Sample records for nuclear dna basis

  1. Does CTCF mediate between nuclear organization and gene expression?

    PubMed

    Ohlsson, Rolf; Lobanenkov, Victor; Klenova, Elena

    2010-01-01

    The multifunctional zinc-finger protein CCCTC-binding factor (CTCF) is a very strong candidate for the role of coordinating the expression level of coding sequences with their three-dimensional position in the nucleus, apparently responding to a "code" in the DNA itself. Dynamic interactions between chromatin fibers in the context of nuclear architecture have been implicated in various aspects of genome functions. However, the molecular basis of these interactions still remains elusive and is a subject of intense debate. Here we discuss the nature of CTCF-DNA interactions, the CTCF-binding specificity to its binding sites and the relationship between CTCF and chromatin, and we examine data linking CTCF with gene regulation in the three-dimensional nuclear space. We discuss why these features render CTCF a very strong candidate for the role and propose a unifying model, the "CTCF code," explaining the mechanistic basis of how the information encrypted in DNA may be interpreted by CTCF into diverse nuclear functions.

  2. Nuclear Ribosomal DNA Variation and Pathogenic Specialization in Alternaria Fungi Known To Produce Host-Specific Toxins †

    PubMed Central

    Kusaba, Motoaki; Tsuge, Takashi

    1994-01-01

    A total of 99 strains of 11 Alternaria species, including 68 strains of seven fungi known to produce host-specific toxins, were subjected to analysis of restriction fragment length polymorphism (RFLP) in nuclear ribosomal DNA (rDNA). Total DNA was digested with XbaI, and the Southern blots were probed with a nuclear rDNA clone of Alternaria kikuchiana. The hybridization gave 17 different RFLPs from the 99 strains. On the basis of these RFLPs, populations of host-specific toxin-producing fungi could not be differentiated from one another nor from nonpathogenic A. alternata. Each population of the toxin-producing fungi carried rDNA variants. Nine different types, named A1 to A6 and B1 to B3, were detected among the toxin-producing fungi and nonpathogenic A. alternata. All of the populations contained the type A4 variant, and the other rDNA types were also shared by different toxin-producing fungi and A. alternata. In contrast, Alternaria species that are morphologically distinguishable from A. alternata could be differentiated from A. alternata on the basis of the rDNA RFLPs. Polymorphisms in rDNA digested with HaeIII and MspI were also evaluated in 61 Alternaria strains. These restriction enzymes produced 31 variations among all of the samples. The seven toxin-producing fungi and nonpathogenic A. alternata could not be resolved by phylogenetic analysis based on the RFLPs, although they could be differentiated from the other Alternaria species studied. These results provide support for the hypothesis that Alternaria fungi known to produce host-specific toxins are intraspecific variants of A. alternata specialized in pathogenicity. Images PMID:16349367

  3. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair.

    PubMed

    Schrank, Benjamin R; Aparicio, Tomas; Li, Yinyin; Chang, Wakam; Chait, Brian T; Gundersen, Gregg G; Gottesman, Max E; Gautier, Jean

    2018-06-20

    DNA double-strand breaks repaired by non-homologous end joining display limited DNA end-processing and chromosomal mobility. By contrast, double-strand breaks undergoing homology-directed repair exhibit extensive processing and enhanced motion. The molecular basis of this movement is unknown. Here, using Xenopus laevis cell-free extracts and mammalian cells, we establish that nuclear actin, WASP, and the actin-nucleating ARP2/3 complex are recruited to damaged chromatin undergoing homology-directed repair. We demonstrate that nuclear actin polymerization is required for the migration of a subset of double-strand breaks into discrete sub-nuclear clusters. Actin-driven movements specifically affect double-strand breaks repaired by homology-directed repair in G2 cell cycle phase; inhibition of actin nucleation impairs DNA end-processing and homology-directed repair. By contrast, ARP2/3 is not enriched at double-strand breaks repaired by non-homologous end joining and does not regulate non-homologous end joining. Our findings establish that nuclear actin-based mobility shapes chromatin organization by generating repair domains that are essential for homology-directed repair in eukaryotic cells.

  4. Periodic expression of nuclear and mitochondrial DNA replication genes during the trypanosomatid cell cycle.

    PubMed

    Pasion, S G; Brown, G W; Brown, L M; Ray, D S

    1994-12-01

    In trypanosomatids, DNA replication in the nucleus and in the single mitochondrion (or kinetoplast) initiates nearly simultaneously, suggesting that the DNA synthesis (S) phases of the nucleus and the mitochondrion are coordinately regulated. To investigate the basis for the temporal link between nuclear and mitochondrial DNA synthesis phases the expression of the genes encoding DNA ligase I, the 51 and 28 kDa subunits of replication protein A, dihydrofolate reductase and the mitochondrial type II topoisomerase were analyzed during the cell cycle progression of synchronous cultures of Crithidia fasciculata. These DNA replication genes were all expressed periodically, with peak mRNA levels occurring just prior to or at the peak of DNA synthesis in the synchronized cultures. A plasmid clone (pdN-1) in which TOP2, the gene encoding the mitochondrial topoisomerase, was disrupted by the insertion of a NEO drug-resistance cassette was found to express both a truncated TOP2 mRNA and a truncated topoisomerase polypeptide. The truncated mRNA was also expressed periodically coordinate with the expression of the endogenous TOP2 mRNA indicating that cis elements necessary for periodic expression are contained within cloned sequences. The expression of both TOP2 and nuclear DNA replication genes at the G1/S boundary suggests that regulated expression of these genes may play a role in coordinating nuclear and mitochondrial S phases in trypanosomatids.

  5. Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography.

    PubMed

    Peng, Li; Ryazantsev, Sergey; Sun, Ren; Zhou, Z Hong

    2010-01-13

    Gammaherpesviruses are etiologically associated with human tumors. A three-dimensional (3D) examination of their life cycle in the host is lacking, significantly limiting our understanding of the structural and molecular basis of virus-host interactions. Here, we report the first 3D visualization of key stages of the murine gammaherpesvirus 68 life cycle in NIH 3T3 cells, including viral attachment, entry, assembly, and egress, by dual-axis electron tomography. In particular, we revealed the transient processes of incoming capsids injecting viral DNA through nuclear pore complexes and nascent DNA being packaged into progeny capsids in vivo as a spool coaxial with the putative portal vertex. We discovered that intranuclear invagination of both nuclear membranes is involved in nuclear egress of herpesvirus capsids. Taken together, our results provide the structural basis for a detailed mechanistic description of gammaherpesvirus life cycle and also demonstrate the advantage of electron tomography in dissecting complex cellular processes of viral infection.

  6. Chromosome territory relocation paradigm during DNA damage response: Some insights from molecular biology to physics.

    PubMed

    Fatakia, Sarosh N; Kulashreshtha, Mugdha; Mehta, Ishita S; Rao, Basuthkar J

    2017-09-03

    Among the many facets of DNA damage response (DDR), relocation of chromosome territories (CTs) is most intriguing. We have previously reported that cisplatin induced DDR in human dermal fibroblasts led to relocation of CTs 12, 15 from the nuclear periphery to its interior while CTs 19, 17 repositioned from the interior to its periphery. Studies of CT relocation remain nascent as we begin unraveling the role of key players in DDR to demonstrate its mechanistic basis. Consolidating our recent reports, we argue that γH2AX-signaling leads to enhanced recruitment of nuclear myosin 1 (NM1) to chromatin, which via its motor function, results in CT repositioning. Next, we invoke a novel systems-level theory that subsumed CTs as pairs, not solo entities, to present the physical basis for plasticity in interphase CT arrangement. Subsequently, we posited that our systems-level theory describes a unified physical basis for non-random positioning of CTs in interphase nuclei across disparate eukaryotes.

  7. Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations

    PubMed Central

    Szczurek, Aleksander; Klewes, Ludger; Xing, Jun; Gourram, Amine; Birk, Udo; Knecht, Hans; Dobrucki, Jurek W.; Mai, Sabine

    2017-01-01

    Abstract Advanced light microscopy is an important tool for nanostructure analysis of chromatin. In this report we present a general concept for Single Molecule localization Microscopy (SMLM) super-resolved imaging of DNA-binding dyes based on modifying the properties of DNA and the dye. By careful adjustment of the chemical environment leading to local, reversible DNA melting and hybridization control over the fluorescence signal of the DNA-binding dye molecules can be introduced. We postulate a transient binding as the basis for our variation of binding-activated localization microscopy (BALM). We demonstrate that several intercalating and minor-groove binding DNA dyes can be used to register (optically isolate) only a few DNA-binding dye signals at a time. To highlight this DNA structure fluctuation-assisted BALM (fBALM), we applied it to measure, for the first time, nanoscale differences in nuclear architecture in model ischemia with an anticipated structural resolution of approximately 50 nm. Our data suggest that this approach may open an avenue for the enhanced microscopic analysis of chromatin nano-architecture and hence the microscopic analysis of nuclear structure aberrations occurring in various pathological conditions. It may also become possible to analyse nuclear nanostructure differences in different cell types, stages of development or environmental stress conditions. PMID:28082388

  8. Clinical mitochondrial genetics

    PubMed Central

    Chinnery, P.; Howell, N.; Andrews, R.; Turnbull, D.

    1999-01-01

    The last decade has been an age of enlightenment as far as mitochondrial pathology is concerned. Well established nuclear genetic diseases, such as Friedreich's ataxia,12 Wilson disease,3 and autosomal recessive hereditary spastic paraplegia,4 have been shown to have a mitochondrial basis, and we are just starting to unravel the complex nuclear genetic disorders which directly cause mitochondrial dysfunction (table 1). However, in addition to the 3 billion base pair nuclear genome, each human cell typically contains thousands of copies of a small, 16.5 kb circular molecule of double stranded DNA (fig 1). Mitochondrial DNA (mtDNA) accounts for only 1% of the total cellular nucleic acid content. It encodes for 13 polypeptides which are essential for aerobic metabolism and defects of the mitochondrial genome are an important cause of human disease.9293 Since the characterisation of the first pathogenic mtDNA defects in 1988,513 over 50 point mutations and well over 100 rearrangements of the mitochondrial genome have been associated with human disease9495 (http://www.gen.emory.edu/mitomap.html). These disorders form the focus of this article.


Keywords: mitochondrial DNA; mitochondrial disease; heteroplasmy; genetic counselling PMID:10874629

  9. Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells.

    PubMed

    Ribalta, F M; Croser, J S; Ochatt, S J

    2012-01-01

    Flow cytometry was used to quantify the effect of individual and combined stress treatments on elicitation of androgenesis by analyzing the relative nuclear DNA content of in vitro cultured microspores of Pisum sativum L. Differences in relative nuclear DNA content of microspores within anthers after stress treatments were clearly evident from the flow cytometry profiles, and permitted us to predict whether a combination of stresses were elicitors or enhancers of androgenesis. This is the first report to assess the effect of various stress treatments in a plant species based on relative nuclear DNA content and to use this information to categorize them as 'elicitors' or 'enhancers'. Flow cytometry represents a simple, quick and reliable way to analyze and discriminate the effect of various stress treatments on elicitation of androgenesis. These results form a solid basis for further efforts designed to enhance responses and to extend double haploid technology to other legumes. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Molecular sled sequences are common in mammalian proteins.

    PubMed

    Xiong, Kan; Blainey, Paul C

    2016-03-18

    Recent work revealed a new class of molecular machines called molecular sleds, which are small basic molecules that bind and slide along DNA with the ability to carry cargo along DNA. Here, we performed biochemical and single-molecule flow stretching assays to investigate the basis of sliding activity in molecular sleds. In particular, we identified the functional core of pVIc, the first molecular sled characterized; peptide functional groups that control sliding activity; and propose a model for the sliding activity of molecular sleds. We also observed widespread DNA binding and sliding activity among basic polypeptide sequences that implicate mammalian nuclear localization sequences and many cell penetrating peptides as molecular sleds. These basic protein motifs exhibit weak but physiologically relevant sequence-nonspecific DNA affinity. Our findings indicate that many mammalian proteins contain molecular sled sequences and suggest the possibility that substantial undiscovered sliding activity exists among nuclear mammalian proteins. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Nucleolar Association and Transcriptional Inhibition through 5S rDNA in Mammals

    PubMed Central

    Fedoriw, Andrew M.; Starmer, Joshua; Yee, Della; Magnuson, Terry

    2012-01-01

    Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a 119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA significantly increases the association of the host region with the nucleolus, and their degree of association correlates strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization in mammals. PMID:22275877

  12. AQUATIC PLANT SPECIATION AFFECTED BY DIVERSIFYING SELECTION OF ORGANELLE DNA REGIONS(1).

    PubMed

    Kato, Syou; Misawa, Kazuharu; Takahashi, Fumio; Sakayama, Hidetoshi; Sano, Satomi; Kosuge, Keiko; Kasai, Fumie; Watanabe, Makoto M; Tanaka, Jiro; Nozaki, Hisayoshi

    2011-10-01

    Many of the genes that control photosynthesis are carried in the chloroplast. These genes differ among species. However, evidence has yet to be reported revealing the involvement of organelle genes in the initial stages of plant speciation. To elucidate the molecular basis of aquatic plant speciation, we focused on the unique plant species Chara braunii C. C. Gmel. that inhabits both shallow and deep freshwater habitats and exhibits habitat-based dimorphism of chloroplast DNA (cpDNA). Here, we examined the "shallow" and "deep" subpopulations of C. braunii using two nuclear DNA (nDNA) markers and cpDNA. Genetic differentiation between the two subpopulations was measured in both nDNA and cpDNA regions, although phylogenetic analyses suggested nuclear gene flow between subpopulations. Neutrality tests based on Tajima's D demonstrated diversifying selection acting on organelle DNA regions. Furthermore, both "shallow" and "deep" haplotypes of cpDNA detected in cultures originating from bottom soils of three deep environments suggested that migration of oospores (dormant zygotes) between the two habitats occurs irrespective of the complete habitat-based dimorphism of cpDNA from field-collected vegetative thalli. Therefore, the two subpopulations are highly selected by their different aquatic habitats and show prezygotic isolation, which represents an initial process of speciation affected by ecologically based divergent selection of organelle genes. © 2011 Phycological Society of America.

  13. A fourth Denisovan individual

    PubMed Central

    Slon, Viviane; Viola, Bence; Renaud, Gabriel; Gansauge, Marie-Theres; Benazzi, Stefano; Sawyer, Susanna; Hublin, Jean-Jacques; Shunkov, Michael V.; Derevianko, Anatoly P.; Kelso, Janet; Prüfer, Kay; Meyer, Matthias; Pääbo, Svante

    2017-01-01

    The presence of Neandertals in Europe and Western Eurasia before the arrival of anatomically modern humans is well supported by archaeological and paleontological data. In contrast, fossil evidence for Denisovans, a sister group of Neandertals recently identified on the basis of DNA sequences, is limited to three specimens, all of which originate from Denisova Cave in the Altai Mountains (Siberia, Russia). We report the retrieval of DNA from a deciduous lower second molar (Denisova 2), discovered in a deep stratigraphic layer in Denisova Cave, and show that this tooth comes from a female Denisovan individual. On the basis of the number of “missing substitutions” in the mitochondrial DNA determined from the specimen, we find that Denisova 2 is substantially older than two of the other Denisovans, reinforcing the view that Denisovans were likely to have been present in the vicinity of Denisova Cave over an extended time period. We show that the level of nuclear DNA sequence diversity found among Denisovans is within the lower range of that of present-day human populations. PMID:28695206

  14. Sequence analysis of the 5.8S ribosomal DNA and internal transcribed spacers (ITS1 and ITS2) from five species of the Oxalis tuberosa alliance.

    PubMed

    Tosto, D S; Hopp, H E

    1996-01-01

    The internal transcribed spacer region (ITS1 and ITS2) of the 18S-25S nuclear ribosomal DNA sequence and the intervening 5.8S region from five species of the genus Oxalis was amplified by polymerase chain reaction and subjected to direct DNA sequencing. On the basis of cytogenetic studies some species of this genus were postulated to be related by the number of chromosomes. Sequence homologies in the ITS1, 5.8S and ITS2 among species are in good agreement with previous relationships established on the basis of chromosome numbers. We also identified a highly conserved sequence of six bp in the ITS1, reported to be present in a wide range of flowering plants, but not in the Oxalidaceae family to which the genus Oxalis belongs to.

  15. Characterization of Fasciola spp. in Myanmar on the basis of spermatogenesis status and nuclear and mitochondrial DNA markers.

    PubMed

    Ichikawa, Madoka; Bawn, Saw; Maw, Ni Ni; Htun, Lat Lat; Thein, Myint; Gyi, Aung; Sunn, Kyaw; Katakura, Ken; Itagaki, Tadashi

    2011-12-01

    Fasciola spp. in Myanmar were characterized on the basis of spermatogenesis status and DNA markers of nuclear internal transcribed spacer 1 (ITS1) and mitochondrial NADH dehydrogenase subunit 1 (nad1). We collected 88 adult flukes from Yangon, Lashio, and Myitkyina. Spermatogenesis status was analyzed by the presence of sperm in the seminal vesicles, and 8 aspermic and 80 spermic flukes were detected. The flukes were identified on the basis of spermatogenesis status and ITS1 types which were analyzed by a PCR-RFLP method, and 80 spermic flukes were identified as F. gigantica. A very low detection rate of aspermic Fasciola sp. indicated that they are not established in Myanmar. In phylogenetic analyses, the 7 aspermic Fasciola sp. from Myitkyina displayed a haplotype in nad1 sequence, which was identical to that of aspermic Fasciola sp. from other Asian countries including China. Therefore, they were probably introduced from China through an infected domestic ruminant. On the other hand, 17 nad1 haplotypes detected in F. gigantica belonged to 2 clades unique to Myanmar, each with a distinct founder haplotype in a network analysis. This indicated a unique history of F. gigantica introduction into Myanmar involving ancient artificial movements of domestic ruminants. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. 2000 Year-old ancient equids: an ancient-DNA lesson from pompeii remains.

    PubMed

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Galderisi, Umberto; Cipollaro, Marilena

    2004-11-15

    Ancient DNA extracted from 2000 year-old equine bones was examined in order to amplify mitochondrial and nuclear DNA fragments. A specific equine satellite-type sequence representing 3.7%-11% of the entire equine genome, proved to be a suitable target to address the question of the presence of aDNA in ancient bones. The PCR strategy designed to investigate this specific target also allowed us to calculate the molecular weight of amplifiable DNA fragments. Sequencing of a 370 bp DNA fragment of mitochondrial control region allowed the comparison of ancient DNA sequences with those of modern horses to assess their genetic relationship. The 16S rRNA mitochondrial gene was also examined to unravel the post-mortem base modification feature and to test the status of Pompeian equids taxon on the basis of a Mae III restriction site polymorphism. Copyright 2004 Wiley-Liss, Inc.

