cl(-) currents were also inhibited by methadone. Myristoylated protein kinase inhibitor (a specific PKA inhibitor) inhibited forskolin/IBMX- but not lubiprostone-stimulated hClC-2 Cl(-) currents. Methadone caused greater inhibition of lubiprostone-stimulated currents added before patching (66.1 %) compared with after patching (28.7 %). Methadone caused inhibition of lubiprostone-stimulated Cl(-) currents in T84 cells and control; lubiprostone- and forskolin/IBMX-stimulated recombinant hClC-2 Cl(-) currents may be the basis for reduced efficacy of lubiprostone in methadone-treated patients.
Rac1 Dosage Is Crucial for Normal Endochondral Bone Growth.
Suzuki, Dai; Bush, Jason R; Bryce, Dawn-Marie; Kamijo, Ryutaro; Beier, Frank
2017-10-01
Rac1, a member of the small Rho GTPase family, plays multiple cellular roles. Studies of mice conditionally lacking Rac1 have revealed essential roles for Rac1 in various tissues, including cartilage and limb mesenchyme, where Rac1 loss produces dwarfism and long bone shortening. To gain further insight into the role of Rac1 in skeletal development, we have used transgenic mouse lines to express a constitutively active (ca) Rac1 mutant protein in a Cre recombinase-dependent manner. Overexpression of caRac1 in limb bud mesenchyme or chondrocytes leads to reduced body weight and shorter bones compared with control mice. Histological analysis of growth plates showed that caRac1;Col2-Cre mice displayed ectopic hypertrophic chondrocytes in the proliferative zone and enlarged hypertrophic zones. These mice also displayed a reduced proportion of proliferating cell nuclear antigen-positive cells in the proliferative zone and nuclear β-catenin localization in the ectopic hypertrophic chondrocytes. Importantly, overexpression of caRac1 partially rescued the phenotypes of Rac1fl/fl;Col2-Cre and Rac1fl/fl;Prx1-Cre conditional knockout mice, including body weight, bone length, and growth plate disorganization. These results suggest that tight regulation of Rac1 activity is necessary for normal cartilage development. Copyright © 2017 Endocrine Society.
Role of Fos-related antigen 1 in the progression and prognosis of ductal breast carcinoma
Logullo, Angela Flavia; Stiepcich, Mônica Maria Ágata; de Toledo Osório, Cintia Aparecida Bueno; Nonogaki, Sueli; Pasini, Fátima Solange; Rocha, Rafael Malagoli; Soares, Fernando Augusto; Brentani, Maria M
2011-01-01
Aims Fos-related antigen 1 (Fra-1) is a member of the activator protein 1 (AP-1) transcription factor family. Our objective was to evaluate the role of Fra-1 expression in breast carcinoma progression and prognosis. Methods and results Fra-1 expression was investigated by immunohistochemistry in two tissue microarrays containing, respectively, 85 ductal carcinoma in situ (DCIS) and 771 invasive ductal carcinoma (IDC) samples. Staining was observed in the nucleus and cytoplasm of the carcinomas, but only nuclear staining was considered to be positive. Fibroblasts associated with IDC were also Fra-1-positive. The frequency of Fra-1 positivity in IDC (22.8%) was lower than that in DCIS (42.2%). No association was found between Fra-1 and clinico-pathological variables in DCIS. In IDC, Fra-1 expression correlated with aggressive phenotype markers, including: high grade, oestrogen receptor negativity and human epidermal growth factor receptor 2 (HER-2) positivity (P = 0.001, 0.015 and 0.004, respectively), and marginally with the presence of metastasis (P = 0.07). Fra-1 was more frequently positive in basal-like (34%) and in HER-2-positive (38.5%) subtypes than in luminal subtypes. Fra-1 presence did not correlate with survival. Conclusions A high frequency of Fra-1 in DCIS tumours may be associated with early events in breast carcinogenesis. Although Fra-1 expression correlated with features of a more aggressive phenotype in IDC, no relationship with overall survival was found. PMID:21371080
Membranous glomerulopathy with spherules: an uncommon variant with obscure pathogenesis.
Kowalewska, Jolanta; Smith, Kelly D; Hudkins, Kelly L; Chang, Anthony; Fogo, Agnes B; Houghton, Donald; Leslie, Deena; Aitchison, John; Nicosia, Roberto F; Alpers, Charles E
2006-06-01
Occasional case reports of membranous glomerulopathy described unique subepithelial accumulations of an unusual type of immune deposit composed of spherular structures. The identity of such structures as nuclear pores has been suggested, but not established. We identified a cohort of patients (n = 14, including 1 patient with disease recurrence in an allograft) who presented with nephrotic syndrome and had renal biopsy specimens with light and immunofluorescence microscopic findings characteristic of membranous glomerulopathy. These patients were distinguished by ultrastructural studies that showed glomerular capillary wall accumulations of subepithelial immune deposits composed of uniform spherular structures, while lacking the typical granular electron-dense deposits seen in membranous glomerulopathy. The molecular identity of these spherular structures as nuclear pores was tested by using immunofluorescence microscopy and immunohistochemistry with mouse monoclonal antinuclear pore antibodies (Covance, Princeton, NJ) and anti-Nuclear Pore-O-Linked Glycoprotein (Affinity BioReagents Inc, Golden, CO) antibodies. Measurement of spherular structures by using high-magnification electron microscopy showed an average diameter of 84.5 nm, which correlated well with accepted diameters of nuclear pores (80 to 120 nm). Immunofluorescence microscopy and immunoperoxidase staining with both antibodies showed characteristic beaded staining of nuclear membranes of multiple cell types within normal control kidney, but no staining of immune-type deposits within glomerular basement membranes. These cases form a rare, but distinctive, morphological subclass of membranous glomerulopathy. The antigenic specificity of immune deposits in these cases remains elusive.
Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation.
Kubben, F J; Peeters-Haesevoets, A; Engels, L G; Baeten, C G; Schutte, B; Arends, J W; Stockbrügger, R W; Blijham, G H
1994-01-01
Immunohistochemistry of the S phase related proliferating cell nuclear antigen (PCNA) was studied as an alternative to ex-vivo bromodeoxyuridine (BrdU) immunohistochemistry for assessment of human colonic cell proliferation. From 16 subjects without colonic disease biopsy specimens were collected from five different sites along the colorectum and processed for BrdU and PCNA immunohistochemistry. The mean proliferation index of PCNA was significantly higher at 133% of the value obtained with BrdU. There was, however, a good correlation between the results from both techniques (r = 0.6275; p < 0.05). Decrease in proliferation index along the colorectum was seen with both staining methods but was clearer with PCNA immunohistochemistry (caecum/ascending colon v rectum: 12.0 v 7.2; p < 0.004). The total number of crypt cells also decreased from proximal to distal (134 to 128; p < 0.06) but at no site correlated significantly with the proliferation index. It is concluded that in clinical cell kinetic studies staining for PCNA may serve as an attractive alternative to the BrdU incorporation assay. Images Figure 4 PMID:7909785
Vanitha, Manickam Kalappan; Baskaran, Kuppusamy; Periyasamy, Kuppusamy; Selvaraj, Sundaramoorthy; Ilakkia, Aruldoss; Saravanan, Dhiravidamani; Venkateswari, Ramachandran; Revathi Mani, Balasundaram; Anandakumar, Pandi; Sakthisekaran, Dhanapal
2016-08-01
The modulatory effect of taurine on 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer in rats was studied. DMBA (25 mg/kg body weight) was administered to induce breast cancer in rats. Protein carbonyl levels, activities of membrane bound enzymes (Na(+) /K(+) ATPase, Ca(2+) ATPase, and Mg(2+) ATPase), phase I drug metabolizing enzymes (cytochrome P450, cytochrome b5, NADPH cytochrome c reductase), phase II drug metabolizing enzymes (glutathione-S-transferase and UDP-glucuronyl transferase), glycoprotein levels, and proliferative cell nuclear antigen (PCNA) were studied. DMBA-induced breast tumor bearing rats showed abnormal alterations in the levels of protein carbonyls, activities of membrane bound enzymes, drug metabolizing enzymes, glycoprotein levels, and PCNA protein expression levels. Taurine treatment (100 mg/kg body weight) appreciably counteracted all the above changes induced by DMBA. Histological examination of breast tissue further supported our biochemical findings. The results of the present study clearly demonstrated the chemotherapeutic effect of taurine in DMBA-induced breast cancer. © 2016 Wiley Periodicals, Inc.
Prognostic value of proliferating cell nuclear antigen in parotid gland cancer.
Stenner, Markus; Demgensky, Ariane; Molls, Christoph; Hardt, Aline; Luers, Jan C; Grosheva, Maria; Huebbers, Christian U; Klussmann, Jens P
2012-04-01
Although cell proliferation is related to tumour aggressiveness and prognosis, there are few studies describing the expression of proliferative markers in salivary gland cancer. Our aim was to assess the long-term prognostic value of the proliferating cell nuclear antigen (PCNA) in a large group of histologically different salivary gland cancers. We analysed the expression of PCNA in 159 patients with parotid gland cancer by means of immunohistochemistry. The mean follow-up time was 56.6 months. A high expression of PCNA showed a significant correlation to the patients' pathological lymph node stage (p = 0.004). A high PCNA expression significantly indicated a poor 5-year disease-free (p = 0.046) and overall survival rate (p = 0.018). The PCNA expression was the only prognostic factor for a worse 5-year disease-free and overall survival in acinic cell carcinomas (p = 0.004, p = 0.022). The correlation between PCNA expression and survival probabilities of salivary gland cancer might make proliferation markers helpful tools in patient follow-up, prognosis and targeted therapy in salivary gland cancer in future.
Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes.
Clark, A B; Valle, F; Drotschmann, K; Gary, R K; Kunkel, T A
2000-11-24
Eukaryotic DNA mismatch repair requires the concerted action of several proteins, including proliferating cell nuclear antigen (PCNA) and heterodimers of MSH2 complexed with either MSH3 or MSH6. Here we report that MSH3 and MSH6, but not MSH2, contain N-terminal sequence motifs characteristic of proteins that bind to PCNA. MSH3 and MSH6 peptides containing these motifs bound PCNA, as did the intact Msh2-Msh6 complex. This binding was strongly reduced when alanine was substituted for conserved residues in the motif. Yeast strains containing alanine substitutions in the PCNA binding motif of Msh6 or Msh3 had elevated mutation rates, indicating that these interactions are important for genome stability. When human MSH3 or MSH6 peptides containing the PCNA binding motif were added to a human cell extract, mismatch repair activity was inhibited at a step preceding DNA resynthesis. Thus, MSH3 and MSH6 interactions with PCNA may facilitate early steps in DNA mismatch repair and may also be important for other roles of these eukaryotic MutS homologs.
Seed, Kimberley D.; Faruque, Shah M.; Mekalanos, John J.; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew
2012-01-01
The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage. PMID:23028317
Nakai, Yuka; Ito, Akihisa; Ogawa, Yohsuke; Aribam, Swarmistha Devi; Elsheimer-Matulova, Marta; Shiraiwa, Kazumasa; Kisaka, Stevens M B; Hikono, Hirokazu; Nishikawa, Sayaka; Akiba, Masato; Kawahara, Kazuyoshi; Shimoji, Yoshihiro; Eguchi, Masahiro
2017-04-01
Salmonella enterica serovar Typhimurium (S. Typhimurium) has two serological variants: one that expresses the O:5 antigen (1,4,5,12:i:1,2) and one that lacks O:5 antigen (1,4,12:i:1,2). For serotyping, S. Typhimurium is agglutinated by diagnostic O:4 antigen serum. This study was carried out to compare the antigen-antibody affinity of O:4 antigen in S. Typhimurium χ3306 O:5-positive and S. Typhimurium χ3306 O:5-negative strains. The affinity of O:4 antigen with O:4 antigen serum was found to be stronger in the O:5-negative strains compared to O:5-positive strains. Next, we investigated the antigen-antibody affinity of O:4 antigen with O:4 antigen serum in field strains of S. Typhimurium, which showed the same tendency in affinity as seen with S. Typhimurium χ3306 O:5-positive and negative strains. This study suggests that the presence or absence of O:5 antigen causes differences in O:4 agglutination reactions with different field strains of S. Typhimurium. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yeh, Kuo-Ming; Chiu, Sheng-Kung; Lin, Chii-Lan; Huang, Li-Yueh; Tsai, Yu-Kuo; Chang, Jen-Chang; Lin, Jung-Chung; Chang, Feng-Yee; Siu, Leung-Kei
2016-01-01
The virulence role of surface antigens in a single serotype of Klebsiella pneumoniae strain have been studied, but little is known about whether their contribution will vary with serotype. To investigate the role of K and O antigen in hyper-virulent strains, we constructed O and K antigen deficient mutants from serotype K1 STL43 and K2 TSGH strains from patients with liver abscess, and characterized their virulence in according to the abscess formation and resistance to neutrophil phagocytosis, serum, and bacterial clearance in liver. Both of K1 and K2-antigen mutants lost their wildtype resistance to neutrophil phagocytosis and hepatic clearance, and failed to cause abscess formation. K2-antigen mutant became serum susceptible while K1-antigen mutant maintained its resistance to serum killing. The amount of glucuronic acid, indicating the amount of capsular polysaccharide (CPS, K antigen), was inversed proportional to the rate of phagocytosis. O-antigen mutant of serotype K1 strains had significantly more amount of CPS, and more resistant to neutrophil phagocytosis than its wildtype counterpart. O-antigen mutants of serotype K1 and K2 strains lost their wildtype serum resistance, and kept resistant to neutrophil phagocytosis. While both mutants lacked the same O1 antigen, O-antigen mutant of serotype K1 became susceptible to liver clearance and cause mild abscess formation, but its serotype K2 counterpart maintained these wildtype virulence. We conclude that the contribution of surface antigens to virulence of K. pneumoniae strains varies with serotypes.
