Science.gov

Sample records for nuclear core spectroscopy

  1. Classification of iron-sulfur cores in ferredoxins by 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Nagayama, K; Ozaki, Y; Kyogoku, Y; Hase, T; Matsubara, H

    1983-09-01

    A 1H nuclear magnetic resonance (NMR) study was carried out on various ferredoxins which possess one of three types of iron-sulfur clusters, (2Fe-2S), (3Fe-3S), or (4Fe-4S). In the isolated form, (2Fe-2S) ferredoxins from spinach (Spinacea oleracia), pokeweed (Phytolacca americana), a blue-green alga (Spirulina platensis), and a halobacterium (Halobacterium halobium) exhibited two broad resonances common in chemical shift at the region downfield of 10 ppm. In their reduced forms, seven contact-shifted resonances appeared spread over 30 ppm. Although the positions of the contact-shifted resonances in the reduced state differed among the four, a common trend in the temperature dependence of their resonance positions was recognized. Two (4Fe-4S) ferredoxins from Bacillus stearothermophilus and Bacillus thermoproteolyticus exhibited almost indistinguishable spectral patterns in both the oxidized and reduced forms. The ferricyanide-treated ferredoxins of B. stearothermophilus and B. thermoproteolyticus showed characteristic contact-shifted resonances distinct from the spectra of the original (4Fe-4S) ferredoxins. This corresponds to the recent finding of the interconversion of (4Fe-4S) and (3Fe-3S) clusters with ferricyanide in the ferredoxin. Based on our data together with reported NMR data on other ferredoxins, contact-shift resonances of three types of clusters were tabulated. The reliability of NMR classification increases when we compare the NMR spectra of a ferredoxin with the classification standards at the two redox states. Moreover, not only the absolute values of the chemical shifts of contact-shifted resonances but also their temperature dependence give distinctive information applicable to iron core identification.

  2. Nuclear core positioning system

    DOEpatents

    Garkisch, Hans D.; Yant, Howard W.; Patterson, John F.

    1979-01-01

    A structural support system for the core of a nuclear reactor which achieves relatively restricted clearances at operating conditions and yet allows sufficient clearance between fuel assemblies at refueling temperatures. Axially displaced spacer pads having variable between pad spacing and a temperature compensated radial restraint system are utilized to maintain clearances between the fuel elements. The core support plates are constructed of metals specially chosen such that differential thermal expansion produces positive restraint at operating temperatures.

  3. NUCLEAR REACTOR CORE DESIGN

    DOEpatents

    Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.

    1960-03-22

    An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.

  4. Uranium droplet core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    Uranium droplet nuclear rocket is conceptually designed to utilize the broad temperature range ofthe liquid phase of metallic uranium in droplet configuration which maximizes the energy transfer area per unit fuel volume. In a baseline system dissociated hydrogen at 100 bar is heated to 6000 K, providing 2000 second of Isp. Fission fragments and intense radian field enhance the dissociation of molecular hydrogen beyond the equilibrium thermodynamic level. Uranium droplets in the core are confined and separated by an axisymmetric vortex flow generated by high velocity tangential injection of hydrogen in the mid-core regions. Droplet uranium flow to the core is controlled and adjusted by a twin flow nozzle injection system.

  5. Uranium droplet core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    Uranium droplet nuclear rocket is conceptually designed to utilize the broad temperature range ofthe liquid phase of metallic uranium in droplet configuration which maximizes the energy transfer area per unit fuel volume. In a baseline system dissociated hydrogen at 100 bar is heated to 6000 K, providing 2000 second of Isp. Fission fragments and intense radian field enhance the dissociation of molecular hydrogen beyond the equilibrium thermodynamic level. Uranium droplets in the core are confined and separated by an axisymmetric vortex flow generated by high velocity tangential injection of hydrogen in the mid-core regions. Droplet uranium flow to the core is controlled and adjusted by a twin flow nozzle injection system.

  6. Droplet Core Nuclear Rocket (DCNR)

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    The most basic design feature of the droplet core nuclear reactor is to spray liquid uranium into the core in the form of droplets on the order of five to ten microns in size, to bring the reactor to critical conditions. The liquid uranium fuel ejector is driven by hydrogen, and more hydrogen is injected from the side of the reactor to about one and a half meters from the top. High temperature hydrogen is expanded through a nozzle to produce thrust. The hydrogen pressure in the system can be somewhere between 50 and 500 atmospheres; the higher pressure is more desirable. In the lower core region, hydrogen is tangentially injected to serve two purposes: (1) to provide a swirling flow to protect the wall from impingement of hot uranium droplets: (2) to generate a vortex flow that can be used for fuel separation. The reactor is designed to maximize the energy generation in the upper region of the core. The system can result in and Isp of 2000 per second, and a thrust-to-weight ratio of 1.6 for the shielded reactor. The nuclear engine system can reduce the Mars mission duration to less than 200 days. It can reduce the hydrogen consumption by a factor of 2 to 3, which reduces the hydrogen load by about 130 to 150 metric tons.

  7. Nuclear Magnetic Resonance Spectroscopy

    DTIC Science & Technology

    1992-04-23

    Belousov - Zhabotinsky reaction (Ti). SENos i CIL-ucal aspects of maging and spatially-localized spectroscopy a are outside the scope of this review, but...catalysts. High-temperature catalytic reactions are being simulated in NMR probes so that reaction mechanisms may I__ SEN2 is be elucidated. NMIR studies...14 investigate the reaction mechanisms of various catalytic 21 processes.PARIIT SENN I NMR analysis has also made remarkable contributions to to the

  8. High-spin nuclear spectroscopy

    SciTech Connect

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given. (DWL)

  9. Nuclear Spectroscopy with HELIOS

    NASA Astrophysics Data System (ADS)

    Hoffman, Calem

    2013-04-01

    Direct reaction studies have been instrumental in achieving our current understanding of nuclear structure through the measurement of angular distributions, the extraction of spectroscopic factors, and the determination of single-particle centroids. Traditionally, these experiments were carried out using a beam of light particles impinging on a heavy stable target. Over the last decade this important technique has been used with short-lived radioactive ion beams requiring these types of reactions to be carried out in inverse kinematics. There are numerous challenges to this approach, not least is the typical Q-value resolution being up to an order of magnitude worse than traditional measurements due mainly to the so-called kinematic compression. The Helical Orbit Spectrometer (HELIOS) is a detection system developed for the specific purpose of improving the Q value resolution for inverse direct reaction measurements, while also maintaining flexibility and high efficiency. The novel feature of HELIOS is use of a 3 Tesla solenoid inside which the reactions take place. This allows for light particles of interest to be measured at fixed longitudinal distances from the target as opposed to fixed laboratory angles. The subtle mapping from laboratory angle to longitudinal position removes the aforementioned kinematic compression effect improving the Q-value resolution by as much as a factor of five without out sacrificing detection efficiency. In addition, HELIOS provides a natural way to identify particles of interest, independent of energy, through their measured cyclotron period. The design and implementation of HELIOS at the Argonne Tandem Linear Accelerator System (ATLAS) on the site of Argonne National Laboratory will be presented. The device has been extremely successful as numerous early measurements have been conducted spanning masses A=11 to 136, using varying reactions such as (d,p), (d,^3He), and (^6LI,d), as well as a range of beam energies. Physics

  10. Nuclear core and fuel assemblies

    DOEpatents

    Downs, Robert E.

    1981-01-01

    A fast flux nuclear core of a plurality of rodded, open-lattice assemblies having a rod pattern rotated relative to a rod support structure pattern. Elongated fuel rods are oriented on a triangular array and laterally supported by grid structures positioned along the length of the assembly. Initial inter-assembly contact is through strongbacks at the corners of the support pattern and peripheral fuel rods between adjacent assemblies are nested so as to maintain a triangular pitch across a clearance gap between the other portions of adjacent assemblies. The rod pattern is rotated relative to the strongback support pattern by an angle .alpha. equal to sin .sup.-1 (p/2c), where p is the intra-assembly rod pitch and c is the center-to-center spacing among adjacent assemblies.

  11. Nuclear gas core propulsion research program

    NASA Technical Reports Server (NTRS)

    Diaz, Nils J.; Dugan, Edward T.; Anghaie, Samim

    1993-01-01

    Viewgraphs on the nuclear gas core propulsion research program are presented. The objectives of this research are to develop models and experiments, systems, and fuel elements for advanced nuclear thermal propulsion rockets. The fuel elements under investigation are suitable for gas/vapor and multiphase fuel reactors. Topics covered include advanced nuclear propulsion studies, nuclear vapor thermal rocket (NVTR) studies, and ultrahigh temperature nuclear fuels and materials studies.

  12. Shiftless nuclear magnetic resonance spectroscopy.

    PubMed

    Wu, Chin H; Opella, Stanley J

    2008-02-07

    The acquisition and analysis of high resolution one- and two-dimensional solid-state nuclear magnetic resonance (NMR) spectra without chemical shift frequencies are described. Many variations of shiftless NMR spectroscopy are feasible. A two-dimensional experiment that correlates the dipole-dipole and dipole-dipole couplings in the model peptide , (15)N labeled N-acetyl-leucine is demonstrated. In addition to the resolution of resonances from individual sites in a single crystal sample, the bond lengths and angles are characterized by the two-dimensional powder pattern obtained from a polycrystalline sample.

  13. Microcoil nuclear magnetic resonance spectroscopy.

    PubMed

    Webb, A G

    2005-08-10

    In comparison with most analytical chemistry techniques, nuclear magnetic resonance has an intrinsically low sensitivity, and many potential applications are therefore precluded by the limited available quantity of certain types of sample. In recent years, there has been a trend, both commercial and academic, towards miniaturization of the receiver coil in order to increase the mass sensitivity of NMR measurements. These small coils have also proved very useful in coupling NMR detection with commonly used microseparation techniques. A further development enabled by small detectors is parallel data acquisition from many samples simultaneously, made possible by incorporating multiple receiver coils into a single NMR probehead. This review article summarizes recent developments and applications of "microcoil" NMR spectroscopy.

  14. Plasma core nuclear rocket technology

    NASA Astrophysics Data System (ADS)

    Latham, Thomas S.; Roman, Ward C.; Johnson, Bruce V.

    1993-06-01

    The nuclear lightbulb (NLB) rocket propulsion concept furnishes specific impulse above 2000 sec in conjunction with the greater-than-50,000 lb thrust levels required for rapid transit-time round-trip Mars missions requiring low initial mass in earth orbit. The NLB transfers energy from the gaseous nuclear fuel region to a hydrogen propellant via thermal radiation, thereby precluding material temperature constraints. An evaluation is presently made of technology and test method readiness for implementation and validation of this propulsion system concept.

  15. Plasma core nuclear rocket technology

    SciTech Connect

    Latham, T.S.; Roman, W.C.; Johnson, B.V.

    1993-06-01

    The nuclear lightbulb (NLB) rocket propulsion concept furnishes specific impulse above 2000 sec in conjunction with the greater-than-50,000 lb thrust levels required for rapid transit-time round-trip Mars missions requiring low initial mass in earth orbit. The NLB transfers energy from the gaseous nuclear fuel region to a hydrogen propellant via thermal radiation, thereby precluding material temperature constraints. An evaluation is presently made of technology and test method readiness for implementation and validation of this propulsion system concept. 13 refs.

  16. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  17. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1978-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  18. Neural networks for nuclear spectroscopy

    SciTech Connect

    Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T.

    1995-12-31

    In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.

  19. Nuclear-spectroscopy problems studied with neutrons

    NASA Astrophysics Data System (ADS)

    Raman, S.

    Nuclear spectroscopy with neutrons continues to have a major impact on the progress of nuclear science. Neutrons, being uncharged, are particularly useful for the study of low energy reactions. Recent advances in time-of-flight spectroscopy, as well as in the gamma ray spectroscopy following neutron capture, have permitted precision studies of unbound and bound nuclear levels and related phenomena. By going to new energy domains, by using polarized beams and targets, through the invention of new kinds of detectors, and through the general improvement in beam quantity and quality, new features of nuclear structure and reactions were obtained that are not only interesting per se but are also grist for old and new theory mills. The above technical advances have opened up opportunities for further discoveries.

  20. Nuclear-spectroscopy problems studied with neutrons

    SciTech Connect

    Raman, S.

    1982-01-01

    Nuclear spectroscopy with neutrons continues to have a major impact on the progress of nuclear science. Neutrons, being uncharged, are particularly useful for the study of low energy reactions. Recent advances in time-of-flight spectroscopy, as well as in the gamma ray spectroscopy following neutron capture, have permitted precision studies of unbound and bound nuclear levels and related phenomena. By going to new energy domains, by using polarized beams and targets, through the invention of new kinds of detectors, and through the general improvement in beam quantity and quality, new features of nuclear structure and reactions have been obtained that are not ony interesting per se but are also grist for old and new theory mills. The above technical advances have opened up new opportunities for further discoveries.

  1. Wire core reactor for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Harty, Richard B.; Brengle, Robert G.

    1993-01-01

    Studies have been performed of a compact high-performance nuclear rocket reactor that incorporates a tungsten alloy wire fuel element. This reactor, termed the wire core reactor, can deliver a specific impulse of 1,000 s using an expander cycle and a nozzle expansion ratio of 500 to 1. The core is constructed of layers of 0.8-mm-dia fueled tungsten wires wound over alternate layers of spacer wires, which forms a rugged annular lattice. Hydrogen flow in the core is annular, flowing from inside to outside. In addition to the concepts compact size and good heat transfer, the core has excellent power-flow matching features and can resist vibration and thermal stresses during star-up and shutdown.

  2. Nuclear Forensics using Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Norman, E. B.

    2016-09-01

    Much of George Dracoulis's research career was devoted to utilising gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the last several years, our research group has made use of both high- and low-resolution gamma-ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  3. Apparatus for controlling nuclear core debris

    DOEpatents

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  4. Gas Core Nuclear Rocket Feasibility Project

    NASA Technical Reports Server (NTRS)

    Howe, S. D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1997-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed.

  5. Gas core nuclear rocket feasibility project

    SciTech Connect

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1997-09-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed.

  6. Open cycle gas core nuclear rockets

    NASA Technical Reports Server (NTRS)

    Ragsdale, Robert

    1991-01-01

    The open cycle gas core engine is a nuclear propulsion device. Propulsion is provided by hot hydrogen which is heated directly by thermal radiation from the nuclear fuel. Critical mass is sustained in the uranium plasma in the center. It has typically 30 to 50 kg of fuel. It is a thermal reactor in the sense that fissions are caused by absorption of thermal neutrons. The fast neutrons go out to an external moderator/reflector material and, by collision, slow down to thermal energy levels, and then come back in and cause fission. The hydrogen propellant is stored in a tank. The advantage of the concept is very high specific impulse because you can take the plasma to any temperature desired by increasing the fission level by withdrawing or turning control rods or control drums.

  7. Induction simulation of gas core nuclear engine

    NASA Technical Reports Server (NTRS)

    Poole, J. W.; Vogel, C. E.

    1973-01-01

    The design, construction and operation of an induction heated plasma device known as a combined principles simulator is discussed. This device incorporates the major design features of the gas core nuclear rocket engine such as solid feed, propellant seeding, propellant injection through the walls, and a transpiration cooled, choked flow nozzle. Both argon and nitrogen were used as propellant simulating material, and sodium was used for fuel simulating material. In addition, a number of experiments were conducted utilizing depleted uranium as the fuel. The test program revealed that satisfactory operation of this device can be accomplished over a range of operating conditions and provided additional data to confirm the validity of the gas core concept.

  8. CAC - NUCLEAR THERMAL ROCKET CORE ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Clark, J. S.

    1994-01-01

    One of the most important factors in the development of nuclear rocket engine designs is to be able to accurately predict temperatures and pressures throughout a fission nuclear reactor core with axial hydrogen flow through circular coolant passages. CAC is an analytical prediction program to study the heat transfer and fluid flow characteristics of a circular coolant passage. CAC predicts as a function of time axial and radial fluid conditions, passage wall temperatures, flow rates in each coolant passage, and approximate maximum material temperatures. CAC incorporates the hydrogen properties model STATE to provide fluid-state relations, thermodynamic properties, and transport properties of molecular hydrogen in any fixed ortho-para combination. The program requires the general core geometry, the core material properties as a function of temperature, the core power profile, and the core inlet conditions as function of time. Although CAC was originally developed in FORTRAN IV for use on an IBM 7094, this version is written in ANSI standard FORTRAN 77 and is designed to be machine independent. It has been successfully compiled on IBM PC series and compatible computers running MS-DOS with Lahey F77L, a Sun4 series computer running SunOS 4.1.1, and a VAX series computer running VMS 5.4-3. CAC requires 300K of RAM under MS-DOS, 422K of RAM under SunOS, and 220K of RAM under VMS. No sample executable is provided on the distribution medium. Sample input and output data are included. The standard distribution medium for this program is a 5.25 inch 360K MS-DOS format diskette. CAC was developed in 1966, and this machine independent version was released in 1992. IBM-PC and IBM are registered trademarks of International Business Machines. Lahey F77L is a registered trademark of Lahey Computer Systems, Inc. SunOS is a trademark of Sun Microsystems, Inc. VMS is a trademark of Digital Equipment Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  9. CAC - NUCLEAR THERMAL ROCKET CORE ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Clark, J. S.

    1994-01-01

    One of the most important factors in the development of nuclear rocket engine designs is to be able to accurately predict temperatures and pressures throughout a fission nuclear reactor core with axial hydrogen flow through circular coolant passages. CAC is an analytical prediction program to study the heat transfer and fluid flow characteristics of a circular coolant passage. CAC predicts as a function of time axial and radial fluid conditions, passage wall temperatures, flow rates in each coolant passage, and approximate maximum material temperatures. CAC incorporates the hydrogen properties model STATE to provide fluid-state relations, thermodynamic properties, and transport properties of molecular hydrogen in any fixed ortho-para combination. The program requires the general core geometry, the core material properties as a function of temperature, the core power profile, and the core inlet conditions as function of time. Although CAC was originally developed in FORTRAN IV for use on an IBM 7094, this version is written in ANSI standard FORTRAN 77 and is designed to be machine independent. It has been successfully compiled on IBM PC series and compatible computers running MS-DOS with Lahey F77L, a Sun4 series computer running SunOS 4.1.1, and a VAX series computer running VMS 5.4-3. CAC requires 300K of RAM under MS-DOS, 422K of RAM under SunOS, and 220K of RAM under VMS. No sample executable is provided on the distribution medium. Sample input and output data are included. The standard distribution medium for this program is a 5.25 inch 360K MS-DOS format diskette. CAC was developed in 1966, and this machine independent version was released in 1992. IBM-PC and IBM are registered trademarks of International Business Machines. Lahey F77L is a registered trademark of Lahey Computer Systems, Inc. SunOS is a trademark of Sun Microsystems, Inc. VMS is a trademark of Digital Equipment Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  10. Laser techniques for spectroscopy of core-excited atomic levels

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  11. Laser techniques for spectroscopy of core-excited atomic levels

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  12. Small-Volume Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fratila, Raluca M.; Velders, Aldrik H.

    2011-07-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most information-rich analytical techniques available. However, it is also inherently insensitive, and this drawback precludes the application of NMR spectroscopy to mass- and volume-limited samples. We review a particular approach to increase the sensitivity of NMR experiments, namely the use of miniaturized coils. When the size of the coil is reduced, the sample volume can be brought down to the nanoliter range. We compare the main coil geometries (solenoidal, planar, and microslot/stripline) and discuss their applications to the analysis of mass-limited samples. We also provide an overview of the hyphenation of microcoil NMR spectroscopy to separation techniques and of the integration with lab-on-a-chip devices and microreactors.

  13. Extended X-Ray Absorption Fine Structure And Nuclear Resonance Vibrational Spectroscopy Reveal That NifB-Co, a FeMo-Co Precursor, Comprises a 6Fe Core With An Interstitial Light Atom

    SciTech Connect

    George, S.J.; Igarashi, R.Y.; Xiao, Y.; Hernandez, J.A.; Demuez, M.; Zhao, D.; Yoda, Y.; Ludden, P.W.; Rubio, L.M.; Cramer, S.P.

    2009-05-18

    NifB-co, an Fe-S cluster produced by the enzyme NifB, is an intermediate on the biosynthetic pathway to the iron molybdenum cofactor (FeMo-co) of nitrogenase. We have used Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy together with {sup 57}Fe nuclear resonance vibrational spectroscopy (NRVS) to probe the structure of NifB-co while bound to the NifX protein from Azotobacter vinelandii. The spectra have been interpreted in part by comparison with data for the completed FeMo-co attached to the NafY carrier protein: the NafY:FeMo-co complex. EXAFS analysis of the NifX:NifB-co complex yields an average Fe-S distance of 2.26 {angstrom} and average Fe-Fe distances of 2.66 and 3.74 {angstrom}. Search profile analyses reveal the presence of a single Fe-X (X = C, N, or O) interaction at 2.04 {angstrom}, compared to a 2.00 {angstrom} Fe-X interaction found in the NafY:FeMo-co EXAFS. This suggests that the interstitial light atom (X) proposed to be present in FeMo-co has already inserted at the NifB-co stage of biosynthesis. The NRVS exhibits strong bands from Fe-S stretching modes peaking around 270, 315, 385, and 408 cm{sup -1}. Additional intensity at {approx} 185-200 cm{sup -1} is interpreted as a set of cluster 'breathing' modes similar to those seen for the FeMo-cofactor. The strength and location of these modes also suggest that the FeMo-co interstitial light atom seen in the crystal structure is already in place in NifB-co. Both the EXAFS and NRVS data for NifX:NifB-co are best simulated using a Fe{sub 6}S{sub 9}X trigonal prism structure analogous to the 6Fe core of FeMo-co, although a 7Fe structure made by capping one trigonal 3S terminus with Fe cannot be ruled out. The results are consistent with the conclusion that the interstitial light atom is already present at an early stage in FeMo-co biosynthesis prior to the incorporation of Mo and R-homocitrate.

  14. Evolution of nuclear spectroscopy at Saha Institute of Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Mukherjee, P.

    2001-07-01

    Experimental studies of nuclear excitations have been an important subject from the earliest days when the institute was established. The construction of 4 MeV proton cyclotron was mainly aimed to achieve this goal. Early experiments in nuclear spectroscopy were done with radioactive nuclei with the help of beta and gamma ray spectrometers. Small NaI(Tl) detectors were used for gamma--gamma coincidence, angular correlation and life time measurements. The excited states nuclear magnetic moments were measured in perturbed gamma--gamma angular correlation experiments. A high transmission magnetic beta ray spectrometer was used to measure internal conversion coefficients and beta--gamma coincidence studies. A large number of significant contributions were made during 1950--59 using these facilities. Proton beam in the cyclotron was made available in the late 1950's and together with 14 MeV neutrons obtained from a C-W generator a large number of short-lived nuclei were investigated during 1960's and 1970's. The introduction of high resolution Ge gamma detectors and the improved electronics helped to extend the spectroscopic work which include on-line (p,p'g) and (p,n g) reaction studies. Nuclear spectroscopic studies entered a new phase in the 1980's with the availability of 40--80 MeV alpha beam from the variable energy cyclotron at VECC, Calcutta. A number of experimental groups were formed in the institute to study nuclear level schemes with (a,xn g) reactions. Initially only two unsuppressed Ge detectors were used for coincidence studies. Later in 1989 five Ge detectors with a large six segmented NaI(Tl) multiplicity-sum detector system were successfully used to select various channels in (a ,xn g) reactions. From 1990 to date a variety of medium energy heavy ions were made available from the BARC-TIFR Pelletron and the Nuclear Science Centre Pelletron. The state of the art gamma detector arrays in these centres enabled the Saha Institute groups to undertake more

  15. Consequences of nuclear electron capture in core collapse supernovae.

    PubMed

    Hix, W R; Messer, O E B; Mezzacappa, A; Liebendörfer, M; Sampaio, J; Langanke, K; Dean, D J; Martínez-Pinedo, G

    2003-11-14

    The most important weak nuclear interaction to the dynamics of stellar core collapse is electron capture, primarily on nuclei with masses larger than 60. In prior simulations of core collapse, electron capture on these nuclei has been treated in a highly parametrized fashion, if not ignored. With realistic treatment of electron capture on heavy nuclei come significant changes in the hydrodynamics of core collapse and bounce. We discuss these as well as the ramifications for the postbounce evolution in core collapse supernovae.

  16. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.

    PubMed

    Li, Jian-Feng; Zhang, Yue-Jiao; Ding, Song-Yuan; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2017-03-08

    Core-shell nanoparticles are at the leading edge of the hot research topics and offer a wide range of applications in optics, biomedicine, environmental science, materials, catalysis, energy, and so forth, due to their excellent properties such as versatility, tunability, and stability. They have attracted enormous interest attributed to their dramatically tunable physicochemical features. Plasmonic core-shell nanomaterials are extensively used in surface-enhanced vibrational spectroscopies, in particular, surface-enhanced Raman spectroscopy (SERS), due to the unique localized surface plasmon resonance (LSPR) property. This review provides a comprehensive overview of core-shell nanoparticles in the context of fundamental and application aspects of SERS and discusses numerous classes of core-shell nanoparticles with their unique strategies and functions. Further, herein we also introduce the concept of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in detail because it overcomes the long-standing limitations of material and morphology generality encountered in traditional SERS. We then explain the SERS-enhancement mechanism with core-shell nanoparticles, as well as three generations of SERS hotspots for surface analysis of materials. To provide a clear view for readers, we summarize various approaches for the synthesis of core-shell nanoparticles and their applications in SERS, such as electrochemistry, bioanalysis, food safety, environmental safety, cultural heritage, materials, catalysis, and energy storage and conversion. Finally, we exemplify about the future developments in new core-shell nanomaterials with different functionalities for SERS and other surface-enhanced spectroscopies.

  17. NAIS: Nuclear activation-based imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Günther, M. M.; Britz, A.; Clarke, R. J.; Harres, K.; Hoffmeister, G.; Nürnberg, F.; Otten, A.; Pelka, A.; Roth, M.; Vogt, K.

    2013-07-01

    In recent years, the development of high power laser systems led to focussed intensities of more than 1022 W/cm2 at high pulse energies. Furthermore, both, the advanced high power lasers and the development of sophisticated laser particle acceleration mechanisms facilitate the generation of high energetic particle beams at high fluxes. The challenge of imaging detector systems is to acquire the properties of the high flux beam spatially and spectrally resolved. The limitations of most detector systems are saturation effects. These conventional detectors are based on scintillators, semiconductors, or radiation sensitive films. We present a nuclear activation-based imaging spectroscopy method, which is called NAIS, for the characterization of laser accelerated proton beams. The offline detector system is a combination of stacked metal foils and imaging plates (IP). After the irradiation of the stacked foils they become activated by nuclear reactions, emitting gamma decay radiation. In the next step, an autoradiography of the activated foils using IPs and an analysis routine lead to a spectrally and spatially resolved beam profile. In addition, we present an absolute calibration method for IPs.

  18. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    SciTech Connect

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  19. Nuclear waste disposal utilizing a gaseous core reactor

    NASA Technical Reports Server (NTRS)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  20. Characterization of hydrophobic cores in apomyoglobin: A proton NMR spectroscopy study

    SciTech Connect

    Cocco, M.J.; Lecomte, J.T.L. )

    1990-12-01

    A proton nuclear magnetic resonance spectroscopic study of horse apomyoglobin was undertaken in order to define the regions of myoglobin that are and that are not structurally affected by the binding of the prosthetic group. It was found that, in spite of the poor spectral resolution, a number of spin systems could be identified by using standard correlated methods. Four clusters consisting mostly of hydrophobic residues were detected by nuclear Overhauser spectroscopy, two of which involved the tryptophan side chains. Extensive similarities to nuclear Overhauser spectroscopy data collected on the carbonmonoxy form of holomyoglobin suggested tentative assignments for several residues. It appeared that distinct cores of side chains on the distal side of the binding pocket and between the A, B, G, and H helices maintain the same packing as they do in holomyoglobin and apomyoglobin reconstituted with protoporphyrin IX.

  1. Spatial localization in nuclear magnetic resonance spectroscopy.

    PubMed

    Keevil, Stephen F

    2006-08-21

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications.

  2. Raman spectroscopy on ice cores from Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Weikusat, C.; Kipfstuhl, S.

    2012-04-01

    Ice cores are invaluable archives for the reconstruction of the climatic history of the earth. Besides the analysis of various climatic processes from isotopes and chemical signatures they offer the unique possibility of directly extracting the past atmosphere from gaseous inclusions in the ice. Many aspects of the formation and alterations of these inclusions, e.g. the entrapment of air at the firn-ice-transition, the formation of crystalline gas hydrates (clathrates) from the bubbles or the structural relaxation during storage of the cores, need to be better understood to enable reliable interpretations of the obtained data. Modern micro Raman spectroscopy is an excellent tool to obtain high-quality data for all of these aspects. It has been productively used for phase identification of solid inclusions [1], investigation of air clathrates [2] and high-resolution measurements of N2/O2 mixing ratios inside individual air bubbles [3,4]. Detailed examples of the various uses of Raman spectroscopy will be presented along with practical information about the techniques required to obtain high-quality spectra. Retrieval and interpretation of quantitative data from the spectra will be explained. Future possibilities for advanced uses of Raman spectroscopy for ice core research will be discussed. [1] T. Sakurai et al., 2009, Direct observation of salts as micro-inclusions in the Greenland GRIP ice core. Journal of Glaciology, 55, 777-783. [2] F. Pauer et al., 1995, Raman spectroscopic study of nitrogen/oxygen ratio in natural ice clathrates in the GRIP ice core. Geophysical Research Letters, 22, 969-971. [3] T. Ikeda-Fukazawa et al., 2001, Variation in N2/O2 ratio of occluded air in Dome Fuji antarctic ice. Journal of Geophysical Research, 106, 17799-17810. [4] C. Weikusat et al., Raman spectroscopy of gaseous inclusions in EDML ice core: First results - microbubbles. Journal of Glaciology, accepted.

  3. Mox fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    2001-05-15

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.

  4. MOX fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    1998-01-01

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

  5. MOX fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    2001-07-17

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

  6. MOX fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, M.L.; Rosenstein, R.G.

    1998-10-13

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.

  7. Nuclear Physics in Core-Collapse Supernovae

    SciTech Connect

    Liebendoerfer, Matthias; Fischer, T.; Froelich, C.; Hix, William Raphael; Langanke, Karlheinz; Martinez-Pinedo, Gabriel; Mezzacappa, Anthony; Scheidegger, Simon; Thielemann, Friedrich-Karl W.; Whitehouse, Stuart

    2008-01-01

    Core-collapse and the launch of a supernova explosion form a very short episode of few seconds in the evolution of a massive star, during which an enormous gravitational energy of several times 1053 erg is transformed into observable neutrino-, kinetic-, and electromagnetic radiation energy. We emphasize the wide range of matter conditions that prevail in a supernova event and sort the conditions into distinct regimes in the density and entropy phase diagram to briefly discuss their different impact on the neutrino signal, gravitational wave emission, and ejecta.

  8. Nuclear spectroscopy above isomers in {sub 67}{sup 148}Ho{sub 81} and {sub 67}{sup 149}Ho{sub 82} nuclei: Search for core-excited states in {sup 149}Ho

    SciTech Connect

    Kownacki, J.; Napiorkowski, P. J.; Zielinska, M.; Kordyasz, A.; Srebrny, J.; Droste, Ch.; Morek, T.; Grodner, E.; Ruchowska, E.; Korman, A.; Czarnacki, W.; Kisielinski, M.; Kowalczyk, M.; Wrzosek-Lipska, K.; Hadynska-KlePk, K.; Mierzejewski, J.; Lieder, R. M.; Perkowski, J.; Andrzejewski, J.; Krol, A.

    2010-04-15

    The excited states of {sup 148}Ho and {sup 149}Ho isotopes are studied using gamma-ray and electron spectroscopy in off-beam and in-beam modes following {sup 112,114}Sn({sup 40}Ar,xnyp) reactions. Experiments include measurements of single gamma-rays and conversion electron spectra as well as gamma-gamma, electron-gamma, gamma-t, and gamma-gamma-t coincidences with the use of the OSIRIS-II 12-HPGe array and conversion electron spectrometer. Based on the present results, the level schemes of {sup 148}Ho and {sup 149}Ho are revised and significantly extended, up to about 4 and 5 MeV of excitation energy, respectively. Spin and parity of 5{sup -} are assigned to the 9.59-s isomer in {sup 148}Ho based on conversion electron results. Previously unobserved gamma rays feeding the 10{sup +} isomer in {sup 148}Ho and the 27/2{sup -} isomer in {sup 149}Ho nuclei are proposed. Shell-model calculations are performed. Possible core-excited states in {sup 149}Ho are discussed.

  9. Chiral discrimination in nuclear magnetic resonance spectroscopy.

    PubMed

    Lazzeretti, Paolo

    2017-08-08

    Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is in general favoured (e.g., L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry), because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ``blind'' to chirality, i.e., %%In fact, spectrometers presently used in NMR are unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants, are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between {\\em true} and {\\em false} chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e., the trace of a second-rank tensor, the mixed electric dipole/mag\\-net\\-ic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality

  10. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  11. NMR clinical imaging and spectroscopy: Its impact on nuclear medicine

    SciTech Connect

    Not Available

    1990-02-02

    This is a collection of four papers describing aspects of past and future use of nuclear magnetic resonance as a clinical diagnostic tool. The four papers are entitled (1) What Does NMR Offer that Nuclear Medicine Does Not? by Jerry W. Froelich, (2) Oncological Imaging: Now, Future and Impact Jerry W. Froelich, (3) Magnetic Resonance Spectroscopy/Spectroscopic Imaging and Nuclear Medicine: Past, Present and Future by H. Cecil Charles, and (4) MR Cardiology: Now, Future and Impact by Robert J. Herfkens.

  12. JWST NIRCam WFSS Ice Feature Spectroscopy in Nearby Molecular Cores

    NASA Astrophysics Data System (ADS)

    Chu, Laurie; Hodapp, Klaus W.; Rieke, Marcia J.; Meyer, Michael; Greene, Thomas P.; JWST NIRCam Science Team

    2017-06-01

    In molecular clouds above a few magnitudes of total visual extinction, some components of the molecular gas freeze out on the surfaces of dust grains. These ice mantles around dust grains are the site of complex surface chemistry that leads to the formation of simple organic molecules in these mantles. The icy surfaces also facilitate the coaggulation of the dust particles, setting the stage for grain growth and ultimately the formation of planetary bodies.As part of the JWST NIRCam GTO program, we plan to observe a selection of small molecular cores using the wide field grism spectroscopy mode of NIRCam.This poster presents the results of a preliminary study of several candidate molecular cores using UKIRT, Spitzer IRAC, IRTF SpeX, Keck MOSFIRE and Subaru MOIRCS data.After the prelimary studies we have selected three molecular cores in different evolutionary stages for the GTO program: B68, a quiescent molecular core, LDN 694-2, a collapsing pre-stellar core, and B335, a protostellar core. All these cores are seen against a dense background of stars in the inner Galaxy and offer the opportunity for spatially well resolved mapping of the ice feature distribution. We will obtain slitless grism spectroscopy in six filters covering the features of H2O, CO2, CO, CH3OH, and the XCN feature. Simulations using aXeSIM have shown that spectrum overlap will occur in a fraction of the spectra, but will not be a prohibitive problem.Our poster will discuss the details of observations planned out in the APT system.

  13. Nuclear-transfer spectroscopy using radioactive targets

    SciTech Connect

    Naumann, R.A.; Dewberry, R.; Kouzes, R.T.; Hoff, R.; Boerner, H.; Lanier, R.G.; Mann, L.; Struble, G.L.

    1981-06-01

    The feasibiity and techniques for carrying out transfer spectroscopic experiments with radioactive targets having half lives down to a fraction of a year are reviewed. The use of such radioactive targets is illustrated by recent studies of the spectroscopy of /sup 149/Sm, /sup 174/Lu and /sup 247/Bk using (p,t) transfer spectroscopy.

  14. Hanging core support system for a nuclear reactor

    SciTech Connect

    Seidensticker, R.W.; Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.

    1987-02-24

    This patent describes a nuclear reactor having a guard vessel disposed in a ground connected foundation, an open top reactor vessel having an uppermost portion closed by a deck, a pool of sodium coolant in the reactor vessel, and a core disposed in the coolant. The improvement described here comprises an integral core support platform underlying the core, and integral linkage means including a flange lying directly on the uppermost portion of the reactor vessel and lying directly under the deck, a shirt depending downwardly from the flange adjacent but independent of the reactor vessel, and beams between the skirt and the support platform. The core support means operatively suspends the reactor core independently of the reactor vessel and the deck.

  15. Evaluating nuclear physics inputs in core-collapse supernova models

    SciTech Connect

    Lentz, Eric J; Hix, William Raphael; Baird, Mark L; Messer, Bronson; Mezzacappa, Anthony

    2010-01-01

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present the results of our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions. We present the results of our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions. We also investigate the feedback between different EoSs and opacities in the context of different progenitors.

  16. Thermal radiation in gas core nuclear reactors for space propulsion

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen A.; Gauntt, Randall O.; Harms, Gary A.; Latham, Thomas; Roman, Ward; Rodgers, Richard J.

    1994-05-01

    A diffusive model of the radial transport of thermal radiation out of a cylindrical core of fissioning plasma is presented. The diffusion approximation is appropriate because the opacity of uranium is very high at the temperatures of interest (greater than 3000 K). We make one additional simplification of assuming constant opacity throughout the fuel. This allows the complete set of solutions to be expressed as a single function. This function is approximated analytically to facilitate parametric studies of the performance of a test module of the nuclear light bulb gas-core nuclear-rocket-engine concept, in the Annular Core Research Reactor at Sandia National Laboratories. Our findings indicate that radiation temperatures in range of 4000-6000 K are attainable, which is sufficient to test the high specific impulse potential (approximately 2000 s) of this concept.

  17. Pulsed electron-nuclear-electron triple resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomann, Hans; Bernardo, Marcelino

    1990-05-01

    A new experimental technique, pulsed electron-nuclear-electron triple resonance spectroscopy, is demonstrated. It is based on a modification of the pulse sequence for electron-nuclear double resonance (ENDOR) in which two EPR and one NMR transition are irradiated. The irradiation of one EPR transition is detected via a second EPR transition. The nuclear hyperfine coupling, which separates these EPR transition frequencies, is the irradiated NMR transition. The major advantages of triple resonance spectroscopy include the ability to resolve overlapping nuclear resonances in the ENDOR spectrum and a more direct quantitative assignment of nuclear hyperfine and quadrupole couplings. The triple resonance experiment is an alternative to the recently proposed method of employing rapid magnetic field jumps between microwave pulses for generating hyperfine selective ENDOR spectra.

  18. Generating unstructured nuclear reactor core meshes in parallel

    SciTech Connect

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor core examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.

  19. Thermal barrier and support for nuclear reactor fuel core

    DOEpatents

    Betts, Jr., William S.; Pickering, J. Larry; Black, William E.

    1987-01-01

    A thermal barrier/core support for the fuel core of a nuclear reactor having a metallic cylinder secured to the reactor vessel liner and surrounded by fibrous insulation material. A top cap is secured to the upper end of the metallic cylinder that locates and orients a cover block and post seat. Under normal operating conditions, the metallic cylinder supports the entire load exerted by its associated fuel core post. Disposed within the metallic cylinder is a column of ceramic material, the height of which is less than that of the metallic cylinder, and thus is not normally load bearing. In the event of a temperature excursion beyond the design limits of the metallic cylinder and resulting in deformation of the cylinder, the ceramic column will abut the top cap to support the fuel core post.

  20. Generating unstructured nuclear reactor core meshes in parallel

    DOE PAGES

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  1. An americium-fueled gas core nuclear rocket

    SciTech Connect

    Kammash, T.; Galbraith, D.L.; Jan, T. )

    1993-01-10

    A gas core fission reactor that utilizes americium in place of uranium is examined for potential utilization as a nuclear rocket for space propulsion. The isomer [sup 242m]Am with a half life of 141 years is obtained from an (n, [gamma]) capture reaction with [sup 241]Am, and has the highest known thermal fission cross section. We consider a 7500 MW reactor, whose propulsion characteristics with [sup 235]U have already been established, and re-examine it using americium. We find that the same performance can be achieved at a comparable fuel density, and a radial size reduction (of both core and moderator/reflector) of about 70%.

  2. Suspended-core optical fibres for organic dye absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wajnchold, Barbara; Umińska, Ada; Grabka, Michał; Kotas, Dariusz; Pustelny, Szymon; Gawlik, Wojciech

    2013-05-01

    In this paper, we report on our study of UV-VIS absorption spectroscopy in suspended-core optical fibres (SCFs) filled with organic-dye solutions. We compare two different dye classes, the anionic dye - bromophenol blue sodium salt (BB) and cationic dye - oxazine 725 perchlorate (OX). While the results obtained with BB are in a good agreement with the spectra measured in a standard reference cuvette, those obtained with OX are different and reveal much stronger absorption of light than in cuvettes. This stronger absorption indicates accumulation of the dye molecules on the short section of the core close to the end of the fibre. This observation demonstrates difference in physicochemical properties of the two dye classes and is important for the development of chemical sensors based on SCFs.

  3. 229Thorium-doped calcium fluoride for nuclear laser spectroscopy.

    PubMed

    Dessovic, P; Mohn, P; Jackson, R A; Winkler, G; Schreitl, M; Kazakov, G; Schumm, T

    2014-03-12

    The (229)thorium isotope presents an extremely low-energy isomer state of the nucleus which is expected around 7.8 eV, in the vacuum ultraviolet (VUV) regime. This unique system may bridge between atomic and nuclear physics, enabling coherent manipulation and precision spectroscopy of nuclear quantum states using laser light. It has been proposed to implant (229)thorium into VUV transparent crystal matrices to facilitate laser spectroscopy and possibly realize a solid-state nuclear clock. In this work, we validate the feasibility of this approach by computer modelling of thorium doping into calcium fluoride single crystals. Using atomistic modelling and full electronic structure calculations, we find a persistent large band gap and no additional electronic levels emerging in the middle of the gap due to the presence of the dopant, which should allow direct optical interrogation of the nuclear transition.Based on the electronic structure, we estimate the thorium nuclear quantum levels within the solid-state environment. Precision laser spectroscopy of these levels will allow the study of a broad range of crystal field effects, transferring Mössbauer spectroscopy into the optical regime.

  4. Robustness of Nuclear Core Activity Reconstruction by Data Assimilation

    NASA Astrophysics Data System (ADS)

    Bouriquet, Bertrand; Argaud, Jean-Philippe; Erhard, Patrick; Massart, Sébastien; Ponçot, Angélique; Ricci, Sophie; Thual, Olivier

    Inspired from meteorological applications, data assimilation techniques can be used to perform an optimal reconstruction of the neutronic field in a nuclear reactor core. Measurements and simulation information, coming from a numerical model, are merged together to build a better estimation of the whole field. In this paper, we first study the robustness of the method when the amount of measured information varies. We then study the influence of the nature of the instruments and their spatial repartition on the efficiency of the field reconstruction. This study also highlights the instruments providing most information within a data assimilation procedure. The study of various network configurations of instruments in the nuclear core establishes that the influence of each instrument depends both on the individual instrumentation location as well as on the chosen network.

  5. (Workshop on nuclear structure in the era of new spectroscopy)

    SciTech Connect

    Garrett, J.D.

    1989-11-08

    The traveler lectured on New Ways to Look at Old (and New) Data'' and served as a study group chairman at the four-week-long Workshop on Nuclear Structure in the Era of New Spectroscopy, Part B: The Nucleus at High Spin, held at the Niels Bohr Institute, October 2--27, 1989. He also visited the Tandem Accelerator Laboratory of the Niels Bohr Institute and, during the workshop, discussed plans for new nuclear structure instrumentation with various European colleagues.

  6. Robustness of nuclear core activity reconstruction by data assimilation

    NASA Astrophysics Data System (ADS)

    Bouriquet, Bertrand; Argaud, Jean-Philippe; Erhard, Patrick; Massart, Sébastien; Ponçot, Angélique; Ricci, Sophie; Thual, Olivier

    2011-02-01

    We apply a data assimilation technique, inspired from meteorological applications, to perform an optimal reconstruction of the neutronic activity field in a nuclear core. Both measurements and information coming from a numerical model are used. We first study the robustness of the method when the amount of measured information decreases. We then study the influence of the nature of the instruments and their spatial repartition on the efficiency of the field reconstruction.

  7. Nuclear reactor spacer grid and ductless core component

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1989-01-01

    The invention relates to a nuclear reactor spacer grid member for use in a liquid cooled nuclear reactor and to a ductless core component employing a plurality of these spacer grid members. The spacer grid member is of the egg-shell type and is constructed so that the walls of the cell members of the grid member are formed of a single thickness of metal to avoid tolerance problems. Within each cell member is a hydraulic spring which laterally constrains the nuclear material bearing rod which passes through each cell member against a hardstop in response to coolant flow through the cell member. This hydraulic spring is also suitable for use in a water cooled nuclear reactor. A core component constructed of, among other components, a plurality of these spacer grid members, avoids the use of a full length duct by providing spacer sleeves about the sodium tubes passing through the spacer grid members at locations between the grid members, thereby maintaining a predetermined space between adjacent grid members.

  8. Architecture of the symmetric core of the nuclear pore.

    PubMed

    Lin, Daniel H; Stuwe, Tobias; Schilbach, Sandra; Rundlet, Emily J; Perriches, Thibaud; Mobbs, George; Fan, Yanbin; Thierbach, Karsten; Huber, Ferdinand M; Collins, Leslie N; Davenport, Andrew M; Jeon, Young E; Hoelz, André

    2016-04-15

    The nuclear pore complex (NPC) controls the transport of macromolecules between the nucleus and cytoplasm, but its molecular architecture has thus far remained poorly defined. We biochemically reconstituted NPC core protomers and elucidated the underlying protein-protein interaction network. Flexible linker sequences, rather than interactions between the structured core scaffold nucleoporins, mediate the assembly of the inner ring complex and its attachment to the NPC coat. X-ray crystallographic analysis of these scaffold nucleoporins revealed the molecular details of their interactions with the flexible linker sequences and enabled construction of full-length atomic structures. By docking these structures into the cryoelectron tomographic reconstruction of the intact human NPC and validating their placement with our nucleoporin interactome, we built a composite structure of the NPC symmetric core that contains ~320,000 residues and accounts for ~56 megadaltons of the NPC's structured mass. Our approach provides a paradigm for the structure determination of similarly complex macromolecular assemblies.

  9. Measurements of nuclear spin dynamics by spin-noise spectroscopy

    SciTech Connect

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, K. V.; Glazov, M. M.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Lemaître, A.; Bloch, J.

    2015-06-15

    We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.

  10. Measurements of nuclear spin dynamics by spin-noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryzhov, I. I.; Poltavtsev, S. V.; Kavokin, K. V.; Glazov, M. M.; Kozlov, G. G.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Kavokin, A. V.; Lemaître, A.; Bloch, J.; Zapasskii, V. S.

    2015-06-01

    We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.

  11. Nuclear line spectroscopy of solar flares

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Murphy, R. J.

    1988-01-01

    A large nuclear-line-rich solar flare which occurred near the west limb on April 27, 1981 has been analyzed. Three intense and isolated gamma-ray lines observed have been identified as the deexcitation lines of Ne-20(1.634 MeV), C-12(4.438 MeV), and O-16(6.129 MeV). The elemental abundances of the ambient gas at the site of gamma-ray line production in the solar atmosphere deduced using the observations are found to be different from local Galactic abundances.

  12. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  13. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  14. Probing vibrational anisotropy with nuclear resonance vibrational spectroscopy.

    SciTech Connect

    Pavlik, J. W.; Barabanschikov, A.; Oliver, A. G.; Alp, E. E.; Sturhahn, W.; Zhao, J.; Sage, J. T.; Scheidt, W. R.

    2010-06-14

    A NRVS single-crystal study (NRVS=nuclear resonance vibrational spectroscopy) has provided detailed information on the in-plane modes of nitrosyl iron porphyrinate [Fe(oep)(NO)] (see picture; oep=octaethylporphyrin). The axial nitrosyl ligand controls the direction of the in-plane iron motion.

  15. Analysis of suprathermal nuclear processes in the solar core plasma

    NASA Astrophysics Data System (ADS)

    Voronchev, Victor T.; Nakao, Yasuyuki; Watanabe, Yukinobu

    2017-04-01

    A consistent model for the description of suprathermal processes in the solar core plasma naturally triggered by fast particles generated in exoergic nuclear reactions is formulated. This model, based on the formalism of in-flight reaction probability, operates with different methods of treating particle slow-down in the plasma, and allows for the influence of electron degeneracy and electron screening on processes in the matter. The model is applied to examine slowing-down of 8.7 MeV α-particles produced in the {}7{Li}(p,α )α reaction of the pp chain, and to analyze suprathermal processes in the solar CNO cycle induced by them. Particular attention is paid to the suprathermal {}14{{N}}{(α ,{{p}})}17{{O}} reaction unappreciated in standard solar model simulations. It is found that an appreciable non-standard (α ,p) nuclear flow due to this reaction appears in the matter and modifies running of the CNO cycle in ∼95% of the solar core region. In this region at R> 0.1{R}ȯ , normal branching of nuclear flow {}14{{N}}≤ftarrow {}17{{O}}\\to {(}18{{F}})\\to {}18{{O}} transforms to abnormal sequential flow {}14{{N}}\\to {}17{{O}}\\to {(}18{{F}})\\to {}18{{O}}, altering some element abundances. In particular, nuclear network calculations reveal that in the outer core the abundances of 17O and 18O isotopes can increase by a factor of 20 as compared with standard estimates. A conjecture is made that other CNO suprathermal (α ,p) reactions may also affect abundances of CNO elements, including those generating solar neutrinos.

  16. Characterising legacy spent nuclear fuel pond materials using microfocus X-ray absorption spectroscopy.

    PubMed

    Bower, W R; Morris, K; Mosselmans, J F W; Thompson, O R; Banford, A W; Law, K; Pattrick, R A D

    2016-11-05

    Analysis of a radioactive, coated concrete core from the decommissioned, spent nuclear fuel cooling pond at the Hunterston-A nuclear site (UK) has provided a unique opportunity to study radionuclides within a real-world system. The core, obtained from a dividing wall and sampled at the fill level of the pond, exhibited radioactivity (dominantly (137)Cs and (90)Sr) heterogeneously distributed across both painted faces. Chemical analysis of the core was undertaken using microfocus spectroscopy at Diamond Light Source, UK. Mapping of Sr across the surface coatings using microfocus X-ray fluorescence (μXRF) combined with X-ray absorption spectroscopy showed that Sr was bound to TiO2 particles in the paint layers, suggesting an association between TiO2 and radiostrontium. Stable Sr and Cs sorption experiments using concrete coupons were also undertaken to assess their interactions with the bulk concrete in case of a breach in the coating layers. μXRF and scanning electron microscopy showed that Sr was immobilized by the cement phases, whilst at the elevated experimental concentrations, Cs was associated with clay minerals in the aggregates. This study provides a crucial insight into poorly understood infrastructural contamination in complex systems and is directly applicable to the UK's nuclear decommissioning efforts. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Positron Annihilation Spectroscopy Study of Barnett Shale Core

    NASA Astrophysics Data System (ADS)

    Ameena, Fnu; Alsleben, Helge; Quarles, Carroll A.

    Measurements are reported of positron annihilation lifetime and Doppler broadening parameters on 14 samples of Barnett shale core selected from 196 samples ranging from depths of 6107 to 6402 feet. The Barnett shale core was taken from EOG well Two-O-Five 2H located in Johnson county TX. The selected samples are dark clay-rich mudstone consisting of fine-grained clay minerals. The samples are varied in shape, typically a few inches long and about 1/2 inch in width and thickness, and are representative of the predominant facies in the core. X-ray fluorescence (XRF), X-ray diffraction (XRD), petrographic analysis and geochemical analysis of total organic carbon (TOC) were already available for each of the selected samples. The lifetime data are analyzed in terms of three lifetime components with the shortest lifetime fixed at 125 ps. The second lifetime is attributed to positron annihilation in the bulk and positron trapping; and the third lifetime is due to positronium. Correlations of the lifetimes, intensities, the average lifetime and S and W parameters with TOC, XRF and XRD parameters are discussed. The observed correlations suggest that positron spectroscopy may be a useful tool in characterizing shale.

  18. Multiply charged thorium ions for nuclear laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Depalatis, Michael V.; Campbell, Corey J.; Churchill, Layne R.; Naylor, Dave E.; Radnaev, Alexander; Chapman, Michael S.; Kuzmich, Alex

    2010-03-01

    Coherent excitation of the electronic states of atoms and molecules with lasers is at the heart of modern spectroscopy and metrology. To extend these techniques to nuclear states would be a tremendous advance. However, the typical excitation energies for nuclear matter are in the keV to MeV energy range, out of reach of modern coherent radiation sources. In the unique case of the ^229Th nucleus, the energy splitting of the ground state doublet is only several eV,ootnotetextL. A. Kroger & C. W. Reich, Nucl. Phys. A 259, 29 (1976). which may be within the reach of coherent table-top UV lasers. Previously we demonstrated the direct laser cooling of ^232Th^3+ in an rf Paul trap,ootnotetextC. J. Campbell et al., Phys. Rev. Lett 102, 233004 (2009). an important first step towards nuclear laser spectroscopy. Here we report progress towards loading and trapping ^229Th^3+ from a Thorium nitrate source.

  19. Towards core-excitation spectra in attosecond spectroscopy: A coupled-cluster study of ClF

    NASA Astrophysics Data System (ADS)

    Bazante, Alexandre P.; Perera, Ajith; Bartlett, Rodney J.

    2017-09-01

    The increasing availability of short timescale spectroscopy techniques allows for more accurate probing of nuclear and electronic dynamics. This work studies the underlying potential energy curves for the core-ionized and core-excited states of ClF. The variational collapse that can occur using conventional variational methods make electronic states involving core-holes particularly challenging to describe. Coupled-cluster methods can avoid such problems. This work applies extensions of ground and excited state coupled-cluster methods to compute potential curves for core-hole states of ClF. The ability to obtain accurate potential curves for such elusive states, and generate core-absorption spectra, opens the door for exciting developments.

  20. Core level photoelectron spectroscopy probed heterogeneous xenon/neon clusters

    NASA Astrophysics Data System (ADS)

    Pokapanich, Wandared; Björneholm, Olle; Öhrwall, Gunnar; Tchaplyguine, Maxim

    2017-06-01

    Binary rare gas clusters; xenon and neon which have a significant contrariety between sizes, produced by a co-expansion set up and have been studied using synchrotron radiation based x-ray photoelectron spectroscopy. Concentration ratios of the heterogeneous clusters; 1%, 3%, 5% and 10% were controlled. The core level spectra were used to determine structure of the mixed cluster and analyzed by considering screening mechanisms. Furthermore, electron binding energy shift calculations demonstrated cluster aggregation models which may occur in such process. The results showed that in the case of low mixing ratios of 3% and 5% of xenon in neon, the geometric structures exhibit xenon in the center and xenon/neon interfaced in the outer shells. However, neon cluster vanished when the concentration of xenon was increased to 10%.

  1. Nuclear magnetic resonance spectroscopy with single spin sensitivity

    PubMed Central

    Müller, C.; Kong, X.; Cai, J.-M.; Melentijević, K.; Stacey, A.; Markham, M.; Twitchen, D.; Isoya, J.; Pezzagna, S.; Meijer, J.; Du, J. F.; Plenio, M. B.; Naydenov, B.; McGuinness, L. P.; Jelezko, F.