  17. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  18. Structural basis for DNA binding by replication initiator Mcm10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Eric M.; Vaithiyalingam, Sivaraja; Haworth, Justin

    2009-06-30

    Mcm10 is an essential eukaryotic DNA replication protein required for assembly and progression of the replication fork. The highly conserved internal domain (Mcm10-ID) has been shown to physically interact with single-stranded (ss) DNA, DNA polymerase alpha, and proliferating cell nuclear antigen (PCNA). The crystal structure of Xenopus laevis Mcm10-ID presented here reveals a DNA binding architecture composed of an oligonucleotide/oligosaccharide-fold followed in tandem by a variant and highly basic zinc finger. NMR chemical shift perturbation and mutational studies of DNA binding activity in vitro reveal how Mcm10 uses this unique surface to engage ssDNA. Corresponding mutations in Saccharomyces cerevisiae resultmore » in increased sensitivity to replication stress, demonstrating the functional importance of DNA binding by this region of Mcm10 to replication. In addition, mapping Mcm10 mutations known to disrupt PCNA, polymerase alpha, and DNA interactions onto the crystal structure provides insight into how Mcm10 might coordinate protein and DNA binding within the replisome.« less

  19. Alteration of Mature Nucleocapsid and Enhancement of Covalently Closed Circular DNA Formation by Hepatitis B Virus Core Mutants Defective in Complete-Virion Formation.

    PubMed

    Cui, Xiuji; Luckenbaugh, Laurie; Bruss, Volker; Hu, Jianming

    2015-10-01

    Assembly of hepatitis B virus (HBV) begins with packaging of the pregenomic RNA (pgRNA) into immature nucleocapsids (NC), which are converted to mature NCs containing the genomic relaxed circular (RC) DNA as a result of reverse transcription. Mature NCs have two alternative fates: (i) envelopment by viral envelope proteins, leading to secretion extracellularly as virions, or (ii) disassembly (uncoating) to deliver their RC DNA content into the host cell nucleus for conversion to the covalently closed circular (CCC) DNA, the template for viral transcription. How these two alternative fates are regulated remains to be better understood. The NC shell is composed of multiple copies of a single viral protein, the HBV core (HBc) protein. HBc mutations located on the surface of NC have been identified that allow NC maturation but block its envelopment. The potential effects of some of these mutations on NC uncoating and CCC DNA formation have been analyzed by transfecting HBV replication constructs into hepatoma cells. All envelopment-defective HBc mutations tested were competent for CCC DNA formation, indicating that core functions in envelopment and uncoating/nuclear delivery of RC DNA were genetically separable. Some of the envelopment-defective HBc mutations were found to alter specifically the integrity of mature, but not immature, NCs such that RC DNA became susceptible to nuclease digestion. Furthermore, CCC DNA formation could be enhanced by NC surface mutations that did or did not significantly affect mature NC integrity, indicating that the NC surface residues may be closely involved in NC uncoating and/or nuclear delivery of RC DNA. Hepatitis B virus (HBV) infection is a major health issue worldwide. HBV assembly begins with the packaging into immature nucleocapsids (NCs) of a viral RNA pregenome, which is converted to the DNA genome in mature NCs. Mature NCs are then selected for envelopment and secretion as complete-virion particles or, alternatively, can deliver their DNA to the host cell nucleus to maintain the viral genome as nuclear episomes, which are the basis for virus persistence. Previous studies have identified mutations on the capsid surface that selectively block NC envelopment without affecting NC maturation. We have now discovered that some of the same mutations result in preferential alteration of mature NCs and increased viral nuclear episomes. These findings provide important new insights into the regulation of the two alternative fates of mature NCs and suggest new ways to perturb viral persistence by manipulating levels of viral nuclear episomes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. The methylation of nuclear and mitochondrial DNA in ageing phenotypes and longevity.

    PubMed

    Bacalini, Maria Giulia; D'Aquila, Patrizia; Marasco, Elena; Nardini, Christine; Montesanto, Alberto; Franceschi, Claudio; Passarino, Giuseppe; Garagnani, Paolo; Bellizzi, Dina

    2017-07-01

    An increasing body of data is progressively indicating that the comprehension of the epigenetic landscape, actively integrated with the genetic elements, is crucial to delineate the molecular basis of the inter-individual complexity of ageing process. Indeed, it has emerged that DNA methylation changes occur during ageing, consisting mainly in a progressive process of genome demethylation, in a hypermethylation of gene-specific CpG dinucleotides, as well as in an inter-individual divergence of the epigenome due to stochastic events and environmental exposures throughout life, namely as epigenetic drift. Additionally, it has also come to light an implication of the mitochondrial genome in the regulation of the intracellular epigenetic landscape, as demonstrated by the being itself object of epigenetic modifications. An overview of DNA methylation changes occurring during ageing process at both nuclear and mitochondrial level will be described in this review, also taking into account the recent and promising data available on the 5-hydroxymethylcytosine. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser

    NASA Astrophysics Data System (ADS)

    de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson

    2015-03-01

    Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.

  2. Variations in Nuclear Localization Strategies Among Pol X Family Enzymes.

    PubMed

    Kirby, Thomas W; Pedersen, Lars C; Gabel, Scott A; Gassman, Natalie R; London, Robert E

    2018-06-22

    Despite the essential roles of pol X family enzymes in DNA repair, information about the structural basis of their nuclear import is limited. Recent studies revealed the unexpected presence of a functional NLS in DNA polymerase β, indicating the importance of active nuclear targeting, even for enzymes likely to leak into and out of the nucleus. The current studies further explore the active nuclear transport of these enzymes by identifying and structurally characterizing the functional NLS sequences in the three remaining human pol X enzymes: terminal deoxynucleotidyl transferase (TdT), DNA polymerase μ (pol μ), and DNA polymerase λ (pol λ). NLS identifications are based on Importin α (Impα) binding affinity determined by fluorescence polarization of fluorescein-labeled NLS peptides, X-ray crystallographic analysis of the Impα∆IBB•NLS complexes, and fluorescence-based subcellular localization studies. All three polymerases use NLS sequences located near their N-terminus; TdT and pol μ utilize monopartite NLS sequences, while pol λ utilizes a bipartite sequence, unique among the pol X family members. The pol μ NLS has relatively weak measured affinity for Impα, due in part to its proximity to the N-terminus that limits non-specific interactions of flanking residues preceding the NLS. However, this effect is partially mitigated by an N-terminal sequence unsupportive of Met1 removal by methionine aminopeptidase, leading to a 3-fold increase in affinity when the N-terminal methionine is present. Nuclear targeting is unique to each pol X family enzyme with variations dependent on the structure and unique functional role of each polymerase. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Human cytomegalovirus DNA polymerase catalytic subunit pUL54 possesses independently acting nuclear localization and ppUL44 binding motifs.

    PubMed

    Alvisi, Gualtiero; Ripalti, Alessandro; Ngankeu, Apollinaire; Giannandrea, Maila; Caraffi, Stefano G; Dias, Manisha M; Jans, David A

    2006-10-01

    The catalytic subunit of human cytomegalovirus (HCMV) DNA polymerase pUL54 is a 1242-amino-acid protein, whose function, stimulated by the processivity factor, phosphoprotein UL44 (ppUL44), is essential for viral replication. The C-terminal residues (amino acids 1220-1242) of pUL54 have been reported to be sufficient for ppUL44 binding in vitro. Although believed to be important for functioning in the nuclei of infected cells, no data are available on either the interaction of pUL54 with ppUL44 in living mammalian cells or the mechanism of pUL54 nuclear transport and its relationship with that of ppUL44. The present study examines for the first time the nuclear import pathway of pUL54 and its interaction with ppUL44 using dual color, quantitative confocal laser scanning microscopy on live transfected cells and quantitative gel mobility shift assays. We showed that of two nuclear localization signals (NLSs) located at amino acids 1153-1159 (NLSA) and 1222-1227 (NLSB), NLSA is sufficient to confer nuclear localization on green fluorescent protein (GFP) by mediating interaction with importin alpha/beta. We also showed that pUL54 residues 1213-1242 are sufficient to confer ppUL44 binding abilities on GFP and that pUL54 and ppUL44 can be transported to the nucleus as a complex. Our work thus identified distinct sites within the HCMV DNA polymerase, which represent potential therapeutic targets and establishes the molecular basis of UL54 nuclear import.

  4. The 87-kD A gamma-globin enhancer-binding protein is a product of the HOXB2(HOX2H) locus.

    PubMed

    Sengupta, P K; Lavelle, D E; DeSimone, J

    1994-03-01

    Developmental regulation of globin gene expression may be controlled by developmental stage-specific nuclear proteins that influence interactions between the locus control region and local regulatory sequences near individual globin genes. We previously isolated an 87-kD nuclear protein from K562 cells that bound to DNA sequences in the beta-globin locus control region, gamma-globin promoter, and A gamma-globin enhancer. The presence of this protein in fetal globin-expressing cells and its absence in adult globin-expressing cells suggested that it may be a developmental stage-specific factor. A lambda gt11 K562 cDNA clone encoding a portion of the HOXB2 (formerly HOX2H) homeobox gene was isolated on the basis of the ability of its beta-galactosidase fusion protein to bind to the same DNA sequences as the 87-kD K562 protein. Because no other relationship had been established between the 87-kD K562 protein and the HOXB2 protein other than their ability to bind ot the same DNA sequences, we have investigated whether the two proteins are related antigenically. Our data show that antisera produced against the HOXB2-beta-gal fusion protein and a synthetic HOXB2 decapeptide react specifically with an 87-kD protein from K562 nuclear extract, showing that the 87-kD K562 nuclear protein is a product of the HOXB2 locus, and is the first demonstration of cellular HOXB2 protein.

  5. DNA Damage, DNA Repair, Aging, and Neurodegeneration

    PubMed Central

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.

    2015-01-01

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091

  6. Early In Vitro Differentiation of Mouse Definitive Endoderm Is Not Correlated with Progressive Maturation of Nuclear DNA Methylation Patterns

    PubMed Central

    Tajbakhsh, Jian; Gertych, Arkadiusz; Fagg, W. Samuel; Hatada, Seigo; Fair, Jeffrey H.

    2011-01-01

    The genome organization in pluripotent cells undergoing the first steps of differentiation is highly relevant to the reprogramming process in differentiation. Considering this fact, chromatin texture patterns that identify cells at the very early stage of lineage commitment could serve as valuable tools in the selection of optimal cell phenotypes for regenerative medicine applications. Here we report on the first-time use of high-resolution three-dimensional fluorescence imaging and comprehensive topological cell-by-cell analyses with a novel image-cytometrical approach towards the identification of in situ global nuclear DNA methylation patterns in early endodermal differentiation of mouse ES cells (up to day 6), and the correlations of these patterns with a set of putative markers for pluripotency and endodermal commitment, and the epithelial and mesenchymal character of cells. Utilizing this in vitro cell system as a model for assessing the relationship between differentiation and nuclear DNA methylation patterns, we found that differentiating cell populations display an increasing number of cells with a gain in DNA methylation load: first within their euchromatin, then extending into heterochromatic areas of the nucleus, which also results in significant changes of methylcytosine/global DNA codistribution patterns. We were also able to co-visualize and quantify the concomitant stochastic marker expression on a per-cell basis, for which we did not measure any correlation to methylcytosine loads or distribution patterns. We observe that the progression of global DNA methylation is not correlated with the standard transcription factors associated with endodermal development. Further studies are needed to determine whether the progression of global methylation could represent a useful signature of cellular differentiation. This concept of tracking epigenetic progression may prove useful in the selection of cell phenotypes for future regenerative medicine applications. PMID:21779341

  7. Diagnostic value of succinate ubiquinone reductase activity in the identification of patients with mitochondrial DNA depletion.

    PubMed

    Hargreaves, P; Rahman, S; Guthrie, P; Taanman, J W; Leonard, J V; Land, J M; Heales, S J R

    2002-02-01

    Mitochondrial DNA (mtDNA) depletion syndrome (McKusick 251880) is characterized by a progressive quantitative loss of mtDNA resulting in severe mitochondrial dysfunction. A diagnosis of mtDNA depletion can only be confirmed after Southern blot analysis of affected tissue. Only a limited number of centres have the facilities to offer this service, and this is frequently on an irregular basis. There is therefore a need for a test that can refine sample selection as well as complementing the molecular analysis. In this study we compared the activities of the nuclear-encoded succinate ubiquinone reductase (complex II) to the activities of the combined mitochondrial and nuclear-encoded mitochondrial electron transport chain (ETC) complexes; NADH:ubiquinone reductase (complex I), ubiquinol-cytochrome-c reductase (complex III), and cytochrome-c oxidase (complex IV), in skeletal muscle biopsies from 7 patients with confirmed mtDNA depletion. In one patient there was no evidence of an ETC defect. However, the remaining 6 patients exhibited reduced complex I and IV activities. Five of these patients also displayed reduced complex II-III (succinate:cytochrome-c reductase) activity. Individual measurement of complex II and complex III activities demonstrated normal levels of complex II activity compared to complex III, which was reduced in the 5 biopsies assayed. These findings suggest a possible diagnostic value for the detection of normal levels of complex II activity in conjunction with reduced complex I, III and IV activity in the identification of likely candidates for mtDNA depletion syndrome

  8. Phylogeography and genetic ancestry of tigers (Panthera tigris).

    PubMed

    Luo, Shu-Jin; Kim, Jae-Heup; Johnson, Warren E; van der Walt, Joelle; Martenson, Janice; Yuhki, Naoya; Miquelle, Dale G; Uphyrkina, Olga; Goodrich, John M; Quigley, Howard B; Tilson, Ronald; Brady, Gerald; Martelli, Paolo; Subramaniam, Vellayan; McDougal, Charles; Hean, Sun; Huang, Shi-Qiang; Pan, Wenshi; Karanth, Ullas K; Sunquist, Melvin; Smith, James L D; O'Brien, Stephen J

    2004-12-01

    Eight traditional subspecies of tiger (Panthera tigris),of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers: (1) 4.0 kb of mitochondrial DNA (mtDNA) sequence; (2) allele variation in the nuclear major histocompatibility complex class II DRB gene; and (3) composite nuclear microsatellite genotypes based on 30 loci. Relatively low genetic variation with mtDNA,DRB,and microsatellite loci was found, but significant population subdivision was nonetheless apparent among five living subspecies. In addition, a distinct partition of the Indochinese subspecies P. t. corbetti in to northern Indochinese and Malayan Peninsula populations was discovered. Population genetic structure would suggest recognition of six taxonomic units or subspecies: (1) Amur tiger P. t. altaica; (2) northern Indochinese tiger P. t. corbetti; (3) South China tiger P. t. amoyensis; (4) Malayan tiger P. t. jacksoni, named for the tiger conservationist Peter Jackson; (5) Sumatran tiger P. t. sumatrae; and (6) Bengal tiger P. t. tigris. The proposed South China tiger lineage is tentative due to limited sampling. The age of the most recent common ancestor for tiger mtDNA was estimated to be 72,000-108,000 y, relatively younger than some other Panthera species. A combination of population expansions, reduced gene flow, and genetic drift following the last genetic diminution, and the recent anthropogenic range contraction, have led to the distinct genetic partitions. These results provide an explicit basis for subspecies recognition and will lead to the improved management and conservation of these recently isolated but distinct geographic populations of tigers.

  9. Variation in Ribosomal DNA among Isolates of the Mycorrhizal Fungus Cenococcum Geophilum FR.

    NASA Astrophysics Data System (ADS)

    Lobuglio, Katherine Frances

    1990-01-01

    Cenococcum geophilum Fr., a cosmopolitan mycorrhizal fungus, is well-known for its extremely wide host and habitat range. The ecological diversity of C. geophilum sharply contrasts its present taxonomic status as a monotypic form -genus. Restriction fragment length polymorphisms (RFLPs) in nuclear ribosomal DNA (rDNA) was used to assess the degree of genetic variation among 72 isolates of C. geophilum. The probe used in this study was the rDNA repeat cloned from C. geophilum isolate A145 (pCG15). Length of the rDNA repeat was approximately 9 kb. The rDNA clone was mapped for 5 restriction endonucleases. Hybridization with cloned Saccharomyces cerevisiae rDNA (pSR118, and pSR125 containing the 18S, and 5.8-25S rRNA genes respectively), and alignment of restriction endonuclease sites conserved in the rDNA genes of other fungi, were used to position the corresponding rDNAs of C. geophilum. Southern hybridizations with EcoRI, HindIII, XhoI, and PstI digested DNAs indicated extensive variation among the C. geophilum isolates, greater than has been previously reported to occur within a fungal species. Most of the rDNA polymorphisms occurred in the IGS region. Restriction endonuclease site and length polymorphisms were also observed in the 5.8S-26S genic regions. Sixteen size categories of length mutations, 6 restriction endonuclease site additions, and 4 restriction endonuclease site deletions were determined using isolate A145 as a reference. The rDNA repeat length among the isolates varied from approximately 8.5 to 10.2 kb. RFLPs were also observed in the mitochondrial (mt) 24S rRNA gene and flanking regions of HindIII digested DNAs of C. geophilum isolates representing both geographically distinct and similar origins. Among the C. geophilum isolates analyzed there were fewer RFLPs in mt-DNA than in nuclear rDNA. EcoRI rDNA phenotypes between C. geophilum and Elaphomyces anthracinus, its proposed teleomorph or sexual state, did not correspond. In addition, the four Elaphomyces species examined had smaller rDNA repeat sizes (approximately 7.3 to 8.0 kb) than that observed among C. geophilum isolates. UPGMA cluster analysis grouped C. geophilum isolates, on the basis of shared nuclear rDNA phenotypes, into a broad range of clusters ranging from 100% to 44% similarity. Limited correlation was observed among nuclear rDNA phenotypes and culture morphology, mycorrhizal characteristics, or geographic origins of the isolates. The amount of genetic variation demonstrated in this study indicates that C. geophilum is either an extremely heterogenous species or it represents more than one species and possibly more than one genus.

  10. [Compartmentalization of the cell nucleus and spatial organization of the genome].

    PubMed

    Gavrilov, A A; Razin, S V

    2015-01-01

    The eukaryotic cell nucleus is one of the most complex cell organelles. Despite the absence of membranes, the nuclear space is divided into numerous compartments where different processes in- volved in the genome activity take place. The most important nuclear compartments include nucleoli, nuclear speckles, PML bodies, Cajal bodies, histone locus bodies, Polycomb bodies, insulator bodies, transcription and replication factories. The structural basis for the nuclear compartmentalization is provided by genomic DNA that occupies most of the nuclear volume. Nuclear compartments, in turn, guide the chromosome folding by providing a platform for the spatial interaction of individual genomic loci. In this review, we discuss fundamental principles of higher order genome organization with a focus on chromosome territories and chromosome domains, as well as consider the structure and function of the key nuclear compartments. We show that the func- tional compartmentalization of the cell nucleus and genome spatial organization are tightly interconnected, and that this form of organization is highly dynamic and is based on stochastic processes.