Hutcheson, Jack; Vanarsa, Kamala; Bashmakov, Anna; Grewal, Simer; Sajitharan, Deena; Chang, Betty Y; Buggy, Joseph J; Zhou, Xin J; Du, Yong; Satterthwaite, Anne B; Mohan, Chandra
2012-11-08
Systemic lupus erythematosus is a chronic autoimmune disease characterized by an abundance of autoantibodies against nuclear antigens. Bruton's tyrosine kinase (Btk) is a proximal transducer of the BCR signal that allows for B-cell activation and differentiation. Recently, selective inhibition of Btk by PCI-32765 has shown promise in limiting activity of multiple cells types in various models of cancer and autoimmunity. The aim of this study was to determine the effect of Btk inhibition by PCI-32765 on the development of lupus in lupus-prone B6.Sle1 and B6.Sle1.Sle3 mice. B6.Sle1 or B6.Sle1.Sle3 mice received drinking water containing either the Btk inhibitor PCI-32765 or vehicle for 56 days. Following treatment, mice were examined for clinical and pathological characteristics of lupus. The effect of PCI-32765 on specific cell types was also investigated. In this study, we report that Btk inhibition dampens humoral autoimmunity in B6.Sle1 monocongenic mice. Moreover, in B6.Sle1.Sle3 bicongenic mice that are prone to severe lupus, Btk inhibition also dampens humoral and cellular autoimmunity, as well as lupus nephritis. These findings suggest that partial crippling of cell signaling in B cells and antigen presenting cells (APCs) may be a viable alternative to total depletion of these cells as a therapeutic modality for lupus.
K-ras p21 expression and activity in lung and lung tumors.
Ramakrishna, G; Sithanandam, G; Cheng, R Y; Fornwald, L W; Smith, G T; Diwan, B A; Anderson, L M
2000-12-01
Although K-ras is mutated in many human and mouse lung adenocarcinomas, the function of K-ras p21 in lung is not known. We sought evidence for the prevalent hypothesis that K-ras p21 activates raf, which in turn passes the signal through the extracellular signal regulated kinases (Erks) to stimulate cell division, and that this pathway is upregulated when K-ras is mutated. Results from both mouse lung tumors and immortalized cultured E10 and C10 lung type II cells failed to substantiate this hypothesis. Lung tumors did not have more total K-ras p21 or K-ras p21 GTP than normal lung tissue, nor were high levels of these proteins found in tumors with mutant K-ras. Activated K-ras p21-GTP levels did not correlate with proliferating cell nuclear antigen. Special features of tumors with mutant K-ras included small size of carcinomas compared with carcinomas lacking this mutation, and correlation of proliferating cell nuclear antigen with raf-1. In nontransformed type II cells in culture, both total and activated K-ras p21 increased markedly at confluence but not after serum stimulation, whereas both Erk1/2 and the protein kinase Akt were rapidly activated by the serum treatment. Reverse transcriptase-polymerase chain reaction (RT-PCR) assays of K-ras mRNA indicated an increase in confluent and especially in postconfluent cells. Together the findings indicate that normal K-ras p21 activity is associated with growth arrest of lung type II cells, and that the exact contribution of mutated K-ras p21 to tumor development remains to be discovered.
Terzi, F.; Maunoury, R.; Colucci-Guyon, E.; Babinet, C.; Federici, P.; Briand, P.; Friedlander, G.
1997-01-01
Proliferation and dedifferentiation of tubular cells are the hallmark of early regeneration after renal ischemic injury. Vimentin, a class III intermediate filament expressed only in mesenchymal cells of mature mammals, was shown to be transiently expressed in post-ischemic renal tubular epithelial cells. Vimentin re-expression was interpreted as a marker of cellular dedifferentiation, but its role in tubular regeneration after renal ischemia has also been hypothesized. This role was evaluated in mice bearing a null mutation of the vimentin gene. Expression of vimentin, proliferating cell nuclear antigen (a marker of cellular proliferation), and villin (a marker of differentiated brush-border membranes) was studied in wild-type (Vim+/+), heterozygous (Vim+/-), and homozygous (Vim-/-) mice subjected to transient ischemia of the left kidney. As expected, vimentin was detected by immunohistochemistry at the basal pole of proximal tubular cells from post-ischemic kidney in Vim+/+ and Vim+/- mice from day 2 to day 28. The expression of the reporter gene beta-galactosidase in Vim+/- and Vim-/- mice confirmed the tubular origin of vimentin. No compensatory expression of keratin could be demonstrated in Vim-/- mice. The intensity of proliferating cell nuclear antigen labeling and the pattern of villin expression were comparable in Vim-/-, Vim+/- and Vim+/+ mice at any time of the study. After 60 days, the structure of post-ischemic kidneys in Vim-/- mice was indistinguishable from that of normal non-operated kidneys in Vim+/+ mice. In conclusion, 1) the pattern of post-ischemic proximal tubular cell proliferation, differentiation, and tubular organization was not impaired in mice lacking vimentin and 2) these results suggest that the transient tubular expression of vimentin is not instrumental in tubular regeneration after renal ischemic injury. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 PMID:9094992
Yuksel, M; Xiao, X; Tai, N; Vijay, G M; Gülden, E; Beland, K; Lapierre, P; Alvarez, F; Hu, Z; Colle, I; Ma, Y; Wen, L
2016-11-01
Autoimmune hepatitis (AIH) is a chronic liver disease characterized by progressive inflammation, female preponderance and seropositivity for autoantibodies such as anti-smooth muscle actin and/or anti-nuclear, anti-liver kidney microsomal type 1 (anti-LKM1) and anti-liver cytosol type 1 (anti-LC1) in more than 80% of cases. AIH is linked strongly to several major histocompatibility complex (MHC) alleles, including human leucocyte antigen (HLA)-DR3, -DR7 and -DR13. HLA-DR4 has the second strongest association with adult AIH, after HLA-DR3. We investigated the role of HLA-DR4 in the development of AIH by immunization of HLA-DR4 (DR4) transgenic non-obese diabetic (NOD) mice with DNA coding for human CYP2D6/FTCD fusion autoantigen. Immunization of DR4 mice leads to sustained mild liver injury, as assessed biochemically by elevated alanine aminotransferase, histologically by interface hepatitis, plasma cell infiltration and mild fibrosis and immunologically by the development of anti-LKM1/anti-LC1 antibodies. In addition, livers from DR4 mice had fewer regulatory T cells (T regs ), which had decreased programmed death (PD)-1 expression. Splenic T regs from these mice also showed impaired inhibitory capacity. Furthermore, DR4 expression enhanced the activation status of CD8 + T cells, macrophages and dendritic cells in naive DR4 mice compared to naive wild-type (WT) NOD mice. Our results demonstrate that HLA-DR4 is a susceptibility factor for the development of AIH. Impaired suppressive function of T regs and reduced PD-1 expression may result in spontaneous activation of key immune cell subsets, such as antigen-presenting cells and CD8 + T effectors, facilitating the induction of AIH and persistent liver damage. © 2016 British Society for Immunology.
21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...
21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...
21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...
21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...
21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...
Evaluation of the LIA-ANA-Profile-17S for the detection of autoantibodies to nuclear antigens.
Yi, Ahram; Lee, Chang-Hoon; Moon, Hee-Won; Kim, Hanah; Hur, Mina; Yun, Yeo-Min
2018-05-01
The diagnostic tests for autoimmune disease include screening for autoantibodies for nuclear antigens (ANA) and antibodies against extractable nuclear antigens (ENA). Using the line immunoassay (LIA) method, various kinds of ENA antibodies can be detected simultaneously. We evaluated the performance of the newly launched LIA-ANA-Profile-17S (Shenzhen YHLO Biotech, Shenzhen, China) as compared to a conventional LIA kit. Residual samples were collected from 200 patients who had been tested for ANA using indirect immunofluorescence. The LIA-ANA-Profile-17S was compared to the EuroLine ANA (Euroimmun, Oberlausitz, Germany) for the analysis of 17 different autoantibodies. The concordance rate and agreement between assays were determined. Samples showing discrepancies between the LIA-ANA-Profile-17S and EuroLine tests were further examined through additional analysis. The overall agreement was moderate (kappa = 0.759, 95% CI = 0.712-0.805). Agreement between assays ranged from weak to almost perfect, except for those tests targeting nucleosomes, histones, and PM-Scl. Of the 57 disparate results between LIA-ANA-Profile-17S and EuroLine, 38 (66.7%) samples tested positive under an additional assay, showing variable patterns between types of autoantibodies. The positive rate of each autoantibody between LIA-ANA-Profile-17S and EuroLine did not differ significantly, except for anti-nucleosome and anti-histone assays in samples from patients diagnosed with systemic lupus erythematosus (P = 0.004 and 0.001, respectively). Compared to those from the conventional EuroLine assay, the LIA-ANA-Profile-17S results showed variable agreement in samples showing different prevalence of each autoantibody. The most frequently detected antibodies showed almost perfect agreement. The LIA-ANA-Profile-17S could play a role in the diagnosis of systemic autoimmune disease in ANA-positive samples. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Inflammatory etiopathogenesis of systemic lupus erythematosus: an update
Podolska, Malgorzata J; Biermann, Mona HC; Maueröder, Christian; Hahn, Jonas; Herrmann, Martin
2015-01-01
The immune system struggles every day between responding to foreign antigens and tolerating self-antigens to delicately maintain tissue homeostasis. If self-tolerance is broken, the development of autoimmunity can be the consequence, as it is in the case of the chronic inflammatory autoimmune disease systemic lupus erythematosus (SLE). SLE is considered to be a multifactorial disease comprising various processes and cell types that act abnormally and in a harmful way. Oxidative stress, infections, or, in general, tissue injury are accompanied by massive cellular demise. Several processes such as apoptosis, necrosis, or NETosis (formation of Neutrophil Extracellular Traps [NETs]) may occur alone or in combination. If clearance of dead cells is insufficient, cellular debris may accumulate and trigger inflammation and leakage of cytoplasmic and nuclear autoantigens like ribonucleoproteins, DNA, or histones. Inadequate removal of cellular remnants in the germinal centers of secondary lymphoid organs may result in the presentation of autoantigens by follicular dendritic cells to autoreactive B cells that had been generated by chance during the process of somatic hypermutation (loss of peripheral tolerance). The improper exposure of nuclear autoantigens in this delicate location is consequently prone to break self-tolerance to nuclear autoantigens. Indeed, the germline variants of autoantibodies often do not show autoreactivity. The subsequent production of autoantibodies plays a critical role in the development of the complex immunological disorder fostering SLE. Immune complexes composed of cell-derived autoantigens and autoantibodies are formed and get deposited in various tissues, such as the kidney, leading to severe organ damage. Alternatively, they may also be formed in situ by binding to planted antigens of circulating autoantibodies. Here, we review current knowledge about the etiopathogenesis of SLE including the involvement of different types of cell death, serving as the potential source of autoantigens, and impaired clearance of cell remnants, causing accumulation of cellular debris. PMID:26316795
Analysis of nuclear accumulation of influenza NP antigen in von Magnus virus-infected cells.
Maeno, K; Aoki, H; Hamaguchi, M; Iinuma, M; Nagai, Y; Matsumoto, T; Takeura, S; Shibata, M
1981-01-01
When 1-5C-4 cells were infected with von Magnus virus derived from influenza A/RI/5+ virus by successive undiluted passages in chick embryos, virus-specific proteins were synthesized but production of infectious virus was inhibited. In these cells the synthesis of viral RNA was suppressed and the nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to standard virus-infected cells in which the antigen was distributed throughout the whole cell. The intracellular location and migration of NP were determined by isotope labeling and sucrose gradient centrifugation of subcellular fractions. In standard virus-infected cell NP polypeptide was present predominantly in the cytoplasm in the form of viral ribonucleoprotein (RNP) and intranuclear RNP was detected in reduced amounts. In contrast, in von Magnus virus-infected cells NP polypeptide was present predominantly in the nucleus in a nonassembled, soluble from and the amount of cytoplasmic RNP was considerably reduced. After short-pulse labeling NP was detected exclusively in the cytoplasm in a soluble form and after a chase a large proportion of such soluble NP was seen in the nucleus. It is suggested that a large proportion of the NP synthesized in von Magnus virus-infected cells in not assembled into cytoplasmic RNP because of the lack of available RNA and the NP migrated into the nucleus and remained there.
Jour, George; Liu, Yajuan; Ricciotti, Robert; Pritchard, Colin; Hoch, Benjamin L
2015-09-01
Epithelial glandular differentiation in dedifferentiated chondrosarcoma has not been described. Our patient was a 64-year-old man with a history of prostate cancer status post-radiation and hormonal therapy. On screening bone scan, he was found to have increased uptake in his right femoral shaft. Biopsy revealed intermediate-grade conventional chondrosarcoma. Subsequent femoral resection was remarkable for an intermediate-grade chondrosarcomatous component juxtaposed to an area composed of anastomosing nests and cords of malignant epithelial cells showing nuclear atypia and increased mitotic activity. A fibroblastic-appearing spindle cell population was intimately associated with the epithelial cells. The epithelial cells labeled with 34bE12, AE1/AE3, EMA, and Vimentin (both spindled and epithelial components) while being negative for prostate-specific antigen, prostate specific acid phosphatase, cytokeratin 20, thyroid transcription factor-1, and CDX2. The patient developed local recurrence 9 months after the initial resection but has had no metastatic disease and consistently undetectable prostate-specific antigen levels. Deep parallel sequencing of the dedifferentiated component showed a nonsynonymous mutation at exon 4 of IDH1 gene at codon R132 leading to a substitution of arginine, with serine confirming glandular differentiation in dedifferentiated chondrosarcoma. Copyright © 2015 Elsevier Inc. All rights reserved.
Chuan, Yap Pang; Zeng, Bi Yun; O'Sullivan, Brendan; Thomas, Ranjeny; Middelberg, Anton P J
2012-02-15
Nanotechnology promises new drug carriers that can be tailored to specific applications. Here we report a new approach to drug delivery based on tailorable nanocarrier emulsions (TNEs), motivated by a need to co-deliver a protein antigen and a lipophilic drug for specific inhibition of nuclear factor kappa B (NF-κB) in antigen presenting cells (APCs). Co-delivery for NF-κB inhibition holds promise as a strategy for the treatment of rheumatoid arthritis. We used a highly surface-active peptide (SAP) to prepare a nanosized emulsion having defined surface properties predictable from the SAP sequence. Incorporating the lipophilic drug into the oil phase at the time of emulsion formation enabled its facile packaging. The SAP is depleted from bulk during emulsification, allowing simple subsequent addition of the drug-loaded oil-in-water emulsion to a solution of protein antigen. Decoration of emulsion surface with antigen was achieved via electrostatic deposition. In vitro data showed that the TNE prepared this way was internalized and well-tolerated by model APCs, and that good suppression of NF-κB expression was achieved. This work reports a new type of nanotechnology-based carrier, a TNE, which can potentially be tailored for co-delivery of multiple therapeutic components, and can be made using simple methods using only biocompatible materials. Copyright © 2011 Elsevier Inc. All rights reserved.
Inhibition of CD1 antigen presentation by human cytomegalovirus.
