Sample records for nuclear density functional

  1. Universal functions of nuclear proximity potential for Skyrme nucleus-nucleus interaction in a semiclassical approach

    NASA Astrophysics Data System (ADS)

    Gupta, Raj K.; Singh, Dalip; Kumar, Raj; Greiner, Walter

    2009-07-01

    The universal function of the nuclear proximity potential is obtained for the Skyrme nucleus-nucleus interaction in the semiclassical extended Thomas-Fermi (ETF) approach. This is obtained as a sum of the spin-orbit-density-independent and spin-orbit-density-dependent parts of the Hamiltonian density, since the two terms behave differently, the spin-orbit-density-independent part mainly attractive and the spin-orbit-density-dependent part mainly repulsive. The semiclassical expansions of kinetic energy density and spin-orbit density are allowed up to second order, and the two-parameter Fermi density, with its parameters fitted to experiments, is used for the nuclear density. The universal functions or the resulting nuclear proximity potential reproduce the 'exact' Skyrme nucleus-nucleus interaction potential in the semiclassical approach, within less than ~1 MeV of difference, both at the maximum attraction and in the surface region. An application of the resulting interaction potential to fusion excitation functions shows clearly that the parameterized universal functions of nuclear proximity potential substitute completely the 'exact' potential in the Skyrme energy density formalism based on the semiclassical ETF method, including also the modifications of interaction barriers at sub-barrier energies in terms of modifying the constants of the universal functions.

  2. Microscopically based energy density functionals for nuclei using the density matrix expansion. II. Full optimization and validation

    NASA Astrophysics Data System (ADS)

    Navarro Pérez, R.; Schunck, N.; Dyhdalo, A.; Furnstahl, R. J.; Bogner, S. K.

    2018-05-01

    Background: Energy density functional methods provide a generic framework to compute properties of atomic nuclei starting from models of nuclear potentials and the rules of quantum mechanics. Until now, the overwhelming majority of functionals have been constructed either from empirical nuclear potentials such as the Skyrme or Gogny forces, or from systematic gradient-like expansions in the spirit of the density functional theory for atoms. Purpose: We seek to obtain a usable form of the nuclear energy density functional that is rooted in the modern theory of nuclear forces. We thus consider a functional obtained from the density matrix expansion of local nuclear potentials from chiral effective field theory. We propose a parametrization of this functional carefully calibrated and validated on selected ground-state properties that is suitable for large-scale calculations of nuclear properties. Methods: Our energy functional comprises two main components. The first component is a non-local functional of the density and corresponds to the direct part (Hartree term) of the expectation value of local chiral potentials on a Slater determinant. Contributions to the mean field and the energy of this term are computed by expanding the spatial, finite-range components of the chiral potential onto Gaussian functions. The second component is a local functional of the density and is obtained by applying the density matrix expansion to the exchange part (Fock term) of the expectation value of the local chiral potential. We apply the UNEDF2 optimization protocol to determine the coupling constants of this energy functional. Results: We obtain a set of microscopically constrained functionals for local chiral potentials from leading order up to next-to-next-to-leading order with and without three-body forces and contributions from Δ excitations. These functionals are validated on the calculation of nuclear and neutron matter, nuclear mass tables, single-particle shell structure in closed-shell nuclei, and the fission barrier of 240Pu. Quantitatively, they perform noticeably better than the more phenomenological Skyrme functionals. Conclusions: The inclusion of higher-order terms in the chiral perturbation expansion seems to produce a systematic improvement in predicting nuclear binding energies while the impact on other observables is not really significant. This result is especially promising since all the fits have been performed at the single-reference level of the energy density functional approach, where important collective correlations such as center-of-mass correction, rotational correction, or zero-point vibrational energies have not been taken into account yet.

  3. Multicomponent Density Functional Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries.

    PubMed

    Brorsen, Kurt R; Yang, Yang; Hammes-Schiffer, Sharon

    2017-08-03

    Nuclear quantum effects such as zero point energy play a critical role in computational chemistry and often are included as energetic corrections following geometry optimizations. The nuclear-electronic orbital (NEO) multicomponent density functional theory (DFT) method treats select nuclei, typically protons, quantum mechanically on the same level as the electrons. Electron-proton correlation is highly significant, and inadequate treatments lead to highly overlocalized nuclear densities. A recently developed electron-proton correlation functional, epc17, has been shown to provide accurate nuclear densities for molecular systems. Herein, the NEO-DFT/epc17 method is used to compute the proton affinities for a set of molecules and to examine the role of nuclear quantum effects on the equilibrium geometry of FHF - . The agreement of the computed results with experimental and benchmark values demonstrates the promise of this approach for including nuclear quantum effects in calculations of proton affinities, pK a 's, optimized geometries, and reaction paths.

  4. On the way to a microscopic derivation of covariant density functionals in nuclei

    NASA Astrophysics Data System (ADS)

    Ring, Peter

    2018-02-01

    Several methods are discussed to derive covariant density functionals from the microscopic input of bare nuclear forces. In a first step there are semi-microscopic functionals, which are fitted to ab-initio calculations of nuclear matter and depend in addition on very few phenomenological parameters. They are able to describe nuclear properties with the same precision as fully phenomenological functionals. In a second step we present first relativistic Brueckner-Hartree-Fock calculations in finite nuclei in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  5. Clustering and pasta phases in nuclear density functional theory

    DOE PAGES

    Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold

    2017-05-23

    Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less

  6. Kaon Condensation and the Non-Uniform Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Tatsumi, Toshitaka; Voskresensky, Dmitri N.; Tanigawa, Tomonori; Chiba, Satoshi

    2004-04-01

    Non-uniform structures of nuclear matter are studied in a wide density-range. Using the density functional theory with a relativistic mean-field model, we examine non-uniform structures at sub-nuclear densities (nuclear "pastas") and at high densities, where kaon condensate is expected. We try to give a unified view about the change of the matter structure as density increases, carefully taking into account the Coulomb screening effects from the viewpoint of first-order phase transition.

  7. Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF

    NASA Astrophysics Data System (ADS)

    Li, Chen; Requist, Ryan; Gross, E. K. U.

    2018-02-01

    We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = Rc, where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical Rc by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M-1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇Rχ(R) and ∇Rn(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation—an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).

  8. Density-dependent covariant energy density functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalazissis, G. A.

    2012-10-20

    Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

  9. Determination of the nuclear level densities and radiative strength function for 43 nuclei in the mass interval 28≤A≤200

    NASA Astrophysics Data System (ADS)

    Knezevic, David; Jovancevic, Nikola; Sukhovoj, Anatoly M.; Mitsyna, Ludmila V.; Krmar, Miodrag; Cong, Vu D.; Hambsch, Franz-Josef; Oberstedt, Stephan; Revay, Zsolt; Stieghorst, Christian; Dragic, Aleksandar

    2018-03-01

    The determination of nuclear level densities and radiative strength functions is one of the most important tasks in low-energy nuclear physics. Accurate experimental values of these parameters are critical for the study of the fundamental properties of nuclear structure. The step-like structure in the dependence of the level densities p on the excitation energy of nuclei Eex is observed in the two-step gamma cascade measurements for nuclei in the 28 ≤ A ≤ 200 mass region. This characteristic structure can be explained only if a co-existence of quasi-particles and phonons, as well as their interaction in a nucleus, are taken into account in the process of gamma-decay. Here we present a new improvement to the Dubna practical model for the determination of nuclear level densities and radiative strength functions. The new practical model guarantees a good description of the available intensities of the two step gamma cascades, comparable to the experimental data accuracy.

  10. Covariant density functional theory: predictive power and first attempts of a microscopic derivation

    NASA Astrophysics Data System (ADS)

    Ring, Peter

    2018-05-01

    We discuss systematic global investigations with modern covariant density functionals. The number of their phenomenological parameters can be reduced considerable by using microscopic input from ab-initio calculations in nuclear matter. The size of the tensor force is still an open problem. Therefore we use the first full relativistic Brueckner-Hartree-Fock calculations in finite nuclear systems in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  11. Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: Case study of LiF.

    PubMed

    Li, Chen; Requist, Ryan; Gross, E K U

    2018-02-28

    We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = R c , where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical R c by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M -1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇ R χ(R) and ∇ R n(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation-an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).

  12. Interdependence of different symmetry energy elements

    NASA Astrophysics Data System (ADS)

    Mondal, C.; Agrawal, B. K.; De, J. N.; Samaddar, S. K.; Centelles, M.; Viñas, X.

    2017-08-01

    Relations between the nuclear symmetry energy coefficient and its density derivatives are derived. The relations hold for a class of interactions with quadratic momentum dependence and a power-law density dependence. The structural connection between the different symmetry energy elements as obtained seems to be followed by almost all reasonable nuclear energy density functionals, both relativistic and nonrelativistic, suggesting a universality in the correlation structure. This, coupled with known values of some well-accepted constants related to nuclear matter, helps in constraining values of different density derivatives of the nuclear symmetry energy, shedding light on the isovector part of the nuclear interaction.

  13. KIDS Nuclear Energy Density Functional: 1st Application in Nuclei

    NASA Astrophysics Data System (ADS)

    Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok

    We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.

  14. Nuclear charge radii: density functional theory meets Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Utama, R.; Chen, Wei-Chia; Piekarewicz, J.

    2016-11-01

    The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.

  15. Relations among several nuclear and electronic density functional reactivity indexes

    NASA Astrophysics Data System (ADS)

    Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel

    2003-11-01

    An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.

  16. Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.

    2017-08-01

    Background: The central depression of nucleonic density, i.e., a reduction of density in the nuclear interior, has been attributed to many factors. For instance, bubble structures in superheavy nuclei are believed to be due to the electrostatic repulsion. In light nuclei, the mechanism behind the density reduction in the interior has been discussed in terms of shell effects associated with occupations of s orbits. Purpose: The main objective of this work is to reveal mechanisms behind the formation of central depression in nucleonic densities in light and heavy nuclei. To this end, we introduce several measures of the internal nucleonic density. Through the statistical analysis, we study the information content of these measures with respect to nuclear matter properties. Method: We apply nuclear density functional theory with Skyrme functionals. Using the statistical tools of linear least square regression, we inspect correlations between various measures of central depression and model parameters, including nuclear matter properties. We study bivariate correlations with selected quantities as well as multiple correlations with groups of parameters. Detailed correlation analysis is carried out for 34Si for which a bubble structure has been reported recently, 48Ca, and N =82 , 126, and 184 isotonic chains. Results: We show that the central depression in medium-mass nuclei is very sensitive to shell effects, whereas for superheavy systems it is firmly driven by the electrostatic repulsion. An appreciable semibubble structure in proton density is predicted for 294Og, which is currently the heaviest nucleus known experimentally. Conclusion: Our correlation analysis reveals that the central density indicators in nuclei below 208Pb carry little information on parameters of nuclear matter; they are predominantly driven by shell structure. On the other hand, in the superheavy nuclei there exists a clear relationship between the central nucleonic density and symmetry energy.

  17. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Götz, Andreas W., E-mail: agoetz@sdsc.edu; Autschbach, Jochen; Visscher, Lucas, E-mail: visscher@chem.vu.nl

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects inmore » the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.« less

  18. Intramolecular Nuclear Flux Densities

    NASA Astrophysics Data System (ADS)

    Barth, I.; Daniel, C.; Gindensperger, E.; Manz, J.; PéRez-Torres, J. F.; Schild, A.; Stemmle, C.; Sulzer, D.; Yang, Y.

    The topic of this survey article has seen a renaissance during the past couple of years. Here we present and extend the results for various phenomena which we have published from 2012-2014, with gratitude to our coauthors. The new phenomena include (a) the first reduced nuclear flux densities in vibrating diatomic molecules or ions which have been deduced from experimental pump-probe spectra; these "experimental" nuclear flux densities reveal several quantum effects including (b) the "quantum accordion", i.e., during the turn from bond stretch to bond compression, the diatomic system never stands still — instead, various parts of it with different bond lengths flow into opposite directions. (c) Wavepacket interferometry has been extended from nuclear densities to flux densities, again revealing new phenomena: For example, (d) a vibrating nuclear wave function with compact initial shape may split into two partial waves which run into opposite directions, thus causing interfering flux densities. (e) Tunneling in symmetric 1-dimensional double-well systems yields maximum values of the associated nuclear flux density just below the potential barrier; this is in marked contrast with negligible values of the nuclear density just below the barrier. (f) Nuclear flux densities of pseudorotating nuclei may induce huge magnetic fields. A common methodologic theme of all topics is the continuity equation which connects the time derivative of the nuclear density to the divergence of the flux density, subject to the proper boundary conditions. (g) Nearly identical nuclear densities with different boundary conditions may be related to entirely different flux densities, e.g., during tunneling in cyclic versus non-cyclic systems. The original continuity equation, density and flux density of all nuclei, or of all nuclear degrees of freedom, may be reduced to the corresponding quantities for just a single nucleus, or just a single degree of freedom.

  19. Fermi liquid, clustering, and structure factor in dilute warm nuclear matter

    NASA Astrophysics Data System (ADS)

    Röpke, G.; Voskresensky, D. N.; Kryukov, I. A.; Blaschke, D.

    2018-02-01

    Properties of nuclear systems at subsaturation densities can be obtained from different approaches. We demonstrate the use of the density autocorrelation function which is related to the isothermal compressibility and, after integration, to the equation of state. This way we connect the Landau Fermi liquid theory well elaborated in nuclear physics with the approaches to dilute nuclear matter describing cluster formation. A quantum statistical approach is presented, based on the cluster decomposition of the polarization function. The fundamental quantity to be calculated is the dynamic structure factor. Comparing with the Landau Fermi liquid theory which is reproduced in lowest approximation, the account of bound state formation and continuum correlations gives the correct low-density result as described by the second virial coefficient and by the mass action law (nuclear statistical equilibrium). Going to higher densities, the inclusion of medium effects is more involved compared with other quantum statistical approaches, but the relation to the Landau Fermi liquid theory gives a promising approach to describe not only thermodynamic but also collective excitations and non-equilibrium properties of nuclear systems in a wide region of the phase diagram.

  20. Uncertainty quantification and propagation in nuclear density functional theory

    DOE PAGES

    Schunck, N.; McDonnell, J. D.; Higdon, D.; ...

    2015-12-23

    Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this study, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statisticalmore » analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.« less

  1. Calibration and evaluation of a nuclear density and moisture measuring apparatus.

    DOT National Transportation Integrated Search

    1963-11-01

    The research objectives of this project were to investigate a new : method of in-place determination of soils densities and moisture levels : employing a nuclear physics principle of the gamma radiation function as : the measurement technique, with s...

  2. Surface symmetry energy of nuclear energy density functionals

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Schunck, N.; Nazarewicz, W.; Bender, M.; Pei, J.

    2011-03-01

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals (EDFs). Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band heads in Hg and Pb isotopes and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear EDFs. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  3. Density Functional Approach to Superfluid Phonon in Inner Crust of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Inakura, Tsunenori; Matsuo, Masayuki

    We investigate superfluid phonon emerging in inner crust of neutron stars by means of the nuclear density functional theory. Adopting the Wigner-Seitz approximation and a single spherical cell, we describe low-lying collective excitation with the dipole multipolarity. It is found that the superfluid phonon standing on the low-density neutron superfluid does not penetrate into the interior of the nuclear cluster. This suggests that the coupling between the superfluid phonon and the lattice phonon could be weak, and it may affect the thermal conductivity of inner crust.

  4. Scaling within the spectral function approach

    NASA Astrophysics Data System (ADS)

    Sobczyk, J. E.; Rocco, N.; Lovato, A.; Nieves, J.

    2018-03-01

    Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial for interpreting neutrino- and electron-scattering data. In the large momentum-transfer regime, the nucleon-density response function defines a universal scaling function, which is independent of the nature of the probe. In this work, we analyze the nucleon-density response function of 12C, neglecting collective excitations. We employ particle and hole spectral functions obtained within two distinct many-body methods, both widely used to describe electroweak reactions in nuclei. We show that the two approaches provide compatible nucleon-density scaling functions that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions characterized by an asymmetric shape, although less pronounced than that of experimental scaling functions. This asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon correlations, encoded in the continuum component of the hole spectral function.

  5. Density dependence of the nuclear energy-density functional

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho

    2018-01-01

    Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic results, to which it has not been fitted. It also predicts a neutron-star mass-radius relation consistent with observations. The coefficients display naturalness. Conclusions: Having been already determined for homogeneous matter, a functional of the present form can be mapped onto extended Skyrme-type functionals in a straightforward manner, as we outline here, for applications to finite nuclei. At the same time, the statistical analysis can be extended to higher orders and for different microscopic (ab initio) calculations with sufficient pseudodata points and for polarized matter.

  6. Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Raeder, S.; Ackermann, D.; Backe, H.; Beerwerth, R.; Berengut, J. C.; Block, M.; Borschevsky, A.; Cheal, B.; Chhetri, P.; Düllmann, Ch. E.; Dzuba, V. A.; Eliav, E.; Even, J.; Ferrer, R.; Flambaum, V. V.; Fritzsche, S.; Giacoppo, F.; Götz, S.; Heßberger, F. P.; Huyse, M.; Kaldor, U.; Kaleja, O.; Khuyagbaatar, J.; Kunz, P.; Laatiaoui, M.; Lautenschläger, F.; Lauth, W.; Mistry, A. K.; Minaya Ramirez, E.; Nazarewicz, W.; Porsev, S. G.; Safronova, M. S.; Safronova, U. I.; Schuetrumpf, B.; Van Duppen, P.; Walther, T.; Wraith, C.; Yakushev, A.

    2018-06-01

    Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of No 252 ,253 ,254 , and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton density distribution in No,254252 isotopes. Finally, the hyperfine splitting of No 253 was evaluated, enabling a complementary measure of its (quadrupole) deformation, as well as an insight into the neutron single-particle wave function via the nuclear spin and magnetic moment.

  7. Nuclear ``pasta'' formation

    NASA Astrophysics Data System (ADS)

    Schneider, A. S.; Horowitz, C. J.; Hughto, J.; Berry, D. K.

    2013-12-01

    The formation of complex nonuniform phases of nuclear matter, known as nuclear pasta, is studied with molecular dynamics (MD) simulations containing 51200 nucleons. A phenomenological nuclear interaction is used that reproduces the saturation binding energy and density of nuclear matter. Systems are prepared at an initial density of 0.10fm-3 and then the density is decreased by expanding the simulation volume at different rates to densities of 0.01fm-3 or less. An originally uniform system of nuclear matter is observed to form spherical bubbles (“swiss cheese”), hollow tubes, flat plates (“lasagna”), thin rods (“spaghetti”) and, finally, nearly spherical nuclei with decreasing density. We explicitly observe nucleation mechanisms, with decreasing density, for these different pasta phase transitions. Topological quantities known as Minkowski functionals are obtained to characterize the pasta shapes. Different pasta shapes are observed depending on the expansion rate. This indicates nonequilibrium effects. We use this to determine the best ways to obtain lower energy states of the pasta system from MD simulations and to place constraints on the equilibration time of the system.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold

    Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less

  9. Axial deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator Basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, R. Navarro; Schunck, N.; Lasseri, R.

    2017-03-09

    HFBTHO is a physics computer code that is used to model the structure of the nucleus. It is an implementation of the nuclear energy Density Functional Theory (DFT), where the energy of the nucleus is obtained by integration over space of some phenomenological energy density, which is itself a functional of the neutron and proton densities. In HFBTHO, the energy density derives either from the zero-range Dkyrme or the finite-range Gogny effective two-body interaction between nucleons. Nuclear superfluidity is treated at the Hartree-Fock-Bogoliubov (HFB) approximation, and axial-symmetry of the nuclear shape is assumed. This version is the 3rd release ofmore » the program; the two previous versions were published in Computer Physics Communications [1,2]. The previous version was released at LLNL under GPL 3 Open Source License and was given release code LLNL-CODE-573953.« less

  10. Sub-saturation matter in compact stars: Nuclear modelling in the framework of the extended Thomas-Fermi theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    A recently introduced analytical model for the nuclear density profile [1] is implemented in the Extended Thomas-Fermi (ETF) energy density functional. This allows to (i) shed a new light on the issue of the sign of surface symmetry energy in nuclear mass formulas, as well as to (ii) show the importance of the in-medium corrections to the nuclear cluster energies in thermodynamic conditions relevant for the description of core-collapse supernovae and (proto)-neutron star crust.

  11. Sub-saturation matter in compact stars: Nuclear modelling in the framework of the extended Thomas-Fermi theory

    NASA Astrophysics Data System (ADS)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2015-02-01

    A recently introduced analytical model for the nuclear density profile [1] is implemented in the Extended Thomas-Fermi (ETF) energy density functional. This allows to (i) shed a new light on the issue of the sign of surface symmetry energy in nuclear mass formulas, as well as to (ii) show the importance of the in-medium corrections to the nuclear cluster energies in thermodynamic conditions relevant for the description of core-collapse supernovae and (proto)-neutron star crust.

  12. Phase diagram of dilute cosmic matter

    NASA Astrophysics Data System (ADS)

    Iwata, Yoritaka

    2011-10-01

    Enhancement of nuclear pasta formation due to multi-nucleus simultaneous collision is presented based on time-dependent density functional calculations with periodic boundary condition. This calculation corresponds to the situation with density lower than the known low-density existence limit of the nuclear pasta phase. In order to evaluate the contribution from three-nucleus simultaneous collisions inside the cosmic matter, the possibility of multi-nucleus simultaneous collisions is examined by a systematic Monte-Carlo calculation, and the mean free path of a nucleus is obtained. Consequently the low-density existence limit of the nuclear pasta phase is formed to be lower than believed up to now.

  13. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    PubMed

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  14. Scalable nuclear density functional theory with Sky3D

    NASA Astrophysics Data System (ADS)

    Afibuzzaman, Md; Schuetrumpf, Bastian; Aktulga, Hasan Metin

    2018-02-01

    In nuclear astrophysics, quantum simulations of large inhomogeneous dense systems as they appear in the crusts of neutron stars present big challenges. The number of particles in a simulation with periodic boundary conditions is strongly limited due to the immense computational cost of the quantum methods. In this paper, we describe techniques for an efficient and scalable parallel implementation of Sky3D, a nuclear density functional theory solver that operates on an equidistant grid. Presented techniques allow Sky3D to achieve good scaling and high performance on a large number of cores, as demonstrated through detailed performance analysis on a Cray XC40 supercomputer.

  15. Multicomponent density functional theory embedding formulation.

    PubMed

    Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  16. Multicomponent density functional theory embedding formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less

  17. Geometric model from microscopic theory for nuclear absorption

    NASA Technical Reports Server (NTRS)

    John, Sarah; Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained.

  18. Geometric model for nuclear absorption from microscopic theory

    NASA Technical Reports Server (NTRS)

    John, S.; Townsend, L. W.; Wilson, J. W.; Tripathi, R. K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived from microscopic theory. The expression for the absorption cross section in the eikonal approximation taken in integral form is separated into a geometric contribution, described by an energy-dependent effective radius, and two surface terms which are shown to cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived using harmonic-oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half density radius for the harmonic-oscillator functions. Coulomb corrections are incorporated and a simplified geometric form of the Bradt-Peters type obtained. Results spanning the energy range of 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results are obtained.

  19. VizieR Online Data Catalog: Brussels nuclear reaction rate library (Aikawa+, 2005)

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-07-01

    The present data is part of the Brussels nuclear reaction rate library (BRUSLIB) for astrophysics applications and concerns nuclear reaction rate predictions calculated within the statistical Hauser-Feshbach approximation and making use of global and coherent microscopic nuclear models for the quantities (nuclear masses, nuclear structure properties, nuclear level densities, gamma-ray strength functions, optical potentials) entering the rate calculations. (4 data files).

  20. Microscopically based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization

    NASA Astrophysics Data System (ADS)

    Stoitsov, M.; Kortelainen, M.; Bogner, S. K.; Duguet, T.; Furnstahl, R. J.; Gebremariam, B.; Schunck, N.

    2010-11-01

    In a recent series of articles, Gebremariam, Bogner, and Duguet derived a microscopically based nuclear energy density functional by applying the density matrix expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory two- and three-nucleon interactions. Owing to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Because the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present article is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-of-principle calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction of our test χ2 function compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations.

  1. Nuclear structure and dynamics with density functional theory

    NASA Astrophysics Data System (ADS)

    Stetcu, Ionel

    2015-10-01

    Even in the absence of ab initio methods capable of tackling heavy nuclei without restrictions, one can obtain an ab initio description of ground-state properties by means of the density functional theory (DFT), and its extension to superfluid systems in its local variant, the superfluid local density approximation (SLDA). Information about the properties of excited states can be obtained in the same framework by using an extension to the time-dependent (TD) phenomena. Unlike other approaches in which the nuclear structure information is used as a separate input into reaction models, the TD approach treats on the same footing the nuclear structure and dynamics, and is well suited to provide more reliable description for a large number of processes involving heavy nuclei, from the nuclear response to electroweak probes, to nuclear reactions, such as neutron-induced reactions, or nuclear fusion and fission. Such processes, sometimes part of integrated nuclear systems, have important applications in astrophysics, energy production, global security, etc. In this talk, I will present the simulation of a simple reaction, that is the Coulomb excitation of a 238U nucleus, and discuss the application of the TD-DFT formalism to the description of induced fission. I gratefully acknowledge partial support of the U.S. Department of Energy through an Early Career Award of the LANL/LDRD Program.

  2. Vibrational Properties of Hydrogen-Bonded Systems Using the Multireference Generalization to the "On-the-Fly" Electronic Structure within Quantum Wavepacket ab Initio Molecular Dynamics (QWAIMD).

    PubMed

    Li, Junjie; Li, Xiaohu; Iyengar, Srinivasan S

    2014-06-10

    We discuss a multiconfigurational treatment of the "on-the-fly" electronic structure within the quantum wavepacket ab initio molecular dynamics (QWAIMD) method for coupled treatment of quantum nuclear effects with electronic structural effects. Here, multiple single-particle electronic density matrices are simultaneously propagated with a quantum nuclear wavepacket and other classical nuclear degrees of freedom. The multiple density matrices are coupled through a nonorthogonal configuration interaction (NOCI) procedure to construct the instantaneous potential surface. An adaptive-mesh-guided set of basis functions composed of Gaussian primitives are used to simplify the electronic structure calculations. Specifically, with the replacement of the atom-centered basis functions positioned on the centers of the quantum-mechanically treated nuclei by a mesh-guided band of basis functions, the two-electron integrals used to compute the electronic structure potential surface become independent of the quantum nuclear variable and hence reusable along the entire Cartesian grid representing the quantum nuclear coordinates. This reduces the computational complexity involved in obtaining a potential surface and facilitates the interpretation of the individual density matrices as representative diabatic states. The parametric nuclear position dependence of the diabatic states is evaluated at the initial time-step using a Shannon-entropy-based sampling function that depends on an approximation to the quantum nuclear wavepacket and the potential surface. This development is meant as a precursor to an on-the-fly fully multireference electronic structure procedure embedded, on-the-fly, within a quantum nuclear dynamics formalism. We benchmark the current development by computing structural, dynamic, and spectroscopic features for a series of bihalide hydrogen-bonded systems: FHF(-), ClHCl(-), BrHBr(-), and BrHCl(-). We find that the donor-acceptor structural features are in good agreement with experiments. Spectroscopic features are computed using a unified velocity/flux autocorrelation function and include vibrational fundamentals and combination bands. These agree well with experiments and other theories.

  3. Landau parameters for energy density functionals generated by local finite-range pseudopotentials

    NASA Astrophysics Data System (ADS)

    Idini, A.; Bennaceur, K.; Dobaczewski, J.

    2017-06-01

    In Landau theory of Fermi liquids, the particle-hole interaction near the Fermi energy in different spin-isospin channels is probed in terms of an expansion over the Legendre polynomials. This provides a useful and efficient way to constrain properties of nuclear energy density functionals in symmetric nuclear matter and finite nuclei. In this study, we present general expressions for Landau parameters corresponding to a two-body central local regularized pseudopotential. We also show results obtained for two recently adjusted NLO and N2LO parametrizations. Such pseudopotentials will be used to determine mean-field and beyond-mean-field properties of paired nuclei across the entire nuclear chart.

  4. The symmetry energy, neutron skin thickness and isovector dipole response of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Horvat, A.; Paar, N.

    2015-04-01

    The isotopic evolution of the relationship between the symmetry energy at saturation density of nuclear matter (J), neutron skin thickness (ΔR) and relevant observables related to isovector dipole excitations in neutron rich 116-136Sn isotopes has been investigated in the framework of relativistic nuclear energy density functional theory. The description employs a family of effective interactions with density dependent meson-nucleon couplings (DDME) spanning the range of values J = 30 - 38 MeV.

  5. Probing the nuclear symmetry energy at high densities with nuclear reactions

    NASA Astrophysics Data System (ADS)

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  6. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozirov, Farhod, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com; Stachów, Michał, E-mail: michal.stachow@gmail.com; Kupka, Teobald, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com

    2014-04-14

    A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd)more » with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)« less

  7. Structure of cold nuclear matter at subnuclear densities by quantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Sato, Katsuhiko; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2003-09-01

    Structure of cold nuclear matter at subnuclear densities for the proton fraction x=0.5, 0.3, and 0.1 is investigated by quantum molecular dynamics (QMD) simulations. We demonstrate that the phases with slablike and rodlike nuclei, etc. can be formed dynamically from hot uniform nuclear matter without any assumptions on nuclear shape, and also systematically analyze the structure of cold matter using two-point correlation functions and Minkowski functionals. In our simulations, we also observe intermediate phases, which have complicated nuclear shapes. It has been found out that these phases can be characterized as those with negative Euler characteristic. Our result implies the existence of these kinds of phases in addition to the simple “pasta” phases in neutron star crusts and supernova inner cores. In addition, we investigate the properties of the effective QMD interaction used in the present work to examine the validity of our results. The resultant energy per nucleon ɛn of the pure neutron matter, the proton chemical μ(0)p in pure neutron matter and the nuclear surface tension Esurf are generally reasonable in comparison with other nuclear interactions.

  8. Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects

    NASA Astrophysics Data System (ADS)

    Margueron, Jérôme; Hoffmann Casali, Rudiney; Gulminelli, Francesca

    2018-02-01

    Metamodeling for the nucleonic equation of state (EOS), inspired from a Taylor expansion around the saturation density of symmetric nuclear matter, is proposed and parameterized in terms of the empirical parameters. The present knowledge of nuclear empirical parameters is first reviewed in order to estimate their average values and associated uncertainties, and thus defining the parameter space of the metamodeling. They are divided into isoscalar and isovector types, and ordered according to their power in the density expansion. The goodness of the metamodeling is analyzed against the predictions of the original models. In addition, since no correlation among the empirical parameters is assumed a priori, all arbitrary density dependences can be explored, which might not be accessible in existing functionals. Spurious correlations due to the assumed functional form are also removed. This meta-EOS allows direct relations between the uncertainties on the empirical parameters and the density dependence of the nuclear equation of state and its derivatives, and the mapping between the two can be done with standard Bayesian techniques. A sensitivity analysis shows that the more influential empirical parameters are the isovector parameters Lsym and Ksym, and that laboratory constraints at supersaturation densities are essential to reduce the present uncertainties. The present metamodeling for the EOS for nuclear matter is proposed for further applications in neutron stars and supernova matter.

  9. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Subcellular localization of celery mannitol dehydrogenase. A cytosolic metabolic enzyme in nuclei.

    PubMed Central

    Yamamoto, Y T; Zamski, E; Williamson, J D; Conkling, M A; Pharr, D M

    1997-01-01

    Mannitol dehydrogenase (MTD) is the first enzyme in mannitol catabolism in celery (Apium graveolens L. var dulce [Mill] Pers. cv Florida 638). Mannitol is an important photoassimilate, as well as providing plants with resistance to salt and osmotic stress. Previous work has shown that expression of the celery Mtd gene is regulated by many factors, such as hexose sugars, salt and osmotic stress, and salicylic acid. Furthermore, MTD is present in cells of sink organs, phloem cells, and mannitol-grown suspension cultures. Immunogold localization and biochemical analyses presented here demonstrate that celery MTD is localized in the cytosol and nuclei. Although the cellular density of MTD varies among different cell types, densities of nuclear and cytosolic MTD in a given cell are approximately equal. Biochemical analyses of nuclear extracts from mannitol-grown cultured cells confirmed that the nuclear-localized MTD is enzymatically active. The function(s) of nuclear-localized MTD is unknown. PMID:9414553

  11. Quartetting in Nuclear Matter and α Particle Condensation in Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Röpke, G.; Schuck, P.; Horiuchi, H.; Tohsaki, A.; Funaki, Y.; Yamada, T.

    2008-02-01

    Alternatively to pairing, four-particle correlations may become of importance for the formation of quantum condensates in nuclear matter. With increasing density, four-particle correlations are suppressed because of Pauli blocking. Signatures of α-like clusters are expected to occur in low-density nuclear systems. The famous Hoyle state (02+ at 7.654 MeV in 12C) is identified as being an almost ideal condensate of three α-particles, hold together only by the Coulomb barrier. It, therefore, has a 8Be-α structure of low density. Transition probability and inelastic form factor together with position and other physical quantities are correctly reproduced without any adjustable parameter from our two parameter wave function of α-particle condensate type. The possibility of the existence of α-particle condensed states in heavier nα nuclei is also discussed.

  12. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf

    2015-12-07

    Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High-NLS-L-NPs). Results indicate that a higher NLS density does not result in maximum protein nuclear localization and that a universal optimal density for NPs of different sizes does not exist.

  13. Statistical γ -decay properties of 64Ni and deduced (n ,γ ) cross section of the s -process branch-point nucleus 63Ni

    NASA Astrophysics Data System (ADS)

    Crespo Campo, L.; Bello Garrote, F. L.; Eriksen, T. K.; Görgen, A.; Guttormsen, M.; Hadynska-Klek, K.; Klintefjord, M.; Larsen, A. C.; Renstrøm, T.; Sahin, E.; Siem, S.; Springer, A.; Tornyi, T. G.; Tveten, G. M.

    2016-10-01

    Particle-γ coincidence data have been analyzed to obtain the nuclear level density and the γ -strength function of 64Ni by means of the Oslo method. The level density found in this work is in very good agreement with known energy levels at low excitation energies as well as with data deduced from particle-evaporation measurements at excitation energies above Ex≈5.5 MeV. The experimental γ -strength function presents an enhancement at γ energies below Eγ≈3 MeV and possibly a resonancelike structure centered at Eγ≈9.2 MeV. The obtained nuclear level density and γ -strength function have been used to estimate the (n ,γ ) cross section for the s -process branch-point nucleus 63Ni, of particular interest for astrophysical calculations of elemental abundances.

  14. Functional renormalization group and Kohn-Sham scheme in density functional theory

    NASA Astrophysics Data System (ADS)

    Liang, Haozhao; Niu, Yifei; Hatsuda, Tetsuo

    2018-04-01

    Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the φ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.

  15. Scalar relativistic computations of nuclear magnetic shielding and g-shifts with the zeroth-order regular approximation and range-separated hybrid density functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquino, Fredy W.; Govind, Niranjan; Autschbach, Jochen

    2011-10-01

    Density functional theory (DFT) calculations of NMR chemical shifts and molecular g-tensors with Gaussian-type orbitals are implemented via second-order energy derivatives within the scalar relativistic zeroth order regular approximation (ZORA) framework. Nonhybrid functionals, standard (global) hybrids, and range-separated (Coulomb-attenuated, long-range corrected) hybrid functionals are tested. Origin invariance of the results is ensured by use of gauge-including atomic orbital (GIAO) basis functions. The new implementation in the NWChem quantum chemistry package is verified by calculations of nuclear shielding constants for the heavy atoms in HX (X=F, Cl, Br, I, At) and H2X (X = O, S, Se, Te, Po), and Temore » chemical shifts in a number of tellurium compounds. The basis set and functional dependence of g-shifts is investigated for 14 radicals with light and heavy atoms. The problem of accurately predicting F NMR shielding in UF6-nCln, n = 1 to 6, is revisited. The results are sensitive to approximations in the density functionals, indicating a delicate balance of DFT self-interaction vs. correlation. For the uranium halides, the results with the range-separated functionals are mixed.« less

  16. Magnitude of finite-nucleus-size effects in relativistic density functional computations of indirect NMR nuclear spin-spin coupling constants.

    PubMed

    Autschbach, Jochen

    2009-09-14

    A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.

  17. Nuclear parton density functions from dijet photoproduction at the EIC

    NASA Astrophysics Data System (ADS)

    Klasen, M.; Kovařík, K.

    2018-06-01

    We study the potential of dijet photoproduction measurements at a future electron-ion collider (EIC) to better constrain our present knowledge of the nuclear parton distribution functions. Based on theoretical calculations at next-to-leading order and approximate next-to-next-to-leading order of perturbative QCD, we establish the kinematic reaches for three different EIC designs, the size of the parton density function modifications for four different light and heavy nuclei from He-4 over C-12 and Fe-56 to Pb-208 with respect to the free proton, and the improvement of EIC measurements with respect to current determinations from deep-inelastic scattering and Drell-Yan data alone as well as when also considering data from existing hadron colliders.

  18. Combining Nuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations to Characterize Carvedilol Polymorphs.

    PubMed

    Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z

    2016-09-01

    The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations. Copyright © 2016. Published by Elsevier Inc.

  19. Density Functional Calculations for the Neutron Star Matter at Subnormal Density

    NASA Astrophysics Data System (ADS)

    Kashiwaba, Yu; Nakatsukasa, Takashi

    The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.

  20. Minimal nuclear energy density functional

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; Perez, Rodrigo Navarro; Schunck, Nicolas

    2018-04-01

    We present a minimal nuclear energy density functional (NEDF) called "SeaLL1" that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ɛr=0.022 fm and a standard deviation σr=0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body (NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body (NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. We identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.

  1. Minimal nuclear energy density functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi

    Inmore » this paper, we present a minimal nuclear energy density functional (NEDF) called “SeaLL1” that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ε r = 0.022 fm and a standard deviation σ r = 0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body ( NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body ( NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. Finally, we identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.« less

  2. Minimal nuclear energy density functional

    DOE PAGES

    Bulgac, Aurel; Forbes, Michael McNeil; Jin, Shi; ...

    2018-04-17

    Inmore » this paper, we present a minimal nuclear energy density functional (NEDF) called “SeaLL1” that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by seven significant phenomenological parameters, each related to a specific nuclear property. It describes the nuclear masses of even-even nuclei with a mean energy error of 0.97 MeV and a standard deviation of 1.46 MeV , two-neutron and two-proton separation energies with rms errors of 0.69 MeV and 0.59 MeV respectively, and the charge radii of 345 even-even nuclei with a mean error ε r = 0.022 fm and a standard deviation σ r = 0.025 fm . SeaLL1 incorporates constraints on the equation of state (EoS) of pure neutron matter from quantum Monte Carlo calculations with chiral effective field theory two-body ( NN ) interactions at the next-to-next-to-next-to leading order (N3LO) level and three-body ( NNN ) interactions at the next-to-next-to leading order (N2LO) level. Two of the seven parameters are related to the saturation density and the energy per particle of the homogeneous symmetric nuclear matter, one is related to the nuclear surface tension, two are related to the symmetry energy and its density dependence, one is related to the strength of the spin-orbit interaction, and one is the coupling constant of the pairing interaction. Finally, we identify additional phenomenological parameters that have little effect on ground-state properties but can be used to fine-tune features such as the Thomas-Reiche-Kuhn sum rule, the excitation energy of the giant dipole and Gamow-Teller resonances, the static dipole electric polarizability, and the neutron skin thickness.« less

  3. Nuclear magnetic and nuclear quadrupole resonance parameters of β-carboline derivatives calculated using density functional theory

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tari, Mostafa Talebi

    2017-04-01

    A density functional theory (DFT) calculations using B3LYP/6-311++G( d,p) method were carried out to investigate the relative stability of the molecules of β-carboline derivatives such as harmaline, harmine, harmalol, harmane and norharmane. Calculated nuclear quadrupole resonance (NQR) parameters were used to determine the 14N nuclear quadrupole coupling constant χ, asymmetry parameter η and EFG tensor ( q zz ). For better understanding of the electronic structure of β-carboline derivatives, natural bond orbital (NBO) analysis, isotropic and anisotropic NMR chemical shieldings were calculated for 14N nuclei using GIAO method for the optimized structures. The NBO analysis shows that pyrrole ring nitrogen (N9) atom has greater tendency than pyridine ring nitrogen (N2) atom to participate in resonance interactions and aromaticity development in the all of these structures. The NMR and NQR parameters were studied in order to find the correlations between electronic structure and the structural stability of the studied molecules.

  4. Complex-energy approach to sum rules within nuclear density functional theory

    DOE PAGES

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; ...

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmore » efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.« less

  5. Integrative structure and functional anatomy of a nuclear pore complex

    NASA Astrophysics Data System (ADS)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.

    2018-03-01

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  6. Integrative structure and functional anatomy of a nuclear pore complex.

    PubMed

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D; Hogan, Joanna A; Upla, Paula; Chemmama, Ilan E; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S; Wang, Junjie; Williams, Rosemary; Unruh, Jay R; Greenberg, Charles H; Jacobs, Erica Y; Yu, Zhiheng; de la Cruz, M Jason; Mironska, Roxana; Stokes, David L; Aitchison, John D; Jarrold, Martin F; Gerton, Jennifer L; Ludtke, Steven J; Akey, Christopher W; Chait, Brian T; Sali, Andrej; Rout, Michael P

    2018-03-22

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  7. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift.

    PubMed

    Kanematsu, Yusuke; Tachikawa, Masanori

    2014-04-28

    We have developed the multicomponent hybrid density functional theory [MC_(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC_(HF+DFT) method with PCM (MC_B3LYP/PCM). Our MC_B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.

  8. Energy–density functional plus quasiparticle–phonon model theory as a powerful tool for nuclear structure and astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoneva, N., E-mail: Nadia.Tsoneva@theo.physik.uni-giessen.de; Lenske, H.

    During the last decade, a theoretical method based on the energy–density functional theory and quasiparticle–phonon model, including up to three-phonon configurations was developed. The main advantages of themethod are that it incorporates a self-consistentmean-field and multi-configuration mixing which are found of crucial importance for systematic investigations of nuclear low-energy excitations, pygmy and giant resonances in an unified way. In particular, the theoretical approach has been proven to be very successful in predictions of new modes of excitations, namely pygmy quadrupole resonance which is also lately experimentally observed. Recently, our microscopically obtained dipole strength functions are implemented in predictions of nucleon-capturemore » reaction rates of astrophysical importance. A comparison to available experimental data is discussed.« less

  9. Elementary diagrams in nuclear and neutron matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiringa, R.B.

    1995-08-01

    Variational calculations of nuclear and neutron matter are currently performed using a diagrammatic cluster expansion with the aid of nonlinear integral equations for evaluating expectation values. These are the Fermi hypernetted chain (FHNC) and single-operator chain (SOC) equations, which are a way of doing partial diagram summations to infinite order. A more complete summation can be made by adding elementary diagrams to the procedure. The simplest elementary diagrams appear at the four-body cluster level; there is one such E{sub 4} diagram in Bose systems, but 35 diagrams in Fermi systems, which gives a level of approximation called FHNC/4. We developedmore » a novel technique for evaluating these diagrams, by computing and storing 6 three-point functions, S{sub xyz}(r{sub 12}, r{sub 13}, r{sub 23}), where xyz (= ccd, cce, ddd, dde, dee, or eee) denotes the exchange character at the vertices 1, 2, and 3. All 35 Fermi E{sub 4} diagrams can be constructed from these 6 functions and other two-point functions that are already calculated. The elementary diagrams are known to be important in some systems like liquid {sup 3}He. We expect them to be small in nuclear matter at normal density, but they might become significant at higher densities appropriate for neutron star calculations. This year we programmed the FHNC/4 contributions to the energy and tested them in a number of simple model cases, including liquid {sup 3}He and Bethe`s homework problem. We get reasonable, but not exact agreement with earlier published work. In nuclear and neutron matter with the Argonne v{sub 14} interaction these contributions are indeed small corrections at normal density and grow to only 5-10 MeV/nucleon at 5 times normal density.« less

  10. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2016-02-07

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.

  11. Nuclear spin relaxation due to chemical shift anisotropy of gas-phase 129Xe.

    PubMed

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2011-08-14

    Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.

  12. New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Robledo, L. M.; Schuck, P.; Viñas, X.

    2013-06-01

    A new version of the Barcelona-Catania-Paris energy functional is applied to a study of nuclear masses and other properties. The functional is largely based on calculated ab initio nuclear and neutron matter equations of state. Compared to typical Skyrme functionals having 10-12 parameters apart from spin-orbit and pairing terms, the new functional has only 2 or 3 adjusted parameters, fine tuning the nuclear matter binding energy and fixing the surface energy of finite nuclei. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Wapstra [Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2003.11.003 729, 337 (2003)] compilation. This rms value compares favorably with the one obtained using other successful mean field theories, which range from 1.5 to 3.0 MeV for optimized Skyrme functionals and 0.7 to 3.0 for the Gogny functionals. The other properties that have been calculated and compared to experiment are nuclear radii, the giant monopole resonance, and spontaneous fission lifetimes.

  13. Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2007-08-07

    Details of a new density matrix-based formulation for calculating nuclear magnetic resonance chemical shifts at both Hartree-Fock and density functional theory levels are presented. For systems with a nonvanishing highest occupied molecular orbital-lowest unoccupied molecular orbital gap, the method allows us to reduce the asymptotic scaling order of the computational effort from cubic to linear, so that molecular systems with 1000 and more atoms can be tackled with today's computers. The key feature is a reformulation of the coupled-perturbed self-consistent field (CPSCF) theory in terms of the one-particle density matrix (D-CPSCF), which avoids entirely the use of canonical MOs. By means of a direct solution for the required perturbed density matrices and the adaptation of linear-scaling integral contraction schemes, the overall scaling of the computational effort is reduced to linear. A particular focus of our formulation is to ensure numerical stability when sparse-algebra routines are used to obtain an overall linear-scaling behavior.

  14. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    PubMed

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  15. Symmetry Energy Effects in the Neutron Star Properties

    NASA Astrophysics Data System (ADS)

    Alvarez-Castillo, D. E.; Kubis, S.

    2012-12-01

    The functional form of the nuclear symmetry energy has only been determined in a very narrow range of densities. Uncertainties concern both the low as well as the high density behaviour of this function. In this work different shapes of the symmetry energy, consistent with the experimental data, were introduced and their consequences for the crustal properties of neutron stars are presented. The resulting models are in agreement with astrophysical observations.

  16. Quantum nuclear pasta and nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.

    2017-05-01

    Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.

  17. The neutron skin thickness in nuclei with clustering at low densities

    NASA Astrophysics Data System (ADS)

    Nooraihan, A.; Usmani, Q. N.; Sauli, Z.; Anwar, K.

    2016-11-01

    This study concentrates on searching for a dependable, fully microscopic theory to find out new behaviours and understand their consequences for theoretical pictures. The models for nuclear structure are tested, refined and developed by acquiring new data [1][2][3]. This data is useful for astrophysical calculations and predictions. In density functional theories, including the ETF theory, the equation of state (EOS) of symmetric nuclear matter (SNM), is an important measure. Empirically, we receive information about quantities relating to SNM, all these measures are thoroughly tested. In the absence of any unswerving knowledge below this density we shall take that energy still rises up to some density, neglecting possible small fluctuations, as the density is brought down. Our discussion at the moment is without the Coulomb forces applicable only for the hypothetical nuclear matter; they are added finally to correctly portray the actual picture in nuclei. Our approach in this study is macroscopic. This work concludes that the neutron skin thickness in nuclei is found to reduce significantly, for the reason of clustering.

  18. Representation of radiative strength functions within a practical model of cascade gamma decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, D. C., E-mail: vuconghnue@gmail.com; Sukhovoj, A. M., E-mail: suchovoj@nf.jinr.ru; Mitsyna, L. V., E-mail: mitsyna@nf.jinr.ru

    A practical model developed at the Joint Institute for Nuclear Research (JINR, Dubna) in order to describe the cascade gamma decay of neutron resonances makes it possible to determine simultaneously, from an approximation of the intensities of two-step cascades, parameters of nuclear level densities and partial widths with respect to the emission of nuclear-reaction products. The number of the phenomenological ideas used isminimized in themodel version considered in the present study. An analysis of new results confirms what was obtained earlier for the dependence of dynamics of the interaction of fermion and boson nuclear states on the nuclear shape. Frommore » the ratio of the level densities for excitations of the vibrational and quasiparticle types, it also follows that this interaction manifests itself in the region around the neutron binding energy and is probably different in nuclei that have different parities of nucleons.« less

  19. Network signatures of nuclear and cytoplasmic density alterations in a model of pre and postmetastatic colorectal cancer

    NASA Astrophysics Data System (ADS)

    Damania, Dhwanil; Subramanian, Hariharan; Backman, Vadim; Anderson, Eric C.; Wong, Melissa H.; McCarty, Owen J. T.; Phillips, Kevin G.

    2014-01-01

    Cells contributing to the pathogenesis of cancer possess cytoplasmic and nuclear structural alterations that accompany their aberrant genetic, epigenetic, and molecular perturbations. Although it is known that architectural changes in primary and metastatic tumor cells can be quantified through variations in cellular density at the nanometer and micrometer spatial scales, the interdependent relationships among nuclear and cytoplasmic density as a function of tumorigenic potential has not been thoroughly investigated. We present a combined optical approach utilizing quantitative phase microscopy and partial wave spectroscopic microscopy to perform parallel structural characterizations of cellular architecture. Using the isogenic SW480 and SW620 cell lines as a model of pre and postmetastatic transition in colorectal cancer, we demonstrate that nuclear and cytoplasmic nanoscale disorder, micron-scale dry mass content, mean dry mass density, and shape metrics of the dry mass density histogram are uniquely correlated within and across different cellular compartments for a given cell type. The correlations of these physical parameters can be interpreted as networks whose nodal importance and level of connection independence differ according to disease stage. This work demonstrates how optically derived biophysical parameters are linked within and across different cellular compartments during the architectural orchestration of the metastatic phenotype.

  20. Cross sections of proton-induced nuclear reactions on bismuth and lead up to 100 MeV

    NASA Astrophysics Data System (ADS)

    Mokhtari Oranj, L.; Jung, N. S.; Bakhtiari, M.; Lee, A.; Lee, H. S.

    2017-04-01

    Production cross sections of 209Bi(p , x n )207,206,205,204,203Po, 209Bi(p , pxn) 207,206,205,204,203,202Bi, and natPb(p , x n ) 206,205,204,203,202,201Bi reactions were measured to fill the gap in the excitation functions up to 100 MeV as well as to figure out the effects of different nuclear properties on proton-induced reactions including heavy nuclei. The targets were arranged in two different stacks consisting of Bi, Pb, Al, Au foils and Pb plates. The proton beam intensity was determined by the activation analysis method using 27Al(p ,3 p n )24Na, 197Au(p ,p n )196Au, and 197Au(p , p 3 n )194Au monitor reactions in parallel as well as the Gafchromic film dosimetry method. The activities of produced radionuclei in the foils were measured by the HPGe spectroscopy system. Over 40 new cross sections were measured in the investigated energy range. A satisfactory agreement was observed between the present experimental data and the previously published data. Excitation functions of mentioned reactions were calculated by using the theoretical model based on the latest version of the TALYS code and compared to the new data as well as with other data in the literature. Additionally, the effects of various combinations of the nuclear input parameters of different level density models, optical model potentials, and γ-ray strength functions were considered. It was concluded that if certain level density models are used, the calculated cross sections could be comparable to the measured data. Furthermore, the effects of optical model potential and γ-ray strength functions were considerably lower than that of nuclear level densities.

  1. Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter

    DOE PAGES

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; ...

    2014-09-03

    Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.

  2. Properties of nuclear matter from macroscopic-microscopic mass formulas

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun

    2015-12-01

    Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.