  11. Interplay between DNA methylation, histone modification and chromatin remodeling in stem cells and during development.

    PubMed

    Ikegami, Kohta; Ohgane, Jun; Tanaka, Satoshi; Yagi, Shintaro; Shiota, Kunio

    2009-01-01

    Genes constitute only a small proportion of the mammalian genome, the majority of which is composed of non-genic repetitive elements including interspersed repeats and satellites. A unique feature of the mammalian genome is that there are numerous tissue-dependent, differentially methylated regions (T-DMRs) in the non-repetitive sequences, which include genes and their regulatory elements. The epigenetic status of T-DMRs varies from that of repetitive elements and constitutes the DNA methylation profile genome-wide. Since the DNA methylation profile is specific to each cell and tissue type, much like a fingerprint, it can be used as a means of identification. The formation of DNA methylation profiles is the basis for cell differentiation and development in mammals. The epigenetic status of each T-DMR is regulated by the interplay between DNA methyltransferases, histone modification enzymes, histone subtypes, non-histone nuclear proteins and non-coding RNAs. In this review, we will discuss how these epigenetic factors cooperate to establish cell- and tissue-specific DNA methylation profiles.

  12. Determination of ACC-induced cell-programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining.

    PubMed

    Byczkowska, Anna; Kunikowska, Anita; Kaźmierczak, Andrzej

    2013-02-01

    Fluorescence staining with acridine orange (AO) and ethidium bromide (EB) showed that nuclei of cortex root cells of 1-aminocyclopropane-1-carboxylic acid (ACC)-treated Vicia faba ssp. minor seedlings differed in color. Measurement of resultant fluorescence intensity (RFI) showed that it increased when the color of nuclear chromatin was changed from green to red, indicating that EB moved to the nuclei via the cell membrane which lost its integrity and stained nuclei red. AO/EB staining showed that changes in color of the nuclear chromatin were accompanied by DNA condensation, nuclei fragmentation, and chromatin degradation which were also shown after 4,6-diamidino-2-phenylindol staining. These results indicate that ACC induced programmed cell death. The increasing values of RFI together with the corresponding morphological changes of nuclear chromatin were the basis to prepare the standard curve; cells with green unchanged nuclear chromatin were alive while those with dark orange and bright red nuclei were dead. The cells with nuclei with green-yellow, yellow-orange, and bright orange chromatin with or without their condensation and fragmentation chromatin were dying. The prepared curve has became the basis to draw up the digital method for detection and determination of the number of living, dying, and dead cells in an in planta system and revealed that ACC induced death in about 20% of root cortex cells. This process was accompanied by increase in ion leakage, shortening of cells and whole roots, as well as by increase in weight and width of the apical part of roots and appearance of few aerenchymatic spaces while not by internucleosomal DNA degradation.

  13. Saw palmetto alters nuclear measurements reflecting DNA content in men with symptomatic BPH: evidence for a possible molecular mechanism.

    PubMed

    Veltri, Robert W; Marks, Leonard S; Miller, M Craig; Bales, Wes D; Fan, John; Macairan, Maria Luz; Epstein, Jonathan I; Partin, Alan W

    2002-10-01

    To examine the nuclear chromatin characteristics of epithelial cells, looking for an SPHB-mediated effect on nuclear DNA structure and organization. Saw palmetto herbal blend (SPHB) causes contraction of prostate epithelial cells and suppression of tissue dihydrotestosterone levels in men with symptomatic benign prostatic hyperplasia, but a fundamental mechanism remains unknown. A 6-month randomized trial, comparing prostatic tissue of men treated with SPHB (n = 20) or placebo (n = 20), was performed. At baseline, the two groups were similar in age (65 versus 64 years), symptoms (International Prostate Symptom Score 18 versus 17), uroflow (maximal urinary flow rate 10 versus 11 mL/s), prostate volume (59 versus 58 cm(3)), prostate-specific antigen (4.2 versus 2.7 ng/mL), and percentage of epithelium (17% versus 16%). Prostatic tissue was obtained by sextant biopsy before and after treatment. Five-micron sections were Feulgen stained and quantitatively analyzed using the AutoCyte QUIC-DNA imaging system. Images were captured from 200 randomly selected epithelial cell nuclei, and 60 nuclear morphometric descriptors (NMDs) (eg, size, shape, DNA content, and textural features) were determined for each nucleus. Logistic regression analysis was used to assess the differences in the variances of the NMDs between the treated and untreated prostate epithelial cells. At baseline, the SPHB and placebo groups had similar NMD values. After 6 months of placebo, no significant change from baseline was found in the NMDs. However, after 6 months of SPHB, 25 of the 60 NMDs were significantly different compared with baseline, and a multivariate model for predicting treatment effect using 4 of the 25 was created (P <0.001). The multivariate model had an area under the receiver operating characteristic curve of 94% and an accuracy of 85%. Six months of SPHB treatment appears to alter the DNA chromatin structure and organization in prostate epithelial cells. Thus, a possible molecular basis for tissue changes and therapeutic effect of the compound is suggested.

  14. Molecular characterization of Fasciola gigantica from Mauritania based on mitochondrial and nuclear ribosomal DNA sequences.

    PubMed

    Amor, Nabil; Farjallah, Sarra; Salem, Mohamed; Lamine, Dia Mamadou; Merella, Paolo; Said, Khaled; Ben Slimane, Badreddine

    2011-10-01

    Fasciolosis caused by Fasciola hepatica and Fasciola gigantica (Platyhelminthes: Trematoda: Digenea) is considered the most important helminth infection of ruminants in tropical countries, causing considerable socioeconomic problems. From Africa, F. gigantica has been previously characterized from Burkina Faso, Senegal, Kenya, Zambia and Mali, while F. hepatica has been reported from Morocco and Tunisia, and both species have been observed from Ethiopia and Egypt on the basis of morphometric differences, while the use of molecular markers is necessary to distinguish exactly between species. Samples identified morphologically as F. gigantica (n=60) from sheep and cattle from different geographical localities of Mauritania were genetically characterized by sequences of the first (ITS-1), the 5.8S, and second (ITS-2) Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA (rDNA) genes and the mitochondrial Cytochrome c Oxidase I (COI) gene. Comparison of the sequences of the Mauritanian samples with sequences of Fasciola spp. from GenBank confirmed that all samples belong to the species F. gigantica. The nucleotide sequencing of ITS rDNA of F. gigantica showed no nucleotide variation in the ITS-1, 5.8S, and ITS-2 rDNA sequences among all samples examined and those from Burkina Faso, Kenya, Egypt and Iran. The phylogenetic trees based on the ITS-1 and ITS-2 sequences showed a close relationship of the Mauritanian samples with isolates of F. gigantica from different localities of Africa and Asia. The COI genotypes of the Mauritanian specimens of F. gigantica had a high level of diversity, and they belonged to the F. gigantica phylogenically distinguishable clade. The present study is the first molecular characterization of F. gigantica in sheep and cattle from Mauritania, allowing a reliable approach for the genetic differentiation of Fasciola spp. and providing basis for further studies on liver flukes in the African countries. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Nuclear and Mitochondrial DNA Analyses of Golden Eagles (Aquila chrysaetos canadensis) from Three Areas in Western North America; Initial Results and Conservation Implications

    PubMed Central

    Craig, Erica H.; Adams, Jennifer R.; Waits, Lisette P.; Fuller, Mark R.; Whittington, Diana M.

    2016-01-01

    Understanding the genetics of a population is a critical component of developing conservation strategies. We used archived tissue samples from golden eagles (Aquila chrysaetos canadensis) in three geographic regions of western North America to conduct a preliminary study of the genetics of the North American subspecies, and to provide data for United States Fish and Wildlife Service (USFWS) decision-making for golden eagle management. We used a combination of mitochondrial DNA (mtDNA) D-loop sequences and 16 nuclear DNA (nDNA) microsatellite loci to investigate the extent of gene flow among our sampling areas in Idaho, California and Alaska and to determine if we could distinguish birds from the different geographic regions based on their genetic profiles. Our results indicate high genetic diversity, low genetic structure and high connectivity. Nuclear DNA Fst values between Idaho and California were low but significantly different from zero (0.026). Bayesian clustering methods indicated a single population, and we were unable to distinguish summer breeding residents from different regions. Results of the mtDNA AMOVA showed that most of the haplotype variation (97%) was within the geographic populations while 3% variation was partitioned among them. One haplotype was common to all three areas. One region-specific haplotype was detected in California and one in Idaho, but additional sampling is required to determine if these haplotypes are unique to those geographic areas or a sampling artifact. We discuss potential sources of the high gene flow for this species including natal and breeding dispersal, floaters, and changes in migratory behavior as a result of environmental factors such as climate change and habitat alteration. Our preliminary findings can help inform the USFWS in development of golden eagle management strategies and provide a basis for additional research into the complex dynamics of the North American subspecies. PMID:27783687

  16. Differential mitochondrial DNA and gene expression in inherited retinal dysplasia in miniature Schnauzer dogs.

    PubMed

    Appleyard, Greg D; Forsyth, George W; Kiehlbauch, Laura M; Sigfrid, Kristen N; Hanik, Heather L J; Quon, Anita; Loewen, Matthew E; Grahn, Bruce H

    2006-05-01

    To investigate the molecular basis of inherited retinal dysplasia in miniature Schnauzers. Retina and retinal pigment epithelial tissues were collected from canine subjects at the age of 3 weeks. Total RNA isolated from these tissues was reverse transcribed to make representative cDNA pools that were compared for differences in gene expression by using a subtractive hybridization technique referred to as representational difference analysis (RDA). Expression differences identified by RDA were confirmed and quantified by real-time reverse-transcription PCR. Mitochondrial morphology from leukocytes and skeletal muscle of normal and affected miniature Schnauzers was examined by transmission electron microscopy. RDA screening of retinal pigment epithelial cDNA identified differences in mRNA transcript coding for two mitochondrial (mt) proteins--cytochrome oxidase subunit 1 and NADH dehydrogenase subunit 6--in affected dogs. Contrary to expectations, these identified sequences did not contain mutations. Based on the implication of mt-DNA-encoded proteins by the RDA experiments we used real-time PCR to compare the relative amounts of mt-DNA template in white blood cells from normal and affected dogs. White blood cells of affected dogs contained less than 30% of the normal amount of two specific mtDNA sequences, compared with the content of the nuclear-encoded glyceraldehyde-3-phosphate dehydrogenase (GA-3-PDH) reference gene. Retina and RPE tissue from affected dogs had reduced mRNA transcript levels for the two mitochondrial genes detected in the RDA experiment. Transcript levels for another mtDNA-encoded gene as well as the nuclear-encoded mitochondrial Tfam transcription factor were reduced in these tissues in affected dogs. Mitochondria from affected dogs were reduced in number and size and were unusually electron dense. Reduced levels of nuclear and mitochondrial transcripts in the retina and RPE of miniature Schnauzers affected with retinal dysplasia suggest that the pathogenesis of the disorder may arise from a lowered energy supply to the retina and RPE.

  17. Nuclear and Mitochondrial DNA Analyses of Golden Eagles (Aquila chrysaetos canadensis) from Three Areas in Western North America; Initial Results and Conservation Implications.

    PubMed

    Craig, Erica H; Adams, Jennifer R; Waits, Lisette P; Fuller, Mark R; Whittington, Diana M

    2016-01-01

    Understanding the genetics of a population is a critical component of developing conservation strategies. We used archived tissue samples from golden eagles (Aquila chrysaetos canadensis) in three geographic regions of western North America to conduct a preliminary study of the genetics of the North American subspecies, and to provide data for United States Fish and Wildlife Service (USFWS) decision-making for golden eagle management. We used a combination of mitochondrial DNA (mtDNA) D-loop sequences and 16 nuclear DNA (nDNA) microsatellite loci to investigate the extent of gene flow among our sampling areas in Idaho, California and Alaska and to determine if we could distinguish birds from the different geographic regions based on their genetic profiles. Our results indicate high genetic diversity, low genetic structure and high connectivity. Nuclear DNA Fst values between Idaho and California were low but significantly different from zero (0.026). Bayesian clustering methods indicated a single population, and we were unable to distinguish summer breeding residents from different regions. Results of the mtDNA AMOVA showed that most of the haplotype variation (97%) was within the geographic populations while 3% variation was partitioned among them. One haplotype was common to all three areas. One region-specific haplotype was detected in California and one in Idaho, but additional sampling is required to determine if these haplotypes are unique to those geographic areas or a sampling artifact. We discuss potential sources of the high gene flow for this species including natal and breeding dispersal, floaters, and changes in migratory behavior as a result of environmental factors such as climate change and habitat alteration. Our preliminary findings can help inform the USFWS in development of golden eagle management strategies and provide a basis for additional research into the complex dynamics of the North American subspecies.

  18. Nuclear and mitochondrial DNA analyses of golden eagles (Aquila chrysaetos canadensis) from three areas in western North America; initial results and conservation implications

    USGS Publications Warehouse

    Craig, Erica H; Adams, Jennifer R.; Waits, Lisette P.; Fuller, Mark R.; Whittington, Diana M.

    2016-01-01

    Understanding the genetics of a population is a critical component of developing conservation strategies. We used archived tissue samples from golden eagles (Aquila chrysaetos canadensis) in three geographic regions of western North America to conduct a preliminary study of the genetics of the North American subspecies, and to provide data for United States Fish and Wildlife Service (USFWS) decision-making for golden eagle management. We used a combination of mitochondrial DNA (mtDNA) D-loop sequences and 16 nuclear DNA (nDNA) microsatellite loci to investigate the extent of gene flow among our sampling areas in Idaho, California and Alaska and to determine if we could distinguish birds from the different geographic regions based on their genetic profiles. Our results indicate high genetic diversity, low genetic structure and high connectivity. Nuclear DNA Fst values between Idaho and California were low but significantly different from zero (0.026). Bayesian clustering methods indicated a single population, and we were unable to distinguish summer breeding residents from different regions. Results of the mtDNA AMOVA showed that most of the haplotype variation (97%) was within the geographic populations while 3% variation was partitioned among them. One haplotype was common to all three areas. One region-specific haplotype was detected in California and one in Idaho, but additional sampling is required to determine if these haplotypes are unique to those geographic areas or a sampling artifact. We discuss potential sources of the high gene flow for this species including natal and breeding dispersal, floaters, and changes in migratory behavior as a result of environmental factors such as climate change and habitat alteration. Our preliminary findings can help inform the USFWS in development of golden eagle management strategies and provide a basis for additional research into the complex dynamics of the North American subspecies.

  19. Structural Basis for the Interaction of Mutasome Assembly Factor REV1 with Ubiquitin.

    PubMed

    Cui, Gaofeng; Botuyan, Maria Victoria; Mer, Georges

    2018-05-18

    REV1 is an evolutionarily conserved translesion synthesis (TLS) DNA polymerase and an assembly factor key for the recruitment of other TLS polymerases to DNA damage sites. REV1-mediated recognition of ubiquitin in the proliferative cell nuclear antigen is thought to be the trigger for TLS activation. Here we report the solution NMR structure of a 108-residue fragment of human REV1 encompassing the two putative ubiquitin-binding motifs UBM1 and UBM2 in complex with ubiquitin. While in mammals UBM1 and UBM2 are both required for optimal association of REV1 with replication factories after DNA damage, we show that only REV1 UBM2 binds ubiquitin. Structure-guided mutagenesis in Saccharomyces cerevisiae further highlights the importance of UBM2 for REV1-mediated mutagenesis and DNA damage tolerance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A small protein inhibits proliferating cell nuclear antigen by breaking the DNA clamp

    DOE PAGES

    Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo; ...

    2016-05-03

    Here, proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain amore » canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less

  1. Cellular DNA breakage by soy isoflavone genistein and its methylated structural analogue biochanin A.

    PubMed

    Ullah, Mohd Fahad; Shamim, Uzma; Hanif, Sarmad; Azmi, Asfar S; Hadi, Sheikh M

    2009-11-01

    Epidemiological studies have indicated that populations with high isoflavone intake through soy consumption have lower rates of breast, prostate, and colon cancer. The isoflavone polyphenol genistein in soybean is considered to be a potent chemopreventive agent against cancer. In order to explore the chemical basis of chemopreventive activity of genistein, in this paper we have examined the structure-activity relationship between genistein and its structural analogue biochanin A. We show that both genistein and its methylated derivative biochanin A are able to mobilize nuclear copper in human lymphocyte, leading to degradation of cellular DNA. However, the relative rate of DNA breakage was greater in the case of genistein. Further, the cellular DNA degradation was inhibited by copper chelator (neocuproine/bathocuproine) but not by compounds that specifically bind iron and zinc (desferrioxamine mesylate and histidine, respectively). We also compared the antioxidant activity of the two isoflavones against tert-butylhydroperoxide-induced oxidative breakage in lymphocytes. Again genistein was found to be more effective than biochanin A in providing protection against oxidative stress induced by tert-butylhydroperoxide. It would therefore appear that the structural features of isoflavones that are important for antioxidant properties are also the ones that contribute to their pro-oxidant action through a mechanism that involves redox cycling of chromatin-bound nuclear copper.

  2. Nuclear DNA as Predictor of Acute Kidney Injury in Patients Undergoing Coronary Artery Bypass Graft: A Pilot Study.

    PubMed

    Likhvantsev, Valery V; Landoni, Giovanni; Grebenchikov, Oleg A; Skripkin, Yuri V; Zabelina, Tatiana S; Zinovkina, Liudmila A; Prikhodko, Anastasia S; Lomivorotov, Vladimir V; Zinovkin, Roman A

    2017-12-01

    To measure the release of plasma nuclear deoxyribonucleic acid (DNA) and to assess the relationship between nuclear DNA level and acute kidney injury occurrence in patients undergoing cardiac surgery. Cardiovascular anesthesiology and intensive care unit of a large tertiary-care university hospital. Prospective observational study. Fifty adult patients undergoing cardiac surgery. Nuclear DNA concentration was measured in the plasma. The relationship between the level of nuclear DNA and the incidence of acute kidney injury after coronary artery bypass grafting was investigated. Cardiac surgery leads to significant increase in plasma nuclear DNA with peak levels 12 hours after surgery (median [interquartile range] 7.0 [9.6-22.5] µg/mL). No difference was observed between off-pump and on-pump surgical techniques. Nuclear DNA was the only predictor of acute kidney injury between baseline and early postoperative risk factors. The authors found an increase of nuclear DNA in the plasma of patients who had undergone coronary artery bypass grafting, with a peak after 12 hours and an association of nuclear DNA with postoperative acute kidney injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. DNA damage induces nuclear actin filament assembly by Formin -2 and Spire-½ that promotes efficient DNA repair. [corrected].