Raftery, Martin J; Hitzler, Manuel; Winau, Florian; Giese, Thomas; Plachter, Bodo; Kaufmann, Stefan H E; Schönrich, Günther
2008-05-01
The betaherpesvirus human cytomegalovirus (HCMV) encodes several molecules that block antigen presentation by the major histocompatibility complex (MHC) proteins. Humans also possess one other family of antigen-presenting molecules, the CD1 family; however, the effect of HCMV on CD1 expression is unknown. The majority of CD1 molecules are classified on the basis of homology as group 1 CD1 and are present almost exclusively on professional antigen-presenting cells such as dendritic cells, which are a major target for HCMV infection and latency. We have determined that HCMV encodes multiple blocking strategies targeting group 1 CD1 molecules. CD1 transcription is strongly inhibited by the HCMV interleukin-10 homologue cmvIL-10. HCMV also blocks CD1 antigen presentation posttranscriptionally by the inhibition of CD1 localization to the cell surface. This function is not performed by a known HCMV MHC class I-blocking molecule and is substantially stronger than the blockage induced by herpes simplex virus type 1. Antigen presentation by CD1 is important for the development of the antiviral immune response and the generation of mature antigen-presenting cells. HCMV present in antigen-presenting cells thus blunts the immune response by the blockage of CD1 molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sciuto, Tracey E.; Merley, Anne; Lin, Chi-Iou
2015-09-25
Transmembrane-4 L-six family member-1 (TM4SF1) is a small plasma membrane-associated glycoprotein that is highly and selectively expressed on the plasma membranes of tumor cells, cultured endothelial cells, and, in vivo, on tumor-associated endothelium. Immunofluorescence microscopy also demonstrated TM4SF1 in cytoplasm and, tentatively, within nuclei. With monoclonal antibody 8G4, and the finer resolution afforded by immuno-nanogold transmission electron microscopy, we now demonstrate TM4SF1 in uncoated cytoplasmic vesicles, nuclear pores and nucleoplasm. Because of its prominent surface location on tumor cells and tumor-associated endothelium, TM4SF1 has potential as a dual therapeutic target using an antibody drug conjugate (ADC) approach. For ADC to bemore » successful, antibodies reacting with cell surface antigens must be internalized for delivery of associated toxins to intracellular targets. We now report that 8G4 is efficiently taken up into cultured endothelial cells by uncoated vesicles in a dynamin-dependent, clathrin-independent manner. It is then transported along microtubules through the cytoplasm and passes through nuclear pores into the nucleus. These findings validate TM4SF1 as an attractive candidate for cancer therapy with antibody-bound toxins that have the capacity to react with either cytoplasmic or nuclear targets in tumor cells or tumor-associated vascular endothelium. - Highlights: • Anti-TM4SF1 antibody 8G4 was efficiently taken up by cultured endothelial cells. • TM4SF1–8G4 internalization is dynamin-dependent but clathrin-independent. • TM4SF1–8G4 complexes internalize along microtubules to reach the perinuclear region. • Internalized TM4SF1–8G4 complexes pass through nuclear pores into the nucleus. • TM4SF1 is an attractive candidate for ADC cancer therapy.« less
Tosi, Giovanna; Pilotti, Elisabetta; Mortara, Lorenzo; De Lerma Barbaro, Andrea; Casoli, Claudio; Accolla, Roberto S
2006-08-22
The master regulator of MHC-II gene transcription, class II transactivator (CIITA), acts as a potent inhibitor of human T cell leukemia virus type 2 (HTLV-2) replication by blocking the activity of the viral Tax-2 transactivator. Here, we show that this inhibitory effect takes place at the nuclear level and maps to the N-terminal 1-321 region of CIITA, where we identified a minimal domain, from positions 64-144, that is strictly required to suppress Tax-2 function. Furthermore, we show that Tax-2 specifically cooperates with cAMP response element binding protein-binding protein (CBP) and p300, but not with p300/CBP-associated factor, to enhance transcription from the viral promoter. This finding represents a unique difference with respect to Tax-1, which uses all three coactivators to transactivate the human T cell leukemia virus type 1 LTR. Direct sequestering of CBP or p300 is not the primary mechanism by which CIITA causes suppression of Tax-2. Interestingly, we found that the transcription factor nuclear factor Y, which interacts with CIITA to increase transcription of MHC-II genes, exerts a negative regulatory action on the Tax-2-mediated HTLV-2 LTR transactivation. Thus, CIITA may inhibit Tax-2 function, at least in part, through nuclear factor Y. These findings demonstrate the dual defensive role of CIITA against pathogens: it increases the antigen-presenting function for viral determinants and suppresses HTLV-2 replication in infected cells.
Protection against anthrax and plague by a combined vaccine in mice and rabbits.
Ren, Jun; Dong, Dayong; Zhang, Jinlong; Zhang, Jun; Liu, Shuling; Li, Bing; Fu, Ling; Xu, Junjie; Yu, Changming; Hou, Lihua; Li, Jianmin; Chen, Wei
2009-12-09
The protective antigen (PA) of Bacillus anthracis and the Fraction 1 Capsular Antigen (F1 antigen), V antigen of Yersinia pestis have been demonstrated to be potential immunogens and candidate vaccine sub-units against anthrax and plague respectively. In this study, the authors have investigated the antibody responses and the protective efficacy when the antigens were administered separately or in combination intramuscularly formulation adsorbed to an aluminum hydroxide adjuvant. Results show that immunized rF1 + rV and rPA antigen together was as effective as separately for induction of serological antibody response, and these titers were maintained for over 1 year in mice. An isotype analysis of the serum indicates that the co-administration of these antigens did not influence the antigen-specific IgG1/IgG2a ratio which was consistent with a Th2 bias. Furthermore, the combined vaccine comprising the protein antigens rF1 + rV + rPA has been demonstrated to protect mice from subcutaneous challenge with 10(7) colony-forming units (CFU) virulent Y. pestis strain, and to fully protect rabbit against subcutaneous challenge with 1.2x10(5) colony-forming units (CFU) virulent B. anthracis spores. These data show that the protective efficacy was unaffected when the antigens were administered in combination.
Barnoud, R; Sabourin, J C; Pasquier, D; Ranchère, D; Bailly, C; Terrier-Lacombe, M J; Pasquier, B
2000-06-01
Desmoplastic small round cell tumors (DSRCTs) present a reciprocal chromosomal translocation, t(11;22)(p13;q12), that results in fusion of Ewing's sarcoma and Wilms' tumor (WT1) genes. The authors evaluated 15 DSRCTs and 71 other tumors often considered in the differential diagnosis for immunoreactivity using a polyclonal antibody directed against the WT1 part of the chimeric protein resulting from this translocation. WT1 immunostaining was performed on paraffin material using the WT(C-19) antibody after heat-antigen retrieval. All the DSRCTs (15 of 15, 100%) demonstrated strong WT1 nuclear immunoreactivity. Ten of 14 nephroblastomas (71%) disclosed WT1-positive nuclei in accordance with the staining reported by others, and rare and focal nuclear positivity was detected in two of 17 rhabdomyosarcomas. WT1 immunoreactivity was not observed in Ewing's sarcoma/primitive neuroectodermal tumors (zero of 21, 0%), neuroblastomas (zero of 17, 0%), or rhabdoid tumors of the kidney (zero of two, 0%). In nephroblastoma, differential diagnosis with DSRCT was not difficult: Clinical and morphologic data are not similar for these two entities. The current study validates WT1 immunoreactivity as a useful marker to separate DSRCT from other small round cell tumors.
NMD3 regulates both mRNA and rRNA nuclear export in African trypanosomes via an XPOI-linked pathway
Bühlmann, Melanie; Walrad, Pegine; Rico, Eva; Ivens, Alasdair; Capewell, Paul; Naguleswaran, Arunasalam; Roditi, Isabel; Matthews, Keith R.
2015-01-01
Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5′UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export. PMID:25873624
Nalieskina, L A; Zabarko, L B; Polishchuk, L Z; Oliĭnichenko, G P; Zakhartseva, L M; Koshel', K V
2001-01-01
Peculiarities of mitotic regime and expression of proliferating cell nuclear antigen were investigated in 18 polyps and 35 cases of colorectal cancer. Direct relationship between spectrum and degree of manifestation of proliferative activity, level of morphological malignant tumors and accumulation of oncopathology in the patient pedigrees was established.
The Child as a Surrogate for Diagnosis of Lupus in the Mother.
Adelowo, Olufemi O; Ohagwu, Kenneth A; Aigbokhan, Ejiehi E; Akintayo, Richard O
2017-01-01
Introduction. Neonatal lupus erythematosus (NLE) is an acquired disease of the newborn caused by transplacental transfer of maternal anti-Ro/SSA, anti-La/SSB, and infrequently anti-U1 RNP antibodies. Methodology. This is a case report of a male infant delivered via Caesarean section at 36-week gestation following detection of fetal bradycardia during routine antenatal clinic visit. Results. The mother was seropositive for antinuclear antibody (ANA) and anti-Ro/SSA and had elevated erythrocyte sedimentation rate. The baby was positive for ANA, extractable nuclear antigen (ENA), and anti-Ro/SSA. Pediatric echocardiography was abnormal and electrocardiography confirmed complete heart block.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaiboullina, Svetlana F., E-mail: sv.khaiboullina@gmail.com; Morzunov, Sergey P.; Boichuk, Sergei V.
2013-09-01
Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirusmore » triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.« less
Steiner, G; Hartmuth, K; Skriner, K; Maurer-Fogy, I; Sinski, A; Thalmann, E; Hassfeld, W; Barta, A; Smolen, J S
1992-01-01
RA33 is a nuclear autoantigen with an apparent molecular mass of 33 kD. Autoantibodies against RA33 are found in about 30% of sera from RA patients, but only occasionally in sera from patients with other connective tissue diseases. To characterize RA33, the antigen was purified from HeLa cell nuclear extracts to more than 90% homogeneity by affinity chromatography on heparin-Sepharose and by chromatofocusing. Sequence analysis of five tryptic peptides revealed that their sequences matched corresponding sequences of the A2 protein of the heterogeneous nuclear ribonucleoprotein (hnRNP) complex. Furthermore, RA33 was shown to be present in the 40S hnRNP complex and to behave indistinguishably from A2 in binding to single stranded DNA. In summary, these data strongly indicate that RA33 and A2 are the same protein, and thus identify on a molecular level a new autoantigen. Images PMID:1522214
Liu, Qingfeng; Zheng, Xiaoyao; Zhang, Chi; Shao, Xiayan; Zhang, Xi; Zhang, Qizhi; Jiang, Xinguo
2015-11-01
As one of the most serious infectious respiratory diseases, influenza A (H1N1) is a great threat to human health, and it has created an urgent demand for effective vaccines. Nasal immunization can induce both systemic and mucosal immune responses against viruses, and it can serve as an ideal route for vaccination. However, the low immunogenicity of antigens on nasal mucosa is a high barrier for the development of nasal vaccines. In this study, we covalently conjugated an influenza A (H1N1) antigen to the surface of N-trimethylaminoethylmethacrylate chitosan (TMC) nanoparticles (H1N1-TMC/NP) through thioester bonds to increase the immunogenicity of the antigen after nasal administration. SDS-PAGE revealed that most of the antigen was conjugated on TMC nanoparticles, and an in vitro biological activity assay confirmed the stability of the antigen after conjugation. After three nasal immunizations, the H1N1-TMC/NP induced significantly higher levels of serum IgG and mucosal sIgA compared with free antigen. A hemagglutination inhibition assay showed that H1N1-TMC/NP induced much more protective antibodies than antigen-encapsulated nanoparticles or alum-precipitated antigen (I.M.). In the mechanistic study, H1N1-TMC/NP was shown to stimulate macrophages to produce IL-1β and IL-6 and to stimulate spleen lymphocytes to produce IL-2 and IFN-γ. These results indicated that H1N1-TMC/NP may be an effective vaccine against influenza A (H1N1) viruses for use in nasal immunization. © 2015 Wiley Periodicals, Inc.
Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus
Liu, Mi; Zhao, Xiang; Hua, Sha; Du, Xiangjun; Peng, Yousong; Li, Xiyan; Lan, Yu; Wang, Dayan; Wu, Aiping; Shu, Yuelong; Jiang, Taijiao
2015-01-01
The influenza A (H1N1) virus causes seasonal epidemics that result in severe illnesses and deaths almost every year. A deep understanding of the antigenic patterns and evolution of human influenza A (H1N1) virus is extremely important for its effective surveillance and prevention. Through development of antigenicity inference method for human influenza A (H1N1), named PREDAC-H1, we systematically mapped the antigenic patterns and evolution of the human influenza A (H1N1) virus. Eight dominant antigenic clusters have been inferred for seasonal H1N1 viruses since 1977, which demonstrated sequential replacements over time with a similar pattern in Asia, Europe and North America. Among them, six clusters emerged first in Asia. As for China, three of the eight antigenic clusters were detected in South China earlier than in North China, indicating the leading role of South China in H1N1 transmission. The comprehensive view of the antigenic evolution of human influenza A (H1N1) virus can help formulate better strategy for its prevention and control. PMID:26412348
Antigenic Patterns and Evolution of the Human Influenza A (H1N1) Virus.
Liu, Mi; Zhao, Xiang; Hua, Sha; Du, Xiangjun; Peng, Yousong; Li, Xiyan; Lan, Yu; Wang, Dayan; Wu, Aiping; Shu, Yuelong; Jiang, Taijiao
2015-09-28
The influenza A (H1N1) virus causes seasonal epidemics that result in severe illnesses and deaths almost every year. A deep understanding of the antigenic patterns and evolution of human influenza A (H1N1) virus is extremely important for its effective surveillance and prevention. Through development of antigenicity inference method for human influenza A (H1N1), named PREDAC-H1, we systematically mapped the antigenic patterns and evolution of the human influenza A (H1N1) virus. Eight dominant antigenic clusters have been inferred for seasonal H1N1 viruses since 1977, which demonstrated sequential replacements over time with a similar pattern in Asia, Europe and North America. Among them, six clusters emerged first in Asia. As for China, three of the eight antigenic clusters were detected in South China earlier than in North China, indicating the leading role of South China in H1N1 transmission. The comprehensive view of the antigenic evolution of human influenza A (H1N1) virus can help formulate better strategy for its prevention and control.
Koel, Björn F.; van der Vliet, Stefan; Burke, David F.; Bestebroer, Theo M.; Bharoto, Eny E.; Yasa, I. Wayan W.; Herliana, Inna; Laksono, Brigitta M.; Xu, Kemin; Skepner, Eugene; Russell, Colin A.; Rimmelzwaan, Guus F.; Perez, Daniel R.; Osterhaus, Albert D. M. E.; Smith, Derek J.; Prajitno, Teguh Y.