    2014-01-01

    Nuclear magnetic resonance spectroscopy and magnetic resonance imaging at the ultimate sensitivity limit of single molecules or single nuclear spins requires fundamentally new detection strategies. The strong coupling regime, when interaction between sensor and sample spins dominates all other interactions, is one such strategy. In this regime, classically forbidden detection of completely unpolarized nuclei is allowed, going beyond statistical fluctuations in magnetization. Here we realize strong coupling between an atomic (nitrogen–vacancy) sensor and sample nuclei to perform nuclear magnetic resonance on four 29Si spins. We exploit the field gradient created by the diamond atomic sensor, in concert with compressed sensing, to realize imaging protocols, enabling individual nuclei to be located with Angstrom precision. The achieved signal-to-noise ratio under ambient conditions allows single nuclear spin sensitivity to be achieved within seconds. PMID:25146503

  2. Piezoelectric material for use in a nuclear reactor core

    SciTech Connect

    Parks, D. A.; Reinhardt, Brian; Tittmann, B. R.

    2012-05-17

    In radiation environments ultrasonic nondestructive evaluation has great potential for improving reactor safety and furthering the understanding of radiation effects and materials. In both nuclear power plants and materials test reactors, elevated temperatures and high levels of radiation present challenges to ultrasonic NDE methodologies. The challenges are primarily due to the degradation of the ultrasonic sensors utilized. We present results from the operation of a ultrasonic piezoelectric transducer, composed of bulk single crystal AlN, in a nuclear reactor core for over 120 MWHrs. The transducer was coupled to an aluminum cylinder and operated in pulse echo mode throughout the irradiation. In addition to the pulse echo testing impedance data were obtained. Further, the piezoelectric coefficient d{sub 33} was measured prior to irradiation and found to be 5.5 pC/N which is unchanged from as-grown samples, and in fact higher than the measured d{sub 33} for many as-grown samples.

  3. Support arrangements for core modules of nuclear reactors. [PWR

    DOEpatents

    Bollinger, L.R.

    1983-11-03

    A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.

  4. Support arrangement for core modules of nuclear reactors

    DOEpatents

    Bollinger, Lawrence R.

    1987-01-01

    A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.

  5. Laser cutting apparatus for nuclear core fuel subassembly

    DOEpatents

    Walch, Allan P.; Caruolo, Antonio B.

    1982-02-23

    The object of the invention is to provide a system and apparatus which employs laser cutting to disassemble a nuclear core fuel subassembly. The apparatus includes a gantry frame (C) which straddles the core fuel subassembly (14), an x-carriage (22) travelling longitudinally above the frame which carries a focus head assembly (D) having a vertically moving carriage (46) and a laterally moving carriage (52), a system of laser beam transferring and focusing mirrors carried by the x-carriage and focusing head assembly, and a shroud follower (F) and longitudinal follower (G) for following the shape of shroud (14) to maintain a beam focal point (44) fixed upon the shroud surface for accurate cutting.

  6. Blm10 facilitates nuclear import of proteasome core particles

    PubMed Central

    Weberruss, Marion H; Savulescu, Anca F; Jando, Julia; Bissinger, Thomas; Harel, Amnon; Glickman, Michael H; Enenkel, Cordula

    2013-01-01

    Short-lived proteins are degraded by proteasome complexes, which contain a proteolytic core particle (CP) but differ in the number of regulatory particles (RPs) and activators. A recently described member of conserved proteasome activators is Blm10. Blm10 contains 32 HEAT-like modules and is structurally related to the nuclear import receptor importin/karyopherin β. In proliferating yeast, RP-CP assemblies are primarily nuclear and promote cell division. During quiescence, RP-CP assemblies dissociate and CP and RP are sequestered into motile cytosolic proteasome storage granuli (PSG). Here, we show that CP sequestration into PSG depends on Blm10, whereas RP sequestration into PSG is independent of Blm10. PSG rapidly clear upon the resumption of cell proliferation and proteasomes are relocated into the nucleus. Thereby, Blm10 facilitates nuclear import of CP. Blm10-bound CP serves as an import receptor–cargo complex, as Blm10 mediates the interaction with FG-rich nucleoporins and is dissociated from the CP by Ran-GTP. Thus, Blm10 represents the first CP-dedicated nuclear import receptor in yeast. PMID:23982732

  7. Blm10 facilitates nuclear import of proteasome core particles.

    PubMed

    Weberruss, Marion H; Savulescu, Anca F; Jando, Julia; Bissinger, Thomas; Harel, Amnon; Glickman, Michael H; Enenkel, Cordula

    2013-10-16

    Short-lived proteins are degraded by proteasome complexes, which contain a proteolytic core particle (CP) but differ in the number of regulatory particles (RPs) and activators. A recently described member of conserved proteasome activators is Blm10. Blm10 contains 32 HEAT-like modules and is structurally related to the nuclear import receptor importin/karyopherin β. In proliferating yeast, RP-CP assemblies are primarily nuclear and promote cell division. During quiescence, RP-CP assemblies dissociate and CP and RP are sequestered into motile cytosolic proteasome storage granuli (PSG). Here, we show that CP sequestration into PSG depends on Blm10, whereas RP sequestration into PSG is independent of Blm10. PSG rapidly clear upon the resumption of cell proliferation and proteasomes are relocated into the nucleus. Thereby, Blm10 facilitates nuclear import of CP. Blm10-bound CP serves as an import receptor-cargo complex, as Blm10 mediates the interaction with FG-rich nucleoporins and is dissociated from the CP by Ran-GTP. Thus, Blm10 represents the first CP-dedicated nuclear import receptor in yeast.

  8. Review of coaxial flow gas core nuclear rocket fluid mechanics

    NASA Technical Reports Server (NTRS)

    Weinstein, H.

    1976-01-01

    Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.

  9. National Nuclear Security Administration Knowledge Base Core Table Schema Document

    SciTech Connect

    CARR,DORTHE B.

    2002-09-01

    The National Nuclear Security Administration is creating a Knowledge Base to store technical information to support the United States nuclear explosion monitoring mission. This document defines the core database tables that are used in the Knowledge Base. The purpose of this document is to present the ORACLE database tables in the NNSA Knowledge Base that on modifications to the CSS3.0 Database Schema developed in 1990. (Anderson et al., 1990). These modifications include additional columns to the affiliation table, an increase in the internal ORACLE format from 8 integers to 9 integers for thirteen IDs, and new primary and unique key definitions for six tables. It is intended to be used as a reference by researchers inside and outside of NNSA/DOE as they compile information to submit to the NNSA Knowledge Base. These ''core'' tables are separated into two groups. The Primary tables are dynamic and consist of information that can be used in automatic and interactive processing (e.g. arrivals, locations). The Lookup tables change infrequently and are used for auxiliary information used by the processing. In general, the information stored in the core tables consists of: arrivals; events, origins, associations of arrivals; magnitude information; station information (networks, site descriptions, instrument responses); pointers to waveform data; and comments pertaining to the information. This document is divided into four sections, the first being this introduction. Section two defines the sixteen tables that make up the core tables of the NNSA Knowledge Base database. Both internal (ORACLE) and external formats for the attributes are defined, along with a short description of each attribute. In addition, the primary, unique and foreign keys are defined. Section three of the document shows the relationships between the different tables by using entity-relationship diagrams. The last section, defines the columns or attributes of the various tables. Information that is

  10. Position-Sensitive Nuclear Spectroscopy with Pixel Detectors

    SciTech Connect

    Granja, Carlos; Vykydal, Zdenek; Jakubek, Jan; Pospisil, Stanislav

    2007-10-26

    State-of-the-art hybrid semiconductor pixel detectors such as Medipix2 are suitable for energy- and position-sensitive nuclear spectroscopy. In addition to excellent energy- and spatial-resolution, these devices can operate in spectroscopic, single-quantum counting and/or on-line tracking mode. A devoted compact USB-readout interface provides functionality and ease of operation. The compact and versatile Medipix2/USB radiation camera provides visualization, vacuum and room-temperature operation as a real-time portable active nuclear emulsion.

  11. Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces

    NASA Astrophysics Data System (ADS)

    Togashi, H.; Nakazato, K.; Takehara, Y.; Yamamuro, S.; Suzuki, H.; Takano, M.

    2017-05-01

    A new table of the nuclear equation of state (EOS) based on realistic nuclear potentials is constructed for core-collapse supernova numerical simulations. Adopting the EOS of uniform nuclear matter constructed by two of the present authors with the cluster variational method starting from the Argonne v18 and Urbana IX nuclear potentials, the Thomas-Fermi calculation is performed to obtain the minimized free energy of a Wigner-Seitz cell in non-uniform nuclear matter. As a preparation for the Thomas-Fermi calculation, the EOS of uniform nuclear matter is modified so as to remove the effects of deuteron cluster formation in uniform matter at low densities. Mixing of alpha particles is also taken into account following the procedure used by Shen et al. (1998, 2011). The critical densities with respect to the phase transition from non-uniform to uniform phase with the present EOS are slightly higher than those with the Shen EOS at small proton fractions. The critical temperature with respect to the liquid-gas phase transition decreases with the proton fraction in a more gradual manner than in the Shen EOS. Furthermore, the mass and proton numbers of nuclides appearing in non-uniform nuclear matter with small proton fractions are larger than those of the Shen EOS. These results are consequences of the fact that the density derivative coefficient of the symmetry energy of our EOS is smaller than that of the Shen EOS.

  12. Nuclear factor Y regulates ancient budgerigar hepadnavirus core promoter activity.

    PubMed

    Shen, Zhongliang; Liu, Yanfeng; Luo, Mengjun; Wang, Wei; Liu, Jing; Liu, Wei; Pan, Shaokun; Xie, Youhua

    2016-09-16

    Endogenous viral elements (EVE) in animal genomes are the fossil records of ancient viruses and provide invaluable information on the origin and evolution of extant viruses. Extant hepadnaviruses include avihepadnaviruses of birds and orthohepadnaviruses of mammals. The core promoter (Cp) of hepadnaviruses is vital for viral gene expression and replication. We previously identified in the budgerigar genome two EVEs that contain the full-length genome of an ancient budgerigar hepadnavirus (eBHBV1 and eBHBV2). Here, we found eBHBV1 Cp and eBHBV2 Cp were active in several human and chicken cell lines. A region from nt -85 to -11 in eBHBV1 Cp was critical for the promoter activity. Bioinformatic analysis revealed a putative binding site of nuclear factor Y (NF-Y), a ubiquitous transcription factor, at nt -64 to -50 in eBHBV1 Cp. The NF-Y core binding site (ATTGG, nt -58 to -54) was essential for eBHBV1 Cp activity. The same results were obtained with eBHBV2 Cp and duck hepatitis B virus Cp. The subunit A of NF-Y (NF-YA) was recruited via the NF-Y core binding site to eBHBV1 Cp and upregulated the promoter activity. Finally, the NF-Y core binding site is conserved in the Cps of all the extant avihepadnaviruses but not of orthohepadnaviruses. Interestingly, a putative and functionally important NF-Y core binding site is located at nt -21 to -17 in the Cp of human hepatitis B virus. In conclusion, our findings have pinpointed an evolutionary conserved and functionally critical NF-Y binding element in the Cps of avihepadnaviruses.

  13. Chemometric Analysis of Nuclear Magnetic Resonance Spectroscopy Data

    SciTech Connect

    ALAM,TODD M.; ALAM,M. KATHLEEN

    2000-07-20

    Chemometric analysis of nuclear magnetic resonance (NMR) spectroscopy has increased dramatically in recent years. A variety of different chemometric techniques have been applied to a wide range of problems in food, agricultural, medical, process and industrial systems. This article gives a brief review of chemometric analysis of NMR spectral data, including a summary of the types of mixtures and experiments analyzed with chemometric techniques. Common experimental problems encountered during the chemometric analysis of NMR data are also discussed.

  14. Nanoscale NMR spectroscopy and imaging of multiple nuclear species

    NASA Astrophysics Data System (ADS)

    Devience, Stephen J.; Pham, Linh M.; Lovchinsky, Igor; Sushkov, Alexander O.; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L.

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ˜100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species (1H, 19F, 31P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (˜20 mT) using two complementary sensor modalities.

  15. Nuclear Spectroscopy with the In-Medium Similarity Renormalization Group

    NASA Astrophysics Data System (ADS)

    Parzuchowski, Nathan Michael

    The in-medium similarity renormalization group (IMSRG) is an ab initio many-body method which features soft polynomial scaling with system size and a Hermitian framework to create Hamiltonians tailored for use with low-level approximations such as Hartree-Fock (HF) theory or the random phase approximation (RPA). The flexibility that comes with these characteristics has made the IMSRG a mainstay in contemporary nuclear structure theory. However, spectroscopy with IMSRG calculations has been limited to scalar observables in nuclei accessible with shell model machinery, where the IMSRG is used to construct effective valence-space interactions. In this thesis, we present two novel developments which have greatly extended the IMSRG's capability to perform spectroscopic calculations. First is the introduction of the equations-of-motion IMSRG (EOM-IMSRG), which uses an approximate, but systematically improvable diagonalization scheme in conjunction with the IMSRG to produce spectra and wave functions. The method does not suffer the model-space limitations of the shell model, but sacrifices some accuracy due to the approximate diagonalization. We benchmark this new method with the well established equations-of-motion coupled cluster and full configuration interaction methods, where we demonstrate that the method is indeed viable for closed-shell systems, encouraging expansion to open shells using a multireference formalism. We also introduce a perturbative framework to add systematic corrections to the EOM-IMSRG, showing results for closed shell nuclei and quantum dots. The second development is a generalized effective operator formalism for the IMSRG, capable of consistently evolving non-scalar operators relevant for electroweak transitions and moments. This general framework is applicable to both the EOM-IMSRG and the valence-space IMSRG approaches. We benchmark electromagnetic transition strengths and moments using both of these methods, also comparing with the quasi

  16. Extreme Spectroscopy: In situ nuclear materials behavior from optical data

    SciTech Connect

    Guimbretiere, G.; Canizares, A.; Raimboux, N.; Omnee, R.; Duval, F.; Ammar, M.R.; Simon, P.; Desgranges, L.; Mohun, R.; Jegou, C.; Magnin, M.

    2015-07-01

    In the nuclear industry, materials are regularly exposed to high temperature or/and irradiation and a better knowledge and understanding of their behavior under such extreme conditions is a key-point for improvements and further developments. Nowadays, Raman spectroscopy begins to be well known as a promising technique in the post mortem and remote characterization of nuclear materials exposed to extreme conditions. On this topic, at ANIMMA 2013 conference, we have presented some results about its implementation in the study of model or real nuclear fuel. However, the strength of Raman spectroscopy as in situ characterization tool is mainly its ability to be implemented remotely through optical fibers. Aware of this, implementation of other optical techniques can be considered in order to gain information not only on the structural dynamics of materials but also on the electronic charge carrier populations. In this paper, we propose to present our last advances in Raman characterization of nuclear materials and enlarge to the in situ use of complementary optical spectroscopies. Emphasis will be made on the information that can be gained to the behavior of the model fuel depleted UO{sub 2} under extreme conditions of high temperature and ionic irradiation: - In Situ Raman identification of the radiolysis alteration products of UO{sub 2} in contact with water under ionic irradiation. - In Situ Raman recording of the damaged dynamic of UO{sub 2} under inert atmosphere. - In Situ Raman and photo-luminescence study of virgin and damaged UO2 at high temperature. - In Situ study of electronic charge carriers' behavior in U{sub x}Th{sub 1-x}O{sub 2} solid solutions by mean of Iono- and Thermo- luminescence under and post- ionic irradiation. (authors)

  17. Reducing the risk to Mars: The gas core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Howe, S. D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-01-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. The authors have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  18. Reducing the risk to Mars: The gas core nuclear rocket

    SciTech Connect

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-12-31

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. The authors have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  19. Reducing the risk to Mars: The gas core nuclear rocket

    SciTech Connect

    Howe, S. D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1998-01-15

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas-core nuclear rocket (GCNR) has the potential to be such a system. We have completed a comparative study of the potential impact that a GCNR could have on a manned Mars mission. The total IMLEO, transit times, and accumulated radiation dose to the crew will be compared with the NASA Design Reference Missions.

  20. Multiply charged ionic crystals for nuclear laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Campbell, Corey J.; Steele, Adam V.; Churchill, Layne R.; Depalatis, Michael V.; Naylor, Dave E.; Matsukevich, Dzmitry N.; Chapman, Michael S.; Kuzmich, Alex

    2009-05-01

    Coherent excitation of the electronic states of atoms and molecules with lasers is at the heart of modern spectroscopy and metrology. To extend these techniques to nuclear states would be a tremendous advance. However, the typical excitation energies for nuclear matter are in the keV to MeV energy range, where coherent radiation sources are lacking. In the remarkable case of the ^229Th nucleus, the energy splitting of the ground state doublet is only several eV ^1, which may be within the reach of coherent table-top UV lasers. We have produced laser-cooled crystals of the more abundant ^232Th^3+ in an rf Paul trap. This is the first time that a multiply charged ion has been laser cooled. Our work opens an avenue for excitation of the nuclear transition in a trapped, cold ^229Th^3+ ion. Laser excitation of nuclear states would establish a new bridge between atomic and nuclear physics, with the promise of new levels of metrological precision. ^1 Kroger, L. A. & Reich, C. W. Features of Low-Energy Level Scheme of Th-229 as Observed in Alpha-Decay of U-233. Nucl Phys A 259, 29 (1976).

  1. Development of an automated core model for nuclear reactors

    SciTech Connect

    Mosteller, R.D.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop an automated package of computer codes that can model the steady-state behavior of nuclear-reactor cores of various designs. As an added benefit, data produced for steady-state analysis also can be used as input to the TRAC transient-analysis code for subsequent safety analysis of the reactor at any point in its operating lifetime. The basic capability to perform steady-state reactor-core analysis already existed in the combination of the HELIOS lattice-physics code and the NESTLE advanced nodal code. In this project, the automated package was completed by (1) obtaining cross-section libraries for HELIOS, (2) validating HELIOS by comparing its predictions to results from critical experiments and from the MCNP Monte Carlo code, (3) validating NESTLE by comparing its predictions to results from numerical benchmarks and to measured data from operating reactors, and (4) developing a linkage code to transform HELIOS output into NESTLE input.

  2. Blood species discrimination using proton nuclear magnetic resonance spectroscopy.

    PubMed

    Zailer, Elina; Diehl, Bernd W K; Monakhova, Yulia B

    2017-05-01

    Blood species identification is an important challenge in forensic science. Conventional methods used for blood species analysis are destructive and associated with time-consuming sample preparation steps. Nuclear magnetic resonance (NMR) spectroscopy is known for its nondestructive properties and fast results. This research study presents a proton ((1)H) NMR method to discriminate blood species including human, cat, dog, elephant, and bison. Characteristic signals acting as markers are observed for each species. Moreover, the data are evaluated by principle component analysis (PCA) and support vector machines (SVM). A 100% correct species recognition between human and nonhuman species is achieved using radial basis kernel function (RBF) and standardized data. The research study shows that (1)H NMR spectroscopy is a powerful tool for differentiating human and nonhuman blood showing a great significance to forensic science.

  3. Spectroscopy of Light Nuclei with Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Lombardo, I.; Dell'Aquila, D.; Vigilante, M.

    2016-07-01

    We discuss new results concerning the investigation of the 19F(p,α 0)16O and 10B(p,α 0)7Be reactions at low energies. Both reactions are important for the nuclear spectroscopy of the formed compound nucleus, i.e. 20Ne and 11C respectively, and play a role in nuclear astrophysics. For the 10B(p,α 0)7Be case, a comprehensive analysis of our reaction data and other scattering data points out the possible presence of an unreported state in 11C at Ex ≈ 9.36 MeV. For the 19F(p,α 0)16O case, the study of the low energy angular distributions testifies the role played by low energy resonances in the S-factor, leading to an enhanced reaction rate at stellar energies.

  4. A versatile pulse programmer for pulsed nuclear magnetic resonance spectroscopy.

    NASA Technical Reports Server (NTRS)

    Tarr, C. E.; Nickerson, M. A.

    1972-01-01

    A digital pulse programmer producing the standard pulse sequences required for pulsed nuclear magnetic resonance spectroscopy is described. In addition, a 'saturation burst' sequence, useful in the measurement of long relaxation times in solids, is provided. Both positive and negative 4 V trigger pulses are produced that are fully synchronous with a crystal-controlled time base, and the pulse programmer may be phase-locked with a maximum pulse jitter of 3 ns to the oscillator of a coherent pulse spectrometer. Medium speed TTL integrated circuits are used throughout.

  5. Nuclear overhauser spectroscopy of chiral CHD methylene groups.

    PubMed

    Augustyniak, Rafal; Stanek, Jan; Colaux, Henri; Bodenhausen, Geoffrey; Koźmiński, Wiktor; Herrmann, Torsten; Ferrage, Fabien

    2016-01-01

    Nuclear magnetic resonance spectroscopy (NMR) can provide a great deal of information about structure and dynamics of biomolecules. The quality of an NMR structure strongly depends on the number of experimental observables and on their accurate conversion into geometric restraints. When distance restraints are derived from nuclear Overhauser effect spectroscopy (NOESY), stereo-specific assignments of prochiral atoms can contribute significantly to the accuracy of NMR structures of proteins and nucleic acids. Here we introduce a series of NOESY-based pulse sequences that can assist in the assignment of chiral CHD methylene protons in random fractionally deuterated proteins. Partial deuteration suppresses spin-diffusion between the two protons of CH2 groups that normally impedes the distinction of cross-relaxation networks for these two protons in NOESY spectra. Three and four-dimensional spectra allow one to distinguish cross-relaxation pathways involving either of the two methylene protons so that one can obtain stereospecific assignments. In addition, the analysis provides a large number of stereospecific distance restraints. Non-uniform sampling was used to ensure optimal signal resolution in 4D spectra and reduce ambiguities of the assignments. Automatic assignment procedures were modified for efficient and accurate stereospecific assignments during automated structure calculations based on 3D spectra. The protocol was applied to calcium-loaded calbindin D9k. A large number of stereospecific assignments lead to a significant improvement of the accuracy of the structure.

  6. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  7. Identification of a Functional, CRM-1-Dependent Nuclear Export Signal in Hepatitis C Virus Core Protein

    PubMed Central

    Cerutti, Andrea; Maillard, Patrick; Minisini, Rosalba; Vidalain, Pierre-Olivier; Roohvand, Farzin; Pecheur, Eve-Isabelle; Pirisi, Mario; Budkowska, Agata

    2011-01-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified. We show here that the aa(109–133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1–173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication. Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection. PMID:22039426

  8. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein.

    PubMed

    Cerutti, Andrea; Maillard, Patrick; Minisini, Rosalba; Vidalain, Pierre-Olivier; Roohvand, Farzin; Pecheur, Eve-Isabelle; Pirisi, Mario; Budkowska, Agata

    2011-01-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified.We show here that the aa(109-133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1-173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.

  9. Nuclear cardiology core syllabus of the European Association of Cardiovascular Imaging (EACVI).

    PubMed

    Gimelli, Alessia; Neglia, Danilo; Schindler, Thomas H; Cosyns, Bernard; Lancellotti, Patrizio; Kitsiou, Anastasia

    2015-04-01

    The European Association of Cardiovascular Imaging (EACVI) Core Syllabus for Nuclear Cardiology is now available online. The syllabus lists key elements of knowledge in nuclear cardiology. It represents a framework for the development of training curricula and provides expected knowledge-based learning outcomes to the nuclear cardiology trainees.

  10. Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species

    DOE PAGES

    March, Anne Marie; Assefa, Tadesse A.; Bressler, Christian; ...

    2015-02-09

    X-ray spectroscopies, when combined in laser-pump, X-ray-probe measurement schemes, can be powerful tools for tracking the electronic and geometric structural changes that occur during the course of a photoinitiated chemical reaction. X-ray absorption spectroscopy (XAS) is considered an established technique for such measurements, and X-ray emission spectroscopy (XES) of the strongest core-to-core emission lines (Kα and Kβ) is now being utilized. Flux demanding valence-to-core XES promises to be an important addition to the time-resolved spectroscopic toolkit. Here In this paper we present measurements and density functional theory calculations on laser-excited, solution-phase ferrocyanide that demonstrate the feasibility of valence-to-core XES formore » time-resolved experiments. Lastly, we discuss technical improvements that will make valence-to-core XES a practical pump–probe technique.« less

  11. Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species

    PubMed Central

    2015-01-01

    X-ray spectroscopies, when combined in laser-pump, X-ray-probe measurement schemes, can be powerful tools for tracking the electronic and geometric structural changes that occur during the course of a photoinitiated chemical reaction. X-ray absorption spectroscopy (XAS) is considered an established technique for such measurements, and X-ray emission spectroscopy (XES) of the strongest core-to-core emission lines (Kα and Kβ) is now being utilized. Flux demanding valence-to-core XES promises to be an important addition to the time-resolved spectroscopic toolkit. In this paper we present measurements and density functional theory calculations on laser-excited, solution-phase ferrocyanide that demonstrate the feasibility of valence-to-core XES for time-resolved experiments. We discuss technical improvements that will make valence-to-core XES a practical pump–probe technique. PMID:26568779

  12. Fluorescence and Diffuse Reflectance Spectroscopy for Breast Cancer Diagnosis During Core Needle Biopsy

    DTIC Science & Technology

    2007-09-01

    The goal of this project is to explore the potential of using tissue fluorescence and diffuse reflectance spectroscopy for breast cancer detection...sensor based on tissue fluorescence and diffuse reflectance spectroscopy as an adjunct diagnostic tool, which has the potential to provide guidance for core needle breast biopsy.

  13. Phosphorus-31 nuclear magnetic resonance spectroscopy of toad retina.

    PubMed Central

    Apte, D V; Koutalos, Y; McFarlane, D K; Dawson, M J; Ebrey, T G

    1989-01-01

    Phosphorus-31 nuclear magnetic resonance (31P-NMR) spectra were obtained from living toad retinae and toad retinal extracts at 4 degrees C. Several phosphorus metabolites--nucleoside di- and triphosphates (NTP), phosphocreatine, phosphodiesters, inorganic phosphate, and phosphomonoesters--were identified from the spectra of whole retinae. The intracellular pH was determined to be 7.27 +/- 0.06 at 4 degrees C and the intracellular MgNTP/NTP ratio was at least 0.77. These results are consistent with those reported by other techniques, and they show that 31P-NMR spectroscopy can be used for noninvasively and quantitatively studying the metabolism of living toad retinae, and for monitoring its changes over time. PMID:2506940

  14. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy

    PubMed Central

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M. Iqbal; Rahman, Atta-ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using 1H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  15. Near Infrared Spectroscopy for Improving Breast Core Needle Biopsy

    DTIC Science & Technology

    2007-09-01

    Breast Core Needle Biopsy PRINCIPAL INVESTIGATOR: Torre Michelle Bydlon CONTRACTING ORGANIZATION: Duke University Durham...Core Needle Biopsy 5b. GRANT NUMBER W81XWH-04-1-0340 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Torre Michelle Bydlon 5d. PROJECT NUMBER 5e...al. Surgical biopsy to diagnose breast cancer adversely affects outcomes of breast cancer care: finding from the National Comprehensive Cancer

  16. Comments on the feasibility of developing gas core nuclear reactors. [for manned interplanetary spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1969-01-01

    Recent developments in the fields of gas core hydrodynamics, heat transfer, and neutronics indicate that gas core nuclear rockets may be feasible from the point of view of basic principles. Based on performance predictions using these results, mission analyses indicate that gas core nuclear rockets may have the potential for reducing the initial weight in orbit of manned interplanetary vehicles by a factor of 5 when compared to the best chemical rocket systems. In addition, there is a potential for reducing total trip times from 450 to 500 days for chemical systems to 250 to 300 days for gas core systems. The possibility of demonstrating the feasibility of gas core nuclear rocket engines by means of a logical series of experiments of increasing difficulty that ends with ground tests of full scale gas core reactors is considered.

  17. Heat transfer analysis of fuel assemblies in a heterogeneous gas core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Watanabe, Yoichi; Appelbaum, Jacob; Diaz, Nils; Maya, Isaac

    1991-01-01

    Heat transfer problems of a heterogeneous gaseous core nuclear rocket were studied. The reactor core consists of 1.5-m long hexagonal fuel assemblies filled with pressurized uranium tetrafluoride (UF4) gas. The fuel gas temperature ranges from 3500 to 7000 K at a nominal operating condition of 40 atm. Each fuel assembly has seven coolant tubes, through which hydrogen propellant flows. The propellant temperature is not constrained by the fuel temperature but by the maximum temperature of the graphite coolant tube. For a core achieving a fission power density of 1000 MW/cu m, the propellant core exit temperature can be as high as 3200 K. The physical size of a 1250 MW gaseous core nuclear rocket is comparable with that of a NERVA-type solid core nuclear rocket. The engine can deliver a specific impulse of 1020 seconds and a thrust of 330 kN.

  18. Heat transfer analysis of fuel assemblies in a heterogeneous gas core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Watanabe, Yoichi; Appelbaum, Jacob; Diaz, Nils; Maya, Isaac

    1991-01-01

    Heat transfer problems of a heterogeneous gaseous core nuclear rocket were studied. The reactor core consists of 1.5-m long hexagonal fuel assemblies filled with pressurized uranium tetrafluoride (UF4) gas. The fuel gas temperature ranges from 3500 to 7000 K at a nominal operating condition of 40 atm. Each fuel assembly has seven coolant tubes, through which hydrogen propellant flows. The propellant temperature is not constrained by the fuel temperature but by the maximum temperature of the graphite coolant tube. For a core achieving a fission power density of 1000 MW/cu m, the propellant core exit temperature can be as high as 3200 K. The physical size of a 1250 MW gaseous core nuclear rocket is comparable with that of a NERVA-type solid core nuclear rocket. The engine can deliver a specific impulse of 1020 seconds and a thrust of 330 kN.

  19. Hollow core photonic crystal fiber based viscometer with Raman spectroscopy.

    PubMed

    Horan, L E; Ruth, A A; Gunning, F C Garcia

    2012-12-14

    The velocity of a liquid flowing through the core of a hollow core photonic crystal fiber (driven by capillary forces) is used for the determination of a liquid's viscosity, using volumes of less than 10 nl. The simple optical technique used is based on the change in propagation characteristics of the fiber as it fills with the liquid of interest via capillary action, monitored by a laser source. Furthermore, the liquid filled hollow core photonic crystal fiber is then used as a vessel to collect Raman scattering from the sample to determine the molecular fingerprint of the liquid under study. This approach has a wide variety of indicative uses in cases where nano-liter samples are necessary. We use 10-12 cm lengths of hollow core photonic crystal fibers to determine the viscosity and Raman spectra of small volumes of two types of monosaccharides diluted in a phosphate buffer solution to demonstrate the principle. The observed Raman signal is strongest when only the core of the hollow core photonic crystal fiber is filled, and gradually decays as the rest of the fiber fills with the sample.

  20. High-resolution two-field nuclear magnetic resonance spectroscopy.

    PubMed

    Cousin, Samuel F; Charlier, Cyril; Kadeřávek, Pavel; Marquardsen, Thorsten; Tyburn, Jean-Max; Bovier, Pierre-Alain; Ulzega, Simone; Speck, Thomas; Wilhelm, Dirk; Engelke, Frank; Maas, Werner; Sakellariou, Dimitrios; Bodenhausen, Geoffrey; Pelupessy, Philippe; Ferrage, Fabien

    2016-12-07

    Nuclear magnetic resonance (NMR) is a ubiquitous branch of spectroscopy that can explore matter at the scale of an atom. Significant improvements in sensitivity and resolution have been driven by a steady increase of static magnetic field strengths. However, some properties of nuclei may be more favourable at low magnetic fields. For example, transverse relaxation due to chemical shift anisotropy increases sharply at higher magnetic fields leading to line-broadening and inefficient coherence transfers. Here, we present a two-field NMR spectrometer that permits the application of rf-pulses and acquisition of NMR signals in two magnetic centres. Our prototype operates at 14.1 T and 0.33 T. The main features of this system are demonstrated by novel NMR experiments, in particular a proof-of-concept correlation between zero-quantum coherences at low magnetic field and single quantum coherences at high magnetic field, so that high resolution can be achieved in both dimensions, despite a ca. 10 ppm inhomogeneity of the low-field centre. Two-field NMR spectroscopy offers the possibility to circumvent the limits of high magnetic fields, while benefiting from their exceptional sensitivity and resolution. This approach opens new avenues for NMR above 1 GHz.

  1. Discrete decoding based ultrafast multidimensional nuclear magnetic resonance spectroscopy

    SciTech Connect

    Wei, Zhiliang; Lin, Liangjie; Ye, Qimiao; Li, Jing; Cai, Shuhui; Chen, Zhong

    2015-07-14

    The three-dimensional (3D) nuclear magnetic resonance (NMR) spectroscopy constitutes an important and powerful tool in analyzing chemical and biological systems. However, the abundant 3D information arrives at the expense of long acquisition times lasting hours or even days. Therefore, there has been a continuous interest in developing techniques to accelerate recordings of 3D NMR spectra, among which the ultrafast spatiotemporal encoding technique supplies impressive acquisition speed by compressing a multidimensional spectrum in a single scan. However, it tends to suffer from tradeoffs among spectral widths in different dimensions, which deteriorates in cases of NMR spectroscopy with more dimensions. In this study, the discrete decoding is proposed to liberate the ultrafast technique from tradeoffs among spectral widths in different dimensions by focusing decoding on signal-bearing sites. For verifying its feasibility and effectiveness, we utilized the method to generate two different types of 3D spectra. The proposed method is also applicable to cases with more than three dimensions, which, based on the experimental results, may widen applications of the ultrafast technique.

  2. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    PubMed

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  3. Turbulence coefficients and stability studies for the coaxial flow or dissimiliar fluids. [gaseous core nuclear reactors

    NASA Technical Reports Server (NTRS)

    Weinstein, H.; Lavan, Z.

    1975-01-01

    Analytical investigations of fluid dynamics problems of relevance to the gaseous core nuclear reactor program are presented. The vortex type flow which appears in the nuclear light bulb concept is analyzed along with the fluid flow in the fuel inlet region for the coaxial flow gaseous core nuclear reactor concept. The development of numerical methods for the solution of the Navier-Stokes equations for appropriate geometries is extended to the case of rotating flows and almost completes the gas core program requirements in this area. The investigations demonstrate that the conceptual design of the coaxial flow reactor needs further development.

  4. Shape and topography corrections for planetary nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Prettyman, Thomas H.; Hendricks, John S.

    2015-11-01

    The elemental composition of planetary surfaces can be determined using gamma ray and neutron spectroscopy. Most planetary bodies for which nuclear spectroscopy data have been acquired are round, and simple, analytic corrections for measurement geometry can be applied; however, recent measurements of the irregular asteroid 4 Vesta by Dawn required more detailed corrections using a shape model (Prettyman et al., Science 2012). In addition, subtle artifacts of topography have been observed in low altitude measurements of lunar craters, with potential implications for polar hydrogen content (Eke et al., JGR 2015). To explore shape and topography effects, we have updated the general-purpose Monte Carlo radiation transport code MCNPX to include a polygonal shape model (Prettyman and Hendricks, LPSC 2015). The shape model is fully integrated with the code’s 3D combinatorial geometry modules. A voxel-based acceleration algorithm enables fast ray-intersection calculations needed for Monte Carlo. As modified, MCNPX can model neutron and gamma ray transport within natural surfaces using global and/or regional shape/topography data (e.g. from photogrammetry and laser altimetry). We are using MCNPX to explore the effect of small-scale roughness, regional-, and global-topography for asteroids, comets and close-up measurements of high-relief features on larger bodies, such as the lunar surface. MCNPX can characterize basic effects on measurements by an orbiting spectrometer such as 1) the angular distribution of emitted particles, 2) shielding of galactic cosmic rays by surrounding terrain and 3) re-entrant scattering. In some cases, re-entrant scattering can be ignored, leading to a fast ray-tracing model that treats effects 1 and 2. The algorithm is applied to forward modeling and spatial deconvolution of epithermal neutron data acquired at Vesta. Analyses of shape/topography effects and correction strategies are presented for Vesta, selected small bodies and cratered

  5. New Versions of Terahertz Radiation Sources for Dynamic Nuclear Polarization in Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Kalynov, Yu. K.; Makhalov, P. B.; Fedotov, A. E.

    2014-01-01

    Dynamic nuclear polarization in strong-field nuclear magnetic resonance (NMR) spectroscopy requires terahertz radiation with moderate power levels. Nowadays, conventional gyrotrons are used almost exclusively to generate such radiation. In this review paper, we consider alternative variants of electronic microwave oscillators which require much weaker magnetic fields for their operation, namely, large-orbit gyrotrons operated at high cyclotron-frequency harmonics and Čerenkov-type devices, such as a backward-wave oscillator and a klystron frequency multiplier with tubular electron beams. Additionally, we consider the possibility to use the magnetic field created directly by the solenoid of an NMR spectrometer for operation of both the gyrotron and the backward-wave oscillator. Location of the oscillator in the spectrometer magnet makes it superfluous to use an additional superconducting magnet creating a strong field, significantly reduces the length of the radiation transmission line, and, in the case of Čerenkov-type devices, allows one to increase considerably the output-signal power. According to our calculations, all the electronic devices considered are capable of ensuring the power required for dynamic nuclear polarization (10 W or more) at a frequency of 260 GHz, whereas the gyrotrons, including their versions proposed in this paper, remain a single option at higher frequencies.

  6. Core Versus Nuclear Gauge Methods of Determining Soil Bulk Density and Moisture Content

    Treesearch

    Jacqueline G. Steele; Jerry L. Koger; Albert C. Trouse; Donald L. Sirois

    1983-01-01

    Soil bulk and moisture content measurements were obtained using two nuclear gauge systems and those compared to those obtained from soil cores. The soils, a Hiwassee sandy loam, a Lakeland loamy sand, and a Loyd clay, were free of organic matter and uniform in mechanical composition. The regression equations developed for the nuclear guages for the first phase of the...

  7. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1977-01-01

    Current designs for out of core thermionic energy conversion (TEC) to power nuclear electric propulsion (NEP) were evaluated. Approaches to improve out of core TEC are emphasized and probabilities for success are indicated. TEC gains are available with higher emitter temperatures and greater power densities. Good potentialities for accommodating external high temperature, high power density TEC with heat pipe cooled reactors exist.

  8. Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis

    SciTech Connect

    Vondy, D.R.

    1986-04-01

    Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated.

  9. The solid-core heat-exchanger nuclear rocket program

    SciTech Connect

    Malenfant, R.E.

    1994-12-31

    As measured by the results of its accomplishments, the nuclear rocket program was a success. Why, then, was it cancelled? In my opinion, the cancellation resulted from the success of the Apollo program. President Kennedy declared that putting a man on the moon by 1969 would be a national objective. Upon the Apollo program`s completion, space spectaculars lost their attraction, and the manned exploration of Mars, which could have been accomplished with nuclear rockets, was shelved. Perhaps another generation of physicists and engineers will experience the thrill and satisfaction of participating in a nuclear-propulsion-based program for space exploration in decades to come.

  10. TOPICAL REVIEW: Spatial localization in nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Keevil, Stephen F.

    2006-08-01

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications.

  11. System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Phillips, W. M.; Hsieh, T.

    1976-01-01

    Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.

  12. Hanging core support system for a nuclear reactor. [LMFBR

    DOEpatents

    Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

    1984-04-26

    For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform.

  13. Differential influence of instruments in nuclear core activity evaluation by data assimilation

    NASA Astrophysics Data System (ADS)

    Bouriquet, Bertrand; Argaud, Jean-Philippe; Erhard, Patrick; Massart, Sébastien; Ponçot, Angélique; Ricci, Sophie; Thual, Olivier

    2011-01-01

    The global neutronic activity fields of a nuclear core can be reconstructed using data assimilation. Indeed, data assimilation allows to combine both measurements from instruments and information from a model, to evaluate the best possible neutronic activity within the core. We present and apply a specific procedure which evaluates the influence of measures by adding or removing instruments in a given measurement network (possibly empty). The study of various network configurations for the instruments in the nuclear core establishes that the influence of the instruments depends both on the independent instrumentation location and on the chosen network.

  14. Hollow core optical fibres made by glass billet extrusion as sensors for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsiminis, G.; Schartner, E. P.; Hutchinson, M. R.; Ebendorff-Heidepriem, H.

    2016-12-01

    Optical fiber sensors for Raman spectroscopy based on hollow core optical fibers have shown great promise due to their low glass background, and high signal collection efficiency. We have previously demonstrated how glass billet extrusion can be used to make simplified hollow core fibers based on a single suspended ring. In this work we investigate the performance of these optical fibers as sensors for Raman spectroscopy. These fibers are used to excite samples at a range of laser excitation wavelengths to scan across the transmission profile of the optical fibers, allowing comparison of the performance of these fibers against commercially-available alternatives.

  15. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    SciTech Connect

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Sattarov, Akhdiyor; Sooby, Elizabeth; Tsvetkov, Pavel; Phongikaroon, Supathorn; Simpson, Michael

    2013-04-19

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  16. ITER core imaging X-ray spectroscopy: Atomic physics issues

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Clementson, J.; Widmann, K.; Bitter, M.; Hill, K. W.; Johnson, D.; Barnsley, R.; Chung, H. K.; Safronova, U. I.

    2017-03-01

    The Core Imaging X-Ray Spectrometer (CIXS) will be employed for measurements of the ion temperature and of the toroidal rotation velocity, Ti and vϕ, respectively, as a function of the radius of ITER plasmas. The diagnostic is based on precision determinations of the Doppler broadening, centroid shift, and intensity of the lines of highly ionized heavy impurities using a curved Bragg crystal spectral disperser and imager. The ions under consideration for the diagnostic are those of tungsten, krypton, xenon, iron, and argon. A detailed discussion is given of the need for atomic physics experiments and calculations involving the primary diagnostic lines and their collisional and dielectronic satellites. Such experiments and calculations define the instrument parameters, determine the diagnostic uncertainties, and provide paths for extending the diagnostic capabilities to measure impurity concentrations, electron temperature, and ion transport parameters. Enabling the diagnostic to measure radially dependent ion transport coefficients, in particular, requires a large amount of high-quality atomic data in the form of reliable excitation, ionization, and recombination rate coefficients as well as ionization balance calculations which make use of these data. Because core imaging spectrometers are being developed and implemented on present-day magnetic fusion devices, much of the atomic data are already needed and can be tested in the analysis of existing spectra recorded by these diagnostics.

  17. Method of and apparatus for measuring the power distribution in nuclear reactor cores

    SciTech Connect

    Leyse, R.H.

    1983-07-12

    The invention disclosed is the method of exact calibration of gamma ray detectors called gamma thermometers prior to acceptance for installation into a nuclear reactor core. This exact calibration increases the accuracy of determining the power distribution in the nuclear reactor core. The calibration by electric resistance heating of the gamma thermometer consists of applying an electric current along the controlled heat path of the gamma thermometer and then measuring the temperature difference along this controlled heat path as a function of the amount of power generated by the electric resistance heating. Then, after the gamma thermometer is installed into the nuclear reactor core and the reactor core is operating at power producing conditions, the gamma ray heating of the detector produces a temperature difference along the controlled heat path. With the knowledge of this temperature difference, the calibration characteristic determined by the prior electric resistance heating is employed to accurately determine the local rate of gamma ray heating. The accurate measurement of the gamma heating rate at each location of a set of locations throughout the nuclear reactor core is the basis for accurately determining the power distribution within the nuclear reactor core.

  18. Nuclear fusion in the deuterated cores of inflated hot Jupiters

    NASA Astrophysics Data System (ADS)

    Ouyed, Rachid; Jaikumar, Prashanth

    2016-03-01

    Ouyed et al. (Astrophys. J. 501:367, 1998) proposed Deuterium (DD) fusion at the core-mantle interface of giant planets as a mechanism to explain their observed heat excess. But rather high interior temperatures (˜105 K) and a stratified D layer are needed, making such a scenario unlikely. In this paper, we re-examine DD fusion, with the addition of screening effects pertinent to a deuterated core containing ice and some heavy elements. This alleviates the extreme temperature constraint and removes the requirement of a stratified D layer. As an application, we propose that, if their core temperatures are a few times 104 K and core composition is chemically inhomogeneous, the observed inflated size of some giant exoplanets ("hot Jupiters") may be linked to screened DD fusion occurring deep in the interior. Application of an analytic evolution model suggests that the amount of inflation from this effect can be important if there is sufficient rock-ice in the core, making DD fusion an effective extra internal energy source for radius inflation. The mechanism of screened DD fusion, operating in the above temperature range, is generally consistent with the trend in radius anomaly with planetary equilibrium temperature T_{eq}, and also depends on planetary mass. Although we do not consider the effect of incident stellar flux, we expect that a minimum level of irradiation is necessary to trigger core erosion and subsequent DD fusion inside the planet. Since DD fusion is quite sensitive to the screening potential inferred from laboratory experiments, observations of inflated hot Jupiters may help constrain screening effects in the cores of giant planets.

  19. Hanging core support system for a nuclear reactor

    DOEpatents

    Burelbach, James P.; Kann, William J.; Pan, Yen-Cheng; Saiveau, James G.; Seidensticker, Ralph W.

    1987-01-01

    For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform. Motion or radiation sensing detectors can be provide at the lower ends of the tension rods for obtaining pertinent readings proximate the core.

  20. Nuclear forward and inelastic spectroscopy on 125Te and Sb2125 Te3

    NASA Astrophysics Data System (ADS)

    Wille, H.-C.; Hermann, R. P.; Sergueev, I.; Pelzer, U.; Möchel, A.; Claudio, T.; Perßon, J.; Rüffer, R.; Said, A.; Shvyd'ko, Yu. V.

    2010-09-01

    We report on the observation of nuclear forward and nuclear inelastic scattering of synchrotron radiation by 125Te and the application of both spectroscopic methods to tellurium compounds by using a high-resolution backscattering sapphire monochromator in combination with fast detection electronics. The lifetime of the nuclear resonance and the energy of the transition were determined to be 2.131(12) ns and 35493.12(30) eV, respectively. As applications, the nuclear inelastic spectrum in Sb2Te3 and the nuclear forward scattering by Te metal were measured. These measurements open the field of nuclear resonance spectroscopy on tellurium compounds such as thermoelectric and superconducting materials.

  1. Gas core nuclear thermal rocket engine research and development in the former USSR

    SciTech Connect

    Koehlinger, M.W.; Bennett, R.G.; Motloch, C.G.; Gurfink, M.M.

    1992-09-01

    Beginning in 1957 and continuing into the mid 1970s, the USSR conducted an extensive investigation into the use of both solid and gas core nuclear thermal rocket engines for space missions. During this time the scientific and engineering. problems associated with the development of a solid core engine were resolved. At the same time research was undertaken on a gas core engine, and some of the basic engineering problems associated with the concept were investigated. At the conclusion of the program, the basic principles of the solid core concept were established. However, a prototype solid core engine was not built because no established mission required such an engine. For the gas core concept, some of the basic physical processes involved were studied both theoretically and experimentally. However, no simple method of conducting proof-of-principle tests in a neutron flux was devised. This report focuses primarily on the development of the. gas core concept in the former USSR. A variety of gas core engine system parameters and designs are presented, along with a summary discussion of the basic physical principles and limitations involved in their design. The parallel development of the solid core concept is briefly described to provide an overall perspective of the magnitude of the nuclear thermal propulsion program and a technical comparison with the gas core concept.

  2. Deflection Measurements of a Thermally Simulated Nuclear Core Using a High-Resolution CCD-Camera

    NASA Technical Reports Server (NTRS)

    Stanojev, B. J.; Houts, M.

    2004-01-01

    Space fission systems under consideration for near-term missions all use compact. fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage. is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system nuclear equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three- dimensional deformation profile of the core during test.

  3. Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy.

    PubMed

    Piveteau, Laura; Ong, Ta-Chung; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Kovalenko, Maksym V

    2015-11-04

    Understanding the chemistry of colloidal quantum dots (QDs) is primarily hampered by the lack of analytical methods to selectively and discriminately probe the QD core, QD surface and capping ligands. Here, we present a general concept for studying a broad range of QDs such as CdSe, CdTe, InP, PbSe, PbTe, CsPbBr3, etc., capped with both organic and inorganic surface capping ligands, through dynamic nuclear polarization (DNP) surface enhanced NMR spectroscopy. DNP can enhance NMR signals by factors of 10-100, thereby reducing the measurement times by 2-4 orders of magnitude. 1D DNP enhanced spectra acquired in this way are shown to clearly distinguish QD surface atoms from those of the QD core, and environmental effects such as oxidation. Furthermore, 2D NMR correlation experiments, which were previously inconceivable for QD surfaces, are demonstrated to be readily performed with DNP and provide the bonding motifs between the QD surfaces and the capping ligands.

  4. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925

  5. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-06-09

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery.

  6. The principles of infrared-x-ray pump-probe spectroscopy. Applications on proton transfer in core-ionized water dimers.

    PubMed

    Felicíssimo, V C; Guimarães, F F; Gel'mukhanov, F; Cesar, A; Agren, H

    2005-03-01

    In this paper we derive the basic physics underlying infrared-x-ray pump-probe spectroscopy (IR, infrared). Particular features of the spectroscopy are highlighted and discussed, such as dependence on phase of the infrared pulse, duration and delay time of the x-ray pulse, and molecular orientation. Numerical applications are carried out for the water dimer using wave packet techniques. It is shown that core ionization of the donor oxygen of the water dimer results in a drastic change of the potential with the global minimum placed in the proton transfer region. The results of the modeling indicate that IR-x-ray pump-probe spectroscopy can be used to study the dynamics of proton transfer in this core-ionized state, and that, contrary to conventional core level photoelectron spectroscopy, x-ray core-ionization driven by an IR field is a proper method to explore the proton transfer in a system like the water dimer. We observe that the trajectory of the nuclear wave packet in the ground state potential well is strongly affected by the absolute phase of the IR pulse.

  7. The principles of infrared-x-ray pump-probe spectroscopy. Applications on proton transfer in core-ionized water dimers

    SciTech Connect

    Felicissimo, V.C.; Guimaraes, F.F.; Gel'mukhanov, F.; Cesar, A.; Aagren, H.

    2005-03-01

    In this paper we derive the basic physics underlying infrared-x-ray pump-probe spectroscopy (IR, infrared). Particular features of the spectroscopy are highlighted and discussed, such as dependence on phase of the infrared pulse, duration and delay time of the x-ray pulse, and molecular orientation. Numerical applications are carried out for the water dimer using wave packet techniques. It is shown that core ionization of the donor oxygen of the water dimer results in a drastic change of the potential with the global minimum placed in the proton transfer region. The results of the modeling indicate that IR-x-ray pump-probe spectroscopy can be used to study the dynamics of proton transfer in this core-ionized state, and that, contrary to conventional core level photoelectron spectroscopy, x-ray core-ionization driven by an IR field is a proper method to explore the proton transfer in a system like the water dimer. We observe that the trajectory of the nuclear wave packet in the ground state potential well is strongly affected by the absolute phase of the IR pulse.

  8. (129)I record of nuclear activities in marine sediment core from Jiaozhou Bay in China.

    PubMed

    Fan, Yukun; Hou, Xiaolin; Zhou, Weijian; Liu, Guangshan

    2016-04-01

    Iodine-129 has been used as a powerful tool for environmental tracing of human nuclear activities. In this work, a sediment core collected from Jiaozhou Bay, the east coast of China, in 2002 was analyzed for (129)I to investigate the influence of human nuclear activities in this region. Significantly enhanced (129)I level was observed in upper 70 cm of the sediment core, with peak values in the layer corresponding to 1957, 1964, 1974, 1986, and after 1990. The sources of (129)I and corresponding transport processes in this region are discussed, including nuclear weapons testing at the Pacific Proving Grounds, global fallout from a large numbers of nuclear weapon tests in 1963, the climax of Chinese nuclear weapons testing in the early 1970s, the Chernobyl accident in 1986, and long-distance dispersion of European reprocessing derived (129)I. The very well (129)I records of different human nuclear activities in the sediment core illustrate the potential application of (129)I in constraining ages and sedimentation rates of the recent sediment. The releases of (129)I from the European nuclear fuel reprocessing plants at La Hague (France) and Sellafield (UK) were found to dominate the inventory of (129)I in the Chinese sediments after 1990, not only the directly atmospheric releases of these reprocessing plants, but also re-emission of marine discharged (129)I of these reprocessing plants in the highly contaminated European seas.

  9. Feasibility study on nuclear core design for soluble boron free small modular reactor

    SciTech Connect

    Rabir, Mohamad Hairie Hah, Chang Joo; Ju, Cho Sung

    2015-04-29

    A feasibility study on nuclear core design of soluble boron free (SBF) core for small size (150MWth) small modular reactor (SMR) was investigated. The purpose of this study was to design a once through cycle SMR core, where it can be used to supply electricity to a remote isolated area. PWR fuel assembly design with 17×17 arrangement, with 264 fuel rods per assembly was adopted as the basis design. The computer code CASMO-3/MASTER was used for the search of SBF core and fuel assembly analysis for SMR design. A low critical boron concentration (CBC) below 200 ppm core with 4.7 years once through cycle length was achieved using 57 fuel assemblies having 170 cm of active height. Core reactivity controlled using mainly 512 number of 4 wt% and 960 12 wt% Gd rods.

  10. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield.

    PubMed

    Tessier, M D; Mahler, B; Nadal, B; Heuclin, H; Pedetti, S; Dubertret, B

    2013-07-10

    Free standing two-dimensional materials appear as a novel class of structures. Recently, the first colloidal two-dimensional heterostructures have been synthesized. These core/shell nanoplatelets are the first step toward colloidal quantum wells. Here, we study in detail the spectroscopic properties of this novel generation of colloidal nanoparticles. We show that core/shell CdSe/CdZnS nanoplatelets with 80% quantum yield can be obtained. The emission time trace of single core/shell nanoplatelets exhibits reduced blinking compared to core nanoplatelets with a two level emission time trace. At cryogenic temperatures, these nanoplatelets have a quantum yield close to 100% and a stable emission time trace. A solution of core/shell nanoplatelets has emission spectra with a full width half-maximum close to 20 nm, a value much lower than corresponding spherical or rod-shaped heterostructures. Using single particle spectroscopy, we show that the broadening of the emission spectra upon the shell deposition is not due to dispersity between particles but is related to an intrinsic increased exciton-phonon coupling in the shell. We also demonstrate that optical spectroscopy is a relevant tool to investigate the presence of traps induced by shell deposition. The spectroscopic properties of the core/shell nanoplatelets presented here strongly suggest that this new generation of objects will be an interesting alternative to spherical or rod-shaped nanocrystals.

  11. Fast Fourier Transform Chlorine Nuclear Quadrupole Resonance Spectroscopy.

    NASA Astrophysics Data System (ADS)

    D'Iorio, Marie

    A nuclear quadrupole resonance spectrometer operating in the frequency range 1-40 MHz was updated for fast Fourier transform spectroscopy and coupled to a Nicolet 1180 computer and data acquisition system. It was used with a low temperature cryostat for studies shown down to liquid helium temperature and with a high pressure/low temperature system for studies down to liquid nitrogen temperature and up to six kilobars. The study of the ('35)Cl NQR spectrum of K(,2)OsCl(,6) at 298 K and 77 K revealed the presence of a satellite associated with the nearest neighbour chlorines to H('+) ion impurities located at vacant octahedral sties. This result is in agreement with the predictions of a point charge model calculation. A residence time for the H('+) ion was deduced and is consistent with the result obtained from dielectric measurements. A detailed study of the ('35)Cl NQR frequency in K(,2)ReCl(,6) was performed in the temperature range 85 - 130K where two structural phase transitions occur, and at pressures from 1 to 2643 bars. A number of unusual features were revealed and discussed as the possible signature of incommensurate behavior. The primary effect of the pressure was to alter the temperatures at which the phase transitions occurred. Contrary to the behavior expected, the transition temperature for the antiferrorotative transition has a negative pressure coefficient. The spin-lattice and spin-spin relaxation times for the ('35)Cl and ('37)Cl isotopes of the one dimensional XY system, PrCl(,3), were measured at 4.2K. The spin-lattice relaxation is exponential and dominated by magnetic dipole -dipole interactions. The spin-spin relaxation is non-exponential and dominated by electric quadrupolar interactions arising from the coupling of the electric dipole moment at the praseodymium site and the quadrupole moment of the chlorine ion. The temperature dependence of the spin-spin relaxation time was investigated. At 17.4 K both magnetic dipolar and electric

  12. Application of gaseous core reactors for transmutation of nuclear waste

    NASA Technical Reports Server (NTRS)

    Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.