    PubMed

    Belin, Brittany J; Lee, Terri; Mullins, R Dyche

    2015-08-19

    Actin filaments assemble inside the nucleus in response to multiple cellular perturbations, including heat shock, protein misfolding, integrin engagement, and serum stimulation. We find that DNA damage also generates nuclear actin filaments-detectable by phalloidin and live-cell actin probes-with three characteristic morphologies: (i) long, nucleoplasmic filaments; (ii) short, nucleolus-associated filaments; and (iii) dense, nucleoplasmic clusters. This DNA damage-induced nuclear actin assembly requires two biologically and physically linked nucleation factors: Formin-2 and Spire-1/Spire-2. Formin-2 accumulates in the nucleus after DNA damage, and depletion of either Formin-2 or actin's nuclear import factor, importin-9, increases the number of DNA double-strand breaks (DSBs), linking nuclear actin filaments to efficient DSB clearance. Nuclear actin filaments are also required for nuclear oxidation induced by acute genotoxic stress. Our results reveal a previously unknown role for nuclear actin filaments in DNA repair and identify the molecular mechanisms creating these nuclear filaments.

  4. Importin-7 Mediates Nuclear Trafficking of DNA in Mammalian Cells

    PubMed Central

    Dhanoya, Arjun; Wang, Tse; Keshavarz-Moore, Eli; Fassati, Ariberto; Chain, Benjamin M

    2013-01-01

    Eukaryotic cells have the ability to uptake and transport endogenous and exogenous DNA in their nuclei, however little is known about the specific pathways involved. Here we show that the nuclear transport receptor importin 7 (imp7) supports nuclear import of supercoiled plasmid DNA and human mitochondrial DNA in a Ran and energy-dependent way. The imp7-dependent pathway was specifically competed by excess DNA but not by excess of maltose-binding protein fused with the classical nuclear localizing signal (NLS) or the M9 peptides. Transport of DNA molecules complexed with poly-l-lysine was impaired in intact cells depleted of imp7, and DNA complexes remained localized in the cytoplasm. Poor DNA nuclear import in cells depleted of imp7 directly correlated with lower gene expression levels in these cells compared to controls. Inefficient nuclear import of transfected DNA induced greater upregulation of the interferon pathway, suggesting that rapid DNA nuclear import may prevent uncontrolled activation of the innate immune response. Our results provide evidence that imp7 is a non-redundant component of an intrinsic pathway in mammalian cells for efficient accumulation of exogenous and endogenous DNA in the nucleus, which may be critical for the exchange of genetic information between mitochondria and nuclear genomes and to control activation of the innate immune response. PMID:23067392

  5. Loss of nucleosomal DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates.

    PubMed

    Gornik, Sebastian G; Ford, Kristina L; Mulhern, Terrence D; Bacic, Antony; McFadden, Geoffrey I; Waller, Ross F

    2012-12-18

    The packaging, expression, and maintenance of nuclear genomes using histone proteins is a ubiquitous and fundamental feature of eukaryotic cells, yet the phylum Dinoflagellata has apparently abandoned this model of nuclear organization. Their nuclei contain permanently condensed, liquid crystalline chromosomes that seemingly lack histone proteins, and contain remarkably large genomes. The molecular basis for this reorganization is poorly understood, as is the sequence of evolutionary events that led to such radical change. We have investigated nuclear organization in the closest relative to dinoflagellates, Perkinsus marinus, and an early-branching dinoflagellate, Hematodinium sp., to identify early changes that occurred during dinoflagellate nuclear evolution. We show that P. marinus has a typical nuclear organization that is based on the four core histones. By the early divergence of Hematodinium sp., however, dinoflagellate genome size is dramatically enlarged, chromosomes are permanently condensed, and histones are scarcely detectable. In place of histones, we identify a novel, dominant family of nuclear proteins that is only found in dinoflagellates and, surprisingly, in a family of large algal viruses, the Phycodnaviridae. These new proteins, which we call DVNPs (dinoflagellate/viral nucleoproteins), are highly basic, bind DNA with similar affinity to histones, and occur in multiple posttranslationally modified forms. We find these proteins throughout all dinoflagellates, including early- and late-branching taxa, but not in P. marinus. Gain of a major novel family of nucleoproteins, apparently from an algal virus, occurred early in dinoflagellate evolution and coincides with rapid and dramatic reorganization of the dinoflagellate nucleus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Nuclear DNA contents of Echinchloa crus-galli and its Gaussian relationships with environments

    NASA Astrophysics Data System (ADS)

    Li, Dan-Dan; Lu, Yong-Liang; Guo, Shui-Liang; Yin, Li-Ping; Zhou, Ping; Lou, Yu-Xia

    2017-02-01

    Previous studies on plant nuclear DNA content variation and its relationships with environmental gradients produced conflicting results. We speculated that the relationships between nuclear DNA content of a widely-distributed species and its environmental gradients might be non-linear if it was sampled in a large geographical gradient. Echinochloa crus-galli (L.) P. Beauv. is a worldwide species, but without documents on its intraspecific variation of nuclear DNA content. Our objectives are: 1) to detect intraspecific variation scope of E. crus-galli in its nuclear DNA content, and 2) to testify whether nuclear DNA content of the species changes with environmental gradients following Gaussian models if its populations were sampled in a large geographical gradient. We collected seeds of 36 Chinese populations of E. crus-galli across a wide geographical gradient, and sowed them in a homogeneous field to get their offspring to determine their nuclear DNA content. We analyzed the relationships of nuclear DNA content of these populations with latitude, longitude, and nineteen bioclimatic variables by using Gaussian and linear models. (1) Nuclear DNA content varied from 2.113 to 2.410 pg among 36 Chinese populations of E. crus-galli, with a mean value of 2.256 pg. (2) Gaussian correlations of nuclear DNA content (y) with geographical gradients were detected, with latitude (x) following y = 2.2923*e -(x - 24.9360)2/2*63.79452 (r = 0.546, P < 0.001), and with longitude (x) following y = 2.2933*e -(x - 116.1801)2/2*44.74502 (r = 0.672, P < 0.001). (3) Among the nineteen bioclimatic variables, except temperature isothermality, precipitations of the wettest month, the wettest quarter and the warmest quarter, the others could be better fit with nuclear DNA content by using Gaussian models than by linear models. There exists intra-specific variation among 36 Chinese populations of E. crus-galli, Gaussian models could be applied to fit the correlations of its Nuclear DNA content with geographical and most bioclimatic gradients.

  7. Cytological study of DNA content and nuclear morphometric analysis for aid in the diagnosis of high-grade dysplasia within oral leukoplakia.

    PubMed

    Yang, Xi; Xiao, Xuan; Wu, Wenyan; Shen, Xuemin; Zhou, Zengtong; Liu, Wei; Shi, Linjun

    2017-09-01

    To quantitatively examine the DNA content and nuclear morphometric status of oral leukoplakia (OL) and investigate its association with the degree of dysplasia in a cytologic study. Oral cytobrush biopsy was carried out to obtain exfoliative epithelial cells from lesions before scalpel biopsy at the same location in a blinded series of 70 patients with OL. Analysis of nuclear morphometry and DNA content status using image cytometry was performed with oral smears stained with the Feulgen-thionin method. Nuclear morphometric analysis revealed significant differences in DNA content amount, DNA index, nuclear area, nuclear radius, nuclear intensity, sphericity, entropy, and fractal dimension (all P < .01) between low-grade and high-grade dysplasia. DNA content analysis identified 34 patients with OL (48.6%) with DNA content abnormality. Nonhomogeneous lesion (P = .018) and high-grade dysplasia (P = .008) were significantly associated with abnormal DNA content. Importantly, the positive correlation between the degree of oral dysplasia and DNA content status was significant (P = .004, correlation coefficient = 0.342). Cytology analysis of DNA content and nuclear morphometric status using image cytometry may support their use as a screening and monitoring tool for OL progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Overexpressed thioredoxin compensates Fanconi anemia related chromosomal instability.

    PubMed

    Kontou, Maria; Adelfalk, Caroline; Ramirez, Maria Helena; Ruppitsch, Werner; Hirsch-Kauffmann, Monica; Schweiger, Manfred

    2002-04-04

    The cause of the molecular defect of Fanconi anemia (FA) remains unknown. Cells from patients with FA exert an elevated spontaneous chromosomal instability which is further triggered by mitomycin C. The induced lability is reduced by overexpression of thioredoxin which is not the case for spontaneous instability. However, both are eliminated by overexpression of thioredoxin cDNA with an added nuclear localization signal. This implies that thioredoxin is lacking in the nuclei of FA cells. The total thioredoxin content in all FA cells tested is reduced. The resultant lack of nuclear thioredoxin can be the explanation for the major symptomatology in FA. Since thioredoxin is known to be the reactive cofactor of ribonucleotid reductase its shortcoming reduces the supply of deoxyribonucleotides thus hindering the DNA and replication repair with resultant chromosomal breaks. Furthermore, depression of tyrosine hydroxylase, the key enzyme of melanine synthesis, could be the basis for the pathognomotic 'café au lait' spots of FA. The observation of thioredoxin reduction in FA cells permits insight into the molecular phathophysiology of FA.

  9. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells.

    PubMed

    Ju, Young Seok; Tubio, Jose M C; Mifsud, William; Fu, Beiyuan; Davies, Helen R; Ramakrishna, Manasa; Li, Yilong; Yates, Lucy; Gundem, Gunes; Tarpey, Patrick S; Behjati, Sam; Papaemmanuil, Elli; Martin, Sancha; Fullam, Anthony; Gerstung, Moritz; Nangalia, Jyoti; Green, Anthony R; Caldas, Carlos; Borg, Åke; Tutt, Andrew; Lee, Ming Ta Michael; van't Veer, Laura J; Tan, Benita K T; Aparicio, Samuel; Span, Paul N; Martens, John W M; Knappskog, Stian; Vincent-Salomon, Anne; Børresen-Dale, Anne-Lise; Eyfjörd, Jórunn Erla; Myklebost, Ola; Flanagan, Adrienne M; Foster, Christopher; Neal, David E; Cooper, Colin; Eeles, Rosalind; Bova, Steven G; Lakhani, Sunil R; Desmedt, Christine; Thomas, Gilles; Richardson, Andrea L; Purdie, Colin A; Thompson, Alastair M; McDermott, Ultan; Yang, Fengtang; Nik-Zainal, Serena; Campbell, Peter J; Stratton, Michael R

    2015-06-01

    Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells. © 2015 Ju et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells

    PubMed Central

    Ju, Young Seok; Tubio, Jose M.C.; Mifsud, William; Fu, Beiyuan; Davies, Helen R.; Ramakrishna, Manasa; Li, Yilong; Yates, Lucy; Gundem, Gunes; Tarpey, Patrick S.; Behjati, Sam; Papaemmanuil, Elli; Martin, Sancha; Fullam, Anthony; Gerstung, Moritz; Nangalia, Jyoti; Green, Anthony R.; Caldas, Carlos; Borg, Åke; Tutt, Andrew; Lee, Ming Ta Michael; van't Veer, Laura J.; Tan, Benita K.T.; Aparicio, Samuel; Span, Paul N.; Martens, John W.M.; Knappskog, Stian; Vincent-Salomon, Anne; Børresen-Dale, Anne-Lise; Eyfjörd, Jórunn Erla; Flanagan, Adrienne M.; Foster, Christopher; Neal, David E.; Cooper, Colin; Eeles, Rosalind; Lakhani, Sunil R.; Desmedt, Christine; Thomas, Gilles; Richardson, Andrea L.; Purdie, Colin A.; Thompson, Alastair M.; McDermott, Ultan; Yang, Fengtang; Nik-Zainal, Serena; Campbell, Peter J.; Stratton, Michael R.

    2015-01-01

    Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells. PMID:25963125

  11. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes.

    PubMed

    Sharma, S; Raina, S N

    2005-01-01

    A major component of the plant nuclear genome is constituted by different classes of repetitive DNA sequences. The structural, functional and evolutionary aspects of the satellite repetitive DNA families, and their organization in the chromosomes is reviewed. The tandem satellite DNA sequences exhibit characteristic chromosomal locations, usually at subtelomeric and centromeric regions. The repetitive DNA family(ies) may be widely distributed in a taxonomic family or a genus, or may be specific for a species, genome or even a chromosome. They may acquire large-scale variations in their sequence and copy number over an evolutionary time-scale. These features have formed the basis of extensive utilization of repetitive sequences for taxonomic and phylogenetic studies. Hybrid polyploids have especially proven to be excellent models for studying the evolution of repetitive DNA sequences. Recent studies explicitly show that some repetitive DNA families localized at the telomeres and centromeres have acquired important structural and functional significance. The repetitive elements are under different evolutionary constraints as compared to the genes. Satellite DNA families are thought to arise de novo as a consequence of molecular mechanisms such as unequal crossing over, rolling circle amplification, replication slippage and mutation that constitute "molecular drive". Copyright 2005 S. Karger AG, Basel.

  12. Solution structure of a DNA mimicking motif of an RNA aptamer against transcription factor AML1 Runt domain.

    PubMed

    Nomura, Yusuke; Tanaka, Yoichiro; Fukunaga, Jun-ichi; Fujiwara, Kazuya; Chiba, Manabu; Iibuchi, Hiroaki; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Kozu, Tomoko; Sakamoto, Taiichi

    2013-12-01

    AML1/RUNX1 is an essential transcription factor involved in the differentiation of hematopoietic cells. AML1 binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. In a previous study, we obtained RNA aptamers against the AML1 Runt domain by systematic evolution of ligands by exponential enrichment and revealed that RNA aptamers exhibit higher affinity for the Runt domain than that for RDE and possess the 5'-GCGMGNN-3' and 5'-N'N'CCAC-3' conserved motif (M: A or C; N and N' form Watson-Crick base pairs) that is important for Runt domain binding. In this study, to understand the structural basis of recognition of the Runt domain by the aptamer motif, the solution structure of a 22-mer RNA was determined using nuclear magnetic resonance. The motif contains the AH(+)-C mismatch and base triple and adopts an unusual backbone structure. Structural analysis of the aptamer motif indicated that the aptamer binds to the Runt domain by mimicking the RDE sequence and structure. Our data should enhance the understanding of the structural basis of DNA mimicry by RNA molecules.

  13. Quantitative analysis of condensation/decondensation status of pDNA in the nuclear sub-domains by QD-FRET.

    PubMed

    Shaheen, Sharif M; Akita, Hidetaka; Yamashita, Atsushi; Katoono, Ryo; Yui, Nobuhiko; Biju, Vasudevanpillai; Ishikawa, Mitsuru; Harashima, Hideyoshi

    2011-04-01

    Recent studies indicate that controlling the nuclear decondensation and intra-nuclear localization of plasmid DNA (pDNA) would result in an increased transfection efficiency. In the present study, we established a technology for imaging the nuclear condensation/decondensation status of pDNA in nuclear subdomains using fluorescence resonance energy transfer (FRET) between quantum dot (QD)-labeled pDNA as donor, and rhodamine-labeled polycations as acceptor. The FRET-occurring pDNA/polycation particle was encapsulated in a nuclear delivery system; a tetra-lamellar multifunctional envelope-type nano device (T-MEND), designed to overcome the endosomal membrane and nuclear membrane via step-wise fusion. Nuclear subdomains (i.e. heterochromatin and euchromatin) were distinguished by Hoechst33342 staining. Thereafter, Z-series of confocal images were captured by confocal laser scanning microscopy. pDNA in condensation/decondensation status in heterochromatin or euchromatin were quantified based on the pixel area of the signals derived from the QD and rhodamine. The results obtained indicate that modulation of the supra-molecular structure of polyrotaxane (DMAE-ss-PRX), a condenser that is cleaved in a reductive environment, conferred euchromatin-preferred decondensation. This represents the first demonstration of the successful control of condensation/decondensation in specific nuclear sub-domain via the use of an artificial DNA condenser.

  14. Quantitative analysis of condensation/decondensation status of pDNA in the nuclear sub-domains by QD-FRET

    PubMed Central

    Shaheen, Sharif M.; Akita, Hidetaka; Yamashita, Atsushi; Katoono, Ryo; Yui, Nobuhiko; Biju, Vasudevanpillai; Ishikawa, Mitsuru; Harashima, Hideyoshi

    2011-01-01

    Recent studies indicate that controlling the nuclear decondensation and intra-nuclear localization of plasmid DNA (pDNA) would result in an increased transfection efficiency. In the present study, we established a technology for imaging the nuclear condensation/decondensation status of pDNA in nuclear subdomains using fluorescence resonance energy transfer (FRET) between quantum dot (QD)-labeled pDNA as donor, and rhodamine-labeled polycations as acceptor. The FRET-occurring pDNA/polycation particle was encapsulated in a nuclear delivery system; a tetra-lamellar multifunctional envelope-type nano device (T-MEND), designed to overcome the endosomal membrane and nuclear membrane via step-wise fusion. Nuclear subdomains (i.e. heterochromatin and euchromatin) were distinguished by Hoechst33342 staining. Thereafter, Z-series of confocal images were captured by confocal laser scanning microscopy. pDNA in condensation/decondensation status in heterochromatin or euchromatin were quantified based on the pixel area of the signals derived from the QD and rhodamine. The results obtained indicate that modulation of the supra-molecular structure of polyrotaxane (DMAE-ss-PRX), a condenser that is cleaved in a reductive environment, conferred euchromatin-preferred decondensation. This represents the first demonstration of the successful control of condensation/decondensation in specific nuclear sub-domain via the use of an artificial DNA condenser. PMID:21288880

  15. Variation in nuclear DNA content in Malus species and cultivated apples.

    PubMed

    Tatum, Tatiana C; Stepanovic, Svetlana; Biradar, D P; Rayburn, A Lane; Korban, Schuyler S

    2005-10-01

    The nuclear DNA content for a group of 40 Malus species and hybrids has been estimated using flow cytometry. Estimates of nuclear DNA content for this germplasm collection range from 1.45 pg for Malus fusca (diploid) to 2.57 pg for Malus ioensis (triploid). Among diploids, the nuclear (2C) DNA ranges from 1.45 pg for M. fusca to 1.68 pg for Malus transitoria. Among triploids, the nuclear (3C) DNA content ranges from 2.37 pg / 3C for Malus sikkimensis to 2.57 pg / 3C for M. ioensis. Given the complexity of the apple genome and its suggested allopolyploid origin, the results obtained in this study confirm earlier reports that polyploids can easily withstand the loss of a certain amount of DNA, and that there is a slight tendency towards diminished haploid nuclear DNA content with increased polyploidy.