2014-01-01
ABSTRACT Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype are genetically highly variable and have diversified into multiple phylogenetic clades over the past decade. Antigenic drift is a well-studied phenomenon for seasonal human influenza viruses, but much less is known about the antigenic evolution of HPAI H5N1 viruses that circulate in poultry. In this study, we focused on HPAI H5N1 viruses that are enzootic to Indonesia. We selected representative viruses from genetically distinct lineages that are currently circulating and determined their antigenic properties by hemagglutination inhibition assays. At least six antigenic variants have circulated between 2003, when H5N1 clade 2.1 viruses were first detected in Indonesia, and 2011. During this period, multiple antigenic variants cocirculated in the same geographic regions. Mutant viruses were constructed by site-directed mutagenesis to represent each of the circulating antigenic variants, revealing that antigenic differences between clade 2.1 viruses were due to only one or very few amino acid substitutions immediately adjacent to the receptor binding site. Antigenic variants of H5N1 virus evaded recognition by both ferret and chicken antibodies. The molecular basis for antigenic change in clade 2.1 viruses closely resembled that of seasonal human influenza viruses, indicating that the hemagglutinin of influenza viruses from different hosts and subtypes may be similarly restricted to evade antibody recognition. PMID:24917596
Collins, M T; Espersen, F; Høiby, N; Cho, S N; Friis-Møller, A; Reif, J S
1983-01-01
Cross-reactions between Legionella pneumophila serogroup 1 and 28 other bacterial species were studied by various quantitative immunoelectrophoretic techniques. A sonicated L. pneumophila antigen and purified homologous rabbit antibody were used as a reference system. Few antigens (0 to 6) cross-reacted with non-Legionellaceae, but two were found in nearly all gram-negative bacteria tested (antigens no. 1 and 66). Antigen no. 66 of the L. pneumophila reference system was shown to be antigenically similar to the "common antigen" of Pseudomonas aeruginosa reported in many gram-negative bacteria. Greater than 85% of the antigens from L. pneumophila serogroup 1 cross-reacted with the other six serogroups of L. pneumophila. By contrast, Fluoribacter (Legionella) bozemanae, F. (L.) dumoffii, F. (L.) gormanii, and Tatlockia (Legionella) micdadei cross-reacted with only 45, 53, 39, and 43% of the reference system antigens, respectively. The antigenic relatedness of members of the Legionellaceae, expressed as a matching coefficient, is discussed in terms of its taxonomic significance. Serogroup-, genus-, and family-specific antigens are identified in the L. pneumophila reference system. Images PMID:6404825
Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage.
Karimian, Ansar; Ahmadi, Yasin; Yousefi, Bahman
2016-06-01
An appropriate control over cell cycle progression depends on many factors. Cyclin-dependent kinase (CDK) inhibitor p21 (also known as p21(WAF1/Cip1)) is one of these factors that promote cell cycle arrest in response to a variety of stimuli. The inhibitory effect of P21 on cell cycle progression correlates with its nuclear localization. P21 can be induced by both p53-dependent and p53-independent mechanisms. Some other important functions attributed to p21 include transcriptional regulation, modulation or inhibition of apoptosis. These functions are largely dependent on direct p21/protein interactions and also on p21 subcellular localizations. In addition, p21 can play a role in DNA repair by interacting with proliferating cell nuclear antigen (PCNA). In this review, we will focus on the multiple functions of p21 in cell cycle regulation, apoptosis and gene transcription after DNA damage and briefly discuss the pathways and factors that have critical roles in p21 expression and activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Bagley, Kenneth; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael; Schwartz, Jennifer; Fouts, Timothy
2015-01-01
DNA encoded adjuvants are well known for increasing the magnitude of cellular and/or humoral immune responses directed against vaccine antigens. DNA adjuvants can also tune immune responses directed against vaccine antigens to better protect against infection of the target organism. Two potent DNA adjuvants that have unique abilities to tune immune responses are the catalytic A1 domains of Cholera Toxin (CTA1) and Heat-Labile Enterotoxin (LTA1). Here, we have characterized the adjuvant activities of CTA1 and LTA1 using HIV and SIV genes as model antigens. Both of these adjuvants enhanced the magnitude of antigen-specific cellular immune responses on par with those induced by the well-characterized cytokine adjuvants IL-12 and GM-CSF. CTA1 and LTA1 preferentially enhanced cellular responses to the intracellular antigen SIVmac239-gag over those for the secreted HIVBaL-gp120 antigen. IL-12, GM-CSF and electroporation did the opposite suggesting differences in the mechanisms of actions of these diverse adjuvants. Combinations of CTA1 or LTA1 with IL-12 or GM-CSF generated additive and better balanced cellular responses to both of these antigens. Consistent with observations made with the holotoxin and the CTA1-DD adjuvant, CTA1 and LTA1 evoked mixed Th1/Th17 cellular immune responses. Together, these results show that CTA1 and LTA1 are potent DNA vaccine adjuvants that favor the intracellular antigen gag over the secreted antigen gp120 and evoke mixed Th1/Th17 responses against both of these antigens. The results also indicate that achieving a balanced immune response to multiple intracellular and extracellular antigens delivered via DNA vaccination may require combining adjuvants that have different and complementary mechanisms of action. PMID:26042527
Liu, Ya-Li; Ai, Uun-Hong; Yan, Jing; Guan, Xiao-Lei; Liu, Chun-Yan; Xie, Zheng-De
2014-01-01
This study aims to investigate the genetic characteristics of BZLF1 gene and its promoter Zp of the epidemic strains in children with primary Epstein-Barr virus (EBV)-associated diseases. Total DNA was extracted from the peripheral blood of 134 children with EBV-associated infectious mononucleosis (EBV-IM) and 32 children with EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH) who were admitted to Beijing Children's Hospital from 2006 to 2011. The EBNA3C, BZLF1, and Zp genes were amplified by PCR assay. Typing of EBV was performed according to the size of the amplification product of EBNA3C gene; the amplification products of BZLF1 and Zp genes were subjected to direct sequencing, and sequence analysis was performed using BioEdit 7. 0. 9. The results were as follows: (1) EBV-1 was present in 140 samples (97.2%, 140/144) and EBV-II in 4 samples (2.8%, 4/144). (2) Three BZLF1 genotypes and their 12 subtypes (including 6 newly found subtypes) were detected in this study; there were no significant differences in the frequencies of BZLF1-A and BZLF1-B between the children with EBV-IM and EBV-HLH (P = 0.083); BZLF1-A1 was the dominant genotype in children with EBV-associated diseases; t BZLF1-A mostly had three 29-bp repeats in the first intron of BZLF1 gene, and BZLF1-B mostly had 30-bp repeats (P = 0.000), with the number of repeats varying from 1 to 13. (3) Four Zp genotypes were detected in this study, including Zp-P, Zp-V3, Zp-V4, and Zp-V1; there were no significant differences in the frequencies of these Zp genotypes between children with EBV-IM and EBV-HLH (P = 0.272, 0.252, 1.0, and 1.0, respectively). (4) The linkage analysis of BZLF1 gene and its promoter Zp showed that BZLF1-A1 was highly associated with Zp-V3 (P = 0.000), while BZLF1-B4 with Zp-P (P = 0.000); EBV-I + BZLF1 A1 was highly associated with Zp-V3 (P = 0.000), while EBV-I+BZLF1-B4 with Zp-P (P = 0.000). The conclusions are as follows: (1) BZLF1-A1 is the dominant genotype in children with EBV-associated diseases; there are mostly 29-bp repeats in the first intron of BZLF1 gene for BZLF1-A genotype and 30-bp repeats for BZLF1-B genotype. (2) Zp-P and Zp-V3 are dominant Zp genotypes of EBV in children, which shared similar detection rates. (3) BZLF1-A1 is highly associated with Zp-V3, while BZLF1-B4 with Zp-P; EBV-I+BZLF1-A1 is highly associated with Zp-V3, while EBV-I+BZLF1-B4 with Zp-P.
Hibbert, Richard G.; Sixma, Titia K.
2012-01-01
Ubiquitin conjugation provides a crucial signaling role in hundreds of cellular pathways; however, a structural understanding of ubiquitinated substrates is lacking. One important substrate is monoubiquitinated PCNA (PCNA-Ub), which signals for recruitment of damage-tolerant polymerases in the translesion synthesis (TLS) pathway of DNA damage avoidance. We use a novel and efficient enzymatic method to produce PCNA-Ub at high yield with a native isopeptide bond and study its Usp1/UAF1-dependent deconjugation. In solution we find that the ubiquitin moiety is flexible relative to the PCNA, with its hydrophobic patch mostly accessible for recruitment of TLS polymerases, which promotes the interaction with polymerase η. The studies are a prototype for the nature of the ubiquitin modification. PMID:22989887
Structural Basis for the Interaction of Mutasome Assembly Factor REV1 with Ubiquitin.
Cui, Gaofeng; Botuyan, Maria Victoria; Mer, Georges
2018-05-18
REV1 is an evolutionarily conserved translesion synthesis (TLS) DNA polymerase and an assembly factor key for the recruitment of other TLS polymerases to DNA damage sites. REV1-mediated recognition of ubiquitin in the proliferative cell nuclear antigen is thought to be the trigger for TLS activation. Here we report the solution NMR structure of a 108-residue fragment of human REV1 encompassing the two putative ubiquitin-binding motifs UBM1 and UBM2 in complex with ubiquitin. While in mammals UBM1 and UBM2 are both required for optimal association of REV1 with replication factories after DNA damage, we show that only REV1 UBM2 binds ubiquitin. Structure-guided mutagenesis in Saccharomyces cerevisiae further highlights the importance of UBM2 for REV1-mediated mutagenesis and DNA damage tolerance. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mak, Jeffrey Y. W.; Xu, Weijun; Reid, Robert C.; Corbett, Alexandra J.; Meehan, Bronwyn S.; Wang, Huimeng; Chen, Zhenjun; Rossjohn, Jamie; McCluskey, James; Liu, Ligong; Fairlie, David P.
2017-03-01
Mucosal-associated invariant T (MAIT) cells are activated by unstable antigens formed by reactions of 5-amino-6-D-ribitylaminouracil (a vitamin B2 biosynthetic intermediate) with glycolysis metabolites such as methylglyoxal. Here we show superior preparations of antigens in dimethylsulfoxide, avoiding their rapid decomposition in water (t1/2 1.5 h, 37 °C). Antigen solution structures, MAIT cell activation potencies (EC50 3-500 pM), and chemical stabilities are described. Computer analyses of antigen structures reveal stereochemical and energetic influences on MAIT cell activation, enabling design of a water stable synthetic antigen (EC50 2 nM). Like native antigens, this antigen preparation induces MR1 refolding and upregulates surface expression of human MR1, forms MR1 tetramers that detect MAIT cells in human PBMCs, and stimulates cytokine expression (IFNγ, TNF) by human MAIT cells. These antigens also induce MAIT cell accumulation in mouse lungs after administration with a co-stimulant. These chemical and immunological findings provide new insights into antigen properties and MAIT cell activation.
Whalen, B J; Goldschneider, I
1993-10-01
Quantitative adoptive transfer assays were developed to detect the precursors of TI-1, TI-2, and TD antigen-reactive B cells in rat lymphoid tissues. Studies on the immune responses in normal and athymic nude rats validate the use of TNP-lipopolysaccharide as a TI-1 antigen, TNP-Ficoll as a TI-2 antigen, and SRBC as a TD antigen in rats. The precursors to these immunologically competent B cells are detected, following transfer into irradiated histocompatible recipients, by their ability to generate expanded populations of antigen-reactive B cells capable of mounting antibody responses (splenic IgM plaque-forming cells) to these antigens. Maximal numbers of antigen-reactive B cells emerge in antigenically naive rats after an interval of 7-12 days following transfer of donor lymphoid cells and decline rapidly thereafter. The delayed responses in adoptive recipients reconstituted with spleen cells are proportional to the numbers of spleen cells transferred and are shown to be primarily donor derived using histocompatible Ig kappa chain alloantigen disparate rat strain combinations. The precursors of TI-1, TI-2, and TD antigen-reactive B cells are present in both donor spleen and bone marrow. However, precursor cells to TI-1 and TD antigens are largely absent from donor lymph node cells, whereas precursors to the TI-2 antigen are as prevalent in donor lymph node as in donor spleen. These results support the hypothesis that newly formed virginal B cells represent transient populations of precursor cells that undergo further proliferation and differentiation in the spleen before acquiring immunological competence. The results also suggest that the precursors of TI-2 antigen-reactive B cells differ developmentally from those of TI-1 and TD antigen-reactive B cells, and that the antigen-reactive progeny of these precursors require additional stimulation in order to join the pool of long-lived peripheral B cells.
Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague
Huang, Shih-shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung
2014-01-01
Yersinia pestis F1 antigen-loaded poly(DL-lactide-co-glycolide)/polyethylene glycol (PEG) (PLGA/PEG) microspheres were produced using a water-in-oil-in-water emulsion/solvent extraction technique and assayed for their percent yield, entrapment efficiency, surface morphology, particle size, zeta potential, in vitro release properties, and in vivo animal protect efficacy. The Y. pestis F1 antigen-loaded microspheres (mean particle size 3.8 μm) exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (38.1%), and presented a controlled in vitro release profile with a low initial burst (18.5%), then continued to release Y. pestis F1 antigen over 70 days. The distribution (%) of Y. pestis F1 on the microspheres surface, outer layer, and core was 3.1%, 28.9%, and 60.7%, respectively. A steady release rate was noticed to be 0.55 μg Y. pestis F1 antigen/mg microspheres/day of Y. pestis F1 antigen release maintained for 42 days. The cumulative release amount at the 1st, 28th, and 42nd days was 8.2, 26.7, and 31.0 μg Y. pestis F1 antigen/mg microspheres, respectively. The 100 times median lethal dose 50% (LD50) of Y. pestis Yokohama-R strain by intraperitoneal injection challenge in mice test, in which mice received one dose of 40 μg F1 antigen content of PLGA/PEG microspheres, F1 antigen in Al(OH)3, and in comparison with F1 antigen in Al(OH)3 vaccine in two doses, was evaluated after given by subcutaneous immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with one dose of F1 antigen-loaded PLGA/PEG microspheres, and two doses of F1 antigen in Al(OH)3 vaccine (100%). In vivo vaccination studies also demonstrated that F1 vaccines microspheres had a protective ability; its steady-state IgG immune protection in mice plasma dramatic increased from 2 weeks (18,764±3,124) to 7 weeks (126,468±19,176) after vaccination. These findings strongly suggest that F1-antigen loaded microspheres vaccine offer a new therapeutic strategy in optimizing the vaccine incorporation and delivery properties of these potential vaccine targeting carriers. PMID:24550673
Nonclassical T Cells and Their Antigens in Tuberculosis
De Libero, Gennaro; Singhal, Amit; Lepore, Marco; Mori, Lucia
2014-01-01
T cells that recognize nonpeptidic antigens, and thereby are identified as nonclassical, represent important yet poorly characterized effectors of the immune response. They are present in large numbers in circulating blood and tissues and are as abundant as T cells recognizing peptide antigens. Nonclassical T cells exert multiple functions including immunoregulation, tumor control, and protection against infections. They recognize complexes of nonpeptidic antigens such as lipid and glycolipid molecules, vitamin B2 precursors, and phosphorylated metabolites of the mevalonate pathway. Each of these antigens is presented by antigen-presenting molecules other than major histocompatibility complex (MHC), including CD1, MHC class I–related molecule 1 (MR1), and butyrophilin 3A1 (BTN3A1) molecules. Here, we discuss how nonclassical T cells participate in the recognition of mycobacterial antigens and in the mycobacterial-specific immune response. PMID:25059739
Nuclear positioning rather than contraction controls ordered rearrangements of immunoglobulin loci.