    1976-01-01

    An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.

  13. Application of gaseous core reactors for transmutation of nuclear waste

    NASA Technical Reports Server (NTRS)

    Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.

    1976-01-01

    An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.

  14. The open-cycle gas-core nuclear rocket engine - Some engineering considerations.

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyk, L. C.

    1971-01-01

    A preliminary design study of a conceptual 6000-MW open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 44,200 lb and a specific impulse of 4400 sec. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel) and the waste heat rejection system were considered conceptually and were sized.

  15. The open-cycle gas-core nuclear rocket engine - Some engineering considerations.

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyk, L. C.

    1971-01-01

    A preliminary design study of a conceptual 6000-MW open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 44,200 lb and a specific impulse of 4400 sec. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel) and the waste heat rejection system were considered conceptually and were sized.

  16. Contribution of Anticipated Transients Without Scram (ATWS) to core melt at United States nuclear power plants

    SciTech Connect

    Giachetti, R.T. , Ann Arbor, MI )

    1989-09-01

    This report looks at WASH-1400 and several other Probabilistic Risk Assessments (PRAs) and Probabilistic Safety Studies (PSSs) to determine the contribution of Anticipated Transients Without Scram (ATWS) events to the total core melt probability at eight nuclear power plants in the United States. After considering each plant individually, the results are compared from plant to plant to see if any generic conclusions regarding ATWS, or core melt in general, can be made. 8 refs., 34 tabs.

  17. Hollow Core Fiber Optics for Mid-Wave and Long-Wave Infrared Spectroscopy

    SciTech Connect

    Kriesel, J.M.; Gat, N.; Bernacki, Bruce E.; Erikson, Rebecca L.; Cannon, Bret D.; Myers, Tanya L.; Bledt, Carlos M.; Harrington, J. A.

    2011-06-01

    The development and testing of hollow core glass waveguides (i.e., fiber optics) for use in Long-Wave Infrared (LWIR) spectroscopy systems is described. LWIR fiber optics are a key enabling technology needed to improve the utility and effectiveness of trace chemical detection systems based in the 8 to 12 micron region. This paper focuses on recent developments in hollow waveguide technology geared specifically for LWIR spectroscopy, including a reduction in both the length dependent loss and the bending loss while maintaining relatively high beam quality. Results will be presented from tests conducted with a Quantum Cascade Laser.

  18. Ultrafast core-loss spectroscopy in four-dimensional electron microscopy

    PubMed Central

    van der Veen, Renske M.; Penfold, Thomas J.; Zewail, Ahmed H.

    2015-01-01

    We demonstrate ultrafast core-electron energy-loss spectroscopy in four-dimensional electron microscopy as an element-specific probe of nanoscale dynamics. We apply it to the study of photoexcited graphite with femtosecond and nanosecond resolutions. The transient core-loss spectra, in combination with ab initio molecular dynamics simulations, reveal the elongation of the carbon-carbon bonds, even though the overall behavior is a contraction of the crystal lattice. A prompt energy-gap shrinkage is observed on the picosecond time scale, which is caused by local bond length elongation and the direct renormalization of band energies due to temperature-dependent electron–phonon interactions. PMID:26798793

  19. Nuclear spins, magnetic moments, and quadrupole moments of Cu isotopes from N=28 to N=46: Probes for core polarization effects

    SciTech Connect

    Vingerhoets, P.; Avgoulea, M.; Bissell, M. L.; De Rydt, M.; Neyens, G.; Flanagan, K. T.; Billowes, J.; Cheal, B.; Mane, E.; Blaum, K.; Schug, M.; Brown, B. A.; Forest, D. H.; Tungate, G.; Geppert, Ch.; Noertershaeuser, W.; Honma, M.; Kowalska, M.; Kraemer, J.; Krieger, A.

    2010-12-15

    Measurements of the ground-state nuclear spins and magnetic and quadrupole moments of the copper isotopes from {sup 61}Cu up to {sup 75}Cu are reported. The experiments were performed at the CERN online isotope mass separator (ISOLDE) facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a {sup 56}Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is, however, strongly reduced at N=40 due to the parity change between the pf and g orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the {sup 56}Ni core and weakening of the Z=28 and N=28 shell gaps.

  20. Spring design for use in the core of a nuclear reactor

    DOEpatents

    Willard, Jr., H. James

    1993-01-01

    A spring design particularly suitable for use in the core of a nuclear reactor includes one surface having a first material oriented in a longitudinal direction, and another surface having a second material oriented in a transverse direction. The respective surfaces exhibit different amounts of irraditation induced strain.

  1. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOEpatents

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  2. Survey of odd-odd deformed nuclear spectroscopy

    SciTech Connect

    Hoff, R.W.

    1993-09-14

    In this paper, we survey the current experimental data that support assignment of rotational bands in odd-odd deformed nuclear in the rare earth and actinide regions. We present the results of a new study of {sup 170}Mt nuclear structure. In a comparing experimental and calculated Gallagher-Moszkowski matrix elements for rare earth-region nuclei, we have developed a new approach to the systematics of these matrix elements.

  3. A fusion-driven gas core nuclear rocket

    NASA Astrophysics Data System (ADS)

    Kammash, T.; Godfroy, T.

    1998-01-01

    A magnetic confinement scheme is investigated as a potential propulsion device in which thrust is generated by a propellant heated by radiation emanating from a fusion plasma. The device in question is the gasdynamic mirror (GDM) machine in which a hot dense plasma is confined long enough to generate fusion energy while allowing a certain fraction of its charged particle population to go through one end to a direct converter. The energy of these particles is converted into electric power which is recirculated to sustain the steady state operation of the system. The injected power heats the plasma to thermonuclear temperatures where the resulting fusion energy appears a charged particle power, neutron power, and radiated power in the form of bremsstrahlung and synchrotron radiation. The neutron power can be converted through a thermal converter to electric power that can be combined with the direct converter power before being fed into the injector. The radiated power, on the other hand, can be used to heat a hydrogen propellant introduced into the system at a specified pressure and mass flow rate. This propellant can be pre-heated by regeneratively cooling the (mirror) nozzle or other components of the system if feasible, or by an electrothermal unit powered by portions of the recirculated power. Using a simple heat transfer model that ignores the heat flux to the wall, and assuming total absorption of radiation energy by the propellant it is shown that such a gas core rocket is capable of producing tens of kilonewtons of thrust and several thousands of seconds of specific impulse. It is also shown that the familiar Kelvin-Helmholtz instability which arises from the relative motion of the neutral hydrogen to the ionized fuel is not likely to occur in this system due to the presence of the confining magnetic field.

  4. X-ray absorption spectroscopy beyond the core-hole lifetime

    SciTech Connect

    Haemaelaeinen, K.; Hastings, J.B.; Siddons, D.P.; Berman, L.

    1992-01-01

    A new technique to overcome the core-hole lifetime broadening in x-ray absorption spectroscopy is presented. It utilizes a high resolution fluorescence spectrometer which can be used to analyze the fluorescence photon energy with better resolution than the natural lifetime width. Furthermore, the high resolution spectrometer can also be used to select the final state in the fluorescence process which can offer spin selectivity even without long range magnetic order in the sample.

  5. X-ray absorption spectroscopy beyond the core-hole lifetime

    SciTech Connect

    Haemaelaeinen, K.; Hastings, J.B.; Siddons, D.P.; Berman, L.

    1992-10-01

    A new technique to overcome the core-hole lifetime broadening in x-ray absorption spectroscopy is presented. It utilizes a high resolution fluorescence spectrometer which can be used to analyze the fluorescence photon energy with better resolution than the natural lifetime width. Furthermore, the high resolution spectrometer can also be used to select the final state in the fluorescence process which can offer spin selectivity even without long range magnetic order in the sample.

  6. Delayed Gamma-ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    SciTech Connect

    Mozin, Vladimir; Ludewigt, Bernhard; Campbell, Luke; Favalli, Andrea; Hunt, Alan

    2014-10-09

    This project addresses the need for improved non-destructive assay techniques for quantifying the actinide composition of spent nuclear fuel and for the independent verification of declared quantities of special nuclear materials at key stages of the fuel cycle. High-energy delayed gamma-ray spectroscopy following neutron irradiation is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Other potential applications include determination of MOX fuel composition, characterization of nuclear waste packages, and challenges in homeland security and arms control verification.

  7. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy.

    PubMed

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B; Gee, Leland B; Scott, Aubrey D; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P

    2015-08-10

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the (57)Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique 'wagging' mode involving H(-) motion perpendicular to the Ni(μ-H)(57)Fe plane was studied using (57)Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)(57)Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe-CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)(57)Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)(57)Fe(CO)3](+) and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H(-) binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe-H moieties in other important natural and synthetic catalysts.

  8. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-08-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique `wagging' mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe-CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe-H moieties in other important natural and synthetic catalysts.

  9. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    PubMed Central

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-01-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging' mode involving H− motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H− binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts. PMID:26259066

  10. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    SciTech Connect

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-08-10

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. Lastly, the present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts.

  11. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    DOE PAGES

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; ...

    2015-08-10

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate amore » low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. Lastly, the present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts.« less

  12. Phase diagram of nuclear 'pasta' and its uncertainties in supernova cores

    SciTech Connect

    Sonoda, Hidetaka; Watanabe, Gentaro; Sato, Katsuhiko; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2008-03-15

    We examine the model dependence of the phase diagram of inhomogeneous nulcear matter in supernova cores using the quantum molecular dynamics (QMD). Inhomogeneous matter includes crystallized matter with nonspherical nuclei--''pasta'' phases--and the liquid-gas phase-separating nuclear matter. Major differences between the phase diagrams of the QMD models can be explained by the energy of pure neutron matter at low densities and the saturation density of asymmetric nuclear matter. We show the density dependence of the symmetry energy is also useful to understand uncertainties of the phase diagram. We point out that, for typical nuclear models, the mass fraction of the pasta phases in the later stage of the collapsing cores is higher than 10-20%.

  13. An improved heat transfer configuration for a solid-core nuclear thermal rocket engine

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Walton, James T.; Mcguire, Melissa L.

    1992-01-01

    Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.

  14. The electronic characterization of biphenylene—Experimental and theoretical insights from core and valence level spectroscopy

    SciTech Connect

    Lüder, Johann; Sanyal, Biplab; Eriksson, Olle; Brena, Barbara; Puglia, Carla; Simone, Monica de; Totani, Roberta; Coreno, Marcello; Grazioli, Cesare

    2015-02-21

    In this paper, we provide detailed insights into the electronic structure of the gas phase biphenylene molecule through core and valence spectroscopy. By comparing results of X-ray Photoelectron Spectroscopy (XPS) measurements with ΔSCF core-hole calculations in the framework of Density Functional Theory (DFT), we could decompose the characteristic contributions to the total spectra and assign them to non-equivalent carbon atoms. As a difference with similar molecules like biphenyl and naphthalene, an influence of the localized orbitals on the relative XPS shifts was found. The valence spectrum probed by photoelectron spectroscopy at a photon energy of 50 eV in conjunction with hybrid DFT calculations revealed the effects of the localization on the electronic states. Using the transition potential approach to simulate the X-ray absorption spectroscopy measurements, similar contributions from the non-equivalent carbon atoms were determined from the total spectrum, for which the slightly shifted individual components can explain the observed asymmetric features.

  15. Dependence of weak interaction rates on the nuclear composition during stellar core collapse

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Kato, Chinami; Yamada, Shoichi

    2017-02-01

    We investigate the influences of the nuclear composition on the weak interaction rates of heavy nuclei during the core collapse of massive stars. The nuclear abundances in nuclear statistical equilibrium (NSE) are calculated by some equation of state (EOS) models including in-medium effects on nuclear masses. We systematically examine the sensitivities of electron capture and neutrino-nucleus scattering on heavy nuclei to the nuclear shell effects and the single-nucleus approximation. We find that the washout of the shell effect at high temperatures brings significant change to weak rates by smoothing the nuclear abundance distribution: the electron capture rate decreases by ˜20 % in the early phase and increases by ˜40 % in the late phase at most, while the cross section for neutrino-nucleus scattering is reduced by ˜15 % . This is because the open-shell nuclei become abundant instead of those with closed neutron shells as the shell effects disappear. We also find that the single-nucleus description based on the average values leads to underestimations of weak rates. Electron captures and neutrino coherent scattering on heavy nuclei are reduced by ˜80 % in the early phase and by ˜5 % in the late phase, respectively. These results indicate that NSE like EOS accounting for shell washout is indispensable for the reliable estimation of weak interaction rates in simulations of core-collapse supernovae.

  16. Deconvolving instrumental and intrinsic broadening in core-shell x-ray spectroscopies

    SciTech Connect

    Fister, T. T.; Seidler, G. T.; Rehr, J. J.; Kas, J. J.; Nagle, K. P.; Elam, W. T.; Cross, J. O.

    2007-05-01

    Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in core-shell spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K-edge XAS of Ag, we find nearly complete removal of {approx}9.3 eV full width at half maximum broadening from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm in these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime.

  17. Feasibility of near-infrared diffuse optical spectroscopy on patients undergoing imageguided core-needle biopsy

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Burnside, Elizabeth S.; Sisney, Gale A.; Harter, Josephine M.; Zhu, Changfang; Dhalla, Al-Hafeez; Ramanujam, Nirmala

    2007-06-01

    We describe a side-firing fiber optic sensor based on near-infrared spectroscopy for guiding core needle biopsy diagnosis of breast cancer. The sensor is composed of three side firing optical fibers (two source fibers and one detection fiber), providing two source-detector separations. The entire assembly is inserted into a core biopsy needle, allowing for sampling to occur at the biopsy site. A multi-wavelength frequency-domain near-infrared instrument is used to collect diffuse reflectance in the breast tissue through an aperture on the biopsy needle before the tissue is removed for histology. Preliminary in vivo measurements performed on 10 normal or benign breast tissues from 5 women undergoing stereo- or ultrasound-guided core needle biopsy show the ability of the system to determine tissue optical properties and constituent concentrations, which are correlated with breast tissue composition derived from histopathology.

  18. Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing

    SciTech Connect

    Giraud-Carrier, M. Hill, C.; Decker, T.; Hawkins, A.; Black, J. A.; Schmidt, H.

    2016-03-28

    A hollow-core waveguide structure for on-chip atomic spectroscopy is presented. The devices are based on Anti-Resonant Reflecting Optical Waveguides and may be used for a wide variety of applications which rely on the interaction of light with gases and vapors. The designs presented here feature short delivery paths of the atomic vapor into the hollow waveguide. They also have excellent environmental stability by incorporating buried solid-core waveguides to deliver light to the hollow cores. Completed chips were packaged with an Rb source and the F = 3 ≥ F′ = 2, 3, 4 transitions of the D2 line in {sup 85}Rb were monitored for optical absorption. Maximum absorption peak depths of 9% were measured.

  19. Self-assembled heterogeneous argon/neon core-shell clusters studied by photoelectron spectroscopy.

    PubMed

    Lundwall, M; Pokapanich, W; Bergersen, H; Lindblad, A; Rander, T; Ohrwall, G; Tchaplyguine, M; Barth, S; Hergenhahn, U; Svensson, S; Björneholm, O

    2007-06-07

    Clusters formed by a coexpansion process of argon and neon have been studied using synchrotron radiation. Electrons from interatomic Coulombic decay as well as ultraviolet and x-ray photoelectron spectroscopy were used to determine the heterogeneous nature of the clusters and the cluster structure. Binary clusters of argon and neon produced by coexpansion are shown to exhibit a core-shell structure placing argon in the core and neon in the outer shells. Furthermore, the authors show that 2 ML of neon on the argon core is sufficient for neon valence band formation resembling the neon solid. For 1 ML of neon the authors observe a bandwidth narrowing to about half of the bulk value.

  20. Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing

    PubMed Central

    Giraud-Carrier, M.; Hill, C.; Decker, T.; Black, J. A.; Schmidt, H.; Hawkins, A.

    2016-01-01

    A hollow-core waveguide structure for on-chip atomic spectroscopy is presented. The devices are based on Anti-Resonant Reflecting Optical Waveguides and may be used for a wide variety of applications which rely on the interaction of light with gases and vapors. The designs presented here feature short delivery paths of the atomic vapor into the hollow waveguide. They also have excellent environmental stability by incorporating buried solid-core waveguides to deliver light to the hollow cores. Completed chips were packaged with an Rb source and the F = 3 ≥ F′ = 2, 3, 4 transitions of the D2 line in 85Rb were monitored for optical absorption. Maximum absorption peak depths of 9% were measured. PMID:27076685

  1. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    SciTech Connect

    Kellö, Vladimir

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  2. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    PubMed

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  3. Activation mechanism of the nuclear chaperone nucleoplasmin: role of the core domain.

    PubMed

    Bañuelos, Sonia; Hierro, Aitor; Arizmendi, Jesús M; Montoya, Guillermo; Prado, Adelina; Muga, Arturo

    2003-11-28

    Nucleoplasmin (NP) mediates nucleosome assembly by removing basic proteins from sperm chromatin and exchanging them with histones. This function is modulated by phosphorylation of NP at multiple sites. NP is pentameric, each monomer consisting of two domains: a core, which forms a stable ring-like pentamer, and a tail, that holds a polyglutamic tract and the nuclear localization signal. In the present study, we have explored the role of the core domain in the functionality of NP. Despite lacking the poly-Glu region, a putative binding site for basic proteins, the isolated core domain of the hyperphosphorylated protein isolated from eggs of Xenopus laevis is able to bind sperm basic proteins and decondense chromatin, in contrast to the inactive, non-phosphorylated recombinant core. This activity can be reproduced artificially in the recombinant core domain through mutation of putative phosphorylation sites to aspartate, thus mimicking the charge effect of phosphorylation. The mutated residues locate in flexible or loop regions exposed on the "distal face" of the core pentamer, where a short acidic region is also found, indicating that phosphorylation might activate the core domain of NP by generating a strong localized negative potential. Our results show that the phosphorylated core domain of NP is active in chromatin decondensation, thus it could contribute together with the poly-Glu containing tail in displaying a binding surface for sperm basic proteins on the NP pentamer.

  4. Nuclear structure of the transactinides - investigated by decay spectroscopy

    NASA Astrophysics Data System (ADS)

    Heßberger, Fritz Peter

    2016-12-01

    Superheavy elements owe their stability due to a subtle balance between the disruptive Coulomb force and the attractive nuclear forces. Thus they represent an ideal laboratory to study basic interactions. The essential tools are detailed investigations of radioactive decay properties and nuclear structure of superheavy nuclei. The results of those studies will deliver valuable input to improve theoretical models. To fulfill this demand conclusive data of high quality are necessary, which is presently not so easy to meet due to small production cross sections and technical limitations (beam intensities, detection probabilities). Possibilities and problems concerning extraction of decay properties and nuclear structure information on the basis of a low number of observed decay events will be discussed for three illustrative examples, 257Rf, 257Lr, and 288Fl.

  5. Precision Spectroscopy in Helium and the Interface with Nuclear Physics.

    NASA Astrophysics Data System (ADS)

    Shiner, David

    1996-05-01

    Atomic theory footnote G. Drake in Long-Range Casimir Forces: Theory and Recent Exp. on Atomic Systems, eds. Levin and Micha (Plenum, N. Y., 1993) footnote K. Pachucki and S. Karshenboim J. Phys. B 28, L221 (1995) and experiment footnote F. Marin, F. Minardi, F. Pavone, M. Inguscio, and G. Drake Z. Phys. D 32, 285 (1995) footnote D. Shiner, R. Dixson and V. Vedantham, Phys. Rev. Lett. 74 3553 (1995) in helium has begun to yield information on the nuclear sizes of helium-3 and helium-4 with a precision that can not be obtained by other techniques. In essence one attempts to use lasers and atomic physics to provide the most accurate "meter stick" or length scale for few-nucleon systems. Such efforts are particularly important since scattering techniques are no longer of sufficient accuracy to test the size predictions of few-body nuclear theory. footnote J. L. Friar, in Few-Body Problems in Physics, AIP Conf. Proc. No. 334, ed. F. Gross (AIP, New York, 1995) p.323 We will discuss the status of the relevant atomic theory and experiments along with current efforts at improvements. For instance we can improve our own measurements by, among other things, using improved laser frequency standards. footnote P. Jungner, M. Eickhoff, S. Swartz, J. Ye and J. Hall, SPIE 2378, 22 (1995) We will also discuss some aspects and issues of few-body nuclear theory that effect the nuclear size predictions. For example, recent work footnote S. Weinberg, Phys. Lett. B 295, 114 (1992) footnote C. Ordonez, L. Ray, and U. van Kolck, Phys. Rev. Lett. 72, 1982 (1994) allows, through the use of chiral perturbation theory, a stronger connection between QCD and traditional approaches to nuclear forces and (2) support for and perhaps improvements in the methods employed in few-body nuclear theory.

  6. Single hepatitis-B virus core capsid binding to individual nuclear pore complexes in Hela cells.

    PubMed

    Lill, Yoriko; Lill, Markus A; Fahrenkrog, Birthe; Schwarz-Herion, Kyrill; Paulillo, Sara; Aebi, Ueli; Hecht, Bert

    2006-10-15

    We investigate the interaction of hepatitis B virus capsids lacking a nuclear localization signal with nuclear pore complexes (NPCs) in permeabilized HeLa cells. Confocal and wide-field optical images of the nuclear envelope show well-spaced individual NPCs. Specific interactions of capsids with single NPCs are characterized by extended residence times of capsids in the focal volume which are characterized by fluorescence correlation spectroscopy. In addition, single-capsid-tracking experiments using fast wide-field fluorescence microscopy at 50 frames/s allow us to directly observe specific binding via a dual-color colocalization of capsids and NPCs. We find that binding occurs with high probability on the nuclear-pore ring moiety, at 44 +/- 9 nm radial distance from the central axis.

  7. Role of Absorbing Nanocrystal Cores in Soft Photonic Crystals: A Spectroscopy and SANS Study.

    PubMed

    Rauh, Astrid; Carl, Nico; Schweins, Ralf; Karg, Matthias

    2017-08-17

    Periodic superstructures of plasmonic nanoparticles have attracted significant interest because they can support coupled plasmonic modes, making them interesting for plasmonic lasing, metamaterials, and as light-management structures in thin-film optoelectronic devices. We have recently shown that noble metal hydrogel core-shell colloids allow for the fabrication of highly ordered 2-dimensional plasmonic lattices that show surface lattice resonances as the result of plasmonic/diffractive coupling (Volk, K.; Fitzgerald, J. P. S.; Ruckdeschel, P.; Retsch, M.; König, T. A. F.; Karg, M. Reversible Tuning of Visible Wavelength Surface Lattice Resonances in Self-Assembled Hybrid Monolayers. Adv. Optical Mater. 2017, 5, 1600971, DOI: 10.1002/adom.201600971). In the present work, we study the photonic properties and structure of 3-dimensional crystalline superstructures of gold hydrogel core-shell colloids and their pitted counterparts without gold cores. We use far-field extinction spectroscopy to investigate the optical response of these superstructures. Narrow Bragg peaks are measured, independently of the presence or absence of the gold cores. All crystals show a significant reduction in low-wavelength scattering. This leads to a significant enhancement of the plasmonic properties of the samples prepared from gold-nanoparticle-containing core-shell colloids. Plasmonic/diffractive coupling is not evident, which we mostly attribute to the relatively small size of the gold cores limiting the effective coupling strength. Small-angle neutron scattering is applied to study the crystal structure. Bragg peaks of several orders clearly assignable to an fcc arrangement of the particles are observed for all crystalline samples in a broad range of volume fractions. Our results indicate that the nanocrystal cores do not influence the overall crystallization behavior or the crystal structure. These are important prerequisites for future studies on photonic materials built from core

  8. Flowing gas, non-nuclear experiments on the gas core reactor

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Suckling, D. H.; Copper, C. G.

    1972-01-01

    Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes.

  9. Flowing gas, non-nuclear experiments on the gas core reactor

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Cooper, C. G.; Macbeth, P. J.

    1973-01-01

    Variations in cavity wall and injection configurations of the gas core reactor were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or Freon to simulate the central nuclear fuel gas. Tests were run both in the down-firing and upfiring directions. Results showed that acceptable flow patterns with volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity long the cavity wall, using louvered injection schemes. Recirculation patterns were needed to stabilize the heavy central gas when different gases are used.

  10. Concepts in Biochemistry: Nuclear Magnetic Resonance Spectroscopy in Biochemistry.

    ERIC Educational Resources Information Center

    Cheatham, Steve

    1989-01-01

    Discusses the nature of a nuclear magnetic resonance (NMR) experiment, the techniques used, the types of structural and dynamic information obtained, and how one can view and refine structures using computer graphics techniques in combination with NMR data. Provides several spectra and a computer graphics image from B-form DNA. (MVL)

  11. Concepts in Biochemistry: Nuclear Magnetic Resonance Spectroscopy in Biochemistry.

    ERIC Educational Resources Information Center

    Cheatham, Steve

    1989-01-01

    Discusses the nature of a nuclear magnetic resonance (NMR) experiment, the techniques used, the types of structural and dynamic information obtained, and how one can view and refine structures using computer graphics techniques in combination with NMR data. Provides several spectra and a computer graphics image from B-form DNA. (MVL)

  12. Enhancement of Nuclear Reactions due to Screening Effects of Core Electrons

    NASA Astrophysics Data System (ADS)

    Luo, N.; Shrestha, P. J.; Miley, G. H.; Violante, V.

    2005-12-01

    Recent progress in understanding the screening effects of core level atomic electrons is summarized in this paper. Some preliminary results on core electron screening were reported before.1 The studies focus on two types of nuclear reactions in some metal lattices: fusion between deuterons and also proton capture by medium and heavy lattice nuclei. In both reactions the energy of the light nuclear species, proton or deuteron, is on the keV (1000 eV) scale, while that of heavy nuclei is essentially zero. A standard atomic code is used to obtain the core electron charge density and the potential profile in the metal atom. This Hartree-Fock-Slater type code was originally written by Herman and Skillman2 and later modified by others and available online.3 For the D-D reaction, the charge density obtained then gives an estimate on the screening length. The corresponding enhancement in Coulomb barrier tunneling can be obtained from this data. For the proton capture reaction, an ion dynamic code4 written to simulate the motion of keV protons in Pd/Ni lattice, CLAIRE, was modified to take into account the realistic atomic potential, including core electron contributions. In both cases, our result shows a significant nuclear reaction enhancement. The reaction rate calculated roughly matches the scale of excess heat observed in some metal hydride/deuteride5 experiments.

  13. Nuclear Level Densities for Modeling Nuclear Reactions: An Efficient Approach Using Statistical Spectroscopy: Annual Report 2003-2004

    SciTech Connect

    Calvin W. Johnson

    2004-07-30

    The general goal of the project is to develop and implement computer codes and input files to compute nuclear densities of state. Such densities are important input into calculations of statistical neutron capture, and are difficult to access experimentally. In particular, we will focus on calculating densities for nuclides in the mass range A ?????? 50 - 100. We use statistical spectroscopy, a moments method based upon a microscopic framework, the interacting shell model. In this report we present our progress for the past year.

  14. Precision Nuclear Beta Spectroscopy as a Probe for BSM Physics

    NASA Astrophysics Data System (ADS)

    Sprow, Aaron

    2017-01-01

    The shape of nuclear beta decay spectra is sensitive to new physics such as scalar and tensor currents, and weak magnetism. By selecting an appropriate nuclear species, it is possible to disentangle these effects. 45Ca, which undergoes a predominantly Gamow-Teller transition with an end-point energy of 256 keV, is an excellent probe for tensor couplings. Recently, the 45Ca beta decay spectrum was measured in the Caltech/UCNA 4 π magnetic spectrometer instrumented with large, highly-pixelated Si detectors at the Los Alamos National Laboratory UCN facility. This detection system, in conjunction with an extremely thin foil source preparation, allows for a full reconstruction of events to build a precise spectrum. Preliminary results of the analysis of this data will be presented.

  15. Development concept for a small, split-core, heat-pipe-cooled nuclear reactor

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Breitwieser, R.; Niederauer, G. F.

    1974-01-01

    There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.

  16. Application of X-ray Absorption Spectroscopy to the study of nuclear structural materials

    NASA Astrophysics Data System (ADS)

    Liu, Shanshan

    One of key technologies for the next generation nuclear systems are advanced materials, including high temperature structural materials, fast neutron resistance core materials and so on. Local structure determination in these systems, which often are crystallographically intractable, is critical to gaining an understanding of their properties. In this thesis, X-ray Absorption Spectroscopy (XAS), including Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES), is used to examine the geometric and electronic structure of nuclear structural materials under varying conditions. The thesis is divided into two main sections. The first examines the structural analysis of nanostructured ferritic alloys (NFA) which are dispersion strengthened by an ultra high density of Y-Ti-O enriched nano-features, resulting in remarkable high temperature creep strength and radiation damage resistance. Titanium and Yttrium K-edge XAS shows commercial alloys MA957 and J12YWT more closely resemble the as received Fe-14Cr-3W-0.4Ti (wt. %) powders, and mechanically alloyed (MA) powders with 0.25Y2O3 (wt. %). It shows that a significant fraction of substitutional Ti remains dissolved in the (BCC) ferrite matrix. In contrast, annealed powders and hot isostatic press (HIP) consolidated alloys show high temperature heat treatments shift the Y and Ti to more oxidized states that are consistent with combinations of Y2Ti2O7 and, especially, TiO. The second section describes corrosion studies of Pb with 316L stainless steel, molybdenum and spinet (MgAl2O4) at high temperature by XAS. The corrosion of fuel cladding and structural materials by liquid lead at elevated temperatures is an issue that must be considered when designing advanced nuclear systems and high-power spallation neutron targets. The results of ex-situ studies show that a Mo substrate retained a smooth and less corroded surface than 316L stainless steel sample at elevated temperature. In

  17. Laser Forced Nuclear Fission as a Spectroscopy tool

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2015-04-01

    Although it is widely understood that Heavy Isotopes of Hydrogen can be fused using Lasers (Ultraviolet Lasers, at the National Ignition Facility), it is not commonly known that Uranium and radioactive substances can be forced into Nuclear Fission using Lasers as well. It shows up in some footnotes in the literature surrounding the National Ignition Facility. This author would like to propose that it has a use in the search for Dark Matter and the ferreting out of possible alternative descriptions of Nuclear Processes and the search for the Graviton. This author has previously proposed that there may be two dimensions of time, one being the Clock time that we associate with General Relativity and the other being a Configuration time that we normally associated with Electron Spin. A powerful X-ray laser could be used to probe the composition of the farthest members of our Solar system, such as the composition of Pluto. Experiments should be able to determine if there is exotic matter present in the outer reaches of the Solar system. Further the Lasers should have enough power to more precisely analyze Nuclear Spin in an attempt to determine if it is really related to Classical Angular Momentum. It may yield a more comprehensive theory linking Classical to Quantum Theory.

  18. Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy.

    PubMed

    Pawlowicz, N P; Groot, M-L; van Stokkum, I H M; Breton, J; van Grondelle, R

    2007-10-15

    The core of photosystem II (PSII) of green plants contains the reaction center (RC) proteins D1D2-cytb559 and two core antennas CP43 and CP47. We have used time-resolved visible pump/midinfrared probe spectroscopy in the region between 1600 and 1800 cm(-1) to study the energy transfer and charge separation events within PSII cores. The absorption difference spectra in the region of the keto and ester chlorophyll modes show spectral evolution with time constants of 3 ps, 27 ps, 200 ps, and 2 ns. Comparison of infrared (IR) difference spectra obtained for the isolated antennas CP43 and CP47 and the D1D2-RC with those measured for the PSII core allowed us to identify the features specific for each of the PSII core components. From the presence of the CP43 and CP47 specific features in the spectra up to time delays of 20-30 ps, we conclude that the main part of the energy transfer from the antennas to the RC occurs on this timescale. Direct excitation of the pigments in the RC evolution associated difference spectra to radical pair formation of PD1+PheoD1- on the same timescale as multi-excitation annihilation and excited state equilibration within the antennas CP43 and CP47, which occur within approximately 1-3 ps. The formation of the earlier radical pair ChlD1+PheoD1-, as identified in isolated D1D2 complexes with time-resolved mid-IR spectroscopy is not observed in the current data, probably because of its relatively low concentration. Relaxation of the state PD1+PheoD1-, caused by a drop in free energy, occurs in 200 ps in closed cores. We conclude that the kinetic model proposed earlier for the energy and electron transfer dynamics within the D1D2-RC, plus two slowly energy-transferring antennas C43 and CP47 explain the complex excited state and charge separation dynamics in the PSII core very well. We further show that the time-resolved IR-difference spectrum of PD1+PheoD1- as observed in PSII cores is virtually identical to that observed in the isolated D1D2-RC

  19. Decay chains and photofission investigation based on nuclear spectroscopy of highly enriched uranium sample.

    PubMed

    Sibczynski, P; Kownacki, J; Syntfeld-Kazuch, A; Moszynski, M; Kisielinski, M; Czarnacki, W; Kosinski, K; Matusiak, M; Klimasz, M; Kowalczyk, M; Abraham, T; Mierzejewski, J; Srebrny, J

    2013-12-01

    Nuclear spectroscopy experiments were performed for 100g metallic uranium rod enriched to 93% (235)U, in order to establish and characterize the most prominent γ-rays in the natural decay series and photofission reaction. Single γ-ray spectra and γ-γ coincidences measurements were conducted before irradiation. The uranium sample was subsequently irradiated with 15 MeV bremsstrahlung photons. Relative intensities of γ-lines and several values of half-lives of the fission fragments decays were determined. The obtained information can be utilized in detection of smuggled nuclear materials and characterization of bulky nuclear waste packages. © 2013 Elsevier Ltd. All rights reserved.

  20. An assessment of coupling algorithms for nuclear reactor core physics simulations

    SciTech Connect

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; Pawlowski, Roger; Toth, Alex; Kelley, C.T.; Evans, Thomas; Philip, Bobby

    2016-04-15

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.

  1. Comparative assessment of out-of-core nuclear thermionic power systems

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Koenig, D. R.; Prickett, W. Z.

    1975-01-01

    The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds.

  2. An assessment of coupling algorithms for nuclear reactor core physics simulations

    NASA Astrophysics Data System (ADS)

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; Pawlowski, Roger; Toth, Alex; Kelley, C. T.; Evans, Thomas; Philip, Bobby

    2016-04-01

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss-Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton-Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.

  3. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE PAGES

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; ...

    2016-04-01

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  4. An assessment of coupling algorithms for nuclear reactor core physics simulations

    SciTech Connect

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; Pawlowski, Roger; Toth, Alex; Kelley, C. T.; Evans, Thomas; Philip, Bobby

    2016-04-01

    Here we evaluate the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product was developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Finally, both criticality (k-eigenvalue) and critical boron search problems are considered.

  5. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE PAGES

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; ...

    2016-02-06

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  6. An assessment of coupling algorithms for nuclear reactor core physics simulations

    SciTech Connect

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; Pawlowski, Roger; Toth, Alex; Kelley, C. T.; Evans, Thomas; Philip, Bobby

    2016-02-06

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency of JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.

  7. Random matrix theory in biological nuclear magnetic resonance spectroscopy.

    PubMed Central

    Lacelle, S

    1984-01-01

    The statistical theory of energy levels or random matrix theory is presented in the context of the analysis of chemical shifts of nuclear magnetic resonance (NMR) spectra of large biological systems. Distribution functions for the spacing between nearest-neighbor energy levels are discussed for uncorrelated, correlated, and random superposition of correlated energy levels. Application of this approach to the NMR spectra of a vitamin, an antibiotic, and a protein demonstrates the state of correlation of an ensemble of energy levels that characterizes each system. The detection of coherent and dissipative structures in proteins becomes feasible with this statistical spectroscopic technique. PMID:6478032

  8. In-reactor testing of the closed cycle gas core reactor: The Nuclear Light Bulb concept

    NASA Astrophysics Data System (ADS)

    Gauntt, R. O.; Slutz, S. A.; Harms, G. A.; Latham, T. S.; Roman, W. C.; Rodgers, R. J.

    1992-10-01

    The Nuclear Light Bulb (NLB) concept is an advanced closed cycle space propulsion rocket engine design that offers unprecidented performance characteristics in terms of specific impulse (greater than 1800 s) and thrust (greater than 445 kN). The NLB is a gas-core nuclear reactor making use of thermal radiation from a high temperature U-plasma core to heat the hydrogen propellant to very high temperatures (greater than 4000 K). Analyses performed in support of the design of in-reactor tests that are planned to be performed in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories in order to demonstrate the technical feasibility of this advanced concept are described. The tests will examine the stability of a hydrodynamically confined fissioning U-plasma under steady and transient conditions. Testing will also involve study of propellant heating by thermal radiation from the plasma and materials performance in the nuclear environment of the NLB. The analyses presented include neutronic performance studies and U-plasma radiation heat-transport studies of small vortex-confined fissioning U-plasma experiments that are irradiated in the ACRE. These analyses indicate that high U-plasma temperatures (4000 to 9000 K) can be sustained in the ACRE for periods of time on the order of 5 to 20 s. These testing conditions are well suited to examine the stability and performance requirements necessary to demonstrate the feasibility of this concept.

  9. Quantitative Analysis of Nail Polish Remover Using Nuclear Magnetic Resonance Spectroscopy Revisited

    ERIC Educational Resources Information Center

    Hoffmann, Markus M.; Caccamis, Joshua T.; Heitz, Mark P.; Schlecht, Kenneth D.

    2008-01-01

    Substantial modifications are presented for a previously described experiment using nuclear magnetic resonance (NMR) spectroscopy to quantitatively determine analytes in commercial nail polish remover. The revised experiment is intended for a second- or third-year laboratory course in analytical chemistry and can be conducted for larger laboratory…

  10. Quantitative Analysis of Nail Polish Remover Using Nuclear Magnetic Resonance Spectroscopy Revisited

    ERIC Educational Resources Information Center

    Hoffmann, Markus M.; Caccamis, Joshua T.; Heitz, Mark P.; Schlecht, Kenneth D.

    2008-01-01

    Substantial modifications are presented for a previously described experiment using nuclear magnetic resonance (NMR) spectroscopy to quantitatively determine analytes in commercial nail polish remover. The revised experiment is intended for a second- or third-year laboratory course in analytical chemistry and can be conducted for larger laboratory…

  11. Xenobiotic Monitoring in Plants by 19F and 1H Nuclear Magnetic Resonance Imaging and Spectroscopy

    PubMed Central

    Rollins, Andrew; Barber, Jill; Elliott, Raymond; Wood, Brian

    1989-01-01

    19F and 1H nuclear magnetic resonance imaging and spectroscopy have been used to monitor the uptake of trifluoroacetic acid in stems and leaves of Lycopersicon esculentum. The movement and location of a xenobiotic have been demonstrated in vivo by a noninvasive technique. Images Figure 5 PMID:16667169

  12. Design and Performance of South Ukraine Nuclear Power Plant Mixed Cores

    SciTech Connect

    Abdullayev, A. M.; Baydulin, V.; Zhukov, A. I.; Latorre, Richard

    2011-09-24

    In 2010, 42 Westinghouse fuel assemblies (WFAs) were loaded into the core of South Ukraine Nuclear Power Plant (SUNPP) Unit 3 after four successful cycles with 6 Westinghouse Lead Test Assemblies. The scope of safety substantiating documents required for the regulatory approval of this mixed core was extended considerably, particularly with development and implementation of new methodologies and 3-D kinetic codes. Additional verification for all employed codes was also performed. Despite the inherent hydraulic non-uniformity of a mixed core, it was possible to demonstrate that all design and operating restrictions for three different types of fuel (TVS-M, TVSA and WFA) loaded in the core were conservatively met. This paper provides the main results from the first year of operation of the core loaded with 42 WFAs, the predicted parameters for the transition and equilibrium cycles with WFAs, comparisons of predicted versus measured core parameters, as well as the acceptable margin evaluation results for reactivity accidents using the 3-D kinetic codes. To date WFA design parameters have been confirmed by operation experience.

  13. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre.

    PubMed

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-06-17

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the (1)S0-(3)P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

  14. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    PubMed Central

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  15. Probing inhomogeneous composition in core/shell nanowires by Raman spectroscopy

    SciTech Connect

    Amaduzzi, F.; Alarcón-Lladó, E.; Russo-Averchi, E.; Matteini, F.; Heiß, M.; Tütüncüoglu, G.; Conesa-Boj, S.; Fontcuberta i Morral, A.; Mata, M. de la; Arbiol, J.

    2014-11-14

    Due to its non-destructive and its micro-spatial resolution, Raman spectroscopy is a powerful tool for a rapid structural and compositional characterization of nanoscale materials. Here, by combining the compositional dependence of the Raman peaks with the existence of photonic modes in the nanowires, we address the composition inhomogeneities of Al{sub x}Ga{sub 1−x}As/GaAs core/shell structures. The experimental results are validated with complementary chemical composition maps of the nanowire cross-sections and finite-difference time-domain simulations of the photonic modes.

  16. Continuous Wave Stimulated Raman Spectroscopy Inside a Hollow Core Photonic Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Domenech, Jose L.; Cueto, Maite

    2013-06-01

    Hollow-core photonic crystal fibers (HCPCF) have raised new opportunities to study light-matter interaction. Dielectric or metallic capillaries are intrinsically lossy, making poor light guides. In contrast, HCPCFs can guide light quite efficiently, due to the band-gap effect produced by an array of smaller channels which surrounds a central hollow core with a few μm diameter. The tight confinement of light inside the core, that can be filled with gases, as well as a long interaction length, enhance multiple nonlinear phenomena, making it possible to devise new ways to do low signal level spectroscopy, as is the case of high resolution stimulated Raman spectroscopy (SRS). A. Owyoung demonstrated high resolution continuous wave SRS in 1978. Shortly afterwards, seeking higher sensitivity, he developed the quasi-continuous SRS technique (a high peak power pump laser, interacting with a low power cw probe laser). That variant remains today the best compromise between resolution and sensitivity for gas-phase Raman spectroscopy. In this work, we show the possibility of fully cw stimulated Raman spectroscopy, using a gas cell built around a HCPCF to overcome the limitations posed by the weakness of the stimulated Raman effect when not using pulsed sources. The interaction length (1.2 m), longer than that of a multiple pass refocusing cell, and the narrow diameter of the core (4.8 μm), can compensate for the much lower laser powers used in the cw set-up. The experimental complexity is considerably reduced and the instrumental resolution is at the 10's of MHz level, limited, with our fiber, by transit time effects. At present, we have demonstrated the feasibility of the experiment, a sensitivity enhancement of ˜ 6000 over the single focus regime, and a spectral resolution better than 0.005 wn in the unresolved Q-branch of the ν_1 component of the Fermi dyad of CO_2 at 1388 wn. Other examples of rotationally resolved spectra will be shown: the Q branch of O_2 at 1555 wn

  17. Double-core-hole spectroscopy for chemical analysis with an intense X-ray femtosecond laser

    PubMed Central

    Berrah, Nora; Fang, Li; Murphy, Brendan; Osipov, Timur; Ueda, Kiyoshi; Kukk, Edwin; Feifel, Raimund; van der Meulen, Peter; Salen, Peter; Schmidt, Henning T.; Thomas, Richard D.; Larsson, Mats; Richter, Robert; Prince, Kevin C.; Bozek, John D.; Bostedt, Christoph; Wada, Shin-ichi; Piancastelli, Maria N.; Tashiro, Motomichi; Ehara, Masahiro

    2011-01-01

    Theory predicts that double-core-hole (DCH) spectroscopy can provide a new powerful means of differentiating between similar chemical systems with a sensitivity not hitherto possible. Although DCH ionization on a single site in molecules was recently measured with double- and single-photon absorption, double-core holes with single vacancies on two different sites, allowing unambiguous chemical analysis, have remained elusive. Here we report that direct observation of double-core holes with single vacancies on two different sites produced via sequential two-photon absorption, using short, intense X-ray pulses from the Linac Coherent Light Source free-electron laser and compare it with theoretical modeling. The observation of DCH states, which exhibit a unique signature, and agreement with theory proves the feasibility of the method. Our findings exploit the ultrashort pulse duration of the free-electron laser to eject two core electrons on a time scale comparable to that of Auger decay and demonstrate possible future X-ray control of physical inner-shell processes. PMID:21969540

  18. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  19. Benchmark Calculations for Reflector Effect in Fast Cores by Using the Latest Evaluated Nuclear Data Libraries

    NASA Astrophysics Data System (ADS)

    Fukushima, M.; Ishikawa, M.; Numata, K.; Jin, T.; Kugo, T.

    2014-04-01

    Benchmark calculations for reflector effects in fast cores were performed to validate the reliability of scattering data of structural materials in the major evaluated nuclear data libraries, JENDL-4.0, ENDF/B-VII.1 and JEFF-3.1.2. The criticalities of two FCA and two ZPR cores were analyzed by using a continuous energy Monte Carlo calculation code. The ratios of calculation to experimental values were compared between these cores and the sensitivity analyses were performed. From the results, the replacement reactivity from blanket to SS and Na reflector is better evaluated by JENDL-4.0 than by ENDF/B-VII.1 mainly due to the μbar values of Na and 52Cr.

  20. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments.

    PubMed

    Barski, Michal; Brennan, Benjamin; Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M; Schwarz-Linek, Ulrich

    2017-09-15

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.

  1. X-ray Spectroscopy of the Andromeda Galaxy's Nuclear Feedback

    NASA Astrophysics Data System (ADS)

    Zhang, Shuinai; Wang, Daniel; Foster, Adam; Ji, Li; Li, Zhiyuan; Sun, Wei; Huang, Shuiyao

    2017-08-01

    The central region of the Andromeda galaxy (M31) is currently quiescent in both AGN and star formation, but shows strong indications for recent AGN activity. The X-ray grating spectra from the XMM-Newton observations show enhanced forbidden lines of He-like Oxygen, Neon, and Nitrogen Kalpha triplets, as well as signatures for multi-temperature diffuse hot gas. We find that these results can be well interpreted by an AGN-relic model, which we have developed, suggesting that the galaxy was a bright AGN about half a million years ago. This study demonstrates the power of the X-ray spectroscopy, which will be greatly improved by upcoming X-ray missions, in revealing the recurrence history of AGN and the galaxy feedback in general.

  2. Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity

    SciTech Connect

    Sarmiento, L. G. Rudolph, D.

    2016-07-07

    With the aid of a novel combination of existing equipment – JYFLTRAP and the TASISpec decay station – it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the I{sup π} = 19/2{sup −}, 3174-keV isomer in the N = Z − 1 nucleus {sup 53}Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into “open quantum systems”. The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.

  3. Nuclear Fission and Fission{minus}Product Spectroscopy: Second International Workshop. Proceedings

    SciTech Connect

    Fioni, G.; Faust, H.; Oberstedt, S.; Hambsch, F.

    1998-10-01

    These proceedings represent papers presented at the Second International Workshop on Nuclear Fission and Fission{minus}Product Spectroscopy held in Seyssins, France in April, 1998. The objective was to bring together the specialists in the field to overview the situation and to assess our present understanding of the fission process. The topics presented at the conference included nuclear waste management, incineration, neutron driven transmutation, leakage etc., radioactive beams, neutron{minus}rich nuclei, neutron{minus}induced and spontaneous fission, ternary fission phenomena, angular momentum, parity and time{minus}reversal phenomena, and nuclear fission at higher excitation energy. Modern spectroscopic tools for gamma spectroscopy as applied to fission were also discussed. There were 53 papers presented at the conference,out of which 3 have been abstracted for the Energy,Science and Technology database.(AIP)

  4. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    PubMed

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.

  5. Nuclear Dynamical Correlation Effects in X-ray Spectroscopy from a Theoretical Time-Domain Perspective.

    PubMed

    Karsten, Sven; Ivanov, Sergei D; Aziz, Saadullah G; Bokarev, Sergey I; Kühn, Oliver

    2017-03-02

    To date X-ray spectroscopy has become a routine tool that can reveal highly local and element-specific information on the electronic structure of atoms in complex environments. Here, we focus on nuclear dynamical correlation effects in X-ray spectra and develop a rigorous time-correlation function method employing ground state classical molecular dynamics simulations. The importance of nuclear correlation phenomena is demonstrated by comparison against the results from the conventional sampling approach performed on the same data set for gas phase water. In contrast to the first-order absorption, second-order resonant inelastic scattering spectra exhibit pronounced fingerprints of nuclear motions. The developed methodology is not biased to a particular electronic structure method and, owing to its generality, can be applied to, e.g., X-ray photoelectron and Auger spectroscopies.

  6. One- and Two-Dimensional Nuclear Magnetic Resonance Spectroscopy with a Diamond Quantum Sensor

    NASA Astrophysics Data System (ADS)

    Boss, J. M.; Chang, K.; Armijo, J.; Cujia, K.; Rosskopf, T.; Maze, J. R.; Degen, C. L.

    2016-05-01

    We report on Fourier spectroscopy experiments performed with near-surface nitrogen-vacancy centers in a diamond chip. By detecting the free precession of nuclear spins rather than applying a multipulse quantum sensing protocol, we are able to unambiguously identify the NMR species devoid of harmonics. We further show that, by engineering different Hamiltonians during free precession, the hyperfine coupling parameters as well as the nuclear Larmor frequency can be selectively measured with up to five digits of precision. The protocols can be combined to demonstrate two-dimensional Fourier spectroscopy. Presented techniques will be useful for mapping nuclear coordinates in molecules deposited on diamond sensor chips, en route to imaging their atomic structure.

  7. Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Langanke, K.; Martínez-Pinedo, G.

    2013-12-01

    We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.

  8. Nuclear spectroscopy with Geant4. The superheavy challenge

    NASA Astrophysics Data System (ADS)

    Sarmiento, Luis G.

    2016-12-01

    The simulation toolkit Geant4 was originally developed at CERN for high-energy physics. Over the years it has been established as a swiss army knife not only in particle physics but it has seen an accelerated expansion towards nuclear physics and more recently to medical imaging and γ- and ion- therapy to mention but a handful of new applications. The validity of Geant4 is vast and large across many particles, ions, materials, and physical processes with typically various different models to choose from. Unfortunately, atomic nuclei with atomic number Z > 100 are not properly supported. This is likely due to the rather novelty of the field, its comparably small user base, and scarce evaluated experimental data. To circumvent this situation different workarounds have been used over the years. In this work the simulation toolkit Geant4 will be introduced with its different components and the effort to bring the software to the heavy and superheavy region will be described.

  9. New Approaches to Quantum Computing using Nuclear Magnetic Resonance Spectroscopy

    SciTech Connect

    Colvin, M; Krishnan, V V

    2003-02-07

    The power of a quantum computer (QC) relies on the fundamental concept of the superposition in quantum mechanics and thus allowing an inherent large-scale parallelization of computation. In a QC, binary information embodied in a quantum system, such as spin degrees of freedom of a spin-1/2 particle forms the qubits (quantum mechanical bits), over which appropriate logical gates perform the computation. In classical computers, the basic unit of information is the bit, which can take a value of either 0 or 1. Bits are connected together by logic gates to form logic circuits to implement complex logical operations. The expansion of modern computers has been driven by the developments of faster, smaller and cheaper logic gates. As the size of the logic gates become smaller toward the level of atomic dimensions, the performance of such a system is no longer considered classical but is rather governed by quantum mechanics. Quantum computers offer the potentially superior prospect of solving computational problems that are intractable to classical computers such as efficient database searches and cryptography. A variety of algorithms have been developed recently, most notably Shor's algorithm for factorizing long numbers into prime factors in polynomial time and Grover's quantum search algorithm. The algorithms that were of only theoretical interest as recently, until several methods were proposed to build an experimental QC. These methods include, trapped ions, cavity-QED, coupled quantum dots, Josephson junctions, spin resonance transistors, linear optics and nuclear magnetic resonance. Nuclear magnetic resonance (NMR) is uniquely capable of constructing small QCs and several algorithms have been implemented successfully. NMR-QC differs from other implementations in one important way that it is not a single QC, but a statistical ensemble of them. Thus, quantum computing based on NMR is considered as ensemble quantum computing. In NMR quantum computing, the spins with

  10. The Sensitivity of Core-collapse Supernovae to Nuclear Electron Capture

    NASA Astrophysics Data System (ADS)

    Sullivan, Chris; O'Connor, Evan; Zegers, Remco G. T.; Grubb, Thomas; Austin, Sam M.

    2016-01-01

    A weak-rate library aimed at investigating the sensitivity of astrophysical environments to variations of electron-capture rates on medium-heavy nuclei has been developed. With this library, the sensitivity of the core-collapse and early post-bounce phases of core-collapse supernovae to nuclear electron capture is examined. The rates are adjusted by factors consistent with uncertainties indicated by comparing theoretical rates to those deduced from charge-exchange and β-decay measurements. To ensure a model-independent assessment, sensitivity studies across a comprehensive set of progenitors and equations of state are performed. We find a +16/-4% range in the mass of the inner core at shock formation and a ±20% range of peak {ν }e luminosity during the deleptonization burst. These ranges are five times as large as those seen from a separate progenitor study, where we evaluate the sensitivity of these parameters to 32 presupernova models. Additionally, the simulations are found to be more sensitive to a reduction in electron-capture rates than an enhancement, and specifically to the reduction in rates for neutron-rich nuclei near the N = 50 closed neutron shell. As measurements for medium-heavy (A\\gt 65) and neutron-rich nuclei are sparse, and because accurate theoretical models that account for nuclear structure considerations of individual nuclei are not readily available, rates for these nuclei may be overestimated. If more accurate estimates confirm this, results from this study indicate that significant changes to the core-collapse trajectory are expected. For this reason, experimental and theoretical efforts should focus on this region of the nuclear chart.

  11. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    NASA Astrophysics Data System (ADS)

    Haverkort, Maurits W.

    2016-05-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty, a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org.

  12. Method of using a nuclear magnetic resonance spectroscopy standard

    DOEpatents

    Spicer, Leonard D.; Bennett, Dennis W.; Davis, Jon F.

    1985-01-01

    (CH.sub.3).sub.3 SiNSO is produced by the reaction of ((CH.sub.3).sub.3 Si).sub.2 NH with SO.sub.2. Also produced in the reaction are ((CH.sub.3).sub.3 Si).sub.2 O and a new solid compound [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ]. Both (CH.sub.3).sub.3 SiNSO and [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] have fluorescent properties. The reaction of the subject invention is used in a method of measuring the concentration of SO.sub.2 pollutants in gases. By the method, a sample of gas is bubbled through a solution of ((CH.sub.3).sub.3 Si).sub.2 NH, whereby any SO.sub.2 present in the gas will react to produce the two fluorescent products. The measured fluorescence of these products can then be used to calculate the concentration of SO.sub.2 in the original gas sample. The solid product [NH.sub.4 ][(CH.sub.3).sub.3 SiOSO.sub.2 ] may be used as a standard in solid state NMR spectroscopy, wherein the resonance peaks of either .sup.1 H, .sup.13 C, .sup.15 N, or .sup.29 Si may be used as a reference.