  16. Accumulation of linear mitochondrial DNA fragments in the nucleus shortens the chronological life span of yeast.

    PubMed

    Cheng, Xin; Ivessa, Andreas S

    2012-10-01

    Translocation of mitochondrial DNA (mtDNA) fragments to the nucleus and insertion of those fragments into nuclear DNA has been observed in several organisms ranging from yeast to plants and mammals. Disruption of specific nuclear genes by de novo insertions of mtDNA fragments has even been linked to the initiation of several human diseases. Recently, we demonstrated that baker's yeast strains with high rates of mtDNA fragments migrating to the nucleus (yme1-1 mutant) exhibit short chronological life spans (CLS). The yeast CLS is determined by the survival of non-dividing cell populations. Here, we show that lack of the non-homologous-end-joining enzyme DNA ligase IV (DNL4) can rescue the short CLS of the yme1-1 mutant. In fission yeast, DNA ligase IV has been shown to be required for the capture of mtDNA fragments during the repair of double-stranded DNA breaks in nuclear DNA. In further analyses using pulse field gel and 2D gel electrophoresis we demonstrate that linear mtDNA fragments with likely nuclear localization accumulate in the yme1-1 mutant. The accumulation of the linear mtDNA fragments in the yme1-1 mutant is suppressed when Dnl4 is absent. We propose that the linear nuclear mtDNA fragments accelerate the aging process in the yme1-1 mutant cells by possibly affecting nuclear processes including DNA replication, recombination, and repair as well as transcription of nuclear genes. We speculate further that Dnl4 protein has besides its function as a ligase also a role in DNA protection. Dnl4 protein may stabilize the linear mtDNA fragments in the nucleus by binding to their physical ends. In the absence of Dnl4 protein the linear fragments are therefore unprotected and possibly degraded by nuclear nucleases. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. The mechanism of a nuclear pore assembly: a molecular biophysics view.

    PubMed

    Kuvichkin, Vasily V

    2011-06-01

    The basic problem of nuclear pore assembly is the big perinuclear space that must be overcome for nuclear membrane fusion and pore creation. Our investigations of ternary complexes: DNA-PC liposomes-Mg²⁺, and modern conceptions of nuclear pore structure allowed us to introduce a new mechanism of nuclear pore assembly. DNA-induced fusion of liposomes (membrane vesicles) with a single-lipid bilayer or two closely located nuclear membranes is considered. After such fusion on the lipid bilayer surface, traces of a complex of ssDNA with lipids were revealed. At fusion of two identical small liposomes (membrane vesicles) < 100 nm in diameter, a "big" liposome (vesicle) with ssDNA on the vesicle equator is formed. ssDNA occurrence on liposome surface gives a biphasic character to the fusion kinetics. The "big" membrane vesicle surrounded by ssDNA is the base of nuclear pore assembly. Its contact with the nuclear envelope leads to fast fusion of half of the vesicles with one nuclear membrane; then ensues a fusion delay when ssDNA reaches the membrane. The next step is to turn inside out the second vesicle half and its fusion to other nuclear membrane. A hole is formed between the two membranes, and nucleoporins begin pore complex assembly around the ssDNA. The surface tension of vesicles and nuclear membranes along with the kinetic energy of a liquid inside a vesicle play the main roles in this process. Special cases of nuclear pore formation are considered: pore formation on both nuclear envelope sides, the difference of pores formed in various cell-cycle phases and linear nuclear pore clusters.

  18. The genome of Eimeria spp., with special reference to Eimeria tenella--a coccidium from the chicken.

    PubMed

    Shirley, M W

    2000-04-10

    Eimeria spp. contain at least four genomes. The nuclear genome is best studied in the avian species Eimeria tenella and comprises about 60 Mbp DNA contained within ca. 14 chromosomes; other avian and lupine species appear to possess a nuclear genome of similar size. In addition, sequence data and hybridisation studies have provided direct evidence for extrachromosomal mitochondrial and plastid DNA genomes, and double-stranded RNA segments have also been described. The unique phenotype of "precocious" development that characterises some selected lines of Eimeria spp. not only provides the basis for the first generation of live attenuated vaccines, but offers a significant entrée into studies on the regulation of an apicomplexan life-cycle. With a view to identifying loci implicated in the trait of precocious development, a genetic linkage map of the genome of E. tenella is being constructed in this laboratory from analyses of the inheritance of over 400 polymorphic DNA markers in the progeny of a cross between complementary drug-resistant and precocious parents. Other projects that impinge directly or indirectly on the genome and/or genetics of Eimeria spp. are currently in progress in several laboratories, and include the derivation of expressed sequence tag data and the development of ancillary technologies such as transfection techniques. No large-scale genomic DNA sequencing projects have been reported.

  19. Phylogeography and Genetic Ancestry of Tigers (Panthera tigris)

    PubMed Central

    Johnson, Warren E; van der Walt, Joelle; Martenson, Janice; Yuhki, Naoya; Miquelle, Dale G; Uphyrkina, Olga; Goodrich, John M; Quigley, Howard B; Tilson, Ronald; Brady, Gerald; Martelli, Paolo; Subramaniam, Vellayan; McDougal, Charles; Hean, Sun; Huang, Shi-Qiang; Pan, Wenshi; Karanth, Ullas K; Sunquist, Melvin; Smith, James L. D

    2004-01-01

    Eight traditional subspecies of tiger (Panthera tigris), of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers: (1) 4.0 kb of mitochondrial DNA (mtDNA) sequence; (2) allele variation in the nuclear major histocompatibility complex class II DRB gene; and (3) composite nuclear microsatellite genotypes based on 30 loci. Relatively low genetic variation with mtDNA, DRB, and microsatellite loci was found, but significant population subdivision was nonetheless apparent among five living subspecies. In addition, a distinct partition of the Indochinese subspecies P. t. corbetti into northern Indochinese and Malayan Peninsula populations was discovered. Population genetic structure would suggest recognition of six taxonomic units or subspecies: (1) Amur tiger P. t. altaica; (2) northern Indochinese tiger P. t. corbetti; (3) South China tiger P. t. amoyensis; (4) Malayan tiger P. t. jacksoni, named for the tiger conservationist Peter Jackson; (5) Sumatran tiger P. t. sumatrae; and (6) Bengal tiger P. t. tigris. The proposed South China tiger lineage is tentative due to limited sampling. The age of the most recent common ancestor for tiger mtDNA was estimated to be 72,000–108,000 y, relatively younger than some other Panthera species. A combination of population expansions, reduced gene flow, and genetic drift following the last genetic diminution, and the recent anthropogenic range contraction, have led to the distinct genetic partitions. These results provide an explicit basis for subspecies recognition and will lead to the improved management and conservation of these recently isolated but distinct geographic populations of tigers. PMID:15583716

  20. New phthalimide-appended Schiff bases: Studies of DNA binding, molecular docking and antioxidant activities.

    PubMed

    Nayab, Pattan Sirajuddin; Akrema; Ansari, Istikhar A; Shahid, Mohammad; Rahisuddin

    2017-08-01

    Herein, we investigated new phthalimide-based Schiff base molecules as promising DNA-binding and free radical scavenging agents. Physicochemical properties of these molecules were demonstrated on the basis of elemental analysis, ultraviolet-visible (UV-Vis), infra-red (IR), 1 H and 13 C nuclear magnetic resonance (NMR) spectroscopy. All spectral data are agreed well with the proposed Schiff base framework. The DNA-binding potential of synthesized compounds were investigated by means of UV-visible, fluorescence, iodide quenching, circular dichroism, viscosity and thermal denaturation studies. The intrinsic binding constants (K b ) were calculated from absorption studies were found to be 1.1 × 10 4 and 1.0 × 10 4  M -1 for compounds 2a and 2b suggesting that compound 2a binding abilities with DNA were stronger than the compound 2b. Our studies showed that the presented compounds interact with DNA through groove binding. Molecular docking studies were carried out to predict the binding between Ct-DNA and test compounds. Interestingly, in silico predictions were corroborated with in vitro DNA-binding conclusions. Furthermore, the title compounds displayed remarkable antioxidant activity compared with reference standard. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Mitochondrial DNA as a non-invasive biomarker: Accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, Afshan N., E-mail: afshan.malik@kcl.ac.uk; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana

    2011-08-19

    Highlights: {yields} Mitochondrial dysfunction is central to many diseases of oxidative stress. {yields} 95% of the mitochondrial genome is duplicated in the nuclear genome. {yields} Dilution of untreated genomic DNA leads to dilution bias. {yields} Unique primers and template pretreatment are needed to accurately measure mitochondrial DNA content. -- Abstract: Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that themore » methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as {beta}-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a 'dilution bias' when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.« less

  2. Nuclear dna amounts in angiosperms.

    PubMed

    Bennett, M D; Smith, J B

    1976-05-27

    The number of angiosperm species for which nuclear DNA amount estimates have been made has nearly trebled since the last collected lists of such values were published, and therefore, publication of a more comprehensive list is over due. This paper lists absolute nuclear DNA amounts for 753 angiosperm species. The dats were assembled primarily for reference purposes, and so the species are listed in alphabetical order, as this was felt to be more helpful to cyto- and biochemists whom, it is anticipated, will be among its major users. The paper also reviews aspects of the history, nomenclature, methods, accuracy and problems of nuclear DNA estimation in angiosperms. No attempt is made to reconsider those aspects of nuclear DNA estimation which have been fully revised previously, although the bibliography of such aspects is given. Instead, the paper is intended as a source of basic information regarding the terminology, practice and limitations of nuclear DNA estimation, especially by Feulgen microdensitometry, as currently practiced.

  3. Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-I.

    PubMed Central

    Evers, R; Grummt, I

    1995-01-01

    Both the DNA elements and the nuclear factors that direct termination of ribosomal gene transcription exhibit species-specific differences. Even between mammals--e.g., human and mouse--the termination signals are not identical and the respective transcription termination factors (TTFs) which bind to the terminator sequence are not fully interchangeable. To elucidate the molecular basis for this species-specificity, we have cloned TTF-I from human and mouse cells and compared their structural and functional properties. Recombinant TTF-I exhibits species-specific DNA binding and terminates transcription both in cell-free transcription assays and in transfection experiments. Chimeric constructs of mouse TTF-I and human TTF-I reveal that the major determinant for species-specific DNA binding resides within the C terminus of TTF-I. Replacing 31 C-terminal amino acids of mouse TTF-I with the homologous human sequences relaxes the DNA-binding specificity and, as a consequence, allows the chimeric factor to bind the human terminator sequence and to specifically stop rDNA transcription. Images Fig. 2 Fig. 3 Fig. 4 PMID:7597036

  4. Radioprotective Thiolamines WR-1065 and WR-33278 Selectively Denature Nonhistone Nuclear Proteins

    NASA Technical Reports Server (NTRS)

    Booth, Valerie K.; Roberts, Jeanette C.; Warters, Raymond L.; Wilmore, Britta H.; Lepock, James R.

    2000-01-01

    Differential scanning calorimetry was used to study the interactions of nuclei isolated from Chinese hamster V79 cells with the radioprotector WR-1065, other thiol compounds, and polyamines. Differential scanning calorimetry monitors denaturation of macromolecules and resolves the major nuclear components (e.g. constrained and relaxed DNA, nucleosome core, and nuclear matrix) of intact nuclei on the basis of thermal stability. WR-1065 treatment (0.5-10 mM) of isolated nuclei led to the irreversible denaturation of nuclear proteins, a fraction of which are nuclear matrix proteins. Denaturation of 50% of the total nonhistone nuclear protein content of isolated nuclei occurred after exposure to 4.7 mM WR-1065 for 20 min at 23 C. In addition, a 22% increase in the insoluble protein content of nuclei isolated from V79 cells that had been treated with 4 mM WR-1065 for 30 min at 37 C was observed, indicating that WR-1065-induced protein denaturation occurs not only in isolated nuclei but also in the nuclei of intact cells. From the extent of the increase in insoluble protein in the nucleus, protein denaturation by WR-1065 is expected to contribute to drug toxicity at concentrations greater than approximately 4 mM. WR-33278, the disulfide form of WR1065, was approximately twice as effective as the free thiol at denaturing nuclear proteins. The proposed mechanism for nucleoprotein denaturation is through direct interactions with protein cysteine groups with the formation of destabilizing protein-WR-1065 disulfides. In comparison to its effect on nuclear proteins in isolated nuclei, WR-1065 had only a very small effect on non-nuclear proteins of whole cells, isolated nuclear matrix, or the thiol-rich Ca (2+) ATPase of sarcoplasmic reticulum, indicating that WR-1065 can effectively denature protein only inside an intact nucleus, probably due to the increased concentration of the positively charged drug in the vicinity of DNA.

  5. DNA and proteins of the nuclear matrix are the main targets of benzo[a]pyrene's action in rat hepatocytes.

    PubMed

    Widłak, P; Rzeszowska-Wolny, J

    1993-01-01

    The binding of [14C]benzo[a]pyrene (B[a]P) to DNA and proteins in total nuclei and subnuclear fractions of cultured rat hepatocytes was compared. The main targets of B[a]P were non-histone high molecular weight proteins of the nuclear matrix and DNA sequences attached to this structure. Following 24 h exposure to B[a]P the amounts of adducts in the nuclear matrix DNA and proteins were twice as high as in total nuclei. After withdrawal of the carcinogen containing medium the level of B[a]P-induced adducts gradually decreased but always remained the highest in the nuclear matrix proteins. Removal of adducts from the nuclear matrix DNA was more efficient than from the other DNA fractions, and 72 h after exposure to the carcinogen the level of DNA adducts in this fraction was similar to that in total nuclei.

  6. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells.

    PubMed

    Liang, Le; Li, Jiang; Li, Qian; Huang, Qing; Shi, Jiye; Yan, Hao; Fan, Chunhai

    2014-07-21

    DNA is typically impermeable to the plasma membrane due to its polyanionic nature. Interestingly, several different DNA nanostructures can be readily taken up by cells in the absence of transfection agents, which suggests new opportunities for constructing intelligent cargo delivery systems from these biocompatible, nonviral DNA nanocarriers. However, the underlying mechanism of entry of the DNA nanostructures into the cells remains unknown. Herein, we investigated the endocytotic internalization and subsequent transport of tetrahedral DNA nanostructures (TDNs) by mammalian cells through single-particle tracking. We found that the TDNs were rapidly internalized by a caveolin-dependent pathway. After endocytosis, the TDNs were transported to the lysosomes in a highly ordered, microtubule-dependent manner. Although the TDNs retained their structural integrity within cells over long time periods, their localization in the lysosomes precludes their use as effective delivery agents. To modulate the cellular fate of the TDNs, we functionalized them with nuclear localization signals that directed their escape from the lysosomes and entry into the cellular nuclei. This study improves our understanding of the entry into cells and transport pathways of DNA nanostructures, and the results can be used as a basis for designing DNA-nanostructure-based drug delivery nanocarriers for targeted therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Red Queen in mitochondria: cyto-nuclear co-evolution, hybrid breakdown and human disease

    PubMed Central

    Chou, Jui-Yu; Leu, Jun-Yi

    2015-01-01

    Cyto-nuclear incompatibility, a specific form of Dobzhansky-Muller incompatibility caused by incompatible alleles between mitochondrial and nuclear genomes, has been suggested to play a critical role during speciation. Several features of the mitochondrial genome (mtDNA), including high mutation rate, dynamic genomic structure, and uniparental inheritance, make mtDNA more likely to accumulate mutations in the population. Once mtDNA has changed, the nuclear genome needs to play catch-up due to the intimate interactions between these two genomes. In two populations, if cyto-nuclear co-evolution is driven in different directions, it may eventually lead to hybrid incompatibility. Although cyto-nuclear incompatibility has been observed in a wide range of organisms, it remains unclear what type of mutations drives the co-evolution. Currently, evidence supporting adaptive mutations in mtDNA remains limited. On the other hand, it has been known that some mutations allow mtDNA to propagate more efficiently but compromise the host fitness (described as selfish mtDNA). Arms races between such selfish mtDNA and host nuclear genomes can accelerate cyto-nuclear co-evolution and lead to a phenomenon called the Red Queen Effect. Here, we discuss how the Red Queen Effect may contribute to the frequent observation of cyto-nuclear incompatibility and be the underlying driving force of some human mitochondrial diseases. PMID:26042149

  8. Double-stranded DNA breaks hidden in the neutral Comet assay suggest a role of the sperm nuclear matrix in DNA integrity maintenance

    PubMed Central

    Ribas-Maynou, J.; Gawecka, J.E.; Benet, J.; Ward, W.S.

    2014-01-01

    We used a mouse model in which sperm DNA damage was induced to understand the relationship of double-stranded DNA (dsDNA) breaks to sperm chromatin structure and to the Comet assay. Sperm chromatin fragmentation (SCF) produces dsDNA breaks located on the matrix attachment regions, between protamine toroids. In this model, epididymal sperm induced to undergo SCF can religate dsDNA breaks while vas deferens sperm cannot. Here, we demonstrated that the conventional neutral Comet assay underestimates the epididymal SCF breaks because the broken DNA ends remain attached to the nuclear matrix, causing the DNA to remain associated with the dispersion halo, and the Comet tails to be weak. Therefore, we term these hidden dsDNA breaks. When the Comet assay was modified to include an additional incubation with sodium dodecyl sulfate (SDS) and dithiothreitol (DTT) after the conventional lysis, thereby solubilizing the nuclear matrix, the broken DNA was released from the matrix, which resulted in a reduction of the sperm head halo and an increase in the Comet tail length, exposing the hidden dsDNA breaks. Conversely, SCF-induced vas deferens sperm had small halos and long tails with the conventional neutral Comet assay, suggesting that the broken DNA ends were not tethered to the nuclear matrix. These results suggest that the attachment to the nuclear matrix is crucial for the religation of SCF-induced DNA breaks in sperm. Our data suggest that the neutral Comet assay identifies only dsDNA breaks that are released from the nuclear matrix and that the addition of an SDS treatment can reveal these hidden dsDNA breaks. PMID:24282283

  9. Double-stranded DNA breaks hidden in the neutral Comet assay suggest a role of the sperm nuclear matrix in DNA integrity maintenance.