Rother, Magdalena B; Palstra, Robert-Jan; Jhunjhunwala, Suchit; van Kester, Kevin A M; van IJcken, Wilfred F J; Hendriks, Rudi W; van Dongen, Jacques J M; Murre, Cornelis; van Zelm, Menno C
2016-01-08
Progenitor-B cells recombine their immunoglobulin (Ig) loci to create unique antigen receptors. Despite a common recombination machinery, the Ig heavy and Ig light chain loci rearrange in a stepwise manner. We studied pre-pro-B cells and Rag(-/-) progenitor-B cells to determine whether Ig locus contraction or nuclear positioning is decisive for stepwise rearrangements. We found that both Ig loci were contracted in pro-B and pre-B cells. Igh relocated from the nuclear lamina to central domains only at the pro-B cell stage, whereas, Igκ remained sequestered at the lamina, and only at the pre-B cell stage located to central nuclear domains. Finally, in vitro induced re-positioning of Ig alleles away from the nuclear periphery increased germline transcription of Ig loci in pre-pro-B cells. Thus, Ig locus contraction juxtaposes genomically distant elements to mediate efficient recombination, however, sequential positioning of Ig loci away from the nuclear periphery determines stage-specific accessibility of Ig loci. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication.
Vannier, Jean-Baptiste; Sandhu, Sumit; Petalcorin, Mark I R; Wu, Xiaoli; Nabi, Zinnatun; Ding, Hao; Boulton, Simon J
2013-10-11
Regulator of telomere length 1 (RTEL1) is an essential DNA helicase that disassembles telomere loops (T loops) and suppresses telomere fragility to maintain the integrity of chromosome ends. We established that RTEL1 also associates with the replisome through binding to proliferating cell nuclear antigen (PCNA). Mouse cells disrupted for the RTEL1-PCNA interaction (PIP mutant) exhibited accelerated senescence, replication fork instability, reduced replication fork extension rates, and increased origin usage. Although T-loop disassembly at telomeres was unaffected in the mutant cells, telomere replication was compromised, leading to fragile sites at telomeres. RTEL1-PIP mutant mice were viable, but loss of the RTEL1-PCNA interaction accelerated the onset of tumorigenesis in p53-deficient mice. We propose that RTEL1 plays a critical role in both telomere and genome-wide replication, which is crucial for genetic stability and tumor avoidance.
Magheli, Ahmed; Hinz, Stefan; Hege, Claudia; Stephan, Carsten; Jung, Klaus; Miller, Kurt; Lein, Michael
2010-01-01
We investigated the value of pretreatment prostate specific antigen density to predict Gleason score upgrading in light of significant changes in grading routine in the last 2 decades. Of 1,061 consecutive men who underwent radical prostatectomy between 1999 and 2004, 843 were eligible for study. Prostate specific antigen density was calculated and a cutoff for highest accuracy to predict Gleason upgrading was determined using ROC curve analysis. The predictive accuracy of prostate specific antigen and prostate specific antigen density to predict Gleason upgrading was evaluated using ROC curve analysis based on predicted probabilities from logistic regression models. Prostate specific antigen and prostate specific antigen density predicted Gleason upgrading on univariate analysis (as continuous variables OR 1.07 and 7.21, each p <0.001) and on multivariate analysis (as continuous variables with prostate specific antigen density adjusted for prostate specific antigen OR 1.07, p <0.001 and OR 4.89, p = 0.037, respectively). When prostate specific antigen density was added to the model including prostate specific antigen and other Gleason upgrading predictors, prostate specific antigen lost its predictive value (OR 1.02, p = 0.423), while prostate specific antigen density remained an independent predictor (OR 4.89, p = 0.037). Prostate specific antigen density was more accurate than prostate specific antigen to predict Gleason upgrading (AUC 0.61 vs 0.57, p = 0.030). Prostate specific antigen density is a significant independent predictor of Gleason upgrading even when accounting for prostate specific antigen. This could be especially important in patients with low risk prostate cancer who seek less invasive therapy such as active surveillance since potentially life threatening disease may be underestimated. Further studies are warranted to help evaluate the role of prostate specific antigen density in Gleason upgrading and its significance for biochemical outcome.
Coutrot, Edwin; Blancher-Sardou, Marie; Blancher, Antoine
2008-02-01
The aim of the study was to compare the cross-reactivity of macaque anti-CeHV1 antibodies with type 1 and type 2 human herpes simplex viruses (HSV1 and HSV2). We studied the serum of 344 animals which had been tested either positive (n = 39) or negative (n = 305) for the presence of CeHV1 antibodies by expert laboratories. Macaque serums were studied by means of two ELISA: one based on HSV1 antigen-coated wells, the other on polystyrene beads coated with HSV1 and HSV2 antigens in approximately equal proportions. In the serum of two animals originating from Vietnam, we found anti-CeHV1 antibodies cross-reacting with HSV2 but not with HSV1 antigens. For the serum with the highest titer, inhibition by soluble antigens confirmed the high affinity of the antibodies for HSV2 antigens. Tests using HSV1 and HSV2 in a combined way are better suited to macaque screening than tests using only HSV1 antigens.
Cho, H J; Entz, S C; Magar, R; Joo, H S
1997-01-01
Porcine reproductive and respiratory syndrome virus (PRRSV) ELISA antigens of high quality were produced using 8 different isolates of PRRSV: the European Lelystad virus (LV), the U.S. MN-1b, 89-46448, 93-44927, and 93-24025B, and the Canadian LHVA-93-3, PA-8 and GH-6 virus isolates. The performance of each of these 8 antigens and a commercial PRRSV antibody test kit (Idexx's HerdChek) were measured against antisera raised in 5 groups of 6 piglets inoculated with either LV, MN-1b, 89-46448, 93-44927, or 93-24025B. Among the 8 isolates, the 89-46448 isolate produced the broadest spectrum of antigen and resulted in earlier detection of antibodies to various North American PRRSV isolates, followed by MN-1b as the 2nd best ELISA antigen for the detection of North American PRRSV antibodies. The GH-6 and PA-8 viral antigens exhibited restricted detection of PRRSV antibodies. The LV and 89-46448 combined antigens produced the best performance for the detection of antibodies against both European and North American antigenic types of PRRSV. Using 173 panel samples collected at 11 to 60 d after intranasal inoculation with 1 of the 5 PRRSV isolates, the sensitivities of the indirect ELISA used were 73.4%, 98.3%, 90.8%, 98.3%, 83.2%, 93.1%, 77.1%, 64.2%, 98.8% and 95.9% for LV, MN-1b, LHVA-93-3, 89-46448, 93-44927, 93-24025B, PA-8, GH-6 antigens, 89-46448-LV combined antigens and Idexx's PRRSV antibody test kit, respectively. All 8 antigens gave negative results with preinfection porcine sera (n = 30); high background or nonspecific reactions were not observed with the antigens. PMID:9342455
Attallah, Abdelfattah M; El-Far, Mohamed; Abdallah, Sanaa O; El-Waseef, Ahmed M; Omran, Mohamed M; Abdelrazek, Mohamed A; Attallah, Ahmed A; Saadh, Mohamed J; Radwan, Mohamed; El-waffaey, Kholoud A; Abol-Enei, Hassan
2015-11-11
The advent of noninvasive urine-based markers as well as other novel modalities has yielded improved diagnostic accuracy. However, the new markers failed to reach higher sensitivity and specificity. We therefore evaluated the potential role of epithelial membrane antigen (EMA) and nuclear matrix protein 52 (NMP-52) singly and combined as noninvasive biomarkers for the detection of bladder cancer (BC). A total of 160 individuals including 66 patients with BC, 54 patients with benign urologic disorders and 40 healthy volunteers were investigated. Urinary EMA at 130 kDa and NMP at 52 kDa were identified, purified and quantified by Western blot, electroelution and enzyme-linked immunosorbent assay (ELISA). The diagnostic performance of each biomarker and their combination were compared using area under receiver operating characteristic curves (AUC). Mean urinary EMA, 2.42 µg/mL, and NMP-52, 17.85 µg/mL, were significantly elevated in patients with BC compared to controls, 1.18 and 3.44 µg/mL, respectively (p<0.0001). The combined use of these markers yielded values which were increased 4.4- and 13.7-fold in the benign and malignant disease groups, respectively, with respect to the normal group. The values of EMA and NMP-52 were significantly higher in patients with higher-grade tumors than those with lower-grade tumors (p<0.0001). Moreover, this combination could predict all BC stages and grades with 0.91 AUC, 94% sensitivity and 80% specificity. EMA and NMP-52 in combination could be promising noninvasive biomarkers for BC detection.
Sajeevan, Thara Purath; Saraswathi, Tillai Rajasekaran; Ranganathan, Kannan; Joshua, Elizabeth; Rao, Uma Devi K
2014-07-01
p53 protein is a product of p53 gene, which is now classified as a tumor suppressor gene. The gene is a frequent target for mutation, being seen as a common step in the pathogenesis of many human cancers. Proliferating cell nuclear antigen (PCNA) is an auxiliary protein of DNA polymerase delta and plays a critical role in initiation of cell proliferation. The aim of this study is to assess and compare the expression of p53 and PCNA in lining epithelium of odontogenic keratocyst (OKC) and periapical cyst (PA). A total of 20 cases comprising 10 OKC and 10 PA were included in retrospective study. Three paraffin section of 4 μm were cut, one was used for routine hematoxylin and eosin stain, while the other two were used for immunohistochemistry. Statistical analysis was performed using Chi-square test. The level of staining and intensity were assessed in all these cases. OKC showed PCNA expression in all cases (100%), whereas in perapical cyst only 60% of cases exhibited PCNA staining. (1) OKC showed p53 expression in 6 cases (60%) whereas in PA only 10% of the cases exhibited p53 staining. Chi-square test showed PCNA staining intensity was more significant than p53 in OKC. (2) The staining intensity of PA using p53, PCNA revealed that PCNA stating intensity was more significant than p53. OKC shows significant proliferative activity than PA using PCNA and p53. PCNA staining was more intense when compared with p53 in both OKC and PA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.
2015-03-01
The second crystal structure of a parasite protein preferentially enriched in the brain cyst of T. gondii has been solved at 2.75 Å resolution. Bradyzoite enolase 1 is reported to have differential functions as a glycolytic enzyme and a transcriptional regulator in bradyzoites. In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2)more » in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein in Toxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops. The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated in vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.« less
Turning self-destructing Salmonella into a universal DNA vaccine delivery platform.
Kong, Wei; Brovold, Matthew; Koeneman, Brian A; Clark-Curtiss, Josephine; Curtiss, Roy
2012-11-20
We previously developed a biological containment system using recombinant Salmonella Typhimurium strains that are attenuated yet capable of synthesizing protective antigens. The regulated delayed attenuation and programmed self-destructing features designed into these S. Typhimurium strains enable them to efficiently colonize host tissues and allow release of the bacterial cell contents after lysis. To turn such a recombinant attenuated Salmonella vaccine (RASV) strain into a universal DNA vaccine-delivery vehicle, our approach was to genetically modify RASV strains to display a hyperinvasive phenotype to maximize Salmonella host entry and host cell internalization, to enable Salmonella endosomal escape to release a DNA vaccine into the cytosol, and to decrease Salmonella-induced pyroptosis/apoptosis that allows the DNA vaccine time to traffic to the nucleus for efficient synthesis of encoded protective antigens. A DNA vaccine vector that encodes a domain that contributes to the arabinose-regulated lysis phenotype but has a eukaryotic promoter was constructed. The vector was then improved by insertion of multiple DNA nuclear-targeting sequences for efficient nuclear trafficking and gene expression, and by increasing nuclease resistance to protect the plasmid from host degradation. A DNA vaccine encoding influenza WSN virus HA antigen delivered by the RASV strain with the best genetic attributes induced complete protection to mice against a lethal influenza virus challenge. Adoption of these technological improvements will revolutionize means for effective delivery of DNA vaccines to stimulate mucosal, systemic, and cellular protective immunities, and lead to a paradigm shift in cost-effective control and prevention of a diversity of diseases.
Turning self-destructing Salmonella into a universal DNA vaccine delivery platform
Kong, Wei; Brovold, Matthew; Koeneman, Brian A.; Clark-Curtiss, Josephine; Curtiss, Roy
2012-01-01
We previously developed a biological containment system using recombinant Salmonella Typhimurium strains that are attenuated yet capable of synthesizing protective antigens. The regulated delayed attenuation and programmed self-destructing features designed into these S. Typhimurium strains enable them to efficiently colonize host tissues and allow release of the bacterial cell contents after lysis. To turn such a recombinant attenuated Salmonella vaccine (RASV) strain into a universal DNA vaccine-delivery vehicle, our approach was to genetically modify RASV strains to display a hyperinvasive phenotype to maximize Salmonella host entry and host cell internalization, to enable Salmonella endosomal escape to release a DNA vaccine into the cytosol, and to decrease Salmonella-induced pyroptosis/apoptosis that allows the DNA vaccine time to traffic to the nucleus for efficient synthesis of encoded protective antigens. A DNA vaccine vector that encodes a domain that contributes to the arabinose-regulated lysis phenotype but has a eukaryotic promoter was constructed. The vector was then improved by insertion of multiple DNA nuclear-targeting sequences for efficient nuclear trafficking and gene expression, and by increasing nuclease resistance to protect the plasmid from host degradation. A DNA vaccine encoding influenza WSN virus HA antigen delivered by the RASV strain with the best genetic attributes induced complete protection to mice against a lethal influenza virus challenge. Adoption of these technological improvements will revolutionize means for effective delivery of DNA vaccines to stimulate mucosal, systemic, and cellular protective immunities, and lead to a paradigm shift in cost-effective control and prevention of a diversity of diseases. PMID:23129620
Expanding the B Cell Centric View of Systemic Lupus Erythematosus
Morawski, Peter A.; Bolland, Silvia
2017-01-01
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by a breakdown of self-tolerance in B cells and production of antibodies against nuclear self-antigens. Increasing evidence supports the notion that additional cellular contributors beyond B cells are important for lupus pathogenesis. In this Review, we consider recent advances regarding both pathogenic and regulatory roles of lymphocytes in SLE, beyond the production of IgG autoantibodies. We also discuss various inflammatory effector cell types involved in cytokine production, removal of self-antigens, and responses to autoreactive IgE antibodies. We aim to integrate these ideas to expand the current understanding of the cellular components that contribute to disease progression and ultimately help in the design of novel targeted therapeutics. PMID:28274696
9 CFR 113.407 - Pullorum antigen.
Code of Federal Regulations, 2011 CFR
2011-01-01
... shall be free from extraneous organisms as determined by Gram staining and microscopic examination. (b... standard for stained antigen K's and 50 ±10 times McFarland No. 1 standard for tube antigen. (c) Preservative requirements. (1) The formalin content of Pullorum Stained Antigen K shall be 1.0 ±0.2 percent as...