  3. Nuclear equation of state from ground and collective excited state properties of nuclei

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Paar, N.

    2018-07-01

    This contribution reviews the present status on the available constraints to the nuclear equation of state (EoS) around saturation density from nuclear structure calculations on ground and collective excited state properties of atomic nuclei. It concentrates on predictions based on self-consistent mean-field calculations, which can be considered as an approximate realization of an exact energy density functional (EDF). EDFs are derived from effective interactions commonly fitted to nuclear masses, charge radii and, in many cases, also to pseudo-data such as nuclear matter properties. Although in a model dependent way, EDFs constitute nowadays a unique tool to reliably and consistently access bulk ground state and collective excited state properties of atomic nuclei along the nuclear chart as well as the EoS. For comparison, some emphasis is also given to the results obtained with the so called ab initio approaches that aim at describing the nuclear EoS based on interactions fitted to few-body data only. Bridging the existent gap between these two frameworks will be essential since it may allow to improve our understanding on the diverse phenomenology observed in nuclei. Examples on observations from astrophysical objects and processes sensitive to the nuclear EoS are also briefly discussed. As the main conclusion, the isospin dependence of the nuclear EoS around saturation density and, to a lesser extent, the nuclear matter incompressibility remain to be accurately determined. Experimental and theoretical efforts in finding and measuring observables specially sensitive to the EoS properties are of paramount importance, not only for low-energy nuclear physics but also for nuclear astrophysics applications.

  4. Ab initio molecular dynamics with nuclear quantum effects at classical cost: Ring polymer contraction for density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding asmore » a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.« less

  5. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms that the adiabatic approximation provides an effective scheme to compute fission fragment yields. It also suggests that, at least in the framework of nuclear DFT, three-dimensional collective spaces may be a prerequisite to reach 10% accuracy in predicting pre-neutron emission fission fragment yields.

  6. Non-flipping 13C spins near an NV center in diamond: hyperfine and spatial characteristics by density functional theory simulation of the C510[NV]H252 cluster

    NASA Astrophysics Data System (ADS)

    Nizovtsev, A. P.; Kilin, S. Ya; Pushkarchuk, A. L.; Pushkarchuk, V. A.; Kuten, S. A.; Zhikol, O. A.; Schmitt, S.; Unden, T.; Jelezko, F.

    2018-02-01

    Single NV centers in diamond coupled by hyperfine interaction (hfi) to neighboring 13C nuclear spins are now widely used in emerging quantum technologies as elements of quantum memory adjusted to a nitrogen-vacancy (NV) center electron spin qubit. For nuclear spins with low flip-flop rate, single shot readout was demonstrated under ambient conditions. Here we report on a systematic search for such stable NV-13C systems using density functional theory to simulate the hfi and spatial characteristics of all possible NV-13C complexes in the H-terminated cluster C510[NV]-H252 hosting the NV center. Along with the expected stable ‘NV-axial-13C’ systems wherein the 13C nuclear spin is located on the NV axis, we found for the first time new families of positions for the 13C nuclear spin exhibiting negligible hfi-induced flipping rates due to near-symmetric local spin density distribution. Spatially, these positions are located in the diamond bilayer passing through the vacancy of the NV center and being perpendicular to the NV axis. Analysis of available publications showed that, apparently, some of the predicted non-axial near-stable NV-13C systems have already been observed experimentally. A special experiment performed on one of these systems confirmed the prediction made.

  7. Uncertainty quantification for nuclear density functional theory and information content of new measurements.

    PubMed

    McDonnell, J D; Schunck, N; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W

    2015-03-27

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  8. Overview and evaluation of different nuclear level density models for the 123I radionuclide production.

    PubMed

    Nikjou, A; Sadeghi, M

    2018-06-01

    The 123 I radionuclide (T 1/2 = 13.22 h, β+ = 100%) is one of the most potent gamma emitters for nuclear medicine. In this study, the cyclotron production of this radionuclide via different nuclear reactions namely, the 121 Sb(α,2n), 122 Te(d,n), 123 Te(p,n), 124 Te(p,2n), 124 Xe(p,2n), 127 I(p,5n) and 127 I(d,6n) were investigated. The effect of the various phenomenological nuclear level density models such as Fermi gas model (FGM), Back-shifted Fermi gas model (BSFGM), Generalized superfluid model (GSM) and Enhanced generalized superfluid model (EGSM) moreover, the three microscopic level density models were evaluated for predicting of cross sections and production yield predictions. The SRIM code was used to obtain the target thickness. The 123 I excitation function of reactions were calculated by using of the TALYS-1.8, EMPIRE-3.2 nuclear codes and with data which taken from TENDL-2015 database, and finally the theoretical calculations were compared with reported experimental measurements in which taken from EXFOR database. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Minimal color-flavor-locked-nuclear interface

    NASA Astrophysics Data System (ADS)

    Alford, Mark; Rajagopal, Krishna; Reddy, Sanjay; Wilczek, Frank

    2001-10-01

    At nuclear matter density, electrically neutral strongly interacting matter in weak equilibrium is made of neutrons, protons, and electrons. At sufficiently high density, such matter is made of up, down, and strange quarks in the color-flavor-locked (CFL) phase, with no electrons. As a function of increasing density (or, perhaps, increasing depth in a compact star) other phases may intervene between these two phases, which are guaranteed to be present. The simplest possibility, however, is a single first order phase transition between CFL and nuclear matter. Such a transition, in space, could take place either through a mixed phase region or at a single sharp interface with electron-free CFL and electron-rich nuclear matter in stable contact. Here we construct a model for such an interface. It is characterized by a region of separated charge, similar to an inversion layer at a metal-insulator boundary. On the CFL side, the charged boundary layer is dominated by a condensate of negative kaons. We then consider the energetics of the mixed phase alternative. We find that the mixed phase will occur only if the nuclear-CFL surface tension is significantly smaller than dimensional analysis would indicate.

  10. Twist-averaged boundary conditions for nuclear pasta Hartree-Fock calculations

    DOE PAGES

    Schuetrumpf, B.; Nazarewicz, W.

    2015-10-21

    Nuclear pasta phases, present in the inner crust of neutron stars, are associated with nucleonic matter at subsaturation densities arranged in regular shapes. Those complex phases, residing in a layer which is approximately 100-m thick, impact many features of neutron stars. Theoretical quantum-mechanical simulations of nuclear pasta are usually carried out in finite three-dimensional boxes assuming periodic boundary conditions. The resulting solutions are affected by spurious finite-size effects. To remove spurious finite-size effects, it is convenient to employ twist-averaged boundary conditions (TABC) used in condensed matter, nuclear matter, and lattice quantum chromodynamics applications. In this work, we study the effectivenessmore » of TABC in the context of pasta phase simulations within nuclear density functional theory. We demonstrated that by applying TABC reliable results can be obtained from calculations performed in relatively small volumes. By studying various contributions to the total energy, we gain insights into pasta phases in mid-density range. Future applications will include the TABC extension of the adaptive multiresolution 3D Hartree-Fock solver and Hartree-Fock-Bogoliubov TABC applications to superfluid pasta phases and complex nucleonic topologies as in fission.« less

  11. Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Carlson, B. V.; Patra, S. K.; Zhou, Shan-Gui

    2018-02-01

    In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry energy for the even-even isotopes of Fe, Ni, Zn, Ge, Se, and Kr within the framework of the axially deformed self-consistent relativistic mean field for the nonlinear NL 3* and density-dependent DD-ME1 interactions. The coherent density functional method is used to formulate the symmetry energy, the neutron pressure, and the curvature of finite nuclei as a function of the nuclear radius. We have performed broad studies for the mass dependence on the symmetry energy in terms of the neutron-proton asymmetry for mass 70 ≤A ≤96 . From this analysis, we found a notable signature of a shell closure at N =50 in the isotopic chains of Fe, Ni, Zn, Ge, Se, and Kr nuclei. The present study reveals a interrelationship between the characteristics of infinite nuclear matter and the neutron skin thickness of finite nuclei.

  12. Computational nuclear quantum many-body problem: The UNEDF project

    NASA Astrophysics Data System (ADS)

    Bogner, S.; Bulgac, A.; Carlson, J.; Engel, J.; Fann, G.; Furnstahl, R. J.; Gandolfi, S.; Hagen, G.; Horoi, M.; Johnson, C.; Kortelainen, M.; Lusk, E.; Maris, P.; Nam, H.; Navratil, P.; Nazarewicz, W.; Ng, E.; Nobre, G. P. A.; Ormand, E.; Papenbrock, T.; Pei, J.; Pieper, S. C.; Quaglioni, S.; Roche, K. J.; Sarich, J.; Schunck, N.; Sosonkina, M.; Terasaki, J.; Thompson, I.; Vary, J. P.; Wild, S. M.

    2013-10-01

    The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.

  13. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of {sup 64}Cu and {sup 67}Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasrabadi, M. N., E-mail: mnnasrabadi@ast.ui.ac.ir; Sepiani, M.

    2015-03-30

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  14. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of 64Cu and 67Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    NASA Astrophysics Data System (ADS)

    Nasrabadi, M. N.; Sepiani, M.

    2015-03-01

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE & LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  15. La 137 , 138 , 139 ( n , γ ) cross sections constrained with statistical decay properties of La 138 , 139 , 140 nuclei

    DOE PAGES

    Kheswa, B. V.; Wiedeking, M.; Brown, J. A.; ...

    2017-04-21

    The nuclear level densities and γ-ray strength functions of 138,139,140La were measured using the 139La( 3He,α), 139La( 3He,' 3He), and 139La(d,p) reactions. The particle-γ coincidences were recorded with the silicon particle telescope (SiRi) and NaI(Tl) (CACTUS) arrays. In the context of these experimental results, the low-energy enhancement in the A~140 region is discussed. The 137,138,139La(n,γ) cross sections were calculated at s- and p-process temperatures using the experimentally measured nuclear level densities and γ-ray strength functions. As a result, good agreement is found between 139La(n,γ) calculated cross sections and previous measurements.

  16. La 137 , 138 , 139 ( n , γ ) cross sections constrained with statistical decay properties of La 138 , 139 , 140 nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheswa, B. V.; Wiedeking, M.; Brown, J. A.

    The nuclear level densities and γ-ray strength functions of 138,139,140La were measured using the 139La( 3He,α), 139La( 3He,' 3He), and 139La(d,p) reactions. The particle-γ coincidences were recorded with the silicon particle telescope (SiRi) and NaI(Tl) (CACTUS) arrays. In the context of these experimental results, the low-energy enhancement in the A~140 region is discussed. The 137,138,139La(n,γ) cross sections were calculated at s- and p-process temperatures using the experimentally measured nuclear level densities and γ-ray strength functions. As a result, good agreement is found between 139La(n,γ) calculated cross sections and previous measurements.

  17. 137,138,139La(n ,γ ) cross sections constrained with statistical decay properties of 138,139,140La nuclei

    NASA Astrophysics Data System (ADS)

    Kheswa, B. V.; Wiedeking, M.; Brown, J. A.; Larsen, A. C.; Goriely, S.; Guttormsen, M.; Bello Garrote, F. L.; Bernstein, L. A.; Bleuel, D. L.; Eriksen, T. K.; Giacoppo, F.; Görgen, A.; Goldblum, B. L.; Hagen, T. W.; Koehler, P. E.; Klintefjord, M.; Malatji, K. L.; Midtbø, J. E.; Nyhus, H. T.; Papka, P.; Renstrøm, T.; Rose, S. J.; Sahin, E.; Siem, S.; Tornyi, T. G.

    2017-04-01

    The nuclear level densities and γ -ray strength functions of 138,139,140La were measured using the 139La(3He,α ), 139La(3He,3He' ), and 139La(d ,p ) reactions. The particle-γ coincidences were recorded with the silicon particle telescope (SiRi) and NaI(Tl) (CACTUS) arrays. In the context of these experimental results, the low-energy enhancement in the A ˜140 region is discussed. The 137,138,139La (n ,γ ) cross sections were calculated at s - and p -process temperatures using the experimentally measured nuclear level densities and γ -ray strength functions. Good agreement is found between 139La(n ,γ ) calculated cross sections and previous measurements.

  18. Computation of indirect nuclear spin-spin couplings with reduced complexity in pure and hybrid density functional approximations.

    PubMed

    Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian

    2016-09-28

    We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.

  19. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    NASA Astrophysics Data System (ADS)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. This work is a result of Comprehensive study of delayed-neutron yields for accurate evaluation of kinetics of high-burn up reactors entrusted to Tokyo Institute of Technology by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  20. Review of non-nuclear density gauges as possible replacements for ITD's nuclear density gauges.

    DOT National Transportation Integrated Search

    2015-01-01

    This report examines the possibility of replacing nuclear density gauges (NDGs) with non-nuclear density gauges (NNDGs) to : measure density of hot mix asphalt (HMA) and unbound pavement layers in the field. The research team evaluated the : effectiv...

  1. Analytical mass formula and nuclear surface properties in the ETF approximation. Part I: symmetric nuclei

    NASA Astrophysics Data System (ADS)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2016-08-01

    The problem of determination of nuclear surface energy is addressed within the framework of the extended Thomas Fermi (ETF) approximation using Skyrme functionals. We propose an analytical model for the density profiles with variationally determined diffuseness parameters. In this first paper, we consider the case of symmetric nuclei. In this situation, the ETF functional can be exactly integrated, leading to an analytical formula expressing the surface energy as a function of the couplings of the energy functional. The importance of non-local terms is stressed and it is shown that they cannot be deduced simply from the local part of the functional, as it was suggested in previous works.

  2. Evolving targets for lipid-modifying therapy

    PubMed Central

    Do, Rose Q; Nicholls, Stephen J; Schwartz, Gregory G

    2014-01-01

    The pathogenesis and progression of atherosclerosis are integrally connected to the concentration and function of lipoproteins in various classes. This review examines existing and emerging approaches to modify low-density lipoprotein and lipoprotein (a), triglyceride-rich lipoproteins, and high-density lipoproteins, emphasizing approaches that have progressed to clinical evaluation. Targeting of nuclear receptors and phospholipases is also discussed. PMID:25172365

  3. Density-induced suppression of the {alpha}-particle condensate in nuclear matter and the structure of {alpha}-cluster states in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funaki, Y.; Horiuchi, H.; International Institute for Advanced Studies, Kizugawa 619-0225

    2008-06-15

    At low densities, with decreasing temperatures, in symmetric nuclear matter {alpha} particles are formed, which eventually give raise to a quantum condensate with four-nucleon {alpha}-like correlations (quartetting). Starting with a model of {alpha} matter, where undistorted {alpha} particles interact via an effective interaction such as the Ali-Bodmer potential, the suppression of the condensate fraction at zero temperature with increasing density is considered. Using a Jastrow-Feenberg approach, it is found that the condensate fraction vanishes near saturation density. Additionally, the modification of the internal state of the {alpha} particle due to medium effects will further reduce the condensate. In finite systems,more » an enhancement of the S-state wave function of the center-of-mass orbital of {alpha}-particle motion is considered as the correspondence to the condensate. Wave functions have been constructed for self-conjugate 4n nuclei that describe the condensate state but are fully antisymmetrized on the nucleonic level. These condensate-like cluster wave functions have been successfully applied to describe properties of low-density states near the n{alpha} threshold. Comparison with orthogonality condition model calculations in {sup 12}C and {sup 16}O shows strong enhancement of the occupation of the S-state center-of-mass orbital of the {alpha} particles. This enhancement is decreasing if the baryon density increases, similar to the density-induced suppression of the condensate fraction in {alpha} matter. The ground states of {sup 12}C and {sup 16}O show no enhancement at all, thus a quartetting condensate cannot be formed at saturation densities.« less

  4. Quantum effects of nuclear motion in three-particle diatomic ions

    NASA Astrophysics Data System (ADS)

    Baskerville, Adam L.; King, Andrew W.; Cox, Hazel

    2016-10-01

    A high-accuracy, nonrelativistic wave function is used to study nuclear motion in the ground state of three-particle {a1+a2+a3-} electronic and muonic molecular systems without assuming the Born-Oppenheimer approximation. Intracule densities and center-of-mass particle densities show that as the mass ratio mai/ma3 , i =1 ,2 , becomes smaller, the localization of the like-charged particles (nuclei) a1 and a2 decreases. A coordinate system is presented to calculate center-of-mass particle densities for systems where a1≠a2 . It is shown that the nuclear motion is strongly correlated and depends on the relative masses of the nuclei a1 and a2 rather than just their absolute mass. The heavier particle is always more localized and the lighter the partner mass, the greater the localization. It is shown, for systems with ma1

  5. The nuclear size and mass effects on muonic hydrogen-like atoms embedded in Debye plasma

    NASA Astrophysics Data System (ADS)

    Poszwa, A.; Bahar, M. K.; Soylu, A.

    2016-10-01

    Effects of finite nuclear size and finite nuclear mass are investigated for muonic atoms and muonic ions embedded in the Debye plasma. Both nuclear charge radii and nuclear masses are taken into account with experimentally determined values. In particular, isotope shifts of bound state energies, radial probability densities, transition energies, and binding energies for several atoms are studied as functions of Debye length. The theoretical model based on semianalytical calculations, the Sturmian expansion method, and the perturbative approach has been constructed, in the nonrelativistic frame. For some limiting cases, the comparison with previous most accurate literature results has been made.

  6. Analytical nuclear gradients for the range-separated many-body dispersion model of noncovalent interactions.

    PubMed

    Blood-Forsythe, Martin A; Markovich, Thomas; DiStasio, Robert A; Car, Roberto; Aspuru-Guzik, Alán

    2016-03-01

    An accurate treatment of the long-range electron correlation energy, including van der Waals (vdW) or dispersion interactions, is essential for describing the structure, dynamics, and function of a wide variety of systems. Among the most accurate models for including dispersion into density functional theory (DFT) is the range-separated many-body dispersion (MBD) method [A. Ambrosetti et al. , J. Chem. Phys. , 2014, 140 , 18A508], in which the correlation energy is modeled at short-range by a semi-local density functional and at long-range by a model system of coupled quantum harmonic oscillators. In this work, we develop analytical gradients of the MBD energy with respect to nuclear coordinates, including all implicit coordinate dependencies arising from the partitioning of the charge density into Hirshfeld effective volumes. To demonstrate the efficiency and accuracy of these MBD gradients for geometry optimizations of systems with intermolecular and intramolecular interactions, we optimized conformers of the benzene dimer and isolated small peptides with aromatic side-chains. We find excellent agreement with the wavefunction theory reference geometries of these systems (at a fraction of the computational cost) and find that MBD consistently outperforms the popular TS and D3(BJ) dispersion corrections. To demonstrate the performance of the MBD model on a larger system with supramolecular interactions, we optimized the C 60 @C 60 H 28 buckyball catcher host-guest complex. In our analysis, we also find that neglecting the implicit nuclear coordinate dependence arising from the charge density partitioning, as has been done in prior numerical treatments, leads to an unacceptable error in the MBD forces, with relative errors of ∼20% (on average) that can extend well beyond 100%.

  7. Space-Pseudo-Time Method: Application to the One-Dimensional Coulomb Potential and Density Funtional Theory

    NASA Astrophysics Data System (ADS)

    Weatherford, Charles; Gebremedhin, Daniel

    2016-03-01

    A new and efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step size choice for each element that is based on a Taylor series expansion. The method is applied to solve for the eigenpairs of the one-dimensional soft-coulomb potential and the hard-coulomb limit is studied. The method is then used to calculate a numerical solution of the Kohn-Sham differential equation within the local density approximation is presented and is applied to the helium atom. Supported by the National Nuclear Security Agency, the Nuclear Regulatory Commission, and the Defense Threat Reduction Agency.

  8. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE PAGES

    McDonnell, J. D.; Schunck, N.; Higdon, D.; ...

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. In addition, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  9. Uncertainty quantification for nuclear density functional theory and information content of new measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonnell, J. D.; Schunck, N.; Higdon, D.

    2015-03-24

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squaresmore » optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.« less

  10. Theory of time-resolved photoelectron imaging. Comparison of a density functional with a time-dependent density functional approach

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshi-ichi; Seideman, Tamar; Stener, Mauro

    2004-01-01

    Time-resolved photoelectron differential cross sections are computed within a quantum dynamical theory that combines a formally exact solution of the nuclear dynamics with density functional theory (DFT)-based approximations of the electronic dynamics. Various observables of time-resolved photoelectron imaging techniques are computed at the Kohn-Sham and at the time-dependent DFT levels. Comparison of the results serves to assess the reliability of the former method and hence its usefulness as an economic approach for time-domain photoelectron cross section calculations, that is applicable to complex polyatomic systems. Analysis of the matrix elements that contain the electronic dynamics provides insight into a previously unexplored aspect of femtosecond-resolved photoelectron imaging.

  11. Nuclear medium effects in structure functions of nucleon at moderate Q2

    NASA Astrophysics Data System (ADS)

    Haider, H.; Zaidi, F.; Sajjad Athar, M.; Singh, S. K.; Ruiz Simo, I.

    2015-11-01

    Recent experiments performed on inclusive electron scattering from nuclear targets have measured the nucleon electromagnetic structure functions F1 (x ,Q2), F2 (x ,Q2) and FL (x ,Q2) in 12C, 27Al, 56Fe and 64Cu nuclei. The measurements have been done in the energy region of 1 GeV2

  12. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of 13C, 14N and 1H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in 13C, 14N and 1H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  13. Nuclear Fission: from more phenomenology and adjusted parameters to more fundamental theory and increased predictive power

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel; Jin, Shi; Magierski, Piotr; Roche, Kenneth; Schunck, Nicolas; Stetcu, Ionel

    2017-11-01

    Two major recent developments in theory and computational resources created the favorable conditions for achieving a microscopic description of fission dynamics in classically allowed regions of the collective potential energy surface, almost eighty years after its discovery in 1939 by Hahn and Strassmann [1]. The first major development was in theory, the extension of the Time-Dependent Density Functional Theory (TDDFT) [2-5] to superfluid fermion systems [6]. The second development was in computing, the emergence of powerful enough supercomputers capable of solving the complex systems of equations describing the time evolution in three dimensions without any restrictions of hundreds of strongly interacting nucleons. Thus the conditions have been created to renounce phenomenological models and incomplete microscopic treatments with uncontrollable approximations and/or assumptions in the description of the complex dynamics of fission. Even though the available nuclear energy density functionals (NEDFs) are phenomenological still, their accuracy is improving steadily and the prospects of being able to perform calculations of the nuclear fission dynamics and to predict many properties of the fission fragments, otherwise not possible to extract from experiments.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesely, P.; Michel, N.; Toivanen, J.

    For over four decades, the Skyrme functional within various parametrizations has been used to calculate nuclear properties. In the last few years there was a number of attempts to improve its performance and introduce generalized forms. In particular, the most general phenomenological quasi-local energy density functional, which contains all combinations of density, spin-density, and their derivatives up to the sixth order (N{sup 3}LO), was proposed in reference [1]. Since in the phenomenological functional approaches the particle-particle (pp) interaction channel is treated independently from the particle-hole (ph) channel, there remains a question of what pairing interaction is suitable to use withinmore » the N{sup 3}LO energy functional. In our study, we use the separable, finite-range, translationally invariant form given in [2], which we generalize to the arbitrary angular momentum channel. We discuss the application of this pairing interaction within the N{sup 3}LO energy functional.« less

  15. Density functional calculations on structural materials for nuclear energy applications and functional materials for photovoltaic energy applications (abstract only).

    PubMed

    Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F

    2008-02-13

    Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.

  16. Phase transitions in core-collapse supernova matter at sub-saturation densities

    NASA Astrophysics Data System (ADS)

    Pais, Helena; Newton, William G.; Stone, Jirina R.

    2014-12-01

    Phase transitions in hot, dense matter in the collapsing cores of massive stars have an important impact on the core-collapse supernova mechanism as they absorb heat, disrupt homology, and so weaken the developing shock. We perform a three-dimensional, finite temperature Skyrme-Hartree-Fock (SHF) study of inhomogeneous nuclear matter to determine the critical density and temperature for the phase transition between the pasta phase and homogeneous matter and its properties. We employ four different parametrizations of the Skyrme nuclear energy-density functional, SkM*, SLy4, NRAPR, and SQMC700, which span a range of saturation-density symmetry energy behaviors constrained by a variety of nuclear experimental probes. For each of these interactions we calculate free energy, pressure, entropy, and chemical potentials in the range of particle number densities where the nuclear pasta phases are expected to exist, 0.02-0.12 fm-3, temperatures 2-8 MeV, and a proton fraction of 0.3. We find unambiguous evidence for a first-order phase transition to uniform matter, unsoftened by the presence of the pasta phases. No conclusive signs of a first-order phase transition between the pasta phases is observed, and it is argued that the thermodynamic quantities vary continuously right up to the first-order phase transition to uniform matter. We compare our results with thermodynamic spinodals calculated using the same Skyrme parametrizations, finding that the effect of short-range Coulomb correlations and quantum shell effects included in our model leads to the pasta phases existing at densities up to 0.01 fm-3 above the spinodal boundaries, thus increasing the transition density to uniform matter by the same amount. The transition density is otherwise shown to be insensitive to the symmetry energy at saturation density within the range constrained by the concordance of a variety of experimental constraints, and can be taken to be a well determined quantity.

  17. Charge and Spin Currents in Open-Shell Molecules:  A Unified Description of NMR and EPR Observables.

    PubMed

    Soncini, Alessandro

    2007-11-01

    The theory of EPR hyperfine coupling tensors and NMR nuclear magnetic shielding tensors of open-shell molecules in the limit of vanishing spin-orbit coupling (e.g., for organic radicals) is analyzed in terms of spin and charge current density vector fields. The ab initio calculation of the spin and charge current density response has been implemented at the Restricted Open-Shell Hartree-Fock, Unrestricted Hartree-Fock, and unrestricted GGA-DFT level of theory. On the basis of this formalism, we introduce the definition of nuclear hyperfine coupling density, a scalar function of position providing a partition of the EPR observable over the molecular domain. Ab initio maps of spin and charge current density and hyperfine coupling density for small radicals are presented and discussed in order to illustrate the interpretative advantages of the newly introduced approach. Recent NMR experiments providing evidence for the existence of diatropic ring currents in the open-shell singlet pancake-bonded dimer of the neutral phenalenyl radical are directly assessed via the visualization of the induced current density.

  18. Quark-Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond

    NASA Astrophysics Data System (ADS)

    Guichon, P. A. M.; Stone, J. R.; Thomas, A. W.

    2018-05-01

    The Quark-Meson-Coupling model, which self-consistently relates the dynamics of the internal quark structure of a hadron to the relativistic mean fields arising in nuclear matter, provides a natural explanation to many open questions in low energy nuclear physics, including the origin of many-body nuclear forces and their saturation, the spin-orbit interaction and properties of hadronic matter at a wide range of densities up to those occurring in the cores of neutron stars. Here we focus on four aspects of the model (i) a full comprehensive survey of the theory, including the latest developments, (ii) extensive application of the model to ground state properties of finite nuclei and hypernuclei, with a discussion of similarities and differences between the QMC and Skyrme energy density functionals, (iii) equilibrium conditions and composition of hadronic matter in cold and warm neutron stars and their comparison with the outcome of relativistic mean-field theories and, (iv) tests of the fundamental idea that hadron structure changes in-medium.

  19. Heavy component of spent nuclear fuel: Efficiency of model-substance ionization by electron-induced discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonov, N. N., E-mail: antonovnickola@gmail.com; Gavrikov, A. V.; Samokhin, A. A.

    The method of plasma separation of spent nuclear fuel can be tested with a model substance which has to be transformed from the condensed to plasma state. For this purpose, electron-induced discharge in lead vapor injected into the interelectrode gap is simulated using the kinetic approach. The ionization efficiency, the electrostatic-potential distribution, and those of the ion and electron densities in the discharge gap are derived as functions of the discharge-current density and concentration of the vapor of the model substance. Given a discharge-current density of 3.5 A/cm{sup 2} and a lead-vapor concentration of 2 × 10{sup 12} cm{sup –3},more » the simulated ionization efficiency proves to be nearly 60%. The discharge in lead vapor is also investigated experimentally.« less

  20. Transitioning NWChem to the Next Generation of Manycore Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.; Apra, E; Kowalski, Karol

    The NorthWest chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers [1-3]. It contains an umbrella of modules that today includes self-consistent eld (SCF), second order Møller-Plesset perturbation theory (MP2), coupled cluster (CC), multiconguration self-consistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real-time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (MD), classical MD, hybrid quantum mechanicsmore » molecular mechanics (QM/MM), hybrid ab initio molecular dynamics molecular mechanics (AIMD/MM), gauge independent atomic orbital nuclear magnetic resonance (GIAO NMR), conductor like screening solvation model (COSMO), conductor-like screening solvation model based on density (COSMO-SMD), and reference interaction site model (RISM) solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities [4]. Moreover, new capabilities continue to be added with each new release.« less

  1. Modeling L2,3-Edge X-ray Absorption Spectroscopy with Real-Time Exact Two-Component Relativistic Time-Dependent Density Functional Theory.

    PubMed

    Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong

    2018-04-10

    X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.

  2. Ratio of shear viscosity to entropy density in multifragmentation of Au + Au

    NASA Astrophysics Data System (ADS)

    Zhou, C. L.; Ma, Y. G.; Fang, D. Q.; Li, S. X.; Zhang, G. Q.

    2012-06-01

    The ratio of the shear viscosity (η) to entropy density (s) for the intermediate energy heavy-ion collisions has been calculated by using the Green-Kubo method in the framework of the quantum molecular dynamics model. The theoretical curve of η/s as a function of the incident energy for the head-on Au + Au collisions displays that a minimum region of η/s has been approached at higher incident energies, where the minimum η/s value is about 7 times Kovtun-Son-Starinets (KSS) bound (1/4π). We argue that the onset of minimum η/s region at higher incident energies corresponds to the nuclear liquid gas phase transition in nuclear multifragmentation.

  3. Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.

    PubMed

    Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M

    2015-09-08

    We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.

  4. Nuclear quantum effects on structure and transport properties of dense liquid helium

    NASA Astrophysics Data System (ADS)

    Kang, Dongdong; Dai, Jiayu; Yuan, Jianmin

    2015-11-01

    Transport properties of dense liquid helium under the conditions of planet's core and cool atmosphere of white dwarfs are important for determining the structure and evolution of these astrophysical objects. We have investigated these properties of dense liquid helium by using the improved centroid path-integral simulations combined with density functional theory. The results show that with the inclusion of nuclear quantum effects (NQEs), the self-diffusion is largely higher while the shear viscosity is notably lower than the results of without the inclusion of NQEs due to the lower collision cross sections even when the NQEs have little effects on the static structures. The potential surface of helium atom along the simulation trajectory is quite different between MD and PIMD simulations. We have shown that the quantum nuclear character induces complex behaviors for ionic transport properties of dense liquid helium. NQEs bring more fluctuations of local electronic density of states than the classical treatment. Therefore, in order to construct more reasonable structure and evolution model for the planets and WDs, NQEs must be reconsidered when calculating the transport properties at certain temperature and density conditions.

  5. Level densities and γ-ray strength functions in Sn isotopes

    NASA Astrophysics Data System (ADS)

    Toft, H. K.; Larsen, A. C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.

    2010-06-01

    The nuclear level densities of Sn118,119 and the γ-ray strength functions of Sn116,118,119 below the neutron separation energy are extracted with the Oslo method using the (He3,αγ) and (He3,He3'γ) reactions. The level-density function of Sn119 displays steplike structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of Sn119 is determined to be 1.7 ± 0.2 kB. Results from a combinatorial model support the interpretation that some of the low-energy steps in the level density function are caused by neutron pair breaking. An enhancement in all the γ-ray strength functions of Sn116-119, compared to standard models for radiative strength, is observed for the γ-ray energy region of ≃4-11 MeV. These small resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin oscillations or to an enhancement of the giant magnetic dipole resonance.

  6. A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme

    NASA Astrophysics Data System (ADS)

    Ochsenfeld, Christian; Head-Gordon, Martin

    1997-05-01

    To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.

  7. Ab Initio Investigations of High-Pressure Melting of Dense Lithium

    NASA Astrophysics Data System (ADS)

    Clay, Raymond; Morales, Miguel; Bonev, Stanimir

    Lithium at ambient conditions is the simplest alkali metal and exhibits textbook nearly-free electron behavior. As the density is increased, however, significant core/valence overlap leads to surprisingly complex chemistry. We have systematically investigated the phase diagram of lithium at pressures ranging between two and six million atmospheres. Through a combination of density functional theory based path-integral and classical molecular dynamics simulations, we have investigated the impact of both nuclear quantum effects and anharmonicity on the melting line and solid phase boundaries. We also investigate how the inclusion of nuclear quantum effects and approximations in the treatment of electronic exchange-correlation impact the robustness of previous predictions of tetrahedral clustering in dense liquid Li. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Electron quantum dynamics in atom-ion interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabzyan, H., E-mail: sabzyan@sci.ui.ac.ir; Jenabi, M. J.

    2016-04-07

    Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, whichmore » define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis.« less

  9. Fission fragment charge and mass distributions in 239Pu(n, f ) in the adiabatic nuclear energy density functional theory

    DOE PAGES

    Regnier, D.; Dubray, N.; Schunck, N.; ...

    2016-05-13

    Here, accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics.

  10. Nuclear spin circular dichroism.

    PubMed

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  11. Nuclear Computational Low Energy Initiative (NUCLEI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay K.

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  12. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electricmore » field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.« less

  13. Objective Molecular Dynamics with Self-consistent Charge Density Functional Tight-Binding (SCC-DFTB) Method

    NASA Astrophysics Data System (ADS)

    Dumitrica, Traian; Hourahine, Ben; Aradi, Balint; Frauenheim, Thomas

    We discus the coupling of the objective boundary conditions into the SCC density functional-based tight binding code DFTB+. The implementation is enabled by a generalization to the helical case of the classical Ewald method, specifically by Ewald-like formulas that do not rely on a unit cell with translational symmetry. The robustness of the method in addressing complex hetero-nuclear nano- and bio-fibrous systems is demonstrated with illustrative simulations on a helical boron nitride nanotube, a screw dislocated zinc oxide nanowire, and an ideal double-strand DNA. Work supported by NSF CMMI 1332228.

  14. Galactic propagation models consistent with the cosmic ray lifetime derived from Be-10 measurements

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Wefel, J. P.; Garcia-Munoz, M.; Simpson, J. A.

    1985-01-01

    Using a propagation calculation with energy dependent parameters, including the depletion of short pathlengths, and incorporating experimental nuclear excitation functions, the variation of the Be-10/Be9 ratio with the matter densities in two nested confinement regions is investigated. It is shown that there is no unique correspondence between a Be-10/Be9 measurement at low energy and the density of matter in the galaxy. Be-10/Be9 measurements at both low and high energy are needed to fully specify the matter densities.

  15. Current density tensors

    NASA Astrophysics Data System (ADS)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  16. Pairing-induced speedup of nuclear spontaneous fission

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-01

    Background: Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. Purpose: To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. Methods: We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Results: Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. Conclusions: The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  17. Pairing-induced speedup of nuclear spontaneous fission

    DOE PAGES

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less

  18. Development of Fast and Reliable Free-Energy Density Functional Methods for Simulations of Dense Plasmas from Cold- to Hot-Temperature Regimes

    NASA Astrophysics Data System (ADS)

    Karasiev, V. V.

    2017-10-01

    Free-energy density functional theory (DFT) is one of the standard tools in high-energy-density physics used to determine the fundamental properties of dense plasmas, especially in cold and warm regimes when quantum effects are essential. DFT is usually implemented via the orbital-dependent Kohn-Sham (KS) procedure. There are two challenges of conventional implementation: (1) KS computational cost becomes prohibitively expensive at high temperatures; and (2) ground-state exchange-correlation (XC) functionals do not take into account the XC thermal effects. This talk will address both challenges and report details of the formal development of new generalized gradient approximation (GGA) XC free-energy functional which bridges low-temperature (ground state) and high-temperature (plasma) limits. Recent progress on development of functionals for orbital-free DFT as a way to address the second challenge will also be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. Parallel implementation of Hartree-Fock and density functional theory analytical second derivatives

    NASA Astrophysics Data System (ADS)

    Baker, Jon; Wolinski, Krzysztof; Malagoli, Massimo; Pulay, Peter

    2004-01-01

    We present an efficient, parallel implementation for the calculation of Hartree-Fock and density functional theory analytical Hessian (force constant, nuclear second derivative) matrices. These are important for the determination of harmonic vibrational frequencies, and to classify stationary points on potential energy surfaces. Our program is designed for modest parallelism (4-16 CPUs) as exemplified by our standard eight-processor QuantumCube™. We can routinely handle systems with up to 100+ atoms and 1000+ basis functions using under 0.5 GB of RAM memory per CPU. Timings are presented for several systems, ranging in size from aspirin (C9H8O4) to nickel octaethylporphyrin (C36H44N4Ni).

  20. Impact of nuclear data on sodium-cooled fast reactor calculations

    NASA Astrophysics Data System (ADS)

    Aures, Alexander; Bostelmann, Friederike; Zwermann, Winfried; Velkov, Kiril

    2016-03-01

    Neutron transport and depletion calculations are performed in combination with various nuclear data libraries in order to assess the impact of nuclear data on safety-relevant parameters of sodium-cooled fast reactors. These calculations are supplemented by systematic uncertainty analyses with respect to nuclear data. Analysed quantities are the multiplication factor and nuclide densities as a function of burn-up and the Doppler and Na-void reactivity coefficients at begin of cycle. While ENDF/B-VII.0 / -VII.1 yield rather consistent results, larger discrepancies are observed between the JEFF libraries. While the newest evaluation, JEFF-3.2, agrees with the ENDF/B-VII libraries, the JEFF-3.1.2 library yields significant larger multiplication factors.

  1. Characterizing Density and Complexity of Imported Cargos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birrer, Nathaniel; Divin, Charles; Glenn, Steven

    X-ray inspection systems are used to detect radiological and nuclear threats in imported cargo. In order to better understand performance of these systems, system imaging capabilities and the characteristics of imported cargo need to be determined. This project involved calculation of the modulation transfer function as a metric of system imaging performance and a study of the density and inhomogeneity of imported cargos, which have been shown to correlate with human analysts, threat detection performance.

  2. Microscopic theory of nuclear fission: a review

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract spontaneous fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of completeness, other approaches to tunnelling based on functional integrals are also briefly discussed, although there are very few applications.) It is also an important component of some of the time-dependent methods that have been used in fission studies. Concerning the latter, both the semi-classical approaches to time-dependent nuclear dynamics and more microscopic theories involving explicit quantum-many-body methods are presented. One of the hallmarks of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. This aspect is often overlooked, and several sections are devoted to discussing the resolution of the HFB equations, especially in the context of very deformed nuclear shapes. In particular, the numerical precision and iterative methods employed to obtain the HFB solution are documented in detail. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented, with the goal of emphasizing the coherence of the microscopic approaches employed. Although impressive progress has been achieved over the last two decades to understand fission microscopically, much work remains to be done. Several possible lines of research are outlined in the conclusion.

  3. Microscopic Theory of Nuclear Fission: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunck, N.; Robledo, L. M.

    This paper reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections,more » are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula used to extract spontaneous fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of completeness, other approaches to tunnelling based on functional integrals are also briefly discussed, although there are very few applications.) It is also an important component of some of the time-dependent methods that have been used in fission studies. Concerning the latter, both the semi-classical approaches to time-dependent nuclear dynamics and more microscopic theories involving explicit quantum-many-body methods are presented. One of the hallmarks of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. This aspect is often overlooked, and several sections are devoted to discussing the resolution of the HFB equations, especially in the context of very deformed nuclear shapes. In particular, the numerical precision and iterative methods employed to obtain the HFB solution are documented in detail. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented, with the goal of emphasizing the coherence of the microscopic approaches employed. In conclusion, although impressive progress has been achieved over the last two decades to understand fission microscopically, much work remains to be done. Several possible lines of research are outlined in the conclusion.« less

  4. Microscopic Theory of Nuclear Fission: A Review

    DOE PAGES

    Schunck, N.; Robledo, L. M.

    2016-10-11

    This paper reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections,more » are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula used to extract spontaneous fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of completeness, other approaches to tunnelling based on functional integrals are also briefly discussed, although there are very few applications.) It is also an important component of some of the time-dependent methods that have been used in fission studies. Concerning the latter, both the semi-classical approaches to time-dependent nuclear dynamics and more microscopic theories involving explicit quantum-many-body methods are presented. One of the hallmarks of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. This aspect is often overlooked, and several sections are devoted to discussing the resolution of the HFB equations, especially in the context of very deformed nuclear shapes. In particular, the numerical precision and iterative methods employed to obtain the HFB solution are documented in detail. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented, with the goal of emphasizing the coherence of the microscopic approaches employed. In conclusion, although impressive progress has been achieved over the last two decades to understand fission microscopically, much work remains to be done. Several possible lines of research are outlined in the conclusion.« less

  5. Microscopic theory of nuclear fission: a review.

    PubMed

    Schunck, N; Robledo, L M

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract spontaneous fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of completeness, other approaches to tunnelling based on functional integrals are also briefly discussed, although there are very few applications.) It is also an important component of some of the time-dependent methods that have been used in fission studies. Concerning the latter, both the semi-classical approaches to time-dependent nuclear dynamics and more microscopic theories involving explicit quantum-many-body methods are presented. One of the hallmarks of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. This aspect is often overlooked, and several sections are devoted to discussing the resolution of the HFB equations, especially in the context of very deformed nuclear shapes. In particular, the numerical precision and iterative methods employed to obtain the HFB solution are documented in detail. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented, with the goal of emphasizing the coherence of the microscopic approaches employed. Although impressive progress has been achieved over the last two decades to understand fission microscopically, much work remains to be done. Several possible lines of research are outlined in the conclusion.

  6. Measuring the stellar luminosity function and spatial density profile of the inner 0.5 pc of the Milky Way nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Do, Tuan; Ghez, Andrea; Lu, Jessica R.; Morris, Mark R.; Yelda, Sylvana; Martinez, Gregory D.; Peter, Annika H. G.; Wright, Shelley; Bullock, James; Kaplinghat, Manoj; Matthews, K.

    2012-07-01

    We report on measurements of the luminosity function of early (young) and late-type (old) stars in the central 0.5 pc of the Milky Way nuclear star cluster as well as the density profiles of both components. The young (~ 6 Myr) and old stars (> 1 Gyr) in this region provide different physical probes of the environment around a supermassive black hole; the luminosity function of the young stars offers us a way to measure the initial mass function from star formation in an extreme environment, while the density profile of the old stars offers us a probe of the dynamical interaction of a star cluster with a massive black hole. The two stellar populations are separated through a near-infrared spectroscopic survey using the integral-field spectrograph OSIRIS on Keck II behind the laser guide star adaptive optics system. This spectroscopic survey is able to separate early-type (young) and late-type (old) stars with a completeness of 50% at K' = 15.5. We describe our method of completeness correction using a combination of star planting simulations and Bayesian inference. The completeness corrected luminosity function of the early-type stars contains significantly more young stars at faint magnitudes compared to previous surveys with similar depth. In addition, by using proper motion and radial velocity measurements along with anisotropic spherical Jeans modeling of the cluster, it is possible to measure the spatial density profile of the old stars, which has been difficult to constrain with number counts alone. The most probable model shows that the spatial density profile, n(r) propto r-γ, to be shallow with γ = 0.4 ± 0.2, which is much flatter than the dynamically relaxed case of γ = 3/2 to 7/4, but does rule out a 'hole' in the distribution of old stars. We show, for the first time, that the spatial density profile, the black hole mass, and velocity anisotropy can be fit simultaneously to obtain a black hole mass that is consistent with that derived from individual orbits of stars at distances < 1000 AU from the Galactic center.

  7. Energy density functional on a microscopic basis

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Robledo, L.; Schuck, P.; Viñas, X.

    2010-06-01

    In recent years impressive progress has been made in the development of highly accurate energy density functionals, which allow us to treat medium-heavy nuclei. In this approach one tries to describe not only the ground state but also the first relevant excited states. In general, higher accuracy requires a larger set of parameters, which must be carefully chosen to avoid redundancy. Following this line of development, it is unavoidable that the connection of the functional with the bare nucleon-nucleon interaction becomes more and more elusive. In principle, the construction of a density functional from a density matrix expansion based on the effective nucleon-nucleon interaction is possible, and indeed the approach has been followed by few authors. However, to what extent a density functional based on such a microscopic approach can reach the accuracy of the fully phenomenological ones remains an open question. A related question is to establish which part of a functional can be actually derived by a microscopic approach and which part, in contrast, must be left as purely phenomenological. In this paper we discuss the main problems that are encountered when the microscopic approach is followed. To this purpose we will use the method we have recently introduced to illustrate the different aspects of these problems. In particular we will discuss the possible connection of the density functional with the nuclear matter equation of state and the distinct features of finite-size effect typical of nuclei.

  8. Neutrino Spectra from Nuclear Weak Interactions in sd-Shell Nuclei under Astrophysical Conditions

    NASA Astrophysics Data System (ADS)

    Misch, G. Wendell; Sun, Yang; Fuller, George M.

    2018-01-01

    We present shell model calculations of nuclear neutrino energy spectra for 70 sd-shell nuclei over the mass number range A = 21–35. Our calculations include nuclear excited states as appropriate for the hot and dense conditions characteristic of pre-collapse massive stars. We consider neutrinos produced by charged lepton captures and decays, and for the first time in tabular form, neutral current nuclear deexcitation, providing neutrino energy spectra on the Fuller–Fowler–Newman temperature–density grid for these interaction channels for each nucleus. We use the full sd-shell model space to compute initial nuclear states up to 20 MeV excitation with transitions to final states up to 35–40 MeV, employing a modification of the Brink-Axel hypothesis to handle high-temperature population factors and the nuclear partition functions.

  9. Contributions to the NUCLEI SciDAC-3 Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogner, Scott; Nazarewicz, Witek

    This is the Final Report for Michigan State University for the NUCLEI SciDAC-3 project. The NUCLEI project, as defined by the scope of work, has developed, implemented and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics studied included the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques used included Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program emphasized areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS at ANL and FRIB at MSU (nuclear structuremore » and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrinoless double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  10. Cone Photoreceptor Packing Density and the Outer Nuclear Layer Thickness in Healthy Subjects

    PubMed Central

    Chui, Toco Y. P.; Song, Hongxin; Clark, Christopher A.; Papay, Joel A.; Burns, Stephen A.; Elsner, Ann E.

    2012-01-01

    Purpose. We evaluated the relationship between cone photoreceptor packing density and outer nuclear layer (ONL) thickness within the central 15 degrees. Methods. Individual differences for healthy subjects in cone packing density and ONL thickness were examined in 8 younger and 8 older subjects, mean age 27.2 versus 56.2 years. Cone packing density was obtained using an adaptive optics scanning laser ophthalmoscope (AOSLO). The ONL thickness measurements included the ONL and the Henle fiber layer (ONL + HFL), and were obtained using spectral domain optical coherence tomography (SDOCT) and custom segmentation software. Results. There were sizeable individual differences in cone packing density and ONL + HFL thickness. Older subjects had on average lower cone packing densities, but thicker ONL + HFL measurements. Cone packing density and ONL + HFL thickness decreased with increasing retinal eccentricity. The ratio of the cone packing density-to-ONL2 was larger for the younger subjects group, and decreased with retinal eccentricity. Conclusions. The individual differences in cone packing density and ONL + HFL thickness are consistent with aging changes, indicating that normative aging data are necessary for fine comparisons in the early stages of disease or response to treatment. Our finding of ONL + HFL thickness increasing with aging is inconsistent with the hypothesis that ONL measurements with SDOCT depend only on the number of functioning cones, since in our older group cones were fewer, but thickness was greater. PMID:22570340

  11. Field correlation of PQI gauge with nuclear density gauge: phase 1.

    DOT National Transportation Integrated Search

    2006-12-01

    Traditionally, the Oklahoma Department of Transportation (ODOT) uses a nuclear density gauge as a quality control (QC) and quality assurance (QA) tool for in-place density. The nuclear-based devices, however, tend to have problems associated with lic...

  12. Nuclear quantum effects of light and heavy water studied by all-electron first principles path integral simulations

    NASA Astrophysics Data System (ADS)

    Machida, Masahiko; Kato, Koichiro; Shiga, Motoyuki

    2018-03-01

    The isotopologs of liquid water, H2O, D2O, and T2O, are studied systematically by first principles PIMD simulations, in which the whole entity of the electrons and nuclei are treated quantum mechanically. The simulation results are in reasonable agreement with available experimental data on isotope effects, in particular, on the peak shift in the radial distributions of H2O and D2O and the shift in the evaporation energies. It is found that, due to differences in nuclear quantum effects, the H atoms in the OH bonds more easily access the dissociative region up to the hydrogen bond center than the D (T) atoms in the OD (OT) bonds. The accuracy and limitation in the use of the current density-functional-theory-based first principles PIMD simulations are also discussed. It is argued that the inclusion of the dispersion correction or relevant improvements in the density functionals are required for the quantitative estimation of isotope effects.

  13. Non-nuclear methods for HMA density measurements : final report, June 2008.

    DOT National Transportation Integrated Search

    2008-05-01

    Non-nuclear methods for the measurement of hot-mix asphalt (HMA) density offer the ability to take numerous density readings in a very short period of time, without the need for intensive licensing, training, and maintenance efforts common to nuclear...

  14. Nuclear density evaluation on asphaltic concrete: final report.

    DOT National Transportation Integrated Search

    1967-04-01

    This study was one of two studies designated as Research Project 62-1SB to evaluate the use of nuclear devices in highway construction. (1) The primary objective of this study was to evaluate a nuclear density device for obtaining densities on asphal...

  15. Recent progress in the studies of neutron-rich and high-$Z$ systems within the covariant density functional theory

    DOE PAGES

    Afanasjev, Anatoli V.; Agbemava, S. E.; Ray, D.; ...

    2017-01-01

    Here, the analysis of statistical and systematic uncertainties and their propagation to nuclear extremes has been performed. Two extremes of nuclear landscape (neutron-rich nuclei and superheavy nuclei) have been investigated. For the first extreme, we focus on the ground state properties. For the second extreme, we pay a particular attention to theoretical uncertainties in the description of fission barriers of superheavy nuclei and their evolution on going to neutron-rich nuclei.

  16. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    NASA Astrophysics Data System (ADS)

    O. Silva, Hector; Berti, Emanuele; Sotani, Hajime

    2016-03-01

    Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.

  17. Effect of broken axial symmetry on the electric dipole strength and the collective enhancement of level densities in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Grosse, E.; Junghans, A. R.; Wilson, J. N.

    2017-11-01

    The basic parameters for calculations of radiative neutron capture, photon strength functions and nuclear level densities near the neutron separation energy are determined based on experimental data without an ad hoc assumption about axial symmetry—at variance to previous analysis. Surprisingly few global fit parameters are needed in addition to information on nuclear deformation, taken from Hartree Fock Bogolyubov calculations with the Gogny force, and the generator coordinator method assures properly defined angular momentum. For a large number of nuclei the GDR shapes and the photon strength are described by the sum of three Lorentzians, extrapolated to low energies and normalised in accordance to the dipole sum rule. Level densities are influenced strongly by the significant collective enhancement based on the breaking of shape symmetry. The replacement of axial symmetry by the less stringent requirement of invariance against rotation by 180° leads to a novel prediction for radiative neutron capture. It compares well to recent compilations of average radiative widths and Maxwellian average cross sections for neutron capture by even target nuclei. An extension to higher spin promises a reliable prediction for various compound nuclear reactions also outside the valley of stability. Such predictions are of high importance for future nuclear energy systems and waste transmutation as well as for the understanding of the cosmic synthesis of heavy elements.