  13. Chemical structures in pyrodextrin determined by nuclear magnetic resonance spectroscopy.

    PubMed

    Bai, Yanjie; Shi, Yong-Cheng

    2016-10-20

    Glycosidic linkages in a pyrodextrin were identified by NMR spectroscopy for the first time. Pyrodextrin was prepared by slurrying waxy maize starch at pH 3, filtering and drying at 40°C to 10-15% moisture content, then heating at 170°C for 4h. (1)H and (13)C NMR resonances of the pyrodextrin were assigned with the assistance of 2D techniques including COSY, TOCSY, HSQC, and HMBC, all measured on a 500MHz instrument. During dextrinization, native waxy maize starch was hydrolyzed and extensively branched with new glycosidic linkages. The resulting pyrodextrin became 100% soluble in water and produced lower viscosity solutions at 30% solids. There were only 1.2% reducing ends (α-form) detected in the pyrodextrin, but 1,6-anhydro-β-d-glucopyranosyl units accounted for 5.2% of repeating units and they were thought to be at the potential reducing end. New glycosyl linkages including α-1,6, β-1,6, α-1,2, and β-1,2 were identified. The total non-α-1,4 linkages in the pyrodextrin were about 17.8% compared to 5.8% in a maltodextrin prepared by α-amylase digestion. Transglycosidation and depolymerization occurred during dextrinization, and the resulting pyrodextrin was highly branched.

  14. Dynamic nuclear polarization NMR spectroscopy of microcrystalline solids.

    PubMed

    Rossini, Aaron J; Zagdoun, Alexandre; Hegner, Franziska; Schwarzwälder, Martin; Gajan, David; Copéret, Christophe; Lesage, Anne; Emsley, Lyndon

    2012-10-10

    Dynamic nuclear polarization (DNP) solid-state NMR has been applied to powdered microcrystalline solids to obtain sensitivity enhancements on the order of 100. Glucose, sulfathiazole, and paracetamol were impregnated with bis-nitroxide biradical (bis-cyclohexyl-TEMPO-bisketal, bCTbK) solutions of organic solvents. The organic solvents were carefully chosen to be nonsolvents for the compounds, so that DNP-enhanced solid-state NMR spectra of the unaltered solids could be acquired. A theoretical model is presented that illustrates that for externally doped organic solids characterized by long spin-lattice relaxation times (T(1)((1)H) > 200 s), (1)H-(1)H spin diffusion can relay enhanced polarization over micrometer length scales yielding substantial DNP enhancements (ε). ε on the order of 60 are obtained for microcrystalline glucose and sulfathiazole at 9.4 T and with temperatures of ca. 105 K. The large gain in sensitivity enables the rapid acquisition of (13)C-(13)C correlation spectra at natural isotopic abundance. It is anticipated that this will be a general method for enhancing the sensitivity of solid-state NMR experiments of organic solids.

  15. Conformational characterization of ceramides by nuclear magnetic resonance spectroscopy.

    PubMed Central

    Li, Li; Tang, Xiaoping; Taylor, K Grant; DuPré, Donald B; Yappert, M Cecilia

    2002-01-01

    Ceramide (Cer) has been identified as an active lipid second messenger in the regulation of cell growth, differentiation, and apoptosis. Its analog, dihydroceramide, without the 4 to 5 trans double bond in the sphingoid backbone lacks these biological effects. To establish the conformational features that distinguish ceramide from its analogs, nuclear magnetic resonance spectral data were acquired for diluted samples of ceramides (C2- and C18-Cer), dihydroceramide (C16-DHCer), and deoxydihydroceramide (C18-DODHCer). Our results suggest that in both C2- and C18-Cer, an H-bond network is formed in which the amide proton NH is donated to the OH groups on carbons C1 and C3 of the sphingosine backbone. Two tightly bound water molecules appear to stabilize this network by participating in flip-flop interactions with the hydroxyl groups. In DHCer, the lack of the trans double bond leads to a conformational distortion of this H-bonding motif. Without the critical double bond, the degree with which water molecules stabilize the H bonds between the two OH groups of the sphingolipid is reduced. This structural alteration might preclude the participation of DHCer in signaling-related interactions with cellular targets. PMID:11916863

  16. Instrumental correction of counting losses in nuclear pulse spectroscopy

    NASA Astrophysics Data System (ADS)

    Westphal, G. P.

    1985-05-01

    The virtual pulse generator (VPG) method of counting loss correction [1-3] is the first truly quantitative instrumental correction procedure taking into account both dead-time and pileup losses of a spectroscopy system over its full operative range of counting rates without the need for fast signal detection channels [4-6] or ambiguous post-processing of data [7,8], or the necessity to process artificial test pulses in addition to the detector signals [9]. Consequently, the VPG method is not limited in test frequency thus enabling the on-line generation of loss correction factors of sufficient statistical accuracy within extremely short periods of time. By adding weighting factors to the channels addressed by the analog-to-digital converter during the course of the measurement (instead of one as in conventional pulse height analysis) real-time correction of counting losses is made possible with millisecond time of response. Increased statistical accuracy may be achieved when using the VPG principle for loss-dependent prolonging of the measuring time similar to the live-time clock method. Both real-time and live-time modes of operation are provided for in a commercially available VPG correction module [10]. After a description of the set-up procedure of the module in connection with a likewise commercial semi-Gaussian shaping amplifier the performance of the VPG correction is exemplified to a level of 0.2% with the aid of repetitive two-source measurements in both the real-time and the live-time mode of operation.

  17. Low-energy nuclear spectroscopy in a microscopic multiphonon approach

    NASA Astrophysics Data System (ADS)

    Lo Iudice, N.; Ponomarev, V. Yu; Stoyanov, Ch; Sushkov, A. V.; Voronov, V. V.

    2012-04-01

    The low-lying spectra of heavy nuclei are investigated within the quasiparticle-phonon model. This microscopic approach goes beyond the quasiparticle random-phase approximation by treating a Hamiltonian of separable form in a microscopic multiphonon basis. It is therefore able to describe the anharmonic features of collective modes as well as the multiphonon states, whose experimental evidence is continuously growing. The method can be put in close correspondence with the proton-neutron interacting boson model. By associating the microscopic isoscalar and isovector quadrupole phonons with proton-neutron symmetric and mixed-symmetry quadrupole bosons, respectively, the microscopic states can be classified, just as in the algebraic model, according to their phonon content and their symmetry. In addition, these states disclose the nuclear properties which are to be ascribed to genuine shell effects, not included in the algebraic approach. Due to its flexibility, the method can be implemented numerically for systematic studies of spectroscopic properties throughout entire regions of vibrational nuclei. The spectra and multipole transition strengths so computed are in overall good agreement with the experimental data. By exploiting the correspondence of the method with the interacting boson model, it is possible to embed the microscopic states into this algebraic frame and, therefore, face the study of nuclei far from shell closures, not directly accessible to merely microscopic approaches. Here, it is shown how this task is accomplished through systematic investigations of magnetic dipole and, especially, electric dipole modes along paths moving from the vibrational to the transitional regions. The method is very well suited to the study of well-deformed nuclei. It provides reliable descriptions of low-lying magnetic as well as electric multipole modes of nuclei throughout the rare-earth and actinide regions. Attention is focused here on the low-lying 0+ states

  18. DC SQUID Spectrometers for Nuclear Quadrupole and Low-Field Nuclear Magnetic Resonance Spectroscopy

    SciTech Connect

    TonThat, Dinh M.

    1998-04-01

    The dc Superconducting Quantum Interference Device (SQUJD) is a very sensitive detector of magnetic flux, with a typical flux noise of the order of 1 μΦ0Hz-1/2 at liquid helium temperature (Φ0=h/2e). This inherent flux sensitivity of the SQUID is used in a spectrometer for the detection of nuclear magnetic resonance (NMR.)and nuclear quadruple resonance (NQR). The processing magnetic field from the nuclear spins is coupled to the SQUID by mean of a flux transformer. The SQUID NMR spectrometer is used to measure the longitudinal relaxation time T1 of solid 129Xe at 4.2 K down to 0.1 mT.

  19. Evaluation for 4S core nuclear design method through integration of benchmark data

    SciTech Connect

    Nagata, A.; Tsuboi, Y.; Moriki, Y.; Kawashima, M.

    2012-07-01

    The 4S is a sodium-cooled small fast reactor which is reflector-controlled for operation through core lifetime about 30 years. The nuclear design method has been selected to treat neutron leakage with high accuracy. It consists of a continuous-energy Monte Carlo code, discrete ordinate transport codes and JENDL-3.3. These two types of neutronic analysis codes are used for the design in a complementary manner. The accuracy of the codes has been evaluated by analysis of benchmark critical experiments and the experimental reactor data. The measured data used for the evaluation is critical experimental data of the FCA XXIII as a physics mockup assembly of the 4S core, FCA XVI, FCA XIX, ZPR, and data of experimental reactor JOYO MK-1. Evaluated characteristics are criticality, reflector reactivity worth, power distribution, absorber reactivity worth, and sodium void worth. A multi-component bias method was applied, especially to improve the accuracy of sodium void reactivity worth. As the result, it has been confirmed that the 4S core nuclear design method provides good accuracy, and typical bias factors and their uncertainties are determined. (authors)

  20. Scientific opportunities in nuclear resonance spectroscopy from source-driven revolution.

    SciTech Connect

    Shenoy, G. K.; Rohlsberger, R.; X-Ray Science Division; DESY

    2008-02-01

    From the beginning of its discovery the Moessbauer effect has continued to be one of the most powerful tools with broad applications in diverse areas of science and technology. With the advent of synchrotron radiation sources such as the Advanced Photon Source (APS), the European Synchrotron Radiation Facility (ESRF) and the Super Photon Ring-8 (SPring-8), the tool has enlarged its scope and delivered new capabilities. The popular techniques most generally used in the field of materials physics, chemical physics, geoscience, and biology are hyperfine spectroscopy via elastic nuclear forward scattering (NFS), vibrational spectroscopy via nuclear inelastic scattering (NRIXS), and, to a lesser extent, diffusional dynamics from quasielastic nuclear forward scattering (QNFS). As we look ahead, new storage rings with enhanced brilliance such as PETRA-III under construction at DESY, Hamburg, and PEP-III in its early design stage at SLAC, Stanford, will provide new and unique science opportunities. In the next two decades, x-ray free-electron lasers (XFELs), based both on self-amplified spontaneous emission (SASE-XFELs) and a seed (SXFELs), with unique time structure, coherence and a five to six orders higher average brilliance will truly revolutionize nuclear resonance applications in a major way. This overview is intended to briefly address the unique radiation characteristics of new sources on the horizon and to provide a glimpse of scientific prospects and dreams in the nuclear resonance field from the new radiation sources. We anticipate an expanded nuclear resonance research activity with applications such as spin and phonon mapping of a single nanostructure and their assemblies, interfaces, and surfaces; spin dynamics; nonequilibrium dynamics; photochemical reactions; excited-state spectroscopy; and nonlinear phenomena.

  1. A time-correlation function approach to nuclear dynamical effects in X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Karsten, Sven; Bokarev, Sergey I.; Aziz, Saadullah G.; Ivanov, Sergei D.; Kühn, Oliver

    2017-06-01

    Modern X-ray spectroscopy has proven itself as a robust tool for probing the electronic structure of atoms in complex environments. Despite working on energy scales that are much larger than those corresponding to nuclear motions, taking nuclear dynamics and the associated nuclear correlations into account may be of importance for X-ray spectroscopy. Recently, we have developed an efficient protocol to account for nuclear dynamics in X-ray absorption and resonant inelastic X-ray scattering spectra [Karsten et al., J. Phys. Chem. Lett. 8, 992 (2017)], based on ground state molecular dynamics accompanied with state-of-the-art calculations of electronic excitation energies and transition dipoles. Here, we present an alternative derivation of the formalism and elaborate on the developed simulation protocol using gas phase and bulk water as examples. The specific spectroscopic features stemming from the nuclear motions are analyzed and traced down to the dynamics of electronic energy gaps and transition dipole correlation functions. The observed tendencies are explained on the basis of a simple harmonic model, and the involved approximations are discussed. The method represents a step forward over the conventional approaches that treat the system in full complexity and provides a reasonable starting point for further improvements.

  2. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1978-01-01

    Thermionic energy conversion (TEC) potentialities for nuclear electric propulsion (NEP) are examined. Considering current designs, their limitations, and risks raises critical questions about the use of TEC for NEP. Apparently a reactor cooled by hotter-than-1675 K heat pipes has good potentialities. TEC with higher temperatures and greater power densities than the currently proposed 1650 K, 5-to-6 W/sq cm version offers substantial gains. Other approaches to high-temperature electric isolation appear also promising. A high-power-density, high-temperature TEC for NEP appears, therefore, attainable. It is recommended to optimize out-of-core thermionic energy conversion for nuclear electric propulsion. Although current TEC designs for NEP seem unnecessary compared with Brayton versions, large gains are apparently possible with increased temperatures and greater power densities.

  3. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    SciTech Connect

    Prabhu Gaunkar, N. Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  4. Nuclear actin-related proteins at the core of epigenetic control.

    PubMed

    Meagher, Richard B; Kandasamy, Muthugapatti K; Smith, Aaron P; McKinney, Elizabeth C

    2010-05-01

    Nuclear Actin-Related Proteins (ARPs) and actin combine as heterodimers to bind a large helicase subunit and form a core complex essential to the assembly and function of most chromatin remodeling and modifying machines. They are the most common shared subunits of these large and diverse assemblies in eukaryotes. We recently argued that most nuclear ARPs evolved directly from actin prior to the divergence of the eukaryotic kingdoms and did not evolve from pre-existing ARPs.2 Arabidopsis plants defective in nuclear ARP4, ARP5, ARP6, or ARP7 have extreme developmental phenotypes. Our recent publication demonstrates that ARP5-defective plants are not only dwarfed and have aberrant cell sizes, but are also hypersensitive to mutagenic agents that cause double strand DNA breaks.5 In Smith et al.6 we show that ARP6-defective plants, in addition to their extreme developmental phenotypes like small organs and early flowering, present an apparent "Phosphate Starvation Response" with strong morphological and molecular phenotypes. Herein, we interpret our latest data in the light of a hypothesis stating that in addition to their roles in overcoming DNA compaction that affects basal gene expression and silencing, nuclear ARP-containing chromatin complexes exert primary epigenetic control over high-level regulatory factors.

  5. Nuclear structure and the fate of core collapse (Type II) supernova

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2014-08-01

    For a long time Gerry Brown and his collaborator Hans Bethe considered the question of the final fate of a core collapse (Type II) supernova. Recalling ideas from nuclear structure on Kaon condensate and a soft equation of state of the dense nuclear matter they concluded that progenitor stars with mass as low as 17-18M⊙ (including supernova 1987A) could collapse to a small mass black hole with a mass just beyond 1.5M⊙, the upper bound they derive for a neutron star. We discuss another nuclear structure effect that determines the carbon to oxygen ratio (C/O) at the end of helium burning. This ratio also determines the fate of a Type II supernova with a carbon rich progenitor star producing a neutron star and oxygen rich collapsing to a black hole. While the C/O ratio is one of the most important nuclear inputs to stellar evolution it is still not known with sufficient accuracy. We discuss future efforts to measure with gamma-beam and TPC detector of the C12(α,γ)O16 reaction that determines the C/O ratio in stellar helium burning.

  6. Nuclear Data Uncertainties for Typical LWR Fuel Assemblies and a Simple Reactor Core

    NASA Astrophysics Data System (ADS)

    Rochman, D.; Leray, O.; Hursin, M.; Ferroukhi, H.; Vasiliev, A.; Aures, A.; Bostelmann, F.; Zwermann, W.; Cabellos, O.; Diez, C. J.; Dyrda, J.; Garcia-Herranz, N.; Castro, E.; van der Marck, S.; Sjöstrand, H.; Hernandez, A.; Fleming, M.; Sublet, J.-Ch.; Fiorito, L.

    2017-01-01

    The impact of the current nuclear data library covariances such as in ENDF/B-VII.1, JEFF-3.2, JENDL-4.0, SCALE and TENDL, for relevant current reactors is presented in this work. The uncertainties due to nuclear data are calculated for existing PWR and BWR fuel assemblies (with burn-up up to 40 GWd/tHM, followed by 10 years of cooling time) and for a simplified PWR full core model (without burn-up) for quantities such as k∞, macroscopic cross sections, pin power or isotope inventory. In this work, the method of propagation of uncertainties is based on random sampling of nuclear data, either from covariance files or directly from basic parameters. Additionally, possible biases on calculated quantities are investigated such as the self-shielding treatment. Different calculation schemes are used, based on CASMO, SCALE, DRAGON, MCNP or FISPACT-II, thus simulating real-life assignments for technical-support organizations. The outcome of such a study is a comparison of uncertainties with two consequences. One: although this study is not expected to lead to similar results between the involved calculation schemes, it provides an insight on what can happen when calculating uncertainties and allows to give some perspectives on the range of validity on these uncertainties. Two: it allows to dress a picture of the state of the knowledge as of today, using existing nuclear data library covariances and current methods.

  7. FORMATION AND EVOLUTION OF NUCLEAR STAR CLUSTERS WITH IN SITU STAR FORMATION: NUCLEAR CORES AND AGE SEGREGATION

    SciTech Connect

    Aharon, Danor; Perets, Hagai B.

    2015-02-01

    Nuclear stellar cluster (NSCs) are known to exist around massive black holes (MBHs) in galactic nuclei. Two formation scenarios were suggested for their origin: (1) buildup of NSCs from consecutive infall of stellar clusters and (2) continuous in situ star formation. Though the cluster infall scenario has been extensively studied, the in situ formation scenario has been hardly explored. Here we use Fokker-Planck (FP) calculations to study the effects of star formation on the buildup of NSCs and its implications for their long-term evolution and their resulting structure. We use the FP equation to describe the evolution of stellar populations and add appropriate source terms to account for the effects of newly formed stars. We show that continuous star formation even 1-2 pc away from the MBH can lead to the buildup of an NSC with properties similar to those of the Milky Way NSC. We find that the structure of the old stellar population in the NSC with in situ star formation could be very similar to the steady-state Bahcall-Wolf cuspy structure. However, its younger populations do not yet achieve a steady state. In particular, formed/evolved NSCs with in situ star formation contain differential age-segregated stellar populations that are not yet fully mixed. Younger stellar populations formed in the outer regions of the NSC have a cuspy structure toward the NSC outskirts, while showing a core-like distribution inward, with younger populations having larger core sizes. In principal, such a structure can give rise to an apparent core-like radial distribution of younger stars, as observed in the Galactic center.

  8. BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III

    SciTech Connect

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.

    1981-06-01

    This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given.

  9. The scalability of OTR (out-of-core thermionic reactor) space nuclear power systems

    SciTech Connect

    Gallup, D.R.

    1990-03-01

    In this document, masses of the STAR-C power system and an optimized out-of-core thermionic reactor (OTR) power system versus power level are investigated. The impacts of key system parameters on system performance are also addressed. The STAR-C is mass competitive below about 15 kWe, but at higher power levels the scalability is relatively poor. An optimized OR is the least massive space nuclear power system below 25 kWe, and scales well to 50 kWe. The system parameters that have a significant impact on the scalability of the STAR-C are core thermal flux, thermionic converter efficiency, and core length to diameter ratio. The emissivity of the core surface is shown to be a relatively unimportant parameter. For an optimized OR power system, the most significant system parameter is the maximum allowable fuel temperature. It is also shown that if advanced radiation-hardened electronics are used in the satellite payload, a very large mass savings is realized. 10 refs., 23 figs., 7 tabs.

  10. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  11. Key metabolites in tissue extracts of Elliptio complanata identified using (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Hurley-Sanders, Jennifer L; Levine, Jay F; Nelson, Stacy A C; Law, J M; Showers, William J; Stoskopf, Michael K

    2015-01-01

    We used (1)H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology.

  12. Billion-fold enhancement in sensitivity of nuclear magnetic resonance spectroscopy for magnesium ions in solution.

    PubMed

    Gottberg, Alexander; Stachura, Monika; Kowalska, Magdalena; Bissell, Mark L; Arcisauskaite, Vaida; Blaum, Klaus; Helmke, Alexander; Johnston, Karl; Kreim, Kim; Larsen, Flemming H; Neugart, Rainer; Neyens, Gerda; Garcia Ruiz, Ronald F; Szunyogh, Daniel; Thulstrup, Peter W; Yordanov, Deyan T; Hemmingsen, Lars

    2014-12-15

    β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. (31)Mg β-NMR spectra are measured for as few as 10(7) magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry.

  13. Key metabolites in tissue extracts of Elliptio complanata identified using 1H nuclear magnetic resonance spectroscopy

    PubMed Central

    Hurley-Sanders, Jennifer L.; Levine, Jay F.; Nelson, Stacy A. C.; Law, J. M.; Showers, William J.; Stoskopf, Michael K.

    2015-01-01

    We used 1H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology. PMID:27293708

  14. Nuclear structure of elements with 100 ≤ Z ≤ 109 from alpha spectroscopy

    NASA Astrophysics Data System (ADS)

    Asai, M.; Heßberger, F. P.; Lopez-Martens, A.

    2015-12-01

    Significant technical progress concerning the availability of intense heavy-ion beams and highly-efficient and sophisticated detection devices has made nuclear-structure investigations possible in the region of superheavy nuclei. Exciting new results have been obtained by applying α spectroscopy as well as α-γ and internal-conversion-electron coincidence spectroscopy. The present review article gives an overview of the experimental techniques and methods with specific attention to the recent developments of digital signal and data processing giving access to half-life ranges of less than a few microseconds. The presentation of the experimental results and the physics discussion will be focused on nuclear structure systematics in even-Z nuclei along the N = 151 , 153 ,and 155 isotonic lines, where most progress has been achieved in the last 10 years.

  15. A practical guide for nuclear resonance vibrational spectroscopy (NRVS) of biochemical samples and model compounds.

    PubMed

    Wang, Hongxin; Alp, Esen Ercan; Yoda, Yoshitaka; Cramer, Stephen P

    2014-01-01

    Nuclear resonance vibrational spectroscopy (NRVS) has been used by physicists for many years. However, it is still a relatively new technique for bioinorganic users. This technique yields a vibrational spectrum for a specific element, which can be easily interpreted. Furthermore, isotopic labeling allows for site-specific experiments. In this chapter, we discuss how to access specific beamlines, what kind of equipment is used in NRVS, and how the sample should be prepared and the data collected and analyzed.

  16. Long-slit spectroscopy of gas in the cores of X-ray luminous clusters

    NASA Technical Reports Server (NTRS)

    Hu, E. M.; Cowie, L. L.; Wang, Z.

    1985-01-01

    The results of long-slit spectroscopy obtained for the core regions of 14 clusters of galaxies are reported. The data are presented in detail. It is shown that the presence of optical emission is tied to the properties of the hot gas in the cluster and not to the morphology of the central galaxy or cluster, demonstrating that the optical systems are indeed formed by the cooling of hot gas. Cooling flows occur when the gas density exceeds a critical central value which corresponds to a cooling time scale which, it is argued, weakly favors low values of H(0). The kinematics of the gas flows are discussed. The excitation mechanisms, correlation of optical emission with radio properties, and upper limits on coronal line strengths from the hot gas are discussed.

  17. High-resolution optical spectroscopy in a hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Perrella, C.; Light, P. S.; Stace, T. M.; Benabid, F.; Luiten, A. N.

    2012-01-01

    In this paper, we present detailed high-resolution spectroscopy of rubidium (Rb) vapor confined within a hollow-core photonic crystal fiber (HC-PCF). We find a very low level of additional frequency broadening associated with this confinement, with spectral features being only 1 MHz broader than the natural linewidth of the excited state. We show that this additional broadening is consistent solely with the atoms' transit across the fiber's optical mode. This low level of decoherence opens the door to a wide variety of applications including compact frequency standards and new types of quantum optical devices based on alkali-metal-loaded HC-PCFs. We highlight the low level of decoherence through observation of electromagnetically induced transparency in the confined vapor.

  18. Raman spectroscopy of GaP/GaNP core/shell nanowires

    SciTech Connect

    Dobrovolsky, A.; Chen, W. M.; Buyanova, I. A.; Sukrittanon, S.; Kuang, Y. J.; Tu, C. W.

    2014-11-10

    Raman spectroscopy is employed to characterize structural and phonon properties of GaP/GaNP core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. According to polarization-dependent measurements performed on single NWs, the dominant Raman modes associated with zone-center optical phonons obey selection rules in a zinc-blende lattice, confirming high crystalline quality of the NWs. Two additional modes at 360 and 397 cm{sup −1} that are specific to the NW architecture are also detected in resonant Raman spectra and are attributed to defect-activated scattering involving zone-edge transverse optical phonons and surface optical phonons, respectively. It is concluded that the formation of the involved defect states are mainly promoted during the NW growth with a high V/III ratio.

  19. Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Khetani, Altaf; Tiwari, Vidhu S.; Harb, Alaa; Anis, Hanan

    2011-08-01

    The feasibility of using hollow core photonic crystal fiber (HC-PCF) in conjunction with Raman spectroscopy has been explored for real time monitoring of heparin concentration in serum. Heparin is an important blood anti-coagulant whose precise monitoring and controlling in patients undergoing cardiac surgery and dialysis is of utmost importance. Our method of heparin monitoring offers a novel alternative to existing clinical procedures in terms of accuracy, response time and sample volume. The optical design configuration simply involves a 785-nm laser diode whose light is coupled into HC-PCF filled with heparin-serum mixtures. By non-selectively filling HC-PCF, a strong modal field overlap is obtained. Consequently, an enhanced Raman signal (>90 times) is obtained from various heparin-serum mixtures filled HC-PCFs compared to its bulk counterpart (cuvette). The present scheme has the potential to serve as a `generic biosensing tool' for diagnosing a wide range of biological samples.

  20. Statistical Methods Applied to Gamma-ray Spectroscopy Algorithms in Nuclear Security Missions

    SciTech Connect

    Fagan, Deborah K.; Robinson, Sean M.; Runkle, Robert C.

    2012-10-01

    In a wide range of nuclear security missions, gamma-ray spectroscopy is a critical research and development priority. One particularly relevant challenge is the interdiction of special nuclear material for which gamma-ray spectroscopy supports the goals of detecting and identifying gamma-ray sources. This manuscript examines the existing set of spectroscopy methods, attempts to categorize them by the statistical methods on which they rely, and identifies methods that have yet to be considered. Our examination shows that current methods effectively estimate the effect of counting uncertainty but in many cases do not address larger sources of decision uncertainty—ones that are significantly more complex. We thus explore the premise that significantly improving algorithm performance requires greater coupling between the problem physics that drives data acquisition and statistical methods that analyze such data. Untapped statistical methods, such as Bayes Modeling Averaging and hierarchical and empirical Bayes methods have the potential to reduce decision uncertainty by more rigorously and comprehensively incorporating all sources of uncertainty. We expect that application of such methods will demonstrate progress in meeting the needs of nuclear security missions by improving on the existing numerical infrastructure for which these analyses have not been conducted.

  1. Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy

    PubMed Central

    Barman, Ishan; Dingari, Narahara Chari; Saha, Anushree; McGee, Sasha; Galindo, Luis H.; Liu, Wendy; Plecha, Donna; Klein, Nina; Dasari, Ramachandra Rao; Fitzmaurice, Maryann

    2013-01-01

    Microcalcifications are a feature of diagnostic significance on a mammogram and a target for stereotactic breast needle biopsy. Here, we report development of a Raman spectroscopy technique to simultaneously identify microcalcification status and diagnose the underlying breast lesion, in real-time, during stereotactic core needle biopsy procedures. Raman spectra were obtained ex vivo from 146 tissue sites from fresh stereotactic breast needle biopsy tissue cores from 33 patients, including 50 normal tissue sites, 77 lesions with microcalcifications, and 19 lesions without microcalcifications, using a compact clinical system. The Raman spectra were modeled based on the breast tissue components and a support vector machine framework was used to develop a single-step diagnostic algorithm to distinguish normal tissue, fibrocystic change (FCC), fibroadenoma (FA) and breast cancer, in the absence and presence of microcalcifications. This algorithm was subjected to leave-one-site-out cross-validation, yielding a positive predictive value, negative predictive value, sensitivity and specificity of 100%, 95.6%, 62.5% and 100% for diagnosis of breast cancer (with or without microcalcifications) and an overall accuracy of 82.2% for classification into specific categories of normal tissue, FCC, FA or breast cancer (with and without microcalcifications). Notably, the majority of breast cancers diagnosed are ductal carcinoma in situ (DCIS), the most common lesion associated with microcalcifications, which could not be diagnosed using previous Raman algorithm(s). Our study demonstrates the potential of Raman spectroscopy to concomitantly detect microcalcifications and diagnose associated lesions, including DCIS, and thus provide real-time feedback to radiologists during such biopsy procedures, reducing non-diagnostic and false negative biopsies. PMID:23729641

  2. Methods of, and apparatus for, proton decoupling in nuclear magnetic resonance spectroscopy

    SciTech Connect

    Vatis, D.; Bottomley, P.A.; Foster, T.H.

    1987-07-21

    This patent describes an apparatus for providing a radio-frequency signal having at least one selected one of (1) first specie decoupling and (2) nuclear Overhauser enhancement effect, upon a second nuclei specie in a sample in a nuclear magnetic resonance (NMR) experiment, comprising: means for providing a radio-frequency (RF) signal at a center frequency substantially equal to the Larmor frequency of a first specie, different from the second nuclear specie, in the sample; means for modulating the amplitude of the RF signal with a time-dependent sinc (..omega../sub O/t) signal waveform; means for adjusting at least one selected one of (1) the amplitude of the modulated radio-frequency signal and (2) the instantaneous center frequency, across a range of frequencies related to a chemical shift spectrum ..omega../sub O/ of the first specie; and means for applying the adjusted signal to the sample to cause at least one selected one of (1) minimization of the coupling of the first nuclear specie to, and (2) nuclear Overhauser enhancement of, magnetic resonance spectroscopy response signals provided by the second nuclear specie.

  3. A high etendue spectrometer suitable for core charge eXchange recombination spectroscopy on ITER

    SciTech Connect

    Jaspers, R. J. E.; Scheffer, M.; Kappatou, A.; Valk, N. C. J. van der; Durkut, M.; Snijders, B.; Marchuk, O.; Biel, W.; Pokol, G. I.; Erdei, G.; Zoletnik, S.; Dunai, D.

    2012-10-15

    A feasibility study for the use of core charge exchange recombination spectroscopy on ITER has shown that accurate measurements on the helium ash require a spectrometer with a high etendue of 1mm{sup 2}sr to comply with the measurement requirements [S. Tugarinov et al., Rev. Sci. Instrum. 74, 2075 (2003)]. To this purpose such an instrument has been developed consisting of three separate wavelength channels (to measure simultaneously He/Be, C/Ne, and H/D/T together with the Doppler shifted direct emission of the diagnostic neutral beam, the beam emission (BES) signal), combining high dispersion (0.02 nm/pixel), sufficient resolution (0.2 nm), high efficiency (55%), and extended wavelength range (14 nm) at high etendue. The combined measurement of the BES along the same sightline within a third wavelength range provides the possibility for in situ calibration of the charge eXchange recombination spectroscopy signals. In addition, the option is included to use the same instrument for measurements of the fast fluctuations of the beam emission intensity up to 2 MHz, with the aim to study MHD activity.

  4. Delayed gamma-ray spectroscopy combined with active neutron interrogation for nuclear security and safeguards

    NASA Astrophysics Data System (ADS)

    Koizumi, Mitsuo; Rossi, Fabiana; Rodriguez, Douglas C.; Takamine, Jun; Seya, Michio; Bogucarska, Tatjana; Crochemore, Jean-Michel; Varasano, Giovanni; Abbas, Kamel; Pederson, Bent; Kureta, Masatoshi; Heyse, Jan; Paradela, Carlos; Mondelaers, Willy; Schillebeeckx, Peter

    2017-09-01

    For the purpose of nuclear security and safeguards, an active neutron interrogation non-destructive assay technique, Delayed Gamma-ray Spectroscopy (DGS), is under development. The technique of DGS uses the detection of decay γ rays from fission products to determine ratios of fissile nuclides in a sample. A proper evaluation of such γ-ray spectra requires integration of nuclear data such as fission cross-sections, fission yields, half-lives, decay-chain patterns, and decay γ-ray yields. Preliminary DGS experiments with the Pulsed Neutron Interrogation Test Assembly, named PUNITA, of the European Commissions' Joint Research Center have been performed. Signals of delayed γ ray from nuclear materials were successfully observed.

  5. Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander

    2017-09-01

    The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.

  6. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE PAGES

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina; ...

    2017-01-17

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy)2]2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitals directly involvedmore » in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  7. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    PubMed Central

    2017-01-01

    We probe the dynamics of valence electrons in photoexcited [Fe(terpy)2]2+ in solution to gain deeper insight into the Fe–ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete 1s X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitals directly involved in the light-driven dynamics; a change in the metal–ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations. PMID:28580048

  8. Lunar Nuclear Power Plant With Solid Core Reactor, Heatpipes and Thermoelectric Conversion

    SciTech Connect

    Sayre, Edwin D.; Ring, Peter J.; Brown, Neil; Elsner, Norbert B.; Bass, John C.

    2008-01-21

    This is a lunar nuclear power plant with the advantages of minimum mass, with no moving parts, no pumped liquid coolant, a solid metal rugged core, with no single point of failure. The electrical output is 100 kilowatts with a 500 kilowatt thermal reactor. The thermoelectric converters surround the potassium heatpipes from the core and water heatpipes surround the converter and connect to the radiator. The solid core reactor is made from HT9 alloy. The fuel is uranium oxide with 90% enrichment. The thermoelectric converter is bonded to the outside of the 1.10 inch ID heat pipe and is 30 inches long. The thermoelectric couple is Si/SiGe-Si/SiC Quantum Well with over 20% efficiency with an 890 K hot side and a 490 K cold side and produces 625 Watts. 176 converters produce 110 kWe. With less than 10% loss in controls this yields 100 kWe for use. The cylindrical thermoelectric converter is designed and fabricated by HIPing to keep brittle materials in compression and to ensure conductivity. The solid core is fabricated by machining the heatpipe tubes with 6 grooves that are diffusion bonded together by HIPing to form the fuel tubes. The maximum temperature of the heat pipes is 940 K and the return flow temperature is 890 K. The reactor core is hexagonal shaped, 61 cm. wide and 76.2 cm high with 12 rotating control drums surrounding it. There is shielding to protect components and human habitation. The radiator is daisy shaped at 45 degrees with each petal 5.5 meters long. The design life is ten years.

  9. Lunar Nuclear Power Plant With Solid Core Reactor, Heatpipes and Thermoelectric Conversion

    NASA Astrophysics Data System (ADS)

    Sayre, Edwin D.; Ring, Peter J.; Brown, Neil; Elsner, Norbert B.; Bass, John C.

    2008-01-01

    This is a lunar nuclear power plant with the advantages of minimum mass, with no moving parts, no pumped liquid coolant, a solid metal rugged core, with no single point of failure. The electrical output is 100 kilowatts with a 500 kilowatt thermal reactor. The thermoelectric converters surround the potassium heatpipes from the core and water heatpipes surround the converter and connect to the radiator. The solid core reactor is made from HT9 alloy. The fuel is uranium oxide with 90% enrichment. The thermoelectric converter is bonded to the outside of the 1.10 inch ID heat pipe and is 30 inches long. The thermoelectric couple is Si/SiGe-Si/SiC Quantum Well with over 20% efficiency with an 890 K hot side and a 490 K cold side and produces 625 Watts. 176 converters produce 110 kWe. With less than 10% loss in controls this yields 100 kWe for use. The cylindrical thermoelectric converter is designed and fabricated by HIPing to keep brittle materials in compression and to ensure conductivity. The solid core is fabricated by machining the heatpipe tubes with 6 grooves that are diffusion bonded together by HIPing to form the fuel tubes. The maximum temperature of the heat pipes is 940 K and the return flow temperature is 890 K. The reactor core is hexagonal shaped, 61 cm. wide and 76.2 cm high with 12 rotating control drums surrounding it. There is shielding to protect components and human habitation. The radiator is daisy shaped at 45 degrees with each petal 5.5 meters long. The design life is ten years.

  10. Nonthermal nuclear reactions induced by fast α particles in the solar core

    NASA Astrophysics Data System (ADS)

    Voronchev, Victor T.

    2015-02-01

    Nonthermal nuclear effects triggered in the solar carbon-nitrogen-oxygen (CNO) cycle by fast α particles—products of the p p chain reactions—are examined. The main attention is paid to 8.674-MeV α particles generated in the 7Li(p ,α ) α reaction. Nonthermal characteristics of these α particles and their influence on some nuclear processes are determined. It is found that the α -particle effective temperature is at a level of 1.1 MeV and exceeds the solar core temperature by 3 orders of magnitude. These fast particles are able to significantly enhance some endoergic (α ,p ) reactions neglected in standard solar model calculations. In particular, they can substantially affect the balance of the p +17O⇄α +14N reactions due to an appreciable increase of the reverse reaction rate. It is shown that in the region R =0.08 -0.25 R⊙ the reverse α +14N reaction can block the forward p +17O reaction, thus preventing closing of the CNO-II cycle, and increase the 17O abundance by a factor of 2-155 depending on R . This indicates that the fast α particles produced in the p p cycle can distort running of the CNO cycle, making it essentially different in the inner and outer core regions.

  11. Possible generation of heat from nuclear fusion in Earth’s inner core

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio

    2016-11-01

    The cause and source of the heat released from Earth’s interior have not yet been determined. Some research groups have proposed that the heat is supplied by radioactive decay or by a nuclear georeactor. Here we postulate that the generation of heat is the result of three-body nuclear fusion of deuterons confined in hexagonal FeDx core-centre crystals; the reaction rate is enhanced by the combined attraction effects of high-pressure (~364 GPa) and high-temperature (~5700 K) and by the physical catalysis of neutral pions: 2D + 2D + 2D → 21H + 4He + 2  + 20.85 MeV. The possible heat generation rate can be calculated as 8.12 × 1012 J/m3, based on the assumption that Earth’s primitive heat supply has already been exhausted. The H and He atoms produced and the anti-neutrino are incorporated as Fe-H based alloys in the H-rich portion of inner core, are released from Earth’s interior to the universe, and pass through Earth, respectively.

  12. Luneburg-lens-like structural Pauli attractive core of the nuclear force at short distances

    NASA Astrophysics Data System (ADS)

    Ohkubo, S.

    2017-04-01

    The nuclear force has been understood to have a repulsive core at short distances, similar to a molecular force, since Jastrow proposed it in 1951 [R. Jastrow, Phys. Rev. 81, 165 (1951)], 10.1103/PhysRev.81.165. The existence of the repulsion was experimentally confirmed from the proton-proton scattering S10 phase shift, which becomes negative beyond 230 MeV. This repulsion is essential for preventing the nucleon-nucleon system from collapsing by attraction. The origin of the repulsion has been considered to be due to the Pauli principle, similar to the repulsion originally revealed in α -α scattering, in many studies including recent lattice QCD calculations. On the other hand, very recently it was shown that an internuclear potential including α -α interactions has a Luneburg-lens-like attraction at short distances rather than repulsion. I show that the nuclear force with an attractive potential at short distances that reproduces the experimental S10 phase shifts well has a Luneburg-lens-like structural Pauli attractive core at short distances and acts as apparent repulsion. The apparent repulsion is caused by the deeply embedded unobservable Pauli forbidden state similar to nucleus-nucleus potentials.

  13. Possible generation of heat from nuclear fusion in Earth's inner core.

    PubMed

    Fukuhara, Mikio

    2016-11-23

    The cause and source of the heat released from Earth's interior have not yet been determined. Some research groups have proposed that the heat is supplied by radioactive decay or by a nuclear georeactor. Here we postulate that the generation of heat is the result of three-body nuclear fusion of deuterons confined in hexagonal FeDx core-centre crystals; the reaction rate is enhanced by the combined attraction effects of high-pressure (~364 GPa) and high-temperature (~5700 K) and by the physical catalysis of neutral pions: (2)D + (2)D + (2)D → 2(1)H + (4)He + 2  + 20.85 MeV. The possible heat generation rate can be calculated as 8.12 × 10(12) J/m(3), based on the assumption that Earth's primitive heat supply has already been exhausted. The H and He atoms produced and the anti-neutrino are incorporated as Fe-H based alloys in the H-rich portion of inner core, are released from Earth's interior to the universe, and pass through Earth, respectively.

  14. Possible generation of heat from nuclear fusion in Earth’s inner core

    PubMed Central

    Fukuhara, Mikio

    2016-01-01

    The cause and source of the heat released from Earth’s interior have not yet been determined. Some research groups have proposed that the heat is supplied by radioactive decay or by a nuclear georeactor. Here we postulate that the generation of heat is the result of three-body nuclear fusion of deuterons confined in hexagonal FeDx core-centre crystals; the reaction rate is enhanced by the combined attraction effects of high-pressure (~364 GPa) and high-temperature (~5700 K) and by the physical catalysis of neutral pions: 2D + 2D + 2D → 21H + 4He + 2  + 20.85 MeV. The possible heat generation rate can be calculated as 8.12 × 1012 J/m3, based on the assumption that Earth’s primitive heat supply has already been exhausted. The H and He atoms produced and the anti-neutrino are incorporated as Fe-H based alloys in the H-rich portion of inner core, are released from Earth’s interior to the universe, and pass through Earth, respectively. PMID:27876860

  15. Study of natural diamonds by dynamic nuclear polarization-enhanced 13C nuclear magnetic resonance spectroscopy.

    PubMed

    Zhou, J; Li, L; Hu, H; Yang, B; Dan, Z; Qiu, J; Guo, J; Chen, F; Ye, C

    1994-11-01

    The results of a study of two types of natural-diamond crystals by dynamic nuclear polarization (DNP)-enhanced high-resolution solid-state 13C nuclear magnetic resonance (NMR) are reported. The home-built DNP magic-angle spinning (MAS) 13C NMR spectrometer operates at 54 GHz for electrons and 20.2 MHz for carbons. The power of the microwave source was about 30 W and the highest DNP enhancement factor came near to 10(3). It was shown that in the MAS spectra the 13C NMR linewidths of the Ib-type diamond were broader than those of IaB3-type diamond. From the hyperfine structure of the DNP enhancement as a function of frequency, four kinds of nitrogen-centred and one kind of carbon-centred free radicals could be identified in the Ib-type diamond. The hyperfine structures of the DNP enhancement curve that originated from the anisotropic hyperfine interaction between electron and nuclei could be partially averaged out by MAS. The 13C polarization time of DNP was rather long, i.e. 1500 s, and the spin-lattice relaxation time (without microwave irradiation) was about 300 s, which was somewhat shorter than anticipated. Discussions on these experimental results have been made in this report.

  16. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  17. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan; Fordham, Edmund J.

    2014-11-01

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  18. The Conservation Equations for a Magnetically Confined Gas Core Nuclear Rocket

    NASA Astrophysics Data System (ADS)

    Kammash, Terry; Galbraith, David L.

    1994-07-01

    A very promising propulsion scheme that could meet the objectives of the Space Exploration Initiative (SEI) of sending manned missions to Mars in the early part of the next century is the open-cycle Gas Core (GCR) Nuclear Rocket. Preliminary assessments of the performance of such advice indicate that specific impulses of several thousand seconds, and thrusts of hundreds of kilonewtons are possible. These attractive propulsion parameters are obtained because the hydrogen propellant gets heated to very high temperatures by the energy radiated from a critical uranium core which is in the form of a plasma generated under very high pressure. Because of the relative motion between the propellant and the core, certain types of hydrodynamic instabilities can occur, and result in rapid escape of the fuel through the nozzle. One effective way of dealing with this instability is to place the system in an externally applied magnetic field. In this paper we formulate the appropriate conservation equations that describe the dynamics of GCR in the presence of magnetic fields, and indicate the role such fields play in the performance of the system.

  19. Nanomagnetism of Core-Shell Magnetic Nanoparticles and Application in Spent Nuclear Fuel Separation

    NASA Astrophysics Data System (ADS)

    Tarsem Singh, Maninder Kaur

    This dissertation presents the study on novel core-shell magnetic nanoparticles (NPs) with unique magnetic properties. Understanding the fundamental physics of antiferromagnetic - ferromagnetic interactions is essential to apply in different applications. Chromium (Cr) doped and undoped core-shell iron/iron-oxide NPs have been synthesized using cluster deposition system and studied with respect to their nanostructures, morphologies, sizes, chemical composition and magnetic properties. The room-temperature magnetic properties of Fe based NPs shows the strong dependence of intra/inter-particle interaction on NP size. The Cr-doped Fe NP shows the origin of sigma-FeCr phase at very low Cr concentration (2 at.%) unlike others reported at high Cr content and interaction reversal from dipolar to exchange interaction. A theoretical model of watermelon is constructed based on the experimental results and core-shell NP system in order to explain the physics of exchange interaction in Cr-doped Fe particles. The magnetic nanoparticle---chelator separation nanotechnology is investigated for spent nuclear fuel recycling and is reported 97% and 80% of extraction for Am(III) and Pu(IV) actinides respectively. If the long-term heat generating actinides such as Am(III) can be efficiently removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. As it is a simple, versatile, compact, and cost efficient process that minimizes secondary waste and improves storage performance.

  20. Multimegawatt nuclear electric propulsion with gaseous and vapor core reactors with MHD

    NASA Astrophysics Data System (ADS)

    Knight, Travis; Anghaie, Samim; Smith, Blair; Houts, Michael

    2001-02-01

    This study investigated the development of a system concept for space power generation and nuclear electric propulsion based on a fissioning plasma core reactor (FPCR) with magnetohydrodynamic (MHD) power conversion system, coupled to a magnetoplasmadynamic (MPD) thruster. The FPCR is a liquid-vapor core reactor concept operating with metallic uranium or uranium tetrafluoride (UF4) vapor as the fissioning fuel and alkali metals or their fluorides as working fluid in a closed Rankine cycle with MHD energy conversion. Candidate working fluids include K, Li, Na, KF, LiF, NaF, etc. The system features core outlet temperatures of 3000 to 4000 K at pressures of about 1 to 10 MPa, MHD temperatures of 2000 to 3000 K, and radiator temperatures of 1200 to 2000 K. This combination of parameters offers the potential for low total system specific mass in the range of 0.4 to 0.6 kg/kWe. The MHD output could be coupled with minimal power conditioning to the variable specific impulse magnetoplasma rocket (VASIMR), MPD thrusters or other types of thruster for producing thrust at very high specific impulse (Isp=1500 to 10,000 s). .

  1. Reducing numerical costs for core wide nuclear reactor CFD simulations by the Coarse-Grid-CFD

    NASA Astrophysics Data System (ADS)

    Viellieber, Mathias; Class, Andreas G.

    2013-11-01

    Traditionally complete nuclear reactor core simulations are performed with subchannel analysis codes, that rely on experimental and empirical input. The Coarse-Grid-CFD (CGCFD) intends to replace the experimental or empirical input with CFD data. The reactor core consists of repetitive flow patterns, allowing the general approach of creating a parametrized model for one segment and composing many of those to obtain the entire reactor simulation. The method is based on a detailed and well-resolved CFD simulation of one representative segment. From this simulation we extract so-called parametrized volumetric forces which close, an otherwise strongly under resolved, coarsely-meshed model of a complete reactor setup. While the formulation so far accounts for forces created internally in the fluid others e.g. obstruction and flow deviation through spacers and wire wraps, still need to be accounted for if the geometric details are not represented in the coarse mesh. These are modelled with an Anisotropic Porosity Formulation (APF). This work focuses on the application of the CGCFD to a complete reactor core setup and the accomplishment of the parametrization of the volumetric forces.

  2. Contributed review: nuclear magnetic resonance core analysis at 0.3 T.

    PubMed

    Mitchell, Jonathan; Fordham, Edmund J

    2014-11-01

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  3. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    SciTech Connect

    Mitchell, Jonathan Fordham, Edmund J.

    2014-11-15

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  4. Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor

    DOEpatents

    Pennell, William E.

    1977-01-01

    A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the

  5. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in Novel Donor-Acceptor Core-Shell Nanostructures for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Strain, Jacob; Jamhawi, Abdelqader; Abeywickrama, Thulitha M.; Loomis, Wendy; Rathnayake, Hemali; Liu, Jinjun

    2016-06-01

    Novel donor-acceptor nanostructures were synthesized via covalent synthesis and/or UV cross-linking method. Their photoinduced dynamics were investigated with ultrafast transient absorption (TA) spectroscopy. These new nanostructures are made with the strategy in mind to reduce manufacturing steps in the process of fabricating an organic photovoltaic cell. By imitating the heterojunction interface within a fixed particle domain, several fabrication steps can be bypassed reducing cost and giving more applicability to other film deposition methods. Such applications include aerosol deposition and ink-jet printing. The systems that were studied by TA spectroscopy include PDIB core, PDIB-P3HT core-shell, and PDIB-PANT core-shell which range in size from 60 to 130 nm. Within the experimentally accessible spectra range there resides a region of ground state bleaching, stimulated emission, and excited-state absorption of both neutrals and anions. Control experiments have been carried out to assign these features. At high pump fluences the TA spectra of PDIB core alone also indicate an intramolecular charge separation. The TA spectroscopy results thus far suggest that the core-shells resemble the photoinduced dynamics of a standard film although the particles are dispersed in solution, which indicates the desired outcome of the work.

  6. Preoperative proton-MR spectroscopy of gliomas--correlation with quantitative nuclear morphology in surgical specimen.

    PubMed

    Nafe, Reinhold; Herminghaus, Sebastian; Raab, Peter; Wagner, Sabine; Pilatus, Ulrich; Schneider, Berthold; Schlote, Wolfgang; Zanella, Friedhelm; Lanfermann, Heinrich

    2003-07-01

    A comparison between data from proton-MR spectroscopy (1HMRS) and quantitative histomorphology of tumor cell nuclei in gliomas has not been reported up to now. Therefore, the question must be answered, if there are any significant correlations between histomorphology of gliomas and quantitative data from 1HMRS concerning tissue metabolites. Surgical glioma specimen (glioblastomas, astrocytomas, oligodendrogliomas) from 46 patients with tumor grades II-IV according to WHO have been evaluated by means of a digital image analysis system using Ki-67-immunostained paraffin sections. Nuclear density, Ki-67-proliferation index, nuclear area and shape variables (roundness factor, Fourier-amplitudes) have been determined from 200 randomly selected tumor cell nuclei in each tumor specimen. These data have been correlated with preoperative data from 1HMRS. A positive correlation between Fourier-amplitudes, choline peak and lipide peak was observed, as well as a negative correlation between these variables and the nuclear roundness factor. This result indicates higher choline and lipide peaks with increasing irregularity of nuclear outlines. Proliferation index Ki-67 was positively correlated with the lipide peak, nuclear density showed a positive correlation with the choline peak. Glioblastomas (n = 29) showed an additional positive correlation between mean nuclear size and total creatine. Anaplastic gliomas (n = 12) showed a positive correlation between lactate peak and the standard deviation of the nuclear roundness factor. Further multivariate analyses have shown, that for the present collective of 46 cases, histometric variables have a higher significance than spectroscopic data for the differentiation of the different tumor grades. These results verify a significant correlation between preoperative data from 1HMRS and histomorphology of tumor cell nuclei in gliomas, supporting the biological significance of both histomorphometry and 1HMRS for the evaluation of these

  7. Third-generation site characterization: Cryogenic core collection, nuclear magnetic resonance, and electrical resistivity

    NASA Astrophysics Data System (ADS)

    Kiaalhosseini, Saeed

    In modern contaminant hydrology, management of contaminated sites requires a holistic characterization of subsurface conditions. Delineation of contaminant distribution in all phases (i.e., aqueous, non-aqueous liquid, sorbed, and gas), as well as associated biogeochemical processes in a complex heterogeneous subsurface, is central to selecting effective remedies. Arguably, a factor contributing to the lack of success of managing contaminated sites effectively has been the limitations of site characterization methods that rely on monitoring wells and grab sediment samples. The overarching objective of this research is to advance a set of third-generation (3G) site characterization methods to overcome shortcomings of current site characterization techniques. 3G methods include 1) cryogenic core collection (C3) from unconsolidated geological subsurface to improve recovery of sediments and preserving key attributes, 2) high-throughput analysis (HTA) of frozen core in the laboratory to provide high-resolution, depth discrete data of subsurface conditions and processes, 3) resolution of non-aqueous phase liquid (NAPL) distribution within the porous media using a nuclear magnetic resonance (NMR) method, and 4) application of a complex resistivity method to track NAPL depletion in shallow geological formation over time. A series of controlled experiments were conducted to develop the C 3 tools and methods. The critical aspects of C3 are downhole circulation of liquid nitrogen via a cooling system, the strategic use of thermal insulation to focus cooling into the core, and the use of back pressure to optimize cooling. The C3 methods were applied at two contaminated sites: 1) F.E. Warren (FEW) Air Force Base near Cheyenne, WY and 2) a former refinery in the western U.S. The results indicated that the rate of core collection using the C3 methods is on the order of 30 foot/day. The C3 methods also improve core recovery and limits potential biases associated with flowing sands

  8. Fluorescence Spectroscopy: An Adjunct Diagnostic Tool to Image-Guided Core Needle Biopsy of the Breast

    PubMed Central

    Zhu, Changfang; Burnside, Elizabeth S.; Sisney, Gale A.; Salkowski, Lonie R.; Harter, Josephine M.; Yu, Bing

    2009-01-01

    We explored the use of a fiber-optic probe for in vivo fluorescence spectroscopy of breast tissues during percutaneous image-guided breast biopsy. A total of 121 biopsy samples with accompanying histological diagnosis were obtained clinically and investigated in this study. The tissue spectra were analyzed using partial least-squares analysis and represented using a set of principal components (PCs) with dramatically reduced data dimension. For nonmalignant tissue samples, a set of PCs that account for the largest amount of variance in the spectra displayed correlation with the percent tissue composition. For all tissue samples, a set of PCs was identified using a Wilcoxon rank-sum test as showing statistically significant differences between: 1) malignant and fibrous/benign; 2) malignant and adipose; and 3) malignant and nonmalignant breast samples. These PCs were used to distinguish malignant from other nonmalignant tissue types using a binary classification scheme based on both linear and nonlinear support vector machine (SVM) and logistic regression (LR). For the sample set investigated in this study, the SVM classifier provided a cross-validated sensitivity and specificity of up to 81% and 87%, respectively, for discrimination between malignant and fibrous/benign samples, and up to 81% and 81%, respectively, for discriminating between malignant and adipose samples. Classification based on LR was used to generate receiver operator curves with an area under the curve (AUC) of 0.87 for discriminating malignant versus fibrous/benign tissues, and an AUC of 0.84 for discriminating malignant from adipose tissue samples. This study demonstrates the feasibility of performing fluorescence spectroscopy during clinical core needle breast biopsy, and the potential of this technique for identifying breast malignancy in vivo. PMID:19272976

  9. Impedance spectroscopy investigation of conjugated polymer coated core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Mpoukouvalas, Konstantinos; Wang, Jianjun; Tilch, Robert; Butt, Hans-Juergen; Wegner, Gerhard

    2009-09-01

    Poly(styrene) nanoparticles decorated at their surface with poly(styrene sulfonate) brushes and subsequently loaded with polypyrrole have been prepared as film-forming materials to serve as hole injection layers in organic light-emitting diodes. Thin compressed pellets of these nanoparticles have been studied by impedance spectroscopy. Measurements were carried out in the temperature range between 123.15 and 453.15 K and frequency range from 10-1 to 106 Hz. The polypyrrole volume fraction φPPy was varied as well. The film-forming nanoparticles exhibit a core-shell-type morphology with a core of electrically insulating poly(styrene) and a shell consisting of a corona of poly(styrene sulfonate) chains, which form the matrix in which the electrically conducting complex of polypyrrole and poly(styrene sulfonate) is embedded. This conducting complex exists in forms of domains with nanoscale dimensions. It is demonstrated that the charge transport in samples with φPPy [for the calculation of the polypyrrole volume fractions the poly(styrene) volume was excluded] lower than 0.52 is dominated by ionic conductivity. At higher volume fractions the charge transport is mainly electronic in nature. The fluctuation-induced tunneling model can be used to describe the temperature dependence of the dc conductivity. For a sample with φPPy of 0.52, a transition from insulating to conducting behavior at 385 K has been found. An electrical percolating behavior has been observed with a percolation threshold at φPPy of 0.65, suggesting that polypyrrole rich and poor domains are present in the poly(styrene sulfonate) matrix and indicating a "transition" from electronically insulating to conducting behavior. A detailed analysis of the impedance spectra suggests a lower limit of the conducting domains of 2.5 nm.