9 CFR 113.407 - Pullorum antigen.
Code of Federal Regulations, 2013 CFR
2013-01-01
... shall be free from extraneous organisms as determined by Gram staining and microscopic examination. (b... standard for stained antigen K's and 50 ±10 times McFarland No. 1 standard for tube antigen. (c) Preservative requirements. (1) The formalin content of Pullorum Stained Antigen K shall be 1.0 ±0.2 percent as...
9 CFR 113.407 - Pullorum antigen.
Code of Federal Regulations, 2010 CFR
2010-01-01
... shall be free from extraneous organisms as determined by Gram staining and microscopic examination. (b... standard for stained antigen K's and 50 ±10 times McFarland No. 1 standard for tube antigen. (c) Preservative requirements. (1) The formalin content of Pullorum Stained Antigen K shall be 1.0 ±0.2 percent as...
9 CFR 113.407 - Pullorum antigen.
Code of Federal Regulations, 2014 CFR
2014-01-01
... shall be free from extraneous organisms as determined by Gram staining and microscopic examination. (b... standard for stained antigen K's and 50 ±10 times McFarland No. 1 standard for tube antigen. (c) Preservative requirements. (1) The formalin content of Pullorum Stained Antigen K shall be 1.0 ±0.2 percent as...
9 CFR 113.407 - Pullorum antigen.
Code of Federal Regulations, 2012 CFR
2012-01-01
... shall be free from extraneous organisms as determined by Gram staining and microscopic examination. (b... standard for stained antigen K's and 50 ±10 times McFarland No. 1 standard for tube antigen. (c) Preservative requirements. (1) The formalin content of Pullorum Stained Antigen K shall be 1.0 ±0.2 percent as...
HMGB1 Promotes Intraoral Palatal Wound Healing through RAGE-Dependent Mechanisms.
Tancharoen, Salunya; Gando, Satoshi; Binita, Shrestha; Nagasato, Tomoka; Kikuchi, Kiyoshi; Nawa, Yuko; Dararat, Pornpen; Yamamoto, Mika; Narkpinit, Somphong; Maruyama, Ikuro
2016-11-23
High mobility group box 1 (HMGB1) is tightly connected to the process of tissue organization upon tissue injury. Here we show that HMGB1 controls epithelium and connective tissue regeneration both in vivo and in vitro during palatal wound healing. Heterozygous HMGB1 ( Hmgb1 +/- ) mice and Wild-type (WT) mice were subjected to palatal injury. Maxillary tissues were stained with Mallory Azan or immunostained with anti-HMGB1, anti-proliferating cell nuclear antigen (PCNA), anti-nuclear factor-κB (NF-κB) p50 and anti-vascular endothelial growth factor (VEGF) antibodies. Palatal gingival explants were cultured with recombinant HMGB1 (rHMGB1) co-treated with siRNA targeting receptor for advanced glycation end products (RAGEs) for cell migration and PCNA expression analysis. Measurement of the wound area showed differences between Hmgb1 +/- and WT mice on Day 3 after wounding. Mallory Azan staining showed densely packed of collagen fibers in WT mice, whereas in Hmgb1 +/- mice weave-like pattern of low density collagen bundles were present. At three and seven days post-surgery, PCNA, NF-κB p50 and VEGF positive keratinocytes of WT mice were greater than that of Hmgb1 +/- mice. Knockdown of RAGE prevents the effect of rHMGB1-induced cell migration and PCNA expression in gingival cell cultures. The data suggest that HMGB1/RAGE axis has crucial roles in palatal wound healing.
Steinkellner, Hannes; Etzler, Julia; Gogoll, Laura; Neesen, Jürgen; Stifter, Eva; Brandau, Oliver; Laccone, Franco
2015-09-01
Weill-Marchesani syndrome is a rare disorder of the connective tissue. Functional variants in ADAMTS10 are associated with Weill-Marchesani syndrome-1. We identified a homozygous missense mutation, c.41T>A, of the ADAMTS10 gene in a 19-year-old female with typical symptoms of WMS1: proportionate short stature, brachydactyly, joint stiffness, and microspherophakia. The ADAMTS10 missense mutation was analysed in silico, with conflicting results as to its effects on protein function, but it was predicted to affect the leader sequence. Molecular characterisation in HEK293 Ebna cells revealed an intracellular mis-targeting of the ADAMTS10 protein with a reduced concentration of the polypeptide in the endoplasmic reticulum. A large reduction in glycosylation of the cytoplasmic fraction of the mutant ADAMTS10 protein versus the wild-type protein and a lack of secretion of the mutant protein are also evident in our results.In conclusion, we identified a novel missense mutation of the ADAMTS10 gene and confirmed the functional consequences suggested by the in silico analysis by conducting molecular studies.
Smith, Kate M; Di Antonio, Veronica; Bellucci, Luca; Thomas, David R; Caporuscio, Fabiana; Ciccarese, Francesco; Ghassabian, Hanieh; Wagstaff, Kylie M; Forwood, Jade K; Jans, David A; Palù, Giorgio; Alvisi, Gualtiero
2018-08-01
Nuclear import involves the recognition by importin (IMP) superfamily members of nuclear localization signals (NLSs) within protein cargoes destined for the nucleus, the best understood being recognition of classical NLSs (cNLSs) by the IMPα/β1 heterodimer. Although the cNLS consensus [K-(K/R)-X-(K/R) for positions P2-P5] is generally accepted, recent studies indicated that the contribution made by different residues at the P4 position can vary. Here, we apply a combination of microscopy, molecular dynamics, crystallography, in vitro binding, and bioinformatics approaches to show that the nature of residues at P4 indeed modulates cNLS function in the context of a prototypical Simian Virus 40 large tumor antigen-derived cNLS (KKRK, P2-5). Indeed, all hydrophobic substitutions in place of R impaired binding to IMPα and nuclear targeting, with the largest effect exerted by a G residue at P4. Substitution of R with neutral hydrophobic residues caused the loss of electrostatic and van der Waals interactions between the P4 residue side chains and IMPα. Detailed bioinformatics analysis confirmed the importance of the P4 residue for cNLS function across the human proteome, with specific residues such as G being associated with low activity. Furthermore, we validate our findings for two additional cNLSs from human cytomegalovirus (HCMV) DNA polymerase catalytic subunit UL54 and processivity factor UL44, where a G residue at P4 results in a 2-3-fold decrease in NLS activity. Our results thus showed that the P4 residue makes a hitherto poorly appreciated contribution to nuclear import efficiency, which is essential to determining the precise nuclear levels of cargoes. Copyright © 2018 Elsevier B.V. All rights reserved.
Yuksel, Muhammed; Wang, Yipeng; Tai, Ningwen; Peng, Jian; Guo, Junhua; Beland, Kathie; Lapierre, Pascal; David, Chella; Alvarez, Fernando; Colle, Isabelle; Yan, Huiping; Mieli-Vergani, Giorgina; Vergani, Diego; Ma, Yun; Wen, Li
2016-01-01
Background Autoimmune hepatitis (AIH) in humans is a severe inflammatory liver disease, characterized by interface hepatitis, the presence of circulating autoantibodies and hyper-gammaglobulinemia. There are two types of AIH, type-1 (AIH-1) and type-2 (AIH-2) characterized by distinct autoimmune serology. Patients with AIH-1 are positive for anti-smooth muscle and/or anti-nuclear (SMA/ANA) autoantibodies whereas patients with AIH-2 have anti-liver kidney microsomal type 1 (anti-LKM1) and/or anti-liver cytosol type 1 (anti-LC1) autoantibodies. Cytochrome P4502D6 (CYP2D6) is the antigenic target of anti-LKM1 and formiminotransferase cyclodeaminase (FTCD) is the antigenic target of anti-LC1. It is known that AIH, both type-1 and type-2, is strongly linked to the Human Leukocyte Antigen (HLA) alleles -DR3, -DR4 and -DR7. However, the direct evidence of the association of HLA with AIH is lacking. Methods We developed a novel mouse model of AIH using the HLA-DR3 transgenic mouse on the non-obese diabetic (NOD) background (HLA-DR3 NOD) by immunization of HLA-DR3− and HLA-DR3+ NOD mice with a DNA plasmid, coding for human CYP2D6/FTCD fusion protein. Results Immunization with CYP2D6/FTCD leads to a sustained elevation of alanine aminotransferase (ALT), development of ANA and anti-LKM1/anti-LC1 autoantibodies, chronic immune cell infiltration and parenchymal fibrosis on liver histology in HLA-DR3+ mice. Immunized mice also showed an enhanced Th1 immune response and paucity of the frequency of regulatory T-cell (Treg) in the liver. Moreover, HLA-DR3+ mice with exacerbated AIH showed reduced diversity and total load of gut bacteria. Conclusion Our humanized animal model has provided a novel experimental tool to further elucidate the pathogenesis of AIH and to evaluate the efficacy and safety of immunoregulatory therapeutic interventions in vivo. PMID:26185095
Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko
2014-02-01
T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.
Digestibility and antigenicity of β-lactoglobulin as affected by heat, pH and applied shear.
Rahaman, Toheder; Vasiljevic, Todor; Ramchandran, Lata
2017-02-15
Processing induced conformational changes can modulate digestibility of food allergens and thereby their antigenicity. Effect of different pH (3, 5, 7), temperature (room temperature, 120°C) and shear (0s(-1), 1000s(-1)) on simulated gastrointestinal digestibility of β-lg and post digestion antigenic characteristics have been studied. At all pH levels unheated β-lg showed resistance to peptic digestion with high antigenic value while it was fairly susceptible to pancreatin with moderate reduction in antigenicity. Heating at 120°C significantly improved both peptic and pancreatic digestion attributed to structural alterations that resulted in much lower antigenicity; the level of reduction being pH dependant. The lowest antigenicity was recorded at pH 5. Shearing (1000s(-1)) had a minor impact reducing digestibility and thereby enhancing antigenicity of unheated β-lg at pH 5 and 7 slightly; however in conjunction with heating (120°C) it reduced antigenicity further irrespective of the pH. Overall, treatment at pH 5, 120°C and 1000s(-1) could potentially reduce post digestion antigenicity of β-lg. Copyright © 2016. Published by Elsevier Ltd.
Ferra, Bartłomiej; Holec-Gąsior, Lucyna; Kur, Józef
2015-10-01
Toxoplasma gondii infects all warm-blooded animals including humans, causing serious public health problems and great economic loss in the animal husbandry. Commonly used serological tests for diagnosis of toxoplasmosis involve preparation of whole Toxoplasma lysate antigen (TLA) from tachyzoites. The production of this antigen is associated with high costs and lengthy preparation and the possibility of staff infection. There are also some difficulties in the standardization of such tests. One approach in order to improve the diagnosis of T. gondii infection is to use recombinant chimeric antigens in place of the TLA, which was confirmed by studies in the serodiagnosis of toxoplasmosis in humans. In this paper, we assess, for the first time, the diagnostic utility of five T. gondii recombinant chimeric antigens (MIC1-MAG1-SAG1S, SAG1L-MIC1-MAG1, SAG2-GRA1-ROP1S, SAG2-GRA1-ROP1L, and GRA1-GRA2-GRA6) in immunoglobulin G (IgG) enzyme-linked immunosorbent assays (IgG ELISAs) with sera from three different groups of livestock animals (horses, pigs, and sheep). The reactivity of individual chimeric antigens was analyzed in relation to the results obtained in IgG ELISAs based on a mixture of three antigens (M1: rSAG1+rMIC1+rMAG1, M2: rSAG2+rGRA1+rROP1, and M3: rGRA1+rGRA2+rGRA6) and referenced to TLA. All chimeric antigens were characterized by high specificity (100%), and the sensitivity of the IgG ELISAs based on chimeric antigens was variable (between 28.4% and 100%) and mainly dependent on the animal species. The chimeric antigens were generally more reactive than mixtures of three antigens. The most effective for the diagnosis of toxoplasmosis was SAG2-GRA1-ROP1L, which can detect specific anti-T. gondii antibodies in 100%, 93.8%, and 100% of positive serum samples from horses, pigs, and sheep, respectively. The present study shows that recombinant chimeric antigens can be successfully used to diagnose T. gondii infection in farm animals, and can replace the commonly used TLA. Copyright © 2015. Published by Elsevier Ireland Ltd.
Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys.
Barouch, Dan H; O'Brien, Kara L; Simmons, Nathaniel L; King, Sharon L; Abbink, Peter; Maxfield, Lori F; Sun, Ying-Hua; La Porte, Annalena; Riggs, Ambryice M; Lynch, Diana M; Clark, Sarah L; Backus, Katherine; Perry, James R; Seaman, Michael S; Carville, Angela; Mansfield, Keith G; Szinger, James J; Fischer, Will; Muldoon, Mark; Korber, Bette
2010-03-01
The worldwide diversity of HIV-1 presents an unprecedented challenge for vaccine development. Antigens derived from natural HIV-1 sequences have elicited only a limited breadth of cellular immune responses in nonhuman primate studies and clinical trials to date. Polyvalent 'mosaic' antigens, in contrast, are designed to optimize cellular immunologic coverage of global HIV-1 sequence diversity. Here we show that mosaic HIV-1 Gag, Pol and Env antigens expressed by recombinant, replication-incompetent adenovirus serotype 26 vectors markedly augmented both the breadth and depth without compromising the magnitude of antigen-specific T lymphocyte responses as compared with consensus or natural sequence HIV-1 antigens in rhesus monkeys. Polyvalent mosaic antigens therefore represent a promising strategy to expand cellular immunologic vaccine coverage for genetically diverse pathogens such as HIV-1.