  18. LINER galaxy properties and the local environment

    NASA Astrophysics Data System (ADS)

    Coldwell, Georgina V.; Alonso, Sol; Duplancic, Fernanda; Mesa, Valeria

    2018-05-01

    We analyse the properties of a sample of 5560 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR12 at low red shift, for a complete range of local density environments. The host LINER galaxies were studied and compared with a well-defined control sample of 5553 non-LINER galaxies matched in red shift, luminosity, morphology and local density. By studying the distributions of galaxy colours and the stellar age population, we find that LINERs are redder and older than the control sample over a wide range of densities. In addition, LINERs are older than the control sample, at a given galaxy colour, indicating that some external process could have accelerated the evolution of the stellar population. The analysis of the host properties shows that the control sample exhibits a strong relation between colours, ages and the local density, while more than 90 per cent of the LINERs are redder and older than the mean values, independently of the neighbourhood density. Furthermore, a detailed study in three local density ranges shows that, while control sample galaxies are redder and older as a function of stellar mass and density, LINER galaxies mismatch the known morphology-density relation of galaxies without low-ionization features. The results support the contribution of hot and old stars to the low-ionization emission although the contribution of nuclear activity is not discarded.

  19. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.

    PubMed

    Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W

    2016-01-22

    In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5  GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei.

  20. Calculation of spin-densities within the context of density functional theory. The crucial role of the correlation functional

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Cremer, Dieter

    2005-09-01

    It is demonstrated that the LYP correlation functional is not suited to be used for the calculation of electron spin resonance hyperfine structure (HFS) constants, nuclear magnetic resonance spin-spin coupling constants, magnetic, shieldings and other properties that require a balanced account of opposite- and equal-spin correlation, especially in the core region. In the case of the HFS constants of alkali atoms, LYP exaggerates opposite-spin correlation effects thus invoking too strong in-out correlation effects, an exaggerated spin-polarization pattern in the core shells of the atoms, and, consequently, too large HFS constants. Any correlation functional that provides a balanced account of opposite- and equal-spin correlation leads to improved HFS constants, which is proven by comparing results obtained with the LYP and the PW91 correlation functional. It is suggested that specific response properties are calculated with the PW91 rather than the LYP correlation functional.

  1. Role of neutrons and protons in entropy, spin cut off parameters, and moments of inertia

    NASA Astrophysics Data System (ADS)

    Razavi, R.

    2013-07-01

    The nuclear level densities, spin cut off parameters, and entropies have been extracted in 116-119Sn and 162,163Dy nuclei using superconducting theory, which includes nuclear pairing interaction. The results agree well with the recent data obtained from experimental level densities by the Oslo group for these nuclei. Also, the entropy excess ratio proposed by Razavi [R. Razavi, A.N. Behkami, S. Mohammadi, and M. Gholami, Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.86.047303 86, 047303 (2012)] for a proton and neutron as a function of nuclear temperature have been evaluated and are compared with the spin cut off excess ratio. The role of the neutron (proton) system is well determined by the entropy excess ratio as well as the spin cut off excess ratio. The moment of inertia for even-odd and even-even nuclei are also compared. The moment of inertia carried by a single hole is smaller than the single particle moment of inertia.

  2. Distortion of bulk-ion distribution function due to nuclear elastic scattering and its effect on T(d,n)4He reaction rate coefficient in neutral-beam-injected deuterium-tritium plasmas

    NASA Astrophysics Data System (ADS)

    Matsuura, H.; Nakao, Y.

    2007-05-01

    An effect of nuclear elastic scattering on the rate coefficient of fusion reaction between field deuteron and triton in the presence of neutral beam injection heating is studied. Without assuming a Maxwellian for bulk-ion distribution function, the Boltzmann-Fokker-Planck (BFP) equations for field (bulk) deuteron, field (bulk) triton, α-particle, and beam deuteron are simultaneously solved in an ITER-like deuterium-tritium thermonuclear plasma [R. Aymar, Fusion Eng. Des. 55, 107 (2001)]. The BFP calculation shows that enhancement of the reaction rate coefficient due to knock-on tail formation in fuel-ion distribution functions becomes appreciable, especially in the case of low-density operations.

  3. Sensitivity of the fusion cross section to the density dependence of the symmetry energy

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Umar, A. S.; Stevenson, P. D.; Piekarewicz, J.; Oberacker, V. E.; Maruhn, J. A.

    2016-04-01

    Background: The study of the nuclear equation of state (EOS) and the behavior of nuclear matter under extreme conditions is crucial to our understanding of many nuclear and astrophysical phenomena. Nuclear reactions serve as one of the means for studying the EOS. Purpose: It is the aim of this paper to discuss the impact of nuclear fusion on the EOS. This is a timely subject given the expected availability of increasingly exotic beams at rare isotope facilities [A. B. Balantekin et al., Mod. Phys. Lett. A 29, 1430010 (2014), 10.1142/S0217732314300109]. In practice, we focus on 48Ca+48Ca fusion. Method: We employ three different approaches to calculate fusion cross sections for a set of energy density functionals with systematically varying nuclear matter properties. Fusion calculations are performed using frozen densities, using a dynamic microscopic method based on density-constrained time-dependent Hartree-Fock (DC-TDHF) approach, as well as direct TDHF study of above barrier cross sections. For these studies, we employ a family of Skyrme parametrizations with systematically varied nuclear matter properties. Results: The folding-potential model provides a reasonable first estimate of cross sections. DC-TDHF, which includes dynamical polarization, reduces the fusion barriers and delivers much better cross sections. Full TDHF near the barrier agrees nicely with DC-TDHF. Most of the Skyrme forces which we used deliver, on the average, fusion cross sections in good agreement with the data. Trying to read off a trend in the results, we find a slight preference for forces which deliver a slope of symmetry energy of L ≈50 MeV that corresponds to a neutron-skin thickness of 48Ca of Rskin=(0.180 -0.210 ) fm. Conclusions: Fusion reactions in the barrier and sub-barrier region can be a tool to study the EOS and the neutron skin of nuclei. The success of the approach will depend on reduced experimental uncertainties of fusion data as well as the development of fusion theories that closely couple to the microscopic structure and dynamics.

  4. Development of Colle-Salvetti type electron-nucleus correlation functional for MC-DFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udagawa, Taro; Tsuneda, Takao; Tachikawa, Masanori

    2015-12-31

    A Colle-Salvetti type electron-nucleus correlation functional for multicomponent density-functional theory is proposed. We demonstrate that our correlation functional quantitatively reproduces the quantum nuclear effects of protons; the mean absolute deviation value is 2.8 millihartrees for the optimized structure of hydrogen-containing molecules. We also show other practical calculations with our new electron-deuteron and electron-triton correlation functionals. Since this functional is derived without any unphysical assumption, the strategy taken in this development will be a promising recipe to make new functionals for the potentials of other particles’ interactions.

  5. Equation of State for Isospin Asymmetric Nuclear Matter Using Lane Potential

    NASA Astrophysics Data System (ADS)

    Basu, D. N.; Chowdhury, P. Roy; Samanta, C.

    2006-10-01

    A mean field calculation for obtaining the equation of state (EOS) for symmetric nuclear matter from a density dependent M3Y interaction supplemented by a zero-range potential is described. The energy per nucleon is minimized to obtain the ground state of symmetric nuclear matter. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe--Weizsäcker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi--Wapstra--Thibault atomic mass table by minimizing the mean square deviation. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The EOS of symmetric nuclear matter, thus obtained, provide reasonably good estimate of nuclear incompressibility. Once the constants of density dependence are determined, EOS for asymmetric nuclear matter is calculated by adding to the isoscalar part, the isovector component of the M3Y interaction that do not contribute to the EOS of symmetric nuclear matter. These EOS are then used to calculate the pressure, the energy density and the velocity of sound in symmetric as well as isospin asymmetric nuclear matter.

  6. Comparison of deterministic and stochastic approaches for isotopic concentration and decay heat uncertainty quantification on elementary fission pulse

    NASA Astrophysics Data System (ADS)

    Lahaye, S.; Huynh, T. D.; Tsilanizara, A.

    2016-03-01

    Uncertainty quantification of interest outputs in nuclear fuel cycle is an important issue for nuclear safety, from nuclear facilities to long term deposits. Most of those outputs are functions of the isotopic vector density which is estimated by fuel cycle codes, such as DARWIN/PEPIN2, MENDEL, ORIGEN or FISPACT. CEA code systems DARWIN/PEPIN2 and MENDEL propagate by two different methods the uncertainty from nuclear data inputs to isotopic concentrations and decay heat. This paper shows comparisons between those two codes on a Uranium-235 thermal fission pulse. Effects of nuclear data evaluation's choice (ENDF/B-VII.1, JEFF-3.1.1 and JENDL-2011) is inspected in this paper. All results show good agreement between both codes and methods, ensuring the reliability of both approaches for a given evaluation.

  7. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  8. Development code for sensitivity and uncertainty analysis of input on the MCNPX for neutronic calculation in PWR core

    NASA Astrophysics Data System (ADS)

    Hartini, Entin; Andiwijayakusuma, Dinan

    2014-09-01

    This research was carried out on the development of code for uncertainty analysis is based on a statistical approach for assessing the uncertainty input parameters. In the butn-up calculation of fuel, uncertainty analysis performed for input parameters fuel density, coolant density and fuel temperature. This calculation is performed during irradiation using Monte Carlo N-Particle Transport. The Uncertainty method based on the probabilities density function. Development code is made in python script to do coupling with MCNPX for criticality and burn-up calculations. Simulation is done by modeling the geometry of PWR terrace, with MCNPX on the power 54 MW with fuel type UO2 pellets. The calculation is done by using the data library continuous energy cross-sections ENDF / B-VI. MCNPX requires nuclear data in ACE format. Development of interfaces for obtaining nuclear data in the form of ACE format of ENDF through special process NJOY calculation to temperature changes in a certain range.

  9. Development code for sensitivity and uncertainty analysis of input on the MCNPX for neutronic calculation in PWR core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartini, Entin, E-mail: entin@batan.go.id; Andiwijayakusuma, Dinan, E-mail: entin@batan.go.id

    2014-09-30

    This research was carried out on the development of code for uncertainty analysis is based on a statistical approach for assessing the uncertainty input parameters. In the butn-up calculation of fuel, uncertainty analysis performed for input parameters fuel density, coolant density and fuel temperature. This calculation is performed during irradiation using Monte Carlo N-Particle Transport. The Uncertainty method based on the probabilities density function. Development code is made in python script to do coupling with MCNPX for criticality and burn-up calculations. Simulation is done by modeling the geometry of PWR terrace, with MCNPX on the power 54 MW with fuelmore » type UO2 pellets. The calculation is done by using the data library continuous energy cross-sections ENDF / B-VI. MCNPX requires nuclear data in ACE format. Development of interfaces for obtaining nuclear data in the form of ACE format of ENDF through special process NJOY calculation to temperature changes in a certain range.« less

  10. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    NASA Astrophysics Data System (ADS)

    Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.

    2009-12-01

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from 51V to 239Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.

  11. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capote, R.; Herman, M.; Oblozinsky, P.

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through (http://www-nds.iaea.org/RIPL-3/). This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less

  12. RIPL-Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capote, R.; Herman, M.; Capote,R.

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less

  13. Nucleon localization and fragment formation in nuclear fission

    DOE PAGES

    Zhang, C. L.; Schuetrumpf, B.; Nazarewicz, W.

    2016-12-27

    An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate α-cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. In this work, using the spatial nucleon localization measure, we investigated the emergence of fragments in fissioning heavy nuclei using the self-consistent energy density functional method with a quantified energy density functional optimized for fission studies. We studied the particle densities and spatial nucleonmore » localization distributions along the fission pathways of 264Fm, 232Th, and 240Pu. We demonstrated that the fission fragments were formed fairly early in the evolution, well before scission. To illustrate the usefulness of the localization measure, we showed how the hyperdeformed state of 232Th could be understood in terms of a quasimolecular state made of 132Sn and 100Zr fragments. Compared to nucleonic distributions, the nucleon localization function more effectively quantifies nucleonic clustering: its characteristic oscillating pattern, traced back to shell effects, is a clear fingerprint of cluster/fragment configurations. This is of particular interest for studies of fragment formation and fragment identification in fissioning nuclei.« less

  14. Features of Electron Density Distribution in Delafossite Cualo2

    NASA Astrophysics Data System (ADS)

    Pogoreltsev, A. I.; Schmidt, S. V.; Gavrilenko, A. N.; Shulgin, D. A.; Korzun, B. V.; Matukhin, V. L.

    2015-07-01

    We have used pulsed 63,65Cu nuclear quadrupole resonance at room temperature to study the semiconductor compound CuAlO2 with a delafossite crystal structure, and we have determined the quadrupole frequency νQ = 28.12 MHz and the asymmetry parameter η ~ 0, which we used to study the features of the electron density distribution in the vicinity of the quadrupolar nucleus. In order to take into account the influence of correlation effects on the electric field gradient, we carried out ab initio calculations within the density functional theory (DFT) approximation using a set of correlation functionals VWN1RPA, VWN5, PW91LDA, CPW91, and B3LYP1. We mapped the electron density distribution in the vicinity of the quadrupolar copper nucleus for the Cu7Al6o{14/- 1} cluster and we calculated the size of the LUMO-HOMO gap, Δ ~ 3.33 eV. We established the anisotropy of the spatial electron density distribution. Based on analysis of the electron density distribution obtained, we suggest that the bond in CuAlO2 is not purely covalent.

  15. Non-Born-Oppenheimer self-consistent field calculations with cubic scaling

    NASA Astrophysics Data System (ADS)

    Moncada, Félix; Posada, Edwin; Flores-Moreno, Roberto; Reyes, Andrés

    2012-05-01

    An efficient nuclear molecular orbital methodology is presented. This approach combines an auxiliary density functional theory for electrons (ADFT) and a localized Hartree product (LHP) representation for the nuclear wave function. A series of test calculations conducted on small molecules exposed that energy and geometry errors introduced by the use of ADFT and LHP approximations are small and comparable to those obtained by the use of electronic ADFT. In addition, sample calculations performed on (HF)n chains disclosed that the combined ADFT/LHP approach scales cubically with system size (n) as opposed to the quartic scaling of Hartree-Fock/LHP or DFT/LHP methods. Even for medium size molecules the improved scaling of the ADFT/LHP approach resulted in speedups of at least 5x with respect to Hartree-Fock/LHP calculations. The ADFT/LHP method opens up the possibility of studying nuclear quantum effects on large size systems that otherwise would be impractical.

  16. Embedded random matrix ensembles from nuclear structure and their recent applications

    NASA Astrophysics Data System (ADS)

    Kota, V. K. B.; Chavda, N. D.

    Embedded random matrix ensembles generated by random interactions (of low body rank and usually two-body) in the presence of a one-body mean field, introduced in nuclear structure physics, are now established to be indispensable in describing statistical properties of a large number of isolated finite quantum many-particle systems. Lie algebra symmetries of the interactions, as identified from nuclear shell model and the interacting boson model, led to the introduction of a variety of embedded ensembles (EEs). These ensembles with a mean field and chaos generating two-body interaction generate in three different stages, delocalization of wave functions in the Fock space of the mean-field basis states. The last stage corresponds to what one may call thermalization and complex nuclei, as seen from many shell model calculations, lie in this region. Besides briefly describing them, their recent applications to nuclear structure are presented and they are (i) nuclear level densities with interactions; (ii) orbit occupancies; (iii) neutrinoless double beta decay nuclear transition matrix elements as transition strengths. In addition, their applications are also presented briefly that go beyond nuclear structure and they are (i) fidelity, decoherence, entanglement and thermalization in isolated finite quantum systems with interactions; (ii) quantum transport in disordered networks connected by many-body interactions with centrosymmetry; (iii) semicircle to Gaussian transition in eigenvalue densities with k-body random interactions and its relation to the Sachdev-Ye-Kitaev (SYK) model for majorana fermions.

  17. Conceptual DFT: the chemical relevance of higher response functions.

    PubMed

    Geerlings, P; De Proft, F

    2008-06-07

    In recent years conceptual density functional theory offered a perspective for the interpretation/prediction of experimental/theoretical reactivity data on the basis of a series of response functions to perturbations in the number of electrons and/or external potential. This approach has enabled the sharp definition and computation, from first principles, of a series of well-known but sometimes vaguely defined chemical concepts such as electronegativity and hardness. In this contribution, a short overview of the shortcomings of the simplest, first order response functions is illustrated leading to a description of chemical bonding in a covalent interaction in terms of interacting atoms or groups, governed by electrostatics with the tendency to polarize bonds on the basis of electronegativity differences. The second order approach, well known until now, introduces the hardness/softness and Fukui function concepts related to polarizability and frontier MO theory, respectively. The introduction of polarizability/softness is also considered in a historical perspective in which polarizability was, with some exceptions, mainly put forward in non covalent interactions. A particular series of response functions, arising when the changes in the external potential are solely provoked by changes in nuclear configurations (the "R-analogues") are also systematically considered. The main part of the contribution is devoted to third order response functions which, at first sight, may be expected not to yield chemically significant information, as turns out to be for the hyperhardness. A counterexample is the dual descriptor and its R analogue, the initial hardness response, which turns out to yield a firm basis to regain the Woodward-Hoffmann rules for pericyclic reactions based on a density-only basis, i.e. without involving the phase, sign, symmetry of the wavefunction. Even the second order nonlinear response functions are shown possibly to bear interesting information, e.g. on the local and global polarizability. Its derivatives may govern the influence of charge on the polarizability, the R-analogues being the nuclear Fukui function and the quadratic and cubic force constants. Although some of the higher order derivatives may be difficult to evaluate a comparison with the energy expansion used in spectroscopy in terms of nuclear displacements, nuclear magnetic moments, electric and magnetic fields leads to the conjecture that, certainly cross terms may contain new, intricate information for understanding chemical reactivity.

  18. The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory

    NASA Astrophysics Data System (ADS)

    Xia, X. W.; Lim, Y.; Zhao, P. W.; Liang, H. Z.; Qu, X. Y.; Chen, Y.; Liu, H.; Zhang, L. F.; Zhang, S. Q.; Kim, Y.; Meng, J.

    2018-05-01

    The ground-state properties of nuclei with 8 ⩽ Z ⩽ 120 from the proton drip line to the neutron drip line have been investigated using the spherical relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1. With the effects of the continuum included, there are totally 9035 nuclei predicted to be bound, which largely extends the existing nuclear landscapes predicted with other methods. The calculated binding energies, separation energies, neutron and proton Fermi surfaces, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, ground-state spins and parities are tabulated. The extension of the nuclear landscape obtained with RCHB is discussed in detail, in particular for the neutron-rich side, in comparison with the relativistic mean field calculations without pairing correlations and also other predicted landscapes. It is found that the coupling between the bound states and the continuum due to the pairing correlations plays an essential role in extending the nuclear landscape. The systematics of the separation energies, radii, densities, potentials and pairing energies of the RCHB calculations are also discussed. In addition, the α-decay energies and proton emitters based on the RCHB calculations are investigated.

  19. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be included within the Green’s function formalism. Softening of the pion mode with an baryon density increase is explicitly incorporated. We show examples of inconsistencies in calculations without inclusion of medium effects. Then we demonstrate calculations of different reaction rates in non-superfluid nuclear matter with taking into account medium effects. Many new reaction channels are open up in the medium and should be analyzed. Part IV: We discuss the neutrino production reactions in superfluid nuclear systems. The reaction rates of processes associated with the pair breaking and formation are calculated. Special attention is focused on the gauge invariance and the exact fulfillment of the Ward identities for the vector current. Finally we present comparison of calculations of neutron star cooling performed within nuclear medium cooling scenario with the available data.

  20. Adiabatic corrections to density functional theory energies and wave functions.

    PubMed

    Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas

    2008-09-25

    The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT.

  1. Gamma-widths, lifetimes and fluctuations in the nuclear quasi-continuum

    NASA Astrophysics Data System (ADS)

    Guttormsen, M.; Larsen, A. C.; Midtbø, J. E.; Crespo Campo, L.; Görgen, A.; Ingeberg, V. W.; Renstrøm, T.; Siem, S.; Tveten, G. M.; Zeiser, F.; Kirsch, L. E.

    2018-05-01

    Statistical γ-decay from highly excited states is determined by the nuclear level density (NLD) and the γ-ray strength function (γSF). These average quantities have been measured for several nuclei using the Oslo method. For the first time, we exploit the NLD and γSF to evaluate the γ-width in the energy region below the neutron binding energy, often called the quasi-continuum region. The lifetimes of states in the quasi-continuum are important benchmarks for a theoretical description of nuclear structure and dynamics at high temperature. The lifetimes may also have impact on reaction rates for the rapid neutron-capture process, now demonstrated to take place in neutron star mergers.

  2. Novel Role of Superfluidity in Low-Energy Nuclear Reactions.

    PubMed

    Magierski, Piotr; Sekizawa, Kazuyuki; Wlazłowski, Gabriel

    2017-07-28

    We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in the colliding nuclear systems, leading to qualitative changes in the reaction dynamics. The solitonic excitation prevents collective energy dissipation and effectively suppresses the fusion cross section. We demonstrate how the variations of the total kinetic energy of the fragments can be traced back to the energy stored in the superfluid junction of colliding nuclei. Both contact time and scattering angle in noncentral collisions are significantly affected. The modification of the fusion cross section and possibilities for its experimental detection are discussed.

  3. From cluster structures to nuclear molecules: The role of nodal structure of the single-particle wave functions

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Abusara, H.

    2018-02-01

    The nodal structure of the density distributions of the single-particle states occupied in rod-shaped, hyper- and megadeformed structures of nonrotating and rotating N ˜Z nuclei has been investigated in detail. The single-particle states with the Nilsson quantum numbers of the [N N 0 ]1 /2 (with N from 0 to 5) and [N ,N -1 ,1 ]Ω (with N from 1 to 3 and Ω =1 /2 , 3/2) types are considered. These states are building blocks of extremely deformed shapes in the nuclei with mass numbers A ≤50 . Because of (near) axial symmetry and large elongation of such structures, the wave functions of the single-particle states occupied are dominated by a single basis state in cylindrical basis. This basis state defines the nodal structure of the single-particle density distribution. The nodal structure of the single-particle density distributions allows us to understand in a relatively simple way the necessary conditions for α clusterization and the suppression of the α clusterization with the increase of mass number. It also explains in a natural way the coexistence of ellipsoidal mean-field-type structures and nuclear molecules at similar excitation energies and the features of particle-hole excitations connecting these two types of the structures. Our analysis of the nodal structure of the single-particle density distributions does not support the existence of quantum liquid phase for the deformations and nuclei under study.

  4. Structure of neutron star crusts from new Skyrme effective interactions constrained by chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Lim, Yeunhwan; Holt, Jeremy W.

    2017-06-01

    We investigate the structure of neutron star crusts, including the crust-core boundary, based on new Skyrme mean field models constrained by the bulk-matter equation of state from chiral effective field theory and the ground-state energies of doubly-magic nuclei. Nuclear pasta phases are studied using both the liquid drop model as well as the Thomas-Fermi approximation. We compare the energy per nucleon for each geometry (spherical nuclei, cylindrical nuclei, nuclear slabs, cylindrical holes, and spherical holes) to obtain the ground state phase as a function of density. We find that the size of the Wigner-Seitz cell depends strongly on the model parameters, especially the coefficients of the density gradient interaction terms. We employ also the thermodynamic instability method to check the validity of the numerical solutions based on energy comparisons.

  5. Nuclear moisture-density evaluation.

    DOT National Transportation Integrated Search

    1964-11-01

    This report constitutes the results of a series of calibration curves prepared by comparing the Troxler Nuclear Density - Moisture Gauge count ratios with conventional densities as obtained by the Soiltest Volumeter and the sand displacement methods....

  6. Nature of isomerism of solid isothiourea salts, inhibitors of nitric oxide synthases, as studied by 1H-14N nuclear quadrupole double resonance, X-ray, and density functional theory/quantum theory of atoms in molecules.

    PubMed

    Latosińska, J N; Latosińska, M; Seliger, J; Žagar, V; Maurin, J K; Kazimierczuk, Z

    2012-02-09

    Isothioureas, inhibitors of nitric oxide synthases, have been studied experimentally in solid state by nuclear quadrupole double resonance (NQDR) and X-ray methods and theoretically by the quantum theory of atoms in molecules/density functional theory. Resonance frequencies on (14)N have been detected and assigned to particular nitrogen sites in each molecule. The crystal packings of (S)-3,4-dichlorobenzyl-N-methylisothiouronium chloride with the disordered chlorine positions in benzene ring and (S)-butyloisothiouronium bromide have been resolved in X-ray diffraction studies. (14)N NQDR spectra have been found good indicators of isomer type and strength of intra- or intermolecular N-H···X (X = Cl, Br) interactions. From among all salts studied, only for (S)-2,3,4,5,6-pentabromobenzylisothiouronium chloride are both nitrogen sites equivalent, which has been explained by the slow exchange. This unique structural feature can be a key factor in the high biological activity of (S)-2,3,4,5,6-pentabromobenzylisothiouronium salts.

  7. Probing the oxygen environment in UO(2)(2+) by solid-state 17O nuclear magnetic resonance spectroscopy and relativistic density functional calculations.

    PubMed

    Cho, Herman; de Jong, Wibe A; Soderquist, Chuck Z

    2010-02-28

    A combined theoretical and solid-state (17)O nuclear magnetic resonance (NMR) study of the electronic structure of the uranyl ion UO(2)(2+) in (NH(4))(4)UO(2)(CO(3))(3) and rutherfordine (UO(2)CO(3)) is presented, the former representing a system with a hydrogen-bonding environment around the uranyl oxygens and the latter exemplifying a uranyl environment without hydrogens. Relativistic density functional calculations reveal unique features of the U-O covalent bond, including the finding of (17)O chemical shift anisotropies that are among the largest for oxygen ever reported (>1200 ppm). Computational results for the oxygen electric field gradient tensor are found to be consistently larger in magnitude than experimental solid-state (17)O NMR measurements in a 7.05 T magnetic field indicate. A modified version of the Solomon theory of the two-spin echo amplitude for a spin-5/2 nucleus is developed and applied to the analysis of the (17)O echo signal of U (17)O(2)(2+).

  8. A study of nuclear structure for 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery

    NASA Astrophysics Data System (ADS)

    Artun, Ozan

    2017-07-01

    In this paper, we intend to extend the nuclear data of 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery technology, because, these nuclei are quite important for space investigations in radioisotope thermoelectric generator (RTG) and for microelectronic technologies in betavoltaic batteries. Therefore, the nuclear structure properties of nuclei such as separation energies, neutron skin thicknesses, proton, charge and neutron density distributions as a function of radius, the root mean square (rms) proton, charge and neutron radii, binding energies per particle, have been investigated by Hartree-Fock with eight different Skyrme forces. The obtained results have been compared with the experimental data in literature and relativistic mean field theory (RMFT) results.

  9. Towards a self-consistent dynamical nuclear model

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Niu, Y. F.; Colò, G.; Bortignon, P. F.

    2017-04-01

    Density functional theory (DFT) is a powerful and accurate tool, exploited in nuclear physics to investigate the ground-state and some of the collective properties of nuclei along the whole nuclear chart. Models based on DFT are not, however, suitable for the description of single-particle dynamics in nuclei. Following the field theoretical approach by A Bohr and B R Mottelson to describe nuclear interactions between single-particle and vibrational degrees of freedom, we have taken important steps towards the building of a microscopic dynamic nuclear model. In connection with this, one important issue that needs to be better understood is the renormalization of the effective interaction in the particle-vibration approach. One possible way to renormalize the interaction is by the so-called subtraction method. In this contribution, we will implement the subtraction method in our model for the first time and study its consequences.

  10. Direct Density Functional Energy Minimization using an Tetrahedral Finite Element Grid

    NASA Astrophysics Data System (ADS)

    Vaught, A.; Schmidt, K. E.; Chizmeshya, A. V. G.

    1998-03-01

    We describe an O(N) (N proportional to volume) technique for solving electronic structure problems using the finite element method (FEM). A real--space tetrahedral grid is used as a basis to represent the electronic density, of a free or periodic system and Poisson's equation is solved as a boundary value problem. Nuclear cusps are treated using a local grid consisting of radial elements. These features facilitate the implementation of complicated energy functionals and permit a direct (constrained) energy minimization with respect to the density. We demonstrate the usefulness of the scheme by calculating the binding trends and polarizabilities of a number of atoms and molecules using a number of recently proposed non--local, orbital--free kinetic energy functionals^1,2. Scaling behavior, computational efficiency and the generalization to band--structure will also be discussed. indent 0 pt øbeylines øbeyspaces skip 0 pt ^1 P. Garcia-Gonzalez, J.E. Alvarellos and E. Chacon, Phys. Rev. B 54, 1897 (1996). ^2 A. J. Thakkar, Phys.Rev.B 46, 6920 (1992).

  11. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.

    PubMed

    Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon

    2018-04-05

    The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.

  12. Non-Nuclear Alternatives to Monitoring Moisture-Density Response in Soils

    DTIC Science & Technology

    2013-03-01

    devices can be done pretest or posttest , as they all provide a means to correct the raw field data readings. Moisture Density Indicator (M+DI) The...obtained from the soil nuclear density gauge. The devices and techniques that were tested are grouped into four broad families: nuclear, electrical...43  Details of device rejection based on errors .............................................................................. 43  Accuracy of

  13. Random matrix theory for transition strengths: Applications and open questions

    NASA Astrophysics Data System (ADS)

    Kota, V. K. B.

    2017-12-01

    Embedded random matrix ensembles are generic models for describing statistical properties of finite isolated interacting quantum many-particle systems. A finite quantum system, induced by a transition operator, makes transitions from its states to the states of the same system or to those of another system. Examples are electromagnetic transitions (then the initial and final systems are same), nuclear beta and double beta decay (then the initial and final systems are different) and so on. Using embedded ensembles (EE), there are efforts to derive a good statistical theory for transition strengths. With m fermions (or bosons) in N mean-field single particle levels and interacting via two-body forces, we have with GOE embedding, the so called EGOE(1+2). Now, the transition strength density (transition strength multiplied by the density of states at the initial and final energies) is a convolution of the density generated by the mean-field one-body part with a bivariate spreading function due to the two-body interaction. Using the embedding U(N) algebra, it is established, for a variety of transition operators, that the spreading function, for sufficiently strong interactions, is close to a bivariate Gaussian. Also, as the interaction strength increases, the spreading function exhibits a transition from bivariate Breit-Wigner to bivariate Gaussian form. In appropriate limits, this EE theory reduces to the polynomial theory of Draayer, French and Wong on one hand and to the theory due to Flambaum and Izrailev for one-body transition operators on the other. Using spin-cutoff factors for projecting angular momentum, the theory is applied to nuclear matrix elements for neutrinoless double beta decay (NDBD). In this paper we will describe: (i) various developments in the EE theory for transition strengths; (ii) results for nuclear matrix elements for 130Te and 136Xe NDBD; (iii) important open questions in the current form of the EE theory.

  14. Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Vendrell, Oriol; Santra, Robin

    2015-10-01

    We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K -shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.

  15. Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion.

    PubMed

    Li, Zheng; Vendrell, Oriol; Santra, Robin

    2015-10-02

    We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.

  16. Feasibility of development of a nuclear density gage for determining the density of plastic concrete at a particular stratum : final report.

    DOT National Transportation Integrated Search

    1981-05-01

    Development of a nuclear density gage for determining the degree of consolidation of plastic concrete in selected horizontal layers was determined to be feasible. A commercially available, with some modifications, two-probe density gage (detector in ...

  17. Nuclear magnetic resonance spin-spin coupling constants from coupled perturbed density functional theory

    NASA Astrophysics Data System (ADS)

    Sychrovský, Vladimír; Gräfenstein, Jürgen; Cremer, Dieter

    2000-09-01

    For the first time, a complete implementation of coupled perturbed density functional theory (CPDFT) for the calculation of NMR spin-spin coupling constants (SSCCs) with pure and hybrid DFT is presented. By applying this method to several hydrides, hydrocarbons, and molecules with multiple bonds, the performance of DFT for the calculation of SSCCs is analyzed in dependence of the XC functional used. The importance of electron correlation effects is demonstrated and it is shown that the hybrid functional B3LYP leads to the best accuracy of calculated SSCCs. Also, CPDFT is compared with sum-over-states (SOS) DFT where it turns out that the former method is superior to the latter because it explicitly considers the dependence of the Kohn-Sham operator on the perturbed orbitals in DFT when calculating SSCCs. The four different coupling mechanisms contributing to the SSCC are discussed in connection with the electronic structure of the molecule.

  18. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture*

    PubMed Central

    Mauceri, Daniela; Hagenston, Anna M.; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-01-01

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. PMID:26231212

  19. Finite Nuclei in the Quark-Meson Coupling Model.

    PubMed

    Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W

    2016-03-04

    We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.

  20. Towards a Density Functional Theory Exchange-Correlation Functional able to describe localization/delocalization

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Wills, John M.

    2013-03-01

    The inability to computationally describe the physics governing the properties of actinides and their alloys is the poster child of failure of existing Density Functional Theory exchange-correlation functionals. The intricate competition between localization and delocalization of the electrons, present in these materials, exposes the limitations of functionals only designed to properly describe one or the other situation. We will discuss the manifestation of this competition in real materials and propositions on how to construct a functional able to accurately describe properties of these materials. I addition we will discuss both the importance of using the Dirac equation to describe the relativistic effects in these materials, and the connection to the physics of transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Mass-number and excitation-energy dependence of the spin cutoff parameter

    DOE PAGES

    Grimes, S. M.; Voinov, A. V.; Massey, T. N.

    2016-07-12

    Here, the spin cutoff parameter determining the nuclear level density spin distribution ρ(J) is defined through the spin projection as < J 2 z > 1/2 or equivalently for spherical nuclei, (< J(J+1) >/3) 1/2. It is needed to divide the total level density into levels as a function of J. To obtain the total level density at the neutron binding energy from the s-wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonlymore » used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.« less

  2. Relativistic Coulomb Excitation within the Time Dependent Superfluid Local Density Approximation

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-01

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. The one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.

  3. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    DOE PAGES

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; ...

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less

  4. On the use of Bayesian Monte-Carlo in evaluation of nuclear data

    NASA Astrophysics Data System (ADS)

    De Saint Jean, Cyrille; Archier, Pascal; Privas, Edwin; Noguere, Gilles

    2017-09-01

    As model parameters, necessary ingredients of theoretical models, are not always predicted by theory, a formal mathematical framework associated to the evaluation work is needed to obtain the best set of parameters (resonance parameters, optical models, fission barrier, average width, multigroup cross sections) with Bayesian statistical inference by comparing theory to experiment. The formal rule related to this methodology is to estimate the posterior density probability function of a set of parameters by solving an equation of the following type: pdf(posterior) ˜ pdf(prior) × a likelihood function. A fitting procedure can be seen as an estimation of the posterior density probability of a set of parameters (referred as x→?) knowing a prior information on these parameters and a likelihood which gives the probability density function of observing a data set knowing x→?. To solve this problem, two major paths could be taken: add approximations and hypothesis and obtain an equation to be solved numerically (minimum of a cost function or Generalized least Square method, referred as GLS) or use Monte-Carlo sampling of all prior distributions and estimate the final posterior distribution. Monte Carlo methods are natural solution for Bayesian inference problems. They avoid approximations (existing in traditional adjustment procedure based on chi-square minimization) and propose alternative in the choice of probability density distribution for priors and likelihoods. This paper will propose the use of what we are calling Bayesian Monte Carlo (referred as BMC in the rest of the manuscript) in the whole energy range from thermal, resonance and continuum range for all nuclear reaction models at these energies. Algorithms will be presented based on Monte-Carlo sampling and Markov chain. The objectives of BMC are to propose a reference calculation for validating the GLS calculations and approximations, to test probability density distributions effects and to provide the framework of finding global minimum if several local minimums exist. Application to resolved resonance, unresolved resonance and continuum evaluation as well as multigroup cross section data assimilation will be presented.

  5. Unified equation of state for neutron stars on a microscopic basis

    NASA Astrophysics Data System (ADS)

    Sharma, B. K.; Centelles, M.; Viñas, X.; Baldo, M.; Burgio, G. F.

    2015-12-01

    We derive a new equation of state (EoS) for neutron stars (NS) from the outer crust to the core based on modern microscopic calculations using the Argonne v18 potential plus three-body forces computed with the Urbana model. To deal with the inhomogeneous structures of matter in the NS crust, we use a recent nuclear energy density functional that is directly based on the same microscopic calculations, and which is able to reproduce the ground-state properties of nuclei along the periodic table. The EoS of the outer crust requires the masses of neutron-rich nuclei, which are obtained through Hartree-Fock-Bogoliubov calculations with the new functional when they are unknown experimentally. To compute the inner crust, Thomas-Fermi calculations in Wigner-Seitz cells are performed with the same functional. Existence of nuclear pasta is predicted in a range of average baryon densities between ≃0.067 fm-3 and ≃0.0825 fm-3, where the transition to the core takes place. The NS core is computed from the new nuclear EoS assuming non-exotic constituents (core of npeμ matter). In each region of the star, we discuss the comparison of the new EoS with previous EoSs for the complete NS structure, widely used in astrophysical calculations. The new microscopically derived EoS fulfills at the same time a NS maximum mass of 2 M⊙ with a radius of 10 km, and a 1.5 M⊙ NS with a radius of 11.6 km.

  6. Assessment of Real-Time Time-Dependent Density Functional Theory (RT-TDDFT) in Radiation Chemistry: Ionized Water Dimer.

    PubMed

    Chalabala, Jan; Uhlig, Frank; Slavíček, Petr

    2018-03-29

    Ionization in the condensed phase and molecular clusters leads to a complicated chain of processes with coupled electron-nuclear dynamics. It is difficult to describe such dynamics with conventional nonadiabatic molecular dynamics schemes since the number of states swiftly increases as the molecular system grows. It is therefore attractive to use a direct electron and nuclear propagation such as the real-time time-dependent density functional theory (RT-TDDFT). Here we report a RT-TDDFT benchmark study on simulations of singly and doubly ionized states of a water monomer and dimer as a prototype for more complex processes in a condensed phase. We employed the RT-TDDFT based Ehrenfest molecular dynamics with a generalized gradient approximate (GGA) functional and compared it with wave-function-based surface hopping (SH) simulations. We found that the initial dynamics of a singly HOMO ionized water dimer is similar for both the RT-TDDFT/GGA and the SH simulations but leads to completely different reaction channels on a longer time scale. This failure is attributed to the self-interaction error in the GGA functionals and it can be avoided by using hybrid functionals with large fraction of exact exchange (represented here by the BHandHLYP functional). The simulations of doubly ionized states are reasonably described already at the GGA level. This suggests that the RT-TDDFT/GGA method could describe processes following the autoionization processes such as Auger emission, while its applicability to more complex processes such as intermolecular Coulombic decay remains limited.

  7. Enhanced NMR Discrimination of Pharmaceutically Relevant Molecular Crystal Forms through Fragment-Based Ab Initio Chemical Shift Predictions.

    PubMed

    Hartman, Joshua D; Day, Graeme M; Beran, Gregory J O

    2016-11-02

    Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13 C and 15 N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study.

  8. Enhanced NMR Discrimination of Pharmaceutically Relevant Molecular Crystal Forms through Fragment-Based Ab Initio Chemical Shift Predictions

    PubMed Central

    2016-01-01

    Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13C and 15N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study. PMID:27829821

  9. Effects of millimeter-wave electromagnetic exposure on the morphology and function of human cryopreserved spermatozoa.

    PubMed

    Volkova, N A; Pavlovich, E V; Gapon, A A; Nikolov, O T

    2014-09-01

    Exposure of human cryopreserved spermatozoa to millimeter-wave electromagnetic radiation of 0.03 mW/cm2 density for 5 min in normozoospermia and for 15 min in asthenozoospermia lead to increase of the fraction of mobile spermatozoa without impairing the membrane integrity and nuclear chromatin status and without apoptosis generation.

  10. Transtech PQI 301 pavement quality indicator device evaluation.

    DOT National Transportation Integrated Search

    2010-10-01

    The PQI 301 Asphalt Density device, developed by Transtech Systems, Inc., was evaluated by MDOT to determine if it could be used in lieu of the currently required nuclear density gauge. Nuclear density gauges require MDOT personnel to have a license,...

  11. Nuclear moisture-density evaluation : part II : final report.

    DOT National Transportation Integrated Search

    1966-06-01

    The determination of in-place density by the use of nuclear moisture-density devices has proven to be an exceptionally useful tool to the modern Highway Engineer. In order to adequately adapt this new testing equipment to efficient field use, evaluat...

  12. Density Functional Methods for Shock Physics and High Energy Density Science

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Fluctuations and symmetry energy in nuclear fragmentation dynamics.

    PubMed

    Colonna, M

    2013-01-25

    Within a dynamical description of nuclear fragmentation, based on the liquid-gas phase transition scenario, we explore the relation between neutron-proton density fluctuations and nuclear symmetry energy. We show that, along the fragmentation path, isovector fluctuations follow the evolution of the local density and approach an equilibrium value connected to the local symmetry energy. Higher-density regions are characterized by smaller average asymmetry and narrower isotopic distributions. This dynamical analysis points out that fragment final state isospin fluctuations can probe the symmetry energy of the density domains from which fragments originate.

  14. Nuclear inelastic scattering of heme proteins: from iron ligand vibrations to low energy protein modes

    NASA Astrophysics Data System (ADS)

    Moeser, Beate; Janoschka, Adam; Wolny, Juliusz A.; Filipov, Igor; Chumakov, Aleksandr I.; Walker, F. Ann; Schünemann, Volker

    2012-03-01

    The binding of the signal molecule nitric oxide (NO) to the NO transporter protein Nitrophorin 2 (NP2) from the bloodsucking insect Rhodnius prolixus has been characterized by Mössbauer spectroscopy as well as nuclear forward scattering (NFS) and nuclear inelastic scattering (NIS). A striking feature of the vibrational spectrum obtained from NP2-NO is a vibration at 594 cm - 1. This mode is assigned to a Fe-NO stretching mode via simulation of the NIS data by density functional theory (DFT) coupled with molecular mechanics (MM) methods. At frequencies below 100 cm - 1 collective motions like heme doming occur which could explain spectroscopic features observed by NIS at these low energies.

  15. On the electrophilic character of molecules through its relation with electronegativity and chemical hardness.

    PubMed

    Islam, Nazmul; Ghosh, Dulal C

    2012-01-01

    Electrophilicity is an intrinsic property of atoms and molecules. It probably originates logistically with the involvement in the physical process of electrostatics of soaked charge in electronic shells and the screened nuclear charge of atoms. Motivated by the existing view of conceptual density functional theory that similar to electronegativity and hardness equalization, there should be a physical process of equalization of electrophilicity during the chemical process of formation of hetero nuclear molecules, we have developed a new theoretical scheme and formula for evaluating the electrophilicity of hetero nuclear molecules. A comparative study with available bench marking reveals that the hypothesis of electrophilicity and equalization, and the present method of evaluating equalized electrophilicity, are scientifically promising.

  16. On the Electrophilic Character of Molecules Through Its Relation with Electronegativity and Chemical Hardness

    PubMed Central

    Islam, Nazmul; Ghosh, Dulal C.

    2012-01-01

    Electrophilicity is an intrinsic property of atoms and molecules. It probably originates logistically with the involvement in the physical process of electrostatics of soaked charge in electronic shells and the screened nuclear charge of atoms. Motivated by the existing view of conceptual density functional theory that similar to electronegativity and hardness equalization, there should be a physical process of equalization of electrophilicity during the chemical process of formation of hetero nuclear molecules, we have developed a new theoretical scheme and formula for evaluating the electrophilicity of hetero nuclear molecules. A comparative study with available bench marking reveals that the hypothesis of electrophilicity and equalization, and the present method of evaluating equalized electrophilicity, are scientifically promising. PMID:22408445

  17. Site-selective detection of vibrational modes of an iron atom in a trinuclear complex

    NASA Astrophysics Data System (ADS)

    Faus, Isabelle; Rackwitz, Sergej; Wolny, Juliusz A.; Banerjee, Atanu; Kelm, Harald; Krüger, Hans-Jörg; Schlage, Kai; Wille, Hans-Christian; Schünemann, Volker

    2016-12-01

    Nuclear inelastic scattering (NIS) experiments on the trinuclear complex [57Fe{L-N4(CH2Fc)2} (CH3CN)2](ClO4)2 have been performed. The octahedral iron ion in the complex was labelled with 57Fe and thereby exclusively the vibrational modes of this iron ion have been detected with NIS. The analysis of nuclear forward scattering (NFS) data yields a ferrous low-spin state for the 57Fe labelled iron ion. The simulation of the partial density of states (pDOS) for the octahedral low-spin iron(II) ion of the complex by density functional theory (DFT) calculations is in excellent agreement with the experimental pDOS of the complex determined from the NIS data obtained at 80 K. Thereby it was possible to assign almost each of the experimentally observed NIS bands to the corresponding molecular vibrational modes.

  18. Nuclear quantum shape-phase transitions in odd-mass systems

    NASA Astrophysics Data System (ADS)

    Quan, S.; Li, Z. P.; Vretenar, D.; Meng, J.

    2018-03-01

    Microscopic signatures of nuclear ground-state shape-phase transitions in odd-mass Eu isotopes are explored starting from excitation spectra and collective wave functions obtained by diagonalization of a core-quasiparticle coupling Hamiltonian based on energy density functionals. As functions of the physical control parameter—the number of nucleons—theoretical low-energy spectra, two-neutron separation energies, charge isotope shifts, spectroscopic quadrupole moments, and E 2 reduced transition matrix elements accurately reproduce available data and exhibit more-pronounced discontinuities at neutron number N =90 compared with the adjacent even-even Sm and Gd isotopes. The enhancement of the first-order quantum phase transition in odd-mass systems can be attributed to a shape polarization effect of the unpaired proton which, at the critical neutron number, starts predominantly coupling to Gd core nuclei that are characterized by larger quadrupole deformation and weaker proton pairing correlations compared with the corresponding Sm isotopes.

  19. Sum-over-states density functional perturbation theory: Prediction of reliable 13C, 15N, and 17O nuclear magnetic resonance chemical shifts

    NASA Astrophysics Data System (ADS)

    Olsson, Lars; Cremer, Dieter

    1996-11-01

    Sum-over-states density functional perturbation theory (SOS-DFPT) has been used to calculate 13C, 15N, and 17O NMR chemical shifts of 20 molecules, for which accurate experimental gas-phase values are available. Compared to Hartree-Fock (HF), SOS-DFPT leads to improved chemical shift values and approaches the degree of accuracy obtained with second order Møller-Plesset perturbation theory (MP2). This is particularly true in the case of 15N chemical shifts where SOS-DFPT performs even better than MP2. Additional improvements of SOS-DFPT chemical shifts can be obtained by empirically correcting diamagnetic and paramagnetic contributions to compensate for deficiencies which are typical of DFT.

  20. Modeling of oxygen incorporation in Th, ThC, and ThN by density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2017-12-01

    Oxygen incorporation in nuclear fuel materials is an important issue deserving investigation due to its influence on thermophysical and structural properties. Even if there has been a renewed interest in thorium and thorium compounds in the last years, there is still not much research done on this topic. In this work, we study, by means of density functional theory calculations, the incorporation of oxygen in Th, ThC, and ThN. We analyze the electronic structure finding a characteristic peak to be attributed to oxygen incorporation. We also calculate incorporation and solution energies and obtain migration energies of oxygen through different paths finding that migration through vacancy sites is more energetically favorable than through interstitial ones.

  1. Dependence of two-proton radioactivity on nuclear pairing models

    NASA Astrophysics Data System (ADS)

    Oishi, Tomohiro; Kortelainen, Markus; Pastore, Alessandro

    2017-10-01

    Sensitivity of two-proton emitting decay to nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the 6Be nucleus assuming α +p +p configuration, and its decay process is described as a time evolution of the three-body resonance state. For a proton-proton subsystem, a schematic density-dependent contact (SDDC) pairing model is employed. From the time-dependent calculation, we observed the exponential decay rule of a two-proton emission. It is shown that the density dependence does not play a major role in determining the decay width, which can be controlled only by the asymptotic strength of the pairing interaction. This asymptotic pairing sensitivity can be understood in terms of the dynamics of the wave function driven by the three-body Hamiltonian, by monitoring the time-dependent density distribution. With this simple SDDC pairing model, there remains an impossible trinity problem: it cannot simultaneously reproduce the empirical Q value, decay width, and the nucleon-nucleon scattering length. This problem suggests that a further sophistication of the theoretical pairing model is necessary, utilizing the two-proton radioactivity data as the reference quantities.

  2. Ultrafast equilibration of excited electrons in dynamical simulations.

    PubMed

    Lin, Zhibin; Allen, Roland E

    2009-12-02

    In our density-functional-based simulations of materials responding to femtosecond-scale laser pulses, we have observed a potentially useful phenomenon: the excited electrons automatically equilibrate to a Fermi-Dirac distribution within ∼100 fs, solely because of their coupling to the nuclear motion, even though the resulting electronic temperature is one to two orders of magnitude higher than the kinetic temperature defined by the nuclear motion. Microscopic simulations like these can then provide the separate electronic and kinetic temperatures, chemical potentials, pressures, and nonhydrostatic stresses as input for studies on larger lengths and timescales.

  3. Multiple Chirality in Nuclear Rotation: A Microscopic View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, P. W.

    Covariant density functional theory and three-dimensional tilted axis cranking are used to investigate multiple chirality in nuclear rotation for the first time in a fully self-consistent and microscopic way. Two distinct sets of chiral solutions with negative and positive parities, respectively, are found in the nucleus 106Rh. The negative-parity solutions reproduce well the corresponding experimental spectrum as well as the B(M1)/B(E2) ratios of the transition strengths. Finally, this indicates that a predicted positive-parity chiral band should also exist. Therefore, it provides a further strong hint that multiple chirality is realized in nuclei.

  4. Multiple Chirality in Nuclear Rotation: A Microscopic View

    DOE PAGES

    Zhao, P. W.

    2017-10-10

    Covariant density functional theory and three-dimensional tilted axis cranking are used to investigate multiple chirality in nuclear rotation for the first time in a fully self-consistent and microscopic way. Two distinct sets of chiral solutions with negative and positive parities, respectively, are found in the nucleus 106Rh. The negative-parity solutions reproduce well the corresponding experimental spectrum as well as the B(M1)/B(E2) ratios of the transition strengths. Finally, this indicates that a predicted positive-parity chiral band should also exist. Therefore, it provides a further strong hint that multiple chirality is realized in nuclei.

  5. Ab initio modeling of point defects, self-diffusion, and incorporation of impurities in thorium

    NASA Astrophysics Data System (ADS)

    Daroca, D. Pérez

    2017-02-01

    Research on Generation-IV nuclear reactors has boosted the investigation of thorium as nuclear fuel. By means of first-principles calculations within the framework of density functional theory, structural properties and phonon dispersion curves of Th are obtained. These results agreed very well with previous ones. The stability and formation energies of vacancies, interstitial and divacancies are studied. It is found that vacancies are the energetically preferred defects. The incorporation energies of He, Xe, and Kr atoms in Th defects are analyzed. Self-diffusion, migration paths and activation energies are also calculated.

  6. The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, X. W.; Lim, Y.; Zhao, P. W.

    The ground-state properties of nuclei with 8more » $$\\leqslant$$ Z $$\\leqslant$$ 120 from the proton drip line to the neutron drip line have been investigated using the relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1. With the effects of the continuum included, there are totally 9035 nuclei predicted to be bound, which largely extends the existing nuclear landscapes predicted with other methods. The calculated binding energies, separation energies, neutron and proton Fermi surfaces, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, ground-state spins and parities are tabulated. The extension of the nuclear landscape obtained with RCHB is discussed in detail, in particular for the neutron-rich side, in comparison with the relativistic mean field calculations without pairing correlations and also other predicted landscapes. Here, it is found that the coupling between the bound states and the continuum due to the pairing correlations plays an essential role in extending the nuclear landscape. The systematics of the separation energies, radii, densities, potentials and pairing energies of the RCHB calculations are also discussed. In addition, the α-decay energies and proton emitters based on the RCHB calculations are investigated.« less

  7. High-Resolution Whole-Genome Sequencing Reveals That Specific Chromatin Domains from Most Human Chromosomes Associate with Nucleoli

    PubMed Central

    van Koningsbruggen, Silvana; Gierliński, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J.; Ariyurek, Yavuz; den Dunnen, Johan T.