  10. Bleed cycle propellant pumping in a gas-core nuclear rocket engine system

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.; Easley, A. J.

    1972-01-01

    The performance of ideal and real staged primary propellant pumps and bleed-powered turbines was calculated for gas-core nuclear rocket engines over a range of operating pressures from 500 to 5000 atm. This study showed that for a required engine operating pressure of 1000 atm the pump work was about 0.8 hp/(lb/sec), the specific impulse penalty resulting from the turbine propellant bleed flow as about 10 percent; and the heat required to preheat the propellant was about 7.8 MN/(lb/sec). For a specific impulse above 2400 sec, there is an excess of energy available in the moderator due to the gamma and neutron heating that occurs there. Possible alternative pumping cycles are the Rankine or Brayton cycles.

  11. Multiphysics Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2006-01-01

    The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics methodology. Formulations for heat transfer in solids and porous media were implemented and anchored. A two-pronged approach was employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of hydrogen dissociation and recombination on heat transfer and thrust performance. The formulations and preliminary results on both aspects are presented.

  12. Fuel/propellant mixing in an open-cycle gas core nuclear rocket engine

    NASA Astrophysics Data System (ADS)

    Guo, Xu; Wehrmeyer, Joseph A.

    1997-01-01

    A numerical investigation of the mixing of gaseous uranium and hydrogen inside an open-cycle gas core nuclear rocket engine (spherical geometry) is presented. The gaseous uranium fuel is injected near the centerline of the spherical engine cavity at a constant mass flow rate, and the hydrogen propellant is injected around the periphery of the engine at a five degree angle to the wall, at a constant mass flow rate. The main objective is to seek ways to minimize the mixing of uranium and hydrogen by choosing a suitable injector geometry for the mixing of light and heavy gas streams. Three different uranium inlet areas are presented, and also three different turbulent models (k-ɛ model, RNG k-V model, and RSM model) are investigated. The commercial CFD code, FLUENT, is used to model the flow field. Uranium mole fraction, axial mass flux, and radial mass flux contours are obtained.

  13. Instabilities in uranium plasma and the gas-core nuclear rocket engine

    NASA Technical Reports Server (NTRS)

    Tidman, D. A.

    1972-01-01

    The nonlinear evolution of unstable sound waves in a uranium plasma has been calculated using a multiple time-scale asymptotic expansion scheme. The fluid equations used include the fission power density, radiation diffusion, and the effects of the changing degree of ionization of the uranium atoms. The nonlinear growth of unstable waves is shown to be limited by mode coupling to shorter wavelength waves which are damped by radiation diffusion. This mechanism limits the wave pressure fluctuations to values of order delta P/P approximates 0.00001 in the plasma of a typical gas-core nuclear rocket engine. The instability is thus not expected to present a control problem for this engine.

  14. Machine for removing in-core instrument assemblies from a nuclear reactor

    SciTech Connect

    Klumb, R.H.; Margotta, K.V.; Shendy, D.S.

    1982-02-02

    A machine for smoothly and controllably winding or unwinding a stiff in-core-instrument tube onto and off of a reel during ythe refueling of a nuclear reactor. The machine includes a frame and a circular reel having a substantially continuous helical groove extending around the circumference of the reel. The groove is adapted to receive the tube. A plurality of cam rollers are carried by the frame and closely spaced around the circumference of the reel. The rollers keep the tube in the groove whereby the tube may be more easily wound onto or off of the reel. In the preferred embodiment, the reel carries a disposable cartridge in which the grooves are formed.

  15. Robust theoretical modelling of core ionisation edges for quantitative electron energy loss spectroscopy of B- and N-doped graphene

    NASA Astrophysics Data System (ADS)

    Hardcastle, T. P.; Seabourne, C. R.; Kepaptsoglou, D. M.; Susi, T.; Nicholls, R. J.; Brydson, R. M. D.; Scott, A. J.; Ramasse, Q. M.

    2017-06-01

    Electron energy loss spectroscopy (EELS) is a powerful tool for understanding the chemical structure of materials down to the atomic level, but challenges remain in accurately and quantitatively modelling the response. We compare comprehensive theoretical density functional theory (DFT) calculations of 1s core-level EEL K-edge spectra of pure, B-doped and N-doped graphene with and without a core-hole to previously published atomic-resolution experimental electron microscopy data. The ground state approximation is found in this specific system to perform consistently better than the frozen core-hole approximation. The impact of including or excluding a core-hole on the resultant theoretical band structures, densities of states, electron densities and EEL spectra were all thoroughly examined and compared. It is concluded that the frozen core-hole approximation exaggerates the effects of the core-hole in graphene and should be discarded in favour of the ground state approximation. These results are interpreted as an indicator of the overriding need for theorists to embrace many-body effects in the pursuit of accuracy in theoretical spectroscopy instead of a system-tailored approach whose approximations are selected empirically.

  16. Structure and conformational plasticity of the U6 small nuclear ribonucleoprotein core.

    PubMed

    Montemayor, Eric J; Didychuk, Allison L; Liao, Honghong; Hu, Panzhou; Brow, David A; Butcher, Samuel E

    2017-01-01

    U6 small nuclear RNA (snRNA) is a key component of the active site of the spliceosome, a large ribonucleoprotein complex that catalyzes the splicing of precursor messenger RNA. Prior to its incorporation into the spliceosome, U6 is bound by the protein Prp24, which facilitates unwinding of the U6 internal stem-loop (ISL) so that it can pair with U4 snRNA. A previously reported crystal structure of the `core' of the U6 small nuclear ribonucleoprotein (snRNP) contained an ISL-stabilized A62G mutant of U6 bound to all four RNA-recognition motif (RRM) domains of Prp24 [Montemayor et al. (2014), Nature Struct. Mol. Biol. 21, 544-551]. The structure revealed a novel topology containing interlocked rings of protein and RNA that was not predicted by prior biochemical and genetic data. Here, the crystal structure of the U6 snRNP core with a wild-type ISL is reported. This complex crystallized in a new space group, apparently owing in part to the presence of an intramolecular cross-link in RRM1 that was not observed in the previously reported U6-A62G structure. The structure exhibits the same protein-RNA interface and maintains the unique interlocked topology. However, the orientation of the wild-type ISL is altered relative to the A62G mutant structure, suggesting inherent structural dynamics that may facilitate its pairing with U4. Consistent with their similar architectures in the crystalline state, the wild-type and A62G variants of U6 exhibit similar Prp24-binding affinities and electrophoretic mobilities when analyzed by gel-shift assay.

  17. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals.

    PubMed

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C; Xiao, Yuming; Wang, Hongxin; George, Simon J; Bau, Robert; Keable, Stephen; Peters, John W; Adams, Michael W W; Jenney, Francis; Sturhahn, Wolfgang; Alp, Ercan E; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P

    2013-12-01

    We have applied (57)Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Fe-S protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the X-ray crystal structure.

  18. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    SciTech Connect

    Ludewigt, Bernhard; Mozin, Vladimir; Campbell, Luke; Favalli, Andrea; Alan W. Hunt; Edward T. Reedy; Heather A. Seipel

    2015-06-01

    Modeling capabilities were added to an existing framework and codes were adapted as needed for analyzing experiments and assessing application-specific assay concepts including simulation of measurements over many short irradiation/spectroscopy cycles. The code package was benchmarked against the data collected at the IAC for small targets and assembly-scale data collected at LANL. A study of delayed gamma-ray spectroscopy for nuclear safeguards was performed for a variety of assemblies in the extensive NGSI spent fuel library. The modeling results indicate that delayed gamma-ray responses can be collected from spent fuel assemblies with statistical quality sufficient for analyzing their isotopic composition using a 1011 n/s neutron generator and COTS detector instrumentation.

  19. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations.

    PubMed

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells.

  20. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    PubMed Central

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  1. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    NASA Astrophysics Data System (ADS)

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C.; Xiao, Yuming; Wang, Hongxin; George, Simon J.; Bau, Robert; Keable, Stephen; Peters, John W.; Adams, Michael W. W.; , Francis E. Jenney, Jr.; Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2013-12-01

    We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Iron-sulfur protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the crystal structure.

  2. Surface Binding of TOTAPOL Assists Structural Investigations of Amyloid Fibrils by Dynamic Nuclear Polarization NMR Spectroscopy.

    PubMed

    Nagaraj, Madhu; Franks, Trent W; Saeidpour, Siavash; Schubeis, Tobias; Oschkinat, Hartmut; Ritter, Christiane; van Rossum, Barth-Jan

    2016-07-15

    Dynamic nuclear polarization (DNP) NMR can enhance sensitivity but often comes at the price of a substantial loss of resolution. Two major factors affect spectral quality: low-temperature heterogeneous line broadening and paramagnetic relaxation enhancement (PRE) effects. Investigations by NMR spectroscopy, isothermal titration calorimetry (ITC), and EPR revealed a new substantial affinity of TOTAPOL to amyloid surfaces, very similar to that shown by the fluorescent dye thioflavin-T (ThT). As a consequence, DNP spectra with remarkably good resolution and still reasonable enhancement could be obtained at very low TOTAPOL concentrations, typically 400 times lower than commonly employed. These spectra yielded several long-range constraints that were difficult to obtain without DNP. Our findings open up new strategies for structural studies with DNP NMR spectroscopy on amyloids that can bind the biradical with affinity similar to that shown towards ThT. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    PubMed Central

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C.; Xiao, Yuming; Wang, Hongxin; George, Simon J.; Bau, Robert; Keable, Stephen; Peters, John W.; Adams, Michael W.W.; Jenney, Francis; Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2014-01-01

    We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Fe-S protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the X-ray crystal structure. PMID:26052177

  4. Reactor moderator, pressure vessel, and heat rejection system of an open-cycle gas core nuclear rocket concept

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.

    1973-01-01

    A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.

  5. Infrared Spectroscopy for Rapid Characterization of Drill Core and Cutting Mineralogy

    NASA Astrophysics Data System (ADS)

    Calvin, W. M.; Kratt, C.; Kruse, F. A.

    2009-12-01

    Water geochemistry can vary with depth and location within a geothermal reservoir, owing to natural factors such as changing rock type, gas content, fluid source and temperature. The interaction of these variable fluids with the host rock will cause well known changes in alteration mineral assemblages that are commonly factored into the exploration of hydrothermal systems for economic metals, but are less utilized with regard to mapping borehole geology for geothermal energy production. Chemistry of geothermal fluids and rock alteration products can impact production factors such as pipeline corrosion and scaling and early studies explored the use of both silica and chlorites as geothermometers. Infrared spectroscopy is particularly good at identifying a wide variety of alteration minerals, especially in discrimination among clay minerals, with no sample preparation. The technique has been extensively used in the remote identification of materials, but is not commonly used on drill core or chips. We have performed several promising pilot studies that suggest the power of the technique to sample continuously and provide mineral logs akin to geophysical ones. We have surveyed a variety of samples, including drill chip boards, boxed core, and drill cuttings from envelopes, sample bottles and chip trays. This work has demonstrated that core and drill chips can be rapidly surveyed, acquiring spectra every few to tens of cm of section, or the vertical resolution of the chip tray (typically 10 feet). Depending on the sample type we can acquire spectral data over thousands of feet depth at high vertical resolution in a fraction of the time that is needed for traditional analytical methods such as XRD or TEM with better accuracy than traditional geologic drill or chip logging that uses visual inspection alone. We have successfully identified layered silicates such as illite, kaolinite, montmorillonite chlorite and prehnite, zeolites, opal, calcite, jarosite and iron oxides

  6. D-Lactic acidosis after jejunoileal bypass: identification of organic anions by nuclear magnetic resonance spectroscopy.

    PubMed

    Traube, M; Bock, J L; Boyer, J L

    1983-02-01

    A 40-year-old man with jejunoileal bypass developed a syndrome of bizarre behavior, slurred speech, ataxic gait, and inappropriate affect, associated with a metabolic acidosis characterized by an increase in the anion gap. Serum L-lactate level was normal, but high-resolution proton nuclear magnetic resonance spectrums of the patient's serum showed a high concentration of lactate. A diagnosis of D-lactic acidosis was confirmed by a specific enzymatic assay for D-lactate. The D-lactic acidosis was cleared using antibiotic therapy, suggesting that D-lactate is produced from fermentation of ingested carbohydrate by colonic bacteria. Nuclear magnetic resonance spectroscopy is a rapid screening test for identifying organic acids in patients with unexplained acidosis. Neuropsychiatric symptoms in patients with short bowel syndrome may be associated with D-lactic acidosis.

  7. Use of Nuclear Spin Noise Spectroscopy to Monitor Slow Magnetization Buildup at Millikelvin Temperatures

    PubMed Central

    Pöschko, Maria Theresia; Peat, David; Owers‐Bradley, John

    2016-01-01

    Abstract At ultralow temperatures, longitudinal nuclear magnetic relaxation times become exceedingly long and spectral lines are very broad. These facts pose particular challenges for the measurement of NMR spectra and spin relaxation phenomena. Nuclear spin noise spectroscopy is used to monitor proton spin polarization buildup to thermal equilibrium of a mixture of glycerol, water, and copper oxide nanoparticles at 17.5 mK in a static magnetic field of 2.5 T. Relaxation times determined in such a way are essentially free from perturbations caused by excitation radiofrequency pulses, radiation damping, and insufficient excitation bandwidth. The experimental spin‐lattice relaxation times determined on resonance by saturation recovery with spin noise detection are consistently longer than those determined by using pulse excitation. These longer values are in better accordance with the expected field dependence trend than those obtained by on‐resonance experiments with pulsed excitation. PMID:27305629

  8. Nuclear properties of the exotic high-spin isomer 178Hfm2 from collinear laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Boos, N.; Le Blanc, F.; Krieg, M.; Pinard, J.; Huber, G.; Lunney, M. D.; Le Du, D.; Meunier, R.; Hussonnois, M.; Constantinescu, O.; Kim, J. B.; Briançon, Ch.; Crawford, J. E.; Duong, H. T.; Gangrski, Y. P.; Kühl, T.; Markov, B. N.; Oganessian, Yu. Ts.; Quentin, P.; Roussière, B.; Sauvage, J.

    1994-04-01

    The complete hyperfine spectrum in the optical transition 5d26s2 3P2-->5d6s26p 1P1 of 178Hfm2 was recorded by collinear laser spectroscopy using nanogram amounts of samples. The quadrupole moment and isomer shift were determined for the first time as well as a precise value and the sign of the magnetic dipole moment. The change in nuclear mean-square charge radius between the isomeric state 178Hfm2 and the ground state 178Hfg was evaluated as δ178.178m2=-0.059(9) fm2. From the hyperfine A and B factors the magnetic moment μ178m2I=+8.16(4) nuclear magnetons and the spectroscopic quadrupole moment Q178m2s=+6.00(7) b were were extracted.

  9. Iron oxalate decomposition process by means of Mössbauer spectroscopy and nuclear forward scattering

    NASA Astrophysics Data System (ADS)

    Smrčka, David; Procházka, Vít; Novák, Petr; Kašlík, Josef; Vrba, Vlastimil

    2016-10-01

    This study reports the transformation kinetics of the thermal decomposition of the iron(II) oxalate dihydrate studied in detail by two different techniques: the transmission Mössbauer spectroscopy and the nuclear forward scattering of synchrotron radiation. Both methods were applied to observe three steps of the decomposition process when the iron oxalate transforms to the amorphous iron oxide. The hematite/maghemite ratio was determined from the transmission Mössbauer spectra using an evaluation procedure based on a subtraction of two opposite sides of spectra. The results obtained indicate that the amount of hematite increases with an annealing time prolongation.

  10. Characterization of humic acid fractions by C-13 nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Wershaw, R. L.; Thorn, K.A.; Pinckney, D.J.

    1988-01-01

    Soil humic acids from different environments were fractionated by adsorption chromatography on Sephadex and characterized by C-13 nuclear magnetic resonance (NMR) spectroscopy. The C-13 NMR spectra of the fractions consist of some sharp, well-resolved lines and some broad bands in contrast to the spectra of the unfractionated humic acids, where the bands are broader and less well-resolved. The marked increase in resolution is apparently due to increased homogeneity of the fractions. These spectra are compared to the spectra of model compounds.

  11. Assessing epithelial cell nuclear morphology by using azimuthal light scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Chung-Chieh; Lau, Condon; Tunnell, James W.; Hunter, Martin; Kalashnikov, Maxim; Fang-Yen, Christopher; Fulghum, Stephen F.; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.

    2006-11-01

    We describe azimuthal light scattering spectroscopy (ϕ/LSS), a novel technique for assessing epithelial-cell nuclear morphology. The difference between the spectra measured at azimuthal angles ϕ=0° and ϕ=90° preferentially isolates the single backscattering contribution due to large (˜10 μm) structures such as epithelial cell nuclei by discriminating against scattering from smaller organelles and diffusive background. We demonstrate the feasibility of using ϕ/LSS for cancer detection by showing that spectra from cancerous colon tissue exhibit significantly greater azimuthal asymmetry than spectra from normal colonic tissues.

  12. Nuclear magnetic resonance spectroscopy of mussel adhesive protein repeating peptide segment.

    PubMed

    Olivieri, M P; Wollman, R M; Alderfer, J L

    1997-12-01

    Mussel adhesive protein (MAP) is the adhesive agent used by the common blue sea mussel (Mytilus edulis) to attach the animal to various underwater surfaces. It is generally composed of 75 to 85 repeating decameric units with the reported primary sequence NH2-Ala(1)-Lyst(2)-Pro(3)-Ser(4)-Tyr(5)-Hyp(6)-Hyp(7)-Thr(8)-DOPA( 9)- Lys(10)-COOH. This study examines this peptide's solution-state conformation using proton nuclear magnetic resonance (NMR) spectroscopy. NMR and molecular modeling of the decamer before and after molecular dynamics calculations in water suggests a conformation that retains an overall bent helix.

  13. Mobile high resolution xenon nuclear magnetic resonance spectroscopy in the earth's magnetic field.

    PubMed

    Appelt, Stephan; Häsing, F Wolfgang; Kühn, Holger; Perlo, Juan; Blümich, Bernhard

    2005-05-20

    Conventional high resolution nuclear magnetic resonance (NMR) spectra are usually measured in homogeneous, high magnetic fields (>1 T), which are produced by expensive and immobile superconducting magnets. We show that chemically resolved xenon (Xe) NMR spectroscopy of liquid samples can be measured in the Earth's magnetic field (5 x 10(-5) T) with a continuous flow of hyperpolarized Xe gas. It was found that the measured normalized Xe frequency shifts are significantly modified by the Xe polarization density, which causes different dipolar magnetic fields in the liquid and in the gas phases.

  14. High-resolution proton nuclear magnetic resonance spectroscopy of ovarian cyst fluid.

    PubMed

    Boss, E A; Moolenaar, S H; Massuger, L F; Boonstra, H; Engelke, U F; de Jong, J G; Wevers, R A

    2000-08-01

    Most ovarian tumors are cystic structures containing variable amounts of fluid. Several studies of ovarian cyst fluid focus on one specific metabolite using conventional assay systems. We examined the potential of (1)H-nuclear magnetic resonance spectroscopy in evaluation of the overall metabolic composition of cyst fluid from different ovarian tumors. Ovarian cyst fluid samples obtained from 40 patients with a primary ovarian tumor (12 malignant and 28 benign) were examined. After deproteinization and pD standardization, we performed (1)H-NMR spectroscopy on a 600 MHz instrument. With (1)H-NMR spectroscopy we found detectable concentrations of 36 metabolites with high intersample variation. A number of unassigned resonances as well as unexpected metabolites were found. We introduce an overall inventory of the low-molecular-weight metabolites in ovarian cyst fluid with corresponding resonances. Significant differences in concentration (p < 0.01) were found for several metabolites (including an unknown metabolite) between malignant and benign ovarian cysts. Furthermore, higher concentrations in malignant- and lower in benign fluids were found compared to normal serum values, indicating local cyst wall metabolic processes in case of malignant transformation. We conclude that (1)H-nuclear magnetic resonance spectroscopy can give an overview of low-molecular-weight proton-containing metabolities present in ovarian cyst fluid samples. The metabolic composition of cyst fluid differs significantly between benign and malignant ovarian tumors. Furthermore, differences between benign subgroups possibly related to histopathological behaviour can be detected. The presence of N-acetyl aspartic acid and 5-oxoproline exclusively in serous cystadenoma samples is remarkable. Future studies will concentrate on these findings and explore the possibilities of extrapolating information from the in vitro studies to in vivo practice, in which metabolic differences between malignant and

  15. GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon; Oguri, Masamune

    2011-03-15

    We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 < z < 0.65, and our spectroscopy reveals 69 unique background sources with redshifts as high as z = 5.200. We also identify redshifts for 262 cluster member galaxies and measure the velocity dispersions and dynamical masses for 18 clusters where we have redshifts for N {>=} 10 cluster member galaxies. We account for the expected biases in dynamical masses of strong-lensing-selected clusters as predicted by results from numerical simulations and discuss possible sources of bias in our observations. The median dynamical mass of the 18 clusters with N {>=} 10 spectroscopic cluster members is M {sub Vir} = 7.84 x 10{sup 14} M {sub sun} h {sup -1} {sub 0.7}, which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.

  16. Undistorted X-ray Absorption Spectroscopy Using s-Core-Orbital Emissions.

    PubMed

    Golnak, Ronny; Xiao, Jie; Atak, Kaan; Unger, Isaak; Seidel, Robert; Winter, Bernd; Aziz, Emad F

    2016-05-12

    Detection of secondary emissions, fluorescence yield (FY), or electron yield (EY), originating from the relaxation processes upon X-ray resonant absorption has been widely adopted for X-ray absorption spectroscopy (XAS) measurements when the primary absorption process cannot be probed directly in transmission mode. Various spectral distortion effects inherent in the relaxation processes and in the subsequent transportation of emitted particles (electron or photon) through the sample, however, undermine the proportionality of the emission signals to the X-ray absorption coefficient. In the present study, multiple radiative (FY) and nonradiative (EY) decay channels have been experimentally investigated on a model system, FeCl3 aqueous solution, at the excitation energy of the Fe L-edge. The systematic comparisons between the experimental spectra taken from various decay channels, as well as the comparison with the theoretically simulated Fe L-edge XA spectrum that involves only the absorption process, indicate that the detection of the Fe 3s → 2p partial fluorescence yield (PFY) gives rise to the true Fe L-edge XA spectrum. The two key characteristics generalized from this particular decay channel-zero orbital angular momentum (i.e., s orbital) and core-level emission-set a guideline for obtaining undistorted X-ray absorption spectra in the future.

  17. Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters.

    PubMed

    Pfender, Matthias; Aslam, Nabeel; Sumiya, Hitoshi; Onoda, Shinobu; Neumann, Philipp; Isoya, Junichi; Meriles, Carlos A; Wrachtrup, Jörg

    2017-10-10

    In nanoscale metrology, dissipation of the sensor limits its performance. Strong dissipation has a negative impact on sensitivity, and sensor-target interaction even causes relaxation or dephasing of the latter. The weak dissipation of nitrogen-vacancy (NV) sensors in room temperature diamond enables detection of individual target nuclear spins, yet limits the spectral resolution of nuclear magnetic resonance (NMR) spectroscopy to several hundred Hertz, which typically prevents molecular recognition. Here, we use the NV intrinsic nuclear spin as a nonvolatile classical memory to store NMR information, while suppressing sensor back-action on the target using controlled decoupling of sensor, memory, and target. We demonstrate memory lifetimes up to 4 min and apply measurement and decoupling protocols, which exploit such memories efficiently. Our universal NV-based sensor device records single-spin NMR spectra with 13 Hz resolution at room temperature.Dissipation of the sensor is a limiting factor in metrology. Here, Pfender et al. suppress this effect employing the nuclear spin of an NV centre for robust intermediate storage of classical NMR information, allowing then to record single-spin NMR spectra with 13 Hz resolution at room temperature.

  18. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    SciTech Connect

    Kupenko, I. Strohm, C.; McCammon, C.; Cerantola, V.; Petitgirard, S.; Dubrovinsky, L.; Glazyrin, K.; Vasiukov, D.; Aprilis, G.; Chumakov, A. I.; Rüffer, R.

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.

  19. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    SciTech Connect

    Pack, Chan-Gi; Ahn, Sang-Gun

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  20. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, J.D.; Cassulo, J.C.; Pedersen, D.R.; Baker, L. Jr.

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and can be discharged from the reactor core. The invention provides a porous bed of sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  1. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker Jr., Louis

    1986-07-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  2. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker, Jr., Louis

    1986-01-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  3. Core structure of the U6 small nuclear ribonucleoprotein at 1.7-Å resolution.

    PubMed

    Montemayor, Eric J; Curran, Elizabeth C; Liao, Hong Hong; Andrews, Kristie L; Treba, Christine N; Butcher, Samuel E; Brow, David A

    2014-06-01

    The spliceosome is a dynamic assembly of five small nuclear ribonucleoproteins (snRNPs) that removes introns from eukaryotic pre-mRNA. U6, the most conserved of the spliceosomal small nuclear RNAs (snRNAs), participates directly in catalysis. Here, we report the crystal structure of the Saccharomyces cerevisiae U6 snRNP core containing most of the U6 snRNA and all four RRM domains of the Prp24 protein. It reveals a unique interlocked RNP architecture that sequesters the 5' splice site-binding bases of U6 snRNA. RRMs 1, 2 and 4 of Prp24 form an electropositive groove that binds double-stranded RNA and may nucleate annealing of U4 and U6 snRNAs. Substitutions in Prp24 that suppress a mutation in U6 localize to direct RNA-protein contacts. Our results provide the most comprehensive view to date of a multi-RRM protein bound to RNA and reveal striking coevolution of protein and RNA structure.

  4. Zero and Ultra-Low-Field Nuclear Magnetic Resonance Spectroscopy Via Optical Magnetometry

    NASA Astrophysics Data System (ADS)

    Blanchard, John Woodland

    Nuclear magnetic resonance (NMR) is among the most powerful analytical tools available to the chemical and biological sciences for chemical detection, characterization, and structure elucidation. NMR experiments are usually performed in large magnetic fields in order to maximize sensitivity and increase chemical shift resolution. However, the high magnetic fields required for conventional NMR necessitate large, immobile, and expensive superconducting magnets, limiting the use of the technique. New hyperpolarization and non-inductive detection methods have recently allowed for NMR measurements in the inverse regime of extremely low magnetic fields. Whereas a substantial body of research has been conducted in the high-field regime, taking advantage of the efficient coherent control afforded by a spectroscopy dominated by coupling to the spectrometer, the zero- and ultra-low-field (ZULF) regime has remained mostly unexplored. In this dissertation, we investigate the applicability of ZULF-NMR as a novel spectroscopic technique complimentary to high-field NMR. In particular, we consider various aspects of the ZULF-NMR experiment and the dynamics of nuclear spins under various local spin coupling Hamiltonians. We first survey zero-field NMR experiments on systems dominated by the electron-mediated indirect spin-spin coupling (J-coupling). The resulting J-spectra permit precision measurement of chemically relevant information due to the exquisite sensitivity of J-couplings to subtle changes in molecular geometry and electronic structure. We also consider the effects of weak magnetic fields and residual dipolar couplings in anisotropic media, which encode information about nuclear magnetic moments and geometry, and further resolve topological ambiguities by lifting degeneracies. By extending the understanding of the interactions that contribute to ZULF-NMR spectra, this work represents a significant advancement towards a complete description of zero- and ultra

  5. Heat Transfer in Pebble-Bed Nuclear Reactor Cores Cooled by Fluoride Salts

    NASA Astrophysics Data System (ADS)

    Huddar, Lakshana Ravindranath

    With electricity demand predicted to rise by more than 50% within the next 20 years and a burgeoning world population requiring reliable emissions-free base-load electricity, can we design advanced nuclear reactors to help meet this challenge? At the University of California, Berkeley (UCB) Fluoride-salt-cooled High Temperature Reactors (FHR) are currently being investigated. FHRs are designed with better safety and economic characteristics than conventional light water reactors (LWR) currently in operation. These reactors operate at high temperature and low pressure making them more efficient and safer than LWRs. The pebble-bed FHR (PB-FHR) variant includes an annular nuclear reactor core that is filled with randomly packed pebble fuel. It is crucial to characterize the heat transfer within this unique geometry as this informs the safety limits of the reactor. The work presented in this dissertation focused on furthering the understanding of heat transfer in pebble-bed nuclear reactor cores using fluoride salts as a coolant. This was done through experimental, analytical and computational techniques. A complex nuclear system with a coolant that has never previously been in commercial use requires experimental data that can directly inform aspects of its design. It is important to isolate heat transfer phenomena in order to understand the underlying physics in the context of the PB-FHR, as well as to make decisions about further experimental work that needs to be done in support of developing the PB-FHR. Certain organic oils can simulate the heat transfer behaviour of the fluoride salt if relevant non-dimensional parameters are matched. The advantage of this method is that experiments can be done at a much lower temperature and at a smaller geometric scale compared to FHRs, thereby lowering costs. In this dissertation, experiments were designed and performed to collect data demonstrating similitude. The limitations of these experiments were also elucidated by

  6. The behavior of ANGRA 2 nuclear power plant core for a small break LOCA simulated with RELAP5 code

    SciTech Connect

    Sabundjian, Gaiane; Andrade, Delvonei A.; Belchior, Antonio Jr.; Silva Rocha, Marcelo da; Conti, Thadeu N.; Torres, Walmir M.; Macedo, Luiz A.; Umbehaun, Pedro E.; Mesquita, Roberto N.; Masotti, Paulo H. F.; Souza Lima, Ana Cecilia de

    2013-05-06

    This work discusses the behavior of Angra 2 nuclear power plant core, for a postulate Loss of Coolant Accident (LOCA) in the primary circuit for Small Break Loss Of Coolant Accident (SBLOCA). A pipe break of the hot leg Emergency Core Cooling System (ECCS) was simulated with RELAP 5 code. The considered rupture area is 380 cm{sup 2}, which represents 100% of the ECCS pipe flow area. Results showed that the cooling is enough to guarantee the integrity of the reactor core.

  7. Determination of bound and unbound water in dental alginate irreversible hydrocolloid by nuclear magnetic resonance spectroscopy.

    PubMed

    Fellows, C M; Thomas, G A

    2009-04-01

    Alginate materials are considered unsuitable for precise fixed prosthetic rehabilitation due to their tendency to undergo spontaneous syneresis. Commercial alginate impression materials were investigated using Nuclear Magnetic Resonance (NMR) Spectroscopy to probe the relation between changes in the microscopic water environment and dimensional change to obtain a better understanding of spontaneous syneresis. NMR was used to measure the spin-lattice relaxation times (T(1)) of (1)H nuclei in water in alginate matrices to characterize changes in gel structure over time. These results were related to the dimensional stabilities of the alginate impression materials, their chemical compositions, and the Moisture Sorption Isotherms (MSI) obtained by incubation at fixed relative humidities. The rate of change of T(1) with time was found to be a better predictor of dimensional stability than MSI. The greatest dimensional stability for the alginate powders investigated was associated with a high filler:alginate ratio and a high Ca:Na ratio. Nuclear magnetic resonance spectroscopy may used to measure changes in alginate impression materials under conditions where no dimensional change can be observed directly. Changes occurred rapidly even at 100% humidity, suggesting the dimensional stability of alginate impression materials is partially independent of the rate of dehydration. The results may open a way to formulate alginate impression materials more suitable for precise fabrication of dental prostheses.

  8. Routine screening for the presence of adulteration in raw materials using automated nuclear magnetic resonance spectroscopy.

    PubMed

    Meriage, David; Rogers, Gary; Phillips, Joseph

    2012-01-01

    In an effort to increase the security of the supply chain for raw materials used in the manufacture of human therapeutics, a routine screen to detect the presence of adulteration using fully automated nuclear magnetic resonance spectroscopy has been developed and qualified for use in quality control laboratories. The method involves the collection of one-dimensional (1)H and (13)C spectra, which are subsequently processed to identify and quantitate raw material constituents by comparison to a spectral database. The resulting method is an easy-to-use limit test that can automatically determine the integrity of incoming raw materials. The method is intended to be used in good manufacturing practice production facilities and is suitable for excipients and aqueous soluble raw materials used in biopharmaceutical processes. In an effort to increase the security of the supply chain for raw materials used in the manufacture of human therapeutics, a routine screen to detect the presence of adulteration using fully automated nuclear magnetic resonance (NMR) spectroscopy has been developed and qualified for use in quality control laboratories. The method involves the collection of NMR spectra, which are subsequently processed to identify and quantitate raw material constituents by comparison to a spectral database. The resulting method is an easy-to-use limit test that can automatically determine the integrity of incoming raw materials. The method is intended to be used in good manufacturing practice production facilities and is suitable for excipients and aqueous soluble raw materials used in biopharmaceutical processes.

  9. A new equation of state for core-collapse supernovae based on realistic nuclear forces and including a full nuclear ensemble

    NASA Astrophysics Data System (ADS)

    Furusawa, S.; Togashi, H.; Nagakura, H.; Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Takano, M.

    2017-09-01

    We have constructed a nuclear equation of state (EOS) that includes a full nuclear ensemble for use in core-collapse supernova simulations. It is based on the EOS for uniform nuclear matter that two of the authors derived recently, applying a variational method to realistic two- and three-body nuclear forces. We have extended the liquid drop model of heavy nuclei, utilizing the mass formula that accounts for the dependences of bulk, surface, Coulomb and shell energies on density and/or temperature. As for light nuclei, we employ a quantum-theoretical mass evaluation, which incorporates the Pauli- and self-energy shifts. In addition to realistic nuclear forces, the inclusion of in-medium effects on the full ensemble of nuclei makes the new EOS one of the most realistic EOSs, which covers a wide range of density, temperature and proton fraction that supernova simulations normally encounter. We make comparisons with the FYSS EOS, which is based on the same formulation for the nuclear ensemble but adopts the relativistic mean field theory with the TM1 parameter set for uniform nuclear matter. The new EOS is softer than the FYSS EOS around and above nuclear saturation densities. We find that neutron-rich nuclei with small mass numbers are more abundant in the new EOS than in the FYSS EOS because of the larger saturation densities and smaller symmetry energy of nuclei in the former. We apply the two EOSs to 1D supernova simulations and find that the new EOS gives lower electron fractions and higher temperatures in the collapse phase owing to the smaller symmetry energy. As a result, the inner core has smaller masses for the new EOS. It is more compact, on the other hand, due to the softness of the new EOS and bounces at higher densities. It turns out that the shock wave generated by core bounce is a bit stronger initially in the simulation with the new EOS. The ensuing outward propagations of the shock wave in the outer core are very similar in the two simulations, which

  10. Model for vortex-core tunneling spectroscopy of chiral p-wave superconductors via odd-frequency pairing states.

    PubMed

    Tanuma, Yasunari; Hayashi, Nobuhiko; Tanaka, Yukio; Golubov, Alexander A

    2009-03-20

    The local density of states is studied theoretically in terms of the odd-frequency (odd-omega) Cooper pairing induced around a vortex core. We find that a zero energy peak in the density of states at the vortex center is robust against nonmagnetic impurities in a chiral p-wave superconductor owing to an odd-omega s-wave pair amplitude. We suggest how to discriminate a spin-triplet pairing symmetry and spatial chiral-domain structure by scanning tunneling spectroscopy via odd-omega pair amplitudes inside vortex cores.

  11. Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy, a new approach to study humic material?

    NASA Astrophysics Data System (ADS)

    Knicker, Heike; Lange, Sascha; van Rossum, Barth; Oschkinat, Hartmut

    2016-04-01

    Compared to solution NMR spectroscopy, solid-state NMR spectra suffer from broad resonance lines and low resolution. This could be overcome by the use of 2-dimenstional solid-state NMR pulse sequences. Until recently, this approach has been unfeasible as a routine tool in soil chemistry, mainly because of the low NMR sensitivity of the respective samples. A possibility to circumvent those sensitivity problems represents high-field Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy (Barnes et al., 2008), allowing considerable signal enhancements (Akbey et al., 2010). This is achieved by a microwave-driven transfer of polarization from a paramagnetic center to nuclear spins. Application of DNP to MAS spectra of biological systems (frozen solutions) showed enhancements of the factor 40 to 50 (Hall et al., 1997). Enhancements of this magnitude, thus may enable the use of at least some of the 2D solid-state NMR techniques that are presently already applied for pure proteins but are difficult to apply to soil peptides in their complex matrix. After adjusting the required acquisition parameters to the system "soil organic matter", lower but still promising enhancement factors were achieved. Additional optimization was performed and allowed the acquisition of 2D 13C and 15N solid-state NMR spectra of humified 13C and 15N enriched plant residues. Within the present contribution, the first solid-state DNP NMR spectra of humic material are presented. Those data demonstrate the great potential of this approach which certainly opens new doors for a better understanding of biochemical processes in soils, sediments and water. Akbey, Ü., Franks, W.T., Linden, A., Lange, S., Griffin, R.G., van Rossum, B.-J., Oschkinat, H., 2010. Dynamic nuclear polarization of deuterated proteins. Angewandte Chemie International Edition 49, 7803-7806. Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfeld, J

  12. Probing Multiple Core Samples through the SN 1006 Remnant by UV Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Winkler, P. F.; Long, K. S.; Fesen, R. A.; Hamilton, A. J. S.

    2003-12-01

    Ejecta within young supernova remnants (SNRs) have been widely studied both through the X-ray emission from highly ionized plasma heated by fast shocks and through the optical emission from isolated dense filaments excited by secondary shocks. A full inventory of the ejecta, however, must also include cold, unshocked material within the SNR shell, which can be studied through UV absorption spectroscopy if suitable background ``UV lightbulbs'' can be identified. So far, this technique has been applied only in the remnant of SN 1006, where IUE and HST spectra of the Schweizer-Middleditch (S-M) star have probed a single sight line 3 arcmin from the projected center of the 15 arcmin radius shell (Hamilton et al. 1997, ApJ 481, 838 and references therein). We have identified at least two more background UV sources that enable us to probe additional core samples through the SN 1006 shell, corresponding to the sight lines to each of these sources, using spectra from HST-STIS. A QSO with V = 18.3 and z = 0.337, located 9 arcmin NE of the projected center, shows evidence of broad but asymmetric (primarily red-shifted) absorption in Si II and Si IV lines. There is only marginal evidence for absorption from Fe II at 2382 and 2599 Å with near zero velocity. Only a near-UV spectrum was obtained for a fainter (V = 19.5) QSO at z = 1.026, located within 2 arcmin of the SNR center. This shows strong evidence for broad Fe II absorption with a sharp blue edge at ˜ -3000 km/s and a more gradual red edge extending to > 8000 km/s. These profiles appear similar to those for the S-M star. Two A0 stars are probably more distant than SN 1006 but are located far from the center, within 3 arcmin of the shell rim. Neither appears to show evidence for absorption along the line of sight. These multiple cores through the SNR shell enable us to better map the distribution of ejecta. This research is based on observations with the Hubble Space Telescope and is directly supported through NASA

  13. GPU Based General-Purpose Parallel computing to Solve Nuclear Reactor In-Core fuel Management Design and Operation Problem

    NASA Astrophysics Data System (ADS)

    Prayudhatama, D.; Waris, A.; Kurniasih, N.; Kurniadi, R.

    2010-06-01

    In-core fuel management study is a crucial activity in nuclear power plant design and operation. Its common problem is to find an optimum arrangement of fuel assemblies inside the reactor core. Main objective for this activity is to reduce the cost of generating electricity, which can be done by altering several physical properties of the nuclear reactor without violating any of the constraints imposed by operational and safety considerations. This research try to address the problem of nuclear fuel arrangement problem, which is, leads to the multi-objective optimization problem. However, the calculation of the reactor core physical properties itself is a heavy computation, which became obstacle in solving the optimization problem by using genetic algorithm optimization. This research tends to address that problem by using the emerging General Purpose Computation on Graphics Processing Units (GPGPU) techniques implemented by C language for CUDA (Compute Unified Device Architecture) parallel programming. By using this parallel programming technique, we develop parallelized nuclear reactor fitness calculation, which is involving numerical finite difference computation. This paper describes current prototype of the parallel algorithm code we have developed on CUDA, that performs one hundreds finite difference calculation for nuclear reactor fitness evaluation in parallel by using GPU G9 Hardware Series developed by NVIDIA.

  14. GPU Based General-Purpose Parallel computing to Solve Nuclear Reactor In-Core fuel Management Design and Operation Problem

    SciTech Connect

    Prayudhatama, D.; Waris, A.; Kurniasih, N.; Kurniadi, R.

    2010-06-22

    In-core fuel management study is a crucial activity in nuclear power plant design and operation. Its common problem is to find an optimum arrangement of fuel assemblies inside the reactor core. Main objective for this activity is to reduce the cost of generating electricity, which can be done by altering several physical properties of the nuclear reactor without violating any of the constraints imposed by operational and safety considerations. This research try to address the problem of nuclear fuel arrangement problem, which is, leads to the multi-objective optimization problem. However, the calculation of the reactor core physical properties itself is a heavy computation, which became obstacle in solving the optimization problem by using genetic algorithm optimization.This research tends to address that problem by using the emerging General Purpose Computation on Graphics Processing Units (GPGPU) techniques implemented by C language for CUDA (Compute Unified Device Architecture) parallel programming. By using this parallel programming technique, we develop parallelized nuclear reactor fitness calculation, which is involving numerical finite difference computation. This paper describes current prototype of the parallel algorithm code we have developed on CUDA, that performs one hundreds finite difference calculation for nuclear reactor fitness evaluation in parallel by using GPU G9 Hardware Series developed by NVIDIA.

  15. Nuclear resonant x-ray spectroscopy of (Mg,Fe)SiO{sub 3} orthoenstatites.

    SciTech Connect

    Jackson, J. M.; Hamecher, E. A.; Sturhahn, W.; X-Ray Science Division; California Inst. of Tech.

    2009-05-01

    We present nuclear resonant inelastic X-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy (SMS) measurements, both nuclear resonant X-ray spectroscopic methods, on synthetic samples of orthoenstatite-structured (Mg,{sup 57}Fe)SiO{sub 3}, a representative component in Earth's upper mantle. All measurements were performed at ambient conditions. NRIXS spectra were measured for three samples of orthoenstatite containing 20, 13, and 7 mol% FeSiO{sub 3}. The Debye sound velocities were determined from the low-energy region of the partial phonon density of states (PDOS). With known density and bulk modulus, the shear modulus, compressional and shear wave velocities have been computed. The sound velocities obtained from NRIXS are in good agreement with sound velocities obtained using Brillouin spectroscopy and ultrasonic methods for similar compositions. An important advantage of NRIXS is access to additional thermodynamic information, such as the average force constant, mean-square displacement, obtained from the PDOS. We discuss the contribution of the vibrational spectra to these quantities. In addition to the PDOS, the electronic environment of the iron sites in (Mg{sub 0.87}{sup 57}Fe{sub 0.13})SiO{sub 3} orthoenstatite was determined using {sup 57}Fe SMS and conventional Moessbauer spectroscopy. Evaluation of the Moessbauer spectra reveals two distinct iron sites, which are well distinguished by their hyperfine fields. The minority and majority sites are consistent with high-spin Fe{sup 2+} in the M1 and M2 sites, respectively.

  16. Nuclear magnetic resonance spectroscopy is highly sensitive for lipid-soluble metabolites.

    PubMed

    Dai, Haiyang; Hong, Bikai; Xu, Zhifeng; Ma, Lian; Chen, Yaowen; Xiao, Yeyu; Wu, Renhua

    2013-08-05

    Although the water-soluble metabolite profile of human mesenchymal stem cells is known, the lipid profile still needs further investigation. In this study, methanol-chloroform was used to extract pid-soluble metabolites and perchloric acid was used to extract water-soluble metabolites. Furthermore, a dual phase extraction method using methanol-chloroform and water was used to obtain both water and lipid fractions simultaneously. All metabolite extractions were analyzed on a 9.4T high-resolution nuclear magnetic resonance spectrometer. Metabolite resonance peaks were assigned in the acquired spectra according to the chemical shift, and the extraction efficiency of ferent methods was compared. Results showed that in the spectra of water-soluble extracts, major metabolites comprised low molecular weight metabolites, including lactate, acetic acid, fatty acids, threonine, glutamic acid, creatine, choline and its derivatives, while in the spectra of lipid-soluble extracts, most metabolites were assigned to fatty acids. Among the different extraction procedures, perchloric acid was more efficient in extracting water-soluble metabolites and methanol-chloroform was efficient in extracting organic components compared with the dual phase extraction method. Nuclear magnetic resonance spectroscopy showed that as low as 0.7 mg organic yield was enough to obtain clear resonance peaks, while about 6.0 mg water-soluble yield was needed to obtain relatively favorable spectral lines. These results show that the efficiency of extracting water and lipid fractions is higher using perchloric acid and methanol-chloroform compared with dual phase extraction and that nuclear magnetic resonance spectroscopy is highly sensitive for analyzing lipid-soluble extracts.

  17. Nuclear magnetic resonance spectroscopy is highly sensitive for lipid-soluble metabolites

    PubMed Central

    Dai, Haiyang; Hong, Bikai; Xu, Zhifeng; Ma, Lian; Chen, Yaowen; Xiao, Yeyu; Wu, Renhua

    2013-01-01

    Although the water-soluble metabolite profile of human mesenchymal stem cells is known, the lipid profile still needs further investigation. In this study, methanol-chloroform was used to extract pid-soluble metabolites and perchloric acid was used to extract water-soluble metabolites. Furthermore, a dual phase extraction method using methanol-chloroform and water was used to obtain both water and lipid fractions simultaneously. All metabolite extractions were analyzed on a 9.4T high-resolution nuclear magnetic resonance spectrometer. Metabolite resonance peaks were assigned in the acquired spectra according to the chemical shift, and the extraction efficiency of ferent methods was compared. Results showed that in the spectra of water-soluble extracts, major metabolites comprised low molecular weight metabolites, including lactate, acetic acid, fatty acids, threonine, glutamic acid, creatine, choline and its derivatives, while in the spectra of lipid-soluble extracts, most metabolites were assigned to fatty acids. Among the different extraction procedures, perchloric acid was more efficient in extracting water-soluble metabolites and methanol-chloroform was efficient in extracting organic components compared with the dual phase extraction method. Nuclear magnetic resonance spectroscopy showed that as low as 0.7 mg organic yield was enough to obtain clear resonance peaks, while about 6.0 mg water-soluble yield was needed to obtain relatively favorable spectral lines. These results show that the efficiency of extracting water and lipid fractions is higher using perchloric acid and methanol-chloroform compared with dual phase extraction and that nuclear magnetic resonance spectroscopy is highly sensitive for analyzing lipid-soluble extracts. PMID:25206519

  18. Revisiting the vortex-core tunnelling spectroscopy in YBa2Cu3O7−δ

    PubMed Central

    Bruér, Jens; Maggio-Aprile, Ivan; Jenkins, Nathan; Ristić, Zoran; Erb, Andreas; Berthod, Christophe; Fischer, Øystein; Renner, Christoph

    2016-01-01

    The observation by scanning tunnelling spectroscopy of Abrikosov vortex cores in the high-temperature superconductor YBa2Cu3O7−δ (Y123) has revealed a robust pair of electron-hole symmetric states at finite subgap energy. Their interpretation remains an open question because theory predicts a different signature in the vortex cores, characterized by a strong zero-bias conductance peak. Here, we present scanning tunnelling spectroscopy data on very homogeneous Y123 at 0.4 K revealing that the subgap features do not belong to vortices: they are actually observed everywhere along the surface with high spatial and energy reproducibility, even in the absence of magnetic field. Detailed analysis and modelling show that these states remain unpaired in the superconducting phase and belong to an incoherent channel, which contributes to the tunnelling signal in parallel with the superconducting density of states. PMID:27030516

  19. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Allman, Steve; Brice, Deanne J.; Martin, Rodger C.; Andre, Nicolas O.

    2012-08-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  20. Exploring laser-induced breakdown spectroscopy for nuclear materials analysis and in-situ applications

    SciTech Connect

    Martin, Madhavi Z; Allman, Steve L; Brice, Deanne Jane; Martin, Rodger Carl; Andre, Nicolas O

    2012-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.

  1. Osiris: A Modern, High-Performance, Coupled, Multi-Physics Code For Nuclear Reactor Core Analysis

    SciTech Connect

    Procassini, R J; Chand, K K; Clouse, C J; Ferencz, R M; Grandy, J M; Henshaw, W D; Kramer, K J; Parsons, I D

    2007-02-26

    To meet the simulation needs of the GNEP program, LLNL is leveraging a suite of high-performance codes to be used in the development of a multi-physics tool for modeling nuclear reactor cores. The Osiris code project, which began last summer, is employing modern computational science techniques in the development of the individual physics modules and the coupling framework. Initial development is focused on coupling thermal-hydraulics and neutral-particle transport, while later phases of the project will add thermal-structural mechanics and isotope depletion. Osiris will be applicable to the design of existing and future reactor systems through the use of first-principles, coupled physics models with fine-scale spatial resolution in three dimensions and fine-scale particle-energy resolution. Our intent is to replace an existing set of legacy, serial codes which require significant approximations and assumptions, with an integrated, coupled code that permits the design of a reactor core using a first-principles physics approach on a wide range of computing platforms, including the world's most powerful parallel computers. A key research activity of this effort deals with the efficient and scalable coupling of physics modules which utilize rather disparate mesh topologies. Our approach allows each code module to use a mesh topology and resolution that is optimal for the physics being solved, and employs a mesh-mapping and data-transfer module to effect the coupling. Additional research is planned in the area of scalable, parallel thermal-hydraulics, high-spatial-accuracy depletion and coupled-physics simulation using Monte Carlo transport.

  2. Normal mode analysis of Pyrococcus furiosus rubredoxin via nuclear resonance vibrational spectroscopy (NRVS) and resonance raman spectroscopy.

    PubMed

    Xiao, Yuming; Wang, Hongxin; George, Simon J; Smith, Matt C; Adams, Michael W W; Jenney, Francis E; Sturhahn, Wolfgang; Alp, Ercan E; Zhao, Jiyong; Yoda, Y; Dey, Abishek; Solomon, Edward I; Cramer, Stephen P

    2005-10-26

    We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(S(cys))(4) site in reduced and oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). The oxidized form has also been investigated by resonance Raman spectroscopy. In the oxidized Rd NRVS, strong asymmetric Fe-S stretching modes are observed between 355 and 375 cm(-1); upon reduction these modes shift to 300-320 cm(-1). This is the first observation of Fe-S stretching modes in a reduced Rd. The peak in S-Fe-S bend mode intensity is at approximately 150 cm(-1) for the oxidized protein and only slightly lower in the reduced case. A third band occurs near 70 cm(-1) for both samples; this is assigned primarily as a collective motion of entire cysteine residues with respect to the central Fe. The (57)Fe partial vibrational density of states (PVDOS) were interpreted by normal mode analysis with optimization of Urey-Bradley force fields. The three main bands were qualitatively reproduced using a D(2)(d) Fe(SC)(4) model. A C(1) Fe(SCC)(4) model based on crystallographic coordinates was then used to simulate the splitting of the asymmetric stretching band into at least 3 components. Finally, a model employing complete cysteines and 2 additional neighboring atoms was used to reproduce the detailed structure of the PVDOS in the Fe-S stretch region. These results confirm the delocalization of the dynamic properties of the redox-active Fe site. Depending on the molecular model employed, the force constant K(Fe-S) for Fe-S stretching modes ranged from 1.24 to 1.32 mdyn/A. K(Fe-S) is clearly diminished in reduced Rd; values from approximately 0.89 to 1.00 mdyn/A were derived from different models. In contrast, in the final models the force constants for S-Fe-S bending motion, H(S-Fe-S), were 0.18 mdyn/A for oxidized Rd and 0.15 mdyn/A for reduced Rd. The NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.

  3. Single Hepatitis-B Virus Core Capsid Binding to Individual Nuclear Pore Complexes in HeLa Cells

    PubMed Central

    Lill, Yoriko; Lill, Markus A.; Fahrenkrog, Birthe; Schwarz-Herion, Kyrill; Paulillo, Sara; Aebi, Ueli; Hecht, Bert

    2006-01-01

    We investigate the interaction of hepatitis B virus capsids lacking a nuclear localization signal with nuclear pore complexes (NPCs) in permeabilized HeLa cells. Confocal and wide-field optical images of the nuclear envelope show well-spaced individual NPCs. Specific interactions of capsids with single NPCs are characterized by extended residence times of capsids in the focal volume which are characterized by fluorescence correlation spectroscopy. In addition, single-capsid-tracking experiments using fast wide-field fluorescence microscopy at 50 frames/s allow us to directly observe specific binding via a dual-color colocalization of capsids and NPCs. We find that binding occurs with high probability on the nuclear-pore ring moiety, at 44 ± 9 nm radial distance from the central axis. PMID:16877503

  4. Applications of LaBr3(Ce) Gamma-ray Spectrometer Arrays for Nuclear Spectroscopy and Radionuclide Assay

    NASA Astrophysics Data System (ADS)

    Regan, PH; Shearman, R.; Daniel, T.; Lorusso, G.; Collins, SM; Judge, SM; Bell; Pearce, AK; Gurgi, LA; Rudigier, M.; Podolyák, Zs; Mărginean, N.; Mărginean, R.; Kisyov, S.

    2016-10-01

    An overview of the use of discrete energy gamma-ray detectors based on cerium- doped LaBr3 scintillators for use in nuclear spectroscopy is presented. This review includes recent applications of such detectors in mixed, 'hybrid' gamma-ray coincidence detection arrays such ROSPHERE at IFIN-HH, Bucharest; EXILL+FATIMA at ILL Grenoble, France; GAMMASPHERE+FATIMA at Argonne National Laboratory, USA; FATIMA + EURICA, at RIKEN, Japan; and the National Nuclear Array (NANA) at the UK's National Physical Laboratory. This conference paper highlights the capabilities and limitations of using these sub-nanosecond 'fast-timing', medium-resolution gamma-ray detectors for both nuclear structure research and radionuclide standardisation. Potential future application of such coincidence scintillator arrays in measurements of civilian nuclear fuel waste evaluation and assay is demonstrated using coincidence spectroscopy of a mixed 134,7Cs source.