Mikiewicz, Mateusz; Otrocka-Domagała, Iwona; Paździor-Czapula, Katarzyna; Rotkiewicz, Tadeusz
2017-06-01
The aim of this study was to examine the influence of long-term, high-dose dexamethasone administration on the liver, with particular emphasis on hepatocyte proliferation and apoptosis, using a swine model. The study included 48 large, female Polish breed pigs aged 3months (weighing ca. 30kg) divided into groups I (control; n=24) and II (dexamethasone; n=24) that receiving intra-muscular injections of monosodium phosphate dexamethasone for 29days. The pigs were euthanized on days subsequent to the experiment. Immediately after the euthanasia, the pig livers were sampled, fixed, and processed routinely for histopathology, histochemistry, and immunohistochemistry (for proliferating cell nuclear antigen, Bcl-2, and caspase-3). Apoptosis was visualized by terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL). Dexamethasone administration gradually caused hepatocyte glycogen degeneration and finally lipid degeneration, accompanied by sinusoid and central vein dilatation and nuclear chromatin condensation. The proliferating cell nuclear antigen index, mean number of argyrophilic nucleolar organizer regions and proliferation index of argyrophilic nucleolar organizer regions were lower, while Bcl-2 expression was higher in group II compared with group I. The results from this study suggest that safe high-dose dexamethasone administration time is difficult to establish. Long-term, high-dose dexamethasone administration can cause pronounced morphological changes in hepatocytes by diminishing their transcriptional and proliferation activity but also protects them from apoptosis by potentially affecting Bcl-2 expression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hira-Kazal, R; Shea-Simonds, P; Peacock, J L; Maher, J
2015-01-01
Anti-nuclear antibody (ANA) testing assists in the diagnosis of several immune-mediated disorders. The gold standard method for detection of these antibodies is by indirect immunofluorescence testing on human epidermoid laryngeal carcinoma (HEp-2) cells. However, many laboratories test for these antibodies using solid-phase assays such as enzyme-linked immunosorbent assay (ELISA), which allows for higher throughput testing at reduced cost. In this study, we have audited the performance of a previously established ELISA assay to screen for ANA, making comparison with the gold standard HEp-2 immunofluorescence test. A prospective and unselected sample of 89 consecutive ANA test requests by consultant rheumatologists were evaluated in parallel over a period of 10 months using both tests. ELISA and HEp-2 screening assays yielded 40 (45%) and 72 (81%) positive test results, respectively, demonstrating lack of concordance between test methods. Using standard and clinical samples, it was demonstrated that the ELISA method did not detect several ANA with nucleolar, homogeneous and speckled immunofluorescence patterns. None of these ELISANEG HEp-2POS ANA were reactive with a panel of six extractable nuclear antigens or with double-stranded DNA. Nonetheless, 13 of these samples (15%) originated from patients with recognized ANA-associated disease (n = 7) or Raynaud's phenomenon (n = 6). We conclude that ELISA screening may fail to detect clinically relevant ANA that lack defined specificity for antigen. PMID:25412573
Theillet, François-Xavier; Frank, Martin; Vulliez-Le Normand, Brigitte; Simenel, Catherine; Hoos, Sylviane; Chaffotte, Alain; Bélot, Frédéric; Guerreiro, Catherine; Nato, Farida; Phalipon, Armelle; Mulard, Laurence A; Delepierre, Muriel
2011-12-01
Carbohydrates are likely to maintain significant conformational flexibility in antibody (Ab):carbohydrate complexes. As demonstrated herein for the protective monoclonal Ab (mAb) F22-4 recognizing the Shigella flexneri 2a O-antigen (O-Ag) and numerous synthetic oligosaccharide fragments thereof, the combination of molecular dynamics simulations and nuclear magnetic resonance saturation transfer difference experiments, supported by physicochemical analysis, allows us to determine the binding epitope and its various contributions to affinity without using any modified oligosaccharides. Moreover, the methods used provide insights into ligand flexibility in the complex, thus enabling a better understanding of the Ab affinities observed for a representative set of synthetic O-Ag fragments. Additionally, these complementary pieces of information give evidence to the ability of the studied mAb to recognize internal as well as terminal epitopes of its cognate polysaccharide antigen. Hence, we show that an appropriate combination of computational and experimental methods provides a basis to explore carbohydrate functional mimicry and receptor binding. The strategy may facilitate the design of either ligands or carbohydrate recognition domains, according to needed improvements of the natural carbohydrate:receptor properties. © The Author 2011. Published by Oxford University Press. All rights reserved.
Smith, Shanna J; Hickey, Robert J; Malkas, Linda H
2016-01-01
Human DNA replication and repair is a highly coordinated process involving the specifically timed actions of numerous proteins and enzymes. Many of these proteins require interaction with proliferating cell nuclear antigen (PCNA) for activation within the process. The interdomain connector loop (IDCL) of PCNA provides a docking site for many of those proteins, suggesting that this region is critically important in the regulation of cellular function. Previous work in this laboratory has demonstrated that a peptide mimicking a specific region of the IDCL (caPeptide) has the ability to disrupt key protein-protein interactions between PCNA and its binding partners, thereby inhibiting DNA replication within the cells. In this study, we confirm the ability of the caPeptide to disrupt DNA replication function using both intact cell and in vitro DNA replication assays. Further, we were able to demonstrate that treatment with caPeptide results in a decrease of polymerase δ activity that correlates with the observed decrease in DNA replication. We have also successfully developed a surface plasmon resonance (SPR) assay to validate the disruption of the PCNA-pol δ interaction with caPeptide.
Chapelin, Fanny; Gao, Shang; Okada, Hideho; Weber, Thomas G; Messer, Karen; Ahrens, Eric T
2017-12-18
Discovery of effective cell therapies against cancer can be accelerated by the adaptation of tools to rapidly quantitate cell biodistribution and survival after delivery. Here, we describe the use of nuclear magnetic resonance (NMR) 'cytometry' to quantify the biodistribution of immunotherapeutic T cells in intact tissue samples. In this study, chimeric antigen receptor (CAR) T cells expressing EGFRvIII targeting transgene were labeled with a perfluorocarbon (PFC) emulsion ex vivo and infused into immunocompromised mice bearing subcutaneous human U87 glioblastomas expressing EGFRvIII and luciferase. Intact organs were harvested at day 2, 7 and 14 for whole-sample fluorine-19 ( 19 F) NMR to quantitatively measure the presence of PFC-labeled CAR T cells, followed by histological validation. NMR measurements showed greater CAR T cell homing and persistence in the tumors and spleen compared to untransduced T cells. Tumor growth was monitored with bioluminescence imaging, showing that CAR T cell treatment resulted in significant tumor regression compared to untransduced T cells. Overall, 19 F NMR cytometry is a rapid and quantitative method to evaluate cell biodistribution, tumor homing, and fate in preclinical studies.
Mahmoud, Yomna I
2015-09-01
Testicular atrophy has been commonly reported in patients with chronic liver diseases. Ursodeoxycholic acid is the most widely used drug for the treatment of many liver diseases. However, its effect on testicular ultrastructure associated with chronic cholestasis has never been studied. Thus, this study aimed to assess how chronic obstructive jaundice affects the testicular ultrastructure and whether it affects the androgen receptor or the proliferating cell nuclear antigen. The role of ursodeoxycholic acid was also investigated. Cholestasis was induced by bile duct ligation. Samples were collected 4weeks postoperative. Testicular changes were assessed using immunohistochemistry and transmission electron microscopy. Chronic cholestasis resulted in testicular atrophy evidenced by shrinkage and deformation of seminiferous tubules, thickening of peritubular boundaries, vacuolation, disorganization of germ cells, and maturation arrest. This was accompanied by decreased immunoreactivity of androgen receptors and proliferating cell nuclear antigen. Administration of ursodeoxycholic acid improved the testicular morphology and reversed cholestasis-induced immunohistochemical and ultrastructural changes. Ursodeoxycholic acid can improve the testicular ultrastructure and restore the spermatogenic process in rats with chronic cholestasis. These findings support the clinical application of ursodeoxycholic acid in cholestatic patients especially those with hypogonadism. Copyright © 2015. Published by Elsevier Inc.
Identification, expression and phylogenetic analysis of EgG1Y162 from Echinococcus granulosus.
Zhang, Fengbo; Ma, Xiumin; Zhu, Yuejie; Wang, Hongying; Liu, Xianfei; Zhu, Min; Ma, Haimei; Wen, Hao; Fan, Haining; Ding, Jianbing
2014-01-01
This study was to clone, identify and analyze the characteristics of egG1Y162 gene from Echinococcus granulosus. Genomic DNA and total RNAs were extracted from four different developmental stages of protoscolex, germinal layer, adult and egg of Echinococcus granulosus, respectively. Fluorescent quantitative PCR was used for analyzing the expression of egG1Y162 gene. Prokaryotic expression plasmid of pET41a-EgG1Y162 was constructed to express recombinant His-EgG1Y162 antigen. Western blot analysis was performed to detect antigenicity of EgG1Y162 antigen. Gene sequence, amino acid alignment and phylogenetic tree of EgG1Y162 were analyzed by BLAST, online Spidey and MEGA4 software, respectively. EgG1Y162 gene was expressed in four developmental stages of Echinococcus granulosus. And, egG1Y162 gene expression was the highest in the adult stage, with the relative value of 19.526, significantly higher than other three stages. Additionally, Western blot analysis revealed that EgG1Y162 recombinant protein had good reaction with serum samples from Echinococcus granulosus infected human and dog. Moreover, EgG1Y162 antigen was phylogenetically closest to EmY162 antigen, with the similarity over 90%. Our study identified EgG1Y162 antigen in Echinococcus granulosus for the first time. EgG1Y162 antigen had a high similarity with EmY162 antigen, with the genetic differences mainly existing in the intron region. And, EgG1Y162 recombinant protein showed good antigenicity.
2012-01-01
Introduction Systemic lupus erythematosus is a chronic autoimmune disease characterized by an abundance of autoantibodies against nuclear antigens. Bruton's tyrosine kinase (Btk) is a proximal transducer of the BCR signal that allows for B-cell activation and differentiation. Recently, selective inhibition of Btk by PCI-32765 has shown promise in limiting activity of multiple cells types in various models of cancer and autoimmunity. The aim of this study was to determine the effect of Btk inhibition by PCI-32765 on the development of lupus in lupus-prone B6.Sle1 and B6.Sle1.Sle3 mice. Methods B6.Sle1 or B6.Sle1.Sle3 mice received drinking water containing either the Btk inhibitor PCI-32765 or vehicle for 56 days. Following treatment, mice were examined for clinical and pathological characteristics of lupus. The effect of PCI-32765 on specific cell types was also investigated. Results In this study, we report that Btk inhibition dampens humoral autoimmunity in B6.Sle1 monocongenic mice. Moreover, in B6.Sle1.Sle3 bicongenic mice that are prone to severe lupus, Btk inhibition also dampens humoral and cellular autoimmunity, as well as lupus nephritis. Conclusions These findings suggest that partial crippling of cell signaling in B cells and antigen presenting cells (APCs) may be a viable alternative to total depletion of these cells as a therapeutic modality for lupus. PMID:23136880
Saqui-Salces, Milena; Martinez-Benitez, Braulio; Gamboa-Dominguez, Armando
2006-01-01
Lymphoepithelial carcinomas of the salivary gland are rare tumors constantly associated with Epstein-Barr virus (EBV) and mainly identified in Asiatic and Greenlander population. Four cases have been described in Caucasians, only two with EBV infection. We describe two cases of parotid gland lymphoepithelial carcinomas in Mexican mestizo women in which chronic latent EBV infection was documented by immunohistochemistry and in situ hybridization. One patient had primary Sjögren's syndrome and the other systemic lupus erythematosus of six and three years of evolution, respectively. Epithelial neoplastic cells showed latency pattern II (LMP1+, EBNA-2-, EBER+) with a dense inflammatory infiltrate composed mainly by CD8+ T lymphocytes. Follow-up excluded nasopharyngeal involvement in both patients. This report expands the ethnic groups in which salivary lymphoepithelial carcinomas associated with chronic latent EBV infection have been described, and illustrates for the first time its association with autoimmune diseases in two women living in a region non-endemic for this unusual neoplasm.
Genetic Mapping Identifies Novel Highly Protective Antigens for an Apicomplexan Parasite
Blake, Damer P.; Billington, Karen J.; Copestake, Susan L.; Oakes, Richard D.; Quail, Michael A.; Wan, Kiew-Lian; Shirley, Martin W.; Smith, Adrian L.