    2010-01-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope. PMID:20826608

  8. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli.

    PubMed

    van Koningsbruggen, Silvana; Gierlinski, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J; Ariyurek, Yavuz; den Dunnen, Johan T; Lamond, Angus I

    2010-11-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope.

  9. The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory

    DOE PAGES

    Xia, X. W.; Lim, Y.; Zhao, P. W.; ...

    2017-11-01

    The ground-state properties of nuclei with 8more » $$\\leqslant$$ Z $$\\leqslant$$ 120 from the proton drip line to the neutron drip line have been investigated using the relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1. With the effects of the continuum included, there are totally 9035 nuclei predicted to be bound, which largely extends the existing nuclear landscapes predicted with other methods. The calculated binding energies, separation energies, neutron and proton Fermi surfaces, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, ground-state spins and parities are tabulated. The extension of the nuclear landscape obtained with RCHB is discussed in detail, in particular for the neutron-rich side, in comparison with the relativistic mean field calculations without pairing correlations and also other predicted landscapes. Here, it is found that the coupling between the bound states and the continuum due to the pairing correlations plays an essential role in extending the nuclear landscape. The systematics of the separation energies, radii, densities, potentials and pairing energies of the RCHB calculations are also discussed. In addition, the α-decay energies and proton emitters based on the RCHB calculations are investigated.« less

  10. Systematic structure of the neutron drip-line {sup 22}C nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana

    2014-10-24

    In the present work we systematically discuss the nuclear structure of the the heaviest particle-bound carbon isotope, {sup 22}C. The ground state wave function of the carbon isotope is calculated using the {sup 20}C core plus two-valence neutron based on a phenomenological mean-field MF potential. We apply the deduced wave function to provide the nuclear matter density which is necessary in the calculations of the total reaction cross section. Calculations show that there is a reasonable good description of the experimental binding energy BE and root-mean square RMS radius. The exotic structure and configuration of the ground state carbon isotopemore » is explained and a consistent explanation on the two-neutron halo (Borromean) nucleus is given.« less

  11. Image Analysis of DNA Fiber and Nucleus in Plants.

    PubMed

    Ohmido, Nobuko; Wako, Toshiyuki; Kato, Seiji; Fukui, Kiichi

    2016-01-01

    Advances in cytology have led to the application of a wide range of visualization methods in plant genome studies. Image analysis methods are indispensable tools where morphology, density, and color play important roles in the biological systems. Visualization and image analysis methods are useful techniques in the analyses of the detailed structure and function of extended DNA fibers (EDFs) and interphase nuclei. The EDF is the highest in the spatial resolving power to reveal genome structure and it can be used for physical mapping, especially for closely located genes and tandemly repeated sequences. One the other hand, analyzing nuclear DNA and proteins would reveal nuclear structure and functions. In this chapter, we describe the image analysis protocol for quantitatively analyzing different types of plant genome, EDFs and interphase nuclei.

  12. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores.

    PubMed

    Law, Y K; Hassanali, A A

    2018-03-14

    In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.

  13. The importance of nuclear quantum effects in spectral line broadening of optical spectra and electrostatic properties in aromatic chromophores

    NASA Astrophysics Data System (ADS)

    Law, Y. K.; Hassanali, A. A.

    2018-03-01

    In this work, we examine the importance of nuclear quantum effects on capturing the line broadening and vibronic structure of optical spectra. We determine the absorption spectra of three aromatic molecules indole, pyridine, and benzene using time dependent density functional theory with several molecular dynamics sampling protocols: force-field based empirical potentials, ab initio simulations, and finally path-integrals for the inclusion of nuclear quantum effects. We show that the absorption spectrum for all these chromophores are similarly broadened in the presence of nuclear quantum effects regardless of the presence of hydrogen bond donor or acceptor groups. We also show that simulations incorporating nuclear quantum effects are able to reproduce the heterogeneous broadening of the absorption spectra even with empirical force fields. The spectral broadening associated with nuclear quantum effects can be accounted for by the broadened distribution of chromophore size as revealed by a particle in the box model. We also highlight the role that nuclear quantum effects have on the underlying electronic structure of aromatic molecules as probed by various electrostatic properties.

  14. Matrix metalloproteinase-9 expression in the nuclear compartment of neurons and glial cells in aging and stroke.

    PubMed

    Pirici, Daniel; Pirici, Ionica; Mogoanta, Laurentiu; Margaritescu, Otilia; Tudorica, Valerica; Margaritescu, Claudiu; Ion, Daniela A; Simionescu, Cristiana; Coconu, Marieta

    2012-10-01

    Matrix metalloproteinases (MMPs) are well-recognized denominators for extracellular matrix remodeling in the pathology of both ischemic and hemorrhagic strokes. Recent data on non-nervous system tissue showed intracellular and even intranuclear localizations for different MMPs, and together with this, a plethora of new functions have been proposed for these intracellular active enzymes, but are mostly related to apoptosis induction and malign transformation. In neurons and glial cells, on human tissue, animal models and cell cultures, different active MMPs have been also proven to be located in the intra-cytoplasmic or intra-nuclear compartments, with no clear-cut function. In the present study we show for the first time on human tissue the nuclear expression of MMP-9, mainly in neurons and to a lesser extent in astrocytes. We have studied ischemic and hemorrhagic stroke patients, as well as aged control patients. Age and ischemic suffering seemed to be the best predictors for an elevated MMP-9 nuclear expression, and there was no evidence of a clear-cut extracellular proteolytic activity for this compartment, as revealed by intact vascular basement membranes and assessment of vascular densities. More, the majority of the cells expressing MMP-9 in the nuclear compartment also co-expressed activated-caspase 3, indicating a possible link between nuclear MMP-9 localization and apoptosis in neuronal and glial cells following an ischemic or hemorrhagic event. These results, besides showing for the first time the nuclear localization of MMP-9 on a large series of human stroke and aged brain tissues, raise new questions regarding the unknown spectrum of the functions MMPs in human CNS pathology. © 2011 Japanese Society of Neuropathology.

  15. Topics in QCD at Nonzero Temperature and Density

    NASA Astrophysics Data System (ADS)

    Pangeni, Kamal

    Understanding the behavior of matter at ultra-high density such as neutron stars require the knowledge of ground state properties of Quantum chromodynamics (QCD) at finite chemical potential. However, this task has turned out to be very difficult because of two main reasons: 1) QCD may still be strongly coupled at those regimes making perturbative calculations unreliable and 2) QCD at finite density suffers from the sign problem that makes the use of lattice simulation problematic and it even affects phenomenological models. In the first part of this thesis, we show that the sign problem in analytical calculations of finite density models can be solved by considering the CK-symmetric, where C is charge conjugation and K is complex conjugation, complex saddle points of the effective action. We then explore the properties and consequences of such complex saddle points at non-zero temperature and density. Due to CK symmetry, the mass matrix eigenvalues in these models are not always real but can be complex, which results in damped oscillation of the density-density correlation function, a new feature of finite density models. To address the generality of such behavior, we next consider a lattice model of QCD with static quarks at strong-coupling. Computation of the mass spectrum confirms the existence of complex eigenvalues in much of temperature-chemical potential plane. This provides an independent confirmation of our results obtained using phenomenological models of QCD. The existence of regions in parameter space where density-density correlation function exhibit damped oscillation is one of the hallmarks of typical liquid-gas system. The formalism developed to tackle the sign problem in QCD models actually gives a simple understanding for the existence of such behavior in liquid-gas system. To this end, we develop a generic field theoretic model for the treatment of liquid-gas phase transition. An effective field theory at finite density derived from a fundamental four dimensional field theory turns out to be complex but CK symmetric. The existence of CK symmetry results in complex mass eigenvalues, which in turn leads to damped oscillatory behavior of the density-density correlation function. In the last part of this thesis, we study the effect of large amplitude density oscillations on the transport properties of superfluid nuclear matter. In nuclear matter at neutron-star densities and temperature, Cooper pairing leads to the formations of a gap in the nucleon excitation spectra resulting in exponentially strong Boltzmann suppression of many transport coefficients. Previous calculations have shown evidence that density oscillations of sufficiently large amplitude can overcome this suppression for flavor-changing beta processes via the mechanism of "gap-bridging". We address the simplifications made in that initial work, and show that gap bridging can counteract Boltzmann suppression of neutrino emissivity for the realistic case of modified Urca processes in matter with 3 P2 neutron pairing.

  16. The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2017-11-01

    Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.

  17. Trajectory-based nonadiabatic dynamics with time-dependent density functional theory.

    PubMed

    Curchod, Basile F E; Rothlisberger, Ursula; Tavernelli, Ivano

    2013-05-10

    Understanding the fate of an electronically excited molecule constitutes an important task for theoretical chemistry, and practical implications range from the interpretation of atto- and femtosecond spectroscopy to the development of light-driven molecular machines, the control of photochemical reactions, and the possibility of capturing sunlight energy. However, many challenging conceptual and technical problems are involved in the description of these phenomena such as 1) the failure of the well-known Born-Oppenheimer approximation; 2) the need for accurate electronic properties such as potential energy surfaces, excited nuclear forces, or nonadiabatic coupling terms; and 3) the necessity of describing the dynamics of the photoexcited nuclear wavepacket. This review provides an overview of the current methods to address points 1) and 3) and shows how time-dependent density functional theory (TDDFT) and its linear-response extension can be used for point 2). First, the derivation of Ehrenfest dynamics and nonadiabatic Bohmian dynamics is discussed and linked to Tully's trajectory surface hopping. Second, the coupling of these trajectory-based nonadiabatic schemes with TDDFT is described in detail with special emphasis on the derivation of the required electronic structure properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structure and dynamics of [3.3]paracyclophane as studied by nuclear magnetic resonance and density functional theory calculations.

    PubMed

    Dodziuk, Helena; Szymański, Sławomir; Jaźwiński, Jarosław; Marchwiany, Maciej E; Hopf, Henning

    2010-09-30

    Strained cyclophanes with small (-CH(2)-)(n) bridges connecting two benzene rings are interesting objects of basic research, mostly because of the nonplanarity of the rings and of interference of π-electrons of the latter. For title [3.3]paracyclophane, in solutions occurring in two interconverting cis and trans conformers, the published nuclear magnetic resonance (NMR) data are incomplete and involve its partially deuterated isotopomers. In this paper, variable-temperature NMR studies of its perprotio isotopomer combined with DFT quantum chemical calculations provide a complete characterization of the solution structure, NMR parameters, and interconversion of the cis and trans isomers of the title compound. Using advanced methods of spectral analysis, total quantitative interpretation of its proton NMR spectra in both the static and dynamic regimes is conducted. In particular, not only the geminal but also all of the vicinal J(HH) values for the bridge protons are determined, and for the first time, complete Arrhenius data for the interconversion process are reported. The experimental proton and carbon chemical shifts and the (n)J(HH), (1)J(CH), and (1)J(CC) coupling constants are satisfactorily reproduced theoretically by the values obtained from the density functional theory calculations.

  19. Fe-H/D stretching and bending modes in nuclear resonant vibrational, Raman and infrared spectroscopies: Comparisons of density functional theory and experiment

    PubMed Central

    Pelmenschikov, Vladimir; Guo, Yisong; Wang, Hongxin; Cramer, Stephen P.; Case, David A.

    2010-01-01

    Infrared, Raman, and nuclear resonant vibrational (NRVS) spectroscopies have been used to address the Fe-H bonding in trans-Fe(H)(CO) iron hydride compound, Fe(H)(CO)(dppe)2, dppe = 1,2-bis(diphenylphosphino)ethane. H and D isotopomers of the compound, with the selective substitution at the metal-coordinated hydrogen, have been considered in order to address the Fe-H/D stretching and bending modes. Experimental results are compared to the normal mode analysis by the density functional theory (DFT). The results are that (i) the IR spectrum does not clearly show Fe–H stretching or bending modes; (ii) Fe–H stretching modes are clear but weak in the Raman spectrum, and Fe–H bending modes are weak; (iii) NRVS 57Fe spectroscopy resolves Fe-H bending clearly, but Fe–H or Fe–D stretching is above its experimentally resolved frequency range. DFT caclulations (with no scaling of frequencies) show intensities and peak locations that allow unambigous correlations between observed and calculated features, with frequency errors generally less than 15 cm−1. Prospects for using these techniques to unravel vibrational modes of protein active sites are discussed. PMID:21322496

  20. Collisional considerations in axial-collection plasma mass filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochs, I. E.; Gueroult, R.; Fisch, N. J.

    The chemical inhomogeneity of nuclear waste makes chemical separations difficult, while the correlation between radioactivity and nuclear mass makes mass-based separation, and in particular plasma-based separation, an attractive alternative. Here, we examine a particular class of plasma mass filters, namely filters in which (a) species of different masses are collected along magnetic field lines at opposite ends of an open-field-line plasma device and (b) gyro-drift effects are important for the separation process. Using an idealized cylindrical model, we derive a set of dimensionless parameters which provide minimum necessary conditions for an effective mass filter function in the presence of ion-ionmore » and ion-neutral collisions. Through simulations of the constant-density profile, turbulence-free devices, we find that these parameters accurately describe the mass filter performance in more general magnetic geometries. We then use these parameters to study the design and upgrade of current experiments, as well as to derive general scalings for the throughput of production mass filters. Most importantly, we find that ion temperatures above 3 eV and magnetic fields above 104 G are critical to ensure a feasible mass filter function when operating at an ion density of 10 13 cm –3.« less

  1. Collisional considerations in axial-collection plasma mass filters

    DOE PAGES

    Ochs, I. E.; Gueroult, R.; Fisch, N. J.; ...

    2017-04-01

    The chemical inhomogeneity of nuclear waste makes chemical separations difficult, while the correlation between radioactivity and nuclear mass makes mass-based separation, and in particular plasma-based separation, an attractive alternative. Here, we examine a particular class of plasma mass filters, namely filters in which (a) species of different masses are collected along magnetic field lines at opposite ends of an open-field-line plasma device and (b) gyro-drift effects are important for the separation process. Using an idealized cylindrical model, we derive a set of dimensionless parameters which provide minimum necessary conditions for an effective mass filter function in the presence of ion-ionmore » and ion-neutral collisions. Through simulations of the constant-density profile, turbulence-free devices, we find that these parameters accurately describe the mass filter performance in more general magnetic geometries. We then use these parameters to study the design and upgrade of current experiments, as well as to derive general scalings for the throughput of production mass filters. Most importantly, we find that ion temperatures above 3 eV and magnetic fields above 104 G are critical to ensure a feasible mass filter function when operating at an ion density of 10 13 cm –3.« less

  2. Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes

    PubMed Central

    Bolzer, Andreas; Kreth, Gregor; Solovei, Irina; Koehler, Daniela; Saracoglu, Kaan; Fauth, Christine; Müller, Stefan; Eils, Roland; Cremer, Christoph; Speicher, Michael R

    2005-01-01

    Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D) chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs) in nuclei of quiescent (G0) and cycling (early S-phase) human diploid fibroblasts (46, XY). Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes—independently of their gene density—were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding. PMID:15839726

  3. Equations of state for crystalline zirconium iodide: The role of dispersion

    NASA Astrophysics Data System (ADS)

    Rossi, Matthew L.; Taylor, Christopher D.

    2013-02-01

    We present the first-principle equations of state of several zirconium iodides, ZrI2, ZrI3, and ZrI4, computed using density functional theory methods that apply various methods for introducing the dispersion correction. Iodides formed due to reaction of molecular or atomic iodine with zirconium and zircaloys are of particular interest due to their application to the cladding material used in the fabrication of nuclear fuel rods. Stress corrosion cracking (SCC), associated with fission product chemistry with the clad material, is a major concern in the life cycle of nuclear fuels, as many of the observed rod failures have occurred due to pellet-cladding chemical interactions (PCCI) [A. Atrens, G. Dannhäuser, G. Bäro, Stress-corrosion-cracking of zircaloy-4 cladding tubes, Journal of Nuclear Materials 126 (1984) 91-102; P. Rudling, R. Adamson, B. Cox, F. Garzarolli, A. Strasser, High burn-up fuel issues, Nuclear Engineering and Technology 40 (2008) 1-8]. A proper understanding of the physical properties of the corrosion products is, therefore, required for the development of a comprehensive SCC model. In this particular work, we emphasize that, while existing modeling techniques include methods to compute crystal structures and associated properties, it is important to capture intermolecular forces not traditionally included, such as van der Waals (dispersion) correction. Furthermore, crystal structures with stoichiometries favoring a high I:Zr ratio are found to be particularly sensitive, such that traditional density functional theory approaches that do not incorporate dispersion incorrectly predict significantly larger volumes of the lattice. This latter point is related to the diffuse nature of the iodide electron cloud.

  4. The Nuclear Energy Density Functional Formalism

    NASA Astrophysics Data System (ADS)

    Duguet, T.

    The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a Hamiltonian-based picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a mathematically meaningful fashion even if E[g',g] does not derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making any reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a physical standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.

  5. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture.

    PubMed

    Mauceri, Daniela; Hagenston, Anna M; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-09-18

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Activation of muscarinic receptors in rat parotid acinar cells induces AQP5 trafficking to nuclei and apical plasma membrane.

    PubMed

    Cho, Gota; Bragiel, Aneta M; Wang, Di; Pieczonka, Tomasz D; Skowronski, Mariusz T; Shono, Masayuki; Nielsen, Søren; Ishikawa, Yasuko

    2015-04-01

    The subcellular distribution of aquaporin-5 (AQP5) in rat parotid acinar cells in response to muscarinic acetylcholine receptor (mAChR) activation remains unclear. Immunoconfocal and immunoelectron microscopy were used to visualize the distribution of AQP5 in parotid acinar cells. Western blotting was used to analyze AQP5 levels in membranes. To clarify the characteristics of membrane domains associated with AQP5, detergent solubility and sucrose-density flotation experiments were performed. Under control conditions, AQP5 was diffusely distributed on the apical plasma membrane (APM) and apical plasmalemmal region and throughout the cytoplasm. Upon mAChR activation, AQP5 was predominantly located in the nucleus, APM and lateral plasma membrane (LPM). Subsequently, localization of AQP5 in the nucleus, APM and LPM was decreased. Prolonged atropine treatment inhibited mAChR agonist-induced translocation of AQP5 to the nucleus, APM and LPM. AQP5 levels were enhanced in isolated nuclei and nuclear membranes prepared from parotid tissues incubated with mAChR agonist. mAChR agonist induced AQP5 levels in both soluble and insoluble nuclear fractions solubilized with Triton X-100 or Lubrol WX. Small amounts of AQP5 in nuclei were detected using low-density sucrose gradient. When AQP5 was present in the nuclear membrane, nuclear size decreased. The activation of mAChR induced AQP5 translocation to the nucleus, APM and LPM, and AQP5 may trigger water transport across the nuclear membrane and plasma membrane in rat parotid acinar cells. AQP5 translocates to the nuclear membrane and may trigger the movement of water, inducing shrinkage of the nucleus and the start of nuclear functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Highly Accurate Calculations of the Phase Diagram of Cold Lithium

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke; Baczewski, Andrew

    The phase diagram of lithium is particularly complicated, exhibiting many different solid phases under the modest application of pressure. Experimental efforts to identify these phases using diamond anvil cells have been complemented by ab initio theory, primarily using density functional theory (DFT). Due to the multiplicity of crystal structures whose enthalpy is nearly degenerate and the uncertainty introduced by density functional approximations, we apply the highly accurate many-body diffusion Monte Carlo (DMC) method to the study of the solid phases at low temperature. These calculations span many different phases, including several with low symmetry, demonstrating the viability of DMC as a method for calculating phase diagrams for complex solids. Our results can be used as a benchmark to test the accuracy of various density functionals. This can strengthen confidence in DFT based predictions of more complex phenomena such as the anomalous melting behavior predicted for lithium at high pressures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Nakata, Hiroya; Fedorov, Dmitri G.; Zahariev, Federico; Schmidt, Michael W.; Kitaura, Kazuo; Gordon, Mark S.; Nakamura, Shinichiro

    2015-03-01

    Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluated for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in SN2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented.

  9. Symmetry Energy and Its Components in Finite Nuclei

    NASA Astrophysics Data System (ADS)

    Antonov, A. N.; Gaidarov, M. K.; Kadrev, D. N.; Sarriguren, P.; Moya de Guerra, E.

    2018-05-01

    We derive the volume and surface components of the nuclear symmetry energy (NSE) and their ratio within the coherent density fluctuation model. The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner and Skyrme energy-density functionals for nuclear matter. The obtained values of the volume and surface contributions to the NSE and their ratio for the Ni, Sn, and Pb isotopic chains are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, and excitation energies to isobaric analog states (IAS). Apart from the density dependence investigated in our previous works, we study also the temperature dependence of the symmetry energy in finite nuclei in the framework of the local density approximation combining it with the self-consistent Skyrme-HFB method using the cylindrical transformed deformed harmonic-oscillator basis. The results for the thermal evolution of the NSE in the interval T = 0–4 MeV show that its values decrease with temperature. The investigations of the T-dependence of the neutron and proton root-mean-square radii and the corresponding neutron skin thickness point out that the effect of temperature leads mainly to a substantial increase of the neutron radii and skins, especially in nuclei which are more rich of neutrons.

  10. Numerical studies on alpha production from high energy proton beam interaction with Boron

    NASA Astrophysics Data System (ADS)

    Moustaizis, S. D.; Lalousis, P.; Hora, H.; Korn, G.

    2017-05-01

    Numerical investigations on high energy proton beam interaction with high density Boron plasma allows to simulate conditions concerning the alpha production from recent experimental measurements . The experiments measure the alpha production due to p11B nuclear fusion reactions when a laser-driven high energy proton beam interacts with Boron plasma produced by laser beam interaction with solid Boron. The alpha production and consequently the efficiency of the process depends on the initial proton beam energy, proton beam density, the Boron plasma density and temperature, and their temporal evolution. The main advantage for the p11B nuclear fusion reaction is the production of three alphas with total energy of 8.9 MeV, which could enhance the alpha heating effect and improve the alpha production. This particular effect is termed in the international literature as the alpha avalanche effect. Numerical results using a multi-fluid, global particle and energy balance, code shows the alpha production efficiency as a function of the initial energy of the proton beam, the Boron plasma density, the initial Boron plasma temperature and the temporal evolution of the plasma parameters. The simulations enable us to determine the interaction conditions (proton beam - B plasma) for which the alpha heating effect becomes important.

  11. Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis (III) HFBTHO (v3.00): A new version of the program

    NASA Astrophysics Data System (ADS)

    Perez, R. Navarro; Schunck, N.; Lasseri, R.-D.; Zhang, C.; Sarich, J.

    2017-11-01

    We describe the new version 3.00 of the code HFBTHO that solves the nuclear Hartree-Fock (HF) or Hartree-Fock-Bogolyubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the full Gogny force in both particle-hole and particle-particle channels, (ii) the calculation of the nuclear collective inertia at the perturbative cranking approximation, (iii) the calculation of fission fragment charge, mass and deformations based on the determination of the neck, (iv) the regularization of zero-range pairing forces, (v) the calculation of localization functions, (vi) a MPI interface for large-scale mass table calculations. Program Files doi:http://dx.doi.org/10.17632/c5g2f92by3.1 Licensing provisions: GPL v3 Programming language: FORTRAN-95 Journal reference of previous version: M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184 (2013). Does the new version supersede the previous one: Yes Summary of revisions: 1. the Gogny force in both particle-hole and particle-particle channels was implemented; 2. the nuclear collective inertia at the perturbative cranking approximation was implemented; 3. fission fragment charge, mass and deformations were implemented based on the determination of the position of the neck between nascent fragments; 4. the regularization method of zero-range pairing forces was implemented; 5. the localization functions of the HFB solution were implemented; 6. a MPI interface for large-scale mass table calculations was implemented. Nature of problem:HFBTHO is a physics computer code that is used to model the structure of the nucleus. It is an implementation of the energy density functional (EDF) approach to atomic nuclei, where the energy of the nucleus is obtained by integration over space of some phenomenological energy density, which is itself a functional of the neutron and proton intrinsic densities. In the present version of HFBTHO, the energy density derives either from the zero-range Skyrme or the finite-range Gogny effective two-body interaction between nucleons. Nuclear super-fluidity is treated at the Hartree-Fock-Bogolyubov (HFB) approximation. Constraints on the nuclear shape allows probing the potential energy surface of the nucleus as needed e.g., for the description of shape isomers or fission. The implementation of a local scale transformation of the single-particle basis in which the HFB solutions are expanded provide a tool to properly compute the structure of weakly-bound nuclei. Solution method: The program uses the axial Transformed Harmonic Oscillator (THO) single-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes the Hartree-Fock-Bogolyubov Hamiltonian based on generalized Skyrme-like energy densities and zero-range pairing interactions or the finite-range Gogny force until a self-consistent solution is found. A previous version of the program was presented in M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184 (2013) 1592-1604 with much of the formalism presented in the original paper M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comput. Phys. Commun. 167 (2005) 43-63. Additional comments: The user must have access to (i) the LAPACK subroutines DSYEEVR, DSYEVD, DSYTRF and DSYTRI, and their dependencies, which compute eigenvalues and eigenfunctions of real symmetric matrices, (ii) the LAPACK subroutines DGETRI and DGETRF, which invert arbitrary real matrices, and (iii) the BLAS routines DCOPY, DSCAL, DGEMM and DGEMV for double-precision linear algebra (or provide another set of subroutines that can perform such tasks). The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/.

  12. The any particle molecular orbital grid-based Hartree-Fock (APMO-GBHF) approach

    NASA Astrophysics Data System (ADS)

    Posada, Edwin; Moncada, Félix; Reyes, Andrés

    2018-02-01

    The any particle molecular orbital grid-based Hartree-Fock approach (APMO-GBHF) is proposed as an initial step to perform multi-component post-Hartree-Fock, explicitly correlated, and density functional theory methods without basis set errors. The method has been applied to a number of electronic and multi-species molecular systems. Results of these calculations show that the APMO-GBHF total energies are comparable with those obtained at the APMO-HF complete basis set limit. In addition, results reveal a considerable improvement in the description of the nuclear cusps of electronic and non-electronic densities.

  13. Enhancement of DFT-calculations at petascale: Nuclear Magnetic Resonance, Hybrid Density Functional Theory and Car-Parrinello calculations

    NASA Astrophysics Data System (ADS)

    Varini, Nicola; Ceresoli, Davide; Martin-Samos, Layla; Girotto, Ivan; Cavazzoni, Carlo

    2013-08-01

    One of the most promising techniques used for studying the electronic properties of materials is based on Density Functional Theory (DFT) approach and its extensions. DFT has been widely applied in traditional solid state physics problems where periodicity and symmetry play a crucial role in reducing the computational workload. With growing compute power capability and the development of improved DFT methods, the range of potential applications is now including other scientific areas such as Chemistry and Biology. However, cross disciplinary combinations of traditional Solid-State Physics, Chemistry and Biology drastically improve the system complexity while reducing the degree of periodicity and symmetry. Large simulation cells containing of hundreds or even thousands of atoms are needed to model these kind of physical systems. The treatment of those systems still remains a computational challenge even with modern supercomputers. In this paper we describe our work to improve the scalability of Quantum ESPRESSO (Giannozzi et al., 2009 [3]) for treating very large cells and huge numbers of electrons. To this end we have introduced an extra level of parallelism, over electronic bands, in three kernels for solving computationally expensive problems: the Sternheimer equation solver (Nuclear Magnetic Resonance, package QE-GIPAW), the Fock operator builder (electronic ground-state, package PWscf) and most of the Car-Parrinello routines (Car-Parrinello dynamics, package CP). Final benchmarks show our success in computing the Nuclear Magnetic Response (NMR) chemical shift of a large biological assembly, the electronic structure of defected amorphous silica with hybrid exchange-correlation functionals and the equilibrium atomic structure of height Porphyrins anchored to a Carbon Nanotube, on many thousands of CPU cores.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marketin, Tomislav, E-mail: marketin@phy.hr; Petković, Jelena; Paar, Nils

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied inmore » more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.« less

  15. A model for neutrino emission from nuclear accretion disks

    NASA Astrophysics Data System (ADS)

    Deaton, Michael

    2015-04-01

    Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).

  16. Beta decay rates of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Huther, Lutz; Petković, Jelena; Paar, Nils; Martínez-Pinedo, Gabriel

    2016-06-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  17. What Density Functional Theory could do for Quantum Information

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann

    2015-03-01

    The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Four-electron model for singlet and triplet excitation energy transfers with inclusion of coherence memory, inelastic tunneling and nuclear quantum effects

    NASA Astrophysics Data System (ADS)

    Suzuki, Yosuke; Ebina, Kuniyoshi; Tanaka, Shigenori

    2016-08-01

    A computational scheme to describe the coherent dynamics of excitation energy transfer (EET) in molecular systems is proposed on the basis of generalized master equations with memory kernels. This formalism takes into account those physical effects in electron-bath coupling system such as the spin symmetry of excitons, the inelastic electron tunneling and the quantum features of nuclear motions, thus providing a theoretical framework to perform an ab initio description of EET through molecular simulations for evaluating the spectral density and the temporal correlation function of electronic coupling. Some test calculations have then been carried out to investigate the dependence of exciton population dynamics on coherence memory, inelastic tunneling correlation time, magnitude of electronic coupling, quantum correction to temporal correlation function, reorganization energy and energy gap.

  19. Heart-Derived Stem Cells in Miniature Swine with Coronary Microembolization: Novel Ischemic Cardiomyopathy Model to Assess the Efficacy of Cell-Based Therapy

    PubMed Central

    Young, Rebeccah F.; Leiker, Merced M.; Suzuki, Takayuki

    2016-01-01

    A major problem in translating stem cell therapeutics is the difficulty of producing stable, long-term severe left ventricular (LV) dysfunction in a large animal model. For that purpose, extensive infarction was created in sinclair miniswine by injecting microspheres (1.5 × 106 microspheres, 45 μm diameter) in LAD. At 2 months after embolization, animals (n = 11) were randomized to receive allogeneic cardiosphere-derived cells derived from atrium (CDCs: 20 × 106, n = 5) or saline (untreated, n = 6). Four weeks after therapy myocardial function, myocyte proliferation (Ki67), mitosis (phosphor-Histone H3; pHH3), apoptosis, infarct size (TTC), myocyte nuclear density, and cell size were evaluated. CDCs injected into infarcted and remodeled remote myocardium (global infusion) increased regional function and global function contrasting no change in untreated animals. CDCs reduced infarct volume and stimulated Ki67 and pHH3 positive myocytes in infarct and remote regions. As a result, myocyte number (nuclear density) increased and myocyte cell diameter decreased in both infarct and remote regions. Coronary microembolization produces stable long-term ischemic cardiomyopathy. Global infusion of CDCs stimulates myocyte regeneration and improves left ventricular ejection fraction. Thus, global infusion of CDCs could become a new therapy to reverse LV dysfunction in patients with asymptomatic heart failure. PMID:27738436

  20. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  1. Suppression of radiation-induced point defects by rhenium and osmium interstitials in tungsten

    PubMed Central

    Suzudo, Tomoaki; Hasegawa, Akira

    2016-01-01

    Modeling the evolution of radiation-induced defects is important for finding radiation-resistant materials, which would be greatly appreciated in nuclear applications. We apply the density functional theory combined with comprehensive analyses of massive experimental database to indicate a mechanism to mitigate the effect of radiation on W crystals by adding particular solute elements that change the migration property of interstitials. The resultant mechanism is applicable to any body-centered-cubic (BCC) metals whose self-interstitial atoms become a stable crowdion and is expected to provide a general guideline for computational design of radiation-resistant alloys in the field of nuclear applications. PMID:27824134

  2. Solving the Nose-Hoover thermostat for Nuclear Pasta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez Garcia, M. Angeles

    2006-06-19

    At densities just below nuclear saturation density, there may be possible non-uniform spatial configurations of neutron rich matter. In this work we present a calculation using molecular dynamics techniques for a nuclear system interacting via a semiclassical potential depending on both positions and momenta and kept at fixed temperature by using the Nose-Hoover Thermostat.

  3. A radioluminescent nuclear battery using volumetric configuration: 63Ni solution/ZnS:Cu,Al/InGaP.

    PubMed

    Russo, Johnny; Litz, Marc; Ray, William; Smith, Brenda; Moyers, Richard

    2017-12-01

    Energy dense power sources are critical to the development of compact, remote sensors for terrestrial and space applications. Nuclear batteries using β - -emitting radioisotopes possess energy densities 1000 times greater than chemical batteries. Their power generation is a function of β - flux saturation point relative to the planar (2D) configuration, β - range, and semiconductor converter. An approach to increase power density in a beta-photovoltaic (β-PV) nuclear battery is described. By using volumetric (3D) configuration, the radioisotope, nickel-63 ( 63 Ni) in a chloride solution was integrated in a phosphor film (ZnS:Cu,Al) where the β - energy is converted into optical energy. The optical energy was converted to electrical energy via an indium gallium phosphate (InGaP) photovoltaic (PV) cell, which was optimized for low light illumination and closely matched to radioluminescence (RL) spectrum. With 15mCi of 63 Ni activity, the 3D configuration energy values surpassed 2D configuration results. The highest total power conversion efficiency (η t ) of 3D configuration was 0.289% at 200µm compared 0.0638% for 2D configuration at 50µm. The highest electrical power and η t for the 3D configuration were 3.35 nW e /cm 2 at an activity of 30mCi and 0.289% at an activity of 15mCi, respectively. By using 3D configuration, the interaction space between the radioisotope source and scintillation material increased, allowing for significant electrical energy output, relative to the 2D configuration. These initial results represent a first step to increase nuclear battery power density from microwatts to milliwatts per 1000cm 3 with the implementation of higher energy β - sources. Published by Elsevier Ltd.

  4. Structural characterization, solvent effects on nuclear magnetic shielding tensors, experimental and theoretical DFT studies on the vibrational and NMR spectra of 3-(acrylamido)phenylboronic acid

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Kaya, Mehmet Fatih; Dikmen, Gökhan

    2015-12-01

    Structural elucidation of 3-(acrylamido)phenylboronic acid (C9H10BNO3) was carried out with 1H, 13C and HETCOR NMR techniques. Solvent effects on nuclear magnetic shielding tensors were examined with deuterated dimethyl sulfoxide, acetone, methanol and water solvents. The correct order of appearance of carbon and hydrogen atoms on NMR scale from highest magnetic field region to the lowest one were investigated using different types of theoretical levels and the details of the levels were presented in this study. Stable structural conformers and vibrational band analysis of the title molecule (C9H10BNO3) were studied both experimental and theoretical viewpoints using FT-IR, Raman spectroscopic methods and density functional theory (DFT). FT-IR and Raman spectra were obtained in the region of 4000-400 cm-1, and 3700-10 cm-1, respectively. Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d, p) basis set was included in the search for optimized structures and vibrational wavenumbers. Experimental and theoretical results show that after application of a suitable scaling factor density functional B3LYP method resulted in acceptable results for predicting vibrational wavenumbers except OH and NH stretching modes which is most likely arising from increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges those of which are not fully taken into consideration in theoretical processes. To make a more quantitative vibrational assignments, potential energy distribution (PED) values were calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  5. Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei

    NASA Astrophysics Data System (ADS)

    Oishi, Tomohiro; Kortelainen, Markus; Hinohara, Nobuo

    2016-03-01

    Background: The quasiparticle random phase approximation (QRPA), within the framework of nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of atomic nuclei. Recently, the finite amplitude method (FAM) was developed in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mostly reproduced with the FAM-QRPA, when compared to experimental data, although some deficiency is observed with isotopes heavier than erbium. A role of the TRK enhancement factor in actual GDR strength is clearly shown: its increment leads to a shift of the GDR strength to higher-energy region, without a significant change in the transition amplitudes. Conclusions: The newly developed FAM-QRPA scheme shows remarkable efficiency, which enables one to perform systematic analysis of GDR for heavy rare-earth nuclei. The theoretical deficiency of the photoabsorption cross section could not be improved by only adjusting the TRK enhancement factor, suggesting the necessity of an approach beyond self-consistent QRPA and/or a more systematic optimization of the energy density functional (EDF) parameters.

  6. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    PubMed Central

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l−1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l−1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from −20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. PMID:25709083

  7. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    PubMed

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-02-24

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.

  8. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goings, Joshua J.; Li, Xiaosong, E-mail: xsli@uw.edu

    2016-06-21

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entiremore » ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.« less

  9. Treating the Synapse in Major Psychiatric Disorders: The Role of Postsynaptic Density Network in Dopamine-Glutamate Interplay and Psychopharmacologic Drugs Molecular Actions

    PubMed Central

    Tomasetti, Carmine; Iasevoli, Felice; Buonaguro, Elisabetta Filomena; De Berardis, Domenico; Fornaro, Michele; Fiengo, Annastasia Lucia Carmela; Martinotti, Giovanni; Orsolini, Laura; Valchera, Alessandro; Di Giannantonio, Massimo; de Bartolomeis, Andrea

    2017-01-01

    Dopamine-glutamate interplay dysfunctions have been suggested as pathophysiological key determinants of major psychotic disorders, above all schizophrenia and mood disorders. For the most part, synaptic interactions between dopamine and glutamate signaling pathways take part in the postsynaptic density, a specialized ultrastructure localized under the membrane of glutamatergic excitatory synapses. Multiple proteins, with the role of adaptors, regulators, effectors, and scaffolds compose the postsynaptic density network. They form structural and functional crossroads where multiple signals, starting at membrane receptors, are received, elaborated, integrated, and routed to appropriate nuclear targets. Moreover, transductional pathways belonging to different receptors may be functionally interconnected through postsynaptic density molecules. Several studies have demonstrated that psychopharmacologic drugs may differentially affect the expression and function of postsynaptic genes and proteins, depending upon the peculiar receptor profile of each compound. Thus, through postsynaptic network modulation, these drugs may induce dopamine-glutamate synaptic remodeling, which is at the basis of their long-term physiologic effects. In this review, we will discuss the role of postsynaptic proteins in dopamine-glutamate signals integration, as well as the peculiar impact of different psychotropic drugs used in clinical practice on postsynaptic remodeling, thereby trying to point out the possible future molecular targets of “synapse-based” psychiatric therapeutic strategies. PMID:28085108

  10. Weak annihilation cusp inside the dark matter spike about a black hole.

    PubMed

    Shapiro, Stuart L; Shelton, Jessie

    2016-06-15

    We reinvestigate the effect of annihilations on the distribution of collisionless dark matter (DM) in a spherical density spike around a massive black hole. We first construct a very simple, pedagogic, analytic model for an isotropic phase space distribution function that accounts for annihilation and reproduces the "weak cusp" found by Vasiliev for DM deep within the spike and away from its boundaries. The DM density in the cusp varies as r -1/2 for s -wave annihilation, where r is the distance from the central black hole, and is not a flat "plateau" profile. We then extend this model by incorporating a loss cone that accounts for the capture of DM particles by the hole. The loss cone is implemented by a boundary condition that removes capture orbits, resulting in an anisotropic distribution function. Finally, we evolve an initial spike distribution function by integrating the Boltzmann equation to show how the weak cusp grows and its density decreases with time. We treat two cases, one for s -wave and the other for p -wave DM annihilation, adopting parameters characteristic of the Milky Way nuclear core and typical WIMP models for DM. The cusp density profile for p -wave annihilation is weaker, varying like ~ r -0.34 , but is still not a flat plateau.

  11. Nuclear field density problems.

    DOT National Transportation Integrated Search

    1975-01-01

    The densities of subgrade soil at various locations throughout the state were determined using the different model nuclear gages owned by the Department. In addition, some laboratory testing and sand cote testing were carried out. It was concluded th...

  12. Pasta nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium

    NASA Astrophysics Data System (ADS)

    Caplan, M. E.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2015-06-01

    Background: Exotic nonspherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short-range nuclear attraction and long-range Coulomb repulsion. Purpose: We explore the impact nuclear pasta may have on nucleosynthesis during neutron star mergers when cold dense nuclear matter is ejected and decompressed. Methods: We use a hybrid CPU/GPU molecular dynamics (MD) code to perform decompression simulations of cold dense matter with 51 200 and 409 600 nucleons from 0.080 fm-3 down to 0.00125 fm-3 . Simulations are run for proton fractions YP= 0.05, 0.10, 0.20, 0.30, and 0.40 at temperatures T = 0.5, 0.75, and 1.0 MeV. The final composition of each simulation is obtained using a cluster algorithm and compared to a constant density run. Results: Size of nuclei in the final state of decompression runs are in good agreement with nuclear statistical equilibrium (NSE) models for temperatures of 1 MeV while constant density runs produce nuclei smaller than the ones obtained with NSE. Our MD simulations produces unphysical results with large rod-like nuclei in the final state of T =0.5 MeV runs. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Chinthaka M.; Hunt, Rodney Dale; Snead, Lance Lewis

    Uranium mononitride (UN) is important as a nuclear fuel. Fabrication of UN in its microspherical form also has its own merits since the advent of the concept of accident-tolerant fuel, where UN is being considered as a potential fuel in the form of TRISO particles. But, not many processes have been well established to synthesize kernels of UN. Therefore, a process for synthesis of microspherical UN with a minimum amount of carbon is discussed herein. First, a series of single-phased microspheres of uranium sesquinitride (U 2N 3) were synthesized by nitridation of UO 2+C microspheres at a few different temperatures.more » Resulting microspheres were of low-density U 2N 3 and decomposed into low-density UN. The variation of density of the synthesized sesquinitrides as a function of its chemical composition indicated the presence of extra (interstitial) nitrogen atoms corresponding to its hyperstoichiometry, which is normally indicated as α-U 2N 3. Average grain sizes of both U 2N 3 and UN varied in a range of 1–2.5 μm. In addition, these had a considerably large amount of pore spacing, indicating the potential sinterability of UN toward its use as a nuclear fuel.« less

  14. Constraining in-medium nucleon-nucleon interactions via nucleus-nucleus reactions

    NASA Astrophysics Data System (ADS)

    Sammarruca, Francesca; White, Larz

    2010-11-01

    The nuclear equation of state is a broadly useful tool. Besides being the main input of stellar structure calculations, it allows a direct connection to the physics of nuclei. For instance, an energy functional (such as a mass formula), together with the energy/particle in nuclear matter, can be used to predict nuclear energies and radii [1]. The single-particle properties are also a key point to link infinite nuclear matter and actual nuclei. The parameters of the single-particle potential, in particular the effective mass, enter the calculations of, for instance, in-medium effective cross sections. From the well-known Glauber reaction theory, the total nucleus-nucleus reaction cross section is expressed in terms of the nuclear transparency, which, in turn, depends on the overlap of the nuclear density distributions and the elementary nucleon-nucleon (NN) cross sections. We explore the sensitivity of the reaction calculation to medium modifications of the NN cross sections to estimate the likelihood of constraining the latter through nuclear reactions. Ultimately, we wish to incorporate isospin asymmetry in the reaction model, having in mind connections with rare isotopes. [1] F. Sammarruca, arXiv:1002.00146 [nucl-th]; International Journal of Modern Physics, in press.

  15. [Research in theoretical nuclear physics]. [Annual progress report, July 1992--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapusta, J.I.

    1993-12-31

    The main subject of research was the physics of matter at energy densities greater than 0.15 GeV/fm{sup 3}. Theory encompasses the relativistic many-body/quantum field theory aspects of QCD and the electroweak interactions at these high energy densities, both in and out of thermal equilibrium. Applications range from neutron stars/pulsars to QCD and electroweak phase transitions in the early universe, from baryon number violation in cosmology to the description of nucleus-nucleus collisions at CERN and at Brookhaven. Recent activity to understand the properties of matter at energy densities where the electroweak W and Z boson degrees of freedom are important ismore » reported. This problem has applications to cosmology and has the potential to explain the baryon asymmetry produced in the big bang at energies where the particle degrees of freedom will soon be experimentally, probed. This problem is interesting for nuclear physics because of the techniques used in many-body, physics of nuclei and the quark-gluon plasma may be extended to this new problem. The was also interested in problems related to multiparticle production. This includes work on production of particles in heavy-ion collisions, the small x part, of the nuclear and hadron wave function, and multiparticle production induced by instantons in weakly coupled theories. These problems have applications in the heavy ion program at RHIC and the deep inelastic scattering experiments at HERA.« less

  16. Early Universe synthesis of asymmetric dark matter nuggets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    We compute the mass function of bound states of asymmetric dark matter - nuggets - synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  17. Early Universe synthesis of asymmetric dark matter nuggets

    DOE PAGES

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2018-02-12

    We compute the mass function of bound states of asymmetric dark matter - nuggets - synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  18. Early Universe synthesis of asymmetric dark matter nuggets

    NASA Astrophysics Data System (ADS)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2018-02-01

    We compute the mass function of bound states of asymmetric dark matter—nuggets—synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  19. Symmetry properties of the electron density and following from it limits on the KS-DFT applications

    NASA Astrophysics Data System (ADS)

    Kaplan, Ilya G.

    2018-03-01

    At present, the Density Functional Theory (DFT) approach elaborated by Kohn with co-authors more than 50 years ago became the most widely used method for study molecules and solids. Using modern computation facilities, it can be applied to systems with million atoms. In the atmosphere of such great popularity, it is particularly important to know the limits of the applicability of DFT methods. In this report, I will discuss two cases when the conventional DFT approaches, using only electron density ρ and its gradients, cannot be applied (I will not consider the Ψ-versions of DFT). The first case is quite evident. In the degenerated states, the electron density may not be defined, since electronic and nuclear motions cannot be separated, the vibronic interaction mixed them. The second case is related to the spin of the state. As it was rigorously proved by group theoretical methods at the theorem level, the electron density does not depend on the total spin S of the arbitrary N-electron state. It means that the Kohn-Sham equations have the same form for states with different S. The critical survey of elaborated DFT procedures, taking into account spin, shows that they modified only exchange functionals, the correlation functionals do not correspond to the spin of the state. The point is that the conception of spin cannot be defined in the framework of the electron density formalism, which corresponds to the one-particle reduced density matrix. This is the main reason of the problems arising in the study by DFT of magnetic properties of the transition metals. The possible way of resolving these problems can be found in the two-particle reduced density matrix formulation of DFT.

  20. Two-parameter partially correlated ground-state electron density of some light spherical atoms from Hartree-Fock theory with nonintegral nuclear charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordero, Nicolas A.; March, Norman H.; Alonso, Julio A.

    2007-05-15

    Partially correlated ground-state electron densities for some spherical light atoms are calculated, into which nonrelativistic ionization potentials represent essential input data. The nuclear cusp condition of Kato is satisfied precisely. The basic theoretical starting point, however, is Hartree-Fock (HF) theory for the N electrons under consideration but with nonintegral nuclear charge Z{sup '} slightly different from the atomic number Z (=N). This HF density is scaled with a parameter {lambda}, near to unity, to preserve normalization. Finally, some tests are performed on the densities for the atoms Ne and Ar, as well as for Be and Mg.

  1. An Updated Nuclear Equation of State for Neutron Stars and Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Meixner, M. A.; Mathews, G. J.; Dalhed, H. E.; Lan, N. Q.

    2011-10-01

    We present an updated and improved Equation of State based upon the framework originally developed by Bowers & Wilson. The details of the EoS and improvements are described along with a description of how to access this EOS for numerical simulations. Among the improvements are an updated compressibility based upon recent measurements, the possibility of the formation of proton excess (Ye> 0.5) material and an improved treatment of the nuclear statistical equilibrium and the transition to pasta nuclei as the density approaches nuclear matter density. The possibility of a QCD chiral phase transition is also included at densities above nuclear matter density. We show comparisons of this EOS with the other two publicly available equations of state used in supernova collapse simulations. The advantages of the present EoS is that it is easily amenable to phenomenological parameterization to fit observed explosion properties and to accommodate new physical parameters.

  2. Systematic study on the isotopic behavior of fusion barrier using the density-dependent nucleon-nucleon interactions

    NASA Astrophysics Data System (ADS)

    Ghodsi, O. N.; Khalaj, M.

    By changing the neutron and nuclear matter incompressibility constant K, we investigate the isotopic behavior of the fusion barriers for the collision of large number of different isotopes with condition of 0.7 ≤ N/Z ≤ 1.36. Here, the double folding (DF) model which is accompanied by density-dependent (DD) versions of M3Y interactions is adopted as a basic heavy ion-ion potential. We show that the selected DD potentials predict a linear behavior for the calculated fusion barrier heights as a function of (N/Z - 1) for both proton- and neutron-rich systems. Moreover, the results indicate that the isotopic behavior of these values depend linearly on the change in the K constant. The isotopic studies conducted on the fusion cross-section also shows that the properties of the nuclear matter in the range of energy which is below the fusion barrier will quite affect the fusion process.

  3. A Unified Equation of State on a Microscopic Basis : Implications for Neutron Stars Structure and Cooling

    NASA Astrophysics Data System (ADS)

    Burgio, G. F.

    2018-03-01

    We discuss the structure of Neutron Stars by modelling the homogeneous nuclear matter of the core by a suitable microscopic Equation of State, based on the Brueckner-Hartree-Fock many-body theory, and the crust, including the pasta phase, by the BCPM energy density functional which is based on the same Equation of State. This allows for a uni ed description of the Neutron Star matter over a wide density range. A comparison with other uni ed approaches is discussed. With the same Equation of State, which features strong direct Urca processes and using consistent nuclear pairing gaps as well as effective masses, we model neutron star cooling, in particular the current rapid cooldown of the neutron star Cas A. We nd that several scenarios are possible to explain the features of Cas A, but only large and extended proton 1 S 0 gaps and small neutron 3 PF 2 gaps can accommodate also the major part of the complete current cooling data.

  4. Upper limit set by causality on the tidal deformability of a neutron star

    NASA Astrophysics Data System (ADS)

    Van Oeveren, Eric D.; Friedman, John L.

    2017-04-01

    A principal goal of gravitational-wave astronomy is to constrain the neutron star equation of state (EOS) by measuring the tidal deformability of neutron stars. The tidally induced departure of the waveform from that of a point particle [or a spinless binary black hole (BBH)] increases with the stiffness of the EOS. We show that causality (the requirement that the speed of sound be less than the speed of light for a perfect fluid satisfying a one-parameter equation of state) places an upper bound on tidal deformability as a function of mass. Like the upper mass limit, the limit on deformability is obtained by using an EOS with vsound=c for high densities and matching to a low density (candidate) EOS at a matching density of order nuclear saturation density. We use these results and those of Lackey et al. [Phys. Rev. D 89, 043009 (2014), 10.1103/PhysRevD.89.043009] to estimate the resulting upper limit on the gravitational-wave phase shift of a black hole-neutron star (BHNS) binary relative to a BBH. Even for assumptions weak enough to allow a maximum mass of 4 M⊙ (a match at nuclear saturation density to an unusually stiff low-density candidate EOS), the upper limit on dimensionless tidal deformability is stringent. It leads to a still more stringent estimated upper limit on the maximum tidally induced phase shift prior to merger. We comment in an appendix on the relation among causality, the condition vsound

  5. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelnia, Fatemeh; Lascialfari, Alessandro; Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ringmore » and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.« less

  6. Mouse Nuclear Myosin I Knock-Out Shows Interchangeability and Redundancy of Myosin Isoforms in the Cell Nucleus

    PubMed Central

    Venit, Tomáš; Dzijak, Rastislav; Kalendová, Alžběta; Kahle, Michal; Rohožková, Jana; Schmidt, Volker; Rülicke, Thomas; Rathkolb, Birgit; Hans, Wolfgang; Bohla, Alexander; Eickelberg, Oliver; Stoeger, Tobias; Wolf, Eckhard; Yildirim, Ali Önder; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Hozák, Pavel

    2013-01-01

    Background Nuclear myosin I (NM1) is a nuclear isoform of the well-known “cytoplasmic” Myosin 1c protein (Myo1c). Located on the 11th chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. Methodology/Principal Findings In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. Conclusion/Significance We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes. PMID:23593477

  7. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus.