  5. Feasibility of near-infrared diffuse optical spectroscopy on patients undergoing image-guided core-needle biopsy

    PubMed Central

    Yu, Bing; Burnside, Elizabeth S.; Sisney, Gale A.; Harter, Josephine M.; Zhu, Changfang; Dhalla, Al-Hafeez; Ramanujam, Nirmala

    2009-01-01

    We describe a side-firing fiber optic sensor based on near-infrared spectroscopy for guiding core needle biopsy diagnosis of breast cancer. The sensor is composed of three side firing optical fibers (two source fibers and one detection fiber), providing two source-detector separations. The entire assembly is inserted into a core biopsy needle, allowing for sampling to occur at the biopsy site. A multi-wavelength frequency-domain near-infrared instrument is used to collect diffuse reflectance in the breast tissue through an aperture on the biopsy needle before the tissue is removed for histology. Preliminary in vivo measurements performed on 10 normal or benign breast tissues from 5 women undergoing stereo- or ultrasound-guided core needle biopsy show the ability of the system to determine tissue optical properties and constituent concentrations, which are correlated with breast tissue composition derived from histopathology. PMID:19547057

  6. Physics-based multiscale coupling for full core nuclear reactor simulation

    SciTech Connect

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; Slaughter, Andrew E.; Andrš, David; Wang, Yaqi; Short, Michael P.; Perez, Danielle M.; Tonks, Michael R.; Ortensi, Javier; Zou, Ling; Martineau, Richard C.

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different data exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license

  7. Physics-based multiscale coupling for full core nuclear reactor simulation

    DOE PAGES

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; ...

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore » exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less

  8. Nonhistone nuclear high mobility group proteins 14 and 17 stabilize nucleosome core particles

    SciTech Connect

    Paton, A.E.; Wilkinson-Singley, E.; Olins, D.W.

    1983-11-10

    Nucleosome core particles form well defined complexes with the nuclear nonhistone proteins HMG 14 or 17. The binding of HMG 14 or 17 to nucleosomes results in greater stability of the nucleosomal DNA as shown by circular dichroism and thermal denaturation. Under appropriate conditions the binding is cooperative, and cooperativity is ionic strength dependent. The specificity and cooperative transitions of high mobility group (HMG) binding are preserved in 1 M urea. Specificity is lost in 4 M urea. Thermal denaturation and circular dichroism show a dramatic reversal of the effects of urea on nucleosomes when HMG 14 or 17 is bound, indicating stabilization of the nucleosome by HMG proteins. Complexes formed between reconstructed nucleosomes containing purified inner histones plus poly (dA-dT) and HMG 14 or 17 demonstrate that the HMG binding site requires only DNA and histones. Electron microscopy reveals no major structural alterations in the nucleosome upon binding of HMG 14 or 17. Cross-linking the nucleosome extensively with formaldehyde under cooperative HMG binding conditions does not prevent the ionic strength-dependent shift to noncooperative binding. This suggests mechanisms other than internal nucleosome conformational changes may be involved in cooperative HMG binding.

  9. [Study on the skin-core evolvement of carbon fibers as a function of heat treatment temperature by Raman spectroscopy].

    PubMed

    Liu, Fu-jie; Fan, Li-dong; Wang, Hao-jing; Zhu, Zhen-ping

    2008-08-01

    The skin-core evolvement of the carbon fibers was studied as a function of heat-treatment temperature though the analysis of Raman spectroscopy of the carbon fibers surface and core. It was found that the change of the Raman spectra of the carbon fibers core was similar to that on the surface with the increase in heat-treatment temperature. At 1600 degrees C, the Rs and Rc values were almost equal, indicating that the degrees of the graphitization of the carbon fibers surface and core were almost uniform. The Rs and Rc values decreased dramatically with the increase in heat-treatment temperature, and Rs decreased more. At 2800 degrees C, the Rs value came to 0.429, lowered 77.2%, while the Rc value then came to 1.101, lowered 38.7% only. It implied that the graphitization degree of the carbon fibers was enhanced with increasing the heat treatment temperature, and that of carbon fibers surface was enhanced more. The graphite characters of the carbon of the carbon fibers surface were different from that of the carbon fibers core. The former is close to soft carbon, which is easy to graphitize, while the latter is close to hard carbon, which is difficult to graphitize, and it may be resin carbon Skin-core structure gene Rsc (= Rs/Rc) which denoted the skin-core degree of the carbon fibers was first brought forward and adopted. The Rsc value is between 0 and 1. When the Rsc value is equal to 1, the carbon fibers are homogenous. When the Rsc value is close to zero, there are serious skin-core structures in the carbon fibers. The Rsc value reduced linearly with the increase in heat-treatment temperature, indicating that the homogeneous degrees of the carbon fibers decreased and the skin-core degrees of the carbon fibers increased. The crystallite size of the carbon fibers surface and core increased gradually with the increase in heat-treatment temperature, but the surface's increased more quickly, indicating that the carbon of the carbon fibers surface was easier to

  10. Investigation of an octapeptide inhibitor of Escherichia coli ribonucleotide reductase by transferred nuclear Overhauser effect spectroscopy

    SciTech Connect

    Bushweller, J.H.; Bartlett, P.A. )

    1991-08-20

    Several peptides contained within the C-terminal sequence of the B2 subunit of Escherichia coli ribonucleotide reductase (RNR) were investigated for their ability to inhibit the enzyme, presumably by interfering with association of the B1 and B2 subunits. AcYLVGQIDSE, corresponding by sequence homology to a nonapeptide that inhibits herpes simplex RNR shows no inhibition of the E. cole enzyme, whereas AcDDLSNFQL, the C-terminal octapeptide of the E. coli B2 subunit, is a noncompetitive inhibitor. Neither bradykinin (RPPGFSPER) nor the pentapeptide AcSNFQL inhibits the E. coli enzyme. Transferred nuclear Overhauser enhancement spectroscopy was used to probe the conformation of AcDDLSNFQL when it is bound to the B1 subunit. These experiments suggest that the peptide adopts a turn in the region of Asn{sub 5} and Phe{sub 6} and that a hydrophobic cluster of the phenylalanine and leucine side chains is involved in the interaction surface.

  11. High-performance gamma spectroscopy for equipment retrieval from Hanford high-level nuclear waste tanks

    NASA Astrophysics Data System (ADS)

    Troyer, Gary L.; Hillesand, K. E.; Goodwin, S. G.; Kessler, S. F.; Killian, E. W.; Legare, D.; Nelson, Joseph V., Jr.; Richard, R. F.; Nordquist, E. M.

    1999-01-01

    The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to ninety per cent saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed.

  12. Attosecond Probing of Nuclear Dynamics with Trajectory-Resolved High-Harmonic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lan, Pengfei; Ruhmann, Marc; He, Lixin; Zhai, Chunyang; Wang, Feng; Zhu, Xiaosong; Zhang, Qingbin; Zhou, Yueming; Li, Min; Lein, Manfred; Lu, Peixiang

    2017-07-01

    We report attosecond-scale probing of the laser-induced dynamics in molecules. We apply the method of high-harmonic spectroscopy, where laser-driven recolliding electrons on various trajectories record the motion of their parent ion. Based on the transient phase-matching mechanism of high-order harmonic generation, short and long trajectories contributing to the same harmonic order are distinguishable in both the spatial and frequency domains, giving rise to a one-to-one map between time and photon energy for each trajectory. The short and long trajectories in H2 and D2 are used simultaneously to retrieve the nuclear dynamics on the attosecond and ångström scale. Compared to using only short trajectories, this extends the temporal range of the measurement to one optical cycle. The experiment is also applied to methane and ammonia molecules.

  13. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    NASA Astrophysics Data System (ADS)

    Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R.; Hildenbrand, Heiko; Engel, Volker

    2015-07-01

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  14. Development of multichannel analyzer using sound card ADC for nuclear spectroscopy system

    SciTech Connect

    Ibrahim, Maslina Mohd; Yussup, Nolida; Lombigit, Lojius; Rahman, Nur Aira Abdul; Jaafar, Zainudin

    2014-02-12

    This paper describes the development of Multi-Channel Analyzer (MCA) using sound card analogue to digital converter (ADC) for nuclear spectroscopy system. The system was divided into a hardware module and a software module. Hardware module consist of detector NaI (Tl) 2” by 2”, Pulse Shaping Amplifier (PSA) and a build in ADC chip from readily available in any computers’ sound system. The software module is divided into two parts which are a pre-processing of raw digital input and the development of the MCA software. Band-pass filter and baseline stabilization and correction were implemented for the pre-processing. For the MCA development, the pulse height analysis method was used to process the signal before displaying it using histogram technique. The development and tested result for using the sound card as an MCA are discussed.

  15. Extensive water ice within Ceres' aqueously altered regolith: Evidence from nuclear spectroscopy.

    PubMed

    Prettyman, T H; Yamashita, N; Toplis, M J; McSween, H Y; Schörghofer, N; Marchi, S; Feldman, W C; Castillo-Rogez, J; Forni, O; Lawrence, D J; Ammannito, E; Ehlmann, B L; Sizemore, H G; Joy, S P; Polanskey, C A; Rayman, M D; Raymond, C A; Russell, C T

    2017-01-06

    The surface elemental composition of dwarf planet Ceres constrains its regolith ice content, aqueous alteration processes, and interior evolution. Using nuclear spectroscopy data acquired by NASA's Dawn mission, we determined the concentrations of elemental hydrogen, iron, and potassium on Ceres. The data show that surface materials were processed by the action of water within the interior. The non-icy portion of Ceres' carbon-bearing regolith contains similar amounts of hydrogen to those present in aqueously altered carbonaceous chondrites; however, the concentration of iron on Ceres is lower than in the aforementioned chondrites. This allows for the possibility that Ceres experienced modest ice-rock fractionation, resulting in differences between surface and bulk composition. At mid-to-high latitudes, the regolith contains high concentrations of hydrogen, consistent with broad expanses of water ice, confirming theoretical predictions that ice can survive for billions of years just beneath the surface.

  16. Nature versus nurture: functional assessment of restoration effects on wetland services using Nuclear Magnetic Resonance Spectroscopy

    USGS Publications Warehouse

    Sundareshwar, P.V.; Richardson, C.J.; Gleason, R.A.; Pellechia, P.J.; Honomichl, S.

    2009-01-01

    Land-use change has altered the ability of wetlands to provide vital services such as nutrient retention. While compensatory practices attempt to restore degraded wetlands and their functions, it is difficult to evaluate the recovery of soil biogeochemical functions that are critical for restoration of ecosystem services. Using solution 31P Nuclear Magnetic Resonance Spectroscopy, we examined the chemical forms of phosphorus (P) in soils from wetlands located across a land-use gradient. We report that soil P diversity, a functional attribute, was lowest in farmland, and greatest in native wetlands. Soil P diversity increased with age of restoration, indicating restoration of biogeochemical function. The trend in soil P diversity was similar to documented trends in soil bacterial taxonomic composition but opposite that of soil bacterial diversity at our study sites. These findings provide insights into links between ecosystem structure and function and provide a tool for evaluating the success of ecosystem restoration efforts. Copyright 2009 by the American Geophysical Union.

  17. Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: a review.

    PubMed

    Chalbot, Marie-Cecile G; Kavouras, Ilias G

    2014-08-01

    The knowledge deficit of organic aerosol (OA) composition has been identified as the most important factor limiting our understanding of the atmospheric fate and implications of aerosol. The efforts to chemically characterize OA include the increasing utilization of nuclear magnetic resonance spectroscopy (NMR). Since 1998, the functional composition of different types, sizes and fractions of OA has been studied with one-dimensional, two-dimensional and solid state proton and carbon-13 NMR. This led to the use of functional group ratios to reconcile the most important sources of OA, including secondary organic aerosol and initial source apportionment using positive matrix factorization. Future research efforts may be directed towards the optimization of experimental parameters, detailed NMR experiments and analysis by pattern recognition methods to identify the chemical components, determination of the NMR fingerprints of OA sources and solid state NMR to study the content of OA as a whole.

  18. Nature versus nurture: Functional assessment of restoration effects on wetland services using Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sundareshwar, P. V.; Richardson, C. J.; Gleason, Robert A.; Pellechia, Perry J.; Honomichl, Shawn

    2009-02-01

    Land-use change has altered the ability of wetlands to provide vital services such as nutrient retention. While compensatory practices attempt to restore degraded wetlands and their functions, it is difficult to evaluate the recovery of soil biogeochemical functions that are critical for restoration of ecosystem services. Using solution 31P Nuclear Magnetic Resonance Spectroscopy, we examined the chemical forms of phosphorus (P) in soils from wetlands located across a land-use gradient. We report that soil P diversity, a functional attribute, was lowest in farmland, and greatest in native wetlands. Soil P diversity increased with age of restoration, indicating restoration of biogeochemical function. The trend in soil P diversity was similar to documented trends in soil bacterial taxonomic composition but opposite that of soil bacterial diversity at our study sites. These findings provide insights into links between ecosystem structure and function and provide a tool for evaluating the success of ecosystem restoration efforts.

  19. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    SciTech Connect

    Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker; Gomez, Sandra; Sola, Ignacio R.

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  20. QED, Nuclear Size, and the Cosmos: Applications of High Precision Atomic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gillaspy, John

    2013-04-01

    I will survey some recent results from the Atomic Spectroscopy Group at NIST, focusing on topics that are most relevant to this Meeting, including evidence for a discrepancy between experiment and calculation based on three-body quantum electrodynamics (QED) [PRL, 109, 153001 (2012)], testing a method for determining nuclear sizes at the sub-attometer scale [PRL, 107, 023001 (2011)], and determining x-ray line ratios for astrophysical plasma diagnostics [ApJ, 728, 132 (2011)]. A common theme underlying these studies is to establish a basis for understanding discrepancies between prior results from various groups. This work was done in collaboration with S. Brewer, N. Brickhouse, R. Brown, C. Chantler, G.-X. Chen, A. Henins, L. Hudson, J. Kimpton, M. Kinnane, J. Laming, T. Lin, K. Makonyi, A. Payne, J. Pomeroy, J. Porto, C. Sansonetti, E. Silver, C. Simien, L. Smale, E. Takacs, J. Tan, L. Tedesco, and S. Wu.

  1. Nuclear magnetic resonance spectroscopy in the Earth sciences: structure and dynamics.

    PubMed

    Stebbins, J F; Farnan, I

    1989-07-21

    Detailed knowledge of the structure and dynamics of the materials that make up the earth is necessary for fundamental understanding of most geological processes. Nuclear magnetic resonance spectroscopy is beginning to play an important role in investigations of inorganic solid materials, as well as of liquids and organic compounds; it has already contributed substantially to our knowledge of minerals and rocks, compositionally simplified analogs of magmas, and the surfaces of silicate crystals. The technique is particularly useful for determining local structure and ordering state in crystals, glasses, and liquids, and is sensitive to atomic motion at the time scales of diffusion and viscosity in silicates. New techniques offer promise for increased resolution for quadrupolar nuclei and for extension of experiments to high temperature and pressure.

  2. Soil humic-like organic compounds in prescribed fire emissions using nuclear magnetic resonance spectroscopy.

    PubMed

    Chalbot, M-C; Nikolich, G; Etyemezian, V; Dubois, D W; King, J; Shafer, D; Gamboa da Costa, G; Hinton, J F; Kavouras, I G

    2013-10-01

    Here we present the chemical characterization of the water-soluble organic carbon fraction of atmospheric aerosol collected during a prescribed fire burn in relation to soil organic matter and biomass combustion. Using nuclear magnetic resonance spectroscopy, we observed that humic-like substances in fire emissions have been associated with soil organic matter rather than biomass. Using a chemical mass balance model, we estimated that soil organic matter may contribute up to 41% of organic hydrogen and up to 27% of water-soluble organic carbon in fire emissions. Dust particles, when mixed with fresh combustion emissions, substantially enhances the atmospheric oxidative capacity, particle formation and microphysical properties of clouds influencing the climatic responses of atmospheric aeroso. Owing to the large emissions of combustion aerosol during fires, the release of dust particles from soil surfaces that are subjected to intense heating and shear stress has, so far, been lacking. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.; Yamashita, N.; Toplis, M. J.; McSween, H. Y.; Schörghofer, N.; Marchi, S.; Feldman, W. C.; Castillo-Rogez, J.; Forni, O.; Lawrence, D. J.; Ammannito, E.; Ehlmann, B. L.; Sizemore, H. G.; Joy, S. P.; Polanskey, C. A.; Rayman, M. D.; Raymond, C. A.; Russell, C. T.

    2017-01-01

    The surface elemental composition of dwarf planet Ceres constrains its regolith ice content, aqueous alteration processes, and interior evolution. Using nuclear spectroscopy data acquired by NASA’s Dawn mission, we determined the concentrations of elemental hydrogen, iron, and potassium on Ceres. The data show that surface materials were processed by the action of water within the interior. The non-icy portion of Ceres’ carbon-bearing regolith contains similar amounts of hydrogen to those present in aqueously altered carbonaceous chondrites; however, the concentration of iron on Ceres is lower than in the aforementioned chondrites. This allows for the possibility that Ceres experienced modest ice-rock fractionation, resulting in differences between surface and bulk composition. At mid-to-high latitudes, the regolith contains high concentrations of hydrogen, consistent with broad expanses of water ice, confirming theoretical predictions that ice can survive for billions of years just beneath the surface.

  4. A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.

    PubMed

    Halse, Meghan E; Callaghan, Paul T

    2008-12-01

    Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.

  5. Development of multichannel analyzer using sound card ADC for nuclear spectroscopy system

    NASA Astrophysics Data System (ADS)

    Ibrahim, Maslina Mohd; Yussup, Nolida; Lombigit, Lojius; Rahman, Nur Aira Abdul; Jaafar, Zainudin

    2014-02-01

    This paper describes the development of Multi-Channel Analyzer (MCA) using sound card analogue to digital converter (ADC) for nuclear spectroscopy system. The system was divided into a hardware module and a software module. Hardware module consist of detector NaI (Tl) 2" by 2", Pulse Shaping Amplifier (PSA) and a build in ADC chip from readily available in any computers' sound system. The software module is divided into two parts which are a pre-processing of raw digital input and the development of the MCA software. Band-pass filter and baseline stabilization and correction were implemented for the pre-processing. For the MCA development, the pulse height analysis method was used to process the signal before displaying it using histogram technique. The development and tested result for using the sound card as an MCA are discussed.

  6. Electron energy-loss spectroscopy of anomalous plutonium behavior in nuclear waste materials.

    PubMed

    Buck, Edgar C; Finn, Patricia A; Bates, John K

    2004-01-01

    Plutonium-enriched layer has been observed in corroded spent uranium oxide fuel (CSNF). These Pu-enriched regions were examined with analytical transmission electron microscopy combined with electron energy-loss spectroscopy (EELS). The enriched region also contained U, Am, Ru, Zr, but only minor enrichment of rare earth elements. The Pu, possibly as Pu(V) according to EELS measurements, was dispersed within re-precipitated uranium oxide (identified as U3O8) nano-crystals between U(VI) secondary phases and the CSNF surface. The U, Pu, and Am enrichment was observed in the corrosion products with tests on different nuclear fuels. This may have implications for the long-term behavior of CSNF under storage in a geologic waste repository. Furthermore, there may be an increased potential for the generation of Pu-bearing colloids from this type of weathered CSNF.

  7. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion.

    PubMed

    Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R; Hildenbrand, Heiko; Engel, Volker

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  8. High-resolution (13)C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules.

    PubMed

    Aursand, Marit; Standal, Inger B; Axelson, David E

    2007-01-10

    13C NMR (nuclear magnetic resonance) spectroscopy, in conjunction with multivariate analysis of commercial fish oil-related health food products, have been used to provide discrimination concerning the nature, composition, refinement, and/or adulteration or authentication of the products. Supervised (probabilistic neural networks, PNN) and unsupervised (principal component analysis, PCA; Kohonen neural networks; generative topographic mapping, GTM) pattern recognition techniques were used to visualize and classify samples. Simple PCA score plots demonstrated excellent, but not totally unambiguous, class distinctions, whereas Kohonen and GTM visualization provided better results. Quantitative class predictions with accuracies >95% were achieved with PNN analysis. Trout, salmon, and cod oils were completely and correctly classified. Samples reported to be salmon oils and cod liver oils did not cluster with true salmon and cod liver oil samples, indicating mislabeling or adulteration.

  9. Nuclear structure corrections for μ4He+ and μ3He+ spectroscopy

    NASA Astrophysics Data System (ADS)

    Nevo Dinur, Nir; Ji, Chen; Hernandez, Oscar; Bacca, Sonia; Barnea, Nir

    2016-09-01

    The proton charge radius was recently determined from muonic hydrogen spectroscopy with tenfold improved precision but 7 . 9 σ disagreement with the accepted value, leading to the ``proton radius puzzle''. To further investigate, and to obtain precise radii, these measurements were repeated in μ4He+ and μ3He+. This may also shed light on the discrepancy between isotope-shift measurements of the 4He -3He radius difference. However, the precision of radii determined from the muonic experiments is limited by the uncertainties in the nuclear structure corrections. We present first ab-initio calculations of these corrections that reduced the uncertainties from 20 % to the few percent goal. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-00031).

  10. Two-dimensional NMR spectroscopy: correlated, homonuclear-correlated, and nuclear Overhauser spectroscopy. January 1975-December 1988 (Citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1975-December 1988

    SciTech Connect

    Not Available

    1988-12-01

    This bibliography contains citations concerning the enhanced analytical techniques of two-dimensional nuclear magnetic resonance (2-D NMR). Applications to specific molecules, biomolecules, and compounds as well as comparisons of three 2-D NMR techniques: correlated spectroscopy (COSY), nuclear Overhauser (NOSEY), and homonuclear-correlated spectroscopy (HOMCOR). (Contains 190 citations fully indexed and including a title list.)

  11. Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy.

    PubMed

    Konorov, Stanislav O; Addison, Christopher J; Schulze, H Georg; Turner, Robin F B; Blades, Michael W

    2006-06-15

    We have implemented a new Raman fiber-optic probe design based on a hollow-core photonic-crystal excitation fiber surrounded by silica-core collection fibers. The photonic-crystal fiber offers low attenuation at the pump radiation wavelength, mechanical flexibility, high radiation stability, and low background noise. Because the excitation beam is transmitted through air inside the hollow-core fiber, silica Raman scattering is much reduced, improving the quality of the spectra obtained using probes of this design. Preliminary results show that the new probe design decreases the Raman background from the silica by approximately an order of magnitude compared to solid-core silica Raman probes.

  12. Corrosion at Nuclear Power Plant from Mössbauer Spectroscopy Point of View

    NASA Astrophysics Data System (ADS)

    Slugeň, V.; Lipka, J.; Dekan, J.; Tóth, I.; Smieško, I.

    2010-07-01

    Steam generators of four VVER-440 units at nuclear power plants V-1 and V-2 in Jaslovske Bohunice (Slovakia) were gradually changed by new original "Bohunice" design in the 1994-1998 period. Corrosion processes before and after these design and material changes in Bohunice secondary circuit were studied using Mössbauer spectroscopy during the last 25 years. Innovations in the feed water pipeline design as well as material composition improvements were evaluated positively. Mössbauer spectroscopy studies of phase composition of corrosion products were performed on real specimens scrapped from water pipelines or in the form of filters deposits. The corrosion of new feed water pipelines system (from austenitic steel) in combination to innovated operation regimes goes dominantly to magnetite. The hematite presence is mostly on the internal surface of steam generator body and its concentration increases towards the top of the body. In the results interpretation it is necessary to consider also erosion as well as scope and type of maintenance activities. The long-term study of phase composition of corrosion products at VVER reactors is one of precondition for the safe operation over the projected NPP lifetime. Keywords: Enter Keywords here. Text should remain 10-pt.

  13. Mapping inhibitor binding modes on an active cysteine protease via nuclear magnetic resonance spectroscopy.

    PubMed

    Lee, Gregory M; Balouch, Eaman; Goetz, David H; Lazic, Ana; McKerrow, James H; Craik, Charles S

    2012-12-18

    Cruzain is a member of the papain/cathepsin L family of cysteine proteases, and the major cysteine protease of the protozoan Trypanosoma cruzi, the causative agent of Chagas disease. We report an autoinduction methodology that provides soluble cruzain in high yields (>30 mg/L in minimal medium). These increased yields provide sufficient quantities of active enzyme for use in nuclear magnetic resonance (NMR)-based ligand mapping. Using circular dichroism and NMR spectroscopy, we also examined the solution-state structural dynamics of the enzyme in complex with a covalently bound vinyl sulfone inhibitor (K777). We report the backbone amide and side chain carbon chemical shift assignments of cruzain in complex with K777. These resonance assignments were used to identify and map residues located in the substrate binding pocket, including the catalytic Cys25 and His162. Selective [(15)N]Cys, [(15)N]His, and [(13)C]Met labeling was performed to quickly assess cruzain-ligand interactions for a set of eight low-molecular weight compounds exhibiting micromolar binding or inhibition. Chemical shift perturbation mapping verified that six of the eight compounds bind to cruzain at the active site. Three different binding modes were delineated for the compounds, namely, covalent, noncovalent, and noninteracting. These results provide examples of how NMR spectroscopy can be used to screen compounds for fast evaluation of enzyme-inhibitor interactions to facilitate lead compound identification and subsequent structural studies.

  14. Dynamics of asymmetric binary glass formers. II. Results from nuclear magnetic resonance spectroscopy

    SciTech Connect

    Bock, D.; Kahlau, R.; Pötzschner, B.; Körber, T.; Wagner, E.; Rössler, E. A.

    2014-03-07

    Various {sup 2}H and {sup 31}P nuclear magnetic resonance (NMR) spectroscopy techniques are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene-d{sub 3} (PS) over the full concentration range. The results are quantitatively compared to those of a dielectric spectroscopy (DS) study on the same system previously published [R. Kahlau, D. Bock, B. Schmidtke, and E. A. Rössler, J. Chem. Phys. 140, 044509 (2014)]. While the PS dynamics does not significantly change in the mixtures compared to that of neat PS, two fractions of TPP molecules are identified, one joining the glass transition of PS in the mixture (α{sub 1}-process), the second reorienting isotropically (α{sub 2}-process) even in the rigid matrix of PS, although at low concentration resembling a secondary process regarding its manifestation in the DS spectra. Pronounced dynamical heterogeneities are found for the TPP α{sub 2}-process, showing up in extremely stretched, quasi-logarithmic stimulated echo decays. While the time window of NMR is insufficient for recording the full correlation functions, DS results, covering a larger dynamical range, provide a satisfactory interpolation of the NMR data. Two-dimensional {sup 31}P NMR spectra prove exchange within the broadly distributed α{sub 2}-process. As demonstrated by {sup 2}H NMR, the PS matrix reflects the faster α{sub 2}-process of TPP by performing a spatially highly hindered motion on the same timescale.

  15. [Characterization of biochar by X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance].

    PubMed

    Xu, Dong-yu; Jin, Jie; Yan, Yu; Han, Lan-fang; Kang, Ming-jie; Wang, Zi-ying; Zhao, Ye; Sun, Ke

    2014-12-01

    The wood (willow branch) and grass (rice straw) materials were pyrolyzed at different temperatures (300, 450 and 600 °C) to obtain the biochars used in the present study. The biochars were characterized using elementary analysis, X-ray photoelectron spectroscopy (XPS) and solid state 13C cross-polarization and magic angle spinning nuclear magnetic resonance spectroscopy (13C NMR) to illuminate the structure and composition of the biochars which were derived from the different thermal temperatures and biomass. The results showed that the H/C, O/C and (O+N)/C ratios of the biochars decreased with the increase in the pyrolysis temperatures. The surface polarity and ash content of the grass-derived biochars were higher than those of the wood-derived biochars. The minerals of the wood-derived biochars were mainly covered by the organic matter; in contrast, parts of the mineral surfaces of the grass-derived biochars were not covered by organic matter? The 13C NMR of the low temperature-derived biochars revealed a large contribution of aromatic carbon, aliphatic carbon, carboxyl and carbonyl carbon, while the high temperature-derived biochars contained a large amount of aromatic carbon. Moreover, the wood-derived biochars produced at low heat treatment temperatures contained more lignin residues than grass-derived ones, probably due to the existence of high lignin content in the feedstock soures of wood-derived biochars. The results of the study would be useful for environmental application of biochars.

  16. A Novel Variable Field System for Field-Cycled Dynamic Nuclear Polarization Spectroscopy

    PubMed Central

    Shet, Keerthi; Caia, George L.; Kesselring, Eric; Samouilov, Alexandre; Petryakov, Sergey; Lurie, David J.; Zweier, Jay L.

    2014-01-01

    Dynamic nuclear polarization (DNP) is an NMR-based technique which enables detection and spectral characterization of endogenous and exogenous paramagnetic substances measured via transfer of polarization from the saturated unpaired electron spin system to the NMR active nuclei. A variable field system capable of performing DNP spectroscopy with NMR detection at any magnetic field in the range 0 - 0.38 T is described. The system is built around a clinical open-MRI system. To obtain EPR spectra via DNP, partial cancellation of the detection field B0NMR is required to alter the evolution field B0EPR at which the EPR excitation is achieved. The addition of resistive actively shielded field cancellation coils in the gap of the primary magnet provides this field offset in the range of 0–100 mT. A description of the primary magnet, cancellation coils, power supplies, interfacing hardware, RF electronics and console are included. Performance of the instrument has been evaluated by acquiring DNP spectra of phantoms with aqueous nitroxide solutions (TEMPOL) at three NMR detection fields of 97 G, 200 G and 587 G corresponding to 413 kHz, 851.6 kHz and 2.5 MHz respectively and fixed EPR evolution field of 100 G corresponding to an irradiation frequency of 282.3 MHz. This variable field DNP system offers great flexibility for the performance of DNP spectroscopy with independent optimum choice of EPR excitation and NMR detection fields. PMID:20570197

  17. Accelerating two-dimensional nuclear magnetic resonance correlation spectroscopy via selective coherence transfer

    NASA Astrophysics Data System (ADS)

    Ye, Qimiao; Chen, Lin; Qiu, Wenqi; Lin, Liangjie; Sun, Huijun; Cai, Shuhui; Wei, Zhiliang; Chen, Zhong

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy serves as an important tool for both qualitative and quantitative analyses of various systems in chemistry, biology, and medicine. However, applications of one-dimensional 1H NMR are often restrained by the presence of severe overlap among different resonances. The advent of two-dimensional (2D) 1H NMR constitutes a promising alternative by extending the crowded resonances into a plane and thereby alleviating the spectral congestions. However, the enhanced ability in discriminating resonances is achieved at the cost of extended experimental duration due to necessity of various scans with progressive delays to construct the indirect dimension. Therefore, in this study, we propose a selective coherence transfer (SECOT) method to accelerate acquisitions of 2D correlation spectroscopy by converting chemical shifts into spatial positions within the effective sample length and then performing an echo planar spectroscopic imaging module to record the spatial and spectral information, which generates 2D correlation spectrum after 2D Fourier transformation. The feasibility and effectiveness of SECOT have been verified by a set of experiments under both homogeneous and inhomogeneous magnetic fields. Moreover, evaluations of SECOT for quantitative analyses are carried out on samples with a series of different concentrations. Based on these experimental results, the SECOT may open important perspectives for fast, accurate, and stable investigations of various chemical systems both qualitatively and quantitatively.

  18. Accelerating two-dimensional nuclear magnetic resonance correlation spectroscopy via selective coherence transfer.

    PubMed

    Ye, Qimiao; Chen, Lin; Qiu, Wenqi; Lin, Liangjie; Sun, Huijun; Cai, Shuhui; Wei, Zhiliang; Chen, Zhong

    2017-01-07

    Nuclear magnetic resonance (NMR) spectroscopy serves as an important tool for both qualitative and quantitative analyses of various systems in chemistry, biology, and medicine. However, applications of one-dimensional (1)H NMR are often restrained by the presence of severe overlap among different resonances. The advent of two-dimensional (2D) (1)H NMR constitutes a promising alternative by extending the crowded resonances into a plane and thereby alleviating the spectral congestions. However, the enhanced ability in discriminating resonances is achieved at the cost of extended experimental duration due to necessity of various scans with progressive delays to construct the indirect dimension. Therefore, in this study, we propose a selective coherence transfer (SECOT) method to accelerate acquisitions of 2D correlation spectroscopy by converting chemical shifts into spatial positions within the effective sample length and then performing an echo planar spectroscopic imaging module to record the spatial and spectral information, which generates 2D correlation spectrum after 2D Fourier transformation. The feasibility and effectiveness of SECOT have been verified by a set of experiments under both homogeneous and inhomogeneous magnetic fields. Moreover, evaluations of SECOT for quantitative analyses are carried out on samples with a series of different concentrations. Based on these experimental results, the SECOT may open important perspectives for fast, accurate, and stable investigations of various chemical systems both qualitatively and quantitatively.

  19. General equation for size nanocharacterization of the core-shell nanoparticles by X-ray photoelectron spectroscopy.

    PubMed

    Gillet, Jean-Numa; Meunier, Michel

    2005-05-12

    Nanocharacterization is essential for nanoengineering of new types of core-shell (c-s) nanoparticles, which can be used to design new devices for photonics, electronics, catalysis, medicine, etc. X-ray photoelectron spectroscopy (XPS) has been widely used to study the elemental composition of the c-s nanoparticles. However, the physical and chemical properties of a c-s nanoparticle dramatically depend on the sizes of its core and shell. We therefore propose a general equation for the XPS intensity of a c-s nanoparticle, which is based on an analytical model. With this equation, XPS can now also be used for nanocharacterization of the core and shell sizes of the c-s nanoparticles (with a diameter smaller than or equal to the XPS probing depth of approximately 10 nm). To validate the new equation with experimental XPS data, we first determine the average shell thickness of a group of c-s nanoparticles by comparing the XPS intensity of reference bare cores to that of the c-s nanoparticles. Then we study the growth kinetics of the cores and shells of another group of c-s nanoparticles where the shells are obtained by oxidation.

  20. Evaluation of Two Methods for Determining Shell Thicknesses of Core-Shell Nanoparticles by X-ray Photoelectron Spectroscopy.

    PubMed

    Powell, C J; Werner, W S M; Shard, A G; Castner, D G

    2016-10-06

    We evaluated two methods for determining shell thicknesses of core-shell nanoparticles (NPs) by X-ray photoelectron spectroscopy (XPS). One of these methods had been developed for determining thicknesses of films on a planar substrate while the other was developed specifically for NPs. Our evaluations were based on simulated Cu 2p3/2 spectra from Cu-core/Cu-shell NPs with a wide range of core diameters and shell thicknesses. Copper was chosen for our tests because elastic-scattering effects for Cu 2p3/2 photoelectrons excited by Al Kα X-rays are known to be strong. Elastic scattering could also be switched off in our simulations so that the two methods could be evaluated in the limit of no elastic scattering. We found that the first method, based on both core and shell photoelectron intensities, was unsatisfactory for all conditions. The second method, based on an empirical equation for NPs developed by Shard, also utilized both core and shell photoelectron intensities and was found to be satisfactory for all conditions. The average deviation between shell thicknesses derived from the Shard equation and the true values was -4.1 % when elastic scattering was switched on and -2.2 % when elastic scattering was switched off. If elastic scattering was switched on, the effective attenuation length for a Cu film on a planar substrate was the appropriate length parameter while the inelastic mean free path was the appropriate parameter when elastic scattering was switched off.

  1. Investigation of enzymatic C-P bond formation using multiple quantum HCP nuclear magnetic resonance spectroscopy.

    PubMed

    Hu, Kaifeng; Werner, Williard J; Allen, Kylie D; Wang, Susan C

    2015-04-01

    The biochemical mechanism for the formation of the C-P-C bond sequence found in l-phosphinothricin, a natural product with antibiotic and herbicidal activity, remains unclear. To obtain further insight into the catalytic mechanism of PhpK, the P-methyltransferase responsible for the formation of the second C-P bond in l-phosphinothricin, we utilized a combination of stable isotopes and two-dimensional nuclear magnetic resonance spectroscopy. Exploiting the newly emerged Bruker QCI probe (Bruker Corp.), we specifically designed and ran a (13) C-(31) P multiple quantum (1) H-(13) C-(31) P (HCP) experiment in (1) H-(31) P two-dimensional mode directly on a PhpK-catalyzed reaction mixture using (13) CH3 -labeled methylcobalamin as the methyl group donor. This method is particularly advantageous because minimal sample purification is needed to maximize product visualization. The observed 3:1:1:3 multiplet specifically and unequivocally illustrates direct bond formation between (13) CH3 and (31) P. Related nuclear magnetic resonance experiments based upon these principles may be designed for the study of enzymatic and/or synthetic chemical reaction mechanisms.

  2. Characterization of borate glasses by W-band pulse electron-nuclear double resonance spectroscopy

    SciTech Connect

    Kordas, George; Goldfarb, Daniella

    2008-10-21

    (100-x) mol % B{sub 2}O{sub 3} x mol %Me{sub 2}O (Me=Li,Na,K) glasses, exposed to {gamma}-{sup 60}Co irradiation to produce paramagnetic states, were characterized by W-band (95 GHz) pulse electron-nuclear double resonance (ENDOR) spectroscopy in order to characterize local structures occurring in the range of compositions between x=16 and x=25 at which the 'boron oxide' anomaly occurs. The high resolution of nuclear frequencies allowed resolving the {sup 7}Li and {sup 11}B ENDOR lines. In the samples with x=16 and x=20 glasses, {sup 11}B hyperfine couplings of 16, 24, and 36 MHz were observed and attributed to the tetraborate, triborate, and boron oxygen hole center (BOHC) structures, respectively. The x=25 samples showed hyperfine couplings of 15 MHz for the tetraborate and 36 MHz for BOHC. Density functional theory (DFT) calculations predicted for these structures negative hyperfine couplings, which were confirmed by W-band ENDOR. This suggests that a spin polarization mechanism accounts for the negative hyperfine structure splitting.

  3. Neutron activation analysis via nuclear decay kinetics using gamma-ray spectroscopy at SFU

    NASA Astrophysics Data System (ADS)

    Domingo, Thomas; Chester, Aaron; Starosta, Krzysztof; Williams, Jonathan

    2016-09-01

    Gamma-ray spectroscopy is a powerful tool used in a variety of fields including nuclear and analytical chemistry, environmental science, and health risk management. At SFU, the Germanium detector for Elemental Analysis and Radiation Studies (GEARS), a low-background shielded high-purity germanium gamma-ray detector, has been used recently in all of the above fields. The current project aims to expand upon the number of applications for which GEARS can be used while enhancing its current functionality. A recent addition to the SFU Nuclear Science laboratory is the Thermo Scientific P 385 neutron generator. This device provides a nominal yield of 3 ×108 neutrons/s providing the capacity for neutron activation analysis, opening a major avenue of research at SFU which was previously unavailable. The isotopes created via neutron activation have a wide range of half-lives. To measure and study isotopes with half-lives above a second, a new analogue data acquisition system has been installed on GEARS allowing accurate measurements of decay kinetics. This new functionality enables identification and quantification of the products of neutron activation. Results from the neutron activation analysis of pure metals will be presented.

  4. 3D spectroscopy of merger Seyfert galaxy Mrk 334: nuclear starburst, superwind and the circumnuclear cavern

    NASA Astrophysics Data System (ADS)

    Smirnova, Aleksandrina; Moiseev, Alexei

    2010-01-01

    We are presenting new results on kinematics and structure of the Mrk 334 Seyfert galaxy. Panoramic (3D) spectroscopy is performed at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences using the integral-field Multi-Pupil Fiber Spectrograph (MPFS) and scanning Fabry-Pérot interferometer. The deep images have revealed that Mrk 334 is observed during the final stage of its merging with a massive companion. A possible mass ratio ranges from 1/5 to 1/3. The merger has triggered mass redistribution in the disc resulting in an intensification of nuclear activity and in a burst of star formation in the inner region of the galaxy. The circumnuclear starburst is so intense that its contribution to the gas ionization exceeds that contribution of the active galactic nuclei (AGN). We interpret the nuclear gas outflow with velocities of ~200kms-1 as a galactic superwind that accompanies the violent star formation. This suggestion is consistent with the asymmetric X-ray brightness distribution in Mrk 334. The trajectory of the fragments of the disrupted satellite in the vicinity of the main galaxy nucleus can be traced. In the galaxy disc, a cavern is found that is filled with a low-density ionized gas. We consider this region to be the place where the remnants of the companion have recently penetrated through the gaseous disc of the main galaxy.

  5. What Can Be Learned from Nuclear Resonance Vibrational Spectroscopy: Vibrational Dynamics and Hemes.

    PubMed

    Scheidt, W Robert; Li, Jianfeng; Sage, J Timothy

    2017-09-18

    Nuclear resonance vibrational spectroscopy (NRVS; also known as nuclear inelastic scattering, NIS) is a synchrotron-based method that reveals the full spectrum of vibrational dynamics for Mössbauer nuclei. Another major advantage, in addition to its completeness (no arbitrary optical selection rules), is the unique selectivity of NRVS. The basics of this recently developed technique are first introduced with descriptions of the experimental requirements and data analysis including the details of mode assignments. We discuss the use of NRVS to probe (57)Fe at the center of heme and heme protein derivatives yielding the vibrational density of states for the iron. The application to derivatives with diatomic ligands (O2, NO, CO, CN(-)) shows the strong capabilities of identifying mode character. The availability of the complete vibrational spectrum of iron allows the identification of modes not available by other techniques. This permits the correlation of frequency with other physical properties. A significant example is the correlation we find between the Fe-Im stretch in six-coordinate Fe(XO) hemes and the trans Fe-N(Im) bond distance, not possible previously. NRVS also provides uniquely quantitative insight into the dynamics of the iron. For example, it provides a model-independent means of characterizing the strength of iron coordination. Prediction of the temperature-dependent mean-squared displacement from NRVS measurements yields a vibrational "baseline" for Fe dynamics that can be compared with results from techniques that probe longer time scales to yield quantitative insights into additional dynamical processes.

  6. Applications of nuclear magnetic resonance spectroscopy for the understanding of enantiomer separation mechanisms in capillary electrophoresis.

    PubMed

    Salgado, Antonio; Chankvetadze, Bezhan

    2016-10-07

    This review deals with the applications of nuclear magnetic resonance (NMR) spectroscopy to understand the mechanisms of chiral separation in capillary electrophoresis (CE). It is accepted that changes observed in the separation process, including the reversal of enantiomer migration order (EMO), can be caused by subtle modifications in the molecular recognition mechanisms between enantiomer and chiral selector. These modifications may imply minor structural differences in those selector-selectand complexes that arise from the above mentioned interactions. Therefore, it is mandatory to understand the fine intermolecular interactions between analytes and chiral selectors. In other words, it is necessary to know in detail the structures of the complexes formed by the enantiomer (selectand) and the selector. Any differences in the structures of these complexes arising from either enantiomer should be detected, so that enantiomeric bias in the separation process could be explained. As to the nature of these interactions, those have been extensively reviewed, and it is not intended to be discussed here. These interactions contemplate ionic, ion-dipole and dipole-dipole interactions, hydrogen bonding, van der Waals forces, π-π stacking, steric and hydrophobic interactions. The main subject of this review is to describe how NMR spectroscopy helps to gain insight into the non-covalent intermolecular interactions between selector and selectand that lead to enantiomer separation by CE. Examples in which diastereomeric species are created by covalent (irreversible) derivatization will not be considered here. This review is structured upon the different structural classes of chiral selectors employed in CE, in which NMR spectroscopy has made substantial contributions to rationalize the observed enantioseparations. Cases in which other techniques complement NMR spectroscopic data are also mentioned.

  7. Dynamics of asymmetric binary glass formers. I. A dielectric and nuclear magnetic resonance spectroscopy study

    SciTech Connect

    Kahlau, R.; Bock, D.; Schmidtke, B.; Rössler, E. A.

    2014-01-28

    Dielectric spectroscopy as well as {sup 2}H and {sup 31}P nuclear magnetic resonance spectroscopy (NMR) are applied to probe the component dynamics of the binary glass former tripropyl phosphate (TPP)/polystyrene (PS/PS-d{sub 3}) in the full concentration (c{sub TPP}) range. In addition, depolarized light scattering and differential scanning calorimetry experiments are performed. Two glass transition temperatures are found: T{sub g1}(c{sub TPP}) reflects PS dynamics and shows a monotonic plasticizer effect, while the lower T{sub g2}(c{sub TPP}) exhibits a maximum and is attributed to (faster) TPP dynamics, occurring in a slowly moving or immobilized PS matrix. Dielectric spectroscopy probing solely TPP identifies two different time scales, which are attributed to two sub-ensembles. One of them, again, shows fast TPP dynamics (α{sub 2}-process), the other (α{sub 1}-process) displays time constants identical with those of the slow PS matrix. Upon heating the α{sub 1}-fraction of TPP decreases until above some temperature T{sub c} only a single α{sub 2}-population exists. Inversely, below T{sub c} a fraction of the TPP molecules is trapped by the PS matrix. At low c{sub TPP} the α{sub 2}-relaxation does not follow frequency-temperature superposition (FTS), instead it is governed by a temperature independent distribution of activation energies leading to correlation times which follow Arrhenius laws, i.e., the α{sub 2}-relaxation resembles a secondary process. Yet, {sup 31}P NMR demonstrates that it involves isotropic reorientations of TPP molecules within a slowly moving or rigid matrix of PS. At high c{sub TPP} the super-Arrhenius temperature dependence of τ{sub 2}(T), as well as FTS are recovered, known as typical of the glass transition in neat systems.

  8. Coexistence of bound and virtual-bound states in shallow-core to valence x-ray spectroscopies

    NASA Astrophysics Data System (ADS)

    Sen Gupta, Subhra; Bradley, J. A.; Haverkort, M. W.; Seidler, G. T.; Tanaka, A.; Sawatzky, G. A.

    2011-08-01

    With the example of the non-resonant inelastic x-ray scattering (NIXS) at the O45 edges (5d→5f) of the actinides, we develop the theory for shallow-core to valence excitations, where the multiplet spread is larger than the core-hole attraction, such as if the core and valence orbitals have the same principal quantum number. This involves very strong final state configuration interaction (CI), which manifests itself as huge reductions in the Slater-Condon integrals, needed to explain the spectral shapes within a simple renormalized atomic multiplet theory. But more importantly, this results in a cross-over from bound (excitonic) to virtual-bound excited states with increasing energy, within the same core-valance multiplet structure, and in large differences between the dipole and high-order multipole transitions, as observed in NIXS. While the bound states (often higher multipole allowed) can still be modeled using local cluster-like models, the virtual-bound resonances (often dipole-allowed) cannot be interpreted within such local approaches. This is in stark contrast to the more familiar core-valence transitions between different principal quantum number shells, where all the final excited states almost invariably form bound core-hole excitons and can be modeled using local approaches. The possibility of observing giant multipole resonances for systems with high angular momentum ground states is also predicted. The theory is important to obtain ground state information from core-level x-ray spectroscopies of strongly correlated transition metal, rare-earth, and actinide systems.

  9. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  10. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  11. Delayed Gamma-Ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    SciTech Connect

    Ludewigt, Bernhard; Mozin, Vladimir; Campbell, Luke; Favalli, Andrea; Alan W. Hunt; Reedy, Edward T.E.; Seipel, Heather

    2015-06-01

    High-­energy, beta-delayed gamma-­ray spectroscopy is a potential, non-­destructive assay techniques for the independent verification of declared quantities of special nuclear materials at key stages of the fuel cycle and for directly assaying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Other potential applications include determination of MOX fuel composition, characterization of nuclear waste packages, and challenges in homeland security and arms control verification. Experimental measurements were performed to evaluate fission fragment yields, to test methods for determining isotopic fractions, and to benchmark the modeling code package. Experimental measurement campaigns were carried out at the IAC using a photo-­neutron source and at OSU using a thermal neutron beam from the TRIGA reactor to characterize the emission of high-­energy delayed gamma rays from 235U, 239Pu, and 241Pu targets following neutron induced fission. Data were collected for pure and combined targets for several irradiation/spectroscopy cycle times ranging from 10/10 seconds to 15/30 minutes.The delayed gamma-ray signature of 241Pu, a significant fissile constituent in spent fuel, was measured and compared to 239Pu. The 241Pu/239Pu ratios varied between 0.5 and 1.2 for ten prominent lines in the 2700-­3600 keV energy range. Such significant differences in relative peak intensities make it possible to determine relative fractions of these isotopes in a mixed sample. A method for determining fission product yields by fitting the energy and time dependence of the delayed gamma-­ray emission was developed and demonstrated on a limited 235U data set. De-­convolution methods for determining fissile fractions were developed and tested on the experimental data. The use of high count-­rate LaBr3 detectors

  12. Xenobiotic monitoring in plants by sup 19 F and sup 1 H nuclear magnetic resonance imaging and spectroscopy

    SciTech Connect

    Rollins, A.; Barber, J.; Wood, B. ); Elliott, R. )

    1989-12-01

    {sup 19}F and {sup 1}H nuclear magnetic resonance imaging and spectroscopy have been used to monitor the uptake of trifluoroacetic acid in stems and leaves of Lycopersicon esculentum. The movement and location of a xenobiotic have been demonstrated in vivo by a noninvasive technique.

  13. Electron tomography of fiber cell cytoplasm and dense cores of multilamellar bodies from human age-related nuclear cataracts.

    PubMed

    Costello, M Joseph; Burette, Alain; Weber, Mariko; Metlapally, Sangeetha; Gilliland, Kurt O; Fowler, W Craig; Mohamed, Ashik; Johnsen, Sönke

    2012-08-01

    Human nuclear cataract formation is a multi-factorial disease with contributions to light scattering from many cellular sources that change their scattering properties over decades. The aging process produces aggregation of cytoplasmic crystallin proteins, which alters the protein packing and texture of the cytoplasm. Previous studies of the cytoplasmic texture quantified increases in density fluctuations in protein packing and theoretically predicted the corresponding scattering. Multilamellar bodies (MLBs) are large particles with a core of crystallin cytoplasm that have been suggested to be major sources of scattering in human nuclei. The core has been shown to condense over time such that the refractive index increases compared to the adjacent aged and textured cytoplasm. Electron tomography is used here to visualize the 3D arrangement of protein aggregates in aged and cataractous lens nuclear cytoplasm compared to the dense protein packing in the cores of MLBs. Thin sections, 70 nm thick, were prepared from epoxy-embedded human transparent donor lenses and nuclear cataracts. Tilt series were collected on an FEI T20 transmission electron microscope (TEM) operated at 200 kV using 15 nm gold particles as fiducial markers. Images were aligned and corrected with FEI software and reconstructed with IMOD and other software packages to produce animated tilt series and stereo anaglyphs. The 3D views of protein density showed the relatively uniform packing of proteins in aged transparent lens nuclear cytoplasm and less dense packing of aged cataractous cytoplasm where many low-density regions can be appreciated in the absence of the TEM projection artifacts. In contrast the cores of the MLBs showed a dense packing of protein with minimal density fluctuations. These observations support the conclusion that, during the nuclear cataract formation, alterations in protein packing are extensive and can result in pronounced density fluctuations. Aging causes the MLB cores to

  14. Few-second-long correlation times in a quantum dot nuclear spin bath probed by frequency-comb nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Waeber, A. M.; Hopkinson, M.; Farrer, I.; Ritchie, D. A.; Nilsson, J.; Stevenson, R. M.; Bennett, A. J.; Shields, A. J.; Burkard, G.; Tartakovskii, A. I.; Skolnick, M. S.; Chekhovich, E. A.

    2016-07-01

    One of the key challenges in spectroscopy is the inhomogeneous broadening that masks the homogeneous spectral lineshape and the underlying coherent dynamics. Techniques such as four-wave mixing and spectral hole-burning are used in optical spectroscopy, and spin-echo in nuclear magnetic resonance (NMR). However, the high-power pulses used in spin-echo and other sequences often create spurious dynamics obscuring the subtle spin correlations important for quantum technologies. Here we develop NMR techniques to probe the correlation times of the fluctuations in a nuclear spin bath of individual quantum dots, using frequency-comb excitation, allowing for the homogeneous NMR lineshapes to be measured without high-power pulses. We find nuclear spin correlation times exceeding one second in self-assembled InGaAs quantum dots--four orders of magnitude longer than in strain-free III-V semiconductors. This observed freezing of the nuclear spin fluctuations suggests ways of designing quantum dot spin qubits with a well-understood, highly stable nuclear spin bath.

  15. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  16. Do nuclear-encoded core subunits of mitochondrial complex I confer genetic susceptibility to schizophrenia in Han Chinese populations?

    PubMed

    Li, Xiao; Zhang, Wen; Tang, Jinsong; Tan, Liwen; Luo, Xiong-jian; Chen, Xiaogang; Yao, Yong-Gang

    2015-06-08

    Schizophrenia is one of the most prevalent psychiatric disorders with complex genetic etiology. Accumulating evidence suggests that energy metabolism and oxidative stress play important roles in the pathophysiology of schizophrenia. Dysfunction of mitochondrial respiratory chain and altered expression of complex I subunits were frequently reported in schizophrenia. To investigate whether nuclear-encoded core subunit genes of mitochondrial complex I are associated with schizophrenia, we performed a genetic association study in Han Chinese. In total, 46 tag single nucleotide polymorphisms (SNPs) from 7 nuclear-encoded core genes of mitochondrial complex I were genotyped in 918 schizophrenia patients and 1042 healthy controls. We also analyzed these SNPs in a large sample mainly composed of Europeans through using the available GWAS datasets from the Psychiatric Genomics Consortium (PGC). No significant associations were detected between these SNPs and schizophrenia in Han Chinese and the PGC data set. However, we observed nominal significant associations of 2 SNPs in the NDUFS1 gene and 4 SNPs in the NDUFS2 gene with early onset schizophrenia (EOS), but none of these associations survived the Bonferroni correction. Taken together, our results suggested that common SNPs in the nuclear-encoded core subunit genes of mitochondrial complex I may not confer genetic susceptibility to schizophrenia.

  17. In-reactor testing of the closed cycle gas core reactor—the nuclear light bulb concept

    NASA Astrophysics Data System (ADS)

    Gauntt, Randall O.; Slutz, Stephen A.; Harms, Gary A.; Latham, Thomas S.; Roman, Ward C.; Rodgers, Richard J.

    1993-01-01

    The Nuclear Light Bulb (NLB) concept is an advanced closed cycle space propulsion rocket engine design that offers unprecidented performance characteristics in terms of specific impulse (≳1800 s) and thrust (≳445 kN). The NLB is a gas-core nuclear reactor making use of thermal radiation from a high temperature U-plasma core to heat the hydrogen propellant to very high temperatures (˜4000 K). The following paper describes analyses performed in support of the design of in-reactor tests that are planned to be performed in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories in order to demonstrate the technical feasibility of this advanced concept. The tests will examine the stability of a hydrodynamically confined fissioning U-plasma under steady and transient conditions. Testing will also involve study of propellant heating by thermal radiation from the plasma and materials performance in the nuclear environment of the NLB. The analyses presented here include neutronic performance studies and U-plasma radiation heat-transport studies of small vortex-confined fissioning U-plasma experiments that are irradiated in the ACRR. These analyses indicate that high U-plasma temperatures (4000 to 9000 K) can be sustained in the ACRR for periods of time on the order of 5 to 20 s. These testing conditions are well suited to examine the stability and performance requirements necessary to demonstrate the feasibility of this concept.