2011-01-01
Apicomplexan parasites are responsible for a myriad of diseases in humans and livestock; yet despite intensive effort, development of effective sub-unit vaccines remains a long-term goal. Antigenic complexity and our inability to identify protective antigens from the pool that induce response are serious challenges in the development of new vaccines. Using a combination of parasite genetics and selective barriers with population-based genetic fingerprinting, we have identified that immunity against the most important apicomplexan parasite of livestock (Eimeria spp.) was targeted against a few discrete regions of the genome. Herein we report the identification of six genomic regions and, within two of those loci, the identification of true protective antigens that confer immunity as sub-unit vaccines. The first of these is an Eimeria maxima homologue of apical membrane antigen-1 (AMA-1) and the second is a previously uncharacterised gene that we have termed ‘immune mapped protein-1’ (IMP-1). Significantly, homologues of the AMA-1 antigen are protective with a range of apicomplexan parasites including Plasmodium spp., which suggest that there may be some characteristic(s) of protective antigens shared across this diverse group of parasites. Interestingly, homologues of the IMP-1 antigen, which is protective against E. maxima infection, can be identified in Toxoplasma gondii and Neospora caninum. Overall, this study documents the discovery of novel protective antigens using a population-based genetic mapping approach allied with a protection-based screen of candidate genes. The identification of AMA-1 and IMP-1 represents a substantial step towards development of an effective anti-eimerian sub-unit vaccine and raises the possibility of identification of novel antigens for other apicomplexan parasites. Moreover, validation of the parasite genetics approach to identify effective antigens supports its adoption in other parasite systems where legitimate protective antigen identification is difficult. PMID:21347348
Singh, B N; BonDurant, R H; Campero, C M; Corbeil, L B
2001-08-01
Immunoaffinity-purified TF1.17 adhesin antigen was compared biochemically and antigenically to Tritrichomonas foetus (TF) lipophosphoglycan (LPG) and a soluble glycosylated antigen (SGA) released from T. foetus and implicated in pathogenesis and immunity. The monoclonal antibodies (Mabs TF1.15 and TF1.17) specific for a glycosylated TF1.17 antigen were previously shown to prevent adhesion of the T. foetus parasites to bovine vaginal epithelial cells and to mediate killing by bovine complement. SGA was isolated from T. foetus-conditioned buffer and purified by octyl-Sepharose hydrophobic column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of SGA showed a major SGA1 component (approximately 190 kDa) and a minor SGA2 component (50-70 kDa), which migrated close to TF-LPG and TF1.17. The carbohydrate and lipid compositional analyses of affinity-purified TF1.17 and SGA2 by high-performance liquid chromatography (HPLC) and gas-liquid chromatography revealed the presence of monosaccharides and fatty acids as found in TF-LPG. All antigens contained terminal fucose as determined by alpha-fucosidase digestion followed by HPLC. ELISA and western blots were used to further characterize these glycosylated antigens and to analyze their relationships. The Mabs TF1.15 and TF1.17 reacted very strongly to TF-LPG and SGA2. as well as TF1.17 antigen, indicating that these molecules share common epitopes. These Mabs did not react with the SGA1 component either in ELISA and western blot analyses. Also, the monosaccharide composition of SGA1 was very different from the other three antigen, suggesting SGA1 was different from LPG, SGA2 and TF1.17. Although LPG reacted with Mabs to native TF1.17 antigen, LPG did not induce an immune response in cattle with the same route and adjuvant used to produce strong antibody responses to the native antigen. The latter response suggests that the tightly bound peptide present in the immunoaffinity-purified antigen is necessary for induction of a response to (an) epitope(s) in TF-LPG and TF1.17. Furthermore, vaginal fluid from T. foetus-infected heifers and serum from a cow with a T. foetus-associated pyometra recognized both TF1.17 and TF-LPG in western blots. These results suggest that T. foetus LPG and SGA2 are related to TF1.17 antigen, which was previously shown to play an important role in the pathogenesis and host response in bovine trichomoniasis.
Kocsisova, Zuzana; Kornfeld, Kerry; Schedl, Tim
2018-05-30
The proliferating cell nuclear antigen (PCNA or PCN-1 in C. elegans), an essential processivity factor for DNA polymerase δ, has been widely used as a marker of S-phase. In C. elegans early embryos, PCN-1 accumulation is cyclic, localizing to the nucleus during S-phase and the cytoplasm during the rest of the cell cycle. The C. elegans larval and adult germline is an important model systems for studying cell cycle regulation, and it was observed that the cell cycle regulator cyclin E (CYE-1 in C. elegans) displays a non-cyclic, continuous accumulation pattern in this tissue. The accumulation pattern of PCN-1 has not been well defined in the larval and adult germline, and the objective of this study was to determine if the accumulation pattern is cyclic, as in other cells and organisms, or continuous, similar to cyclin E. To study the larval and adult germline accumulation of PCN-1 expressed from its native locus, we used CRISPR/Cas9 technology to engineer a novel allele of pcn-1 that encodes an epitope-tagged protein. S-phase nuclei were labeled using EdU nucleotide incorporation, and FLAG::PCN-1 was detected by antibody staining. All progenitor zone nuclei, including those that were not in S-phase (as they were negative for EdU staining) showed PCN-1 accumulation, indicating that PCN-1 accumulated during all cell cycle phases in the germline progenitor zone. The same result was observed with a GFP::PCN-1 fusion protein expressed from a transgene. pcn-1 loss-of-function mutations were analyzed, and pcn-1 was necessary for robust fertility and embryonic development. In the C. elegans early embryo as well as other organisms, PCN-1 accumulates in nuclei only during S-phase. By contrast, in the progenitor zone of the germline of C. elegans, PCN-1 accumulated in nuclei during all cell cycle stages. This pattern is similar to accumulation pattern of cyclin E. These observations support the model that mitotic cell cycle regulation in the germline stem and progenitor cells is distinct from somatic cells, as it does not heavily rely on cyclic accumulation of classic cell cycle proteins.
Owen, Peter; Salton, Milton R. J.
1977-01-01
Crossed immunoelectrophoresis of Triton X-100-solubilized plasma membranes of Micrococcus lysodeikticus established the presence of 27 discrete antigens. Individual antigens were identified as membrane components possessing enzyme activity by zymogram staining procedures and by reactivity of certain antigens with a selection of four lectins in the crossed-immunoelectrophoresis (immunoaffinoelectrophoresis) system. Absorption experiments with intact, stable protoplasts and isolated membranes established the asymmetric nature of the M. lysodeikticus plasma membranes. Of the 14 antigens with determinants accessible solely on the cytoplasmic face of the membrane, four possessed individual dehydrogenase activities, and a fifth was identifiable as a component possessing adenosine triphosphatase (EC 3.6.1.3) activity. Evidence from absorption studies with isolated membranes suggested that antigens such as the adenosine triphosphatase complex were more readily accessible to reaction with antibodies than was succinate dehydrogenase (EC 1.3.99.1), for example. Twelve antigens were located on the protoplast surface as determined by antibody absorption, and the succinylated lipomannan was identified as a major antigen. At least five other antigens possessed sugar residues that interacted with concanavalin A. With the antisera generated to isolated membranes, there was no evidence suggesting that any of these antigens was not detectable on either surface of the plasma membrane. From absorption experiments with washed, whole cells of M. lysodeikticus, it was concluded that the immunogens on the protoplast surface were also detectable on the surface of the intact cell. However, some of the components such as the succinylated lipomannan appeared to be exposed to a greater extent than others. The cytoplasmic fraction from M. lysodeikticus was used as an antigen source to generate antibodies, and 97 immunoprecipitates were resolvable by crossed immunoelectrophoresis. In the cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions. Images PMID:144722
Owen, P; Salton, M R
1977-12-01
Crossed immunoelectrophoresis of Triton X-100-solubilized plasma membranes of Micrococcus lysodeikticus established the presence of 27 discrete antigens. Individual antigens were identified as membrane components possessing enzyme activity by zymogram staining procedures and by reactivity of certain antigens with a selection of four lectins in the crossed-immunoelectrophoresis (immunoaffinoelectrophoresis) system. Absorption experiments with intact, stable protoplasts and isolated membranes established the asymmetric nature of the M. lysodeikticus plasma membranes. Of the 14 antigens with determinants accessible solely on the cytoplasmic face of the membrane, four possessed individual dehydrogenase activities, and a fifth was identifiable as a component possessing adenosine triphosphatase (EC 3.6.1.3) activity. Evidence from absorption studies with isolated membranes suggested that antigens such as the adenosine triphosphatase complex were more readily accessible to reaction with antibodies than was succinate dehydrogenase (EC 1.3.99.1), for example. Twelve antigens were located on the protoplast surface as determined by antibody absorption, and the succinylated lipomannan was identified as a major antigen. At least five other antigens possessed sugar residues that interacted with concanavalin A. With the antisera generated to isolated membranes, there was no evidence suggesting that any of these antigens was not detectable on either surface of the plasma membrane. From absorption experiments with washed, whole cells of M. lysodeikticus, it was concluded that the immunogens on the protoplast surface were also detectable on the surface of the intact cell. However, some of the components such as the succinylated lipomannan appeared to be exposed to a greater extent than others. The cytoplasmic fraction from M. lysodeikticus was used as an antigen source to generate antibodies, and 97 immunoprecipitates were resolvable by crossed immunoelectrophoresis. In the cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions.
Ondigo, Bartholomew N; Park, Gregory S; Gose, Severin O; Ho, Benjamin M; Ochola, Lyticia A; Ayodo, George O; Ofulla, Ayub V; John, Chandy C
2012-12-21
Multiplex cytometric bead assay (CBA) have a number of advantages over ELISA for antibody testing, but little information is available on standardization and validation of antibody CBA to multiple Plasmodium falciparum antigens. The present study was set to determine optimal parameters for multiplex testing of antibodies to P. falciparum antigens, and to compare results of multiplex CBA to ELISA. Antibodies to ten recombinant P. falciparum antigens were measured by CBA and ELISA in samples from 30 individuals from a malaria endemic area of Kenya and compared to known positive and negative control plasma samples. Optimal antigen amounts, monoplex vs multiplex testing, plasma dilution, optimal buffer, number of beads required were assessed for CBA testing, and results from CBA vs. ELISA testing were compared. Optimal amounts for CBA antibody testing differed according to antigen. Results for monoplex CBA testing correlated strongly with multiplex testing for all antigens (r = 0.88-0.99, P values from <0.0001 - 0.004), and antibodies to variants of the same antigen were accurately distinguished within a multiplex reaction. Plasma dilutions of 1:100 or 1:200 were optimal for all antigens for CBA testing. Plasma diluted in a buffer containing 0.05% sodium azide, 0.5% polyvinylalcohol, and 0.8% polyvinylpyrrolidone had the lowest background activity. CBA median fluorescence intensity (MFI) values with 1,000 antigen-conjugated beads/well did not differ significantly from MFI with 5,000 beads/well. CBA and ELISA results correlated well for all antigens except apical membrane antigen-1 (AMA-1). CBA testing produced a greater range of values in samples from malaria endemic areas and less background reactivity for blank samples than ELISA. With optimization, CBA may be the preferred method of testing for antibodies to P. falciparum antigens, as CBA can test for antibodies to multiple recombinant antigens from a single plasma sample and produces a greater range of values in positive samples and lower background readings for blank samples than ELISA.
Identification, expression and phylogenetic analysis of EgG1Y162 from Echinococcus granulosus
Zhang, Fengbo; Ma, Xiumin; Zhu, Yuejie; Wang, Hongying; Liu, Xianfei; Zhu, Min; Ma, Haimei; Wen, Hao; Fan, Haining; Ding, Jianbing
2014-01-01
Objective: This study was to clone, identify and analyze the characteristics of egG1Y162 gene from Echinococcus granulosus. Methods: Genomic DNA and total RNAs were extracted from four different developmental stages of protoscolex, germinal layer, adult and egg of Echinococcus granulosus, respectively. Fluorescent quantitative PCR was used for analyzing the expression of egG1Y162 gene. Prokaryotic expression plasmid of pET41a-EgG1Y162 was constructed to express recombinant His-EgG1Y162 antigen. Western blot analysis was performed to detect antigenicity of EgG1Y162 antigen. Gene sequence, amino acid alignment and phylogenetic tree of EgG1Y162 were analyzed by BLAST, online Spidey and MEGA4 software, respectively. Results: EgG1Y162 gene was expressed in four developmental stages of Echinococcus granulosus. And, egG1Y162 gene expression was the highest in the adult stage, with the relative value of 19.526, significantly higher than other three stages. Additionally, Western blot analysis revealed that EgG1Y162 recombinant protein had good reaction with serum samples from Echinococcus granulosus infected human and dog. Moreover, EgG1Y162 antigen was phylogenetically closest to EmY162 antigen, with the similarity over 90%. Conclusion: Our study identified EgG1Y162 antigen in Echinococcus granulosus for the first time. EgG1Y162 antigen had a high similarity with EmY162 antigen, with the genetic differences mainly existing in the intron region. And, EgG1Y162 recombinant protein showed good antigenicity. PMID:25337206
Activation of DNA damage repair pathways by murine polyomavirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiser, Katie; Nicholas, Catherine; Garcea, Robert
Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling.more » ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble. -- Highlights: •Murine polyomavirus activates and recruits DNA damage repair (DDR) proteins to replication centers. •Large T-antigen mediates recruitment of DDR proteins to viral replication centers. •Inhibition or knockout of CHK1, CHK2, DNA-PK or H2AX do not affect viral titers. •Inhibition of ATR activity reduces viral titers, but not viral DNA accumulation.« less
L2, the minor capsid protein of papillomavirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Joshua W.; Roden, Richard B.S., E-mail: roden@jhmi.edu; Department of Oncology, The Johns Hopkins University, Baltimore, MD 21287
2013-10-15
The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 ismore » not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies.« less
Patki, Rucha; Lilani, Sunil; Lanjewar, Dhaneshwar
2017-01-01
The aim of this study was to establish a baseline titre for the population of Mumbai, Maharashtra, India. Four hundred healthy blood donors, attending blood donation camps, were screened using a survey questionnaire. Widal tube agglutination test was performed on the diluted sera (with 0.9% normal saline) of blood donors, with final dilution ranging from 1 : 40 to 1 : 320. Out of 400 individuals providing samples, 78 (19.5%) individuals showed antibody titres ≥ 1 : 40 for at least one antigen and 322 (80.5%) showed no agglutination. The baseline antibody titres against O antigen and H antigen of Salmonella enterica serotype Typhi were found to be 1 : 40 and 1 : 80, respectively. Similarly, the baseline antibody titres for the H antigen of Salmonella enterica serotypes Paratyphi A and Paratyphi B were found to be 1 : 40 and 1 : 80, respectively. Thus, it was noted that the diagnostically significant cutoff of antibody titre from acute phase sample was ≥ 1 : 80 for S. Typhi O antigen and titre of ≥ 1 : 160 for both S. Typhi H antigen and S. Paratyphi BH antigen. Antibody titre of ≥ 1 : 80 can be considered significant for S. Paratyphi AH antigen.
Lilani, Sunil; Lanjewar, Dhaneshwar
2017-01-01
Objective The aim of this study was to establish a baseline titre for the population of Mumbai, Maharashtra, India. Method Four hundred healthy blood donors, attending blood donation camps, were screened using a survey questionnaire. Widal tube agglutination test was performed on the diluted sera (with 0.9% normal saline) of blood donors, with final dilution ranging from 1 : 40 to 1 : 320. Results Out of 400 individuals providing samples, 78 (19.5%) individuals showed antibody titres ≥ 1 : 40 for at least one antigen and 322 (80.5%) showed no agglutination. The baseline antibody titres against O antigen and H antigen of Salmonella enterica serotype Typhi were found to be 1 : 40 and 1 : 80, respectively. Similarly, the baseline antibody titres for the H antigen of Salmonella enterica serotypes Paratyphi A and Paratyphi B were found to be 1 : 40 and 1 : 80, respectively. Conclusion Thus, it was noted that the diagnostically significant cutoff of antibody titre from acute phase sample was ≥ 1 : 80 for S. Typhi O antigen and titre of ≥ 1 : 160 for both S. Typhi H antigen and S. Paratyphi BH antigen. Antibody titre of ≥ 1 : 80 can be considered significant for S. Paratyphi AH antigen. PMID:29081804