    PubMed

    Venit, Tomáš; Dzijak, Rastislav; Kalendová, Alžběta; Kahle, Michal; Rohožková, Jana; Schmidt, Volker; Rülicke, Thomas; Rathkolb, Birgit; Hans, Wolfgang; Bohla, Alexander; Eickelberg, Oliver; Stoeger, Tobias; Wolf, Eckhard; Yildirim, Ali Önder; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Hozák, Pavel

    2013-01-01

    Nuclear myosin I (NM1) is a nuclear isoform of the well-known "cytoplasmic" Myosin 1c protein (Myo1c). Located on the 11(th) chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes.

  8. Role of Quantum Vibrations on the Structural, Electronic, and Optical Properties of 9-Methylguanine.

    PubMed

    Law, Yu Kay; Hassanali, Ali A

    2015-11-05

    In this work, we report theoretical predictions of the UV-absorption spectra of 9-methylguanine using time dependent density functional theory (TDDFT). Molecular dynamics simulations of the hydrated DNA base are peformed using an empirical force field, Born-Oppenheimer ab initio molecular dynamics (AIMD), and finally path-integral AIMD to understand the role of the underlying electronic potential, solvation, and nuclear quantum vibrations on the absorption spectra. It is shown that the conformational distributions, including hydrogen bonding interactions, are perturbed by the inclusion of nuclear quantum effects, leading to significant changes in the total charge and dipole fluctuations of the DNA base. The calculated absorption spectra using the different sampling protocols shows that the inclusion of nuclear quantum effects causes a significant broadening and red shift of the spectra bringing it into closer agreement with experiments.

  9. ApoA-II directs morphogenetic movements of zebrafish embryo by preventing chromosome fusion during nuclear division in yolk syncytial layer.

    PubMed

    Zhang, Ting; Yao, Shaohua; Wang, Ping; Yin, Chaoran; Xiao, Chun; Qian, Meilin; Liu, Donghui; Zheng, Lemin; Meng, Wentong; Zhu, Hongyan; Liu, Jin; Xu, Hong; Mo, Xianming

    2011-03-18

    The high density lipoprotein (HDL) represents a class of lipid- and protein-containing particles and consists of two major apolipoproteins apoA-I and apoA-II. ApoA-II has been shown to be involved in the pathogenesis of insulin resistance, adiposity, diabetes, and metabolic syndrome. In embryo, apoa2 mRNAs are abundant in the liver, brain, lung, placenta, and in fish yolk syncytial layer (YSL), suggesting that apoa2 may perform a function during embryonic development. Here we find out that apoa2 modulates zebrafish embryonic development by regulating the organization of YSL. Disruption of apoa2 function in zebrafish caused chromosome fusing, which strongly blocked YSL nuclear division, inducing disorders in YSL organization and finally disturbing the embryonic epiboly. Purified native human apoA-II was able specifically to rescue the defects and induced nuclear division in zebrafish embryos and in human HeLa cells. The C terminus of apoA-II was required for the proper chromosome separation during nuclear division of YSL in zebrafish embryos and in human HeLa cells. Our data indicate that organization of YSL is required for blastoderm patterning and morphogenesis and suggest that apolipoprotein apoA-II is a novel factor of nuclear division in YSL involved in the regulation of early zebrafish embryonic morphogenesis and in mammalian cells for proliferation.

  10. ApoA-II Directs Morphogenetic Movements of Zebrafish Embryo by Preventing Chromosome Fusion during Nuclear Division in Yolk Syncytial Layer*

    PubMed Central

    Zhang, Ting; Yao, Shaohua; Wang, Ping; Yin, Chaoran; Xiao, Chun; Qian, Meilin; Liu, Donghui; Zheng, Lemin; Meng, Wentong; Zhu, Hongyan; Liu, Jin; Xu, Hong; Mo, Xianming

    2011-01-01

    The high density lipoprotein (HDL) represents a class of lipid- and protein-containing particles and consists of two major apolipoproteins apoA-I and apoA-II. ApoA-II has been shown to be involved in the pathogenesis of insulin resistance, adiposity, diabetes, and metabolic syndrome. In embryo, apoa2 mRNAs are abundant in the liver, brain, lung, placenta, and in fish yolk syncytial layer (YSL), suggesting that apoa2 may perform a function during embryonic development. Here we find out that apoa2 modulates zebrafish embryonic development by regulating the organization of YSL. Disruption of apoa2 function in zebrafish caused chromosome fusing, which strongly blocked YSL nuclear division, inducing disorders in YSL organization and finally disturbing the embryonic epiboly. Purified native human apoA-II was able specifically to rescue the defects and induced nuclear division in zebrafish embryos and in human HeLa cells. The C terminus of apoA-II was required for the proper chromosome separation during nuclear division of YSL in zebrafish embryos and in human HeLa cells. Our data indicate that organization of YSL is required for blastoderm patterning and morphogenesis and suggest that apolipoprotein apoA-II is a novel factor of nuclear division in YSL involved in the regulation of early zebrafish embryonic morphogenesis and in mammalian cells for proliferation. PMID:21212265

  11. Nuclear longitudinal form factors for axially deformed charge distributions expanded by nonorthogonal basis functions

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Zhang, Jinjuan; Xu, Chang; Ren, Zhongzhou

    2017-05-01

    In this paper, the nuclear longitudinal form factors are systematically studied from the intrinsic charge multipoles. For axially deformed nuclei, two different types of density profiles are used to describe their charge distributions. For the same charge distributions expanded with different basis functions, the corresponding longitudinal form factors are derived and compared with each other. Results show the multipoles Cλ of longitudinal form factors are independent of the basis functions of charge distributions. Further numerical calculations of longitudinal form factors of 12C indicates that the C 0 multipole reflects the contributions of spherical components of all nonorthogonal basis functions. For deformed nuclei, their charge RMS radii can also be determined accurately by the C 0 measurement. The studies in this paper examine the model-independent properties of electron scattering, which are useful for interpreting electron scattering experiments on exotic deformed nuclei. Supported by National Natural Science Foundation of China (11505292, 11175085, 11575082, 11235001, 11275138, and 11447226), by Shandong Provincial Natural Science Foundation, China (BS2014SF007), Fundamental Research Funds for Central Universities (15CX02072A).

  12. Effect of Monocular Deprivation on Rabbit Neural Retinal Cell Densities

    PubMed Central

    Mwachaka, Philip Maseghe; Saidi, Hassan; Odula, Paul Ochieng; Mandela, Pamela Idenya

    2015-01-01

    Purpose: To describe the effect of monocular deprivation on densities of neural retinal cells in rabbits. Methods: Thirty rabbits, comprised of 18 subject and 12 control animals, were included and monocular deprivation was achieved through unilateral lid suturing in all subject animals. The rabbits were observed for three weeks. At the end of each week, 6 experimental and 3 control animals were euthanized, their retinas was harvested and processed for light microscopy. Photomicrographs of the retina were taken and imported into FIJI software for analysis. Results: Neural retinal cell densities of deprived eyes were reduced along with increasing period of deprivation. The percentage of reductions were 60.9% (P < 0.001), 41.6% (P = 0.003), and 18.9% (P = 0.326) for ganglion, inner nuclear, and outer nuclear cells, respectively. In non-deprived eyes, cell densities in contrast were increased by 116% (P < 0.001), 52% (P < 0.001) and 59.6% (P < 0.001) in ganglion, inner nuclear, and outer nuclear cells, respectively. Conclusion: In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye. PMID:26425316

  13. Effect of Monocular Deprivation on Rabbit Neural Retinal Cell Densities.

    PubMed

    Mwachaka, Philip Maseghe; Saidi, Hassan; Odula, Paul Ochieng; Mandela, Pamela Idenya

    2015-01-01

    To describe the effect of monocular deprivation on densities of neural retinal cells in rabbits. Thirty rabbits, comprised of 18 subject and 12 control animals, were included and monocular deprivation was achieved through unilateral lid suturing in all subject animals. The rabbits were observed for three weeks. At the end of each week, 6 experimental and 3 control animals were euthanized, their retinas was harvested and processed for light microscopy. Photomicrographs of the retina were taken and imported into FIJI software for analysis. Neural retinal cell densities of deprived eyes were reduced along with increasing period of deprivation. The percentage of reductions were 60.9% (P < 0.001), 41.6% (P = 0.003), and 18.9% (P = 0.326) for ganglion, inner nuclear, and outer nuclear cells, respectively. In non-deprived eyes, cell densities in contrast were increased by 116% (P < 0.001), 52% (P < 0.001) and 59.6% (P < 0.001) in ganglion, inner nuclear, and outer nuclear cells, respectively. In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye.

  14. Temperature dependence of the symmetry energy and neutron skins in Ni, Sn, and Pb isotopic chains

    NASA Astrophysics Data System (ADS)

    Antonov, A. N.; Kadrev, D. N.; Gaidarov, M. K.; Sarriguren, P.; de Guerra, E. Moya

    2017-02-01

    The temperature dependence of the symmetry energy for isotopic chains of even-even Ni, Sn, and Pb nuclei is investigated in the framework of the local density approximation (LDA). The Skyrme energy density functional with two Skyrme-class effective interactions, SkM* and SLy4, is used in the calculations. The temperature-dependent proton and neutron densities are calculated through the hfbtho code that solves the nuclear Skyrme-Hartree-Fock-Bogoliubov problem by using the cylindrical transformed deformed harmonic-oscillator basis. In addition, two other density distributions of 208Pb, namely the Fermi-type density determined within the extended Thomas-Fermi (TF) method and symmetrized-Fermi local density obtained within the rigorous density functional approach, are used. The kinetic energy densities are calculated either by the hfbtho code or, for a comparison, by the extended TF method up to second order in temperature (with T2 term). Alternative ways to calculate the symmetry energy coefficient within the LDA are proposed. The results for the thermal evolution of the symmetry energy coefficient in the interval T =0 -4 MeV show that its values decrease with temperature. The temperature dependence of the neutron and proton root-mean-square radii and corresponding neutron skin thickness is also investigated, showing that the effect of temperature leads mainly to a substantial increase of the neutron radii and skins, especially in the more neutron-rich nuclei, a feature that may have consequences on astrophysical processes and neutron stars.

  15. Requirements for Predictive Density Functional Theory Methods for Heavy Materials Equation of State

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Wills, John M.

    2012-02-01

    The difficulties in experimentally determining the Equation of State of actinide and lanthanide materials has driven the development of many computational approaches with varying degree of empiricism and predictive power. While Density Functional Theory (DFT) based on the Schr"odinger Equation (possibly with relativistic corrections including the scalar relativistic approach) combined with local and semi-local functionals has proven to be a successful and predictive approach for many materials, it is not giving enough accuracy, or even is a complete failure, for the actinides. To remedy this failure both an improved fundamental description based on the Dirac Equation (DE) and improved functionals are needed. Based on results obtained using the appropriate fundamental approach of DFT based on the DE we discuss the performance of available semi-local functionals, the requirements for improved functionals for actinide/lanthanide materials, and the similarities in how functionals behave in transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. The degree and nature of radiation damage in zircon observed by 29Si nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Farnan, I.; Salje, E. K. H.

    2001-02-01

    A quantitative analysis of 29Si nuclear magnetic resonance spectra of radiation damaged, natural zircons showed that the local structure in crystalline and amorphous regions depend explicitly on radiation dose. Nonpercolating amorphous islands of high density "glass" within the crystalline matrix show a low interconnectivity of SiO4 tetrahedra. This structural state is quite different from that of the high dose, percolating regions of low density glass with more polymerised tetrahedra. A continuous nonlinear dose dependence between the high and low density glass states is reported. A continuous evolution of the local structure of the crystalline phase up to the percolation point is also reported. No phase separation into binary oxides was observed. The total number of permanently displaced atoms per α-recoil event is ˜3800 atoms for low radiation doses and decreases to ˜2000 atoms for 10×1018 α events/g. No indication of partitioning of paramagnetic impurities between crystalline and amorphous regions was found for these natural zircons. The amorphous fractions of the metamict zircons were determined as a function of their accumulated radiation dose. These values coincide closely with those recently determined by x-ray diffraction studies. They are much greater than previously assumed based on density measurements. The dose dependence is consistent with the concept of direct impact amorphization in the atomic cascade following an α-recoil event.

  17. Bistable collective behavior of polymers tethered in a nanopore

    NASA Astrophysics Data System (ADS)

    Osmanovic, Dino; Bailey, Joe; Harker, Anthony H.; Fassati, Ariberto; Hoogenboom, Bart W.; Ford, Ian J.

    2012-06-01

    Polymer-coated pores play a crucial role in nucleo-cytoplasmic transport and in a number of biomimetic and nanotechnological applications. Here we present Monte Carlo and Density Functional Theory approaches to identify different collective phases of end-grafted polymers in a nanopore and to study their relative stability as a function of intermolecular interactions. Over a range of system parameters that is relevant for nuclear pore complexes, we observe two distinct phases: one with the bulk of the polymers condensed at the wall of the pore, and the other with the polymers condensed along its central axis. The relative stability of these two phases depends on the interpolymer interactions. The existence the two phases suggests a mechanism in which marginal changes in these interactions, possibly induced by nuclear transport receptors, cause the pore to transform between open and closed configurations, which will influence transport through the pore.

  18. A theoretical study of potentially observable chirality-sensitive NMR effects in molecules.

    PubMed

    Garbacz, Piotr; Cukras, Janusz; Jaszuński, Michał

    2015-09-21

    Two recently predicted nuclear magnetic resonance effects, the chirality-induced rotating electric polarization and the oscillating magnetization, are examined for several experimentally available chiral molecules. We discuss in detail the requirements for experimental detection of chirality-sensitive NMR effects of the studied molecules. These requirements are related to two parameters: the shielding polarizability and the antisymmetric part of the nuclear magnetic shielding tensor. The dominant second contribution has been computed for small molecules at the coupled cluster and density functional theory levels. It was found that DFT calculations using the KT2 functional and the aug-cc-pCVTZ basis set adequately reproduce the CCSD(T) values obtained with the same basis set. The largest values of parameters, thus most promising from the experimental point of view, were obtained for the fluorine nuclei in 1,3-difluorocyclopropene and 1,3-diphenyl-2-fluoro-3-trifluoromethylcyclopropene.

  19. A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst

    DOE PAGES

    Kneebone, Jared L.; Daifuku, Stephanie L.; Kehl, Jeffrey A.; ...

    2017-07-06

    While non-precious metal M-N-C (M = Fe or Co) catalysts have been developed that are effective for the oxygen reduction reaction in polymer electrolyte fuel cells, no consensus has yet been reached regarding the nature of the M sites in these heterogeneous catalysts that are responsible for reaction with dioxygen (O 2). While multiple studies have developed correlations between Fe distributions in as-prepared catalysts and ORR activity, the direct identification of sites reactive towards O 2 or O 2-analog molecules remains a significant challenge. In the present study, we demonstrate a new approach to identifying and characterizing potential Fe activemore » sites in complex ORR catalysts that combines an effective probe molecule (NO (g)) Mössbauer spectroscopy and nuclear resonance vibrational spectroscopy (NRVS) with density functional theory (DFT) calculations. Mössbauer spectroscopic studies demonstrate that NO (g) treatment of electrochemically reduced PANI-57Fe-C leads to selective reaction with only a sub-set of the Fe species present. Nuclear resonance vibrational spectroscopic studies identified new Fe-ligand vibrations associated with the site reactive towards NO (g). DFT calculations of vibrational properties of a small selection of previously proposed active site structures suggest that graphene zig-zag edge hosted Fe-N structures may be responsible for the observed vibrational behavior with NO (g) probe molecules. Moreover, such sites are likely also reactive to O 2, possibly serving as the ORR active sites in the synthesized materials.« less

  20. A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneebone, Jared L.; Daifuku, Stephanie L.; Kehl, Jeffrey A.

    While non-precious metal M-N-C (M = Fe or Co) catalysts have been developed that are effective for the oxygen reduction reaction in polymer electrolyte fuel cells, no consensus has yet been reached regarding the nature of the M sites in these heterogeneous catalysts that are responsible for reaction with dioxygen (O 2). While multiple studies have developed correlations between Fe distributions in as-prepared catalysts and ORR activity, the direct identification of sites reactive towards O 2 or O 2-analog molecules remains a significant challenge. In the present study, we demonstrate a new approach to identifying and characterizing potential Fe activemore » sites in complex ORR catalysts that combines an effective probe molecule (NO (g)) Mössbauer spectroscopy and nuclear resonance vibrational spectroscopy (NRVS) with density functional theory (DFT) calculations. Mössbauer spectroscopic studies demonstrate that NO (g) treatment of electrochemically reduced PANI-57Fe-C leads to selective reaction with only a sub-set of the Fe species present. Nuclear resonance vibrational spectroscopic studies identified new Fe-ligand vibrations associated with the site reactive towards NO (g). DFT calculations of vibrational properties of a small selection of previously proposed active site structures suggest that graphene zig-zag edge hosted Fe-N structures may be responsible for the observed vibrational behavior with NO (g) probe molecules. Moreover, such sites are likely also reactive to O 2, possibly serving as the ORR active sites in the synthesized materials.« less

  1. Time-odd mean fields in covariant density functional theory: Rotating systems

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Abusara, H.

    2010-09-01

    Time-odd mean fields (nuclear magnetism) and their impact on physical observables in rotating nuclei are studied in the framework of covariant density functional theory (CDFT). It is shown that they have profound effect on the dynamic and kinematic moments of inertia. Particle number, configuration, and rotational frequency dependencies of their impact on the moments of inertia have been analyzed in a systematic way. Nuclear magnetism can also considerably modify the band crossing features such as crossing frequencies and the properties of the kinematic and dynamic moments of inertia in the band crossing region. The impact of time-odd mean fields on the moments of inertia in the regions away from band crossing only weakly depends on the relativistic mean-field parametrization, reflecting good localization of the properties of time-odd mean fields in CDFT. The moments of inertia of normal-deformed nuclei considerably deviate from the rigid-body value. On the contrary, superdeformed and hyperdeformed nuclei have the moments of inertia which are close to rigid-body value. The structure of the currents in rotating frame, their microscopic origin, and the relations to the moments of inertia have been systematically analyzed. The phenomenon of signature separation in odd-odd nuclei, induced by time-odd mean fields, has been analyzed in detail.

  2. Proton elastic scattering from stable and unstable nuclei - Extraction of nuclear densities

    NASA Astrophysics Data System (ADS)

    Sakaguchi, H.; Zenihiro, J.

    2017-11-01

    Progress in proton elastic scattering at intermediate energies to determine nuclear density distributions is reviewed. After challenges of about 15 years to explain proton elastic scattering and associated polarization phenomena at intermediate energies, we have reached to some conclusions regarding proton elastic scattering as a means of obtaining nuclear densities. During this same period, physics of unstable nuclei has become of interest, and the density distributions of protons and neutrons play more important roles in unstable nuclei, since the differences in proton and neutron numbers and densities are expected to be significant. As such, proton elastic scattering experiments at intermediate energies using the inverse kinematic method have started to determine density distributions of unstable nuclei. In the region of unstable nuclei, we are confronted with a new problem when attempting to find proton and neutron densities separately from elastic proton scattering data, since electron scattering data for unstable nuclei are not presently available. We introduce a new means of determining proton and neutron densities separately by double-energy proton elastic scattering at intermediate energies.

  3. Thin layer asphaltic concrete density measuring using nuclear gages.

    DOT National Transportation Integrated Search

    1989-03-01

    A Troxler 4640 thin layer nuclear gage was evaluated under field conditions to determine if it would provide improved accuracy of density measurements on asphalt overlays of 1-3/4 and 2 inches in thickness. Statistical analysis shows slightly improve...

  4. Relativistic Zeroth-Order Regular Approximation Combined with Nonhybrid and Hybrid Density Functional Theory: Performance for NMR Indirect Nuclear Spin-Spin Coupling in Heavy Metal Compounds.

    PubMed

    Moncho, Salvador; Autschbach, Jochen

    2010-01-12

    A benchmark study for relativistic density functional calculations of NMR spin-spin coupling constants has been performed. The test set contained 47 complexes with heavy metal atoms (W, Pt, Hg, Tl, Pb) with a total of 88 coupling constants involving one or two heavy metal atoms. One-, two-, three-, and four-bond spin-spin couplings have been computed at different levels of theory (nonhybrid vs hybrid DFT, scalar vs two-component relativistic). The computational model was based on geometries fully optimized at the BP/TZP scalar relativistic zeroth-order regular approximation (ZORA) and the conductor-like screening model (COSMO) to include solvent effects. The NMR computations also employed the continuum solvent model. Computations in the gas phase were performed in order to assess the importance of the solvation model. The relative median deviations between various computational models and experiment were found to range between 13% and 21%, with the highest-level computational model (hybrid density functional computations including scalar plus spin-orbit relativistic effects, the COSMO solvent model, and a Gaussian finite-nucleus model) performing best.

  5. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp; RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198; Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083

    2015-03-28

    Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluatedmore » for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in S{sub N}2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented.« less

  6. Neutrinoless ββ decay mediated by the exchange of light and heavy neutrinos: the role of nuclear structure correlations

    NASA Astrophysics Data System (ADS)

    Menéndez, J.

    2018-01-01

    Neutrinoless β β decay nuclear matrix elements calculated with the shell model and energy-density functional theory typically disagree by more than a factor of two in the standard scenario of light-neutrino exchange. In contrast, for a decay mediated by sterile heavy neutrinos the deviations are reduced to about 50%, an uncertainty similar to the one due to short-range effects. We compare matrix elements in the light- and heavy-neutrino-exchange channels, exploring the radial, momentum transfer and angular momentum-parity matrix element distributions, and considering transitions that involve correlated and uncorrelated nuclear states. We argue that the shorter-range heavy-neutrino exchange is less sensitive to collective nuclear correlations, and that discrepancies in matrix elements are mostly due to the treatment of long-range correlations in many-body calculations. Our analysis supports previous studies suggesting that isoscalar pairing correlations, which affect mostly the longer-range part of the neutrinoless β β decay operator, are partially responsible for the differences between nuclear matrix elements in the standard light-neutrino-exchange mechanism.

  7. Completing the nuclear reaction puzzle of the nucleosynthesis of Mo 92

    DOE PAGES

    Tveten, G. M.; Spyrou, A.; Schwengner, R.; ...

    2016-08-22

    One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme astrophysical environments. A particularly challenging part of that question is the creation of the so-called p-nuclei, which are believed to be mainly produced in some types of supernovae. Here, the lack of needed nuclear data presents an obstacle in nailing down the precise site and astrophysical conditions. In this work, we present for the first time measurements on the nuclear level density and average γ strength function of 92Mo. State-of-the-art p-process calculations systematically underestimate the observed solar abundance of thismore » isotope. Our data provide stringent constraints on the 91Nb(p,γ) 92Mo reaction rate, which is the last unmeasured reaction in the nucleosynthesis puzzle of 92Mo. Based on our results, we conclude that the 92Mo abundance anomaly is not due to the nuclear physics input to astrophysical model calculations.« less

  8. Forging the link between nuclear reactions and nuclear structure.

    PubMed

    Mahzoon, M H; Charity, R J; Dickhoff, W H; Dussan, H; Waldecker, S J

    2014-04-25

    A comprehensive description of all single-particle properties associated with the nucleus Ca40 is generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. The introduction of nonlocality in the absorptive potentials yields equivalent elastic differential cross sections as compared to local versions but changes the absorption profile as a function of angular momentum suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential to allow for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e'p) and (p, 2p) reactions are correctly incorporated, including the energy distribution of about 10% high-momentum nucleons, as experimentally determined by data from Jefferson Lab. These high-momentum nucleons provide a substantial contribution to the energy of the ground state, indicating a residual attractive contribution from higher-body interactions for Ca40 of about 0.64  MeV/A.

  9. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.

    PubMed

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A

    2016-02-05

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.

  10. Drosophila Importin-α2 Is Involved in Synapse, Axon and Muscle Development

    PubMed Central

    Mosca, Timothy J.; Schwarz, Thomas L.

    2010-01-01

    Nuclear import is required for communication between the cytoplasm and the nucleus and to enact lasting changes in gene transcription following stimuli. Binding to an Importin-α molecule in the cytoplasm is often required to mediate nuclear entry of a signaling protein. As multiple isoforms of Importin-α exist, some may be responsible for the entry of distinct cargoes rather than general nuclear import. Indeed, in neuronal systems, Importin-α isoforms can mediate very specific processes such as axonal tiling and communication of an injury signal. To study nuclear import during development, we examined the expression and function of Importin-α2 in Drosophila melanogaster. We found that Importin-α2 was expressed in the nervous system where it was required for normal active zone density at the NMJ and axonal commissure formation in the central nervous system. Other aspects of synaptic morphology at the NMJ and the localization of other synaptic markers appeared normal in importin-α2 mutants. Importin-α2 also functioned in development of the body wall musculature. Mutants in importin-α2 exhibited errors in muscle patterning and organization that could be alleviated by restoring muscle expression of Importin-α2. Thus, Importin-α2 is needed for some processes in the development of both the nervous system and the larval musculature. PMID:21151903

  11. Influence of the Pauli exclusion principle and the polarization of nuclei on the nuclear part of the interaction potential in the 40Ca +40Ca system

    NASA Astrophysics Data System (ADS)

    Nesterov, V. O.

    2018-06-01

    In the framework of the energy density method with the use of the wave function of the two-center shell model, the influence of the simultaneous account for the Pauli exclusion principle and the monopole and quadrupole polarizations of nuclei on the nuclear part of the potential of their interaction by the example of the 40Ca +40Ca system is considered. The calculations performed in the framework of the adiabatic approximation show that the consideration of the Pauli exclusion principle and the polarization of nuclei, especially the quadrupole one, essentially affects the nucleus-nucleus interaction potential.

  12. Functional imaging of the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ell, P.J.; Jarritt, P.H.; Costa, D.C.

    1987-07-01

    The radionuclide tracer method is unique among all other imaging methodologies in its ability to trace organ or tissue function and metabolism. Physical processes such as electron or proton density assessment or resonance, edge identification, electrical or ultrasonic impedence, do not pertain to the image generation process in nuclear medicine, and if so, only in a rather secondary manner. The nuclear medicine imaging study is primarily a study of the chemical nature, distribution and interaction of the tracer/radiopharmaceutical utilized with the cellular system which requires investigation: the thyroid cells with sodium iodide, the recticular endothelial cells with colloidal particles, themore » adrenal medulla cells with metaiodobenzylguanidine, and so on. In the two most recent areas of nuclear medicine expansion, oncology (with labelled monoclonal antibodies) and neurology and psychiatry (with a whole new series of lipid soluble radiopharmaceuticals), specific cell systems can also be targeted and hence imaged and investigated. The study of structure as masterly performed by Virchow and all his successors over more than a century, is now definitely the prerogative of such imaging systems which excel with spatial and contrast resolution However the investigation of function and metabolism, has clearly passed from the laboratory animal protocol and experiment to the direct investigation in man, this being the achievement of the radionuclide tracer methodology. In this article, we review present interest and developments in that part of nuclear medicine activity which is aimed at the study of the neurological or psychiatric patient.« less

  13. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    PubMed

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  14. A Pulse Coupled Neural Network Segmentation Algorithm for Reflectance Confocal Images of Epithelial Tissue

    PubMed Central

    Malik, Bilal H.; Jabbour, Joey M.; Maitland, Kristen C.

    2015-01-01

    Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131

  15. Electron and Nuclear Pressures in Electron-Nucleus Mixtures

    NASA Astrophysics Data System (ADS)

    Chihara, J.; Yamagiwa, M.

    2007-12-01

    For a solid metal with frozen nuclei, the density-functional theory provides a unique definition of the electron pressure in an electron-nucleus mixture, and the total pressure of this mixture is represented as the sum of the electron and nuclear pressures. This fact leads to definitions of the electron and nuclear pressures on the basis of the virial theorem in terms of the wall potentials confining the electrons and nuclei. These definitions take a general form applicable without use of the adiabatic approximation. In this situation, we show that Janak's definition of the electron pressure in terms of the nuclear virial term is inappropriate; a similar statement holds for the definition of the stress tensor in this mixture. It is also demonstrated that both the electron and nuclear pressures become zero individually for a metal in vacuum, in contrast to the conventional understanding, according to which zero pressure is realized as a result of a cancellation of the elect ron and nuclear pressures. On the basis of these facts, a simple equation of state for liquid metals is derived, and it is examined numerically for the case of liquid alkaline metals by use of the quantum hypernetted chain equation and the Ashcroft model potential.

  16. Neutron Capture Measurements on 97Mo with the DANCE Array

    NASA Astrophysics Data System (ADS)

    Walker, Carrie L.

    Neutron capture is a process that is crucial to understanding nucleosynthesis, reactors, and nuclear weapons. Precise knowledge of neutron capture cross-sections and level densities is necessary in order to model these high-flux environments. High-confidence spin and parity assignments for neutron resonances are of critical importance to this end. For nuclei in the A=100 mass region, the p-wave neutron strength function is at a maximum, and the s-wave strength function is at a minimum, producing up to six possible Jpi combinations. Parity determination becomes important to assigning spins in this mass region, and the large number of spin groups adds complexity to the problem. In this work, spins and parities for 97Mo resonances are assigned, and best fit models for photon strength function and level density are determined. The neutron capture-cross section for 97Mo is also determined, as are resonance parameters for neutron energies ranging from 16 eV to 2 keV.

  17. Zirconia and its allotropes; A Quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jokisaari, Andrea; Benali, Anouar; Shin, Hyeondeok; Luo, Ye; Lopez Bezanilla, Alejandro; Ratcliff, Laura; Littlewood, Peter; Heinonen, Olle

    With a high strength and stability at elevated temperatures, Zirconia (zirconium dioxide) is one of the best corrosion-resistant and refractive materials used in metallurgy, and is used in structural ceramics, catalytic converters, oxygen sensors, nuclear industry, and in chemically passivating surfaces. The wide range of applications of ZrO2 has motivated a large number of electronic structures studies of its known allotropes (monoclinic, tetragonal and cubic). Density Functional Theory has been successful at reproducing some of the fundamental properties of some of the allotropes, but these results remain dependent on the specific combination of exchange-correlation functional and type of pseudopotentials, making any type of structural prediction or defect analysis uncertain. Quantum Monte Carlo (QMC) is a many-body quantum theory solving explicitly the electronic correlations, allowing reproducing and predicting materials properties with a limited number of controlled approximations. In this study, we use QMC to revisit the energetic stability of Zirconia's allotropes and compare our results with those obtained from density functional theory.

  18. Thouless-Valatin rotational moment of inertia from linear response theory

    NASA Astrophysics Data System (ADS)

    Petrík, Kristian; Kortelainen, Markus

    2018-03-01

    Spontaneous breaking of continuous symmetries of a nuclear many-body system results in the appearance of zero-energy restoration modes. These so-called spurious Nambu-Goldstone modes represent a special case of collective motion and are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total-angular-momentum operator. We examine the role and effects of the pairing correlations on the rotational characteristics of heavy deformed nuclei in order to extend our understanding of superfluidity in general. We use the finite-amplitude method of the quasiparticle random-phase approximation on top of the Skyrme energy density functional framework with the Hartree-Fock-Bogoliubov theory. We have successfully extended this formalism and established a practical method for extracting the Thouless-Valatin rotational moment of inertia from the strength function calculated in the symmetry-restoration regime. Our results reveal the relation between the pairing correlations and the moment of inertia of axially deformed nuclei of rare-earth and actinide regions of the nuclear chart. We have also demonstrated the feasibility of the method for obtaining the moment of inertia for collective Hamiltonian models. We conclude that from the numerical and theoretical perspective, the finite-amplitude method can be widely used to effectively study rotational properties of deformed nuclei within modern density functional approaches.

  19. Reaction intermediates in the catalytic Gif-type oxidation from nuclear inelastic scattering

    NASA Astrophysics Data System (ADS)

    Rajagopalan, S.; Asthalter, T.; Rabe, V.; Laschat, S.

    2016-12-01

    Nuclear inelastic scattering (NIS) of synchrotron radiation, also known as nuclear resonant vibrational spectroscopy (NRVS), has been shown to provide valuable insights into metal-centered vibrations at Mössbauer-active nuclei. We present a study of the iron-centered vibrational density of states (VDOS) during the first step of the Gif-type oxidation of cyclohexene with a novel trinuclear Fe3(μ 3-O) complex as catalyst precursor. The experiments were carried out on shock-frozen solutions for different combinations of reactants: Fe3(μ 3-O) in pyridine solution, Fe3(μ 3-O) plus Zn/acetic acid in pyridine without and with addition of either oxygen or cyclohexene, and Fe3(μ 3-O)/Zn/acetic acid/pyridine/cyclohexene (reaction mixture) for reaction times of 1 min, 5 min, and 30 min. The projected VDOS of the Fe atoms was calculated on the basis of pseudopotential density functional calculations. Two possible reaction intermediates were identified as [Fe(III)(C5H5N)2(O2CCH3)2]+ and Fe(II)(C5H5N)4(O2CCH3)2, yielding evidence that NIS (NRVS) allows to identify the presence of iron-centered intermediates also in complex reaction mixtures.

  20. Transport Properties in Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Charles; Berry, Donald; da Silva Schneider, Andre

    2016-09-01

    At the base of the inner crust of neutron stars, where matter is near the nuclear saturation density, nuclear matter arranges itself into exotic shapes such as cylinders and slabs, called `nuclear pasta.' Lepton scattering from these structures may govern the transport properties of the inner crust; electron scattering from protons in the pasta determines the thermal and electrical conductivity, as well as the shear viscosity of the inner crust. These properties may vary in pasta structures which form at various densities, temperatures, and proton fractions. In this talk, we report on our calculations of lepton transport in nuclear pasta and the implication for neutron star observables.

  1. METHOD AND APPARATUS FOR EARTH PENETRATION

    DOEpatents

    Adams, W.M.

    1963-12-24

    A nuclear reactor apparatus for penetrating into the earth's crust is described. The apparatus comprises a cylindrical nuclear core operating at a temperature that is higher than the melting temperature of rock. A high-density ballast member is coupled to the nuclear core such that the overall density of the core-ballast assembly is greater than the density of molten rock. The nuclear core is thermally insulated so that its heat output is constrained to flow axially, with radial heat flow being minimized. In operation, the apparatus is placed in contact with the earth's crust at the point desired to be penetrated. The heat output of the reactor melts the underlying rock, and the apparatus sinks through the resulting magma. The fuel loading of the reactor core determines the ultimate depth of crust penetration. (AEC)

  2. Predictive equation of state method for heavy materials based on the Dirac equation and density functional theory

    NASA Astrophysics Data System (ADS)

    Wills, John M.; Mattsson, Ann E.

    2012-02-01

    Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    PubMed Central

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues. PMID:26067441

  4. Response to Comment on "Cell nuclei have lower refractive index and mass density than cytoplasm": A Comment on "How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?", e201800033.

    PubMed

    Müller, Paul; Guck, Jochen

    2018-05-02

    In a recent study entitled "Cell nuclei have lower refractive index and mass density than cytoplasm," we provided strong evidence indicating that the nuclear refractive index (RI) is lower than the RI of the cytoplasm for several cell lines. In a complementary study in 2017, entitled "Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies," Steelman et al. observed a lower nuclear RI also for other cell lines and ruled out methodological error sources such as phase wrapping and scattering effects. Recently, Yurkin composed a comment on these 2 publications, entitled "How a phase image of a cell with nucleus refractive index smaller than that of the cytoplasm should look like?," putting into question the methods used for measuring the cellular and nuclear RI in the aforementioned publications by suggesting that a lower nuclear RI would produce a characteristic dip in the measured phase profile in situ. We point out the difficulty of identifying this dip in the presence of other cell organelles, noise, or blurring due to the imaging point spread function. Furthermore, we mitigate Yurkin's concerns regarding the ability of the simple-transmission approximation to compare cellular and nuclear RI by analyzing a set of phase images with a novel, scattering-based approach. We conclude that the absence of a characteristic dip in the measured phase profiles does not contradict the usage of the simple-transmission approximation for the determination of the average cellular or nuclear RI. Our response can be regarded as an addition to the response by Steelman, Eldridge and Wax. We kindly ask the reader to attend to their thorough ascertainment prior to reading our response. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Constraining the Speed of Sound inside Neutron Stars with Chiral Effective Field Theory Interactions and Observations

    NASA Astrophysics Data System (ADS)

    Tews, I.; Carlson, J.; Gandolfi, S.; Reddy, S.

    2018-06-01

    The dense matter equation of state (EOS) determines neutron star (NS) structure but can be calculated reliably only up to one to two times the nuclear saturation density, using accurate many-body methods that employ nuclear interactions from chiral effective field theory constrained by scattering data. In this work, we use physically motivated ansatzes for the speed of sound c S at high density to extend microscopic calculations of neutron-rich matter to the highest densities encountered in stable NS cores. We show how existing and expected astrophysical constraints on NS masses and radii from X-ray observations can constrain the speed of sound in the NS core. We confirm earlier expectations that c S is likely to violate the conformal limit of {c}S2≤slant {c}2/3, possibly reaching values closer to the speed of light c at a few times the nuclear saturation density, independent of the nuclear Hamiltonian. If QCD obeys the conformal limit, we conclude that the rapid increase of c S required to accommodate a 2 M ⊙ NS suggests a form of strongly interacting matter where a description in terms of nucleons will be unwieldy, even between one and two times the nuclear saturation density. For typical NSs with masses in the range of 1.2–1.4 M ⊙, we find radii between 10 and 14 km, and the smallest possible radius of a 1.4 M ⊙ NS consistent with constraints from nuclear physics and observations is 8.4 km. We also discuss how future observations could constrain the EOS and guide theoretical developments in nuclear physics.

  6. Rankine-Hugoniot relationships for molecular crystal explosives calculated using density functional theory based molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Wixom, Ryan R.; Mattsson, Thomas R.

    2011-06-01

    Density Functional Theory (DFT) has become a crucial tool for understanding the behavior of matter. The ability to perform high-fidelity calculations is most important for cases where experiments are impossible, dangerous, and/or prohibitively expensive to perform. For molecular crystals, successful use of DFT has been hampered by an inability to correctly describe the van der Waals' dominated equilibrium state. We have explored a way of bypassing this problem by using the Armiento-Mattsson 2005 (AM05) exchange-correlation functional. This functional is highly accurate for a wide range of solids, in particular in compression. Another advantage is that AM05 does not include any van der Waals' attraction. We will demonstrate the method on the PETN Hugoniot, and discuss our confidence in the results and ongoing research aimed at improvement. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. A Concept for Measuring Electron Distribution Functions Using Collective Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Milder, A. L.; Froula, D. H.

    2017-10-01

    A.B. Langdon proposed that stable non-Maxwellian distribution functions are realized in coronal inertial confinement fusion plasmas via inverse bremsstrahlung heating. For Zvosc2 Zvosc2 vth2 > 1 , vth2 > 1 , the inverse bremsstrahlung heating rate is sufficiently fast to compete with electron-electron collisions. This process preferentially heats the subthermal electrons leading to super-Gaussian distribution functions. A method to identify the super-Gaussian order of the distribution functions in these plasmas using collective Thomson scattering will be proposed. By measuring the collective Thomson spectra over a range of angles the density, temperature and super-Gaussian order can be determined. This is accomplished by fitting non-Maxwellian distribution data with a super-Gaussian model; in order to match the density and electron temperature to within 10%, the super-Gaussian order must be varied. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Saikat; Wu, Kevin C.-W., E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw; Kao, Hsien-Ming, E-mail: hmkao@cc.ncu.edu.tw, E-mail: kevinwu@ntu.edu.tw

    This manuscript presents the preparation and catalytic application of highly ordered benzene bridged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid (–COOH) group at varied density. The COOH-functionalized PMOs were synthesized by one-step condensation of 1,4-bis (triethoxysilyl) benzene and carboxylic group containing organosilane carboxyethylsilanetriol sodium salt using Brij-76 as the template. The obtained materials were characterized by a mean of methods including powder X-ray diffraction, nitrogen adsorption-desorption, scanning- and transmission electron microscopy, and {sup 13}C solid-state nuclear magnetic resonance measurements. The potentials of the obtained PMO materials with ordered mesopores were examined as solid catalysts for the chemical conversion ofmore » fructose to 5-hydroxymethylfurfural (HMF) in an organic solvent. The results showed that COOH-functionalized PMO with 10% COOH loading exhibited best results for the fructose to HMF conversion and selectivity. The high surface area, the adequate density acid functional group, and the strength of the PMO materials contributing to a promising catalytic ability were observed.« less

  9. Statistical methods for thermonuclear reaction rates and nucleosynthesis simulations

    NASA Astrophysics Data System (ADS)

    Iliadis, Christian; Longland, Richard; Coc, Alain; Timmes, F. X.; Champagne, Art E.

    2015-03-01

    Rigorous statistical methods for estimating thermonuclear reaction rates and nucleosynthesis are becoming increasingly established in nuclear astrophysics. The main challenge being faced is that experimental reaction rates are highly complex quantities derived from a multitude of different measured nuclear parameters (e.g., astrophysical S-factors, resonance energies and strengths, particle and γ-ray partial widths). We discuss the application of the Monte Carlo method to two distinct, but related, questions. First, given a set of measured nuclear parameters, how can one best estimate the resulting thermonuclear reaction rates and associated uncertainties? Second, given a set of appropriate reaction rates, how can one best estimate the abundances from nucleosynthesis (i.e., reaction network) calculations? The techniques described here provide probability density functions that can be used to derive statistically meaningful reaction rates and final abundances for any desired coverage probability. Examples are given for applications to s-process neutron sources, core-collapse supernovae, classical novae, and Big Bang nucleosynthesis.

  10. Nuclear gauge application in road industry

    NASA Astrophysics Data System (ADS)

    Azmi Ismail, Mohd

    2017-11-01

    Soil compaction is essential in road construction. The evaluation of the degree of compaction relies on the knowledge of density and moisture of the compacted layers is very important to the performance of the pavement structure. Among the various tests used for making these determinations, the sand replacement density test and the moisture content determination by oven drying are perhaps the most widely used. However, these methods are not only time consuming and need wearisome procedures to obtain the results but also destructive and the number of measurements that can be taken at any time is limited. The test can on be fed back to the construction site the next day. To solve these problems, a nuclear technique has been introduced as a quicker and easier way of measuring the density and moisture of construction materials. Nuclear moisture density gauges have been used for many years in pavement construction as a method of non-destructive density testing The technique which can determine both wet density and moisture content offers an in situ method for construction control at the work site. The simplicity, the speed, and non-destructive nature offer a great advantage for quality control. This paper provides an overview of nuclear gauge application in road construction and presents a case study of monitoring compaction status of in Sedenak - Skudai, Johor rehabilitation projects.

  11. Experimental demonstration of multiple monoenergetic gamma radiography for effective atomic number identification in cargo inspection

    NASA Astrophysics Data System (ADS)

    Henderson, Brian S.; Lee, Hin Y.; MacDonald, Thomas D.; Nelson, Roberts G.; Danagoulian, Areg

    2018-04-01

    The smuggling of special nuclear materials (SNMs) through international borders could enable nuclear terrorism and constitutes a significant threat to global security. This paper presents the experimental demonstration of a novel radiographic technique for quantitatively reconstructing the density and type of material present in commercial cargo containers, as a means of detecting such threats. Unlike traditional techniques which use sources of bremsstrahlung photons with a continuous distribution of energies, multiple monoenergetic gamma radiography utilizes monoenergetic photons from nuclear reactions, specifically the 4.4 and 15.1 MeV photons from the 11B(d,nγ)12C reaction. By exploiting the Z-dependence of the photon interaction cross sections at these two specific energies, it is possible to simultaneously determine the areal density and the effective atomic number as a function of location for a 2D projection of a scanned object. The additional information gleaned from using and detecting photons of specific energies for radiography substantially increases the resolving power between different materials. This paper presents results from the imaging of mock cargo materials ranging from Z ≈5 -92 , demonstrating accurate reconstruction of the effective atomic number and areal density of the materials over the full range. In particular, the system is capable of distinguishing pure materials with Z ≳ 70 , such as lead and uranium—a critical requirement of a system designed to detect SNM. This methodology could be used to screen commercial cargoes with high material specificity, to distinguish most benign materials from SNM, such as uranium and plutonium.

  12. Improved Monte Carlo Glauber predictions at present and future nuclear colliders

    NASA Astrophysics Data System (ADS)

    Loizides, Constantin; Kamin, Jason; d'Enterria, David

    2018-05-01

    We present the results of an improved Monte Carlo Glauber (MCG) model of relevance for collisions involving nuclei at center-of-mass energies of the BNL Relativistic Heavy Ion Collider (√{sNN}=0.2 TeV), CERN Large Hadron Collider (LHC) (√{sNN}=2.76 -8.8 TeV ), and proposed future hadron colliders (√{sNN}≈10 -63 TeV). The inelastic p p cross sections as a function of √{sNN} are obtained from a precise data-driven parametrization that exploits the many available measurements at LHC collision energies. We describe the nuclear density of a lead nucleus with two separated two-parameter Fermi distributions for protons and neutrons to account for their different densities close to the nuclear periphery. Furthermore, we model the nucleon degrees of freedom inside the nucleus through a lattice with a minimum nodal separation, combined with a "recentering and reweighting" procedure, that overcomes some limitations of previous MCG approaches. The nuclear overlap function, number of participant nucleons and binary nucleon-nucleon collisions, participant eccentricity and triangularity, overlap area, and average path length are presented in intervals of percentile centrality for lead-lead (PbPb) and proton-lead (p Pb ) collisions at all collision energies. We demonstrate for collisions at √{sNN}=5.02 TeV that the central values of the Glauber quantities change by up to 7% in a few bins of reaction centrality, due to the improvements implemented, though typically they remain within the previously assigned systematic uncertainties, while their new associated uncertainties are generally smaller (mostly below 5%) at all centralities than for earlier calculations. Tables for all quantities versus centrality at present and foreseen collision energies involving Pb nuclei, as well as for collisions of XeXe at √{sNN}=5.44 TeV , and AuAu and CuCu at √{sNN}=0.2 TeV , are provided. The source code for the improved Monte Carlo Glauber model is made publicly available.

  13. Quantifying Ab Initio Equation of State Errors for Hydrogen-Helium Mixtures

    NASA Astrophysics Data System (ADS)

    Clay, Raymond; Morales, Miguel

    2017-06-01

    In order to produce predictive models of Jovian planets, an accurate equation of state for hydrogen-helium mixtures is needed over pressure and temperature ranges spanning multiple orders of magnitude. While extensive theoretical work has been done in this area, previous controversies regarding the equation of state of pure hydrogen have demonstrated exceptional sensitivity to approximations commonly employed in ab initio calculations. To this end, we present the results of our quantum Monte Carlo based benchmarking studies for several major classes of density functionals. Additionally, we expand upon our published results by considering the impact that ionic finite size effects and density functional errors translate to errors in the equation of state. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Ethane and Xenon mixing: density functional theory (DFT) simulations and experiments on Sandia's Z machine

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph; Root, Seth; Mattsson, Thomas; Cochrane, Kyle

    2012-02-01

    The combination of ethane and xenon is one of the simplest binary mixtures in which bond breaking is expected to play a role under shock conditions. At cryogenic conditions, xenon is often understood to mix with alkanes such as Ethane as if it were also an alkane, but this model is expected to break down at higher temperatures and pressures. To investigate the breakdown, we have performed density functional theory (DFT) calculations on several xenon/ethane mixtures. Additionally, we have performed shock compression experiments on Xenon-Ethane using the Sandia Z - accelerator. The DFT and experimental results are compared to hydrodynamic simulations using different mixing models in the equation of state. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Nuclear shielding constants by density functional theory with gauge including atomic orbitals

    NASA Astrophysics Data System (ADS)

    Helgaker, Trygve; Wilson, Philip J.; Amos, Roger D.; Handy, Nicholas C.

    2000-08-01

    Recently, we introduced a new density-functional theory (DFT) approach for the calculation of NMR shielding constants. First, a hybrid DFT calculation (using 5% exact exchange) is performed on the molecule to determine Kohn-Sham orbitals and their energies; second, the constants are determined as in nonhybrid DFT theory, that is, the paramagnetic contribution to the constants is calculated from a noniterative, uncoupled sum-over-states expression. The initial results suggested that this semiempirical DFT approach gives shielding constants in good agreement with the best ab initio and experimental data; in this paper, we further validate this procedure, using London orbitals in the theory, having implemented DFT into the ab initio code DALTON. Calculations on a number of small and medium-sized molecules confirm that our approach produces shieldings in excellent agreement with experiment and the best ab initio results available, demonstrating its potential for the study of shielding constants of large systems.

  16. Density measurements as a condition monitoring approach for following the aging of nuclear power plant cable materials

    NASA Astrophysics Data System (ADS)

    Gillen, K. T.; Celina, M.; Clough, R. L.

    1999-10-01

    Monitoring changes in material density has been suggested as a potentially useful condition monitoring (CM) method for following the aging of cable jacket and insulation materials in nuclear power plants. In this study, we compare density measurements and ultimate tensile elongation results versus aging time for most of the important generic types of commercial nuclear power plant cable materials. Aging conditions, which include thermal-only, as well as combined radiation plus thermal, were chosen such that potentially anomalous effects caused by diffusion-limited oxidation (DLO) are unimportant. The results show that easily measurable density increases occur in most important cable materials. For some materials and environments, the density change occurs at a fairly constant rate throughout the mechanical property lifetime. For cases involving so-called induction-time behavior, density increases are slow to moderate until after the induction time, at which point they begin to increase dramatically. In other instances, density increases rapidly at first, then slows down. The results offer strong evidence that density measurements, which reflect property changes under both radiation and thermal conditions, could represent a very useful CM approach.

  17. Synthesis of phase-pure U 2N 3 microspheres and its decomposition into UN

    DOE PAGES

    Silva, Chinthaka M.; Hunt, Rodney Dale; Snead, Lance Lewis; ...

    2014-12-12

    Uranium mononitride (UN) is important as a nuclear fuel. Fabrication of UN in its microspherical form also has its own merits since the advent of the concept of accident-tolerant fuel, where UN is being considered as a potential fuel in the form of TRISO particles. But, not many processes have been well established to synthesize kernels of UN. Therefore, a process for synthesis of microspherical UN with a minimum amount of carbon is discussed herein. First, a series of single-phased microspheres of uranium sesquinitride (U 2N 3) were synthesized by nitridation of UO 2+C microspheres at a few different temperatures.more » Resulting microspheres were of low-density U 2N 3 and decomposed into low-density UN. The variation of density of the synthesized sesquinitrides as a function of its chemical composition indicated the presence of extra (interstitial) nitrogen atoms corresponding to its hyperstoichiometry, which is normally indicated as α-U 2N 3. Average grain sizes of both U 2N 3 and UN varied in a range of 1–2.5 μm. In addition, these had a considerably large amount of pore spacing, indicating the potential sinterability of UN toward its use as a nuclear fuel.« less

  18. First-principles studies of electronic, transport and bulk properties of pyrite FeS2

    NASA Astrophysics Data System (ADS)

    Banjara, Dipendra; Mbolle, Augustine; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola

    We present results of ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of pyrite FeS2. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) formalism, following the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method requires successive, self consistent calculations with increasing basis sets to reach the ground state of the system under study. We report the band structure, the band gap, total and partial densities of states, effective masses, and the bulk modulus. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.