    PubMed

    Ribas-Maynou, J; Gawecka, J E; Benet, J; Ward, W S

    2014-04-01

    We used a mouse model in which sperm DNA damage was induced to understand the relationship of double-stranded DNA (dsDNA) breaks to sperm chromatin structure and to the Comet assay. Sperm chromatin fragmentation (SCF) produces dsDNA breaks located on the matrix attachment regions, between protamine toroids. In this model, epididymal sperm induced to undergo SCF can religate dsDNA breaks while vas deferens sperm cannot. Here, we demonstrated that the conventional neutral Comet assay underestimates the epididymal SCF breaks because the broken DNA ends remain attached to the nuclear matrix, causing the DNA to remain associated with the dispersion halo, and the Comet tails to be weak. Therefore, we term these hidden dsDNA breaks. When the Comet assay was modified to include an additional incubation with sodium dodecyl sulfate (SDS) and dithiothreitol (DTT) after the conventional lysis, thereby solubilizing the nuclear matrix, the broken DNA was released from the matrix, which resulted in a reduction of the sperm head halo and an increase in the Comet tail length, exposing the hidden dsDNA breaks. Conversely, SCF-induced vas deferens sperm had small halos and long tails with the conventional neutral Comet assay, suggesting that the broken DNA ends were not tethered to the nuclear matrix. These results suggest that the attachment to the nuclear matrix is crucial for the religation of SCF-induced DNA breaks in sperm. Our data suggest that the neutral Comet assay identifies only dsDNA breaks that are released from the nuclear matrix and that the addition of an SDS treatment can reveal these hidden dsDNA breaks.

  10. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified.

    PubMed

    Hammond, Elizabeth R; McGillivray, Brent C; Wicker, Sophie M; Peek, John C; Shelling, Andrew N; Stone, Peter; Chamley, Larry W; Cree, Lynsey M

    2017-01-01

    To characterize nuclear and mitochondrial DNA (mtDNA) in spent culture media from normally developing blastocysts to determine whether it could be used for noninvasive genetic assessment. Prospective embryo cohort study. Academic center and private in vitro fertilization (IVF) clinic. Seventy patients undergoing intracytoplasmic sperm injection (ICSI) and 227 blastocysts. Culture media assessment, artificial blastocoele fluid collapse and DNA analysis using digital polymerase chain reaction (dPCR), long-range PCR, quantitative PCR (qPCR), and DNA fingerprinting. Presence of nuclear and mtDNA in three different commercial culture media from Vitrolife and Irvine Scientific, spent embryo media assessment at the cleavage and blastocyst stages of development, and analysis of the internal media controls for each patient that had been exposed to identical conditions as embryo media but did not come into contact with embryos. Higher levels of nuclear and mtDNA were observed in the culture media that had been exposed to embryos compared with the internal media controls. Nuclear DNA (∼4 copies) and mtDNA (∼600 copies) could be detected in spent media, and the levels increased at the blastocyst stage. No increase in DNA was detected after artificial blastocoele fluid collapse. Mixed sex chromosome DNA was detected. This originated from contamination in the culture media and from maternal (cumulus) cells. Due to the limited amount of template, the presence of embryonic nuclear DNA could not be confirmed by DNA fingerprinting analysis. Currently DNA from culture media cannot be used for genetic assessment because embryo-associated structures release DNA into the culture medium and the DNA is of mixed origin. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Mitochondrial transcription: Lessons from mouse models

    PubMed Central

    Peralta, Susana; Wang, Xiao; Moraes, Carlos T.

    2012-01-01

    Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of ∼ 16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. PMID:22120174

  12. Nuclear routing networks span between nuclear pore complexes and genomic DNA to guide nucleoplasmic trafficking of biomolecules

    PubMed Central

    Malecki, Marek; Malecki, Bianca

    2012-01-01

    In health and disease, biomolecules, which are involved in gene expression, recombination, or reprogramming have to traffic through the nucleoplasm, between nuclear pore complexes (NPCs) and genomic DNA (gDNA). This trafficking is guided by the recently revealed nuclear routing networks (NRNs). In this study, we aimed to investigate, if the NRNs have established associations with the genomic DNA in situ and if the NRNs have capabilities to bind the DNA de novo. Moreover, we aimed to study further, if nucleoplasmic trafficking of the histones, rRNA, and transgenes’ vectors, between the NPCs and gDNA, is guided by the NRNs. We used Xenopus laevis oocytes as the model system. We engineered the transgenes’ DNA vectors equipped with the SV40 LTA nuclear localization signals (NLS) and/or HIV Rev nuclear export signals (NES). We purified histones, 5S rRNA, and gDNA. We rendered all these molecules superparamagnetic and fluorescent for detection with nuclear magnetic resonance (NMR), total reflection x-ray fluorescence (TXRF), energy dispersive x-ray spectroscopy (EDXS), and electron energy loss spectroscopy (EELS). The NRNs span between the NPCs and genomic DNA. They form firm bonds with the gDNA in situ. After complete digestion of the nucleic acids with the RNases and DNases, the newly added DNA - modified with the dNTP analogs, bonds firmly to the NRNs. Moreover, the NRNs guide the trafficking of the DNA transgenes’ vectors - modified with the SV40 LTA NLS, following their import into the nuclei through the NPCs. The pathway is identical to that of histones. The NRNs also guide the trafficking of the DNA transgenes’ vectors, modified with the HIV Rev NES, to the NPCs, followed by their export out of the nuclei. Ribosomal RNAs follow the same pathway. To summarize, the NRNs are the structures connecting the NPCs and the gDNA. They guide the trafficking of the biomolecules between the NPCs and the gDNA. PMID:23275893

  13. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer.

    PubMed

    Srirattana, Kanokwan; St John, Justin C

    2018-05-08

    We generated cattle embryos using mitochondrial supplementation and somatic cell nuclear transfer (SCNT), named miNT, to determine how additional mitochondrial DNA (mtDNA) modulates the nuclear genome. To eliminate any confounding effects from somatic cell mtDNA in intraspecies SCNT, donor cell mtDNA was depleted prior to embryo production. Additional oocyte mtDNA did not affect embryo development rates but increased mtDNA copy number in blastocyst stage embryos. Moreover, miNT-derived blastocysts had different gene expression profiles when compared with SCNT-derived blastocysts. Additional mtDNA increased expression levels of genes involved in oxidative phosphorylation, cell cycle and DNA repair. Supplementing the embryo culture media with a histone deacetylase inhibitor, Trichostatin A (TSA), had no beneficial effects on the development of miNT-derived embryos, unlike SCNT-derived embryos. When compared with SCNT-derived blastocysts cultured in the presence of TSA, additional mtDNA alone had beneficial effects as the activity of glycolysis may increase and embryonic cell death may decrease. However, these beneficial effects were not found with additional mtDNA and TSA together, suggesting that additional mtDNA alone enhances reprogramming. In conclusion, additional mtDNA increased mtDNA copy number and expression levels of genes involved in energy production and embryo development in blastocyst stage embryos emphasising the importance of nuclear-mitochondrial interactions.

  14. Comparative NMR analysis of the decadeoxynucleotide d-(GCATTAATGC)2 and an analogue containing 2-aminoadenine.

    PubMed Central

    Chazin, W J; Rance, M; Chollet, A; Leupin, W

    1991-01-01

    The dodecadeoxynucleotide duplex d-(GCATTAATGC)2 has been prepared with all adenine bases replaced by 2-NH2-adenine. This modified duplex has been characterized by nuclear magnetic resonance (NMR) spectroscopy. Complete sequence-specific 1H resonance assignments have been obtained by using a variety of 2D NMR methods. Multiple quantum-filtered and multiple quantum experiments have been used to completely assign all sugar ring protons, including 5'H and 5'H resonances. The assignments form the basis for a detailed comparative analysis of the 1H NMR parameters of the modified and parent duplex. The structural features of both decamer duplexes in solution are characteristic of the B-DNA family. The spin-spin coupling constants in the sugar rings and the relative spatial proximities of protons in the bases and sugars (as determined from the comparison of corresponding nuclear Overhauser effects) are virtually identical in the parent and modified duplexes. Thus, substitution by this adenine analogue in oligonucleotides appears not to disturb the global or local conformation of the DNA duplex. PMID:1945828

  15. The absence of histone H1 from the chromatin fraction obtained by sonication of calf thymus nuclei under "quasiphysiological" ionic conditions.

    PubMed Central

    Lishanskaya, A I; Mosevitsky, M I

    1976-01-01

    The minor chromatin fraction was isolated from the sonicated calf thymus nuclei on the basis of its differential solubility in the "quasiphysiological" salt medium (0.1 M KCl-0.05 M NaCl-l mM MgCl2-1 mM CaCl2). Histone Hl is almost completely absent from this fraction. DNA isolated from this fraction occurs in three discrete low mol. wt. fragments. The fraction of chromatin which lacks histone Hl can also be obtained by two other methods. On of them consists in salt precipitation of the chromatin gel and its subsequent sonication. The second method includes precipitation of the sonicated chromatin gel by salts. In the first case the properties of the chromatin fraction which remains in the supernatant after centrifugation closely resemble those of the original salt-soluble nuclear fraction. The second method yields supernatant fraction also lacking histone Hl but containing heterogeneous DNA. Comparisons were also made of the sonically-solubilized nuclear fractions obtained in the complete salt medium and its mono and divalent cationic constituents. Images PMID:967688

  16. Reconciling Apparent Conflicts between Mitochondrial and Nuclear Phylogenies in African Elephants

    PubMed Central

    Georgiadis, Nicholas J.; David, Victor A.; Zhao, Kai; Stephens, Robert M.; Kolokotronis, Sergios-Orestis; Roca, Alfred L.

    2011-01-01

    Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and conducting novel analyses of continent-wide datasets of mitochondrial DNA. Results showed that nuclear genetic diversity was partitioned into two clusters, corresponding to African forest elephants (99.5% Cluster-1) and African savanna elephants (99.4% Cluster-2). Hybrid individuals were rare. In a comparison of basal forest “F” and savanna “S” mtDNA clade distributions to nuclear DNA partitions, forest elephant nuclear genotypes occurred only in populations in which S clade mtDNA was absent, suggesting that nuclear partitioning corresponds to the presence or absence of S clade mtDNA. We reanalyzed African elephant mtDNA sequences from 81 locales spanning the continent and discovered that S clade mtDNA was completely absent among elephants at all 30 sampled tropical forest locales. The distribution of savanna nuclear DNA and S clade mtDNA corresponded closely to range boundaries traditionally ascribed to the savanna elephant species based on habitat and morphology. Further, a reanalysis of nuclear genetic assignment results suggested that West African elephants do not comprise a distinct third species. Finally, we show that some DNA markers will be more useful than others for determining the geographic origins of illegal ivory. These findings resolve the apparent incongruence between mtDNA and nuclear genetic patterns that has confounded the taxonomy of African elephants, affirm the limitations of using mtDNA patterns to infer elephant systematics or population structure, and strongly support the existence of two elephant species in Africa. PMID:21701575

  17. [Sequence of the ITS region of nuclear ribosomal DNA(nrDNA) in Xinjiang wild Dianthus and its phylogenetic relationship].

    PubMed

    Zhang, Lu; Cai, You-Ming; Zhuge, Qiang; Zou, Hui-Yu; Huang, Min-Ren

    2002-06-01

    Xinjiang is a center of distribution and differentiation of genus Dianthus in China, and has a great deal of species resources. The sequences of ITS region (including ITS-1, 5.8S rDNA and ITS-2) of nuclear ribosomal DNA from 8 species of genus Dianthus wildly distributed in Xinjiang were determined by direct sequencing of PCR products. The result showed that the size of the ITS of Dianthus is from 617 to 621 bp, and the length variation is only 4 bp. There are very high homogeneous (97.6%-99.8%) sequences between species, and about 80% homogeneous sequences between genus Dianthus and outgroup. The sequences of ITS in genus Dianthus are relatively conservative. In general, there are more conversion than transition in the variation sites among genus Dianthus. The conversion rates are relatively high, and the ratios of conversion/transition are 1.0-3.0. On the basis of phylogenetic analysis of nucleotide sequences the species of Dianthus in China would be divided into three sections. There is a distant relationship between sect. Barbulatum Williams and sect. Dianthus and between sect. Barbulatum Williams and sect. Fimbriatum Williams, and there is a close relationship between sect. Dianthus and sect. Fimbriatum Williams. From the phylogenetic tree of ITS it was found that the origin of sect. Dianthusis is earlier than that of sect. Fimbriatum Williams and sect. Barbulatum Williams.

  18. Initiation of DNA replication requires actin dynamics and formin activity.

    PubMed

    Parisis, Nikolaos; Krasinska, Liliana; Harker, Bethany; Urbach, Serge; Rossignol, Michel; Camasses, Alain; Dewar, James; Morin, Nathalie; Fisher, Daniel

    2017-11-02

    Nuclear actin regulates transcriptional programmes in a manner dependent on its levels and polymerisation state. This dynamics is determined by the balance of nucleocytoplasmic shuttling, formin- and redox-dependent filament polymerisation. Here, using Xenopus egg extracts and human somatic cells, we show that actin dynamics and formins are essential for DNA replication. In proliferating cells, formin inhibition abolishes nuclear transport and initiation of DNA replication, as well as general transcription. In replicating nuclei from transcriptionally silent Xenopus egg extracts, we identified numerous actin regulators, and disruption of actin dynamics abrogates nuclear transport, preventing NLS (nuclear localisation signal)-cargo release from RanGTP-importin complexes. Nuclear formin activity is further required to promote loading of cyclin-dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) onto chromatin, as well as initiation and elongation of DNA replication. Therefore, actin dynamics and formins control DNA replication by multiple direct and indirect mechanisms. © 2017 The Authors.

  19. Structural and calorimetric studies demonstrate that the hepatocyte nuclear factor 1β (HNF1β) transcription factor is imported into the nucleus via a monopartite NLS sequence.

    PubMed

    Wiedmann, Mareike M; Aibara, Shintaro; Spring, David R; Stewart, Murray; Brenton, James D

    2016-09-01

    The transcription factor hepatocyte nuclear factor 1β (HNF1β) is ubiquitously overexpressed in ovarian clear cell carcinoma (CCC) and is a potential therapeutic target. To explore potential approaches that block HNF1β transcription we have identified and characterised extensively the nuclear localisation signal (NLS) for HNF1β and its interactions with the nuclear protein import receptor, Importin-α. Pull-down assays demonstrated that the DNA binding domain of HNF1β interacted with a spectrum of Importin-α isoforms and deletion constructs tagged with eGFP confirmed that the HNF1β (229)KKMRRNR(235) sequence was essential for nuclear localisation. We further characterised the interaction between the NLS and Importin-α using complementary biophysical techniques and have determined the 2.4Å resolution crystal structure of the HNF1β NLS peptide bound to Importin-α. The functional, biochemical, and structural characterisation of the nuclear localisation signal present on HNF1β and its interaction with the nuclear import protein Importin-α provide the basis for the development of compounds targeting transcription factor HNF1β via its nuclear import pathway. Copyright © 2016. Published by Elsevier Inc.

  20. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies

    PubMed Central

    Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.

    2015-01-01

    Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard extraction methods, without the need for specialised equipment or large-volume demineralisation steps. PMID:25992635

  1. Cytoplasmic transfer of heritable elements other than mtDNA from SAMP1 mice into mouse tumor cells suppresses their ability to form tumors in C57BL6 mice.

    PubMed

    Shimizu, Akinori; Tani, Haruna; Takibuchi, Gaku; Ishikawa, Kaori; Sakurazawa, Ryota; Inoue, Takafumi; Hashimoto, Tetsuo; Nakada, Kazuto; Takenaga, Keizo; Hayashi, Jun-Ichi

    2017-11-04

    In a previous study, we generated transmitochondrial P29mtSAMP1 cybrids, which had nuclear DNA from the C57BL6 (referred to as B6) mouse strain-derived P29 tumor cells and mitochondrial DNA (mtDNA) exogenously-transferred from the allogeneic strain SAMP1. Because P29mtSAMP1 cybrids did not form tumors in syngeneic B6 mice, we proposed that allogeneic SAMP1 mtDNA suppressed tumor formation of P29mtSAMP1 cybrids. To test this hypothesis, current study generated P29mt(sp)B6 cybrids carrying all genomes (nuclear DNA and mtDNA) from syngeneic B6 mice by eliminating SAMP1 mtDNA from P29mtSAMP1 cybrids and reintroducing B6 mtDNA. However, the P29mt(sp)B6 cybrids did not form tumors in B6 mice, even though they had no SAMP1 mtDNA, suggesting that SAMP1 mtDNA is not involved in tumor suppression. Then, we examined another possibility of whether SAMP1 mtDNA fragments potentially integrated into the nuclear DNA of P29mtSAMP1 cybrids are responsible for tumor suppression. We generated P29 H (sp)B6 cybrids by eliminating nuclear DNA from P29mt(sp)B6 cybrids and reintroducing nuclear DNA with no integrated SAMP1 mtDNA fragment from mtDNA-less P29 cells resistant to hygromycin in selection medium containing hygromycin. However, the P29 H (sp)B6 cybrids did not form tumors in B6 mice, even though they carried neither SAMP1 mtDNA nor nuclear DNA with integrated SAMP1 mtDNA fragments. Moreover, overproduction of reactive oxygen species (ROS) and bacterial infection were not involved in tumor suppression. These observations suggest that tumor suppression was caused not by mtDNA with polymorphic mutations or infection of cytozoic bacteria but by hypothetical heritable cytoplasmic elements other than mtDNA from SAMP1 mice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Chromatin Collapse during Caspase-dependent Apoptotic Cell Death Requires DNA Fragmentation Factor, 40-kDa Subunit-/Caspase-activated Deoxyribonuclease-mediated 3′-OH Single-strand DNA Breaks*

    PubMed Central

    Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Sánchez-Osuna, María; Casanelles, Elisenda; García-Belinchón, Mercè; Comella, Joan X.; Yuste, Victor J.

    2013-01-01

    Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD−/− cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3′-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3′-OH ends in single-strand rather than double-strand DNA nicks/breaks. PMID:23430749

  3. Transportin mediates nuclear entry of DNA in vertebrate systems.

    PubMed

    Lachish-Zalait, Aurelie; Lau, Corine K; Fichtman, Boris; Zimmerman, Ella; Harel, Amnon; Gaylord, Michelle R; Forbes, Douglass J; Elbaum, Michael

    2009-10-01

    Delivery of DNA to the cell nucleus is an essential step in many types of viral infection, transfection, gene transfer by the plant pathogen Agrobacterium tumefaciens and in strategies for gene therapy. Thus, the mechanism by which DNA crosses the nuclear pore complex (NPC) is of great interest. Using nuclei reconstituted in vitro in Xenopus egg extracts, we previously studied DNA passage through the nuclear pores using a single-molecule approach based on optical tweezers. Fluorescently labeled DNA molecules were also seen to accumulate within nuclei. Here we find that this import of DNA relies on a soluble protein receptor of the importin family. To identify this receptor, we used different pathway-specific cargoes in competition studies as well as pathway-specific dominant negative inhibitors derived from the nucleoporin Nup153. We found that inhibition of the receptor transportin suppresses DNA import. In contrast, inhibition of importin beta has little effect on the nuclear accumulation of DNA. The dependence on transportin was fully confirmed in assays using permeabilized HeLa cells and a mammalian cell extract. We conclude that the nuclear import of DNA observed in these different vertebrate systems is largely mediated by the receptor transportin. We further report that histones, a known cargo of transportin, can act as an adaptor for the binding of transportin to DNA.