  18. Experimental study of photon induced gamma emission of hafnium-178(m2) by nuclear spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Zoita, Nicolae Catalin

    The induced release of the energy stored in nuclear isomers in the form of an incoherent gamma burst is of great scientific and technological importance. Powerful sources of induced gamma-ray radiation could be obtained, which would be an intermediary step to the development of a gamma-ray laser. High-energy nuclear isomers with very long lifetimes of the order of years and higher can serve as good active media. For instance, a macroscopic sample of 178Hfm2 isomer stores about 1 GJ/g as excitation energy of the isomeric state. Photonuclear reactions induced by real or virtual photons are the most promising mechanisms to release the energy stored by 178Hfm2 nuclei. The isomeric nucleus is excited to an intermediate level from which cascade to the ground state emitting gamma-photons. The nuclear level density approaches one per keV at those excitation energies. Experimental investigations by nuclear spectroscopy methods conducted in this work revealed that the decay of 178Hfm2 is accelerated when the energies of the incident photons were tuned at about 20,825 keV, 11.15 keV or near the L3 photoionization threshold of atomic hafnium at 9561 keV. In the first case, the presumed mechanism was the direct photoexcitation of the m2 isomeric nucleus to a trigger level at about 2466.9 keV. There was a strong decay branch from this trigger level to the 11- level of the 8 - band that caused the accelerated emission of gamma photons from many of the transitions detected in the unperturbed spontaneous decay. In the second case, a trigger level at about 2457.2 keV, that meant 11.15 keV above the 16+ isomeric level, was mediating the energy release. The direct transition from this level to ground state was observed. Other branches of its decay enhanced the gamma-emission of the ground state band (GSB) members. In the third case, complex electron bridging mechanisms were implied when incident X-ray photons were tuned at energies near the L3 photoionization threshold. Those

  19. Optical spectroscopy and energy-filtered transmission electron microscopy of surface plasmons in core-shell nanoparticles.

    SciTech Connect

    Eggeman, A. S.; Dobson, P. J.; Petford-Long, A. K.; Materials Science Division; Oxford Univ.

    2007-01-01

    Silica-silver core-shell nanoparticles were produced using colloidal chemistry methods. Surface plasmon resonances in the silver shells were investigated using optical absorption measurements in ultraviolet-to-visible (UV-vis) spectroscopy and the effect of shell thickness on the wavelength of the resonance was noted. Further studies of the resonances were performed using electron-energy-loss spectroscopy (EELS) and energy-filtered transmission electron microscope (EFTEM) imaging. The plasmon resonance was seen in an EELS spectrum at an energy corresponding to the wavelengths measured in an UV-vis spectrophotometer, and EFTEM images confirmed that the resonance was indeed localized at the surface of the silver shell. Further features were seen in the EELS spectrum and confirmed as bulk-plasmon features of silica and the carbon support film in the TEM specimen.

  20. Study of (178m2)hafnium(gamma, gamma')(178)hafnium reaction by nuclear spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Rusu, Claudiu

    Controlled release of the energy stored in nuclear isomers is very attractive for producing powerful sources of induced gamma-ray radiation. High-energy nuclear isomers can have very long lifetimes of the order of years and thus they can serve as good energy storage media. For instance, 1 mg of the 178m2Hf isomer stores about 1 MJ as excitation energy of the isomeric state. One of the most promising ways to release the energy stored in the isomeric state involves photonuclear reactions in the energy range of soft X-rays. Photons with energies lower than 20 keV can excite the 178m2Hf isomeric state to an intermediate level from which gamma transitions cascade to lower levels with a decay rate much faster than the rate of spontaneous decay of the isomeric state. In this work, the photoexcitation of 178m2Hf by (gamma, gamma ') reactions at low energies was studied by nuclear spectroscopy methods. The experimental arrangement was based on the coincident detection of gamma photons with four large HPGe detectors. A bremsstrahlung X-ray generator was used as excitation source, which covered a continuous energy-range from 0 to 60 keV. The interpretation of the experimental results shows that the decay of the 178m2Hf isomer can be triggered by X-rays at a power on the order of only mW/cm 2. The analysis of the gamma-gamma coincidence data has revealed that during X-ray irradiations, a line of 129.5 keV was found in coincidence with the 213.4 keV ground state band (GSB) transition. The 129.5 keV line has not been previously observed and is not a known transition of the spontaneous decay of 178m2Hf. The 129.5 keV gamma transition must be a member of a sequence of gamma transitions that bypasses most of the normal decay cascade populated by spontaneous decay. This result leads to a deeper understanding of the (gamma, gamma ') reactions at low energies. These photonuclear reactions are of special interest because of the importance of possible practical applications. The studies

  1. Nuclear constraints on the core-crust transition and crustal fraction of moment of inertia of neutron stars

    NASA Astrophysics Data System (ADS)

    Atta, D.; Mukhopadhyay, S.; Basu, D. N.

    2017-03-01

    The crustal fraction of moment of inertia in neutron stars is calculated using β-equilibrated nuclear matter obtained from density dependent M3Y effective interaction. The transition density, pressure and proton fraction at the inner edge separating the liquid core from the solid crust of the neutron stars are determined from the thermodynamic stability conditions. The crustal fraction of the moment of inertia can be extracted from studying pulsar glitches. This fraction is highly dependent on the core-crust transition pressure and corresponding density. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a limit for the radius of the Vela pulsar: R ≥4.10 + 3.36 M/M_⊙ km.

  2. Scanning Tunneling Spectroscopy in the Superconducting State and Vortex Cores of the β-Pyrochlore KOs2O6

    NASA Astrophysics Data System (ADS)

    Dubois, C.; Santi, G.; Cuttat, I.; Berthod, C.; Jenkins, N.; Petrović, A. P.; Manuel, A. A.; Fischer, Ø.; Kazakov, S. M.; Bukowski, Z.; Karpinski, J.

    2008-08-01

    We performed the first scanning tunneling spectroscopy measurements on the pyrochlore superconductor KOs2O6 (Tc=9.6K) in both zero magnetic field and the vortex state at several temperatures above 1.95 K. This material presents atomically flat surfaces, yielding spatially homogeneous spectra which reveal fully gapped superconductivity with a gap anisotropy of 30%. Measurements performed at fields of 2 and 6 T display a hexagonal Abrikosov flux line lattice. From the shape of the vortex cores, we extract a coherence length of 31 40 Å, in agreement with the value derived from the upper critical field Hc2. We observe a reduction in size of the vortex cores (and hence the coherence length) with increasing field which is consistent with the unexpectedly high and unsaturated upper critical field reported.

  3. Adsorption of lithium on the Si(111)7 × 7 surface studied with high resolution core-level spectroscopy

    NASA Astrophysics Data System (ADS)

    Grehk, T. M.; Larsson, C. U. S.; Prince, N. P.; Flodström, S. A.

    1993-03-01

    Li-adsorption on the Si(111)7 × 7 surface at room temperature has been studied for different metal coverages with core-level spectroscopy. Four Li-induced components are observed in the Si 2p level at high Li-coverages indicating the formation of four thermodynamically stable phases. It is shown that the reaction between the Li atoms and the Si(111)7 × 7 surface takes place in two steps. In the first the surface reconstructs towards a "7 × 1" reconstruction and in the second Li react with the Si-substrate, forming Li suicides, with the Si atom coordinating up to four Li neighbors.

  4. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field.

    PubMed

    Wasson, Anton; Bischof, Leanne; Zwart, Alec; Watt, Michelle

    2016-02-01

    Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R (2)=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field

    PubMed Central

    Wasson, Anton; Bischof, Leanne; Zwart, Alec; Watt, Michelle

    2016-01-01

    Root architecture traits are a target for pre-breeders. Incorporation of root architecture traits into new cultivars requires phenotyping. It is attractive to rapidly and directly phenotype root architecture in the field, avoiding laboratory studies that may not translate to the field. A combination of soil coring with a hydraulic push press and manual core-break counting can directly phenotype root architecture traits of depth and distribution in the field through to grain development, but large teams of people are required and labour costs are high with this method. We developed a portable fluorescence imaging system (BlueBox) to automate root counting in soil cores with image analysis software directly in the field. The lighting system was optimized to produce high-contrast images of roots emerging from soil cores. The correlation of the measurements with the root length density of the soil cores exceeded the correlation achieved by human operator measurements (R 2=0.68 versus 0.57, respectively). A BlueBox-equipped team processed 4.3 cores/hour/person, compared with 3.7 cores/hour/person for the manual method. The portable, automated in-field root architecture phenotyping system was 16% more labour efficient, 19% more accurate, and 12% cheaper than manual conventional coring, and presents an opportunity to directly phenotype root architecture in the field as part of pre-breeding programs. The platform has wide possibilities to capture more information about root health and other root traits in the field. PMID:26826219

  6. Ultrafast dynamics in C 1s core-excited CF4 revealed by two-dimensional resonant Auger spectroscopy.

    PubMed

    Piancastelli, M N; Guillemin, R; Simon, M; Iwayama, H; Shigemasa, E

    2013-06-21

    Following core excitation in an isolated molecule, ultrafast dissociation of one particular chemical bond can occur, where "ultrafast" is defined as taking place during the lifetime of the core hole, of the order of few femtoseconds. The signature of such phenomenon can be observed in resonant Auger spectra following core excitation. We present here an investigation of ultrafast dissociation following C 1s-to-σ* core excitation in CF4, with high-resolution resonant Auger spectroscopy. We are able to characterize final states of both the molecular ion and the CF3 (+) fragment. We use two-dimensional (2D) maps to record resonant Auger spectra across the resonance as a function of photon energy and to characterize ultrafast dynamics. This method provides immediate visual evidence of one of the important characteristics of the study of spectral features related to molecular versus fragment ionic final states, and namely their dispersion law. In the 2D maps we are also able to identify the dissociation limit for one of the molecular final states.

  7. 31P nuclear magnetic resonance spectroscopy: noninvasive biochemical analysis of the ischemic extremity.

    PubMed

    Zatina, M A; Berkowitz, H D; Gross, G M; Maris, J M; Chance, B

    1986-03-01

    The biochemical effects of peripheral vascular disease on skeletal muscle have not been characterized precisely because of the lack of satisfactory noninvasive analytic methods. 31P nuclear magnetic resonance (NMR) spectroscopy was used to measure the high-energy phosphate compounds, phosphocreatine (PCr) and adenosine triphosphate, as well as metabolic byproducts, such as inorganic phosphates (Pi) and phosphate monoesters in calf muscles of 214 limbs with peripheral vascular disease. Intracellular pH was also measured. The NMR index (Pi[PCr + Pi]) was used to quantitate the impairment of oxidative phosphorylation as a result of ischemia. Studies done at rest documented the impairment of oxidative metabolism only in limbs with severe ischemia (ankle-brachial pressure index (API) less than 0.4). Exercise resulted in a significant elevation of the NMR index in all limbs and the rate of return of this value toward normal following exercise was prolonged even in limbs with moderate ischemia (0.4 less than or equal to API less than or equal to 0.9). Correlation of 31P NMR parameters with arteriograms showed that infrapopliteal occlusions resulted in prolonged recovery times only when the superficial femoral artery was occluded and emphasized the metabolic consequences of multisegmental disease. Accumulation of glycolytic pathway intermediates correlated with the decrease in muscle cell pH observed with exercise. Despite immediate improvement in symptoms and hemodynamic parameters following revascularization, return to normal biochemical function occurs over a prolonged period of time. This study demonstrates that 31P NMR spectroscopy can successfully measure noninvasively the important phosphorus-containing compounds involved in the bioenergetics of skeletal muscle in vivo rapidly enough to permit real-time determination during exercise and recovery.

  8. Multisectional linear ion trap and novel loading method for optical spectroscopy of electron and nuclear transitions.

    PubMed

    Sysoev, Alexey A; Troyan, Victor I; Borisyuk, Peter V; Krasavin, Andrey V; Vasiliev, Oleg S; Palchikov, Vitaly G; Avdeev, Ivan A; Chernyshev, Denis M; Poteshin, Sergey S

    2015-01-01

    There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development.

  9. Laser-induced breakdown spectroscopy of light water reactor simulated used nuclear fuel: Main oxide phase

    DOE PAGES

    Campbell, Keri R.; Judge, Elizabeth J.; Barefield, James E.; ...

    2017-04-22

    We show the analysis of light water reactor simulated used nuclear fuel using laser-induced breakdown spectroscopy (LIBS) is explored using a simplified version of the main oxide phase. The main oxide phase consists of the actinides, lanthanides, and zirconium. The purpose of this study is to develop a rapid, quantitative technique for measuring zirconium in a uranium dioxide matrix without the need to dissolve the material. A second set of materials including cerium oxide is also analyzed to determine precision and limit of detection (LOD) using LIBS in a complex matrix. Two types of samples are used in this study:more » binary and ternary oxide pellets. The ternary oxide, (U,Zr,Ce)O2 pellets used in this study are a simplified version the main oxide phase of used nuclear fuel. The binary oxides, (U,Ce)O2 and (U,Zr)O2 are also examined to determine spectral emission lines for Ce and Zr, potential spectral interferences with uranium and baseline LOD values for Ce and Zr in a UO2 matrix. In the spectral range of 200 to 800 nm, 33 cerium lines and 25 zirconium lines were identified and shown to have linear correlation values (R2) > 0.97 for both the binary and ternary oxides. The cerium LOD in the (U,Ce)O2 matrix ranged from 0.34 to 1.08 wt% and 0.94 to 1.22 wt% in (U,Ce,Zr)O2 for 33 of Ce emission lines. The zirconium limit of detection in the (U,Zr)O2 matrix ranged from 0.84 to 1.15 wt% and 0.99 to 1.10 wt% in (U,Ce,Zr)O2 for 25 Zr lines. Finally, the effect of multiple elements in the plasma and the impact on the LOD is discussed.« less

  10. Laser-induced breakdown spectroscopy of light water reactor simulated used nuclear fuel: Main oxide phase

    NASA Astrophysics Data System (ADS)

    Campbell, Keri R.; Judge, Elizabeth J.; Barefield, James E.; Colgan, James P.; Kilcrease, David P.; Czerwinski, Ken R.; Clegg, Samuel M.

    2017-07-01

    The analysis of light water reactor simulated used nuclear fuel using laser-induced breakdown spectroscopy (LIBS) is explored using a simplified version of the main oxide phase. The main oxide phase consists of the actinides, lanthanides, and zirconium. The purpose of this study is to develop a rapid, quantitative technique for measuring zirconium in a uranium dioxide matrix without the need to dissolve the material. A second set of materials including cerium oxide is also analyzed to determine precision and limit of detection (LOD) using LIBS in a complex matrix. Two types of samples are used in this study: binary and ternary oxide pellets. The ternary oxide, (U,Zr,Ce)O2 pellets used in this study are a simplified version the main oxide phase of used nuclear fuel. The binary oxides, (U,Ce)O2 and (U,Zr)O2 are also examined to determine spectral emission lines for Ce and Zr, potential spectral interferences with uranium and baseline LOD values for Ce and Zr in a UO2 matrix. In the spectral range of 200 to 800 nm, 33 cerium lines and 25 zirconium lines were identified and shown to have linear correlation values (R2) > 0.97 for both the binary and ternary oxides. The cerium LOD in the (U,Ce)O2 matrix ranged from 0.34 to 1.08 wt% and 0.94 to 1.22 wt% in (U,Ce,Zr)O2 for 33 of Ce emission lines. The zirconium limit of detection in the (U,Zr)O2 matrix ranged from 0.84 to 1.15 wt% and 0.99 to 1.10 wt% in (U,Ce,Zr)O2 for 25 Zr lines. The effect of multiple elements in the plasma and the impact on the LOD is discussed.

  11. Three-dimensional structure of the neurotoxin ATX Ia from Anemonia sulcata in aqueous solution determined by nuclear magnetic resonance spectroscopy.

    PubMed

    Widmer, H; Billeter, M; Wüthrich, K

    1989-01-01

    With the aid of 1H nuclear magnetic resonance (NMR) spectroscopy, the three-dimensional structure in aqueous solution was determined for ATX Ia, which is a 46 residue polypeptide neurotoxin of the sea anemone Anemonia sulcata. The input for the structure calculations consisted of 263 distance constraints from nuclear Overhauser effects (NOE) and 76 vicinal coupling constants. For the structure calculation several new or ammended programs were used in a revised strategy consisting of five successive computational steps. First, the program HABAS was used for a complete search of all backbone and chi 1 conformations that are compatible with the intraresidual and sequential NMR constraints. Second, using the program DISMAN, we extended this approach to pentapeptides by extensive sampling of all conformations that are consistent with the local and medium-range NMR constraints. Both steps resulted in the definition of additional dihedral angle constraints and in stereospecific assignments for a number of beta-methylene groups. In the next two steps DISMAN was used to obtain a group of eight conformers that contain no significant residual violations of the NMR constraints or van der Waals contacts. Finally, these structures were subjected to restrained energy refinement with a modified version of the molecular mechanics module of AMBER, which in addition to the energy force field includes potentials for the NOE distance constraints and the dihedral angle constraints. The average of the pairwise minimal RMS distances between the resulting refined conformers calculated for the well defined molecular core, which contains the backbone atoms of 35 residues and 20 interior side chains, is 1.5 +/- 0.3 A. This core is formed by a four-stranded beta-sheet connected by two well-defined loops, and there is an additional flexible loop consisting of the eleven residues 8-18. The core of the protein is stabilized by three disulfide bridges, which are surrounded by hydrophobic residues

  12. Uranium aerosols at a nuclear fuel fabrication plant: Characterization using scanning electron microscopy and energy dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Hansson, E.; Pettersson, H. B. L.; Fortin, C.; Eriksson, M.

    2017-05-01

    Detailed aerosol knowledge is essential in numerous applications, including risk assessment in nuclear industry. Cascade impactor sampling of uranium aerosols in the breathing zone of nuclear operators was carried out at a nuclear fuel fabrication plant. Collected aerosols were evaluated using scanning electron microscopy and energy dispersive X-ray spectroscopy. Imaging revealed remarkable variations in aerosol morphology at the different workshops, and a presence of very large particles (up to ≅ 100 × 50 μm2) in the operator breathing zone. Characteristic X-ray analysis showed varying uranium weight percentages of aerosols and, frequently, traces of nitrogen, fluorine and iron. The analysis method, in combination with cascade impactor sampling, can be a powerful tool for characterization of aerosols. The uranium aerosol source term for risk assessment in nuclear fuel fabrication appears to be highly complex.

  13. Accelerator-Driven Subcritical Fission in a Molten Salt Core: Green Nuclear Power for the New Millennium

    NASA Astrophysics Data System (ADS)

    McIntyre, Peter

    2011-10-01

    Scientists at Texas A&M University, Brookhaven National Lab, and Idaho National Lab are developing a design for accelerator-drive subcritical fission in a molten salt core (ADSMS). Three high-power proton beams are delivered to spallation targets in a molten salt core, where they provide ˜3% of the fast neutrons required to sustain 600 MW of fission. The proton beams are produced by a flux-coupled stack of superconducting strong-focusing cyclotrons. The fuel consists of a eutectic of sodium chloride with either spent nuclear fuel from a conventional U power reactor (ADSMS-U) or thorium (ADSMS-Th). The subcritical core cannot go critical under any failure mode. The core cannot melt down even if all power is suddenly lost to the facility for a prolonged period. The ultra-fast neutronics of the core makes it possible to operate in an isobreeding mode, in which neutron capture breeds the fertile nuclide into a fissile nuclide at the same rate that fission burns the fissile nuclide, and consumes 90% of the fertile inventory instead of the 5% consumed in the original use in a conventional power plant. The ultra-fast neutronics produces a very low equilibrium inventory of the long-lived minor actinides, ˜10^4 less than what is produced in conventional power plants. ADSMS offers a method to safely produce the energy needs for all mankind for the next 3000 years.

  14. Electronic Structure of Heavy Fermion Uranium Compounds Studied by Core-Level Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Ohkochi, Takuo; Kawasaki, Ikuto; Yasui, Akira; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Tokiwa, Yoshifumi; Ikeda, Shugo; Sugai, Takashi; Ohkuni, Hitoshi; Kimura, Noriaki; Ōnuki, Yoshichika

    2012-01-01

    High-energy-resolution core-level and valence-band photoelectron spectroscopic studies were performed for the heavy fermion uranium compounds UGe2, UCoGe, URhGe, URu2Si2, UNi2Al3, UPd2Al3, and UPt3 as well as typical localized and itinerant uranium compounds to understand the relationship between the uranium valence state and their core-level spectral line shapes. In addition to the main line and high-binding energy satellite structure recognized in the core-level spectra of uranium compounds, a shoulder structure on the lower binding energy side of the main lines of localized and nearly localized uranium compounds was also found. The spectral line shapes show a systematic variation depending on the U 5f electronic structure. The core-level spectra of UGe2, UCoGe, URhGe, URu2Si2, and UNi2Al3 are rather similar to those of itinerant compounds, suggesting that U 5f electrons in these compounds are well hybridized with ligand states. On the other hand, the core-level spectra of UPd2Al3 and UPt3 show considerably different spectral line shapes from those of the itinerant compounds, suggesting that U 5f electrons in UPd2Al3 and UPt3 are less hybridized with ligand states, leading to the correlated nature of U 5f electrons in these compounds. The dominant final state characters in their core-level spectra suggest that the numbers of 5f electrons in UGe2, UCoGe, URhGe, URu2Si2, UNi2Al3, and UPd2Al3 are close to but less than three, while that of UPt3 is close to two rather than to three.

  15. High resolution scanning of radial strips cut from increment cores by near infrared spectroscopy

    Treesearch

    P. David Jones; Laurence R. Schimleck; Chi-Leung So; Alexander III Clark; Richard F. Daniels

    2007-01-01

    Near infrared (NIR) spectroscopy provides a rapid method for the determination of wood properties of radial strips. The spatial resolution of the NIR measurements has generally been limited to sections 10 mm wide and as a consequence the estimation of wood properties of individual rings or within rings has not been possible. Many different NIR instruments can be used...

  16. Absolute quantification for benzoic acid in processed foods using quantitative proton nuclear magnetic resonance spectroscopy.

    PubMed

    Ohtsuki, Takashi; Sato, Kyoko; Sugimoto, Naoki; Akiyama, Hiroshi; Kawamura, Yoko

    2012-09-15

    The absolute quantification method of benzoic acid (BA) in processed foods using solvent extraction and quantitative proton nuclear magnetic resonance spectroscopy was developed and validated. BA levels were determined using proton signals (δ(H) 7.53 and 7.98) referenced to 2-dimethyl-2-silapentane-5-sulfonate-d(6) sodium salt (DSS-d(6)) after simple solvent extraction from processed foods. All recoveries from several kinds of processed foods, spiked at their specified maximum Japanese usage levels (0.6-2.5 g kg(-1)) and at 0.13 g kg(-1) and 0.063 g kg(-1), were greater than 80%. The limit of quantification was confirmed as 0.063 g kg(-1) in processed foods, which was sufficiently low for the purposes of monitoring BA. The accuracy of the proposed method is equivalent to the conventional method using steam-distillation extraction and high-performance liquid chromatography. The proposed method was both rapid and simple. Moreover, it provided International System of Units traceability without the need for authentic analyte standards. Therefore, the proposed method is a useful and practical tool for determining BA levels in processed foods.

  17. Vibrational Assignments of Six-Coordinate Ferrous Heme Nitrosyls: New Insight From Nuclear Resonance Vibrational Spectroscopy

    SciTech Connect

    Paulat, F.; Berto, T.C.; George, S.DeBeer; Goodrich, L.; Praneeth, V.K.K.; Sulok, C.D.; Lehnert, N.

    2009-05-21

    This Communication addresses a long-standing problem: the exact vibrational assignments of the low-energy modes of the Fe-N-O subunit in six-coordinate ferrous heme nitrosyl model complexes. This problem is addressed using nuclear resonance vibrational spectroscopy (NRVS) coupled to {sup 15}N{sup 18}O isotope labeling and detailed simulations of the obtained data. Two isotope-sensitive features are identified at 437 and 563 cm{sup -1}. Normal coordinate analysis shows that the 437 cm{sup -1} mode corresponds to the Fe-NO stretch, whereas the 563 cm{sup -1} band is identified with the Fe-N-O bend. The relative NRVS intensities of these features determine the degree of vibrational mixing between the stretch and the bend. The implications of these results are discussed with respect to the trans effect of imidazole on the bound NO. In addition, a comparison to myoglobin-NO (Mb-NO) is made to determine the effect of the Mb active site pocket on the bound NO.

  18. Localization of hydrophobic ions in phospholipid bilayers using /sup 1/H nuclear Overhauser effect spectroscopy

    SciTech Connect

    Ellena, J.F.; Dominey, R.N.; Archer, S.J.; Xu, Z.; Cafiso, D.S.

    1987-07-14

    The binding location for the hydrophobic ions tetraphenylphosphonium (TPP/sup +/) and tetraphenylboron (TPB/sup -/) was studied in sonicated phosphatidylcholine (PC) vesicles by measuring time-dependent and steady-state intermolecular /sup 1/H nuclear Overhauser effects (NOE's). Intermolecular cross-relaxation was also investigated by two-dimensional NOE spectroscopy. Information on the distance and order parameter dependence of the NOE's was obtained from a simple simulation of the NOE's in the alkyl chain region. Taken together, the NOE data and the simulation provide strong evidence that TPB/sup -/ and TPP/sup +/, at low concentrations (less than or equal to 10 mol %), are localized in the alkyl chain region of the bilayer. At these lower concentrations of TPP/sup +/ or TPB/sup -/, no significant effect on lipid /sup 13/C T/sub 1/ or T/sub 2/ relaxation rates is detected. The proposed location is consistent with the expected free energy profiles for hydrophobic ions and with the carbonyl oxygens or interfacial water as the source of the membrane dipole potential. At higher ion/lipid ratios (greater than or equal to 20 mol %), TPB/sup -//lipid NOE's increase. This results from a specific association of TPB/sup -/ with the choline head group.

  19. Analysis of simulated high burnup nuclear fuel by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Sarkar, Arnab; Banerjee, Joydipta; Bhagat, R. K.

    2017-06-01

    Advanced Heavy Water Reactor (AHWR) grade (Th-U)O2 fuel sample and Simulated High Burn-Up Nuclear Fuels (SIMFUEL) samples mimicking the 28 and 43 GWd/Te irradiated burn-up fuel were studied using laser-induced breakdown spectroscopy (LIBS) setup in a simulated hot-cell environment from a distance of > 1.5 m. Resolution of < 38 pm has been used to record the complex spectra of the SIMFUEL samples. By using spectrum comparison and database matching > 60 emission lines of fission products was identified. Among them only a few emission lines were found to generate calibration curves. The study demonstrates the possibility to investigate impurities at concentrations around hundreds of ppm, rapidly at atmospheric pressure without any sample preparation. The results of Ba and Mo showed the advantage of LIBS analysis over traditional methods involving sample dissolution, which introduces possible elemental loss. Limits of detections (LOD) under Ar atmosphere shows significant improvement, which is shown to be due to the formation of stable plasma.

  20. Serum Metabolomic Profiling of Sulphur Mustard-Exposed Individuals Using (1)H Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Zamani, Zahra; Ghanei, Mostafa; Panahi, Yunus; Arjmand, Mohammad; Sadeghi, Sedigheh; Mirkhani, Fatemeh; Parvin, Shahram; Salehi, Maryam; Sahebkar, Amirhossein; Vahabi, Farideh

    2016-01-01

    Sulphur mustard is an alkylating agent that reacts with different cellular components, causing acute and delayed complications that may remain for decades after exposure. This study aimed to identify differentially expressed metabolites between mustard-exposed individuals suffering from chronic complications compared with unexposed individuals as the control group. Serum samples were obtained from 15 mustard-exposed individuals and 15 apparently healthy unexposed individuals. Metabolomic profiling was performed using (1)H nuclear magnetic resonance spectroscopy, and analyses were carried out using Chenomex and MATLAB softwares. Metabolites were identified using Human Metabolome Database, and the main metabolic pathways were identified using MetaboAnalyst software. Chemometric analysis of serum samples identified 11 differentially expressed metabolites between mustard-exposed and unexposed groups. The main pathways that were influenced by sulphur mustard exposure were related to vitamin B6 (down-regulation), bile acid (up-regulation) and tryptophan (down-regulation) metabolism. Metabolism of vitamin B6, bile acids and tryptophan are the most severely impaired pathways in individuals suffering from chronic mustard-induced complications. These findings may find implications in the monitoring of exposed patients and identification of new therapeutic approaches.

  1. Application of diffusion ordered-1H-nuclear magnetic resonance spectroscopy to quantify sucrose in beverages.

    PubMed

    Cao, Ruge; Nonaka, Airi; Komura, Fusae; Matsui, Toshiro

    2015-03-15

    This work focuses on a quantitative analysis of sucrose using diffusion ordered-quantitative (1)H-nuclear magnetic resonance spectroscopy (DOSY-qNMR), where an analyte can be isolated from interference based on its characteristic diffusion coefficient (D) in gradient magnetic fields. The D value of sucrose in deuterium oxide at 30°C was 4.9 × 10(-10)m(2)/s at field gradient pulse from 5.0 × 10(-2) to 3.0 × 10(-1)T/m, separated from other carbohydrates (glucose and fructose). Good linearity (r(2)=0.9999) was obtained between sucrose (0.5-20.0 g/L) and the resonance area of target glucopyranosyl-α-C1 proton normalised to that of cellobiose C1 proton (100.0 g/L, as an internal standard) in 1D sliced DOSY spectrum. The DOSY-qNMR method was successfully applied to quantify sucrose in orange juice (36.1 ± 0.5 g/L), pineapple juice (53.5 ± 1.1g/L) and a sports drink (24.7 ± 0.6g/L), in good agreement with the results obtained by an F-kit method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  3. Hyphenation of gas chromatography to microcoil 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Grynbaum, Marc David; Kreidler, Diana; Rehbein, Jens; Purea, Armin; Schuler, Paul; Schaal, Walter; Czesla, Harri; Webb, Andrew; Schurig, Volker; Albert, Klaus

    2007-04-01

    Whereas the hyphenation of gas chromatography (GC) with mass spectrometry is of great importance, little is known about the coupling to nuclear magnetic resonance spectroscopy (NMR). The investigation of this technique is an attractive proposition because of the valuable information given by NMR on molecular structure. The experiments shown here are to our knowledge the first hyphenating capillary GC to microcoil NMR. In contrast to liquids, gases have rarely been investigated by NMR, mainly due to the experimental difficulties in handling gases and the low signal-to-noise-ratio (SNR) of the NMR signal obtained at atmospheric pressure. With advances in NMR sensitivity (higher magnetic fields and solenoidal microprobes), this limitation can be largely overcome. In this paper, we describe the use of a custom-built solenoidal NMR microprobe with an active volume of 2 microL for the NMR detection of several compounds at 400 MHz, first in a mixture, and then with full coupling to capillary GC to identify them separately. The injected amounts of each analyte in the hyphenated experiments are in the range of 15-50 micromol, resulting in reasonable SNR for sample masses of 1-2 microg.

  4. Automatic analysis of nuclear-magnetic-resonance-spectroscopy clinical research data

    NASA Astrophysics Data System (ADS)

    Scott, Katherine N.; Wilson, David C.; Bruner, Angela P.; Lyles, Teresa A.; Underhill, Brandon; Geiser, Edward A.; Ballinger, J. Ray; Scott, James D.; Stopka, Christine B.

    1998-03-01

    A major problem of P-31 nuclear magnetic spectroscopy (MRS) in vivo applications is that when large data sets are acquired, the time invested in data reduction and analysis with currently available technologies may totally overshadow the time required for data acquisition. An example is out MRS monitoring of exercise therapy for patients with peripheral vascular disease. In these, the spectral acquisition requires 90 minutes per patient study, whereas data analysis and reduction requires 6-8 hours. Our laboratory currently uses the proprietary software SA/GE developed by General Electric. However, other software packages have similar limitations. When data analysis takes this long, the researcher does not have the rapid feedback required to ascertain the quality of data acquired nor the result of the study. This highly undesirable even in a research environment, but becomes intolerable in the clinical setting. The purpose of this report is to outline progress towards the development of an automated method for eliminating the spectral analysis burden on the researcher working in the clinical setting.

  5. Metabolomic Profiling of Autoimmune Hepatitis: The Diagnostic Utility of Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Wang, Jia-Bo; Pu, Shi-Biao; Sun, Ying; Li, Zhong-Feng; Niu, Ming; Yan, Xian-Zhong; Zhao, Yan-Ling; Wang, Li-Feng; Qin, Xue-Mei; Ma, Zhi-Jie; Zhang, Ya-Ming; Li, Bao-Sen; Luo, Sheng-Qiang; Gong, Man; Sun, Yong-Qiang; Zou, Zheng-Sheng; Xiao, Xiao-He

    2014-06-30

    Autoimmune hepatitis (AIH) is often confused with other liver diseases because of their shared nonspecific symptoms and serological and histological overlap. This study compared the plasma metabolomic profiles of patients with AIH, primary biliary cirrhosis (PBC), PBC/AIH overlap syndrome (OS), and drug-induced liver injury (DILI) with those of healthy subjects to identify potential biomarkers of AIH. Metabolomic profiling and biomarker screening were performed using proton nuclear magnetic resonance spectroscopy ((1)H NMR) coupled with a partial least-squares discriminant analysis. Compared with the levels in healthy volunteers and other liver disease patients, AIH patients exhibited relatively high levels of plasma pyruvate, lactate, acetate, acetoacetate, and glucose. Such metabolites are typically related to energy metabolism alterations and may be a sign of metabolic conversion to the aerobic glycolysis phenotype of excessive immune activation. Increased aromatic amino acids and decreased branched-chain amino acids were found in the plasma of AIH patients. The whole NMR profiles were stepwise-reduced, and nine metabolomic biomarkers having the greatest significance in the discriminant analysis were obtained. The diagnostic utility of the selected metabolites was assessed, and these biomarkers achieved good sensitivity, specificity, and accuracy (all above 93%) in distinguishing AIH from PBC, DILI, and OS. This report is the first to present the metabolic phenotype of AIH and the potential utility of (1)H NMR metabolomics in the diagnosis of AIH.

  6. Self-association of cromolyn sodium in aqueous solution characterized by nuclear magnetic resonance spectroscopy.

    PubMed

    Ding, Xuan; Stringfellow, Thomas C; Robinson, Joseph R

    2004-05-01

    The major objective of this study was to investigate and characterize the solution properties of cromolyn sodium (in D(2)O or D(2)O/H(2)O phosphate buffer at pH 7.5) using nuclear magnetic resonance (NMR) spectroscopy. The self-association of cromolyn molecules was examined primarily via one-dimensional (1)H and (13)C, and two-dimensional homonuclear NOESY NMR. Significant spectral shifts were observed for a majority of cromolyn (1)H and (13)C resonances, and are attributed to inter-molecular ring-stacking association accompanied by intra-molecular conformational changes. The critical self-association concentration was determined to be 10 mg/mL at pH 7.5 and 25 degrees C by measuring the chemical shift of a specific cromolyn (1)H resonance. The observed magnitude and sign changes of NOESY correlations indicate the formation of cromolyn aggregates with restricted molecular mobility. Mesomorphic liquid crystal formation is suggested by uniformly pronounced line broadening in concentrated cromolyn solutions; the transition concentration was approximately 60 mg/mL at 25 degrees C, which is consistent with literature findings based on other techniques. A stronger tendency toward association was observed at lower temperature but aggregation appeared to be independent of pH. Lastly, it was concluded that self-association of cromolyn is promoted by the presence of monovalent cations as a result of reduced electrostatic repulsive forces.

  7. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  8. High-resolution monochromator for iron nuclear resonance vibrational spectroscopy of biological samples

    NASA Astrophysics Data System (ADS)

    Yoda, Yoshitaka; Okada, Kyoko; Wang, Hongxin; Cramer, Stephen P.; Seto, Makoto

    2016-12-01

    A new high-resolution monochromator for 14.4-keV X-rays has been designed and developed for the Fe nuclear resonance vibrational spectroscopy of biological samples. In addition to high resolution, higher flux and stability are especially important for measuring biological samples, because of the very weak signals produced due to the low concentrations of Fe-57. A 24% increase in flux while maintaining a high resolution better than 0.9 meV is achieved in the calculation by adopting an asymmetric reflection of Ge, which is used as the first crystal of the three-bounce high-resolution monochromator. A 20% increase of the exit beam size is acceptable to our biological applications. The higher throughput of the new design has been experimentally verified. A fine rotation mechanics that combines a weak-link hinge with a piezoelectric actuator was used for controlling the photon energy of the monochromatic beam. The resulting stability is sufficient to preserve the intrinsic resolution.

  9. Studying radiolytic ageing of nuclear power plant electric cables with FTIR spectroscopy.

    PubMed

    Levet, A; Colombani, J; Duponchel, L

    2017-09-01

    Due to the willingness to extend the nuclear power plants length of life, it is of prime importance to understand long term ageing effect on all constitutive materials. For this purpose gamma-irradiation effects on insulation of instrumentation and control cables are studied. Mid-infrared spectroscopy and principal components analysis (PCA) were used to highlight molecular modifications induced by gamma-irradiation under oxidizing conditions. In order to be closer to real world conditions, a low dose rate of 11Gyh(-1) was used to irradiate insulations in full cable or alone with a dose up to 58 kGy. Spectral differences according to irradiation dose were extracted using PCA. It was then possible to observe different behaviors of the insulation constitutive compounds i.e. ethylene vinyl acetate (EVA), ethylene propylene diene monomer (EPDM) and aluminium trihydrate (ATH). Irradiation of insulations led to the oxidation of their constitutive polymers and a modification of filler-polymer ratio. Moreover all these modifications were observed for insulations alone or in full cable indicating that oxygen easily diffuses into the material. Spectral contributions were discussed considering different degradation mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Phosphorus-31 nuclear magnetic resonance spectroscopy transect study of poultry operations on the Delmarva Peninsula.

    PubMed

    Hill, Jane E; Cade-Menun, Barbara J

    2009-01-01

    Nonpoint source phosphorus (P) pollution into the Chesapeake Bay watershed from poultry operations contributes to the algal blooms, hypoxia, anoxia, and fish kill events that occur there most years. A major source of soluble, bioavailable P species is poultry litter, which is used as a crop fertilizer on fields adjacent to the tributaries of the Bay. A potentially significant source of orthophosphate in the litter is the heavily phosphorylated compound myo-inositol hexakisphosphate (phytate), which is indigestible by poultry and thus becomes a major component of their excreta. Phytate evaluation in environmental samples is expensive; hence, its impact is not captured in standard farmer-friendly eutrophication potential guides, like Delaware's Phosphorus Site Index. In this transect study of two poultry operations on the Delmarva Peninsula, we measured the incidence of all P compounds using solution 31P nuclear magnetic resonance (NMR) spectroscopy and extracts, relating them to relevant geochemical properties. The contribution of phytate to the overall pool of P declined from around 50% in manures to between 2 and 13% in down-gradient soils and sediments, corresponding to a rise in the relative proportion of orthophosphate (increasing from 39% to 65-88%). The results show that the large pool of phytate P spread onto croplands during standard operating practice at poultry farms on the Delmarva Peninsula does not appear to accumulate; rather, phytate decreases in down-gradient locations, most likely due to transport off-site and/or through in situ biological activity.

  11. Nuclear structure of 37, 38Si investigated by decay spectroscopy of 37, 38Al

    NASA Astrophysics Data System (ADS)

    Steiger, K.; Nishimura, S.; Li, Z.; Gernhäuser, R.; Utsuno, Y.; Chen, R.; Faestermann, T.; Hinke, C.; Krücken, R.; Kurata-Nishimura, M.; Lorusso, G.; Miyashita, Y.; Shimizu, N.; Sugimoto, K.; Sumikama, T.; Watanabe, H.; Yoshinaga, K.

    2015-09-01

    We present a study on the β decays of the neutron-rich isotopes 37Al and 38Al, produced by projectile fragmentation of a 48Ca beam with an energy E = 345 A MeV at the RIKEN Nishina Center. The half-lives of 37Al and 38Al have been measured to 11.5(4)ms and 9.0(7)ms, respectively, using the CAITEN implantation and decay detector setup. The level schemes for 37Si and 38Si were deduced by employing γ- γ coincidence spectroscopy following the event-by-event identification of the implanted nuclei. Comparison to large scale nuclear shell model calculations allowed for a tentative assignment of spin and parity of the populated states. The data indicate that the classical shell gap at magic neutron number N = 28 between the νf 7/2 and νp 3/2 orbits gets reduced by 0.3 MeV in this region leading to low-energy states with intruder configuration in 37Si.

  12. High Energy, High Resolution X-Ray Spectroscopy: Microcalorimeters For Nuclear Line Astrophysics

    NASA Astrophysics Data System (ADS)

    Silver, E.; Schnopper, H. W.; Jones, C.; Forman, W.; Romaine, S.; Madden, N.; Landis, D.; Beeman, J.; Haller, E. E.; Barbera, M.; Christensen, F.; Ramsey, B.; Woosley, S.; Diehl, R.

    2005-06-01

    We introduce focusing optics and microcalorimeter spectroscopy to nuclear line emission astrophysics with a balloon payload concept called, B-MINE. It is designed to probe the deepest regions of a supernova explosion by detecting 44Ti emission at 68 keV with spatial and spectral resolutions that are sufficient to determine the velocity distribution of the 44Ti emitting region. B-MINE has a thin plastic foil telescope multilayered to maximize the reflectivity in a 20 keV band centered at 68 keV and a microcalorimeter array optimized for the same energy band. This combination provides a reduced background, an energy resolution of 50 eV and a 3σ sensitivity in 106 s of 6 × 10-8 ph cm-2 s-1 at 68 keV. During the course of a long duration balloon flight, B-MINE could carry out a detailed study of the 44Ti emission line centroids and width in CAS A. Details of the spectrometer and simulated results are presented.

  13. Characterization of sewage sludge organic matter using solid-state carbon-13 nuclear magnetic resonance spectroscopy.

    PubMed

    Smernik, Ronald J; Oliver, Ian W; Merrington, Graham

    2003-01-01

    Six sewage sludges from five sewage treatment plants in Australia were characterized using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Spectra were acquired both before and after removal of mineral components through treatment with hydrofluoric acid (HF). Carbon mass balance indicated that little organic matter was lost on HF treatment, which significantly improved NMR sensitivity and spectral resolution, and decreased acquisition time and hence cost of NMR analysis. Two NMR techniques were used, the standard cross polarization (CP) technique and Bloch decay (BD). The BD technique had not been applied previously to the analysis of sewage sludge. For each sludge sample, both before and after HF treatment, the BD spectrum contained significantly more alkyl carbon. Spin counting, another technique applied to sewage sludge here for the first time, showed that the BD spectra of the HF-treated sludges were quantitative, while approximately 30% of the CP NMR signal went undetected. The discrepancy between CP and BD spectra was attributed to the presence of alkyl carbon with such high molecular mobility that the efficiency of cross polarization is affected. This study shows that sewage sludge organic matter is significantly different in chemistry to soil organic matter and has implications for the application of sewage sludge to agricultural land.

  14. Nuclear chemistry research and spectroscopy with radioactive sources. Twenty-first annual progress report, February 1, 1985-January 31, 1986

    SciTech Connect

    Fink, R.W.

    1985-08-31

    The nuclear chemistry group in the School of Chemistry continues investigating the radioactive decay of nuclei far from stability under this DOE contract. These nuclei are produced with heavy ions from the Holifield Heavy Ion Research Facility (HHIRF) and studied on-line with the University Isotope Separator at Oak Ridge (UNISOR). Radioactive decay represents a unique method for the population of low-energy, low-spin structures in nuclei, and new phenomena which do not occur near stability can be explored. Our research encompasses three aspects of nuclear structure: (1) nuclear spectroscopy with detailed elelt, e elt, Xelt, etc., multiparameter coincidence spectrometry; (2) on-line laser hyperfine structure (hfs) and isotope shift measurements for the determination of nuclear quadrupole moments, nuclear spins, and changes in mean nuclear charge radii as a means of revealing systematic shape changes in nuclei; and (3) theoretical calculations of predictions of nuclear models for comparison with experimental level structures in nuclei studied at UNISOR. 20 refs., 9 figs., 2 tabs.

  15. SAS2H input for computing core activities of 4.5, 5.0, and 5.5 weight % {sup 235}U fuel for Sequoyah Nuclear Plant

    SciTech Connect

    Hermann, O.W.

    1994-08-01

    Sequoyah Nuclear Plant core activities at initial fuel enrichments of 4.5, 5.0, and 5.5 wt% {sup 235}U, required in nuclear safety evaluations, were computed by the SAS2H analysis sequence and the ORIGEN-S code within the SCALE-4.2 code system.

  16. Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization.

    PubMed

    Lelli, Moreno; Gajan, David; Lesage, Anne; Caporini, Marc A; Vitzthum, Veronika; Miéville, Pascal; Héroguel, Florent; Rascón, Fernando; Roussey, Arthur; Thieuleux, Chloé; Boualleg, Malika; Veyre, Laurent; Bodenhausen, Geoffrey; Copéret, Christophe; Emsley, Lyndon

    2011-02-23

    We demonstrate fast characterization of the distribution of surface bonding modes and interactions in a series of functionalized materials via surface-enhanced nuclear magnetic resonance spectroscopy using dynamic nuclear polarization (DNP). Surface-enhanced silicon-29 DNP NMR spectra were obtained by using incipient wetness impregnation of the sample with a solution containing a polarizing radical (TOTAPOL). We identify and compare the bonding topology of functional groups in materials obtained via a sol-gel process and in materials prepared by post-grafting reactions. Furthermore, the remarkable gain in time provided by surface-enhanced silicon-29 DNP NMR spectroscopy (typically on the order of a factor 400) allows the facile acquisition of two-dimensional correlation spectra.

  17. Improvement of Nuclear Heating Evaluation Inside the Core of the OSIRIS Material Testing Reactor

    NASA Astrophysics Data System (ADS)

    Péron, Arthur; Malouch, Fadhel; Diop, Cheikh M.

    2016-02-01

    In this paper we present a nuclear heating from neutron and photon rays calculation scheme mainly based on the Monte-Carlo neutral particle transport code TRIPOLI-4® which takes into account the axial distributions of fuel element compositions. This calculation scheme is applied to the OSIRIS reactor in order to evaluate the effect of using realistic axially heterogeneous compositions instead of uniform ones. After a description of nuclear heating evaluation, the calculation scheme is described. Numerical simulations and related results are detailed and analysed to determine the impact of axially heterogeneous compositions on fluxes, power and nuclear heating.

  18. The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.

    2017-01-01

    The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.

  19. Fluorescence and Diffuse Reflectance Spectroscopy for Breast Cancer Diagnosis During Core Needle Biopsy

    DTIC Science & Technology

    2006-09-01

    for breast biopsy. A first generation probe has been designed for use in a 9-gauge vacuum assisted biopsy needle ( Suros ATEC, Suros Surgical Systems...tissue composition in vivo. 2. Methods 2.1 Probe design A fiber optic probe has been designed for use in a vacuum-assisted core biopsy needle ( Suros ...ATEC, Suros Surgical Systems, IN), which is currently employed for image guided breast biopsy at the University of Wisconsin Health and Clinics

  20. Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.

    NASA Technical Reports Server (NTRS)

    Putre, H. A.

    1971-01-01

    Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.

  1. Assessing crop residue phosphorus speciation using chemical fractionation and solution 31P nuclear magnetic resonance spectroscopy.

    PubMed

    Noack, Sarah R; Smernik, Ronald J; McBeath, Therese M; Armstrong, Roger D; McLaughlin, Mike J

    2014-08-01

    At physiological maturity, nutrients in crop residues can be released to the soil where they are incorporated into different labile and non-labile pools while the remainder is retained within the residue itself. The chemical speciation of phosphorus (P) in crop residues is an important determinant of the fate of this P. In this study, we used chemical fractionation and (31)P nuclear magnetic resonance (NMR) spectroscopy, first separately and then together, to evaluate the P speciation of mature oat (Avena sativa) residue. Two water extracts (one employing shaking and the other sonication) and two acid extracts (0.2N perchloric acid and 10% trichloroacetic acid) of these residues contained similar concentrations of orthophosphate (molybdate-reactive P determined by colorimetry) as NaOH-EDTA extracts of whole plant material subsequently analysed by solution (31)P NMR spectroscopy. However, solution (31)P NMR analysis of the extracts and residues isolated during the water/acid extractions indicated that this similarity resulted from a fortuitous coincidence as the orthophosphate concentration in the water/acid extracts was increased by the hydrolysis of pyrophosphate and organic P forms while at the same time there was incomplete extraction of orthophosphate. Confirmation of this was the absence of pyrophosphate in both water and acid fractions (it was detected in the whole plant material) and the finding that speciation of organic P in the fractions differed from that in the whole plant material. Evidence for incomplete extraction of orthophosphate was the finding that most of the residual P in the crop residues following water/acid extractions was detected as orthophosphate using (31)P NMR. Two methods for isolating and quantifying phospholipid P were also tested, based on solubility in ethanol:ether and ethanol:ether:chloroform. While these methods were selective and appeared to extract only phospholipid P, they did not extract all phospholipid P, as some was

  2. Studies on the solution conformation of human thioredoxin using heteronuclear sup 15 N- sup 1 H nuclear magnetic resonance spectroscopy

    SciTech Connect

    Forman-Kay, J.D. Yale Univ., New Haven, CT ); Gronenborn, A.M.; Kay, L.E.; Clore, G.M. ); Wingfield, P.T. )

    1990-02-13

    The solution conformation of uniformly labeled {sup 15}N human thioredoxin has been studied by two-dimensional heteronuclear {sup 15}N-{sup 1}H nuclear magnetic resonance spectroscopy. Assignments of the {sup 15}N resonances of the protein are obtained in a sequential manner using heteronuclear multiple quantum coherence (HMQC), relayed HMQC-correlated (COSY), and relayed HMQC-nuclear Overhauser (NOESY) spectroscopy. Values of the {sup 3}J{sub HN{alpha}} splittings for 87 of the 105 residues of thioredoxin are extracted from a variant of the HMQC-COSY experiment, known as HMQC-J, and analyzed to give accurate {sup 3}J{sub HN{alpha}} coupling constants. In addition, long-range C{sub {alpha}}H(i)-{sup 15}N(i+1) scalar connectivities are identified by heteronuclear multiple bond correlation (HMBC) spectroscopy. The presence of these three-bond scalar connectivities in predominantly {alpha}-helical regions correlates well with the secondary structure determined previously from a qualitative analysis of homonuclear nuclear Overhauser data suggesting that this technique may provide additional information for secondary structure determination a priori. The accuracy with which {sup 3}J{sub HN{alpha}} coupling constants can be obtained from the HMQC-J experiment permits a more precise delineation of the beginnings and ends of secondary structural elements of human thioredoxin and of irregularities in these elements.

  3. Quantum Dynamics and Spectroscopy of Ab Initio Liquid Water: The Interplay of Nuclear and Electronic Quantum Effects.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2017-04-06

    Understanding the reactivity and spectroscopy of aqueous solutions at the atomistic level is crucial for the elucidation and design of chemical processes. However, the simulation of these systems requires addressing the formidable challenges of treating the quantum nature of both the electrons and nuclei. Exploiting our recently developed methods that provide acceleration by up to 2 orders of magnitude, we combine path integral simulations with on-the-fly evaluation of the electronic structure at the hybrid density functional theory level to capture the interplay between nuclear quantum effects and the electronic surface. Here we show that this combination provides accurate structure and dynamics, including the full infrared and Raman spectra of liquid water. This allows us to demonstrate and explain the failings of lower-level density functionals for dynamics and vibrational spectroscopy when the nuclei are treated quantum mechanically. These insights thus provide a foundation for the reliable investigation of spectroscopy and reactivity in aqueous environments.

  4. Health physics activities in support of the thermal shield removal/disposal and core support barrel repair at the St. Lucie Nuclear Power Plant.

    PubMed

    Maisler, J J; Buchanan, H F

    1988-02-01

    The health physics activities related to the removal and disposal of a thermal shield at a nuclear power plant and subsequent repairs to the core support barrel required increased planning relative to a normal refueling/maintenance outage. The repair of the core support barrel was a "first" in the nuclear power industry. Pre-job planning was of great concern because of extremely high radiation levels associated with the irradiated stainless steel thermal shield and core support barrel. ALARA techniques used in the preparation of the thermal shield for removal and shipment to the disposal site are discussed.

  5. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the

  6. Application of resonance Raman spectroscopy as a nuclear proliferation detection technology

    SciTech Connect

    Sedlacek, A.J. III; Chen, C.L.; Dougherty, D.R.

    1993-03-01

    Resonance Raman spectroscopy (RRS) potentially possesses many of the characteristics of an ideal verification technology. Some of these ideal traits are: very high selectivity and specificity to allow the deconvolution of a mixture of the chemicals of interest, high sensitivity in order to measure a species at trace levels, high reliability and long-term durability, applicability to a wide range of chemicals capability for sensing in a variety of environmental conditions, independence of the physical state of the chemical capability for quantitative analysis, and finally, but no less important capability for full signal development within seconds. In this presentation, the potential of RRS as a detection/identification technology for chemicals pertinent to nuclear materials production and processing will be assessed. A review of the basic principles behind this technique, both theoretical and experimental, will be discussed along with some recent results obtained in this laboratory. Raman scattering is a coherent, inelastic, two-photon scattering process where an exciting photon of energy hv promotes a molecule to a virtual level and the subsequently emitted photon is shifted in frequency in accordance with the rotational-vibrational structure of the irradiated species, therefore providing a unique fingerprint of the molecule. The enhancement of a Raman signal occurs when the excitation frequency is isoenergetic with an allowed electronic transition. Under resonance conditions, scattering cross-sections have been enhanced up to 6 orders of magnitude, thereby allowing the measurement of resonance Raman spectra from concentrations as dilute as 20 ppb for PAHs (with the potential of pptr). In detection/verification programs, this condition translates to increased sensitivity (ppm/ppb) and increased probing distance (m/km).

  7. Application of resonance Raman spectroscopy as a nuclear proliferation detection technology

    SciTech Connect

    Sedlacek, A.J. III; Chen, C.L.; Dougherty, D.R.

    1993-01-01

    Resonance Raman spectroscopy (RRS) potentially possesses many of the characteristics of an ideal verification technology. Some of these ideal traits are: very high selectivity and specificity to allow the deconvolution of a mixture of the chemicals of interest, high sensitivity in order to measure a species at trace levels, high reliability and long-term durability, applicability to a wide range of chemicals capability for sensing in a variety of environmental conditions, independence of the physical state of the chemical capability for quantitative analysis, and finally, but no less important capability for full signal development within seconds. In this presentation, the potential of RRS as a detection/identification technology for chemicals pertinent to nuclear materials production and processing will be assessed. A review of the basic principles behind this technique, both theoretical and experimental, will be discussed along with some recent results obtained in this laboratory. Raman scattering is a coherent, inelastic, two-photon scattering process where an exciting photon of energy hv promotes a molecule to a virtual level and the subsequently emitted photon is shifted in frequency in accordance with the rotational-vibrational structure of the irradiated species, therefore providing a unique fingerprint of the molecule. The enhancement of a Raman signal occurs when the excitation frequency is isoenergetic with an allowed electronic transition. Under resonance conditions, scattering cross-sections have been enhanced up to 6 orders of magnitude, thereby allowing the measurement of resonance Raman spectra from concentrations as dilute as 20 ppb for PAHs (with the potential of pptr). In detection/verification programs, this condition translates to increased sensitivity (ppm/ppb) and increased probing distance (m/km).