  19. Possibilities for Nuclear Photo-Science with Intense Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, C J; Hartemann, F V; McNabb, D P

    2006-06-26

    The interaction of intense laser light with relativistic electrons can produce unique sources of high-energy x rays and gamma rays via Thomson scattering. ''Thomson-Radiated Extreme X-ray'' (T-REX) sources with peak photon brightness (photons per unit time per unit bandwidth per unit solid angle per unit area) that exceed that available from world's largest synchrotrons by more than 15 orders of magnitude are possible from optimally designed systems. Such sources offer the potential for development of ''nuclear photo-science'' applications in which the primary photon-atom interaction is with the nucleons and not the valence electrons. Applications include isotope-specific detection and imaging ofmore » materials, inverse density radiography, transmutation of nuclear waste and fundamental studies of nuclear structure. Because Thomson scattering cross sections are small, < 1 barn, the output from a T-REX source is optimized when the laser spot size and the electron spot size are minimized and when the electron and laser pulse durations are similar and short compared to the transit time through the focal region. The principle limitation to increased x-ray or gamma-ray brightness is ability to focus the electron beam. The effects of space charge on electron beam focus decrease approximately linearly with electron beam energy. For this reason, T-REX brightness increases rapidly as a function of the electron beam energy. As illustrated in Figure 1, above 100 keV these sources are unique in their ability to produce bright, narrow-beam, tunable, narrow-band gamma rays. New, intense, short-pulse, laser technologies for advanced T-REX sources are currently being developed at LLNL. The construction of a {approx}1 MeV-class machine with this technology is underway and will be used to excite nuclear resonance fluorescence in variety of materials. Nuclear resonance fluorescent spectra are unique signatures of each isotope and provide an ideal mechanism for identification of nuclear materials. With TREX it is possible to use NRF to provide high spatial resolution (micron scale) images of the isotopic distribution of all materials in a given object. Because of the high energy of the photons, imaging through dense and/or thick objects is possible. This technology will have applicability in many arenas including the survey of cargo for the presence of clandestine nuclear materials. It is also possible to address the more general radiographic challenge of imaging low-density objects that are shielded or placed behind high density objects. In this case, it is the NRF cross section and not the electron density of the material that provides contrast. Extensions of T-REX technology will be dependent upon the evolution of short pulse laser technology to high average powers. Concepts for sources that would produce 10's of kWs of gamma-rays by utilizing MW-class average-power, diode-pumped, short pulse lasers and energy recovery LINAC technology have been developed.« less

  20. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    NASA Astrophysics Data System (ADS)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  1. The ZO-1–associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density

    PubMed Central

    Balda, Maria S.; Garrett, Michelle D.; Matter, Karl

    2003-01-01

    Epithelial tight junctions regulate paracellular permeability, restrict apical/basolateral intramembrane diffusion of lipids, and have been proposed to participate in the control of epithelial cell proliferation and differentiation. Previously, we have identified ZO-1–associated nucleic acid binding proteins (ZONAB), a Y-box transcription factor whose nuclear localization and transcriptional activity is regulated by the tight junction–associated candidate tumor suppressor ZO-1. Now, we found that reduction of ZONAB expression using an antisense approach or by RNA interference strongly reduced proliferation of MDCK cells. Transfection of wild-type or ZONAB-binding fragments of ZO-1 reduced proliferation as well as nuclear ZONAB pools, indicating that promotion of proliferation by ZONAB requires its nuclear accumulation. Overexpression of ZONAB resulted in increased cell density in mature monolayers, and depletion of ZONAB or overexpression of ZO-1 reduced cell density. ZONAB was found to associate with cell division kinase (CDK) 4, and reduction of nuclear ZONAB levels resulted in reduced nuclear CDK4. Thus, our data indicate that tight junctions can regulate epithelial cell proliferation and cell density via a ZONAB/ZO-1–based pathway. Although this regulatory process may also involve regulation of transcription by ZONAB, our data suggest that one mechanism by which ZONAB and ZO-1 influence proliferation is by regulating the nuclear accumulation of CDK4. PMID:12566432

  2. A new equation of state for core-collapse supernovae based on realistic nuclear forces and including a full nuclear ensemble

    NASA Astrophysics Data System (ADS)

    Furusawa, S.; Togashi, H.; Nagakura, H.; Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Takano, M.

    2017-09-01

    We have constructed a nuclear equation of state (EOS) that includes a full nuclear ensemble for use in core-collapse supernova simulations. It is based on the EOS for uniform nuclear matter that two of the authors derived recently, applying a variational method to realistic two- and three-body nuclear forces. We have extended the liquid drop model of heavy nuclei, utilizing the mass formula that accounts for the dependences of bulk, surface, Coulomb and shell energies on density and/or temperature. As for light nuclei, we employ a quantum-theoretical mass evaluation, which incorporates the Pauli- and self-energy shifts. In addition to realistic nuclear forces, the inclusion of in-medium effects on the full ensemble of nuclei makes the new EOS one of the most realistic EOSs, which covers a wide range of density, temperature and proton fraction that supernova simulations normally encounter. We make comparisons with the FYSS EOS, which is based on the same formulation for the nuclear ensemble but adopts the relativistic mean field theory with the TM1 parameter set for uniform nuclear matter. The new EOS is softer than the FYSS EOS around and above nuclear saturation densities. We find that neutron-rich nuclei with small mass numbers are more abundant in the new EOS than in the FYSS EOS because of the larger saturation densities and smaller symmetry energy of nuclei in the former. We apply the two EOSs to 1D supernova simulations and find that the new EOS gives lower electron fractions and higher temperatures in the collapse phase owing to the smaller symmetry energy. As a result, the inner core has smaller masses for the new EOS. It is more compact, on the other hand, due to the softness of the new EOS and bounces at higher densities. It turns out that the shock wave generated by core bounce is a bit stronger initially in the simulation with the new EOS. The ensuing outward propagations of the shock wave in the outer core are very similar in the two simulations, which may be an artifact, though, caused by the use of the same tabulated electron capture rates for heavy nuclei ignoring differences in the nuclear composition between the two EOSs in these computations.

  3. Modeling the Propagation of Atmospheric Gravity Waves Produced by an Underground Nuclear Explosion using the Transfer Function Model

    NASA Astrophysics Data System (ADS)

    Bruntz, R. J.; Mayr, H. G.; Paxton, L. J.

    2017-12-01

    We will present results from the Transfer Function Model (TFM), which simulates the neutral atmosphere, from 0 to 700 km, across the entire globe (pole to pole). The TFM is able to rapidly calculate the density and temperature perturbations created by a localized impulse. We have used TFM to simulate a ground-level explosion (equivalent to an underground nuclear explosion (UNE)) and its effects on the neutral atmosphere, including the propagation of gravity waves up to ionospheric heights. At ionospheric altitudes ion-neutral interactions are expected to lead to perturbations in the electron density. These perturbations can be observed as changes in the total electron content (TEC), a feature readily observed by the globally distributed network of global navigation satellite systems (GNSS) sensors. We will discuss the time and location of the maximum atmospheric disturbances at a number of altitudes, including the peaks of several ionospheric layers, including the F2 layer, which is often treated as the major driver of changes in GNSS-TEC observations. We will also examine the drop-off of atmospheric disturbances at those altitudes, both with increasing time and distance. The 6 known underground nuclear explosions (UNEs) by North Korea in the 21st century have sparked increased interest in UNE detection through atmospheric and ionospheric observations. The latest test by North Korea (3 Sept. 2017) was the largest UNE in over 2 decades. We will compare TFM results to the analysis of previous UNEs, including some tests by North Korea, and discuss possible confounding factors in predicting the time, location, and amplitude of atmospheric and ionospheric disturbances produced by a UNE.

  4. Relativistic coupled-cluster calculations of the 173Yb nuclear quadrupole coupling constant for the YbF molecule

    NASA Astrophysics Data System (ADS)

    Pašteka, L. F.; Mawhorter, R. J.; Schwerdtfeger, P.

    2016-04-01

    We report calculations on the q(Yb) electric field gradient (EFG) for the X2Σ+ and A2Π1/2 electronic states of the ytterbium monofluoride (YbF) molecule at the molecular mean-field Dirac-Coulomb-Gaunt as well as scalar-relativistic coupled-cluster levels of theory using large uncontracted basis sets. Vibrational contributions are included in the final results. Our estimated nuclear quadrupole coupling constants of -3386(78) MHz and -2083(153) MHz for the X2Σ+ and A2Π1/2 states of 173YbF are in stark contrast to the only available experimental results (-2050(170) MHz and -1090(160) MHz) respectively, where the only similarity is the difference between the two values. Perturbative triple contributions in the coupled cluster treatment are significant and point towards the necessity to go to higher order in the coupled-cluster treatment in future calculations. We also present density functional calculations which show rather large variations for the Yb EFG with different functionals used; the best result was obtained using the CAM-B3LYP* functional.

  5. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    DOE PAGES

    Sandhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas

    2016-01-20

    Here, we propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. Moreover, we obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to themore » dissipation in collective motion and to adiabatic fission characteristics.« less

  6. Suppression of back-to-back hadron pairs at forward rapidity in d+Au collisions at √s(NN)=200 GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Angerami, A; Aoki, K; Apadula, N; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa del Valle, Z; Connors, M; Csanád, M; Csörgo, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E J; Kim, Y-J; Kinney, E; Kiss, Á; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhou, S; Zolin, L

    2011-10-21

    Back-to-back hadron pair yields in d+Au and p+p collisions at √s(NN)=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |η|<0.35 and the associated hadron at forward rapidity (deuteron direction, 3.0<η<3.8). Pairs were also detected with both hadrons measured at forward rapidity; in this case, the yield of back-to-back hadron pairs in d+Au collisions with small impact parameters is observed to be suppressed by a factor of 10 relative to p+p collisions. The kinematics of these pairs is expected to probe partons in the Au nucleus with a low fraction x of the nucleon momenta, where the gluon densities rise sharply. The observed suppression as a function of nuclear thickness, p(T), and η points to cold nuclear matter effects arising at high parton densities. © 2011 American Physical Society

  7. Whole-Body Counter Evaluation of Internal Radioactive Cesium in Dogs and Cats Exposed to the Fukushima Nuclear Disaster.

    PubMed

    Wada, Seiichi; Ito, Nobuhiko; Watanabe, Masamichi; Kakizaki, Takehiko; Natsuhori, Masahiro; Kawamata, Jun; Urayama, Yoshio

    2017-01-01

    As a result of the 2011 nuclear incident that occurred at the Fukushima Nuclear Power Plant, a large number of abandoned dogs and cats were left within the disaster zone. A small number of these animals were rescued and cared for at shelters. Prior to the dispersal of these animals to their owners or fosterers, we evaluated the degree of internal radiocesium contamination using a specially designed whole-body counter. We conducted 863 non-invasive measurements of gamma rays due to internal radioactive cesium for 68 dogs and 120 cats at one shelter. After plotting graphs of 137Cs density we generated exponential functions of decay from seven dogs and six cats. From the regression formulae, we were able to determine the biological half-lives as 38.2 days for dogs and 30.8 days for cats. We found that in dogs there was a correlation between the biological half-life of radioactive cesium and age. Using our data, we estimated whole-body densities for each cat and dog at the time when they were rescued. We found that there were deviations in the data distributions among the different species, likely due to the timing of rescue, or living habits prior to rescue. A significant correlation was found when extracted feline reproductive organs were analyzed; the coefficients for the estimation of whole-body densities were approximately 7-fold higher than those based on the extracted feline reproductive organs. This may be due to the fact that majority of the radioactive cesium accumulates within muscular tissue with less distribution in other organs. It is possible to plan the appropriate management period in an animal shelter based on the use of the biological half-life of radioactive cesium calculated in this study. We believe that the correlations we uncovered in this work would be of great use for the management of companion animals in the event of a future nuclear accident.

  8. Shedding Synchrotron Light on a Puzzle of Glasses

    ScienceCinema

    Chumakov, Aleksandr [European Synchrotron Radiation Facility, Grenoble, France

    2017-12-09

    Vibrational dynamics of glasses remains a point of controversial discussions. In particular, the density of vibrational states (DOS) reveals an excess of states above the Debye model called "boson peak." Despite the fact that this universal feature for all glasses has been known for more than 35 years, the nature of the boson peak is still not understood. The application of nuclear inelastic scattering via synchrotron radiation perhaps provides a clearer, more consistent picture of the subject. The distinguishing features of nuclear inelastic scattering relative to, e.g., neutron inelastic scattering, are ideal momentum integration and exact scaling of the DOS in absolute units. This allows for reliable comparison to data from other techniques such as Brillouin light scattering. Another strong point is ideal isotope selectivity: the DOS is measured for a single isotope with a specific low-energy nuclear transition. This allows for special "design" of an experiment to study, for instance, the dynamics of only center-of-mass motions. Recently, we have investigated the transformation of the DOS as a function of several key parameters such as temperature, cooling rate, and density. In all cases the transformation of the DOS is sufficiently well described by a transformation of the continuous medium, in particular, by changes of the macroscopic density and the sound velocity. These results suggest a collective sound-like nature of vibrational dynamics in glasses and cast doubts on microscopic models of glass dynamics. Further insight can be obtained in combined studies of glass with nuclear inelastic and inelastic neutron scattering. Applying two techniques, we have measured the energy dependence of the characteristic correlation length of atomic motions. The data do not reveal localization of atomic vibrations at the energy of the boson peak. Once again, the results suggest that special features of glass dynamics are related to extended motions and not to local models.

  9. Whole-Body Counter Evaluation of Internal Radioactive Cesium in Dogs and Cats Exposed to the Fukushima Nuclear Disaster

    PubMed Central

    Wada, Seiichi; Ito, Nobuhiko; Watanabe, Masamichi; Kakizaki, Takehiko; Natsuhori, Masahiro; Kawamata, Jun; Urayama, Yoshio

    2017-01-01

    As a result of the 2011 nuclear incident that occurred at the Fukushima Nuclear Power Plant, a large number of abandoned dogs and cats were left within the disaster zone. A small number of these animals were rescued and cared for at shelters. Prior to the dispersal of these animals to their owners or fosterers, we evaluated the degree of internal radiocesium contamination using a specially designed whole-body counter. We conducted 863 non-invasive measurements of gamma rays due to internal radioactive cesium for 68 dogs and 120 cats at one shelter. After plotting graphs of 137Cs density we generated exponential functions of decay from seven dogs and six cats. From the regression formulae, we were able to determine the biological half-lives as 38.2 days for dogs and 30.8 days for cats. We found that in dogs there was a correlation between the biological half-life of radioactive cesium and age. Using our data, we estimated whole-body densities for each cat and dog at the time when they were rescued. We found that there were deviations in the data distributions among the different species, likely due to the timing of rescue, or living habits prior to rescue. A significant correlation was found when extracted feline reproductive organs were analyzed; the coefficients for the estimation of whole-body densities were approximately 7-fold higher than those based on the extracted feline reproductive organs. This may be due to the fact that majority of the radioactive cesium accumulates within muscular tissue with less distribution in other organs. It is possible to plan the appropriate management period in an animal shelter based on the use of the biological half-life of radioactive cesium calculated in this study. We believe that the correlations we uncovered in this work would be of great use for the management of companion animals in the event of a future nuclear accident. PMID:28099476

  10. Microscopic optical potentials derived from ab initio translationally invariant nonlocal one-body densities

    NASA Astrophysics Data System (ADS)

    Gennari, Michael; Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr

    2018-03-01

    Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important role in the description of the scattering process. Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM) approach utilizing two- and three-nucleon chiral interactions as the only input. Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates. Results: The ground-state local and nonlocal densities of He 4 ,6 ,8 , 12C, and 16O are calculated and applied to optical potential construction. The differential cross sections and the analyzing powers for the elastic proton scattering off these nuclei are then calculated for different values of the incident proton energy. The impact of nonlocality and the COM removal is discussed. Conclusions: The use of nonlocal densities has a substantial impact on the differential cross sections and improves agreement with experiment in comparison to results generated with the local densities especially for light nuclei. For the halo nuclei 6He and 8He, the results for the differential cross section are in a reasonable agreement with the data although a more sophisticated model for the optical potential is required to properly describe the analyzing powers.

  11. Computational studies of molecular charge transfer complexes of heterocyclic 4-methylepyridine-2-azomethine-p-benzene derivatives with picric acid and m-dinitrobenzene.

    PubMed

    Al-Harbi, L M; El-Mossalamy, E H; Obaid, A Y; Al-Jedaani, A H

    2014-01-01

    Charge transfer complexes of substituted aryl Schiff bases as donors with picric acid and m-dinitrobenzene as acceptors were investigated by using computational analysis calculated by Configuration Interaction Singles Hartree-Fock (CIS-HF) at standard 6-31G∗ basis set and Time-Dependent Density-Functional Theory (TD-DFT) levels of theory at standard 6-31G∗∗ basis set, infrared spectra, visible and nuclear magnetic resonance spectra are investigated. The optimized geometries and vibrational frequencies were evaluated. The energy and oscillator strength were calculated by Configuration Interaction Singles Hartree-Fock method (CIS-HF) and the Time-Dependent Density-Functional Theory (TD-DFT) results. Electronic properties, such as HOMO and LUMO energies and band gaps of CTCs set, were studied by the Time-Dependent density functional theory with Becke-Lee-Young-Parr (B3LYP) composite exchange correlation functional and by Configuration Interaction Singles Hartree-Fock method (CIS-HF). The ionization potential Ip and electron affinity EA were calculated by PM3, HF and DFT methods. The columbic force was calculated theoretically by using (CIS-HF and TD-DFT) methods. This study confirms that the theoretical calculation of vibrational frequencies for (aryl Schiff bases--(m-dinitrobenzene and picric acid)) complexes are quite useful for the vibrational assignment and for predicting new vibrational frequencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Cluster formation in precompound nuclei in the time-dependent framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuetrumpf, B.; Nazarewicz, W.

    Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N = Z . Furthermore, we study reactions with oxygen and carbonmore » ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O, 40Ca + 16O, 40Ca + 40Ca , and 16,18O + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12 C - 12 C- α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of 16,18O + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. Finally, the localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.« less

  13. Skyrme forces and decay of the Rf266*104 nucleus synthesized via different incoming channels

    NASA Astrophysics Data System (ADS)

    Niyti, Deep, Aman; Kharab, Rajesh; Chopra, Sahila; Gupta, Raj K.

    2017-03-01

    The excitation functions for the production of 262Rf, 261Rf, and 260Rf isotopes via 4 n -, 5 n -, and 6 n -decay channels from the *266Rf compound nucleus are studied within the dynamical cluster-decay model (DCM), including deformations β2 i and so-called hot-optimum orientations θi which support symmetric fission, in agreement with experiments. The data are available for 18O+248Cm and 22Ne+244Pu reactions, respectively, at the energy ranges of Elab=88.2 to 101.3 and 109.0 to 124.8 MeV. For the nuclear interaction potentials, we use the Skyrme energy density functional (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach, which means an extension of the earlier study of excitation functions of *266Rf formed in 18O+248Cm reaction, based on the DCM using the pocket formula for nuclear proximity potential, showing interaction dependence. The Skyrme forces used here are the old SIII and SIV and new GSkI and KDE0(v1) given for both normal and isospin-rich nuclei, with densities added in frozen density approximation. Interestingly, the DCM gives an excellent fit to the measured data on fusion evaporation residue (ER) for both the incoming channels (18O+248Cm and 22Ne+244Pu ) at the energy range Elab=88.2 to 124.8 MeV, independent of the entrance channel and Skyrme force used. The possible fusion-fission (ff) and quasifission (qf) mass regions of fragments on DCM are also predicted. The DCM with Skyrme forces is further used to look for all the possible target-projectile (t-p) combinations forming the cold compound nucleus (CN) *266Rf at the CN excitation energy of Elab for hot compact configurations. The fusion evaporation residue cross sections, for the proposed new reactions in synthesizing the CN *266Rf, are also estimated for the future experiments, and role of mass asymmetry of nuclei is indicated.

  14. Cluster formation in precompound nuclei in the time-dependent framework

    DOE PAGES

    Schuetrumpf, B.; Nazarewicz, W.

    2017-12-15

    Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N = Z . Furthermore, we study reactions with oxygen and carbonmore » ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O, 40Ca + 16O, 40Ca + 40Ca , and 16,18O + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12 C - 12 C- α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of 16,18O + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. Finally, the localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.« less

  15. Cluster formation in precompound nuclei in the time-dependent framework

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Nazarewicz, W.

    2017-12-01

    Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N =Z . Furthermore, we study reactions with oxygen and carbon ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O,40Ca + 16O, 40Ca + 40Ca, and O,1816 + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12C - 12C-α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of O,1816 + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. The localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.

  16. Estimation of Δ R/ R values by benchmark study of the Mössbauer Isomer shifts for Ru, Os complexes using relativistic DFT calculations

    NASA Astrophysics Data System (ADS)

    Kaneko, Masashi; Yasuhara, Hiroki; Miyashita, Sunao; Nakashima, Satoru

    2017-11-01

    The present study applies all-electron relativistic DFT calculation with Douglas-Kroll-Hess (DKH) Hamiltonian to each ten sets of Ru and Os compounds. We perform the benchmark investigation of three density functionals (BP86, B3LYP and B2PLYP) using segmented all-electron relativistically contracted (SARC) basis set with the experimental Mössbauer isomer shifts for 99Ru and 189Os nuclides. Geometry optimizations at BP86 theory of level locate the structure in a local minimum. We calculate the contact density to the wavefunction obtained by a single point calculation. All functionals show the good linear correlation with experimental isomer shifts for both 99Ru and 189Os. Especially, B3LYP functional gives a stronger correlation compared to BP86 and B2PLYP functionals. The comparison of contact density between SARC and well-tempered basis set (WTBS) indicated that the numerical convergence of contact density cannot be obtained, but the reproducibility is less sensitive to the choice of basis set. We also estimate the values of Δ R/ R, which is an important nuclear constant, for 99Ru and 189Os nuclides by using the benchmark results. The sign of the calculated Δ R/ R values is consistent with the predicted data for 99Ru and 189Os. We obtain computationally the Δ R/ R values of 99Ru and 189Os (36.2 keV) as 2.35×10-4 and -0.20×10-4, respectively, at B3LYP level for SARC basis set.

  17. Non-plane-wave Hartree-Fock states and nuclear homework potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, G.; Plastino, A.; de Llano, M.

    1979-12-01

    It is shown that non-plane-wave single-particle Hartree-Fock orbitals giving rise to a ''spin-density-wave-like'' structure give lower energy than plane waves beyond a certain relatively low density in both nuclear and neutron matter with homework pair potentials v/sub 1/ and v/sub 2/.

  18. Self-consistent calculation of the nuclear composition in hot and dense stellar matter

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Mishustin, Igor

    2017-03-01

    We investigate the mass fractions and in-medium properties of heavy nuclei in stellar matter at characteristic densities and temperatures for supernova (SN) explosions. The individual nuclei are described within the compressible liquid-drop model taking into account modifications of bulk, surface, and Coulomb energies. The equilibrium properties of nuclei and the full ensemble of heavy nuclei are calculated self-consistently. It is found that heavy nuclei in the ensemble are either compressed or decompressed depending on the isospin asymmetry of the system. The compression or decompression has a little influence on the binding energies, total mass fractions, and average mass numbers of heavy nuclei, although the equilibrium densities of individual nuclei themselves are changed appreciably above one-hundredth of normal nuclear density. We find that nuclear structure in the single-nucleus approximation deviates from the actual one obtained in the multinucleus description, since the density of free nucleons is different between these two descriptions. This study indicates that a multinucleus description is required to realistically account for in-medium effects on the nuclear structure in supernova matter.

  19. Skyrme interaction to second order in nuclear matter

    NASA Astrophysics Data System (ADS)

    Kaiser, N.

    2015-09-01

    Based on the phenomenological Skyrme interaction various density-dependent nuclear matter quantities are calculated up to second order in many-body perturbation theory. The spin-orbit term as well as two tensor terms contribute at second order to the energy per particle. The simultaneous calculation of the isotropic Fermi-liquid parameters provides a rigorous check through the validity of the Landau relations. It is found that published results for these second order contributions are incorrect in most cases. In particular, interference terms between s-wave and p-wave components of the interaction can contribute only to (isospin or spin) asymmetry energies. Even with nine adjustable parameters, one does not obtain a good description of the empirical nuclear matter saturation curve in the low density region 0\\lt ρ \\lt 2{ρ }0. The reason for this feature is the too strong density-dependence {ρ }8/3 of several second-order contributions. The inclusion of the density-dependent term \\frac{1}{6}{t}3{ρ }1/6 is therefore indispensable for a realistic description of nuclear matter in the Skyrme framework.

  20. Thermal radiative and thermodynamic properties of solid and liquid uranium and plutonium carbides in the visible-near-infrared range

    NASA Astrophysics Data System (ADS)

    Fisenko, Anatoliy I.; Lemberg, Vladimir F.

    2016-09-01

    The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.

  1. An analysis of the impact of LHC Run I proton-lead data on nuclear parton densities.

    PubMed

    Armesto, Néstor; Paukkunen, Hannu; Penín, José Manuel; Salgado, Carlos A; Zurita, Pía

    2016-01-01

    We report on an analysis of the impact of available experimental data on hard processes in proton-lead collisions during Run I at the large hadron collider on nuclear modifications of parton distribution functions. Our analysis is restricted to the EPS09 and DSSZ global fits. The measurements that we consider comprise production of massive gauge bosons, jets, charged hadrons and pions. This is the first time a study of nuclear PDFs includes this number of different observables. The goal of the paper is twofold: (i) checking the description of the data by nPDFs, as well as the relevance of these nuclear effects, in a quantitative manner; (ii) testing the constraining power of these data in eventual global fits, for which we use the Bayesian reweighting technique. We find an overall good, even too good, description of the data, indicating that more constraining power would require a better control over the systematic uncertainties and/or the proper proton-proton reference from LHC Run II. Some of the observables, however, show sizeable tension with specific choices of proton and nuclear PDFs. We also comment on the corresponding improvements as regards the theoretical treatment.

  2. Estimation of M 1 scissors mode strength for deformed nuclei in the medium- to heavy-mass region by statistical Hauser-Feshbach model calculations

    NASA Astrophysics Data System (ADS)

    Mumpower, M. R.; Kawano, T.; Ullmann, J. L.; Krtička, M.; Sprouse, T. M.

    2017-08-01

    Radiative neutron capture is an important nuclear reaction whose accurate description is needed for many applications ranging from nuclear technology to nuclear astrophysics. The description of such a process relies on the Hauser-Feshbach theory which requires the nuclear optical potential, level density, and γ -strength function as model inputs. It has recently been suggested that the M 1 scissors mode may explain discrepancies between theoretical calculations and evaluated data. We explore statistical model calculations with the strength of the M 1 scissors mode estimated to be dependent on the nuclear deformation of the compound system. We show that the form of the M 1 scissors mode improves the theoretical description of evaluated data and the match to experiment in both the fission product and actinide regions. Since the scissors mode occurs in the range of a few keV to a few MeV, it may also impact the neutron capture cross sections of neutron-rich nuclei that participate in the rapid neutron capture process of nucleosynthesis. We comment on the possible impact to nucleosynthesis by evaluating neutron capture rates for neutron-rich nuclei with the M 1 scissors mode active.

  3. Influence of acute promyelocytic leukemia therapeutic drugs on nuclear pore complex density and integrity.

    PubMed

    Lång, Anna; Øye, Alexander; Eriksson, Jens; Rowe, Alexander D; Lång, Emma; Bøe, Stig Ove

    2018-05-15

    During cell division, a large number of nuclear proteins are released into the cytoplasm due to nuclear envelope breakdown. Timely nuclear import of these proteins following exit from mitosis is critical for establishment of the G1 nuclear environment. Dysregulation of post-mitotic nuclear import may affect the fate of newly divided stem or progenitor cells and may lead to cancer. Acute promyelocytic leukemia (APL) is a malignant disorder that involves a defect in blood cell differentiation at the promyelocytic stage. Recent studies suggest that pharmacological concentrations of the APL therapeutic drugs, all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), affect post-mitotic nuclear import of the APL-associated oncoprotein PML/RARA. In the present study, we have investigated the possibility that ATRA and ATO affect post-mitotic nuclear import through interference with components of the nuclear import machinery. We observe reduced density and impaired integrity of nuclear pore complexes after ATRA and/or ATO exposure. Using a post-mitotic nuclear import assay, we demonstrate distinct import kinetics among different nuclear import pathways while nuclear import rates were similar in the presence or absence of APL therapeutic drugs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Localization of nuclear subunits of cyclic AMP-dependent protein kinase by the immunocolloidal gold method

    PubMed Central

    1985-01-01

    An immunocolloidal gold electron microscopy method is described allowing the ultrastructural localization and quantitation of the regulatory subunits RI and RII and the catalytic subunit C of cAMP- dependent protein kinase. Using a postembedding indirect immunogold labeling procedure that employs specific antisera, the catalytic and regulatory subunits were localized in electron-dense regions of the nucleus and in cytoplasmic areas with a minimum of nonspecific staining. Antigenic domains were localized in regions of the heterochromatin, nucleolus, interchromatin granules, and in the endoplasmic reticulum of different cell types, such as rat hepatocytes, ovarian granulosa cells, and spermatogonia, as well as cultured H4IIE hepatoma cells. Morphometric quantitation of the relative staining density of nuclear antigens indicated a marked modulation of the number of subunits per unit area under various physiologic conditions. For instance, following partial hepatectomy in rats, the staining density of the nuclear RI and C subunits was markedly increased 16 h after surgery. Glucagon treatment of rats increased the staining density of only the nuclear catalytic subunit. Dibutyryl cAMP treatment of H4IIE hepatoma cells led to a marked increase in the nuclear staining density of all three subunits of cAMP-dependent protein kinase. These studies demonstrate that specific antisera against cAMP-dependent protein kinase subunits may be used in combination with immunogold electron microscopy to identify the ultrastructural location of the subunits and to provide a semi-quantitative estimate of their relative cellular density. PMID:2993318

  5. Equilibrium nuclear ensembles taking into account vaporization of hot nuclei in dense stellar matter

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Mishustin, Igor

    2018-02-01

    We investigate the high-temperature effect on the nuclear matter that consists of mixture of nucleons and all nuclei in the dense and hot stellar environment. The individual nuclei are described within the compressible-liquid-drop model that is based on Skyrme interactions for bulk energies and that takes into account modifications of the surface and Coulomb energies at finite temperatures and densities. The free-energy density is minimized with respect to the individual equilibrium densities of all heavy nuclei and the nuclear composition. We find that their optimized equilibrium densities become smaller and smaller at high temperatures because of the increase in thermal contributions to bulk free energies and the reduction of surface energies. The neutron-rich nuclei become unstable and disappear one after another at given temperatures. The calculations are performed for two sets of model parameters leading to different values of the slope parameter in the nuclear-symmetry energy. It is found that the larger slope parameter reduces the equilibrium densities and the melting temperatures. We also compare the proposed model with some other approaches and find that the mass fractions of heavy nuclei in the previous calculations that omit vaporization are underestimated at T ≲10 MeV and overestimated at T ≳10 MeV. The further sophistication of calculations of nuclear vaporization and of light clusters would be required to construct the equation of state for explosive astrophysical phenomena.

  6. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tews, Ingo; Lattimer, James M.; Ohnishi, Akira

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S {sub 0}. In addition, for assumed values of S {sub 0} above this minimum, this bound impliesmore » both upper and lower limits to the symmetry energy slope parameter L , which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust–core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.« less

  7. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    NASA Astrophysics Data System (ADS)

    Tews, Ingo; Lattimer, James M.; Ohnishi, Akira; Kolomeitsev, Evgeni E.

    2017-10-01

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S 0. In addition, for assumed values of S 0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L ,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.

  8. Ab-initio Density Functional Theory (DFT) Studies of Electronic, Transport, and Bulk Properties of Sodium Oxide (Na2O)

    NASA Astrophysics Data System (ADS)

    Polin, Daniel; Ziegler, Joshua; Malozovsky, Yuriy; Bagayoko, Diola

    We present the findings of ab-initio calculations of electronic, transport, and structural properties of cubic sodium oxide (Na2O). These results were obtained using density functional theory (DFT), specifically a local density approximation (LDA) potential, and the linear combination of Gaussian orbitals (LCGO). Our implementation of LCGO followed the Bagayoko, Zhao, and Williams method as enhanced by the work of Ekuma and Franklin (BZW-EF). We describe the electronic band structure of Na2O with a direct band gap of 2.22 eV. Our results include predicted values for the electronic band structure and associated energy eigenvalues, the total and partial density of states (DOS and pDOS), the equilibrium lattice constant of Na2O, and the bulk modulus. We have also calculated the electron and holes effective masses in the Γ to L, Γ to X, and Γ to K directions. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.

  9. Measurement of In Vivo Three-Dimensional Corneal Cell Density and Size Using Two-Photon Imaging in C57BL/6 Mice.

    PubMed

    Zhang, Hongmin; He, Siyu; Liu, Susu; Xie, Yanting; Chen, Guoming; Zhang, Junjie; Sun, Shengtao; Liang, David; Wang, Liya

    2016-04-01

    To measure the cell size and cell density in five layers of the central cornea in the widely used inbred C57BL/6 mouse strain using in vivo three-dimensional (3D) two-photon (2PH) imaging. Corneas were scanned using a 2PH laser scanning fluorescence microscope after staining with plasma membrane stain and Hoechst 33342. Good quality 3D images were selected for the cell density and cell size analysis. Cell density was determined by counting the cell nuclei in a predefined cube of 3D images. Cell size measurements, including cell surface area, cell volume, nuclear surface area and nuclear volume, were automatically quantified using the Imaris software. The cell and nuclear surface-area-to-volume ratio (S:V ratio) and the cell nuclear-cytoplasmic ratio (N:C ratio) were calculated. The highest cell density was observed in the basal epithelium and the lowest in the posterior stroma. The highest cell surface area was found in the anterior stroma, and the highest cell volume was observed in the superficial epithelium. The lowest cell surface area and cell volume were both found in the basal epithelium. The highest S:V ratio was observed in the basal epithelium and the lowest in the superficial epithelium. The highest cell nuclear surface area and volume were both observed in the superficial epithelium and the lowest in the basal epithelium. The highest cell nuclear S:V ratio was observed in the basal epithelium and the lowest in the superficial epithelium. The highest N:C ratio was found in the basal epithelial cells and the lowest in the posterior keratocytes. We are the first to quantify the cell density and size parameters, including cell surface area and volume, cell nuclear surface area and volume, and the S:V ratio, in the five layers of the central cornea. These data provide important cell morphology features for the study of corneal physiology, pathology and disease in mice, particularly in C57BL/6 mice.

  10. Pasta Nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Charles; da Silva Schneider, Andre; Berry, Donald

    2014-09-01

    We simulate the decompression of cold dense nuclear matter, near the nuclear saturation density, in order to study the role of nuclear pasta in r-process nucleosynthesis in neutron star mergers. Our simulations are performed using a classical molecular dynamics model with 51 200 and 409 600 nucleons, and are run on GPUs. We expand our simulation region to decompress systems from initial densities of 0.080 fm-3 down to 0.00125 fm-3. We study proton fractions of YP = 0.05, 0.10, 0.20, 0.30, and 0.40 at T = 0.5, 0.75, and 1 MeV. We calculate the composition of the resulting systems using a cluster algorithm. This composition is in good agreement with nuclear statistical equilibrium models for temperatures of 0.75 and 1 MeV. However, for proton fractions greater than YP = 0.2 at a temperature of T = 0.5 MeV, the MD simulations produce non-equilibrium results with large rod-like nuclei. Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.

  11. Multi-technique characterization of gold electroplating on silver substrates for cultural heritage applications

    NASA Astrophysics Data System (ADS)

    Ortega-Feliu, I.; Ager, F. J.; Roldán, C.; Ferretti, M.; Juanes, D.; Scrivano, S.; Respaldiza, M. A.; Ferrazza, L.; Traver, I.; Grilli, M. L.

    2017-09-01

    This work presents a detailed study of a series of silver plates gilded via electroplating techniques in which the characteristics of the coating gold layers are investigated as a function of the electroplating variables (voltage, time, anode surface and temperature). Some reference samples were coated by radio frequency sputtering in order to compare gold layer homogeneity and effective density. Surface analysis was performed by means of atomic and nuclear techniques (SEM-EDX, EDXRF, PIXE and RBS) to obtain information about thickness, homogeneity, effective density, profile concentration of the gold layers and Au-Ag diffusion profiles. The gold layer thickness obtained by PIXE and EDXRF is consistent with the thickness obtained by means of RBS depth profiling. Electroplated gold mass thickness increases with electroplating time, anode area and voltage. However, electrodeposited samples present rough interfaces and gold layer effective densities lower than the nominal density of Au (19.3 g/cm3), whereas sputtering produces uniform layers with nominal density. These analyses provide valuable information to historians and curators and can help the restoration process of gold-plated silver objects.

  12. Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces

    NASA Astrophysics Data System (ADS)

    Togashi, H.; Nakazato, K.; Takehara, Y.; Yamamuro, S.; Suzuki, H.; Takano, M.

    2017-05-01

    A new table of the nuclear equation of state (EOS) based on realistic nuclear potentials is constructed for core-collapse supernova numerical simulations. Adopting the EOS of uniform nuclear matter constructed by two of the present authors with the cluster variational method starting from the Argonne v18 and Urbana IX nuclear potentials, the Thomas-Fermi calculation is performed to obtain the minimized free energy of a Wigner-Seitz cell in non-uniform nuclear matter. As a preparation for the Thomas-Fermi calculation, the EOS of uniform nuclear matter is modified so as to remove the effects of deuteron cluster formation in uniform matter at low densities. Mixing of alpha particles is also taken into account following the procedure used by Shen et al. (1998, 2011). The critical densities with respect to the phase transition from non-uniform to uniform phase with the present EOS are slightly higher than those with the Shen EOS at small proton fractions. The critical temperature with respect to the liquid-gas phase transition decreases with the proton fraction in a more gradual manner than in the Shen EOS. Furthermore, the mass and proton numbers of nuclides appearing in non-uniform nuclear matter with small proton fractions are larger than those of the Shen EOS. These results are consequences of the fact that the density derivative coefficient of the symmetry energy of our EOS is smaller than that of the Shen EOS.

  13. Nuclear Gauges Used in Road Construction | RadTown USA ...

    EPA Pesticide Factsheets

    2017-08-07

    Nuclear gauges use radioactive sources to measure the thickness, density or make-up of a wide variety of materials and surfaces. When properly used, nuclear gauges will not expose the public to radiation. Nuclear gauges must be used safely and disposed of properly.

  14. Beta electron fluxes inside a magnetic plasma cavern: Calculation and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Stupitskii, E. L.; Smirnov, E. V.; Kulikova, N. A.

    2010-12-01

    We study the possibility of electrostatic blanking of beta electrons in the expanding spherical blob of a radioactive plasma in a rarefied ionosphere. From numerical studies on the dynamics of beta electrons departing a cavern, we obtain the form of a function that determines the portion of departing electrons and calculate the flux density of beta electrons inside the cavern in relation to the Starfish Prime nuclear blast. We show that the flux density of electrons in geomagnetic flux tubes and inside the cavern depend on a correct allowance for the quantity of beta electrons returning to the cavern. On the basis of a physical analysis, we determine the approximate criterion for the return of electrons from a geomagnetic flux tube to the cavern. We compare calculation results in terms of the flux density of beta electrons inside the cavern with the recently published experimental results from operation Starfish Prime.

  15. Microscopic Phase-Space Exploration Modeling of ^{258}Fm Spontaneous Fission.

    PubMed

    Tanimura, Yusuke; Lacroix, Denis; Ayik, Sakir

    2017-04-14

    We show that the total kinetic energy (TKE) of nuclei after the spontaneous fission of ^{258}Fm can be well reproduced using simple assumptions on the quantum collective phase space explored by the nucleus after passing the fission barrier. Assuming energy conservation and phase-space exploration according to the stochastic mean-field approach, a set of initial densities is generated. Each density is then evolved in time using the nuclear time-dependent density-functional theory with pairing. This approach goes beyond the mean-field theory by allowing spontaneous symmetry breaking as well as a wider dynamical phase-space exploration leading to larger fluctuations in collective space. The total kinetic energy and mass distributions are calculated. New information on the fission process: fluctuations in scission time, strong correlation between TKE and collective deformation, as well as prescission particle emission, are obtained. We conclude that fluctuations of the TKE and mass are triggered by quantum fluctuations.

  16. Effects of Long Term Exposure of 900-1800 MHz Radiation Emitted from 2G Mobile Phone on Mice Hippocampus- A Histomorphometric Study.

    PubMed

    Mugunthan, Narayanaperumal; Shanmugasamy, Kathirvelu; Anbalagan, Jayaram; Rajanarayanan, Swamynathan; Meenachi, Swamynathan

    2016-08-01

    The advancement in the telecommunications technology with multi-functional added features in mobile phone, attracts more users of all age group. It is alarming to note that, the mobile phone use has increased amongst children and they are exposed to potentially harmful radiofrequency radiation in their lifetime. To investigate the long term exposure of 900 to 1800 MHz radiations emitted from 2G mobile phone in mice hippocampus at histomorphometric level. With due approval from institutional animal ethics committee, 36 mice were exposed to 2G mobile phone radiation, 48 minutes per day for a period of 30-180 days. The control group was kept under similar conditions without 2G exposure. Mice were sacrificed and the brain was removed from the first month to six months period. Brain was removed from the cranial cavity and hippocampus region was dissected out carefully and processed for routine histological study. Random serial sections were analysed under microscope for histomorphometric changes. For statistical analysis, independent t-test was used for comparing control and 2G exposed groups. The mean density of neurons in the hippocampus regions CA1, CA2 and DGDB from first to sixth month was significantly lower in the 2G exposed groups; however, in CA3 and DGVB, the 2G exposed mice showed significantly higher density of neurons. The mean nuclear diameter of neurons in the hippocampus region of CA1, CA2, CA3, DGDB and DGVB from first to sixth months showed lower nuclear diameter in 2G exposed mice. The long term exposure to 900-1800 MHz frequency radiations emitted from 2G mobile phone could cause significantly reduced neuron density and decreased nuclear diameter in the hippocampus neurons of mice.

  17. Application of quasi-distributions for solving inverse problems of neutron and {gamma}-ray transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogosbekyan, L.R.; Lysov, D.A.

    The considered inverse problems deal with the calculation of the unknown values of nuclear installations by means of the known (goal) functionals of neutron/{gamma}-ray distributions. The example of these problems might be the calculation of the automatic control rods position as function of neutron sensors reading, or the calculation of experimentally-corrected values of cross-sections, isotopes concentration, fuel enrichment via the measured functional. The authors have developed the new method to solve inverse problem. It finds flux density as quasi-solution of the particles conservation linear system adjointed to equalities for functionals. The method is more effective compared to the one basedmore » on the classical perturbation theory. It is suitable for vectorization and it can be used successfully in optimization codes.« less

  18. Basis sets for the calculation of core-electron binding energies

    NASA Astrophysics Data System (ADS)

    Hanson-Heine, Magnus W. D.; George, Michael W.; Besley, Nicholas A.

    2018-05-01

    Core-electron binding energies (CEBEs) computed within a Δ self-consistent field approach require large basis sets to achieve convergence with respect to the basis set limit. It is shown that supplementing a basis set with basis functions from the corresponding basis set for the element with the next highest nuclear charge (Z + 1) provides basis sets that give CEBEs close to the basis set limit. This simple procedure provides relatively small basis sets that are well suited for calculations where the description of a core-ionised state is important, such as time-dependent density functional theory calculations of X-ray emission spectroscopy.

  19. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    DOE PAGES

    Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak; ...

    2017-08-16

    We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less

  20. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak

    We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less

  1. Low-energy enhancement and fluctuations of γ-ray strength functions in 56,57Fe: test of the Brink-Axel hypothesis

    NASA Astrophysics Data System (ADS)

    Larsen, A. C.; Guttormsen, M.; Blasi, N.; Bracco, A.; Camera, F.; Crespo Campo, L.; Eriksen, T. K.; Görgen, A.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Leoni, S.; E Midtbø, J.; Million, B.; Nyhus, H. T.; Renstrøm, T.; Rose, S. J.; E Ruud, I.; Siem, S.; Tornyi, T. G.; Tveten, G. M.; Voinov, A. V.; Wiedeking, M.; Zeiser, F.

    2017-06-01

    Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter-Thomas fluctuations, there is no indication of any significant excitation energy dependence in the γ-ray strength function, in support of the generalized Brink-Axel hypothesis.

  2. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.

    2015-04-01

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.

  3. Evolution of the pygmy dipole resonance in Sn isotopes

    NASA Astrophysics Data System (ADS)

    Toft, H. K.; Larsen, A. C.; Bürger, A.; Guttormsen, M.; Görgen, A.; Nyhus, H. T.; Renstrøm, T.; Siem, S.; Tveten, G. M.; Voinov, A.

    2011-04-01

    Nuclear level density and γ-ray strength functions of Sn121,122 below the neutron separation energy are extracted with the Oslo method using the (He3,He3'γ) and (He3,αγ) reactions. The level densities of Sn121,122 display steplike structures, interpreted as signatures of neutron pair breaking. An enhancement in both strength functions, compared to standard models for radiative strength, is observed in our measurements for Eγ≳5.2 MeV. This enhancement is compatible with pygmy resonances centered at ≈8.4(1) and ≈8.6(2) MeV, respectively, and with integrated strengths corresponding to ≈1.8-5+1% of the classical Thomas-Reiche-Kuhn sum rule. Similar resonances were also seen in Sn116-119. Experimental neutron-capture cross reactions are well reproduced by our pygmy resonance predictions, while standard strength models are less successful. The evolution as a function of neutron number of the pygmy resonance in Sn116-122 is described as a clear increase of centroid energy from 8.0(1) to 8.6(2) MeV, but with no observable difference in integrated strengths.

  4. Enhanced Constraints for Accurate Lower Bounds on Many-Electron Quantum Energies from Variational Two-Electron Reduced Density Matrix Theory.

    PubMed

    Mazziotti, David A

    2016-10-07

    A central challenge of physics is the computation of strongly correlated quantum systems. The past ten years have witnessed the development and application of the variational calculation of the two-electron reduced density matrix (2-RDM) without the wave function. In this Letter we present an orders-of-magnitude improvement in the accuracy of 2-RDM calculations without an increase in their computational cost. The advance is based on a low-rank, dual formulation of an important constraint on the 2-RDM, the T2 condition. Calculations are presented for metallic chains and a cadmium-selenide dimer. The low-scaling T2 condition will have significant applications in atomic and molecular, condensed-matter, and nuclear physics.

  5. Element-resolved thermodynamics of magnetocaloric LaFe 13 – x Si x

    DOE PAGES

    Gruner, Markus E.; Keune, Werner; Cuenya, B. Roldan; ...

    2015-02-04

    By combination of two independent approaches, nuclear resonant inelastic x-ray scattering and first-principles calculations in the framework of density functional theory, we demonstrate significant changes in the element-resolved vibrational density of states across the first-order transition from the ferromagnetic low temperature to the paramagnetic high temperature phase of LaFe 13-xSi x. These changes originate from the itinerant electron metamagnetism associated with Fe and lead to a pronounced magneto-elastic softening despite the large volume decrease at the transition. As a result, the increase in lattice entropy associated with the Fe subsystem is significant and contributes cooperatively with the magnetic and electronicmore » entropy changes to the excellent magneto- and barocaloric properties.« less

  6. Enhanced Constraints for Accurate Lower Bounds on Many-Electron Quantum Energies from Variational Two-Electron Reduced Density Matrix Theory

    NASA Astrophysics Data System (ADS)

    Mazziotti, David A.

    2016-10-01

    A central challenge of physics is the computation of strongly correlated quantum systems. The past ten years have witnessed the development and application of the variational calculation of the two-electron reduced density matrix (2-RDM) without the wave function. In this Letter we present an orders-of-magnitude improvement in the accuracy of 2-RDM calculations without an increase in their computational cost. The advance is based on a low-rank, dual formulation of an important constraint on the 2-RDM, the T 2 condition. Calculations are presented for metallic chains and a cadmium-selenide dimer. The low-scaling T 2 condition will have significant applications in atomic and molecular, condensed-matter, and nuclear physics.

  7. Sound velocity and density of magnesiowüstites: Implications for ultralow-velocity zone topography: Sound velocities of Iron-rich Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, June; Jackson, Jennifer M.; Sturhahn, Wolfgang

    We explore the effect of Mg/Fe substitution on the sound velocities of iron-rich (Mg 1 - xFe x)O, where x = 0.84, 0.94, and 1.0. Sound velocities were determined using nuclear resonance inelastic X-ray scattering as a function of pressure, approaching those of the lowermost mantle. The systematics of cation substitution in the Fe-rich limit has the potential to play an important role in the interpretation of seismic observations of the core-mantle boundary. By determining a relationship between sound velocity, density, and composition of (Mg,Fe)O, this study explores the potential constraints on ultralow-velocity zones at the core-mantle boundary.

  8. Comparison of degradation effects induced by gamma radiation and electron beam radiation in two cable jacketing materials

    NASA Astrophysics Data System (ADS)

    Bartoníček, B.; Plaček, V.; Hnát, V.

    2007-05-01

    The radiation degradation behavior of commercial low density polyethylene (LDPE) and ethylene-vinylacetate (EVA) cable materials has been investigated. The changes of mechanical properties, thermooxidative stability and density exhibit different radiation stability towards 60Co-gamma radiation and 160 keV electron beam radiation. This difference reflects much higher penetration of the gamma radiation through the polymeric material as a function of sample thickness. These results are discussed with respect to the role of beta radiation during design basis events in a nuclear power plants. In case when total accidental design basis event (DBE) dose (involving about 80% soft beta radiation) is simulated by 60Co-gamma radiation the conservatism is reached.

  9. Hybrid reconstruction of quantum density matrix: when low-rank meets sparsity

    NASA Astrophysics Data System (ADS)

    Li, Kezhi; Zheng, Kai; Yang, Jingbei; Cong, Shuang; Liu, Xiaomei; Li, Zhaokai

    2017-12-01

    Both the mathematical theory and experiments have verified that the quantum state tomography based on compressive sensing is an efficient framework for the reconstruction of quantum density states. In recent physical experiments, we found that many unknown density matrices in which people are interested in are low-rank as well as sparse. Bearing this information in mind, in this paper we propose a reconstruction algorithm that combines the low-rank and the sparsity property of density matrices and further theoretically prove that the solution of the optimization function can be, and only be, the true density matrix satisfying the model with overwhelming probability, as long as a necessary number of measurements are allowed. The solver leverages the fixed-point equation technique in which a step-by-step strategy is developed by utilizing an extended soft threshold operator that copes with complex values. Numerical experiments of the density matrix estimation for real nuclear magnetic resonance devices reveal that the proposed method achieves a better accuracy compared to some existing methods. We believe that the proposed method could be leveraged as a generalized approach and widely implemented in the quantum state estimation.

  10. Nuclear test ban treaty verification: Improving test ban monitoring with empirical and model-based signal processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, David B.; Gibbons, Steven J.; Rodgers, Arthur J.

    In this approach, small scale-length medium perturbations not modeled in the tomographic inversion might be described as random fields, characterized by particular distribution functions (e.g., normal with specified spatial covariance). Conceivably, random field parameters (scatterer density or scale length) might themselves be the targets of tomographic inversions of the scattered wave field. As a result, such augmented models may provide processing gain through the use of probabilistic signal sub spaces rather than deterministic waveforms.

  11. Nuclear test ban treaty verification: Improving test ban monitoring with empirical and model-based signal processing

    DOE PAGES

    Harris, David B.; Gibbons, Steven J.; Rodgers, Arthur J.; ...

    2012-05-01

    In this approach, small scale-length medium perturbations not modeled in the tomographic inversion might be described as random fields, characterized by particular distribution functions (e.g., normal with specified spatial covariance). Conceivably, random field parameters (scatterer density or scale length) might themselves be the targets of tomographic inversions of the scattered wave field. As a result, such augmented models may provide processing gain through the use of probabilistic signal sub spaces rather than deterministic waveforms.