  4. 32 CFR 291.2 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.2 Applicability. This part applies to Headquarters, Defense Nuclear Agency (HQ, DNA), Field Command, Defense Nuclear...

  5. 32 CFR 291.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.2 Applicability. This part applies to Headquarters, Defense Nuclear Agency (HQ, DNA), Field Command, Defense Nuclear...

  6. 32 CFR 291.2 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.2 Applicability. This part applies to Headquarters, Defense Nuclear Agency (HQ, DNA), Field Command, Defense Nuclear...

  7. 32 CFR 291.2 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.2 Applicability. This part applies to Headquarters, Defense Nuclear Agency (HQ, DNA), Field Command, Defense Nuclear...

  8. 32 CFR 291.2 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.2 Applicability. This part applies to Headquarters, Defense Nuclear Agency (HQ, DNA), Field Command, Defense Nuclear...

  9. Radioprotection of Human Cell Nuclear DNA by Polyamines: Radiosensitivity of Chromatin is Influenced by Tightly Bound Spermine

    NASA Technical Reports Server (NTRS)

    Warters, Raymond L.; Newton, Gerald L.; Olive, Peggy L.; Fahey, Robert C.

    1999-01-01

    The polyamines putrescine (PUT) and spermine (SPM) were examined for their ability to protect human cell Deoxyribonucleic Acid (DNA) against the formation of radiation-induced double-strand breaks (DSBs). As observed previously, under conditions where polyamines were shown to be almost completely absent, association with nuclear matrix protein into a nucleoid, and organization into chromatin structure, protected DNA from induction of DSBs by factors of 4.5 and 95, respectively. At concentrations below 1 mM, PUT or SPM provided equivalent levels of protection to deproteinized nuclear DNA, consistent with their capacity to scavenge radiation-induced radicals. At constant ionic strength, 5 mM SPM protected deproteinized DNA and nucleoid DNA and DNA in nuclear chromatin by factors of 100 and 26, respectively. At 5 mM, SPM provided 15 times greater protection of deproteinized DNA than did PUT. Under physiologically relevant conditions, 5 mM SPM protected DNA in the intact nucleus from the induction of DSBs by a factor of 2 relative to DNA in the absence of SPM. Studies of SPM binding during cellular fractionation revealed that a significant fraction of the cellular SPM is tightly bound in the nucleus but can be removed by extended washing. Thus the association of SPM with nuclear chromatin appears to be a significant contributor to the resistance of the cell's DNA to the induction of DSBs.

  10. Rhinitis and disseminated disease in a ferret (Mustela putorius furo) naturally infected with Sarcocystis neurona.

    PubMed

    Britton, Ann P; Dubey, J P; Rosenthal, Benjamin M

    2010-04-19

    Naturally occurring Sarcocystis neurona infection in a ferret (Mustela putorius furo) with rhinitis and disseminated disease are described for the first time. The ferret exhibited severe rhinitis with intra-lesional S. neurona merozoites and schizonts. Diagnosis was confirmed immunohistochemically by staining with S. neurona-specific antibodies, and by phylogenetic analyses of conserved and variable portions of nuclear ribosomal DNA. On the basis of intense schizogony in the nasal mucosa, we propose the possibility of an olfactory nerve pathway route of infection for S. neurona meningoencephalitis.

  11. Vitamin D receptor (VDR) promoter targeting through a novel chromatin remodeling complex.

    PubMed

    Kato, Shigeaki; Fujiki, Ryoji; Kitagawa, Hirochika

    2004-05-01

    We have purified nuclear complexes for Vitamin D receptor (VDR), and identified one of them as a novel ATP-dependent chromatine remodeling containing Williams syndrome transcription factor (WSTF), that is supposed to be responsible for Williams syndrome. This complex (WSTF including nucleosome assembly complex (WINAC)) exhibited an ATP-dependent chromatin remodeling activity in vitro. Transient expression assays revealed that WINAC potentiates ligand-induced function of VDR in gene activation and repression. Thus, this study describes a molecular basis of the VDR function on chromosomal DNA through chromatine remodeling.

  12. CDK1 enhances mitochondrial bioenergetics for radiation-induced DNA repair

    DOE PAGES

    Qin, Lili; Fan, Ming; Candas, Demet; ...

    2015-12-06

    Nuclear DNA repair capacity is a critical determinant of cell fate under genotoxic stress conditions. DNA repair is a well-defined energy-consuming process. However, it is unclear how DNA repair is fueled and whether mitochondrial energy production contributes to nuclear DNA repair. Here, we report a dynamic enhancement of oxygen consumption and mitochondrial ATP generation in irradiated normal cells, paralleled with increased mitochondrial relocation of the cell-cycle kinase CDK1 and nuclear DNA repair. The basal and radiation-induced mitochondrial ATP generation is reduced significantly in cells harboring CDK1 phosphorylation-deficient mutant complex I subunits. Similarly, mitochondrial ATP generation and nuclear DNA repair aremore » also compromised severely in cells harboring mitochondrially targeted, kinase-deficient CDK1. These findings demonstrate a mechanism governing the communication between mitochondria and the nucleus by which CDK1 boosts mitochondrial bioenergetics to meet the increased cellular fuel demand for DNA repair and cell survival under genotoxic stress conditions.« less

  13. GEOGRAPHIC DISTRIBUTION OF MOLECULAR VARIANCE WITHIN THE BLUE MARLIN (MAKAIRA NIGRICANS): A HIERARCHICAL ANALYSIS OF ALLOZYME, SINGLE-COPY NUCLEAR DNA, AND MITOCHONDRIAL DNA MARKERS.

    PubMed

    Buonaccorsi, Vincent P; Reece, Kimberly S; Morgan, Lee W; Graves, John E

    1999-04-01

    This study presents a comparative hierarchical analysis of variance applied to three classes of molecular markers within the blue marlin (Makaira nigricans). Results are reported from analyses of four polymorphic allozyme loci, four polymorphic anonymously chosen single-copy nuclear DNA (scnDNA) loci, and previously reported restriction fragment length polymorphisms (RFLPs) of mitochondrial DNA (mtDNA). Samples were collected within and among the Atlantic and Pacific Oceans over a period of several years. Although moderate levels of genetic variation were detected at both polymorphic allozyme (H = 0.30) and scnDNA loci (H = 0.37), mtDNA markers were much more diverse (h = 0.85). Allele frequencies were significantly different between Atlantic and Pacific Ocean samples at three of four allozyme loci and three of four scnDNA loci. Estimates of allozyme genetic differentiation (θ O ) ranged from 0.00 to 0.15, with a mean of 0.08. The θ O values for scnDNA loci were similar to those of allozymes, ranging from 0.00 to 0.12 with a mean of 0.09. MtDNA RFLP divergence between oceans (θ O = 0.39) was significantly greater than divergence detected at nuclear loci (95% nuclear confidence interval = 0.04-0.11). The fourfold smaller effective population size of mtDNA and male-mediated gene flow may account for the difference observed between nuclear and mitochondrial divergence estimates. © 1999 The Society for the Study of Evolution.

  14. Entire plastid phylogeny of the carrot genus (Daucus, Apiaceae):Concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid

    USDA-ARS?s Scientific Manuscript database

    We explored the phylogenetic utility of entire plastid DNA sequences in Daucus and compared the results to prior phylogenetic results using plastid, nuclear, and mitochondrial DNA sequences. We obtained, using Illumina sequencing, full plastid sequences of 37 accessions of 20 Daucus taxa and outgrou...

  15. 21 CFR 866.5820 - Systemic lupus erythema-tosus immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... with cellular nuclear double-stranded deoxyribonucleic acid (DNA) or other nuclear constituents that are specifically diagnostic of SLE. Measurement of nuclear double-stranded DNA antibodies aids in the...

  16. 21 CFR 866.5820 - Systemic lupus erythema-tosus immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... with cellular nuclear double-stranded deoxyribonucleic acid (DNA) or other nuclear constituents that are specifically diagnostic of SLE. Measurement of nuclear double-stranded DNA antibodies aids in the...

  17. 21 CFR 866.5820 - Systemic lupus erythema-tosus immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... with cellular nuclear double-stranded deoxyribonucleic acid (DNA) or other nuclear constituents that are specifically diagnostic of SLE. Measurement of nuclear double-stranded DNA antibodies aids in the...

  18. 21 CFR 866.5820 - Systemic lupus erythema-tosus immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... with cellular nuclear double-stranded deoxyribonucleic acid (DNA) or other nuclear constituents that are specifically diagnostic of SLE. Measurement of nuclear double-stranded DNA antibodies aids in the...

  19. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data and SRIM calculations. Preliminary studies regarding the biological endpoints DSB (cluster) and chromosomal aberrations have been performed for selected light ions up to neon. Validation with experimental data as well as further calculations are underway and final results will be presented at the meeting. Mitochondrial alterations have been implicated in radiation-induced cardiovascular effects. To extend the applicability of PARTRAC biophysical tool towards effects on mitochondria, the nuclear DNA and chromatin as the primary target of radiation has been complemented by a model of mitochondrial DNA (mtDNA) to mimic a coronary cell with thousand mitochondria contained in the cytoplasm. Induced mtDNA damage (SSB, DSB) has been scored for 60Co photons and 5 MeV alpha-particle irradiation, assuming alternative radical scavenging capacities within the mitochondria. While direct radiation effects in mtDNA are identical to nuclear DNA, indirect effects in mtDNA are in general larger due to lower scavenging and the lack of DNA-protecting histones. These simulations complement the scarce experimental data on radiation-induced mtDNA damage and help elucidate the relative roles of initial mtDNA versus nuclear DNA damage and of pathways that amplify their respective effects. Ongoing and planned developments of PARTRAC include coupling with a radiation transport code and track-structure based calculations of cell killing for RBE studies on macroscopic scales within a mixed ion field. [1] Friedland, Dingfelder et al. (2011): "Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC", Mutat. Res. 711, 28-40 [2] Friedland et al. (2013): "Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation", Mutat. Res. 756, 213-223 [3] Schmid, Friedland et al. (2015): "Sub-micrometer 20 MeV protons or 45 MeV lithium spot irradiation enhances yields of dicentric chromosomes due to clustering of DNA double-strand breaks", Mutat. Res. 793, 30-40 [4] Friedland, Schmitt, Kundrat (2015): "Modelling Proton bunches focussed to submicrometre scales: Low-LET Radiation damage in high-LET-like spatial structure", Radiat. Prot. Dosim. 166, 34-37 [5] Schmitt, Friedland, Kundrat, Dingfelder, Ottolenghi (2015): "Cross section scaling for track structure simulations of low-energy ions in liquid water", Radiat. Prot. Dosim. 166, 15-18} Supported by the European Atomic Energy Community's Seventh Framework Programme (FP7/2007-2011) under grant agreement no 249689 "DoReMi" and the German Federal Ministry on Education and Research (KVSF-Projekt "LET-Verbund").

  20. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an eventmore » that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.« less

  1. A kinetic clutch governs uncoiling by type IB topoisomerases

    NASA Astrophysics Data System (ADS)

    Neuman, Keir

    2013-03-01

    Type IB topoisomerases (Top1B) are essential enzymes that relax excessive DNA supercoiling associated with replication and transcription and are important drug targets for cancer chemotherapy. The natural compound camptothecin (CPT) and the cancer chemotherapeutics derived from it, irinotecan and topotecan, are highly specific inhibitors of human nuclear Type IB topoisomerase (nTop1). We employed a magnetic-tweezers based single-molecule DNA supercoil relaxation assay to measure the torque dependence of human nuclear Top1 relaxation (nTop1) and inhibition by CPT. For comparison, we examined the human mitochondrial (Top1mt) topoisomerase and an N-terminal deletion mutant of nTop1 (Top68). Despite substantial sequence homology in their core domains, nTop1 and Top1mt exhibit dramatic differences in sensitivity to torque and CPT, with Top68 betraying intermediate characteristics. In particular, nTop1 displays nearly torque-independent religation probability, distinguishing it from other Top1B enzymes studied to date. Kinetic modeling reveals a hitherto unobserved torque-independent transition linking the DNA rotation and religation phases of the enzymatic cycle. The parameters of this transition determine the torque sensitivity of religation, and the efficiency of CPT binding. This ``kinetic clutch'' mechanism explains the molecular basis of CPT sensitivity and more generally provides a framework with which to interpret Top1B activity and inhibition.

  2. Intracellular trafficking pathways for nuclear delivery of plasmid DNA complexed with highly efficient endosome escape polymers.

    PubMed

    Gillard, Marianne; Jia, Zhongfan; Hou, Jeff Jia Cheng; Song, Michael; Gray, Peter P; Munro, Trent P; Monteiro, Michael J

    2014-10-13

    Understanding the pathways for nuclear entry could see vast improvements in polymer design for the delivery of genetic materials to cells. Here, we use a novel diblock copolymer complexed with plasmid DNA (pDNA) to determine both its cellular entry and nuclear pathways. The diblock copolymer (A-C3) is specifically designed to bind and protect pDNA, release it at a specific time, but more importantly, rapidly escape the endosome. The copolymer was taken up by HEK293 cells preferentially via the clathrin-mediated endocytosis (CME) pathway, and the pDNA entered the nucleus to produce high gene expression levels in all cells after 48 h, a similar observation to the commercially available polymer transfection agent, PEI Max. This demonstrates that the polymers must first escape the endosome and then mediate transport of pDNA to the nucleus for occurrence of gene expression. The amount of pDNA within the nucleus was found to be higher for our A-C3 polymer than PEI Max, with our polymer delivering 7 times more pDNA than PEI Max after 24 h. We further found that entry into the nucleus was primarily through the small nuclear pores and did not occur during mitosis when the nuclear envelope becomes compromised. The observation that the polymers are also found in the nucleus supports the hypothesis that the large pDNA/polymer complex (size ~200 nm) must dissociate prior to nucleus entry and that cationic and hydrophobic monomer units on the polymer may facilitate active transport of the pDNA through the nuclear pore.

  3. Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C.

    PubMed

    Gildemeister, Otto S; Sage, Jay M; Knight, Kendall L

    2009-11-13

    Exposure of cells to DNA-damaging agents results in a rapid increase in the formation of subnuclear complexes containing Rad51. To date, it has not been determined to what extent DNA damage-induced cytoplasmic to nuclear transport of Rad51 may contribute to this process. We have analyzed subcellular fractions of HeLa and HCT116 cells and found a significant increase in nuclear Rad51 levels following exposure to a modest dose of ionizing radiation (2 grays). We also observed a DNA damage-induced increase in nuclear Rad51 in the Brca2-defective cell line Capan-1. To address a possible Brca2-independent mechanism for Rad51 nuclear transport, we analyzed subcellular fractions for two other Rad51-interacting proteins, Rad51C and Xrcc3. Rad51C has a functional nuclear localization signal, and although we found that the subcellular distribution of Xrcc3 was not significantly affected by DNA damage, there was a damage-induced increase in nuclear Rad51C. Furthermore, RNA interference-mediated depletion of Rad51C in HeLa and Capan-1 cells resulted in lower steady-state levels of nuclear Rad51 as well as a diminished DNA damage-induced increase. Our results provide important insight into the cellular regulation of Rad51 nuclear entry and a role for Rad51C in this process.

  4. Mitochondrial-Nuclear Epistasis: Implications for Human Aging and Longevity

    PubMed Central

    Tranah, Gregory

    2010-01-01

    There is substantial evidence that mitochondria are involved in the aging process. Mitochondrial function requires the coordinated expression of hundreds of nuclear genes and a few dozen mitochondrial genes, many of which have been associated with either extended or shortened life span. Impaired mitochondrial function resulting from mtDNA and nuclear DNA variation is likely to contribute to an imbalance in cellular energy homeostasis, increased vulnerability to oxidative stress, and an increased rate of cellular senescence and aging. The complex genetic architecture of mitochondria suggests that there may be an equally complex set of gene interactions (epistases) involving genetic variation in the nuclear and mitochondrial genomes. Results from Drosophila suggest that the effects of mtDNA haplotypes on longevity vary among different nuclear allelic backgrounds, which could account for the inconsistent associations that have been observed between mitochondrial DNA (mtDNA) haplogroups and survival in humans. A diversity of pathways may influence the way mitochondria and nuclear – mitochondrial interactions modulate longevity, including: oxidative phosphorylation; mitochondrial uncoupling; antioxidant defenses; mitochondrial fission and fusion; and sirtuin regulation of mitochondrial genes. We hypothesize that aging and longevity, as complex traits having a significant genetic component, are likely to be controlled by nuclear gene variants interacting with both inherited and somatic mtDNA variability. PMID:20601194

  5. Diarctigenin, a lignan constituent from Arctium lappa, down-regulated zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-kappaB in macrophages.

    PubMed

    Kim, Byung Hak; Hong, Seong Su; Kwon, Soon Woo; Lee, Hwa Young; Sung, Hyeran; Lee, In-Jeong; Hwang, Bang Yeon; Song, Sukgil; Lee, Chong-Kil; Chung, Daehyun; Ahn, Byeongwoo; Nam, Sang-Yoon; Han, Sang-Bae; Kim, Youngsoo

    2008-11-01

    Diarctigenin was previously isolated as an inhibitor of nitric oxide (NO) production in macrophages from the seeds of Arctium lappa used as an alternative medicine for the treatment of inflammatory disorders. However, little is known about the molecular basis of these effects. Here, we demonstrated that diarctigenin inhibited the production of NO, prostaglandin E(2), tumor necrosis factor-alpha, and interleukin (IL)-1beta and IL-6 with IC(50) values of 6 to 12 miciroM in zymosan- or lipopolysaccharide-(LPS) activated macrophages. Diarctigenin attenuated zymosan-induced mRNA synthesis of inducible NO synthase (iNOS) and also inhibited promoter activities of iNOS and cytokine genes in the cells. Because nuclear factor (NF)-kappaB plays a pivotal role in inflammatory gene transcription, we next investigated the effect of diarctigenin on NF-kappaB activation. Diarctigenin inhibited the transcriptional activity and DNA binding ability of NF-kappaB in zymosan-activated macrophages but did not affect the degradation and phosphorylation of inhibitory kappaB (IkappaB) proteins. Moreover, diarctigenin suppressed expression vector NF-kappaB p65-elicited NF-kappaB activation and also iNOS promoter activity, indicating that the compound could directly target an NF-kappa-activating signal cascade downstream of IkappaB degradation and inhibit NF-kappaB-regulated iNOS expression. Diarctigenin also inhibited the in vitro DNA binding ability of NF-kappaB but did not affect the nuclear import of NF-kappaB p65 in the cells. Taken together, diarctigenin down-regulated zymosan- or LPS-induced inflammatory gene transcription in macrophages, which was due to direct inhibition of the DNA binding ability of NF-kappaB. Finally, this study provides a pharmacological potential of diarctigenin in the NF-kappaB-associated inflammatory disorders.