  8. Human plasma metabolomics in age-related macular degeneration (AMD) using nuclear magnetic resonance spectroscopy

    PubMed Central

    Martins, Ana Sofia; Gil, João; Miller, John B.; Marques, Marco; Mesquita, Tânia; Kim, Ivana K.; Cachulo, Maria da Luz; Vavvas, Demetrios; Carreira, Isabel M.; Murta, Joaquim N.; Silva, Rufino; Miller, Joan W.; Husain, Deeba

    2017-01-01

    Purpose To differentiate the plasma metabolomic profile of patients with age related macular degeneration (AMD) from that of controls, by Nuclear Magnetic Resonance (NMR) spectroscopy. Methods Two cohorts (total of 396 subjects) representative of central Portugal and Boston, USA phenotypes were studied. For each cohort, subjects were grouped according to AMD stage (early, intermediate and late). Multivariate analysis of plasma NMR spectra was performed, followed by signal integration and univariate analysis. Results Small changes were detected in the levels of some amino acids, organic acids, dimethyl sulfone and specific lipid moieties, thus providing some biochemical information on the disease. The possible confounding effects of gender, smoking history and age were assessed in each cohort and found to be minimal when compared to that of the disease. A similar observation was noted in relation to age-related comorbidities. Furthermore, partially distinct putative AMD metabolite fingerprints were noted for the two cohorts studied, reflecting the importance of nutritional and other lifestyle habits in determining AMD metabolic response and potential biomarker fingerprints. Notably, some of the metabolite changes detected were noted as potentially differentiating controls from patients diagnosed with early AMD. Conclusion For the first time, this study showed metabolite changes in the plasma of patients with AMD as compared to controls, using NMR. Geographical origins were seen to affect AMD patients´ metabolic profile and some metabolites were found to be valuable in potentially differentiating controls from early stage AMD patients. Metabolomics has the potential of identifying biomarkers for AMD, and further work in this area is warranted. PMID:28542375

  9. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    PubMed Central

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ,ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1–40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1–40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16–21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1–40 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples. PMID:23562665

  10. High-Energy Delayed Gamma Spectroscopy for Spent Nuclear Fuel Assay

    SciTech Connect

    Campbell, Luke W.; Smith, Leon E.; Misner, Alex C.; Ressler, Jennifer J.

    2009-10-07

    High-accuracy, direct, nondestructive measurement of fissile and fissionable isotopes in spent fuel, particularly the Pu isotopes, is a well-documented, but still unmet challenge in international safeguards. As nuclear fuel cycles propagate around the globe, the need for improved materials accountancy techniques for irradiated light-water reactor fuel will only increase (e.g. for shipper-receiver verification at interim or permanent storage, or at the head end of a reprocessing plant). This modeling study investigates the use of delayed gamma rays from fission-product nuclei to directly measure the relative concentrations of U-235, Pu-239, and Pu-241 in spent fuel assemblies. The method is based on the unique distribution of fission-product nuclei produced from fission in each of these fissile isotopes. Fission is stimulated in the assembly with a beam of interrogating neutrons and the measured distributions of the short-lived fission products from the unknown sample are then fit with a linear combination of the known fission-product yield curves from pure U-235, Pu-239, and Pu-241 to determine the original proportions of these fissile isotopes. Modeling approaches for the intense gamma-ray background promulgated by the long-lived fission-product inventory, and the high-energy gamma-ray signatures emitted by short-lived fission products from induced fission are described. Results for the simulated assay of simplified individual fuel elements ranging from fresh to 60 GWd/MTU burnup are used to demonstrate the utility of the modeling methods and provide preliminary viability data for the technique. A limited set of benchmarking measurements, and additional work needed to more realistically assess the potential of the High-Energy Delayed Gamma Spectroscopy (HEDGS) technique are described.

  11. High-Energy Delayed Gamma Spectroscopy for Spent Nuclear Fuel Assay

    SciTech Connect

    Campbell, Luke W.; Smith, Leon E.; Misner, Alex C.

    2011-02-01

    High-accuracy, direct, nondestructive measurement of fissile and fissionable isotopes in spent fuel, particularly the Pu isotopes, is a well-documented, but still unmet challenge in international safeguards. As nuclear fuel cycles propagate around the globe, the need for improved materials accountancy techniques for irradiated light-water reactor fuel will increase. This modeling study investigates the use of delayed gamma rays from fission-product nuclei to directly measure the relative concentrations of U-235, Pu-239, and Pu-241 in spent fuel assemblies. The method is based on the unique distribution of fission-product nuclei produced from fission in each of these fissile isotopes. Fission is stimulated in the assembly with a pulse-capable source of interrogating neutrons. The measured distributions of the short-lived fission products from the unknown sample are then fit with a linear combination of the known fission-product yield curves from pure U-235, Pu-239, and Pu-241 to determine the original proportions of these fissile isotopes. Modeling approaches for the intense gamma-ray background promulgated by the long-lived fission-product inventory and for the high-energy gamma-ray signatures emitted by short-lived fission products from induced fission are described. Benchmarking measurements are presented and compare favorably with the results of these models. Results for the simulated assay of simplified individual fuel elements ranging from fresh to 60 GWd/MTU burnup demonstrate the utility of the modeling methods for viability studies, although additional work is needed to more realistically assess the potential of High-Energy Delayed Gamma Spectroscopy (HEDGS).

  12. Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies.

    PubMed

    Gupta, Rupal; Lu, Manman; Hou, Guangjin; Caporini, Marc A; Rosay, Melanie; Maas, Werner; Struppe, Jochem; Suiter, Christopher; Ahn, Jinwoo; Byeon, In-Ja L; Franks, W Trent; Orwick-Rydmark, Marcella; Bertarello, Andrea; Oschkinat, Hartmut; Lesage, Anne; Pintacuda, Guido; Gronenborn, Angela M; Polenova, Tatyana

    2016-01-21

    Mature infectious HIV-1 virions contain conical capsids composed of CA protein, generated by the proteolytic cleavage cascade of the Gag polyprotein, termed maturation. The mechanism of capsid core formation through the maturation process remains poorly understood. We present DNP-enhanced MAS NMR studies of tubular assemblies of CA and Gag CA-SP1 maturation intermediate and report 20-64-fold sensitivity enhancements due to DNP at 14.1 T. These sensitivity enhancements enabled direct observation of spacer peptide 1 (SP1) resonances in CA-SP1 by dipolar-based correlation experiments, unequivocally indicating that the SP1 peptide is unstructured in assembled CA-SP1 at cryogenic temperatures, corroborating our earlier results. Furthermore, the dependence of DNP enhancements and spectral resolution on magnetic field strength (9.4-18.8 T) and temperature (109-180 K) was investigated. Our results suggest that DNP-based measurements could potentially provide residue-specific dynamics information by allowing for the extraction of the temperature dependence of the anisotropic tensorial or relaxation parameters. With DNP, we were able to detect multiple well-resolved isoleucine side-chain conformers; unique intermolecular correlations across two CA molecules; and functionally relevant conformationally disordered states such as the 14-residue SP1 peptide, none of which are visible at ambient temperatures. The detection of isolated conformers and intermolecular correlations can provide crucial constraints for structure determination of these assemblies. Overall, our results establish DNP-based MAS NMR spectroscopy as an excellent tool for the characterization of HIV-1 assemblies.

  13. Symmetry rules in magnetic core-level photoelectron spectroscopy from epitaxial ferromagnetic ultrathin films

    NASA Astrophysics Data System (ADS)

    Schellenberg, R.; Meinert, H.; Perez, A.; Kisker, E.

    2001-09-01

    For two x-ray incidence directions onto an epitaxial FeNi(001) film, one to the left and a second one to the right side of the symmetry plane spanned by the magnetization direction and the photoelectron wave vector, we have measured distributions of the emission-angle dependence with respect to the crystallographic axes of the Fe 2p3/2 core-level photoelectron intensity asymmetry occurring upon magnetization reversal. The two angular distributions transform into each other when the signs of the magnetization and of the photoelectron emission angle are inverted, in accordance with the conservation of parity.

  14. Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers.

    PubMed

    Tsiminis, Georgios; Chu, Fenghong; Warren-Smith, Stephen C; Spooner, Nigel A; Monro, Tanya M

    2013-09-30

    A novel approach for identifying explosive species is reported, using Raman spectroscopy in suspended core optical fibers. Numerical simulations are presented that predict the strength of the observed signal as a function of fiber geometry, with the calculated trends verified experimentally and used to optimize the sensors. This technique is used to identify hydrogen peroxide in water solutions at volumes less than 60 nL and to quantify microgram amounts of material using the solvent's Raman signature as an internal calibration standard. The same system, without further modifications, is also used to detect 1,4-dinitrobenzene, a model molecule for nitrobenzene-based explosives such as 2,4,6-trinitrotoluene (TNT).

  15. Identification and Quantification of Explosives in Nanolitre Solution Volumes by Raman Spectroscopy in Suspended Core Optical Fibers

    PubMed Central

    Tsiminis, Georgios; Chu, Fenghong; Warren-Smith, Stephen C.; Spooner, Nigel A.; Monro, Tanya M.

    2013-01-01

    A novel approach for identifying explosive species is reported, using Raman spectroscopy in suspended core optical fibers. Numerical simulations are presented that predict the strength of the observed signal as a function of fiber geometry, with the calculated trends verified experimentally and used to optimize the sensors. This technique is used to identify hydrogen peroxide in water solutions at volumes less than 60 nL and to quantify microgram amounts of material using the solvent's Raman signature as an internal calibration standard. The same system, without further modifications, is also used to detect 1,4-dinitrobenzene, a model molecule for nitrobenzene-based explosives such as 2,4,6-trinitrotoluene (TNT). PMID:24084111

  16. All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550-nm hollow-core fiber

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Jin, Wei

    2017-04-01

    We report a highly sensitive all-fiber hydrogen sensor based on continuous-wave stimulated Raman gain spectroscopy with a hollow-core photonic crystal fiber operating around 1550 nm. A pump-probe configuration is used, in which the frequency difference between the pump and the probe lasers is tuned to the S0(0) transition of para-hydrogen with a Raman shift of 354 cm-1. Preliminary experiments demonstrate a detection limit down to 17 ppm with a 250 s averaging time, and further improvement is possible. The all-fiber configuration operating in the telecommunication wavelength band would enable cost-effective and compact sensors for high sensitivity and high-resolution trace analysis.

  17. Atomic signatures of local environment from core-level spectroscopy in β -Ga2O3

    NASA Astrophysics Data System (ADS)

    Cocchi, Caterina; Zschiesche, Hannes; Nabok, Dmitrii; Mogilatenko, Anna; Albrecht, Martin; Galazka, Zbigniew; Kirmse, Holm; Draxl, Claudia; Koch, Christoph T.

    2016-08-01

    We present a joint theoretical and experimental study on core-level excitations from the oxygen K edge of β -Ga2O3 . A detailed analysis of the electronic structure reveals the importance of O-Ga hybridization effects in the conduction region. The spectrum from O 1 s core electrons is dominated by excitonic effects, which overall redshift the absorption onset by 0.5 eV, and significantly redistribute the intensity to lower energies. Analysis of the spectra obtained within many-body perturbation theory reveals atomic fingerprints of the inequivalent O atoms. From the comparison of energy-loss near-edge fine-structure (ELNES) spectra computed with respect to different crystal planes, with measurements recorded under the corresponding diffraction conditions, we show how the spectral contributions of specific O atoms can be enhanced while quenching others. These results suggest ELNES, combined with ab initio many-body theory, as a very powerful technique to characterize complex systems, with sensitivity to individual atomic species and to their local environment.

  18. Minimization of the energy loss of nuclear power plants in case of partial in-core monitoring system failure

    NASA Astrophysics Data System (ADS)

    Zagrebaev, A. M.; Ramazanov, R. N.; Lunegova, E. A.

    2017-01-01

    In this paper we consider the optimization problem minimize of the energy loss of nuclear power plants in case of partial in-core monitoring system failure. It is possible to continuation of reactor operation at reduced power or total replacement of the channel neutron measurements, requiring shutdown of the reactor and the stock of detectors. This article examines the reconstruction of the energy release in the core of a nuclear reactor on the basis of the indications of height sensors. The missing measurement information can be reconstructed by mathematical methods, and replacement of the failed sensors can be avoided. It is suggested that a set of ‘natural’ functions determined by means of statistical estimates obtained from archival data be constructed. The procedure proposed makes it possible to reconstruct the field even with a significant loss of measurement information. Improving the accuracy of the restoration of the neutron flux density in partial loss of measurement information to minimize the stock of necessary components and the associated losses.

  19. Ce Core-Level Spectroscopy, and Magnetic and Electrical Transport Properties of Lightly Ce-Doped YCoO3

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshihiko; Koike, Tsuyoshi; Okawa, Mario; Takayanagi, Ryohei; Takei, Shohei; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Yasui, Akira; Ikenaga, Eiji; Saitoh, Tomohiko; Asai, Kichizo

    2016-11-01

    We have investigated the Ce and Co core level spectroscopy, and the magnetic and electrical transport properties of lightly Ce-doped YCoO3. We have successfully synthesized single-phase Y1-xCexCoO3 for 0.0 ≤ x ≤ 0.1 by the sol-gel method. Hard X-ray photoelectron and X-ray absorption spectroscopy experiments reveal that the introduced Ce ions are tetravalent, which is considered to be the first case of electron doping into bulk trivalent Co oxides with perovskite RECoO3 (RE: rare-earth element or Y) caused by RE site substitution. The magnitude of the effective magnetic moment peff obtained from the temperature dependence of magnetic susceptibility χ(T) at higher temperatures is close to that for high-spin Co2+ introduced by the Ce doping, implying that the electrons doped into the Co site induce Co2+ with a high-spin state. For x = 0.1, ferromagnetic ordering is observed below about 7 K. Electrical transport properties such as resistivity and thermoelectric power show that negative electron-like carriers are introduced by Ce substitution.

  20. Analysis of Al and Fe transport coefficients in LHD core plasmas based on space-resolved EUV spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Xianli; Morita, Shigeru; Oishi, Tetsutarou; Murakami, Izumi; Goto, Motoshi; Zhang, Hongming; Liu, Yang

    2016-10-01

    With impurity pellet injection and a one-dimensional transport code, the transport of Al and Fe ions has been analyzed in the Large Helical Device (LHD) based on extreme ultraviolet (EUV) space-resolved spectroscopy. The total density of Fe ions in the plasma core has been analyzed from the radial profiles of the Fe n =3-2 Lα emissions. When the ne profile is peaked or hollow, the Fe density also exhibits a peaked or hollow profile, respectively. Fe transport analysis shows that the convective velocity (V) is outward in the plasma core and inward near the edge when the ne profile is hollow. On the other hand, the V takes negative value over the whole radial range in the peaked ne profile. Therefore, the different Fe density profiles between peaked and hollow ne profiles can be explained by the significant difference in the V profile. Comparison of the transport coefficients between Al and Fe shows the magnitude of V for Al ions seems to be smaller than that for Fe ions while the difference in the diffusion coefficient profile is not significant. The difference in the decay time of line emissions between the two speices is attributed to the weaker convection for the Al.

  1. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    SciTech Connect

    Kamada, M. Hideshima, T.; Azuma, J.; Yamamoto, I.; Imamura, M.; Takahashi, K.

    2016-04-15

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4,  m ≥ 3) orbitals. Resonant photoelectron spectra at S-L{sub 23} and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimes of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.

  2. Rolling-circle amplification detection of thrombin using surface-enhanced Raman spectroscopy with core-shell nanoparticle probe.

    PubMed

    Li, Xuemei; Wang, Linlin; Li, Chunxiang

    2015-04-27

    An ultrasensitive surface-enhanced Raman spectroscopy (SERS) sensor based on rolling-circle amplification (RCA)-increased "hot-spot" was developed for the detection of thrombin. The sensor contains a SERS gold nanoparticle@Raman label@SiO2 core-shell nanoparticle probe in which the Raman reporter molecules are sandwiched between a gold nanoparticle core and a thin silica shell by a layer-by-layer method. Thrombin aptamer sequences were immobilized onto the magnetic beads (MBs) through hybridization with their complementary strand. In the presence of thrombin, the aptamer sequence was released; this allowed the remaining single-stranded DNA (ssDNA) to act as primer and initiate in situ RCA reaction to produce long ssDNAs. Then, a large number of SERS probes were attached on the long ssDNA templates, causing thousands of SERS probes to be involved in each biomolecular recognition event. This SERS method achieved the detection of thrombin in the range from 1.0×10(-12) to 1.0×10(-8)  M and a detection limit of 4.2×10(-13)  M, and showed good performance in real serum samples.

  3. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Kamada, M.; Hideshima, T.; Azuma, J.; Yamamoto, I.; Imamura, M.; Takahashi, K.

    2016-04-01

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4, m ≥ 3) orbitals. Resonant photoelectron spectra at S-L23 and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimes of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.

  4. Electron structure of excited configurations in Ca2V2O7 studied by electron-induced core-ionization loss spectroscopy, appearance-potential spectroscopy, and x-ray-photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Curelaru, I. M.; Strid, K.-G.; Suoninen, E.; Minni, E.; Rönnhult, T.

    1981-04-01

    We have measured the electron-induced core-ionization loss (CILS) spectra, the appearance-potential (APS) spectra, and the x-ray-photoelectron (XPS) spectra of Ca2V2O7, that is a prototype for a series of luminescent materials with general formula M2V2O7(M=Mg, Ca, Sr, Ba, Zn, Cd, Hg). From the analysis of the data provided by the edge spectroscopies (CILS and APS) and their comparison with the XPS binding energies, we deduced the electronic structure of the outer orbitals (occupied and empty) involved in these processes. Our data illustrate the strong many-body effects that occur in the excitation and decay of localized atomiclike configurations within the big ionic cluster V2O4-7. Excitation of core levels in calcium, outside the V2O4-7 ion, seems to involve more extended orbitals, since the screening is more efficient. Usefulness of complementary studies by x-ray emission and Auger electron spectroscopy is anticipated.

  5. ON THE TRANSITION FROM NUCLEAR-CLUSTER- TO BLACK-HOLE-DOMINATED GALAXY CORES

    SciTech Connect

    Bekki, Kenji; Graham, Alister W.

    2010-05-10

    Giant elliptical galaxies, believed to be built from the merger of lesser galaxies, are known to house a massive black hole (MBH) at their center rather than a compact star cluster. If low- and intermediate-mass galaxies do indeed partake in the hierarchical merger scenario, then one needs to explain why their dense nuclear star clusters are not preserved in merger events. A valuable clue may be the recent revelation that nuclear star clusters and MBHs frequently co-exist in intermediate-mass bulges and elliptical galaxies. In an effort to understand the physical mechanism responsible for the disappearance of nuclear star clusters, we have numerically investigated the evolution of merging star clusters with seed BHs. Using BHs that are 1%-5% of their host nuclear cluster mass, we reveal how their binary coalescence during a merger dynamically heats the newly wed star cluster, expanding it, significantly lowering its central stellar density, and thus making it susceptible to tidal destruction during galaxy merging. Moreover, this mechanism provides a pathway to explain the observed reduction in the nucleus-to-galaxy stellar mass ratio as one proceeds from dwarf to giant elliptical galaxies.

  6. Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber.

    PubMed

    Westergaard, Philip G; Lassen, Mikael; Petersen, Jan C

    2015-06-15

    We demonstrate sensitive high-resolution stimulated Raman measurements of hydrogen using a hollow-core photonic crystal fiber (HC-PCF). The Raman transition is pumped by a narrow linewidth (< 50 kHz) 1064 nm continuous-wave (CW) fiber laser. The probe light is produced by a homebuilt CW optical parametric oscillator (OPO), tunable from around 800 nm to 1300 nm (linewidth ∼ 5 MHz). These narrow linewidth lasers allow for an excellent spectral resolution of approximately 10(-4) cm(-1). The setup employs a differential measurement technique for noise rejection in the probe beam, which also eliminates background signals from the fiber. With the high sensitivity obtained, Raman signals were observed with only a few mW of optical power in both the pump and probe beams. This demonstration allows for high resolution Raman identification of molecules and quantification of Raman signal strengths.

  7. LDA+DMFT approach to core-level spectroscopy: Application to 3 d transition metal compounds

    NASA Astrophysics Data System (ADS)

    Hariki, Atsushi; Uozumi, Takayuki; Kuneš, Jan

    2017-07-01

    We present a computational study of 2 p core-level x-ray photoemission spectra of transition metal monoxides M O (M =Ni ,Co,Mn) and sesquioxides M2O3 (M =V ,Cr,Fe) using a theoretical framework based on the local-density approximation + dynamical mean-field theory. We find a very good description of the fine spectral features, which is a considerable improvement over the conventional cluster model. We analyze the role of nonlocal screening and its relationship to long-range magnetic order and lattice geometry. Our results reveal the potential of the present method for the analysis and interpretation of modern high-energy-resolution experiments.

  8. Spatially resolved modal spectroscopy of Er:Yb doped multifilament-core fiber amplifier.

    PubMed

    Le Gouët, Julien; Delaporte, Julien; Lombard, Laurent; Canat, Guillaume

    2012-02-27

    The spatially resolved spectral (S2) imaging method is applied on an active microstructured fiber, with a multi-filament core (MFC). This type of fiber has been designed to be the last amplifying stage of a source for a long range coherent lidar. Studying the influence of the bending radius on the modal content with or without gain, we demonstrate that an upper-bound of the high-order modes content can be found by performing the S2 imaging on the bleached fiber. S2 imaging is then used to verify that the output beam of the MFC fiber can be made effectively single-mode. We also show that it can be simply adapted for measuring the fiber birefringence. Finally, a comparison of the MFC fiber mode area with that of a standard large mode area Erbium doped step index fiber illustrates the interest of the MFC structure for high power amplifiers.

  9. Dominant components of the Thoroughbred metabolome characterised by (1) H-nuclear magnetic resonance spectroscopy: A metabolite atlas of common biofluids.

    PubMed

    Escalona, E E; Leng, J; Dona, A C; Merrifield, C A; Holmes, E; Proudman, C J; Swann, J R

    2015-11-01

    Metabonomics is emerging as a powerful tool for disease screening and investigating mammalian metabolism. This study aims to create a metabolic framework by producing a preliminary reference guide for the normal equine metabolic milieu. To metabolically profile plasma, urine and faecal water from healthy racehorses using high resolution (1) H-nuclear magnetic resonance (NMR) spectroscopy and to provide a list of dominant metabolites present in each biofluid for the benefit of future research in this area. This study was performed using 7 Thoroughbreds in race training at a single time point. Urine and faecal samples were collected noninvasively and plasma was obtained from samples taken for routine clinical chemistry purposes. Biofluids were analysed using (1) H-NMR spectroscopy. Metabolite assignment was achieved via a range of one- and 2-dimensional experiments. A total of 102 metabolites were assigned across the 3 biological matrices. A core metabonome of 14 metabolites was ubiquitous across all biofluids. All biological matrices provided a unique window on different aspects of systematic metabolism. Urine was the most populated metabolite matrix with 65 identified metabolites, 39 of which were unique to this biological compartment. A number of these were related to gut microbial host cometabolism. Faecal samples were the most metabolically variable between animals; acetate was responsible for the majority (28%) of this variation. Short-chain fatty acids were the predominant features identified within this biofluid by (1) H-NMR spectroscopy. Metabonomics provides a platform for investigating complex and dynamic interactions between the host and its consortium of gut microbes and has the potential to uncover markers for health and disease in a variety of biofluids. Inherent variation in faecal extracts along with the relative abundance of microbial-mammalian metabolites in urine and invasive nature of plasma sampling, infers that urine is the most appropriate

  10. Comparative Evaluation of a CORE Based Learning Environment for Nuclear Medicine.

    ERIC Educational Resources Information Center

    Hogg, Peter; Boyle, Tom; Lawson, Richard

    1999-01-01

    Reports on a comparative assessment of a multimedia learning environment based on a guided discovery approach called CORE (Concept Object Refinement Expression) with two control conditions, lecture and electronic book, in an undergraduate radiography course. Discusses results of qualitative and quantitative measures of effectiveness, pretests and…

  11. Comparative Evaluation of a CORE Based Learning Environment for Nuclear Medicine.

    ERIC Educational Resources Information Center

    Hogg, Peter; Boyle, Tom; Lawson, Richard

    1999-01-01

    Reports on a comparative assessment of a multimedia learning environment based on a guided discovery approach called CORE (Concept Object Refinement Expression) with two control conditions, lecture and electronic book, in an undergraduate radiography course. Discusses results of qualitative and quantitative measures of effectiveness, pretests and…

  12. First-principles study on core-level spectroscopy of arginine in gas and solid phases.

    PubMed

    Li, Hongbao; Hua, Weijie; Lin, Zijing; Luo, Yi

    2012-10-25

    First-principles simulations have been performed for near-edge X-ray absorption fine-structure (NEXAFS) spectra of neutral arginine at different K-edges in the solid phase as well as X-ray photoelectron spectra (XPS) of neutral, deprotonated, and protonated arginines in the gas phase. Influences of the intra- and intermolecular hydrogen bonds (HBs) and different charge states have been carefully examined to obtain useful structure-property relationships. Our calculations show a noticeable difference in the NEXAFS/XPS spectra of the canonical and zwitterionic species that can be used for unambiguously identifying the dominant form in the gas phase. It is found that the deprotonation/protonation always results in red/blue shifts of several electronvolts for the core binding energies (BEs) at all edges. The normal hydrogen bond Y-H···X (X, Y = N, O) can cause a blue/red shift of ca. 1 eV to the core BEs of the proton acceptor X/donor Y, while the weak C-H···Y hydrogen bond may also lead to a weak red shift (less than 1 eV) of the C1s BEs. Moreover, the influence of intermolecular interactions in the solid state is reflected as a broadening in the σ* region of the NEXAFS spectra at each edge, while in the π* region, these interactions lead to a strengthening or weakening of individual transitions from different carbons, although no evident visual change is found in the resolved total spectra. Our results provide a better understanding of the influences of the intra- and intermolecular forces on the electronic structure of arginine.

  13. High-resolution continuous-flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2015-07-01

    Here we present an experimental setup for water stable isotope (δ18O and δD) continuous-flow measurements and provide metrics defining the performance of the setup during a major ice core measurement campaign (Roosevelt Island Climate Evolution; RICE). We also use the metrics to compare alternate systems. Our setup is the first continuous-flow laser spectroscopy system that is using off-axis integrated cavity output spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research, LGR) in combination with an evaporation unit to continuously analyze water samples from an ice core. A Water Vapor Isotope Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to (1) enable measurements on several water standards, (2) increase the temporal resolution by reducing the response time and (3) reduce the influence from memory effects. While this setup was designed for the continuous-flow analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The custom setups provide a shorter response time (~ 54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~ 62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the custom setups have a reduced memory effect. Stability tests comparing the custom and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the custom 2013 setup the precision after integration times of 103 s is 0.060 and 0.070 ‰ for δ18O and δD, respectively. The corresponding σAllan values for the custom 2014 setup are 0.030, 0.060 and 0.043 ‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively. Both the custom setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The

  14. Lack of nuclear clusters in dwarf spheroidal galaxies: implications for massive black holes formation and the cusp/core problem

    NASA Astrophysics Data System (ADS)

    Arca-Sedda, Manuel; Capuzzo-Dolcetta, Roberto

    2017-01-01

    One of the leading scenarios for the formation of nuclear star clusters in galaxies is related to the orbital decay of globular clusters (GCs) and their subsequent merging, though alternative theories are currently debated. The availability of high-quality data for structural and orbital parameters of GCs allows us to test different nuclear star cluster formation scenarios. The Fornax dwarf spheroidal (dSph) galaxy is the heaviest satellite of the Milky Way and it is the only known dSph hosting five GCs, whereas there are no clear signatures for the presence of a central massive black hole. For this reason, it represents a suited place to study the orbital decay process in dwarf galaxies. In this paper, we model the future evolution of the Fornax GCs simulating them and the host galaxy by means of direct N-body simulations. Our simulations also take into account the gravitational field generated by the Milky Way. We found that if the Fornax galaxy is embedded in a standard cold dark matter halo, the nuclear cluster formation would be significantly hampered by the high central galactic mass density. In this context, we discuss the possibility that infalling GCs drive the flattening of the galactic density profile, giving a possible alternative explanation to the so-called cusp/core problem. Moreover, we briefly discuss the link between GC infall process and the absence of massive black holes in the centre of dSphs.

  15. Stable, non-destructive immobilization of native nuclear membranes to micro-structured PDMS for single-molecule force spectroscopy.

    PubMed

    Rangl, Martina; Nevo, Reinat; Liashkovich, Ivan; Shahin, Victor; Reich, Ziv; Ebner, Andreas; Hinterdorfer, Peter

    2009-07-13

    In eukaryotic cells the nucleus is separated from the cytoplasm by a double-membraned nuclear envelope (NE). Exchange of molecules between the two compartments is mediated by nuclear pore complexes (NPCs) that are embedded in the NE membranes. The translocation of molecules such as proteins and RNAs through the nuclear membrane is executed by transport shuttling factors (karyopherines). They thereby dock to particular binding sites located all over the NPC, the so-called phenylalanine-glycin nucleoporines (FG Nups). Molecular recognition force spectroscopy (MRFS) allows investigations of the binding at the single-molecule level. Therefore the AFM tip carries a ligand for example, a particular karyopherin whereas the nuclear membrane with its receptors is mounted on a surface. Hence, one of the first requirements to study the nucleocytoplasmatic transport mechanism using MRFS is the development of an optimized membrane preparation that preserves structure and function of the NPCs. In this study we present a stable non-destructive preparation method of Xenopus laevis nuclear envelopes. We use micro-structured polydimethylsiloxane (PDMS) that provides an ideal platform for immobilization and biological integrity due to its elastic, chemical and mechanical properties. It is a solid basis for studying molecular recognition, transport interactions, and translocation processes through the NPC. As a first recognition system we investigate the interaction between an important transport shuttling factor, importin beta, and its binding sites on the NPC, the FG-domains.

  16. Special Sm core complex functions in assembly of the U2 small nuclear ribonucleoprotein of Trypanosoma brucei.

    PubMed

    Preusser, Christian; Palfi, Zsofia; Bindereif, Albrecht

    2009-08-01

    The processing of polycistronic pre-mRNAs in trypanosomes requires the spliceosomal small ribonucleoprotein complexes (snRNPs) U1, U2, U4/U6, U5, and SL, each of which contains a core of seven Sm proteins. Recently we reported the first evidence for a core variation in spliceosomal snRNPs; specifically, in the trypanosome U2 snRNP, two of the canonical Sm proteins, SmB and SmD3, are replaced by two U2-specific Sm proteins, Sm15K and Sm16.5K. Here we identify the U2-specific, nuclear-localized U2B'' protein from Trypanosoma brucei. U2B'' interacts with a second U2 snRNP protein, U2-40K (U2A'), which in turn contacts the U2-specific Sm16.5K/15K subcomplex. Together they form a high-affinity, U2-specific binding complex. This trypanosome-specific assembly differs from the mammalian system and provides a functional role for the Sm core variation found in the trypanosomal U2 snRNP.

  17. Thermodynamic evaluation of the solidification phase of molten core-concrete under estimated Fukushima Daiichi nuclear power plant accident conditions

    NASA Astrophysics Data System (ADS)

    Kitagaki, Toru; Yano, Kimihiko; Ogino, Hideki; Washiya, Tadahiro

    2017-04-01

    The solidification phases of molten core-concrete under the estimated molten core-concrete interaction (MCCI) conditions in the Fukushima Daiichi Nuclear Power Plant Unit 1 were predicted using the thermodynamic equilibrium calculation tool, FactSage 6.2, and the NUCLEA database in order to contribute toward the 1F decommissioning work and to understand the accident progression via the analytical results for the 1F MCCI products. We showed that most of the U and Zr in the molten core-concrete forms (U,Zr)O2 and (Zr,U)SiO4, and the formation of other phases with these elements is limited. However, the formation of (Zr,U)SiO4 requires a relatively long time because it involves a change in the crystal structure from fcc-(U,Zr)O2 to tet-(U,Zr)O2, followed by the formation of (Zr,U)SiO4 by reaction with SiO2. Therefore, the formation of (Zr,U)SiO4 is limited under quenching conditions. Other common phases are the oxide phases, CaAl2Si2O8, SiO2, and CaSiO3, and the metallic phases of the Fe-Si and Fe-Ni alloys. The solidification phenomenon of the crust under quenching conditions and that of the molten pool under thermodynamic equilibrium conditions in the 1F MCCI progression are discussed.

  18. Fuel containment and stability in the gas core nuclear rocket. Final report, April 15, 1993--April 14, 1994

    SciTech Connect

    Kammash, T.

    1996-02-01

    One of the most promising approaches to advanced propulsion that could meet the objectives of the Space Exploration Initiative (SEI) is the open cycle gas core nuclear rocket (GCR). The energy in this device is generated by a fissioning uranium plasma which heats, through radiation, a propellant that flows around the core and exits through a nozzle, thereby converting thermal energy into thrust. Although such a scheme can produce very attractive propulsion parameters in the form of high specific impulse and high thrust, it does suffer from serious physics and engineering problems that must be addressed if it is to become a viable propulsion system. Among the major problems that must be solved are the confinement of the uranium plasma, potential instabilities and control problems associated with the dynamics of the uranium core, and the question of startup and fueling of such a reactor. In this paper, the authors focus their attention on the problems of equilibria and stability of the uranium care, and examine the potential use of an externally applied magnetic field for these purposes. They find that steady state operation of the reactor is possible only for certain care profiles that may not be compatible with the radiative aspect of the system. The authors also find that the system is susceptible to hydrodynamic and acoustic instabilities that could deplete the uranium fuel in a short time if not properly suppressed.

  19. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials

    PubMed Central

    Carlier, Pierre G.; Marty, Benjamin; Scheidegger, Olivier; Loureiro de Sousa, Paulo; Baudin, Pierre-Yves; Snezhko, Eduard; Vlodavets, Dmitry

    2016-01-01

    Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and

  20. An out-of-core thermionic-converter system for nuclear space power

    NASA Technical Reports Server (NTRS)

    Breitwieser, R.

    1972-01-01

    Design of the nuclear thermionic space power system, 40 50 70 Kw(e) power range, are given. The design configuration (1) meets the constraints of readily available launch vehicles; (2) allows for off-design operation including startup, shutdown, and possible emergency conditions; (3) provides tolerance of failure by extensive use of modular, redundant elements; (4) incorporates and uses heat pipes in a fashion that reduces the need for extensive in-pile testing of system components; and (5) uses thermionic converters, nuclear fuel elements, and heat transfer devices in a geometrical form adapted from existing incore thermionic system designs. Designs and in some cases performance data for elements and groups of the elements of the system are included. Benefits of the highly modular system approach to reliability, safety, economy of development, and flexibility are discussed.

  1. Distributions of hafnia and titania cores in EUV metal resists evaluated by scanning transmission electron microscopy and electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Sato, Yuta; Koshino, Masanori; Suenaga, Kazu; Itani, Toshiro

    2016-11-01

    The morphologies of hafnia (HfO x ) and titania (TiO x ) cores and their distributions in metal resists for EUV lithography were characterized at the atomic level by scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). The HfO x cores show a higher affinity to organic components, such as methacrylic acid and benzoic acid, than the TiO x cores, and the same core-shell state as in a solution is almost completely maintained in the HfO x resist film. Furthermore, it was found that the surface modification of the TiO x cores by silylation is effective for preventing their aggregation and improves the postcoating delay (PCD) of the resist.

  2. Intermediate coupling for core-level excited states: Consequences for X-Ray absorption spectroscopy

    SciTech Connect

    Bagus, Paul S.; Sassi, Michel J.; Rosso, Kevin M.

    2015-04-01

    The origin of the complex NEXAFS features of X-Ray Absorption, XAS, spectra in transition metal complexes is analyzed and interpreted in terms of the angular momentum coupling of the open shell electrons. Especially for excited configurations where a core-electron is promoted to an open valence shell, the angular momentum coupling is intermediate between the two limits of Russell- Saunders, RS, coupling where spin-orbit splitting of the electron shells is neglected and j-j coupling where this splitting is taken as dominant. The XAS intensities can be understood in terms of two factors: (1) The dipole selection rules that give the allowed excited RS multiplets and (2) The contributions of these allowed multiplets to the wavefunctions of the intermediate coupled levels. It is shown that the origin of the complex XAS spectra is due to the distribution of the RS allowed multiplets over several different intermediate coupled excited levels. The specific case that is analyzed is the L2,3 edge XAS of an Fe3+ cation, because this cation allows a focus on the angular momentum coupling to the exclusion of other effects; e.g., chemical bonding. Arguments are made that the properties identified for this atomic case are relevant for more complex materials. The analysis is based on the properties of fully relativistic, ab initio, many-body wavefunctions for the initial and final states of the XAS process. The wavefunction properties considered include the composition of the wavefunctions in terms of RS multiplets and the occupations of the spin-orbit split open shells; the latter vividly show whether the coupling is j-j or not.

  3. Temperature dependent electron delocalization in CdSe/CdS type-I core-shell systems: An insight from scanning tunneling spectroscopy

    SciTech Connect

    Kundu, Biswajit; Chakrabarti, Sudipto; Pal, Amlan J.

    2016-03-14

    Core-shell nanocrystals having a type-I band-alignment confine charge carriers to the core. In this work, we choose CdSe/CdS core-shell nano-heterostructures that evidence confinement of holes only. Such a selective confinement occurs in the core-shell nanocrystals due to a low energy-offset of conduction band (CB) edges resulting in delocalization of electrons and thus a decrease in the conduction band-edge. Since the delocalization occurs through a thermal assistance, we study temperature dependence of selective delocalization process through scanning tunneling spectroscopy. From the density of states (DOS), we observe that the electrons are confined to the core at low temperatures. Above a certain temperature, they become delocalized up to the shell leading to a decrease in the CB of the core-shell system due to widening of quantum confinement effect. With holes remaining confined to the core due to a large offset in the valence band (VB), we record the topography of the core-shell nanocrystals by probing their CB and VB edges separately. The topographies recorded at different temperatures representing wave-functions of electrons and holes corresponded to the results obtained from the DOS spectra. The results evidence temperature-dependent wave-function delocalization of one-type of carriers up to the shell layer in core-shell nano-heterostructures.

  4. Investigation of hydrogenation of toluene to methylcyclohexane in a trickle bed reactor by low-field nuclear magnetic resonance spectroscopy.

    PubMed

    Guthausen, Gisela; von Garnier, Agnes; Reimert, Rainer

    2009-10-01

    Low-field nuclear magnetic resonance (NMR) spectroscopy is applied to study the hydrogenation of toluene in a lab-scale reactor. A conventional benchtop NMR system was modified to achieve chemical shift resolution. After an off-line validity check of the approach, the reaction product is analyzed on-line during the process, applying chemometric data processing. The conversion of toluene to methylcyclohexane is compared with off-line gas chromatographic analysis. Both classic analytical and chemometric data processing was applied. As the results, which are obtained within a few tens of seconds, are equivalent within the experimental accuracy of both methods, low-field NMR spectroscopy was shown to provide an analytical tool for reaction characterization and immediate feedback.

  5. Thin-layer chromatography-nuclear magnetic resonance spectroscopy - a versatile tool for pharmaceutical and natural products analysisa.

    PubMed

    Gössi, Angelo; Scherer, Uta; Schlotterbeck, Götz

    2012-01-01

    Thin-layer chromatography (TLC) is a mature and very established technique, frequently used in many fields of applications ranging from natural product analysis to chemical or pharmaceutical applications. The introduction of a commercially available TLC-MS interface was a major step complementing the ease of use of TLC with structural elucidation power of mass spectrometry (MS). The TLC-MS interface simplifies the workflow dramatically to gain structural information directly from TLC separations. This article describes the potential of TLC-nuclear magnetic resonance spectroscopy (NMR) utilizing the TLC-MS interface to straightforwardly characterize zones of interest by NMR spectroscopy with a focus on quantification of active pharmaceutical ingredients (API) in formulations and identification of active principles in plant extracts.

  6. Nuclear Data Resources for Capture gamma-Ray Spectroscopy and Related Topics

    SciTech Connect

    Pritychenko, B.; Pritychenko,B.

    2011-08-18

    Nuclear reaction data play an important role in nuclear reactor, medical, and fundamental science and national security applications. The wealth of information is stored in internally adopted ENDF-6 and EXFOR formats. We present a complete calculation of resonance integrals, Westcott factors, thermal and Maxwellian-averaged cross sections for Z = 1-100 using evaluated nuclear reaction data. The addition of newly-evaluated neutron reaction libraries, and improvements in data processing techniques allows us to calculate nuclear industry and astrophysics parameters, and provide additional insights on all currently available neutron-induced reaction data. Nuclear reaction calculations will be discussed and an overview of the latest reaction data developments will be given.

  7. Lunar in-core thermionic nuclear reactor power system conceptual design

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Schmitz, Paul C.; Gallup, Donald R.

    1991-01-01

    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Exploration Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  8. Lunar in-core thermionic nuclear reactor power system conceptual design

    SciTech Connect

    Mason, L.S. ); Schmitz, P.C. ); Gallup, D.R. )

    1991-01-05

    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Explortion Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  9. An intrinsically safe facility for forefront research and training on nuclear technologies — Core design

    NASA Astrophysics Data System (ADS)

    Viberti, C. M.; Ricco, G.

    2014-04-01

    The core of a subcritical, low-power research reactor in a lead matrix has been designed using the MCNPX code. The main parameters, like geometry, material composition in the fuel assembly and reflector size, have been optimized for a k eff ˜ 0.95 and a thermal power around 200 Kw. A 70 Mev, 1 mA proton beam incident on a beryllium target has been assumed as neutron source and the corresponding thermal power distribution and neutron fluxes in the reactor have been simulated.

  10. Lunar in-core thermionic nuclear reactor power system conceptual design

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Schmitz, Paul C.; Gallup, Donald R.

    1991-01-01

    This paper presents a conceptual design of a lunar in-core thermionic reactor power system. The concept consists of a thermionic reactor located in a lunar excavation with surface mounted waste heat radiators. The system was integrated with a proposed lunar base concept representative of recent NASA Space Exploration Initiative studies. The reference mission is a permanently-inhabited lunar base requiring a 550 kWe, 7 year life central power station. Performance parameters and assumptions were based on the Thermionic Fuel Element (TFE) Verification Program. Five design cases were analyzed ranging from conservative to advanced. The cases were selected to provide sensitivity effects on the achievement of TFE program goals.

  11. Saphenous vein graft near-infrared spectroscopy imaging insights from the lipid core plaque association with clinical events near-infrared spectroscopy (ORACLE-NIRS) registry.

    PubMed

    Danek, Barbara A; Karatasakis, Aris; Alame, Aya J; Nguyen-Trong, Phuong-Khanh J; Karacsonyi, Judit; Rangan, Bavana; Roesle, Michele; Atwell, Amy; Resendes, Erica; Martinez-Parachini, Jose Roberto; Iwnetu, Rahel; Kalsaria, Pratik; Siddiqui, Furqan; Muller, James E; Banerjee, Subhash; Brilakis, Emmanouil

    2017-05-01

    We sought to examine near-infrared spectroscopy (NIRS) imaging findings of aortocoronary saphenous vein grafts (SVGs). SVGs are prone to develop atherosclerosis similar to native coronary arteries. They have received little study using NIRS. We examined the clinical characteristics and imaging findings from 43 patients who underwent NIRS imaging of 45 SVGs at our institution between 2009 and 2016. The mean patient age was 67 ± 7 years and 98% were men, with high prevalence of diabetes mellitus (56%), hypertension (95%), and dyslipidemia (95%). Mean SVG age was 7 ± 7 years, mean SVG lipid core burden index (LCBI) was 53 ± 60 and mean maxLCBI4 mm was 194 ± 234. Twelve SVGs (27%) had lipid core plaques (2 yellow blocks on the block chemogram), with a higher prevalence in SVGs older than 5 years (46% vs. 5%, P = 0.002). Older SVG age was associated with higher LCBI (r = 0.480, P < 0.001) and higher maxLCBI4 mm (r = 0.567, P < 0.001). On univariate analysis, greater annual total cholesterol exposure was associated with higher SVG LCBI (r = 0.30, P = 0.042) and annual LDL-cholesterol and triglyceride exposure were associated with higher SVG maxLCBI4 mm (LDL-C: r = 0.41, P = 0.020; triglycerides: r = 0.36, P = 0.043). On multivariate analysis, the only independent predictor of SVG LCBI and maxLCBI4mm was SVG age. SVG percutaneous coronary intervention was performed in 63% of the patients. An embolic protection device was used in 96% of SVG PCIs. Periprocedural myocardial infarction occurred in one patient. Older SVG age and greater lipid exposure are associated with higher SVG lipid burden. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Crew radiation dose from the plume of a high impulse gas-core nuclear rocket during a Mars mission.

    NASA Technical Reports Server (NTRS)

    Masser, C. C.

    1971-01-01

    Analytical calculations are performed to determine the radiation dose rate and total dose to the crew of a gas-core nuclear rocket from the fission fragments located throughout the plume volume. The radiation dose from the plume fission fragments to two crew locations of 100 and 200 meters from the nozzle exit are calculated. It is found that, in the case of the most probable fission fragment retention time of 100 seconds, the crew must be protected from the radiation dose. Five centimeters of lead shielding would reduce the radiation dose by two orders of magnitude thereby protecting the crew. The increase in vehicle weight would be insignificant (7150 kg to a vehicle gross weight of 0.94 million kg).

  13. Field theoretical model for nuclear and neutron matter. IV - Radial oscillations of warm cores in neutron stars

    NASA Astrophysics Data System (ADS)

    Marti, Jose M.; Miralles, Juan A.; Ibanez, Jose M.; Diaz Alonso, J.

    1988-06-01

    The relativistic equations for the radial oscillations of warm cores in neutron stars have been solved and the eigenfrequencies of the fundamental modes have been obtained for a large sample of configurations in relativistic thermal equilibrium. The equation of state used was derived in the frame of a field theoretical model for the analysis of relativistic nuclear and neutron matter at nonzero temperatures. The Lagrangian describing the microdynamics has been introduced by coupling the nucleons to sigma, pi, omega, and rho meson fields in a renormalizable way. Moreover, the results of this paper allow the so-called static stability criterion to be reviewed and a 'central temperature-central density' diagram to be built which displays a well-defined region of stability and admits an evolutive interpretation.

  14. Some Nuclear Calculations of U-235-D2O Gaseous-Core Cavity Reactors

    NASA Technical Reports Server (NTRS)

    Ragsdale, Robert G.; Hyland, Robert E.

    1961-01-01

    The results of a multigroup, diffusion theory study of spherical gaseous-core cavity reactors are presented in this report. The reactor cavity of gaseous U235 is enclosed by a region of hydrogen gas and is separated from an external D2O moderator-reflector by a zirconium structural shell. Some cylindrical reactors are also investigated. A parametric study of spherical reactors indicates that, for the range of variables studied, critical mass increases as: (1) Fuel region is compressed within the reactor cavity, (2) moderator thickness is decreased, (3) structural shell thickness is increased, and (4) moderator temperature is increased. A buckling analogy is used to estimate the critical mass of fully reflected cylindrical reactors from spherical results without fuel compression. For a reactor cavity of a 120-centimeter radius uniformly filled with fuel, no structural shell, a moderator temperature of 70 F, and a moderator thickness of 100 centimeters, the critical mass of a spherical reactor is 3.1 kilograms while that of a cylinder with a length-to-diameter ratio of 1.0 (L/D = 1) is approximately 3.8 kilograms and, with L/D = 2, 5.9 kilograms. For the range of variables considered for U235-D2O gaseous-core cavity reactors, the systems are characterized by 95 to 99 percent thermal absorptions, with the flux reaching a maximum in the moderator about 10 to 15 centimeters from the reactor cavity.

  15. Exploring the nuclear pasta phase in core-collapse supernova matter.

    PubMed

    Pais, Helena; Stone, Jirina R

    2012-10-12

    The core-collapse supernova phenomenon, one of the most explosive events in the Universe, presents a challenge to theoretical astrophysics. Of the large variety of forms of matter present in core-collapse supernova, we focus on the transitional region between homogeneous (uniform) and inhomogeneous (pasta) phases. A three-dimensional, finite temperature Skyrme-Hartree-Fock (3D-SHF)+BCS calculation yields, for the first time fully self-consistently, the critical density and temperature of both the onset of the pasta in inhomogeneous matter, consisting of neutron-rich heavy nuclei and a free neutron and electron gas, and its dissolution to a homogeneous neutron, proton, and electron liquid. We also identify density regions for different pasta formations between the two limits. We employ four different forms of the Skyrme interaction, SkM*, SLy4, NRAPR, and SQMC700 and find subtle variations in the low density and high density transitions into and out of the pasta phase. One new stable pasta shape has been identified, in addition to the classic ones, on the grid of densities and temperatures used in this work. Our results are critically compared to recent calculations of pasta formation in the quantum molecular dynamics approach and Thomas-Fermi and coexisting phase approximations to relativistic mean-field models.

  16. Interfacial Ca2+ environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced 43Ca NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Daniel; Leroy, César; Crevant, Charlène; Bonhomme-Coury, Laure; Babonneau, Florence; Laurencin, Danielle; Bonhomme, Christian; de Paëpe, Gaël

    2017-01-01

    The interfaces within bones, teeth and other hybrid biomaterials are of paramount importance but remain particularly difficult to characterize at the molecular level because both sensitive and selective techniques are mandatory. Here, it is demonstrated that unprecedented insights into calcium environments, for example the differentiation of surface and core species of hydroxyapatite nanoparticles, can be obtained using solid-state NMR, when combined with dynamic nuclear polarization. Although calcium represents an ideal NMR target here (and de facto for a large variety of calcium-derived materials), its stable NMR-active isotope, calcium-43, is a highly unreceptive probe. Using the sensitivity gains from dynamic nuclear polarization, not only could calcium-43 NMR spectra be obtained easily, but natural isotopic abundance 2D correlation experiments could be recorded for calcium-43 in short experimental time. This opens perspectives for the detailed study of interfaces in nanostructured materials of the highest biological interest as well as calcium-based nanosystems in general.

  17. Interfacial Ca(2+) environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced (43)Ca NMR spectroscopy.

    PubMed

    Lee, Daniel; Leroy, César; Crevant, Charlène; Bonhomme-Coury, Laure; Babonneau, Florence; Laurencin, Danielle; Bonhomme, Christian; De Paëpe, Gaël

    2017-01-27

    The interfaces within bones, teeth and other hybrid biomaterials are of paramount importance but remain particularly difficult to characterize at the molecular level because both sensitive and selective techniques are mandatory. Here, it is demonstrated that unprecedented insights into calcium environments, for example the differentiation of surface and core species of hydroxyapatite nanoparticles, can be obtained using solid-state NMR, when combined with dynamic nuclear polarization. Although calcium represents an ideal NMR target here (and de facto for a large variety of calcium-derived materials), its stable NMR-active isotope, calcium-43, is a highly unreceptive probe. Using the sensitivity gains from dynamic nuclear polarization, not only could calcium-43 NMR spectra be obtained easily, but natural isotopic abundance 2D correlation experiments could be recorded for calcium-43 in short experimental time. This opens perspectives for the detailed study of interfaces in nanostructured materials of the highest biological interest as well as calcium-based nanosystems in general.

  18. The unexpected structures of ``core-shell'' and ``alloy'' LnF3 nanoparticles as examined by variable energy X-ray photo-electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Cunhai; Pichaandi, Jothirmayanantham; Regier, Tom; van Veggel, Frank C. J. M.

    2011-08-01

    Lanthanide fluoride nanoparticles were synthesized in aqueous media using procedures intended for a core-shell structure of Ln(1)F3-Ln(2)F3, its reverse architecture, and an alloy structure. Their structures were examined by variable photon energy photo-electron spectroscopy using synchrotron radiation, along with X-ray powder diffractometry, transmission electron microscopy, energy dispersive X-ray spectroscopy, and luminescence spectroscopy. The results show that the nanoparticles intended for a core-shell structure do not have a core-shell structure, and that nanoparticles intended for an alloy structure do not always have an alloy structure. A possible explanation for this is cation exchange, a phenomenon that occurs when LnF3 nanoparticles are exposed to another Ln3+ ion in aqueous media, resulting in Ln3+ ions in nanoparticles being quickly replaced by Ln3+ ions in solution. This cation exchange effectively competes with the precipitation of LnF3, which leads to a concentration gradient in the case of the combination of LaF3 and GdF3, and to nearly an alloy structure (isotropic mixture of all the ions) in the case of the combination of LaF3 and NdF3, regardless of the procedure used. Finally, the intended ``core-shell'' nanoparticles were doped with Eu3+ to show that a non-core-shell structure can also give rise to the improvement of optical properties as compared with the corresponding core nanoparticles. These results suggest that conclusions in the literature that a core-shell structure was obtained as inferred by TEM or enhanced luminescence may not be correct.Lanthanide fluoride nanoparticles were synthesized in aqueous media using procedures intended for a core-shell structure of Ln(1)F3-Ln(2)F3, its reverse architecture, and an alloy structure. Their structures were examined by variable photon energy photo-electron spectroscopy using synchrotron radiation, along with X-ray powder diffractometry, transmission electron microscopy, energy dispersive X

  19. Recognition of subsets of the mammalian A/B-type core heterogeneous nuclear ribonucleoprotein polypeptides by novel autoantibodies.

    PubMed Central

    Dangli, A; Plomaritoglou, A; Boutou, E; Vassiliadou, N; Moutsopoulos, H M; Guialis, A

    1996-01-01

    The structurally related A/B-type core heterogeneous nuclear ribonucleoprotein (hnRNP) polypeptides of 34-39 kDa (A1, A2, B1 and B2) belong to a family of RNA-binding proteins that are major components of 40 S hnRNP complexes. By two-dimensional gel electrophoresis and peptide mapping analysis we compared each member of the A/B-type core proteins in the human and rat liver cells. This comparison revealed the unique presence in rat cells of major protein species, referred to as mBx polypeptides, that appeared as three charge isoforms at a position corresponding to the minor HeLa B1b protein spot. In addition, clear differences in the ratios of the A1 polypeptide to the A1b isoform were observed. The detection, in sera of patients with rheumatic autoimmune diseases, of two novel autoantibody specificities, one recognizing solely B2 protein and the second both the B2 and mBx polypeptides, helped to identify mBx proteins as new A/B-type hnRNP components, immunologically related to B2 protein. A common immunoreactive V8 protease peptide of approx. 17 kDa has been identified in B2 and mBx hnRNP polypeptides. mBx protein species are identified in cells of murine origin, and have a ubiquitous tissue distribution and developmental appearance. PMID:9003360

  20. Site-Specific Hydration Dynamics in the Nonpolar Core of a Molten Globule by Dynamic Nuclear Polarization of Water

    PubMed Central

    Armstrong, Brandon D.; Choi, Jennifer; López, Carlos; Wesener, Darryl A.; Hubbell, Wayne; Cavagnero, Silvia; Han, Songi

    2011-01-01

    Water-protein interactions play a direct role in protein folding. The chain collapse that accompanies protein folding involves extrusion of water from the nonpolar core. For many proteins, including apomyoglobin (apoMb), hydrophobic interactions drive an initial collapse to an intermediate state before folding to the final structure. However, the debate continues as to whether the core of the collapsed intermediate state is hydrated and, if so, what the dynamic nature of this water is. A key challenge is that protein hydration dynamics is significantly heterogeneous, yet suitable experimental techniques for measuring hydration dynamics with site-specificity are lacking. Here, we introduce Overhauser dynamic nuclear polarization at 0.35 T via site-specific nitroxide spin labels as a unique tool to probe internal and surface protein hydration dynamics with site-specific resolution in the molten globular, native, and unfolded protein states. The 1H NMR signal enhancement of water carries information about the local dynamics of the solvent within ~10 Å of a spin label. EPR is used synergistically to gain insights on local polarity and mobility of the spin-labeled protein. Several buried and solvent-exposed sites of apoMb are examined, each bearing a covalently bound nitroxide spin label. We find that the hydrophobic core of the apoMb molten globule is hydrated with water bearing significant translational dynamics, only 4–6-fold slower than that of bulk water. The hydration dynamics of the native state is heterogeneous, while the acid-unfolded state bears fast-diffusing hydration water. This study provides a high-resolution glimpse at the folding-dependent nature of protein hydration dynamics. PMID:21443207