  12. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meek, Garrett A.; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplingsmore » at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.« less

  13. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections

    NASA Astrophysics Data System (ADS)

    Meek, Garrett A.; Levine, Benjamin G.

    2016-05-01

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  14. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.

    PubMed

    Meek, Garrett A; Levine, Benjamin G

    2016-05-14

    We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.

  15. Fragment-based 13C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    NASA Astrophysics Data System (ADS)

    Hartman, Joshua D.; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J. O.

    2015-09-01

    We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.

  16. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods.

    PubMed

    Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.

  17. Myopic refractive shift represents dense nuclear sclerosis and thin lens in lenticular myopia.

    PubMed

    Cho, Yang Kyung; Huang, Wei; Nishimura, Eiichi

    2013-09-01

    It is not rare to meet unilateral nuclear sclerotic cataracts with myopic refractive changes (lenticular myopia) compared with the fellow eye in the ophthalmic examination of patients with decreased visual acuity. To determine the relationship between the myopic refractive changes and interocular differences of parameters, we investigated the interocular differences of ocular parameters between a lenticular myopic eye and the fellow eye. This retrospective study included 68 eyes of 34 patients, who showed unilateral lenticular myopia. We compared the dimensions of ocular component, such as anterior chamber depth, anterior chamber volume, lens thickness, vitreous chamber depth, lens position, lens density of nuclear sclerosis, anterior lens curvature and myopic refractive changes (spherical equivalent refraction) between the lenticular myopic eye and the myopic refractive change were examined. Statistically significant differences were found between the lenticular myopic eye and the fellow eye for anterior chamber depth (p = 0.015) anterior chamber volume (p = 0.031), lens thickness (p < 0.001), lens density of the nuclear sclerosis (p < 0.001) and the spherical equivalent myopic refractive changes (p < 0.001). Based on univariate analysis, the interocular difference in spherical equivalent refraction was significantly correlated with interocular differences of the density of the nuclear sclerosis (r = 0.79, p < 0.001), lens thickness (r = -0.70, p < 0.001) and vitreous chamber depth (r = 0.43, p = 0.012). Based on multiple regression analysis, the interocular difference in spherical equivalent refraction was significantly correlated with interocular differences of density of nuclear sclerosis (p < 0.001) and lens thickness (p = 0.007). The difference in myopic spherical change reflects the differences in the severity of nuclear sclerosis and lens thickness between the lenticular myopic eye and the fellow eye. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  18. Nature of non-nuclear (3, -3) π-attractor and π-bonding: Theoretical analysis on π-electron density

    NASA Astrophysics Data System (ADS)

    Lv, Jiao; Yang, Lihua; Sun, Zheng; Meng, Lingpeng; Li, Xiaoyan

    2018-01-01

    Understanding the nature of π-electron density is important to characterize the conjugate π molecular systems. In this work, the π-electron densities of some typical conjugated π molecular systems were separated from their total electron densities; the positions and natures of non-nuclear (3, -3) π-attractors and the π-bond critical points (π-BCPs) are investigated. The calculated results show that for the same element, the position of the π-attractor is constant, regardless of the chemical surroundings. The position of the π-BCP is closer to the atom with the larger electronegativity.

  19. Nuclear Mass Predictions within the Skyrme HFB Theory

    NASA Astrophysics Data System (ADS)

    Samyn, M.; Goriely, S.; Pearson, J. M.

    2005-05-01

    To increase the reliability of predictions of highly neutron-rich nuclear masses we systematically analyze the sensitivity of Hartree-Fock-Bogoliubov (HFB) mass formulae to various physical inputs, such as a density dependence of the pairing interaction, a low effective mass, the particle-number projection, the symmetry energy, … We typically use a 10-parameter Skyrme force and a 4-parameter δ-function pairing force. The 14 degrees of freedom are adjusted to the masses of all measured nuclei with N,Z ⩾ 8 given in the 2001 and 2003 Audi et al. compilations. The masses of light and proton-rich nuclei are corrected by a 4-parameter phenomenological Wigner term. With more than ten such parameter sets complete mass tables are constructed, going from one drip line to the other, up to Z = 120.

  20. Precision Mass Measurements of Cr-6358 : Nuclear Collectivity Towards the N =40 Island of Inversion

    NASA Astrophysics Data System (ADS)

    Mougeot, M.; Atanasov, D.; Blaum, K.; Chrysalidis, K.; Goodacre, T. Day; Fedorov, D.; Fedosseev, V.; George, S.; Herfurth, F.; Holt, J. D.; Lunney, D.; Manea, V.; Marsh, B.; Neidherr, D.; Rosenbusch, M.; Rothe, S.; Schweikhard, L.; Schwenk, A.; Seiffert, C.; Simonis, J.; Stroberg, S. R.; Welker, A.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2018-06-01

    The neutron-rich isotopes Cr 58 - 63 were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron midshell region, which is a gateway to the second island of inversion around N =40 . In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the ab initio in-medium similarity renormalization group, the first such results for open-shell chromium isotopes.

  1. Spectroscopic properties of nuclear skyrme energy density functionals.

    PubMed

    Tarpanov, D; Dobaczewski, J; Toivanen, J; Carlsson, B G

    2014-12-19

    We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and observations. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more or one less neutron or proton. Theoretically, bare SPEs, before being confronted with observations, must be corrected for the effects of the particle vibration coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with observations, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections.

  2. Beta decay rates of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Huther, Lutz; Martínez-Pinedo, Gabriel

    2015-10-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. Currently, a single large-scale calculation is available based on a QRPA calculation with a schematic interaction on top of the Finite Range Droplet Model. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei.

  3. Nuclear ``pasta'' structures in low-density nuclear matter and properties of the neutron-star crust

    NASA Astrophysics Data System (ADS)

    Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka

    2013-08-01

    In the neutron-star crust, nonuniform structure of nuclear matter—called the “pasta” structure—is expected. From recent studies of giant flares in magnetars, these structures might be related to some observables and physical quantities of the neutron-star crust. To investigate the above quantities, we numerically explore the pasta structure with a fully three-dimensional geometry and study the properties of low-density nuclear matter, based on the relativistic mean-field model and the Thomas-Fermi approximation. We observe typical pasta structures for fixed proton number fraction and two of them for cold catalyzed matter. We also discuss the crystalline configuration of “pasta.”

  4. Quantum mechanical/molecular mechanical/continuum style solvation model: linear response theory, variational treatment, and nuclear gradients.

    PubMed

    Li, Hui

    2009-11-14

    Linear response and variational treatment are formulated for Hartree-Fock (HF) and Kohn-Sham density functional theory (DFT) methods and combined discrete-continuum solvation models that incorporate self-consistently induced dipoles and charges. Due to the variational treatment, analytic nuclear gradients can be evaluated efficiently for these discrete and continuum solvation models. The forces and torques on the induced point dipoles and point charges can be evaluated using simple electrostatic formulas as for permanent point dipoles and point charges, in accordance with the electrostatic nature of these methods. Implementation and tests using the effective fragment potential (EFP, a polarizable force field) method and the conductorlike polarizable continuum model (CPCM) show that the nuclear gradients are as accurate as those in the gas phase HF and DFT methods. Using B3LYP/EFP/CPCM and time-dependent-B3LYP/EFP/CPCM methods, acetone S(0)-->S(1) excitation in aqueous solution is studied. The results are close to those from full B3LYP/CPCM calculations.

  5. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-01

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  6. [Morphological and functional characteristics of lymphocytes of mothers of children with Down syndrome].

    PubMed

    Novikov, V D; Valova, T A; Iasakova, N T; Belan, I B

    2000-01-01

    Nuclear chromatine of peripheral blood lymphocytes was studied in 13 women with children suffering from Down's syndrome using optic structural computer analysis. In 12 cases significant increase of nuclear roundness coefficient was determined. Deformation coefficient was determined for heterochromatine structures in 8 cases. Integral optic density of nuclear chromatine was significantly decreased in 12 women. This indicates the reduction of felgen-positive material due to deficiency of its compact fraction (in 11 cases). The activity of lymphocyte cytoplasmic lactate, alpha-glycerophosphate and succinate dehydrogenases (SDG) was studied morphocytochemically in 5 women who had children with the disease. High activity of mitochondrial SDG was determined in all cases which probably indicates disorders in lymphocyte energy state. This is one of the reasons for retention of risk pregnancy. Further research in this area may serve as a base for complete cytoanalysis in order to distinguish risk groups among women including primagravida for consequent determination of embryonal karyotype.

  7. Investigation of nuclear structure of 30-44S isotopes using spherical and deformed Skyrme-Hartree-Fock method

    NASA Astrophysics Data System (ADS)

    Alzubadi, A. A.

    2015-06-01

    Nuclear many-body system is usually described by a mean-field built upon a nucleon-nucleon effective interaction. In this work, we investigate ground state properties of the sulfur isotopes covering a wide range from the line of stability up to the dripline region (30-44S). For this purpose the Hartree-Fock mean field theory in coordinate space with a Skyrme parameterization SkM* has been utilized. In particular, we calculate the nuclear charge, neutrons, protons, mass densities, the associated radii, neutron skin thickness and binding energy. The charge form factors have been also investigated using SkM*, SkO, SkE, SLy4 and Skxs15 Skyrme parameterizations and the results obtained using the theoretical approach are compared with the available experimental data. To investigate the potential energy surface as a function of the quadrupole deformation for isotopic sulfur chains, Skyrme-Hartree-Fock-Bogoliubov theory has been adopted with SLy4 parameterization.

  8. Nuclear matter effects on J/ψ production in asymmetric Cu + Au collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV

    DOE PAGES

    Adare, A.; Aidala, C.; Ajitanand, N. N.; ...

    2014-12-18

    We report on J/ψ production from asymmetric Cu+Au heavy-ion collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/ψ yields in Cu+Au collisions in the Au-going direction is found to be comparable to that in Au+Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression inmore » the larger Au nucleus. Thus, the relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.« less

  9. Assessment of Methods to Consolidate Iodine-Loaded Silver-Functionalized Silica Aerogel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Engler, Robert K.

    2013-09-01

    The U.S. Department of Energy is currently investigating alternative sorbents for the removal and immobilization of radioiodine from the gas streams in a nuclear fuel reprocessing plant. One of these new sorbents, Ag0-functionalized silica aerogels, shows great promise as a potential replacement for Ag-bearing mordenites because of its high selectivity and sorption capacity for iodine. Moreover, a feasible consolidation of iodine-loaded Ag0-functionalized silica aerogels to a durable SiO2-based waste form makes this aerogel an attractive choice for sequestering radioiodine. This report provides a preliminary assessment of the methods that can be used to consolidate iodine-loaded Ag0-functionalized silica aerogels into amore » final waste form. In particular, it focuses on experimental investigation of densification of as prepared Ag0-functionalized silica aerogels powders, with or without organic moiety and with or without sintering additive (colloidal silica), with three commercially available techniques: 1) hot uniaxial pressing (HUP), 2) hot isostatic pressing (HIP), and 3) spark plasma sintering (SPS). The densified products were evaluated with helium gas pycnometer for apparent density, with the Archimedes method for apparent density and open porosity, and with high-resolution scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) for the extent of densification and distribution of individual elements. The preliminary investigation of HUP, HIP, and SPS showed that these sintering methods can effectively consolidate powders of Ag0-functionalized silica aerogel into products of near-theoretical density. Also, removal of organic moiety and adding 5.6 mass% of colloidal silica to Ag0-functionalized silica aerogel powders before processing provided denser products. Furthermore, the ram travel data for SPS indicated that rapid consolidation of powders can be performed at temperatures below 950°C.« less

  10. Density-Functional-Theory-Based Equation-of-State Table of Beryllium for Inertial Confinement Fusion Applications

    NASA Astrophysics Data System (ADS)

    Ding, Y. H.; Hu, S. X.

    2017-10-01

    Beryllium has been considered a superior ablator material for inertial confinement fusion target designs. Based on density-functional-theory calculations, we have established a wide-range beryllium equation-of-state (EOS) table of density ρ = 0.001 to ρ = 500 g/cm3 and temperature T = 2000 to 108 K. Our first-principles equation-of-state (FPEOS) table is in better agreement with widely used SESAMEEOS table (SESAME2023) than the average-atom INFERNOmodel and the Purgatoriomodel. For the principal Hugoniot, our FPEOS prediction shows 10% stiffer behavior than the last two models at maximum compression. Comparisons between FPEOS and SESAMEfor off-Hugoniot conditions show that both the pressure and internal energy differences are within 20% between two EOS tables. By implementing the FPEOS table into the 1-D radiation-hydrodynamics code LILAC, we studied the EOS effects on beryllium target-shell implosions. The FPEOS simulation predicts up to an 15% higher neutron yield compared to the simulation using the SESAME2023 EOS table. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. Understanding the Relativistic Generalization of Density Functional Theory (DFT) and Completing it in Practice

    NASA Astrophysics Data System (ADS)

    Bagayoko, Diola

    In 2014, 50 years following the introduction of density functional theory (DFT), a rigorous understanding of it was published [AIP Advances, 4, 127104 (2014)]. This understanding included necessary steps ab initio electronic structure calculations have to take if their results are to possess the full physical content of DFT. These steps guarantee the fulfillment of conditions of validity of DFT; not surprisingly, they have led to accurate descriptions of several dozens of semiconductors, from first principle, without invoking derivative discontinuity or self-interaction correction. This presentation shows the mathematically and physically rigorous understanding of the relativistic extension of DFT by Rajagopal and Callaway {Phys. Rev. B 7, 1912 (1973)]. As in the non-relativistic case, the attainment of the absolute minima of the occupied energies is a necessary condition for the corresponding current density to be that of the ground state of the system and for computational results to agree with corresponding, experimental ones. Acknowledgments:This work was funded in part by the US National Science Foundation [NSF, Award Nos. EPS-1003897, NSF (2010-2015)-RII-SUBR, and HRD-1002541], the US Department of Energy, National Nuclear Security Administration (NNSA, Award No. DE-NA0002630), LaSPACE, and LONI-SUBR.

  12. Effects of medium on nuclear properties in multifragmentation

    NASA Astrophysics Data System (ADS)

    De, J. N.; Samaddar, S. K.; Viñas, X.; Centelles, M.; Mishustin, I. N.; Greiner, W.

    2012-08-01

    In multifragmentation of hot nuclear matter, properties of fragments embedded in a soup of nucleonic gas and other fragments should be modified as compared with isolated nuclei. Such modifications are studied within a simple model where only nucleons and one kind of heavy nuclei are considered. The interaction between different species is described with a momentum-dependent two-body potential whose parameters are fitted to reproduce properties of cold isolated nuclei. The internal energy of heavy fragments is parametrized according to a liquid-drop model with density- and temperature-dependent parameters. Calculations are carried out for several subnuclear densities and moderate temperatures, for isospin-symmetric and asymmetric systems. We find that the fragments get stretched due to interactions with the medium and their binding energies decrease with increasing temperature and density of nuclear matter.

  13. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1978-01-01

    Thermionic energy conversion (TEC) potentialities for nuclear electric propulsion (NEP) are examined. Considering current designs, their limitations, and risks raises critical questions about the use of TEC for NEP. Apparently a reactor cooled by hotter-than-1675 K heat pipes has good potentialities. TEC with higher temperatures and greater power densities than the currently proposed 1650 K, 5-to-6 W/sq cm version offers substantial gains. Other approaches to high-temperature electric isolation appear also promising. A high-power-density, high-temperature TEC for NEP appears, therefore, attainable. It is recommended to optimize out-of-core thermionic energy conversion for nuclear electric propulsion. Although current TEC designs for NEP seem unnecessary compared with Brayton versions, large gains are apparently possible with increased temperatures and greater power densities.

  14. Is nuclear matter a quantum crystal?

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chitre, S. M.

    1973-01-01

    A possible alternative to the ordinary gas-like computation for nuclear matter is investigated under the assumption that the nucleons are arranged in a lattice. BCC, FCC and HCP structures are investigated. Only HCP shows a minimum in the energy vs. density curve with a modest binding energy of -1.5 MeV. The very low density limit is investigated and sensible results are obtained only if the tensor force decreases with the density. A study of the elastic properties indicates that the previous structures are mechanically unstable against shearing stresses.

  15. Weight Loss and Exercise Alter the High-Density Lipoprotein Lipidome and Improve High-Density Lipoprotein Functionality in Metabolic Syndrome.

    PubMed

    Khan, Anmar A; Mundra, Piyushkumar A; Straznicky, Nora E; Nestel, Paul J; Wong, Gerard; Tan, Ricardo; Huynh, Kevin; Ng, Theodore W; Mellett, Natalie A; Weir, Jacquelyn M; Barlow, Christopher K; Alshehry, Zahir H; Lambert, Gavin W; Kingwell, Bronwyn A; Meikle, Peter J

    2018-02-01

    High-density lipoprotein (HDL) lipid composition and function may better reflect cardiovascular risk than HDL cholesterol concentration. This study characterized the relationships between HDL composition, metabolism, and function in metabolic syndrome (MetS) patients and how changes in composition after weight loss (WL) and exercise treatments are related to function. Plasma samples from MetS patients (n=95) and healthy individuals (n=40) were used in this study. Subsets of the MetS group underwent 12 weeks of no treatment (n=17), WL (n=19), or WL plus exercise (WLEX; n=17). HDL was isolated using density-gradient ultracentrifugation. The HDL lipidome was analyzed by mass spectrometry, and particle size determined by nuclear magnetic resonance. Cholesteryl ester transfer protein activity and ex vivo HDL cholesterol efflux capacity (CEC) were assessed. The HDL lipidome in the MetS patients was substantially different from that in healthy individuals, mean particle size was smaller, and CEC was lower. Several HDL phospholipid and sphingolipid species were associated with HDL diameter and CEC. The HDL lipidome and particle size were modified toward the healthy individuals after WL and WLEX treatments, with greater effects observed in the latter group. Cholesteryl ester transfer protein activity was reduced after WL and WLEX, and CEC was improved after WLEX. WLEX treatment in MetS patients normalizes the HDL lipidome and particle size profile and enhances CEC. HDL lipids associated with diminished CEC may represent novel biomarkers for early prediction of HDL dysfunction and disease risk and may represent potential therapeutic targets for future HDL therapies. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00163943. © 2017 American Heart Association, Inc.

  16. Compact Stars with Sequential QCD Phase Transitions.

    PubMed

    Alford, Mark; Sedrakian, Armen

    2017-10-20

    Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear saturation density. We explore models of such compact stars where there are two first-order phase transitions: the first from nuclear matter to a quark-matter phase, followed at a higher density by another first-order transition to a different quark-matter phase [e.g., from the two-flavor color-superconducting (2SC) to the color-flavor-locked (CFL) phase]. We show that this can give rise to two separate branches of hybrid stars, separated from each other and from the nuclear branch by instability regions, and, therefore, to a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass but different radii.

  17. The conductive propagation of nuclear flames. I - Degenerate C + O and O + Ne + Mg white dwarfs

    NASA Technical Reports Server (NTRS)

    Timmes, F. X.; Woosley, S. E.

    1992-01-01

    The paper determines the physical properties - speed, width, and density structure - of conductive burning fronts in degenerate carbon-oxygen (C + O) and oxygen-neon-magnesium (O + Ne + Mg) compositions for a grid of initial densities and compositions. The dependence of the physical properties of the flame on the assumed values of nuclear reaction rates, the nuclear reaction network employed, the thermal conductivity, and the choice of coordinate system are investigated. The occurrence of accretion-induced collapse of a white dwarf is found to be critically dependent on the velocity of the nuclear conductive burning front and the growth rate of hydrodynamic instabilities. Treating the expanding area of the turbulent burning region as a fractal whose tile size is identical to the minimum unstable Rayleigh-Taylor wavelength, it is found, for all reasonable values of the fractal dimension, that for initial C + O or O + Ne + Mg densities above about 9 x 10 exp 9 g/cu cm the white dwarf should collapse to a neutron star.

  18. J/ψ production as a function of charged-particle pseudorapidity density in p-Pb collisions at √{sNN } = 5.02TeV

    NASA Astrophysics Data System (ADS)

    Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.; Alice Collaboration<

    2018-01-01

    We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch / dη in p-Pb collisions at √{sNN } = 5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch / dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity.

  19. J/ψ production as a function of charged-particle pseudorapidity density in p–Pb collisions at s NN = 5.02 TeV

    DOE PAGES

    Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; ...

    2017-11-08

    Here, we report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dN ch/dη in p–Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$ = 5.02 TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dN ch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity.« less

  20. J/ψ production as a function of charged-particle pseudorapidity density in p–Pb collisions at s NN = 5.02 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.

    Here, we report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dN ch/dη in p–Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$ = 5.02 TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dN ch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity.« less

  1. Equation of state of mixtures: density functional theory (DFT) simulations and experiments on Sandia's Z machine

    NASA Astrophysics Data System (ADS)

    Magyar, R. J.; Root, S.; Haill, T. A.; Schroen, D. G.; Mattsson, T. R.; Flicker, D. G.; Sandia National Laboratories Collaboration

    2011-06-01

    Mixtures of materials are expected to behave quite differently from their isolated constituents, particularly when the constituents atomic numbers differ significantly. To investigate the mixture behavior, we performed density functional theory (DFT) calculations on xenon/hydrogen, xenon/ethane, and platinum/hydrocarbon mixtures. In addition, we performed shock compression experiments on platinum-doped hydrocarbon foams up to 480 GPa using the Sandia Z-accelerator. Since the DFT simulations treat electrons and nuclei generically, simulations of pure and mix systems are expected to be of comparable accuracy. The DFT and experimental results are compared to hydrodynamic simulations using different mixing models in the equation of state. The role of de-mixing and the relative contributions of the enthalpy of mixing are explored. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Inviscid linear stability analysis of two fluid columns of different densities subject to gravity

    NASA Astrophysics Data System (ADS)

    Prathama, Aditya; Pantano, Carlos

    2017-11-01

    We investigate the inviscid linear stability of vertical interface between two fluid columns of different densities under the influence of gravity. In this flow arrangement, the two free streams are continuously accelerating, in contrast to the canonical Kelvin-Helmholtz or Rayleigh-Taylor instabilities whose base flows are stationary (or weakly time dependent). In these classical cases, the temporal evolution of the interface can be expressed as Fourier or Laplace solutions in time. This is not possible in our case; instead, we employ the initial value problem method to solve the equations analytically. The results, expressed in terms of the well-known parabolic cylinder function, indicate that the instability grows as the exponential of a quadratic function of time. The analysis shows that in this accelerating Kelvin-Helmholtz configuration, the interface is unconditionally unstable at all wave modes, despite the presence of surface tension. Department of Energy, National Nuclear Security Administration (Award No. DE-NA0002382) and the California Institute of Technology.

  3. Benchmarking of density functionals for a soft but accurate prediction and assignment of (1) H and (13)C NMR chemical shifts in organic and biological molecules.

    PubMed

    Benassi, Enrico

    2017-01-15

    A number of programs and tools that simulate 1 H and 13 C nuclear magnetic resonance (NMR) chemical shifts using empirical approaches are available. These tools are user-friendly, but they provide a very rough (and sometimes misleading) estimation of the NMR properties, especially for complex systems. Rigorous and reliable ways to predict and interpret NMR properties of simple and complex systems are available in many popular computational program packages. Nevertheless, experimentalists keep relying on these "unreliable" tools in their daily work because, to have a sufficiently high accuracy, these rigorous quantum mechanical methods need high levels of theory. An alternative, efficient, semi-empirical approach has been proposed by Bally, Rablen, Tantillo, and coworkers. This idea consists of creating linear calibrations models, on the basis of the application of different combinations of functionals and basis sets. Following this approach, the predictive capability of a wider range of popular functionals was systematically investigated and tested. The NMR chemical shifts were computed in solvated phase at density functional theory level, using 30 different functionals coupled with three different triple-ζ basis sets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Simulation of surface processes

    PubMed Central

    Jónsson, Hannes

    2011-01-01

    Computer simulations of surface processes can reveal unexpected insight regarding atomic-scale structure and transitions. Here, the strengths and weaknesses of some commonly used approaches are reviewed as well as promising avenues for improvements. The electronic degrees of freedom are usually described by gradient-dependent functionals within Kohn–Sham density functional theory. Although this level of theory has been remarkably successful in numerous studies, several important problems require a more accurate theoretical description. It is important to develop new tools to make it possible to study, for example, localized defect states and band gaps in large and complex systems. Preliminary results presented here show that orbital density-dependent functionals provide a promising avenue, but they require the development of new numerical methods and substantial changes to codes designed for Kohn–Sham density functional theory. The nuclear degrees of freedom can, in most cases, be described by the classical equations of motion; however, they still pose a significant challenge, because the time scale of interesting transitions, which typically involve substantial free energy barriers, is much longer than the time scale of vibrations—often 10 orders of magnitude. Therefore, simulation of diffusion, structural annealing, and chemical reactions cannot be achieved with direct simulation of the classical dynamics. Alternative approaches are needed. One such approach is transition state theory as implemented in the adaptive kinetic Monte Carlo algorithm, which, thus far, has relied on the harmonic approximation but could be extended and made applicable to systems with rougher energy landscape and transitions through quantum mechanical tunneling. PMID:21199939

  5. Gadd45a Is an RNA Binding Protein and Is Localized in Nuclear Speckles

    PubMed Central

    Sytnikova, Yuliya A.; Kubarenko, Andriy V.; Schäfer, Andrea; Weber, Alexander N. R.; Niehrs, Christof

    2011-01-01

    Background The Gadd45 proteins play important roles in growth control, maintenance of genomic stability, DNA repair, and apoptosis. Recently, Gadd45 proteins have also been implicated in epigenetic gene regulation by promoting active DNA demethylation. Gadd45 proteins have sequence homology with the L7Ae/L30e/S12e RNA binding superfamily of ribosomal proteins, which raises the question if they may interact directly with nucleic acids. Principal Findings Here we show that Gadd45a binds RNA but not single- or double stranded DNA or methylated DNA in vitro. Sucrose density gradient centrifugation experiments demonstrate that Gadd45a is present in high molecular weight particles, which are RNase sensitive. Gadd45a displays RNase-sensitive colocalization in nuclear speckles with the RNA helicase p68 and the RNA binding protein SC35. A K45A point mutation defective in RNA binding was still active in DNA demethylation. This suggests that RNA binding is not absolutely essential for demethylation of an artificial substrate. A point mutation at G39 impared RNA binding, nuclear speckle localization and DNA demethylation, emphasizing its relevance for Gadd45a function. Significance The results implicate RNA in Gadd45a function and suggest that Gadd45a is associated with a ribonucleoprotein particle. PMID:21249130

  6. NIF Operations Management Plan, August 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wonterghem, Bruno M.

    Lawrence Livermore National Laboratory’s (LLNL) National Ignition Facility (NIF) is a key component of the National Nuclear Security Administration’s (NNSA) Stockpile Stewardship Program, whose purpose is to maintain the safety, reliability, and effectiveness of our nation’s nuclear stockpile without underground nuclear testing. The NIF is crucial to the Stockpile Stewardship Program because it is the only facility that can create the conditions of extreme temperature and pressure—conditions that exist only in stars or in exploding nuclear weapons—that are relevant to understanding how our modern nuclear weapons operate. As such, the NIF’s primary mission is to attain fusion ignition in themore » laboratory. Fusion ignition not only supports Stockpile Stewardship needs, but also provides the basis for future decisions about fusion’s potential as a long-term energy source. Additionally, NIF provides scientists with access to high-energy-density regimes that can yield new insight and understanding in the areas of astrophysics, hydrodynamics, material properties, plasma physics, and radiative properties. The use of the NIF to support the Stockpile Stewardship Program and the advancement of basic high-energy-density science understanding is planned and managed through program-level execution plans and NIF directorate-level management teams. An example of a plan is the National Ignition Campaign Execution Plan. The NIF Operations Management Plan provides an overview of the NIF Operations organization and describes how the NIF is supported by the LLNL infrastructure and how it is safely and responsibly managed and operated. Detailed information on NIF management of the organization is found in a series of supporting plans, policies, and procedures. A list of related acronyms can be found in Appendix A of this document. The purpose of this document is to provide a roadmap of how the NIF Operations organization functions. It provides a guide to understanding the requirements, document flow down, organizational vision and mission, performance metrics, and interrelationship of the NIF Operations organization with other directorate and laboratory organizations. This document also provides a listing of roles and responsibilities, core processes, procedures, authority matrices, change control boards, and other information necessary for successfully functioning in the NIF Operations organization. This document, the NIF Shot Operations Plan, and the NIF Maintenance Plan together represent the primary documents satisfying our Conduct of Operations compliance requirement.« less

  7. Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi-Gang; Yong, Gao-Chan; Chen, Lie-Wen; Li, Bao-An; Zhang, Ming; Xiao, Guo-Qing; Xu, Nu

    2014-02-01

    The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions, especially those induced by radioactive beams, but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the / ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the / ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the / ratio are still quite model dependent mostly because of the complexity of modeling pion production and reabsorption dynamics in heavy-ion collisions, leading to currently still controversial conclusions regarding the high-density behavior of nuclear symmetry energy from comparing various model calculations with available experimental data. As more / data become available and a deeper understanding about the pion dynamics in heavy-ion reactions is obtained, more penetrating probes, such as the K +/ K 0 ratio, meson and high-energy photons are also being investigated or planned at several facilities. Here, we review some of our recent contributions to the community effort of constraining the high-density behavior of nuclear symmetry energy in heavy-ion collisions. In addition, the status of some worldwide experiments for studying the high-density symmetry energy, including the HIRFL-CSR external target experiment (CEE) are briefly introduced.

  8. Molecular dynamics for dense matter

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Watanabe, Gentaro; Chiba, Satoshi

    2012-08-01

    We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid-gas phase transition is not plausible at lower temperatures.

  9. Fluid dynamical description of relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Nix, J. R.; Strottman, D.

    1982-01-01

    On the basis of both a conventional relativistic nuclear fluid dynamic model and a two fluid generalization that takes into account the interpenetration of the target and projectile upon contact, collisions between heavy nuclei moving at relativistic speeds are calculated. This is done by solving the relevant equations of motion numerically in three spatial dimensions by use of particle in cell finite difference computing techniques. The effect of incorporating a density isomer, or quasistable state, in the nuclear equation of state at three times normal nuclear density, and the effect of doubling the nuclear compressibility coefficient are studied. For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, the calculated distributions in energy and angle of outgoing charged particles are compared with recent experimental data both integrated over all impact parameters and for nearly central collisions.

  10. Functional enucleation of porcine oocytes for somatic cell nuclear transfer using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, K.; Lucas-Hahn, A.; Petersen, B.; Hassel, P.; Lemme, E.; Niemann, H.; Heisterkamp, A.

    2010-02-01

    Cloning of several mammalian species has been achieved by somatic cell nuclear transfer over the last decade. However, this method still results in very low efficiencies originating from biological and technical aspects. The highly-invasive mechanical enucleation belongs to the technical aspects and requires considerable micromanipulation skill. In this paper, we present a novel non-invasive method for combined oocyte imaging and automated functional enucleation using femtosecond (fs) laser pulses. After three-dimensional imaging of Hoechst-labeled porcine oocytes by multiphoton microscopy, our self-developed software automatically determined the metaphase plate position and shape. Subsequent irradiation of this volume with the very same laser at higher pulse energies in the low-density-plasma regime was used for metaphase plate ablation. We show that functional fs laser-based enucleation of porcine oocytes completely inhibited further embryonic development while maintaining intact oocyte morphology. In contrast, non-irradiated oocytes were able to develop to the blastocyst stage without significant differences to control oocytes. Our results indicate that fs laser systems offer great potential for oocyte imaging and enucleation as a fast, easy to use and reliable tool which may improve the efficiency of somatic cell clone production.

  11. Gamow-Teller response in the configuration space of a density-functional-theory-rooted no-core configuration-interaction model

    NASA Astrophysics Data System (ADS)

    Konieczka, M.; Kortelainen, M.; Satuła, W.

    2018-03-01

    Background: The atomic nucleus is a unique laboratory in which to study fundamental aspects of the electroweak interaction. This includes a question concerning in medium renormalization of the axial-vector current, which still lacks satisfactory explanation. Study of spin-isospin or Gamow-Teller (GT) response may provide valuable information on both the quenching of the axial-vector coupling constant as well as on nuclear structure and nuclear astrophysics. Purpose: We have performed a seminal calculation of the GT response by using the no-core configuration-interaction approach rooted in multireference density functional theory (DFT-NCCI). The model treats properly isospin and rotational symmetries and can be applied to calculate both the nuclear spectra and transition rates in atomic nuclei, irrespectively of their mass and particle-number parity. Methods: The DFT-NCCI calculation proceeds as follows: First, one builds a configuration space by computing relevant, for a given physical problem, (multi)particle-(multi)hole Slater determinants. Next, one applies the isospin and angular-momentum projections and performs the isospin and K mixing in order to construct a model space composed of linearly dependent states of good angular momentum. Eventually, one mixes the projected states by solving the Hill-Wheeler-Griffin equation. Results: The method is applied to compute the GT strength distribution in selected N ≈Z nuclei including the p -shell 8Li and 8Be nuclei and the s d -shell well-deformed nucleus 24Mg. In order to demonstrate a flexibility of the approach we present also a calculation of the superallowed GT β decay in doubly-magic spherical 100Sn and the low-spin spectrum in 100In. Conclusions: It is demonstrated that the DFT-NCCI model is capable of capturing the GT response satisfactorily well by using a relatively small configuration space, exhausting simultaneously the GT sum rule. The model, due to its flexibility and broad range of applicability, may either serve as a complement or even as an alternative to other theoretical approaches, including the conventional nuclear shell model.

  12. Nuclear symmetry energy in terms of single-nucleon potential and its effect on the proton fraction of β-stable npeμ matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Babita, E-mail: patra-babita@rediffmail.com; Chakraborty, Suparna, E-mail: banerjee.suparna@hotmail.com; Sahoo, Sukadev, E-mail: sukadevsahoo@yahoo.com

    2016-01-15

    Momentum and density dependence of single-nucleon potential u{sub τ} (k, ρ, β) is analyzed using a density dependent finite range effective interaction of the Yukawa form. Depending on the choice of the strength parameters of exchange interaction, two different trends of the momentum dependence of nuclear symmetry potential are noticed which lead to two opposite types of neutron and proton effective mass splitting. The 2nd-order and 4th-order symmetry energy of isospin asymmetric nuclear matter are expressed analytically in terms of the single-nucleon potential. Two distinct behavior of the density dependence of 2nd-order and 4th-order symmetry energy are observed depending onmore » neutron and proton effective mass splitting. It is also found that the 4th-order symmetry energy has a significant contribution towards the proton fraction of β-stable npeμ matter at high densities.« less

  13. Optimize out-of-core thermionic energy conversion for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1977-01-01

    Current designs for out of core thermionic energy conversion (TEC) to power nuclear electric propulsion (NEP) were evaluated. Approaches to improve out of core TEC are emphasized and probabilities for success are indicated. TEC gains are available with higher emitter temperatures and greater power densities. Good potentialities for accommodating external high temperature, high power density TEC with heat pipe cooled reactors exist.

  14. Estimation of M 1 scissors mode strength for deformed nuclei in the medium- to heavy-mass region by statistical Hauser-Feshbach model calculations

    DOE PAGES

    Mumpower, Matthew Ryan; Kawano, Toshihiko; Ullmann, John Leonard; ...

    2017-08-17

    Radiative neutron capture is an important nuclear reaction whose accurate description is needed for many applications ranging from nuclear technology to nuclear astrophysics. The description of such a process relies on the Hauser-Feshbach theory which requires the nuclear optical potential, level density, and γ-strength function as model inputs. It has recently been suggested that the M1 scissors mode may explain discrepancies between theoretical calculations and evaluated data. We explore statistical model calculations with the strength of the M1 scissors mode estimated to be dependent on the nuclear deformation of the compound system. We show that the form of the M1more » scissors mode improves the theoretical description of evaluated data and the match to experiment in both the fission product and actinide regions. Since the scissors mode occurs in the range of a few keV to a few MeV, it may also impact the neutron capture cross sections of neutron-rich nuclei that participate in the rapid neutron capture process of nucleosynthesis. As a result, we comment on the possible impact to nucleosynthesis by evaluating neutron capture rates for neutron-rich nuclei with the M1 scissors mode active.« less

  15. Capture and photonuclear reaction rates involving charged-particles: Impacts of nuclear ingredients and future measurement on ELI-NP

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Goriely, S.; Balabanski, D. L.; Chesnevskaya, S.; Guardo, G. L.; La Cognata, M.; Lan, H. Y.; Lattuada, D.; Luo, W.; Matei, C.

    2018-05-01

    The astrophysical p-process is an important way of nucleosynthesis to produce the stable and proton-rich nuclei beyond Fe which can not be reached by the s- and r-processes. In the present study, the impact of nuclear ingredients, especially the nuclear potential, level density and strength function, to the astrophysical re-action rates of (p,γ), (α,γ), (γ,p), and (γ,α) reactions are systematically studied. The calculations are performed basad on the modern reaction code TALYS for about 3000 stable and proton-rich nuclei with 12≤Z≤110. In particular, both of the Wood-Saxon potential and the microscopic folding potential are taken into account. It is found that both the capture and photonuclear reaction rates are very sensitive to the nuclear potential, thus the better determination of nuclear potential would be important to reduce the uncertainties of reaction rates. Meanwhile, the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility is being developed, which will provide the great opportunity to experimentally study the photonuclear reactions in p-process. Simulations of the experimental setup for the measurements of the photonuclear reactions 96Ru(γ,p) and 96Ru(γ,α) are performed. It is shown that the experiments of photonuclear reactions in p-process based on ELI-NP are quite promising.

  16. Stopping power beyond the adiabatic approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caro, M.; Correa, A. A.; Artacho, E.

    2017-06-01

    Energetic ions traveling in solids deposit energy in a variety of ways, being nuclear and electronic stopping the two avenues in which dissipation is usually treated. This separation between electrons and ions relies on the adiabatic approximation in which ions interact via forces derived from the instantaneous electronic ground state. In a more detailed view, in which non-adiabatic effects are explicitly considered, electronic excitations alter the atomic bonding, which translates into changes in the interatomic forces. In this work, we use time dependent density functional theory and forces derived from the equations of Ehrenfest dynamics that depend instantaneously on themore » time-dependent electronic density. With them we analyze how the inter-ionic forces are affected by electronic excitations in a model of a Ni projectile interacting with a Ni target, a metallic system with strong electronic stopping and shallow core level states. We find that the electronic excitations induce substantial modifications to the inter-ionic forces, which translate into nuclear stopping power well above the adiabatic prediction. Particularly, we observe that most of the alteration of the adiabatic potential in early times comes from the ionization of the core levels of the target ions, not readily screened by the valence electrons.« less

  17. Ab Initio Theory of Nuclear Magnetic Resonance Shifts in Metals

    NASA Astrophysics Data System (ADS)

    D'Avezac, Mayeul; Marzari, Nicola; Mauri, Francesco

    2005-03-01

    A comprehensive approach for the first-principles determination of all-electron NMR shifts in metallic systems is presented. Our formulation is based on a combination of density-functional perturbation theory and all-electron wavefunction reconstruction, starting from periodic-boundary calculations in the pseudopotential approximation. The orbital contribution to the NMR shift (the chemical shift) is obtained by combining the gauge-including projector augmented-wave approach (GIPAW), originally developed for the case of insulatorsootnotetextC. J. Pickard, Francesco Mauri, Phys. Rev. B, 63, 245101(2001), with the extension of linear-response theory to the case of metallic systemsootnotetextS. de Gironcoli, Phys. Rev. B, 51, 6773(1995). The spin contribution (the Knight shift) is obtained as a response to a finite uniform magnetic field, and through reconstructing the hyperfine interaction between the electron-spin density and the nuclear spins with the projector augmented-wave method (PAWootnotetextC. G. Van de Walle, P. E. Blöchl, Phys. Rev. B, 47, 4244(1993)). Our method is validated with applications to the case of the homogeneous electron gas and of simple metals. (Work supported by MURI grant DAAD 19-03-1-0169 and MIT-France)

  18. Nuclear Pasta at Finite Temperature with the Time-Dependent Hartree-Fock Approach

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.

    2016-01-01

    We present simulations of neutron-rich matter at sub-nuclear densities, like supernova matter. With the time-dependent Hartree-Fock approximation we can study the evolution of the system at temperatures of several MeV employing a full Skyrme interaction in a periodic three-dimensional grid [1]. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. The matter evolves into spherical, rod-like, connected rod-like and slab-like shapes. Further we observe gyroid-like structures, discussed e.g. in [2], which are formed spontaneously choosing a certain value of the simulation box length. The ρ-T-map of pasta shapes is basically consistent with the phase diagrams obtained from QMD calculations [3]. By an improved topological analysis based on Minkowski functionals [4], all observed pasta shapes can be uniquely identified by only two valuations, namely the Euler characteristic and the integral mean curvature. In addition we propose the variance in the cell-density distribution as a measure to distinguish pasta matter from uniform matter.

  19. The shape of the cosmic X-ray background: nuclear starburst discs and the redshift evolution of AGN obscuration

    NASA Astrophysics Data System (ADS)

    Gohil, R.; Ballantyne, D. R.

    2018-04-01

    A significant number of active galactic nuclei (AGNs) are observed to be hidden behind dust and gas. The distribution of material around AGNs plays an important role in modelling the cosmic X-ray background (CXB), especially the fraction of type 2 AGNs (f2). One of the possible explanations for obscuration in Seyfert galaxies at intermediate redshifts is dusty starburst discs. We compute the two-dimensional (2D) hydrostatic structure of 768 nuclear starburst discs (NSDs) under various physical conditions and also the distribution of column density along the line of sight (NH) associated with these discs. Then the NH distribution is evolved with redshift by using the redshift-dependent distribution function of input parameters. Parameter f2 shows a strong positive evolution up to z = 2, but only a weak level of enhancement at higher z. The Compton-thin and Compton-thick AGN fractions associated with these starburst regions increase ∝ (1 + z)δ, where δ is estimated to be 1.12 and 1.45, respectively. The reflection parameter Rf associated with column density NH ≥ 1023.5 cm-2 extends from 0.13 at z = 0 to 0.58 at z = 4. A CXB model employing this evolving NH distribution indicates that more compact (Rout < 120 pc) NSDs provide a better fit to the CXB. In addition to `Seyfert-like' AGNs obscured by nuclear starbursts, we predict that 40-60 per cent of quasars must be Compton-thick to produce a peak of the CXB spectrum within the observational uncertainty. The predicted total number counts of AGNs in 8-24 keV bands are in fair agreement with observations from the Nuclear Spectroscopic Telescope Array (NuSTAR).

  20. Low-energy enhancement and fluctuations of γ -ray strength functions in 56,57 Fe: test of the Brink–Axel hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, A. C.; Guttormsen, M.; Blasi, N.

    Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less

  1. Low-energy enhancement and fluctuations of γ -ray strength functions in 56,57 Fe: test of the Brink–Axel hypothesis

    DOE PAGES

    Larsen, A. C.; Guttormsen, M.; Blasi, N.; ...

    2017-04-24

    Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less

  2. Nuclear fluxes during coherent tunnelling in asymmetric double well potentials

    NASA Astrophysics Data System (ADS)

    Liu, ChunMei; Manz, Jörn; Yang, Yonggang

    2015-08-01

    Previous results for nuclear fluxes during coherent tunnelling of molecules with symmetric double well potentials are extended to fluxes in asymmetric double well potentials. The theory is derived using the two-state approximation (TSA). The symmetric system serves as a reference. As an example, we consider the one-dimensional model of the tunnelling inversion of oriented ammonia, with semiclassical dipole coupling to an electric field. The tunnelling splitting increases with the dipole coupling by a factor f≥slant 1. The tunnelling time decreases by 1/f. The nuclear density appears as the sum of two parts: The tunnelling part decreases as {1/f}2 times the density of the symmetric reference, whereas the non-tunnelling part is the initial density times ≤ft({{1-1}/f}2\\right). Likewise, the nuclear flux decreases by 1/f, with essentially the same shape as for the symmetric reference, with maximum value at the potential barrier. Coherent nuclear tunnellings starting from the upper or lower wells of the asymmetric potential are equivalent. The results are universal, in the frame of the TSA, hence they allow straightforward extrapolations from one system to others. This is demonstrated by the prediction of isotope effects for five isotopomers of ammonia.

  3. Holographic Quark Matter and Neutron Stars.

    PubMed

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  4. The competition of particle-vibration coupling and tensor interaction in spherical nuclei

    NASA Astrophysics Data System (ADS)

    Afanasjev, Anatoli; Litvinova, Elena

    2014-09-01

    The search for missing terms in the energy density functionals (EDF) is one of the leading directions in the development of nuclear density functional theory (DFT). Tensor force is one of possible candidates. However, despite extensive studies the questions about its effective strength and unambiguous signals still remain open. One of the main experimental benchmarks for the studies of tensor interaction is provided by the data on the single-particle states in the N = 82 and Z = 50 isotopes. The energy splittings of the proton h11 / 2 and g7 / 2 states in the Z = 50 isotopes and neutron 1i13 / 2 and 1h9 / 2 states in the N = 82 isotones are used in the definition of tensor force in the Skyrme DFT. However, in experiment these states are not ``mean-field'' states because of coupling with vibrations. Employing relativistic particle-vibration coupling (PVC) model we show that many features of these splittings can be reproduced when PVC is taken into account. This suggests the competition of PVC and tensor interaction and that tensor interaction should be weaker as compared with previous estimates. The search for missing terms in the energy density functionals (EDF) is one of the leading directions in the development of nuclear density functional theory (DFT). Tensor force is one of possible candidates. However, despite extensive studies the questions about its effective strength and unambiguous signals still remain open. One of the main experimental benchmarks for the studies of tensor interaction is provided by the data on the single-particle states in the N = 82 and Z = 50 isotopes. The energy splittings of the proton h11 / 2 and g7 / 2 states in the Z = 50 isotopes and neutron 1i13 / 2 and 1h9 / 2 states in the N = 82 isotones are used in the definition of tensor force in the Skyrme DFT. However, in experiment these states are not ``mean-field'' states because of coupling with vibrations. Employing relativistic particle-vibration coupling (PVC) model we show that many features of these splittings can be reproduced when PVC is taken into account. This suggests the competition of PVC and tensor interaction and that tensor interaction should be weaker as compared with previous estimates. This work has been supported by the U.S. Department of Energy under the Grant DE-FG02-07ER41459 and National Science Foundation Award PHY-1204486.

  5. Electron scattering intensities and Patterson functions of Skyrmions

    NASA Astrophysics Data System (ADS)

    Karliner, M.; King, C.; Manton, N. S.

    2016-06-01

    The scattering of electrons off nuclei is one of the best methods of probing nuclear structure. In this paper we focus on electron scattering off nuclei with spin and isospin zero within the Skyrme model. We consider two distinct methods and simplify our calculations by use of the Born approximation. The first method is to calculate the form factor of the spherically averaged Skyrmion charge density; the second uses the Patterson function to calculate the scattering intensity off randomly oriented Skyrmions, and spherically averages at the end. We compare our findings with experimental scattering data. We also find approximate analytical formulae for the first zero and first stationary point of a form factor.

  6. Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Langanke, K.; Martínez-Pinedo, G.

    2013-12-01

    We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.

  7. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    NASA Astrophysics Data System (ADS)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be established that depends on uncertainties in the physics models and methodology employed to produce the DOS. Through Monte Carlo sampling of perturbations from the reference phonon spectrum, an S(alpha, beta) covariance matrix may be generated. In this work, density functional theory and lattice dynamics in the harmonic approximation are used to calculate the phonon DOS for hexagonal crystalline graphite. This form of graphite is used as an example material for the purpose of demonstrating procedures for analyzing, calculating and processing thermal neutron inelastic scattering uncertainty information. Several sources of uncertainty in thermal neutron inelastic scattering calculations are examined, including sources which cannot be directly characterized through a description of the phonon DOS uncertainty, and their impacts are evaluated. Covariances for hexagonal crystalline graphite S(alpha, beta) data are quantified by coupling the standard methodology of LEAPR with a Monte Carlo sampling process. The mechanics of efficiently representing and processing this covariance information is also examined. Finally, with appropriate sensitivity information, it is shown that an S(alpha, beta) covariance matrix can be propagated to generate covariance data for integrated cross sections, secondary energy distributions, and coupled energy-angle distributions. This approach enables a complete description of thermal neutron inelastic scattering cross section uncertainties which may be employed to improve the simulation of nuclear systems.

  8. Electric field effects on nuclear magnetic shielding of the 1:1 and 2:1 (homo and heterochiral) complexes of XOOX' (X, X' = H, CH3) with lithium cation and their chiral discrimination.

    PubMed

    Alkorta, Ibon; Elguero, José; Provasi, Patricio F; Pagola, Gabriel I; Ferraro, Marta B

    2011-09-14

    The set of 1:1 and 2:1 complexes of XOOX' (X, X' = H, CH(3)) with lithium cation has been studied to determine if they are suitable candidates for chiral discrimination in an isotropic medium via nuclear magnetic resonance spectroscopy. Conventional nuclear magnetic resonance is unable to distinguish between enantiomers in the absence of a chiral solvent. The criterion for experimental detection is valuated by the isotropic part of nuclear shielding polarisability tensors, related to a pseudoscalar of opposite sign for two enantiomers. The study includes calculations at coupled Hartree-Fock and density functional theory schemes for (17)O nucleus in each compound. Additional calculations for (1)H are also included for some compounds. A huge static homogeneous electric field, perpendicular to the magnetic field of the spectromer, as big as ≈1.7 × 10(8) V m(-1) should be applied to observe a shift of ≈1 ppm for (17)O magnetic shielding in the proposed set of complexes. © 2011 American Institute of Physics

  9. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Li-juan, E-mail: lijuan.fu@oulu.fi, E-mail: juha.vaara@iki.fi; Vaara, Juha, E-mail: lijuan.fu@oulu.fi, E-mail: juha.vaara@iki.fi

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H{sub 2}O, CH{sub 3}NO{sub 2}, CH{sub 3}CH{sub 2}OH, C{sub 6}H{sub 6}, C{sub 6}H{sub 12} (cyclohexane), HI, XeF{sub 2}, WF{sub 5}Cl, and Pt(C{sub 2}dtp){sub 2}. The roles of basis-set convergence, electron correlation, and relativistic effectsmore » are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10{sup −3}–10{sup −7} rad/(M cm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.« less

  10. Reexamining cluster radioactivity in trans-lead nuclei with consideration of specific density distributions in daughter nuclei and clusters

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong

    2016-08-01

    We further investigate the cluster emission from heavy nuclei beyond the lead region in the framework of the preformed cluster model. The refined cluster-core potential is constructed by the double-folding integral of the density distributions of the daughter nucleus and the emitted cluster, where the radius or the diffuseness parameter in the Fermi density distribution formula is determined according to the available experimental data on the charge radii and the neutron skin thickness. The Schrödinger equation of the cluster-daughter relative motion is then solved within the outgoing Coulomb wave-function boundary conditions to obtain the decay width. It is found that the present decay width of cluster emitters is clearly enhanced as compared to that in the previous case, which involved the fixed parametrization for the density distributions of daughter nuclei and clusters. Among the whole procedure, the nuclear deformation of clusters is also introduced into the calculations, and the degree of its influence on the final decay half-life is checked to some extent. Moreover, the effect from the bubble density distribution of clusters on the final decay width is carefully discussed by using the central depressed distribution.

  11. PHITS-2.76, Particle and Heavy Ion Transport code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-08-01

    Version 03 PHITS can deal with the transport of almost all particles (nucleons, nuclei, mesons, photons, and electrons) over wide energy ranges, using several nuclear reaction models and nuclear data libraries. Geometrical configuration of the simulation can be set with GG (General Geometry) or CG (Combinatorial Geometry). Various quantities such as heat deposition, track length and production yields can be deduced from the simulation, using implemented estimator functions called "tally". The code also has a function to draw 2D and 3D figures of the calculated results as well as the setup geometries, using a code ANGEL. The physical processes includedmore » in PHITS can be divided into two categories, transport process and collision process. In the transport process, PHITS can simulate motion of particles under external fields such as magnetic and gravity. Without the external fields, neutral particles move along a straight trajectory with constant energy up to the next collision point. However, charge particles interact many times with electrons in the material losing energy and changing direction. PHITS treats ionization processes not as collision but as a transport process, using the continuous-slowing-down approximation. The average stopping power is given by the charge density of the material and the momentum of the particle taking into account the fluctuations of the energy loss and the angular deviation. In the collision process, PHITS can simulate the elastic and inelastic interactions as well as decay of particles. The total reaction cross section, or the life time of the particle is an essential quantity in the determination of the mean free path of the transport particle. According to the mean free path, PHITS chooses the next collision point using the Monte Carlo method. To generate the secondary particles of the collision, we need the information of the final states of the collision. For neutron induced reactions in low energy region, PHITS employs the cross sections from evaluated nuclear data libraries JENDL-4.0 (Shibata et al 2011). For high energy neutrons and other particles, we have incorporated several models such as JAM (Nara et al 1999), INCL (Cugnon et al 2011), INCL-ELF (Sawada et al 2012) and JQMD (Niita et al 1995) to simulate nuclear reactions up to 100 GeV/u. The special features of PHITS are the event generator mode (Iwamoto et al 2007) and the microdosimetric function (Sato et al 2009). Owing to the event generator mode, PHITS can determine the profiles of all secondary particles generated from a single nuclear interaction even using nuclear data libraries, taking the momentum and energy conservations into account. The microdosimetric function gives the probability densities of deposition energy in microscopic sites such as lineal energy y and specific energy z, using the mathematical model developed based on the results of the track structure simulation. These features are very important for various purposes such as the estimations of soft-error rates of semi-conductor devices induced by neutrons, and relative biological effectiveness of charged particles. From version 2.64, Prompt gamma spectrum and isomer production rates can be precisely estimated, owing to the implementation of EBITEM (ENSDF-Based Isomeric Transition and isomEr production Model). The photo-nuclear reaction model was improved up to 140 MeV. From version 2.76, electron and photon transport algorithm based on EGS5 (Hirayama et al. 2005) was incorporated. Models for describing photo-nuclear reaction above 140 MeV and muon-nuclear reaction were implemented. Event-generator mode version 2 was developed. Relativistic theory can be considered in the JQMD model.« less

  12. New State of Nuclear Matter: Nearly Perfect Fluid of Quarks and Gluons in Heavy Ion Collisions at RHIC Energies From Charged Particle Density to Jet Quenching

    DOE PAGES

    Nouicer, R.

    2016-03-28

    This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic ow; followed by hard probe measurements: high-pT hadron suppression, dijet fragment azimuthal correlations, and heavy favor probes. These measurements are presented for particles of different species asmore » a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly-interacting medium is created in central Au + Au collisions at p sNN = 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental ow results from Au + Au at p sNN = 200 GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, =s 0.12. However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small p + A, d + Au and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both facilities RHIC and the LHC is on detailed exploration of the properties of this new state of nuclear matter, the QGP.« less

  13. New state of nuclear matter: Nearly perfect fluid of quarks and gluons in heavy-ion collisions at RHIC energies. From charged particle density to jet quenching

    NASA Astrophysics Data System (ADS)

    Nouicer, R.

    2016-03-01

    This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic flow; followed by hard probe measurements: high- pT hadron suppression, dijet fragment azimuthal correlations, and heavy-flavor probes. These measurements are presented for particles of different species as a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly interacting medium is created in central Au+Au collisions at sqrt{s_{NN}} = 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental flow results from Au+Au at sqrt{s_{NN}} = 200 GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, η/s≈ 0.12. However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small p+A, d+ Au and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both facilities RHIC and the LHC is on detailed exploration of the properties of this new state of nuclear matter, the QGP.

  14. New State of Nuclear Matter: Nearly Perfect Fluid of Quarks and Gluons in Heavy Ion Collisions at RHIC Energies From Charged Particle Density to Jet Quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouicer, R.

    This article reviews several important results from RHIC experiments and discusses their implications. They were obtained in a unique environment for studying QCD matter at temperatures and densities that exceed the limits wherein hadrons can exist as individual entities and raises to prominence the quark-gluon degrees of freedom. These findings are supported by major experimental observations via measuring of the bulk properties of particle production, particle ratios and chemical freeze-out conditions, and elliptic ow; followed by hard probe measurements: high-pT hadron suppression, dijet fragment azimuthal correlations, and heavy favor probes. These measurements are presented for particles of different species asmore » a function of system sizes, collision centrality, and energy carried out in RHIC experiments. The results reveal that a dense, strongly-interacting medium is created in central Au + Au collisions at p sNN = 200 GeV at RHIC. This revelation of a new state of nuclear matter has also been observed in measurements at the LHC. Further, the IP-Glasma model coupled with viscous hydrodynamic models, which assumes the formation of a QGP, reproduces well the experimental ow results from Au + Au at p sNN = 200 GeV. This implies that the fluctuations in the initial geometry state are important and the created medium behaves as a nearly perfect liquid of nuclear matter because it has an extraordinarily low ratio of shear viscosity to entropy density, =s 0.12. However, these discoveries are far from being fully understood. Furthermore, recent experimental results from RHIC and LHC in small p + A, d + Au and 3He+Au collision systems provide brand new insight into the role of initial and final state effects. These have proven to be interesting and more surprising than originally anticipated; and could conceivably shed new light in our understanding of collective behavior in heavy-ion physics. Accordingly, the focus of the experiments at both facilities RHIC and the LHC is on detailed exploration of the properties of this new state of nuclear matter, the QGP.« less

  15. Wavefront aberrations and retinal image quality in different lenticular opacity types and densities.

    PubMed

    Wu, Cheng-Zhe; Jin, Hua; Shen, Zhen-Nv; Li, Ying-Jun; Cui, Xun

    2017-11-10

    To investigate wavefront aberrations in the entire eye and in the internal optics (lens) and retinal image qualities according to different lenticular opacity types and densities. Forty-one eyes with nuclear cataract, 33 eyes with cortical cataract, and 29 eyes with posterior subcapsular cataract were examined. In each group, wavefront aberrations in the entire eye and in the internal optics and retinal image quality were measured using a raytracing aberrometer. Eyes with cortical cataracts showed significantly higher coma-like aberrations compared to the other two groups in both entire eye and internal optic aberrations (P = 0.012 and P = 0.007, respectively). Eyes with nuclear cataract had lower spherical-like aberrations than the other two groups in both entire eye and internal optics aberrations (P < 0.001 and P < 0.001, respectively). In the nuclear cataract group, nuclear lens density was negatively correlated with internal spherical aberrations (r = -0.527, P = 0.005). Wavefront technology is useful for objective and quantitative analysis of retinal image quality deterioration in eyes with different early lenticular opacity types and densities. Understanding the wavefront optical properties of different crystalline lens opacities may help ophthalmic surgeons determine the optimal time to perform cataract surgery.

  16. Study of Analytic Statistical Model for Decay of Light and Medium Mass Nuclei in Nuclear Fragmentation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1996-01-01

    The angular momentum independent statistical decay model is often applied using a Monte-Carlo simulation to describe the decay of prefragment nuclei in heavy ion reactions. This paper presents an analytical approach to the decay problem of nuclei with mass number less than 60, which is important for galactic cosmic ray (GCR) studies. This decay problem of nuclei with mass number less than 60 incorporates well-known levels of the lightest nuclei (A less than 11) to improve convergence and accuracy. A sensitivity study of the model level density function is used to determine the impact on mass and charge distributions in nuclear fragmentation. This angular momentum independent statistical decay model also describes the momentum and energy distribution of emitted particles (n, p, d, t, h, and a) from a prefragment nucleus.

  17. Nuclear Mass Predictions within the Skyrme HFB Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samyn, M.; Goriely, S.; Pearson, J.M.

    To increase the reliability of predictions of highly neutron-rich nuclear masses we systematically analyze the sensitivity of Hartree-Fock-Bogoliubov (HFB) mass formulae to various physical inputs, such as a density dependence of the pairing interaction, a low effective mass, the particle-number projection, the symmetry energy, ... We typically use a 10-parameter Skyrme force and a 4-parameter {delta}-function pairing force. The 14 degrees of freedom are adjusted to the masses of all measured nuclei with N,Z {>=} 8 given in the 2001 and 2003 Audi et al. compilations. The masses of light and proton-rich nuclei are corrected by a 4-parameter phenomenological Wignermore » term. With more than ten such parameter sets complete mass tables are constructed, going from one drip line to the other, up to Z = 120.« less

  18. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds

    NASA Astrophysics Data System (ADS)

    Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.

    2015-02-01

    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  19. Integral equation model for warm and hot dense mixtures.

    PubMed

    Starrett, C E; Saumon, D; Daligault, J; Hamel, S

    2014-09-01

    In a previous work [C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013)] a model for the calculation of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the electronic structure of one atom in a plasma is determined using a density-functional-theory-based average-atom (AA) model and the ionic structure is determined by coupling the AA model to integral equations governing the fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with many nuclear species, i.e., mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant.

  20. Neutron-proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Chen, Lie-Wen

    2015-04-01

    The neutron-proton effective mass splitting in neutron-rich nucleonic matter reflects the spacetime nonlocality of the isovector nuclear interaction. It affects the neutron/proton ratio during the earlier evolution of the Universe, cooling of proto-neutron stars, structure of rare isotopes and dynamics of heavy-ion collisions. While there is still no consensus on whether the neutron-proton effective mass splitting is negative, zero or positive and how it depends on the density as well as the isospin-asymmetry of the medium, significant progress has been made in recent years in addressing these issues. There are different kinds of nucleon effective masses. In this mini-review, we focus on the total effective masses often used in the non-relativistic description of nuclear dynamics. We first recall the connections among the neutron-proton effective mass splitting, the momentum dependence of the isovector potential and the density dependence of the symmetry energy. We then make a few observations about the progress in calculating the neutron-proton effective mass splitting using various nuclear many-body theories and its effects on the isospin-dependence of in-medium nucleon-nucleon cross-sections. Perhaps, our most reliable knowledge so far about the neutron-proton effective mass splitting at saturation density of nuclear matter comes from optical model analyses of huge sets of nucleon-nucleus scattering data accumulated over the last five decades. The momentum dependence of the symmetry potential from these analyses provide a useful boundary condition at saturation density for calibrating nuclear many-body calculations. Several observables in heavy-ion collisions have been identified as sensitive probes of the neutron-proton effective mass splitting in dense neutron-rich matter based on transport model simulations. We review these observables and comment on the latest experimental findings.

  1. Nuclear technologies for explosives detection

    NASA Astrophysics Data System (ADS)

    Bell, Curtis J.

    1992-12-01

    This paper presents an exploration of several techniques for detection of Improvised Explosive Devices (IED) using interactions of specific nuclei with gammarays or fast neutrons. Techniques considered use these interactions to identify the device by measuring the densities and/or relative concentrations of the elemental constituents of explosives. These techniques are to be compared with selected other nuclear and non-nuclear methods. Combining of nuclear and non-nuclear techniques will also be briefly discussed.

  2. EMC effect: Past, Present, and Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomin, Nadia

    2015-09-01

    Since the discovery of the EMC effect over 30 years ago, it has been of great theoretical interest and studied in several experimental measurements. No unified picture arose to explain the underlying cause of per nucleon structure function modification in nuclei. Precise measurements on light nuclei from JLab’s 6 GeV era revitalized this research by showing that traditional A or density dependent models of this nuclear modification do not work. The measurements will be reviewed, discussed and preliminary data on heavy targets from JLab’s E03-103 will be presented.

  3. Coordination characteristics of uranyl BBP complexes: Insights from an electronic structure analysis

    DOE PAGES

    Pemmaraju, Chaitanya Das; Copping, Roy; Smiles, Danil E.; ...

    2017-03-21

    Here, organic ligand complexes of lanthanide/actinide ions have been studied extensively for applications in nuclear fuel storage and recycling. Several complexes of 2,6-bis(2-benzimidazyl)pyridine (H2BBP) featuring the uranyl moiety have been reported recently, and the present study investigates the coordination characteristics of these complexes using density functional theory-based electronic structure analysis. In particular, with the aid of several computational models, the nonplanar equatorial coordination about uranyl, observed in some of the compounds, is studied and its origin traced to steric effects.

  4. Inorganic nanotubes and fullerenes . Structure and properties of hypothetical phosphorus fullerenes

    NASA Astrophysics Data System (ADS)

    Seifert, G.; Heine, T.; Fowler, P. W.

    The possibility of stable non-carbon fullerenes is discussed for the case of phosphorus fullerene-like cage structures. On the basis of Density Functional Tight Binding calculations it is shown that many such cages correspond to metastable structures, but with increasing nuclearity become less stable with respect to separate molecular P4 units. Stability rules, known for carbon fullerenes, such as the ``isolated pentagon rule'', do not reflect the different electronic and steric requirements of the phosphorus atom. The computational results tend to rule out phosphorus fullerenes.

  5. Local electronic effects and irradiation resistance in high-entropy alloys

    DOE PAGES

    Egami, Takeshi; Stocks, George Malcolm; Nicholson, Don; ...

    2015-08-14

    High-entropy alloys are multicomponent solid solutions in which various elements with different chemistries and sizes occupy the same crystallographic lattice sites. Thus, none of the atoms perfectly fit the lattice site, giving rise to considerable local lattice distortions and atomic-level stresses. These characteristics can be beneficial for performance under both radiation and in a high-temperature environment, making them attractive candidates as nuclear materials. We discuss electronic origin of the atomic-level stresses based upon first-principles calculations using a density functional theory approach.

  6. Structural properties of lead-lithium alloys

    NASA Astrophysics Data System (ADS)

    Khambholja, S. G.; Satikunvar, D. D.; Abhishek, Agraj; Thakore, B. Y.

    2018-05-01

    Lead-Lihtium alloys have found large number of applications as liquid metal coolants in nuclear reactors. Large number of experimental work is reported for this system. However, complete theoretical description is still rare. In this scenario, we in the present work report the study of ground state properties of Lead-Lithium system. The present study is performed using plane wave pseudopotential density functional theory as implemented in Quantum ESPRESSO package. The theoretical findings are in agreement with previously reported experimental data. Some conclusions are drawn based on present study, which will be helpful for a comprehensive study.

  7. Experimental and theoretical evaluation on the microenvironmental effect of dimethyl sulfoxide on adrenaline in acid aqueous solution

    NASA Astrophysics Data System (ADS)

    Yu, Zhang-Yu; Liu, Tao; Guo, Dao-Jun; Liu, Yong-Jun; Liu, Cheng-Bu

    2010-12-01

    The microenvironmental effect of dimethyl sulfoxide (DMSO) on adrenaline was studied by several approaches including the cyclic voltammetry (CV) of adrenaline at a platinum electrode in acid aqueous solution, the chemical shift of 1H nuclear magnetic resonance ( 1H NMR) of adrenaline, and the change of diffusion coefficient of adrenaline. The experimental results demonstrated that DMSO has significant microenvironmental effect on adrenaline, which was confirmed by the density functional theory (DFT) study on the hydrogen bond (H-bond) complexes of adrenaline with water and DMSO.

  8. Kaon condensation in dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, J.; Heiselberg, H.; Pandharipande, V. R.

    The kaon energy in neutron matter is calculated analytically with the Klein-Gordon equation, by making a Wigner-Seitz cell approximation and employing a K{sup -}N square well potential. The transition from the low density Lenz potential, proportional to scattering length, to the high density Hartree potential is found to begin at fairly low densities. Exact nonrelativistic calculations of the kaon energy in a simple cubic crystal of neutrons are used to test the Wigner-Seitz and the Ericson-Ericson approximation methods. In this case the frequently used Erickson-Erickson approximation is found to be fairly accurate up to twice nuclear matter density. All themore » calculations indicate that by {approx}4 times nuclear matter density the Hartree limit is reached. We also show that in the Hartree limit the energy of zero momentum kaons does not have relativistic energy dependent factors present in the low density expansions. The results indicate that the density for kaon condensation is higher than previously estimated.« less

  9. The helium effect at grain boundaries in Fe-Cr alloys: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zemła, M. R.; Wróbel, J. S.; Wejrzanowski, T.; Nguyen-Manh, D.; Kurzydłowski, K. J.

    2017-02-01

    Helium is produced in the structural materials in nuclear power plants by nuclear transmutation following neutron irradiation. Since the solubility of helium in all metals is extremely low, helium tends to be trapped at defects such as vacancies, dislocations and grain boundaries, which cause material embrittlement. Density functional theory (DFT) calculations were performed in order to investigate the helium effect at grain boundaries (GBs) in iron-chromium alloys. Both cohesive energy and magnetic properties at symmetric Σ3(1 1 1) and Σ5(2 1 0) tilt Fe GBs are studied in the presence of Cr and He atoms. It is found that the presence of Cr atoms increases cohesive energy, at different He concentrations, and strongly influences magnetic properties at the GBs. The effect of the segregation energy of helium atom as a function of the different positions of Cr atoms located inside/outside a GB has been considered. Results of the present first-principles study enable one to clarify the role of Cr in understanding the helium effect in Fe-Cr-based alloys.

  10. KINEMATIC ANALYSIS OF NUCLEAR SPIRALS: FEEDING THE BLACK HOLE IN NGC 1097

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Ven, Glenn; Fathi, Kambiz, E-mail: glenn@mpia.d, E-mail: kambiz@astro.su.s

    2010-11-01

    We present a harmonic expansion of the observed line-of-sight velocity field as a method to recover and investigate spiral structures in the nuclear regions of galaxies. We apply it to the emission-line velocity field within the circumnuclear star-forming ring of NGC 1097, obtained with the GMOS-IFU spectrograph. The radial variation of the third harmonic terms is well described by a logarithmic spiral, from which we interpret that the gravitational potential is weakly perturbed by a two-arm spiral density wave with an inferred pitch angle of 52{sup 0} {+-} 4{sup 0}. This interpretation predicts a two-arm spiral distortion in the surfacemore » brightness, as hinted by the dust structures in central images of NGC 1097, and predicts a combined one-arm and three-arm spiral structure in the velocity field, as revealed in the non-circular motions of the ionized gas. Next, we use a simple spiral perturbation model to constrain the fraction of the measured non-circular motions that is due to radial inflow. We combine the resulting inflow velocity with the gas density in the spiral arms, inferred from emission-line ratios, to estimate the mass inflow rate as a function of radius, which reaches about 0.011 M{sub sun} yr{sup -1} at a distance of 70 pc from the center. This value corresponds to a fraction of about 4.2 x 10{sup -3} of the Eddington mass accretion rate onto the central black hole in this LINER/Seyfert1 galaxy. We conclude that the line-of-sight velocity can not only provide a cleaner view of nuclear spirals than the associated dust, but that the presented method also allows the quantitative study of these possibly important links in fueling the centers of galaxies, including providing a constraint on the mass inflow rate as a function of radius.« less

  11. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex.

    PubMed

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3) and mean cell numbers (x10(6)) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.

  12. Systematic theoretical study of non-nuclear electron density maxima in some diatomic molecules.

    PubMed

    Terrabuio, Luiz A; Teodoro, Tiago Q; Rachid, Marina G; Haiduke, Roberto L A

    2013-10-10

    First, exploratory calculations were performed to investigate the presence of non-nuclear maxima (NNMs) in ground-state electron densities of homonuclear diatomic molecules from hydrogen up to calcium at their equilibrium geometries. In a second stage, only for the cases in which these features were previously detected, a rigorous analysis was carried out by several combinations of theoretical methods and basis sets in order to ensure that they are not only calculation artifacts. Our best results support that Li2, B2, C2, and P2 are molecules that possess true NNMs. A NNM was found in values obtained from the largest basis sets for Na2, but it disappeared at the experimental geometry because optimized bond lengths are significantly inaccurate for this case (deviations of 0.10 Å). Two of these maxima are also observed in Si2 with CCSD and large basis sets, but they are no longer detected as core-valence correlation or multiconfigurational wave functions are taken into account. Therefore, the NNMs in Si2 can be considered unphysical features due to an incomplete treatment of electron correlation. Finally, we show that a NNM is encountered in LiNa, representing the first discovery of such electron density maxima in a heteronuclear diatomic system at its equilibrium geometry, to our knowledge. Some results for LiNa, found in variations in internuclear distances, suggest that molecular electric moments, such as dipole and quadrupole, are sensitive to the presence of NNMs.

  13. ALMA Imaging of HCN, CS, and Dust in Arp 220 and NGC 6240

    NASA Astrophysics Data System (ADS)

    Scoville, Nick; Sheth, Kartik; Walter, Fabian; Manohar, Swarnima; Zschaechner, Laura; Yun, Min; Koda, Jin; Sanders, David; Murchikova, Lena; Thompson, Todd; Robertson, Brant; Genzel, Reinhard; Hernquist, Lars; Tacconi, Linda; Brown, Robert; Narayanan, Desika; Hayward, Christopher C.; Barnes, Joshua; Kartaltepe, Jeyhan; Davies, Richard; van der Werf, Paul; Fomalont, Edward

    2015-02-01

    We report ALMA Band 7 (350 GHz) imaging at 0.''4-0.''6 resolution and Band 9 (696 GHz) at ~0.''25 resolution of the luminous IR galaxies Arp 220 and NGC 6240. The long wavelength dust continuum is used to estimate interstellar medium masses for Arp 220 east and west and NGC 6240 of 1.9, 4.2, and 1.6 × 109 M ⊙within radii of 69, 65, and 190 pc. The HCN emission was modeled to derive the emissivity distribution as a function of radius and the kinematics of each nuclear disk, yielding dynamical masses consistent with the masses and sizes derived from the dust emission. In Arp 220, the major dust and gas concentrations are at radii less than 50 pc in both counter-rotating nuclear disks. The thickness of the disks in Arp 220 estimated from the velocity dispersion and rotation velocities are 10-20 pc and the mean gas densities are nH_2 ˜ 10^5 cm-3 at R <50 pc. We develop an analytic treatment for the molecular excitation (including photon trapping), yielding volume densities for both the HCN and CS emission with n H2 ~ 2 × 105 cm-3. The agreement of the mean density from the total mass and size with that required for excitation suggests that the volume is essentially filled with dense gas, i.e., it is not cloudy or like swiss cheese.

  14. Stereological Analysis of Neuron, Glial and Endothelial Cell Numbers in the Human Amygdaloid Complex

    PubMed Central

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm3 and mean cell numbers (x106) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals’ age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions. PMID:22719923

  15. Neutron detection of the Triga Mark III reactor, using nuclear track methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa, G., E-mail: espinosa@fisica.unam.mx; Golzarri, J. I.; Raya-Arredondo, R.

    Nuclear Track Methodology (NTM), based on the neutron-proton interaction is one often employed alternative for neutron detection. In this paper we apply NTM to determine the Triga Mark III reactor operating power and neutron flux. The facility nuclear core, loaded with 85 Highly Enriched Uranium as fuel with control rods in a demineralized water pool, provide a neutron flux around 2 × 10{sup 12} n cm{sup −2} s{sup −1}, at the irradiation channel TO-2. The neutron field is measured at this channel, using Landauer{sup ®} PADC as neutron detection material, covered by 3 mm Plexiglas{sup ®} as converter. After exposure, plasticmore » detectors were chemically etched to make observable the formed latent tracks induced by proton recoils. The track density was determined by a custom made Digital Image Analysis System. The resulting average nuclear track density shows a direct proportionality response for reactor power in the range 0.1-7 kW. We indicate several advantages of the technique including the possibility to calibrate the neutron flux density measured at low reactor power.« less

  16. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations.

    PubMed

    Suhasini, M; Sailatha, E; Gunasekaran, S; Ramkumaar, G R

    2015-04-15

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the (13)C and (1)H NMR chemical shifts of Carbamazepine. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Density Functional Theory Calculations of Activation Energies for Carrier Capture by Defects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Modine, N. A.; Wright, A. F.; Lee, S. R.

    The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Density functional theory (DFT) has been widely and successfully used to predict defect levels, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry developed the theory of carrier-capture by multiphonon emission in the 1970s and showed that carrier-capture cross-sections differ between defects primarily due to differences in their carrier capture activation energies. We present an approach to using DFT to calculate carrier capture activation energies that does not depend on an assumed configuration coordinate and that fully accounts for anharmonic effects, which can substantially modify carrier activation energies. We demonstrate our approach for intrinisic defects in GaAs and GaN and discuss how our results depend on the choice of exchange-correlation functional and the treatment of spin polarization. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  18. Fluid dynamic propagation of initial baryon number perturbations on a Bjorken flow background

    DOE PAGES

    Floerchinger, Stefan; Martinez, Mauricio

    2015-12-11

    Baryon number density perturbations offer a possible route to experimentally measure baryon number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity, and energy density on top of a (generalized) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the radius in the transverse plane, and rapidity. Here, we examine how the time evolution of linear perturbations depends on the equation of statemore » as well as on shear viscosity, bulk viscosity, and heat conductivity for modes with different azimuthal, radial, and rapidity wave numbers. Finally we discuss how this information is accessible to experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in high energy nuclear collisions.« less

  19. Entropically Driven Layering Near a Substrate: A Fluids DFT Study

    NASA Astrophysics Data System (ADS)

    McGarrity, Erin; Frischknecht, Amalie; Mackay, Michael

    2008-03-01

    We employ a fluids density functional theory to study the phase behavior of athermal polymer/nanoparticle blends near a hard substrate. These blends exhibit two types of first order, entropically driven layering transitions. In the first type of transition, the nanoparticles order to form a layer which is a fixed distance from the surface. The structure and location of this layer depends on nanoparticle radius. In the second type of transition, which occurs at melt-like densities, the nanoparticles and polymers form laminar structures which resemble colloidal crystals. We examine the effects of packing density, chain length and nanoparticle radius on the system and show that the transitions are first order. In addition we show that the crystalline phase is nucleated by the presence of the surface. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Density Functional Theory (dft) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-12-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as xenon is known to form compounds under normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. We present DFT-MD simulations of shocked liquid xenon with the goal of developing an improved equation of state. The calculated Hugoniot to 2 MPa compares well with available experimental shock data. Sandia is a mul-tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Density Functional Theory (DFT) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-06-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Concentration of (137)Cs in soil across Nebraska.

    PubMed

    Weesner, Alexandra Palensky; Fairchild, Robert W

    2008-06-01

    Atmospheric nuclear weapons testing from 1945 through 1980 produced radioactive fallout that was transported by stratospheric winds and deposited unevenly around the world. The accident at Chernobyl in 1986 also contributed to the fallout in some locations. The (137)Cs activity concentration from fallout has been measured as a function of depth in soil samples from five different locations across Nebraska. Soil samples 2-cm thick down to a depth of 30 cm were collected in Brown, Dawes, Lancaster, Red Willow, and Thurston Counties. Samples taken from each of the sites were dried, sieved, and counted using an HPGe gamma spectroscopy system to measure the activity concentration of (137)Cs at each depth in the soil. Activity concentrations as high as 216 Bq kg(-1) were measured in the samples. Dry soil bulk densities were calculated for each site based on soil type and used to calculate the area density of deposition. Area deposition densities up to 13,100 Bq m(-2) were measured, consistent with published estimates.

  3. Fragment-based {sup 13}C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, Joshua D.; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu; Monaco, Stephen

    2015-09-14

    We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readilymore » in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.« less

  4. β3 Integrin Haplotype Influences Gene Regulation and Plasma von Willebrand Factor Activity

    PubMed Central

    Payne, Katie E; Bray, Paul F; Grant, Peter J; Carter, Angela M

    2008-01-01

    The Leu33Pro polymorphism of the gene encoding β3 integrin (ITGB3) is associated with acute coronary syndromes and influences platelet aggregation. Three common promoter polymorphisms have also been identified. The aims of this study were to (1) investigate the influence of the ITGB3 −400C/A, −425A/C and −468G/A promoter polymorphisms on reporter gene expression and nuclear protein binding and (2) determine genotype and haplotype associations with platelet αIIbβ3 receptor density. Promoter haplotypes were introduced into an ITGB3 promoter-pGL3 construct by site directed mutagenesis and luciferase reporter gene expression analysed in HEL and HMEC-1 cells. Binding of nuclear proteins was assessed by electrophoretic mobility shift assay. The association of ITGB3 haplotype with platelet αIIbβ3 receptor density was determined in 223 subjects. Species conserved motifs were identified in the ITGB3 promoter in the vicinity of the 3 polymorphisms. The GAA, GCC, AAC, AAA and ACC constructs induced ~50% increased luciferase expression relative to the GAC construct in both cell types. Haplotype analysis including Leu33Pro indicated 5 common haplotypes; no associations between ITGB3 haplotypes and receptor density were found. However, the GCC-Pro33 haplotype was associated with significantly higher vWF activity (128.6 [112.1–145.1]%) compared with all other haplotypes (107.1 [101.2–113.0]%, p=0.02). In conclusion, the GCC-Pro33 haplotype was associated with increased vWF activity but not with platelet αIIbβ3 receptor density, which may indicate ITGB3 haplotype influences endothelial function. PMID:18045606

  5. Studies of nuclei under the extreme conditions of density, temperature, isospin asymmetry and the phase diagram of hadronic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mekjian, Aram

    2016-10-18

    The main emphasis of the entire project is on issues having to do with medium energy and ultra-relativistic energy and heavy ion collisions. A major goal of both theory and experiment is to study properties of hot dense nuclear matter under various extreme conditions and to map out the phase diagram in density or chemical potential and temperature. My studies in medium energy nuclear collisions focused on the liquid-gas phase transition and cluster yields from such transitions. Here I developed both the statistical model of nuclear multi-fragmentation and also a mean field theory.

  6. Influence of the nuclear level density on the odd-even staggering in 56Fe+p spallation at energies from 300 to 1500 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Su, Jun; Zhu, Long; Guo, Chenchen

    2018-05-01

    Background: Special attention has been paid to study the shell effect and odd-even staggering (OES) in the nuclear spallation. Purpose: In this paper, we investigate the influence of the nuclear level density on the OES in the 56Fe+p spallations at energies from 300 to 1500 MeV/nucleon. Method: The isospin-dependent quantum molecular dynamics (IQMD) model is applied to produce the highly excited and equilibrium remnants, which is then de-excited using the statistical model gemini. The excitation energy of the heaviest hot fragments is applied to match the IQMD model with the gemini model. In the gemini model, the statistical description of the evaporation are based on the Hauser-Feshbach formalism, in which level density prescriptions are applied. Results: By investigating the OES of the excited pre-fragments, it is found that the OES originates at the end of the decay process when the excitation energy is close to the nucleon-emission threshold energy, i.e., the smaller value of the neutron separation energy and proton separation energy. The strong influence of level density on the OES is noticed. Two types of the nuclear level densities, the discrepancy of which is only about 7% near the nucleon emission threshold energy, are used in the model. However, the calculated values of the OES differ by the factor of 3 for the relevant nuclei. Conclusions: It is suggested that, although the particle-separation energies play a key role in determining the OES, the level density at excitation energy lower than the particle-separation energies should be taken into consideration

  7. Photoproduction of light vector mesons in Xe-Xe ultraperipheral collisions at the LHC and the nuclear density of Xe-129

    NASA Astrophysics Data System (ADS)

    Guzey, V.; Kryshen, E.; Zhalov, M.

    2018-07-01

    We make predictions for cross sections of ρ and ϕ vector meson photoproduction in ultraperipheral Xe-Xe collisions at √{sNN } = 5.44TeV. Analyzing the momentum transfer distribution of ρ mesons in this process, we explore the feasibility of extracting the nuclear density of 129Xe, which is needed in searches for dark matter with Xenon-based detectors.

  8. The 129Xe nuclear shielding surfaces for Xe interacting with linear molecules CO2, N2, and CO

    NASA Astrophysics Data System (ADS)

    de Dios, Angel C.; Jameson, Cynthia J.

    1997-09-01

    We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems Xe-CO2, Xe-N2, and Xe-CO using a gauge-invariant ab initio method at the coupled Hartree-Fock level with gauge-including atomic orbitals (GIAO). Implementation of a large basis set (240 basis functions) on the Xe gives very small counterpoise corrections which indicates that the basis set superposition errors in the calculated shielding values are negligible. These are the first intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and can be described adequately by a sum of inverse even powers of the distance with explicit angle dependence in the coefficients expressed by Legendre polynomials P2n(cos θ), n=0-3, for Xe-CO2 and Xe-N2. The Xe-CO shielding surface is well described by a similar functional form, except that Pn(cos θ), n=0-4 were used. When averaged over the anisotropic potential function these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance (NMR) chemical shift observed in gas mixtures. The energies from the self-consistent field (SCF) calculations were used to construct potential surfaces, using a damped dispersion form. These potential functions are compared with existing potentials in their predictions of the second virial coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the mean-square torque from infrared absorption, and the rotational constants and other average properties of the van der Waals complexes. Average properties of the van der Waals complexes were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the various potentials and compared with experiment.

  9. Noncompound nucleus decay contribution in the 12C+93Nb reaction using various formulations of nuclear proximity potential

    NASA Astrophysics Data System (ADS)

    Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.

    2015-01-01

    The earlier study of excitation functions of *105Ag, formed in the 12C+93Nb reaction, based on the dynamical cluster-decay model (DCM), using the pocket formula for nuclear proximity potential is extended to the use of other nuclear interaction potentials derived from the Skyrme energy density functional (SEDF) based on the semiclassical extended Thomas Fermi (ETF) approach and to the use of the extended-Wong model of Gupta and collaborators. The Skyrme forces used are the old SIII and SIV and the new SSk, GSkI, and KDE0(v1) given for both normal and isospin-rich nuclei, with densities added in the frozen-density approximation. Taking advantage of the fact that different Skyrme forces provide different barrier characteristics, we look for the "barrier modification" effects in terms of choosing an appropriate force and hence for the existence or nonexistence of noncompound nucleus (nCN) effects in this reaction. Interestingly, independent of the choice of Skyrme or proximity force, the extended-Wong model fits the experimental data nicely, without any barrier modification and hence no nCN component in the measured fusion cross section, which consists of light-particle evaporation residue (ER) and intermediate-mass fragments (IMFs) up to mass 13, i.e., σfusionExpt .=σER+σIMFs . However, the predicted fusion cross section due to the extended-Wong model is much larger, possibly because of the so-far missing fusion-fission (ff) component in the data. On the other hand, in agreement with the earlier work using the pocket proximity potential, the DCM fits only some data (mainly IMFs) for only some Skyrme forces, and hence it presents the chosen reaction as a case of a large nCN component, whose empirically estimated content is fitted for use of the DCM with a fragment preformation factor taken equal to one, i.e., using DCM (P0=1 ), by introducing "barrier modification" through changing the neck-length parameter Δ R for a best fit to the empirical nCN data in each (ER and IMF) decay channel. Also, the ff component of the DCM is predicted to lie around the symmetric mass A /2 ±16 . All calculations are made for deformed and oriented coplanar nuclei.

  10. The d*(2380) in Neutron Stars - A New Degree of Freedom?

    NASA Astrophysics Data System (ADS)

    Vidaña, I.; Bashkanov, M.; Watts, D. P.; Pastore, A.

    2018-06-01

    Elucidating the appropriate microscopic degrees of freedom within neutron stars remains an open question which impacts nuclear physics, particle physics and astrophysics. The recent discovery of the first non-trivial dibaryon, the d* (2380), provides a new candidate for an exotic degree of freedom in the nuclear equation of state at high matter densities. In this paper a first calculation of the role of the d* (2380) in neutron stars is performed based on a relativistic mean field description of the nucleonic degrees of freedom supplemented by a free boson gas of d* (2380). The calculations indicate that the d* (2380) would appear at densities around three times normal nuclear matter saturation density and comprise around 20% of the matter in the centre of heavy stars with higher fractions possible in the higher densities of merger processes. The d* (2380) would also reduce the maximum star mass by around 15% and have significant influence on the fractional proton/neutron composition. New possibilities for neutron star cooling mechanisms arising from the d* (2380) are also predicted.

  11. Stellar Populations in the Central 0.5 pc of the Galaxy. I. A New Method for Constructing Luminosity Functions and Surface-density Profiles

    NASA Astrophysics Data System (ADS)

    Do, T.; Lu, J. R.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Martinez, G. D.; Wright, S. A.; Matthews, K.

    2013-02-01

    We present new high angular resolution near-infrared spectroscopic observations of the nuclear star cluster surrounding the Milky Way's central supermassive black hole. Using the integral-field spectrograph OSIRIS on Keck II behind the laser-guide-star adaptive optics system, this spectroscopic survey enables us to separate early-type (young, 4-6 Myr) and late-type (old, >1 Gyr) stars with a completeness of 50% down to K' = 15.5 mag, which corresponds to ~10 M ⊙ for the early-type stars. This work increases the radial extent of reported OSIRIS/Keck measurements by more than a factor of three from 4'' to 14'' (0.16 to 0.56 pc), along the projected disk of young stars. For our analysis, we implement a new method of completeness correction using a combination of star-planting simulations and Bayesian inference. We assign probabilities for the spectral type of every source detected in deep imaging down to K' = 15.5 mag using information from spectra, simulations, number counts, and the distribution of stars. The inferred radial surface-density profiles, Σ(R)vpropR -Γ, for the young stars and late-type giants are consistent with earlier results (Γearly = 0.93 ± 0.09, Γlate = 0.16 ± 0.07). The late-type surface-density profile is approximately flat out to the edge of the survey. While the late-type stellar luminosity function is consistent with the Galactic bulge, the completeness-corrected luminosity function of the early-type stars has significantly more young stars at faint magnitudes compared with previous surveys with similar depth. This luminosity function indicates that the corresponding mass function of the young stars is likely less top-heavy than that inferred from previous surveys.

  12. On the Mass of Atoms in Molecules: Beyond the Born-Oppenheimer Approximation

    NASA Astrophysics Data System (ADS)

    Scherrer, Arne; Agostini, Federica; Sebastiani, Daniel; Gross, E. K. U.; Vuilleumier, Rodolphe

    2017-07-01

    Describing the dynamics of nuclei in molecules requires a potential energy surface, which is traditionally provided by the Born-Oppenheimer or adiabatic approximation. However, we also need to assign masses to the nuclei. There, the Born-Oppenheimer picture does not account for the inertia of the electrons, and only bare nuclear masses are considered. Nowadays, experimental accuracy challenges the theoretical predictions of rotational and vibrational spectra and requires the participation of electrons in the internal motion of the molecule. More than 80 years after the original work of Born and Oppenheimer, this issue has still not been solved, in general. Here, we present a theoretical and numerical framework to address this problem in a general and rigorous way. Starting from the exact factorization of the electron-nuclear wave function, we include electronic effects beyond the Born-Oppenheimer regime in a perturbative way via position-dependent corrections to the bare nuclear masses. This maintains an adiabaticlike point of view: The nuclear degrees of freedom feel the presence of the electrons via a single potential energy surface, whereas the inertia of electrons is accounted for and the total mass of the system is recovered. This constitutes a general framework for describing the mass acquired by slow degrees of freedom due to the inertia of light, bounded particles; thus, it is applicable not only in electron-nuclear systems but in light-heavy nuclei or ions as well. We illustrate this idea with a model of proton transfer, where the light particle is the proton and the heavy particles are the oxygen atoms to which the proton is bounded. Inclusion of the light-particle inertia allows us to gain orders of magnitude in accuracy. The electron-nuclear perspective is adopted, instead, to calculate position-dependent mass corrections using density functional theory for a few polyatomic molecules at their equilibrium geometry. These data can serve as input for the computation of high-precision molecular spectra.

  13. The intrapair electron correlation in natural orbital functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piris, M.; Donostia International Physics Center; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao

    2013-12-21

    A previously proposed [M. Piris, X. Lopez, F. Ruipérez, J. M. Matxain, and J. M. Ugalde, J. Chem. Phys. 134, 164102 (2011)] formulation of the two-particle cumulant, based on an orbital-pairing scheme, is extended here for including more than two natural orbitals. This new approximation is used to reconstruct the two-particle reduced density matrix (2-RDM) constrained to the D, Q, and G positivity necessary conditions of the N-representable 2-RDM. In this way, we have derived an extended version of the Piris natural orbital functional 5 (PNOF5e). An antisymmetrized product of strongly orthogonal geminals with the expansion coefficients explicitly expressed bymore » the occupation numbers is also used to generate the PNOF5e. The theory is applied to the homolytic dissociation of selected diatomic molecules: H{sub 2}, LiH, and Li{sub 2}. The Bader's theory of atoms in molecules is used to analyze the electron density and the presence of non-nuclear maxima in the case of a set of light atomic clusters: Li{sub 2}, Li {sub 3}{sup +}, Li {sub 4}{sup 2+}, and H{sub 3}{sup +}. The improvement of PNOF5e over PNOF5 was observed by visualizing the electron densities.« less

  14. Effect of Central Mass Concentration on the Formation of Nuclear Spirals in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Thakur, Parijat; Ann, H. B.; Jiang, Ing-Guey

    2009-03-01

    We have performed smoothed particle hydrodynamics simulations to study the response of the central kiloparsec region of a gaseous disk to the imposition of nonaxisymmetric bar potentials. The model galaxies are composed of three axisymmetric components (halo, disk, and bulge) and a nonaxisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. The potential of spherical γ-models of Dehnen is adopted for the bulge component whose density varies as r -γ near the center and r -4 at larger radii and, hence, possesses a central density core for γ = 0 and cusps for γ>0. Since the central mass concentration of the model galaxies increases with the cusp parameter γ, we have examined here the effect of the central mass concentration by varying the cusp parameter γ on the mechanism responsible for the formation of the symmetric two-armed nuclear spirals in barred galaxies. Our simulations show that the symmetric two-armed nuclear spirals are formed by hydrodynamic spiral shocks driven by the gravitational torque of the bar for the models with γ = 0 and 0.5. On the other hand, the symmetric two-armed nuclear spirals in the models with γ = 1 and 1.5 are explained by gas density waves. Thus, we conclude that the mechanism responsible for the formation of symmetric two-armed nuclear spirals in barred galaxies changes from hydrodynamic shocks to gas density waves as the central mass concentration increases from γ = 0 to 1.5.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xinran; da Silva, Ivan; Godfrey, Harry G. W.

    During nuclear waste disposal process, radioactive iodine as a fission product can be released. The widespread implementation of sustainable nuclear energy thus requires the development of efficient iodine stores that have simultaneously high capacity, stability and more importantly, storage density (and hence minimized system volume). Here, we report high I 2 adsorption in a series of robust porous metal–organic materials, MFM-300(M) (M = Al, Sc, Fe, In). MFM-300(Sc) exhibits fully reversible I 2 uptake of 1.54 g g –1, and its structure remains completely unperturbed upon inclusion/removal of I 2. Direct observation and quantification of the adsorption, binding domains andmore » dynamics of guest I 2 molecules within these hosts have been achieved using XPS, TGA-MS, high resolution synchrotron X-ray diffraction, pair distribution function analysis, Raman, terahertz and neutron spectroscopy, coupled with density functional theory modeling. These complementary techniques reveal a comprehensive understanding of the host–I 2 and I 2–I 2 binding interactions at a molecular level. The initial binding site of I 2 in MFM-300(Sc), I 2 I, is located near the bridging hydroxyl group of the [ScO 4(OH) 2] moiety [I 2 I···H–O = 2.263(9) Å] with an occupancy of 0.268. I 2 II is located interstitially between two phenyl rings of neighboring ligand molecules [I 2 II···phenyl ring = 3.378(9) and 4.228(5) Å]. I 2 II is 4.565(2) Å from the hydroxyl group with an occupancy of 0.208. Significantly, at high I 2 loading an unprecedented self-aggregation of I 2 molecules into triple-helical chains within the confined nanovoids has been observed at crystallographic resolution, leading to a highly efficient packing of I 2 molecules with an exceptional I 2 storage density of 3.08 g cm –3 in MFM-300(Sc).« less

  16. Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal–Organic Frameworks

    DOE PAGES

    Zhang, Xinran; da Silva, Ivan; Godfrey, Harry G. W.; ...

    2017-10-11

    During nuclear waste disposal process, radioactive iodine as a fission product can be released. The widespread implementation of sustainable nuclear energy thus requires the development of efficient iodine stores that have simultaneously high capacity, stability and more importantly, storage density (and hence minimized system volume). Here, we report high I 2 adsorption in a series of robust porous metal–organic materials, MFM-300(M) (M = Al, Sc, Fe, In). MFM-300(Sc) exhibits fully reversible I 2 uptake of 1.54 g g –1, and its structure remains completely unperturbed upon inclusion/removal of I 2. Direct observation and quantification of the adsorption, binding domains andmore » dynamics of guest I 2 molecules within these hosts have been achieved using XPS, TGA-MS, high resolution synchrotron X-ray diffraction, pair distribution function analysis, Raman, terahertz and neutron spectroscopy, coupled with density functional theory modeling. These complementary techniques reveal a comprehensive understanding of the host–I 2 and I 2–I 2 binding interactions at a molecular level. The initial binding site of I 2 in MFM-300(Sc), I 2 I, is located near the bridging hydroxyl group of the [ScO 4(OH) 2] moiety [I 2 I···H–O = 2.263(9) Å] with an occupancy of 0.268. I 2 II is located interstitially between two phenyl rings of neighboring ligand molecules [I 2 II···phenyl ring = 3.378(9) and 4.228(5) Å]. I 2 II is 4.565(2) Å from the hydroxyl group with an occupancy of 0.208. Significantly, at high I 2 loading an unprecedented self-aggregation of I 2 molecules into triple-helical chains within the confined nanovoids has been observed at crystallographic resolution, leading to a highly efficient packing of I 2 molecules with an exceptional I 2 storage density of 3.08 g cm –3 in MFM-300(Sc).« less

  17. Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal-Organic Frameworks.

    PubMed

    Zhang, Xinran; da Silva, Ivan; Godfrey, Harry G W; Callear, Samantha K; Sapchenko, Sergey A; Cheng, Yongqiang; Vitórica-Yrezábal, Inigo; Frogley, Mark D; Cinque, Gianfelice; Tang, Chiu C; Giacobbe, Carlotta; Dejoie, Catherine; Rudić, Svemir; Ramirez-Cuesta, Anibal J; Denecke, Melissa A; Yang, Sihai; Schröder, Martin

    2017-11-15

    During nuclear waste disposal process, radioactive iodine as a fission product can be released. The widespread implementation of sustainable nuclear energy thus requires the development of efficient iodine stores that have simultaneously high capacity, stability and more importantly, storage density (and hence minimized system volume). Here, we report high I 2 adsorption in a series of robust porous metal-organic materials, MFM-300(M) (M = Al, Sc, Fe, In). MFM-300(Sc) exhibits fully reversible I 2 uptake of 1.54 g g -1 , and its structure remains completely unperturbed upon inclusion/removal of I 2 . Direct observation and quantification of the adsorption, binding domains and dynamics of guest I 2 molecules within these hosts have been achieved using XPS, TGA-MS, high resolution synchrotron X-ray diffraction, pair distribution function analysis, Raman, terahertz and neutron spectroscopy, coupled with density functional theory modeling. These complementary techniques reveal a comprehensive understanding of the host-I 2 and I 2 -I 2 binding interactions at a molecular level. The initial binding site of I 2 in MFM-300(Sc), I 2 I , is located near the bridging hydroxyl group of the [ScO 4 (OH) 2 ] moiety [I 2 I ···H-O = 2.263(9) Å] with an occupancy of 0.268. I 2 II is located interstitially between two phenyl rings of neighboring ligand molecules [I 2 II ···phenyl ring = 3.378(9) and 4.228(5) Å]. I 2 II is 4.565(2) Å from the hydroxyl group with an occupancy of 0.208. Significantly, at high I 2 loading an unprecedented self-aggregation of I 2 molecules into triple-helical chains within the confined nanovoids has been observed at crystallographic resolution, leading to a highly efficient packing of I 2 molecules with an exceptional I 2 storage density of 3.08 g cm -3 in MFM-300(Sc).

  18. Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal–Organic Frameworks

    PubMed Central

    2017-01-01

    During nuclear waste disposal process, radioactive iodine as a fission product can be released. The widespread implementation of sustainable nuclear energy thus requires the development of efficient iodine stores that have simultaneously high capacity, stability and more importantly, storage density (and hence minimized system volume). Here, we report high I2 adsorption in a series of robust porous metal–organic materials, MFM-300(M) (M = Al, Sc, Fe, In). MFM-300(Sc) exhibits fully reversible I2 uptake of 1.54 g g–1, and its structure remains completely unperturbed upon inclusion/removal of I2. Direct observation and quantification of the adsorption, binding domains and dynamics of guest I2 molecules within these hosts have been achieved using XPS, TGA-MS, high resolution synchrotron X-ray diffraction, pair distribution function analysis, Raman, terahertz and neutron spectroscopy, coupled with density functional theory modeling. These complementary techniques reveal a comprehensive understanding of the host–I2 and I2–I2 binding interactions at a molecular level. The initial binding site of I2 in MFM-300(Sc), I2I, is located near the bridging hydroxyl group of the [ScO4(OH)2] moiety [I2I···H–O = 2.263(9) Å] with an occupancy of 0.268. I2II is located interstitially between two phenyl rings of neighboring ligand molecules [I2II···phenyl ring = 3.378(9) and 4.228(5) Å]. I2II is 4.565(2) Å from the hydroxyl group with an occupancy of 0.208. Significantly, at high I2 loading an unprecedented self-aggregation of I2 molecules into triple-helical chains within the confined nanovoids has been observed at crystallographic resolution, leading to a highly efficient packing of I2 molecules with an exceptional I2 storage density of 3.08 g cm–3 in MFM-300(Sc). PMID:29020767

  19. Radial chromatin positioning is shaped by local gene density, not by gene expression

    PubMed Central

    2009-01-01

    G- and R-bands of metaphase chromosomes are characterized by profound differences in gene density, CG content, replication timing, and chromatin compaction. The preferential localization of gene-dense, transcriptionally active, and early replicating chromatin in the nuclear interior and of gene-poor, later replicating chromatin at the nuclear envelope has been demonstrated to be evolutionary-conserved in various cell types. Yet, the impact of different local chromatin features on the radial nuclear arrangement of chromatin is still not well understood. In particular, it is not known whether radial chromatin positioning is preferentially shaped by local gene density per se or by other related parameters such as replication timing or transcriptional activity. The interdependence of these distinct chromatin features on the linear deoxyribonucleic acid (DNA) sequence precludes a simple dissection of these parameters with respect to their importance for the reorganization of the linear DNA organization into the distinct radial chromatin arrangements observed in the nuclear space. To analyze this problem, we generated probe sets of pooled bacterial artificial chromosome (BAC) clones from HSA 11, 12, 18, and 19 representing R/G-band-assigned chromatin, segments with different gene density and gene loci with different expression levels. Using multicolor 3D flourescent in situ hybridization (FISH) and 3D image analysis, we determined their localization in the nucleus and their positions within or outside the corresponding chromosome territory (CT). For each BAC data on local gene density within 2- and 10-Mb windows, as well as GC (guanine and cytosine) content, replication timing and expression levels were determined. A correlation analysis of these parameters with nuclear positioning revealed regional gene density as the decisive parameter determining the radial positioning of chromatin in the nucleus in contrast to band assignment, replication timing, and transcriptional activity. We demonstrate a polarized distribution of gene-dense vs gene-poor chromatin within CTs with respect to the nuclear border. Whereas we confirm previous reports that a particular gene-dense and transcriptionally highly active region of about 2 Mb on 11p15.5 often loops out from the territory surface, gene-dense and highly expressed sequences were not generally found preferentially at the CT surface as previously suggested. PMID:17333233

  20. New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.

    PubMed

    Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V

    2018-03-02

    A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

Top