  6. Nuclear counterparts of the cytoplasmic mitochondrial 12S rRNA gene: a problem of ancient DNA and molecular phylogenies.

    PubMed

    van der Kuyl, A C; Kuiken, C L; Dekker, J T; Perizonius, W R; Goudsmit, J

    1995-06-01

    Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.

  7. Predicting nuclear gene coalescence from mitochondrial data: the three-times rule.

    PubMed

    Palumbi, S R; Cipriano, F; Hare, M P

    2001-05-01

    Coalescence theory predicts when genetic drift at nuclear loci will result in fixation of sequence differences to produce monophyletic gene trees. However, the theory is difficult to apply to particular taxa because it hinges on genetically effective population size, which is generally unknown. Neutral theory also predicts that evolution of monophyly will be four times slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. Variation in mitochondrial DNA (mtDNA) within and between species has been studied extensively, but can these mtDNA data be used to predict coalescence in nuclear loci? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The "three-times rule" states that, on average, most nuclear loci will be monophyletic when the branch length leading to the mtDNA sequences of a species is three times longer than the average mtDNA sequence diversity observed within that species. A test using mitochondrial and nuclear intron data from seven species of whales and dolphins suggests general agreement with predictions of the three-times rule. We define the coalescence ratio as the mitochondrial branch length for a species divided by intraspecific mtDNA diversity. We show that species with high coalescence ratios show nuclear monophyly, whereas species with low ratios have polyphyletic nuclear gene trees. As expected, species with intermediate coalescence ratios show a variety of patterns. Especially at very high or low coalescence ratios, the three-times rule predicts nuclear gene patterns that can help detect the action of selection. The three-times rule may be useful as an empirical benchmark for evaluating evolutionary processes occurring at multiple loci.

  8. DNA-HMGB1 interaction: The nuclear aggregates of polyamine mediation.

    PubMed

    Iacomino, Giuseppe; Picariello, Gianluca; Sbrana, Francesca; Raiteri, Roberto; D'Agostino, Luciano

    2016-10-01

    Nuclear aggregates of polyamines (NAPs) are supramolecular compounds generated by the self-assembly of protonated nuclear polyamines (spermine, spermidine and putrescine) and phosphate ions. In the presence of genomic DNA, the hierarchical process of self-structuring ultimately produces nanotube-like polymers that envelop the double helix. Because of their modular nature and their aggregation-disaggregation dynamics, NAPs confer plasticity and flexibility to DNA. Through the disposition of charges, NAPs also enable a bidirectional stream of information between the genome and interacting moieties. High mobility group (HMG) B1 is a non-histone chromosomal protein that binds to DNA and that influences multiple nuclear processes. Because genomic DNA binds to either NAPs or HMGB1 protein, we explored the ability of in vitro self-assembled NAPs (ivNAPs) to mediate the DNA-HMGB1 interaction. To this end, we structured DNA-NAPs-HMGB1 and DNA-HMGB1-NAPs ternary complexes in vitro through opportune sequential incubations. Mobility shift electrophoresis and atomic force microscopy showed that the DNA-ivNAPs-HGMB1 complex had conformational assets supposedly more suitable those of the DNA-HGMB1-ivNAPs to comply with the physiological and functional requirements of DNA. Our findings indicated that ivNAPs act as mediators of the DNA-HMGB1 interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-Rich DNA, and nuclear DNA analyses

    USGS Publications Warehouse

    Freeman, S.; Pham, M.; Rodriguez, R.J.

    1993-01-01

    Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-rich DNA, and nuclear DNA analyses. Experimental Mycology 17, 309-322. Isolates of Colletotrichum were grouped into 10 separate species based on arbitrarily primed PCR (ap-PCR), A + T-rich DNA (AT-DNA) and nuclear DNA banding patterns. In general, the grouping of Colletotrichum isolates by these molecular approaches corresponded to that done by classical taxonomic identification, however, some exceptions were observed. PCR amplification of genomic DNA using four different primers allowed for reliable differentiation between isolates of the 10 species. HaeIII digestion patterns of AT-DNA also distinguished between species of Colletotrichum by generating species-specific band patterns. In addition, hybridization of the repetitive DNA element (GcpR1) to genomic DNA identified a unique set of Pst 1-digested nuclear DNA fragments in each of the 10 species of Colletotrichum tested. Multiple isolates of C. acutatum, C. coccodes, C. fragariae, C. lindemuthianum, C. magna, C. orbiculare, C. graminicola from maize, and C. graminicola from sorghum showed 86-100% intraspecies similarity based on ap-PCR and AT-DNA analyses. Interspecies similarity determined by ap-PCR and AT-DNA analyses varied between 0 and 33%. Three distinct banding patterns were detected in isolates of C. gloeosporioides from strawberry. Similarly, three different banding patterns were observed among isolates of C. musae from diseased banana.

  10. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation

    PubMed Central

    Hellberg, Michael E

    2006-01-01

    Background The mitochondrial DNA (mtDNA) of most animals evolves more rapidly than nuclear DNA, and often shows higher levels of intraspecific polymorphism and population subdivision. The mtDNA of anthozoans (corals, sea fans, and their kin), by contrast, appears to evolve slowly. Slow mtDNA evolution has been reported for several anthozoans, however this slow pace has been difficult to put in phylogenetic context without parallel surveys of nuclear variation or calibrated rates of synonymous substitution that could permit quantitative rate comparisons across taxa. Here, I survey variation in the coding region of a mitochondrial gene from a coral species (Balanophyllia elegans) known to possess high levels of nuclear gene variation, and estimate synonymous rates of mtDNA substitution by comparison to another coral (Tubastrea coccinea). Results The mtDNA surveyed (630 bp of cytochrome oxidase subunit I) was invariant among individuals sampled from 18 populations spanning 3000 km of the range of B. elegans, despite high levels of variation and population subdivision for allozymes over these same populations. The synonymous substitution rate between B. elegans and T. coccinea (0.05%/site/106 years) is similar to that in most plants, but 50–100 times lower than rates typical for most animals. In addition, while substitutions to mtDNA in most animals exhibit a strong bias toward transitions, mtDNA from these corals does not. Conclusion Slow rates of mitochondrial nucleotide substitution result in low levels of intraspecific mtDNA variation in corals, even when nuclear loci vary. Slow mtDNA evolution appears to be the basal condition among eukaryotes. mtDNA substitution rates switch from slow to fast abruptly and unidirectionally. This switch may stem from the loss of just one or a few mitochondrion-specific DNA repair or replication genes. PMID:16542456

  11. Aphidicolin-induced nuclear elongation in tobacco BY-2 cells.

    PubMed

    Yasuhara, Hiroki; Kitamoto, Kazuki

    2014-05-01

    Plant nuclei are known to differentiate into various shapes within a single plant. However, little is known about the mechanisms of nuclear morphogenesis. We found that nuclei of tobacco BY-2 cells were highly elongated on long-term treatment with 5 mg l⁻¹ aphidicolin, an inhibitor of DNA polymerase α. In aphidicolin-treated cells, the nuclear length was correlated with the cell length. During culture in the presence of aphidicolin, the nuclei were elongated in parallel with cell elongation. Nuclear elongation was inhibited by the inhibition of cell elongation with 2,6-dichlorobenzonitrile, a cellulose synthesis inhibitor. However, cell elongation induced in the auxin-depleted medium in the absence of aphidicolin did not cause nuclear elongation, indicating that cell elongation alone is not sufficient for nuclear elongation. Treatment with either latrunculin B or propyzamide inhibited the aphidicolin-induced nuclear elongation, indicating that both actin filaments and microtubules (MTs) are required for nuclear elongation. Observations using BY-YTHCLR2 cells, in which actin filaments, MTs and nuclei were simultaneously visualized, revealed that the longitudinally arranged MT bundles associated with the nucleus play an important role in nuclear elongation, and that actin filaments affect the formation of these MT bundles. In aphidicolin-treated cells, the nuclear DNA contents of the elongated nuclei exceeded 4C, and the nuclear length was highly correlated with the nuclear DNA content. In cells treated with 50 mg l⁻¹ aphidicolin, cells were elongated and nucleus-associated longitudinal MT bundles were formed, but the nuclear DNA contents did not exceed 4C and the nuclei did not elongate. These results indicate that an increase in the nuclear DNA content above 4C is also required for nuclear elongation.

  12. The nuclear higher-order structure defined by the set of topological relationships between DNA and the nuclear matrix is species-specific in hepatocytes.

    PubMed

    Silva-Santiago, Evangelina; Pardo, Juan Pablo; Hernández-Muñoz, Rolando; Aranda-Anzaldo, Armando

    2017-01-15

    During the interphase the nuclear DNA of metazoan cells is organized in supercoiled loops anchored to constituents of a nuclear substructure or compartment known as the nuclear matrix. The stable interactions between DNA and the nuclear matrix (NM) correspond to a set of topological relationships that define a nuclear higher-order structure (NHOS). Current evidence suggests that the NHOS is cell-type-specific. Biophysical evidence and theoretical models suggest that thermodynamic and structural constraints drive the actualization of DNA-NM interactions. However, if the topological relationships between DNA and the NM were the subject of any biological constraint with functional significance then they must be adaptive and thus be positively selected by natural selection and they should be reasonably conserved, at least within closely related species. We carried out a coarse-grained, comparative evaluation of the DNA-NM topological relationships in primary hepatocytes from two closely related mammals: rat and mouse, by determining the relative position to the NM of a limited set of target sequences corresponding to highly-conserved genomic regions that also represent a sample of distinct chromosome territories within the interphase nucleus. Our results indicate that the pattern of topological relationships between DNA and the NM is not conserved between the hepatocytes of the two closely related species, suggesting that the NHOS, like the karyotype, is species-specific. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The emerging role of nuclear viral DNA sensors.

    PubMed

    Diner, Benjamin A; Lum, Krystal K; Cristea, Ileana M

    2015-10-30

    Detecting pathogenic DNA by intracellular receptors termed "sensors" is critical toward galvanizing host immune responses and eliminating microbial infections. Emerging evidence has challenged the dogma that sensing of viral DNA occurs exclusively in sub-cellular compartments normally devoid of cellular DNA. The interferon-inducible protein IFI16 was shown to bind nuclear viral DNA and initiate immune signaling, culminating in antiviral cytokine secretion. Here, we review the newly characterized nucleus-originating immune signaling pathways, their links to other crucial host defenses, and unique mechanisms by which viruses suppress their functions. We frame these findings in the context of human pathologies associated with nuclear replicating DNA viruses. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. HTLV-1 Tax Oncoprotein Subverts the Cellular DNA Damage Response via Binding to DNA-dependent Protein Kinase*S⃞

    PubMed Central

    Durkin, Sarah S.; Guo, Xin; Fryrear, Kimberly A.; Mihaylova, Valia T.; Gupta, Saurabh K.; Belgnaoui, S. Mehdi; Haoudi, Abdelali; Kupfer, Gary M.; Semmes, O. John

    2008-01-01

    Human T-cell leukemia virus type-1 is the causative agent for adult T-cell leukemia. Previous research has established that the viral oncoprotein Tax mediates the transformation process by impairing cell cycle control and cellular response to DNA damage. We showed previously that Tax sequesters huChk2 within chromatin and impairs the response to ionizing radiation. Here we demonstrate that DNA-dependent protein kinase (DNA-PK) is a member of the Tax·Chk2 nuclear complex. The catalytic subunit, DNA-PKcs, and the regulatory subunit, Ku70, were present. Tax-containing nuclear extracts showed increased DNA-PK activity, and specific inhibition of DNA-PK prevented Tax-induced activation of Chk2 kinase activity. Expression of Tax induced foci formation and phosphorylation of H2AX. However, Tax-induced constitutive signaling of the DNA-PK pathway impaired cellular response to new damage, as reflected in suppression of ionizing radiation-induced DNA-PK phosphorylation and γH2AX stabilization. Tax co-localized with phospho-DNA-PK into nuclear speckles and a nuclear excluded Tax mutant sequestered endogenous phospho-DNA-PK into the cytoplasm, suggesting that Tax interaction with DNA-PK is an initiating event. We also describe a novel interaction between DNA-PK and Chk2 that requires Tax. We propose that Tax binds to and stabilizes a protein complex with DNA-PK and Chk2, resulting in a saturation of DNA-PK-mediated damage repair response. PMID:18957425

  15. Asexual-sexual morph connection in the type species of Berkleasmium.

    PubMed

    Tanney, Joey; Miller, Andrew N

    2017-06-01

    Berkleasmium is a polyphyletic genus comprising 37 dematiaceous hyphomycetous species. In this study, independent collections of the type species, B. concinnum , were made from Eastern North America. Nuclear internal transcribed spacer rDNA (ITS) and partial nuc 28S large subunit rDNA (LSU) sequences obtained from collections and subsequent cultures showed that Berkleasmium concinnum is the asexual morph of Neoacanthostigma septoconstrictum ( Tubeufiaceae , Tubeufiales ). Phylogenies inferred from Bayesian inference and maximum likelihood analyses of ITS-LSU sequence data confirmed this asexual-sexual morph connection and a re-examination of fungarium reference specimens also revealed the co-occurrence of N. septoconstrictum ascomata and B. concinnum sporodochia. Neoacanthostigma septoconstrictum is therefore synonymized under B. concinnum on the basis of priority. A specimen identified as N. septoconstrictum from Thailand is described as N. thailandicum sp. nov., based on morphological and genetic distinctiveness.

  16. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales.

    PubMed

    Palumbi, S R; Baker, C S

    1994-05-01

    Powerful analyses of population structure require information from multiple genetic loci. To help develop a molecular toolbox for obtaining this information, we have designed universal oligonucleotide primers that span conserved intron-exon junctions in a wide variety of animal phyla. We test the utility of exon-primed, intron-crossing amplifications by analyzing the variability of actin intron sequences from humpback, blue, and bowhead whales and comparing the results with mitochondrial DNA (mtDNA) haplotype data. Humpback actin introns fall into two major clades that exist in different frequencies in different oceanic populations. It is surprising that Hawaii and California populations, which are very distinct in mtDNAs, are similar in actin intron alleles. This discrepancy between mtDNA and nuclear DNA results may be due either to differences in genetic drift in mitochondrial and nuclear genes or to preferential movement of males, which do not transmit mtDNA to offspring, between separate breeding grounds. Opposing mtDNA and nuclear DNA results can help clarify otherwise hidden patterns of structure in natural populations.

  17. Reduction of nuclear encoded enzymes of mitochondrial energy metabolism in cells devoid of mitochondrial DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Edith E., E-mail: ed.mueller@salk.at; Mayr, Johannes A., E-mail: h.mayr@salk.at; Zimmermann, Franz A., E-mail: f.zimmermann@salk.at

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer We examined OXPHOS and citrate synthase enzyme activities in HEK293 cells devoid of mtDNA. Black-Right-Pointing-Pointer Enzymes partially encoded by mtDNA show reduced activities. Black-Right-Pointing-Pointer Also the entirely nuclear encoded complex II and citrate synthase exhibit reduced activities. Black-Right-Pointing-Pointer Loss of mtDNA induces a feedback mechanism that downregulates complex II and citrate synthase. -- Abstract: Mitochondrial DNA (mtDNA) depletion syndromes are generally associated with reduced activities of oxidative phosphorylation (OXPHOS) enzymes that contain subunits encoded by mtDNA. Conversely, entirely nuclear encoded mitochondrial enzymes in these syndromes, such as the tricarboxylic acid cycle enzyme citrate synthase (CS) and OXPHOS complexmore » II, usually exhibit normal or compensatory enhanced activities. Here we report that a human cell line devoid of mtDNA (HEK293 {rho}{sup 0} cells) has diminished activities of both complex II and CS. This finding indicates the existence of a feedback mechanism in {rho}{sup 0} cells that downregulates the expression of entirely nuclear encoded components of mitochondrial energy metabolism.« less

  18. Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A

    PubMed Central

    Kelly, Richard D. W.; Mahmud, Arsalan; McKenzie, Matthew; Trounce, Ian A.; St John, Justin C.

    2012-01-01

    DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (>20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA. Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization. PMID:22941637

  19. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit.

    PubMed

    Mulero, Maria Carmen; Shahabi, Shandy; Ko, Myung Soo; Schiffer, Jamie M; Huang, De-Bin; Wang, Vivien Ya-Fan; Amaro, Rommie E; Huxford, Tom; Ghosh, Gourisankar

    2018-05-22

    Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.

  20. Baculovirus LEF-11 nuclear localization signal is important for viral DNA replication.

    PubMed

    Chen, Tingting; Dong, Zhanqi; Hu, Nan; Hu, Zhigang; Dong, Feifan; Jiang, Yaming; Li, Jun; Chen, Peng; Lu, Cheng; Pan, Minhui

    2017-06-15

    Baculovirus LEF-11 is a small nuclear protein that is involved in viral late gene transcription and DNA replication. However, the characteristics of its nuclear localization signal and its impact on viral DNA replication are unknown. In the present study, systemic bioinformatics analysis showed that the baculovirus LEF-11 contains monopartite and bipartite classical nuclear localization signal sequences (cNLSs), which were also detected in a few alphabaculovirus species. Localization of representative LEF-11 proteins of four baculovirus genera indicated that the nuclear localization characteristics of baculovirus LEF-11 coincided with the predicted results. Moreover, Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 could be transported into the nucleus during viral infection in the absence of a cNLSs. Further investigations demonstrated that the NLS of BmNPV LEF-11 is important for viral DNA replication. The findings of the present study indicate that the characteristics of the baculovirus LEF-11 protein and the NLS is essential to virus DNA replication and nuclear transport mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Cell-free mitochondrial DNA copy number variation in head and neck squamous cell carcinoma: A study of non-invasive biomarker from Northeast India.

    PubMed

    Kumar, Manish; Srivastava, Shilpee; Singh, Seram Anil; Das, Anup Kumar; Das, Ganesh Chandra; Dhar, Bishal; Ghosh, Sankar Kumar; Mondal, Rosy

    2017-10-01

    Head and neck squamous cell carcinoma is the most commonly diagnosed cancer worldwide. The lifestyle, food habits, and customary practices manifest the Northeast Indian population toward higher susceptibility to develop head and neck squamous cell carcinoma. Here, we have investigated the association of smoke and smokeless tobacco, and alcohol with copy number variation of cell-free mitochondrial DNA and cell-free nuclear DNA in cases and controls. Cell-free DNA from plasma was isolated from 50 head and neck squamous cell carcinoma cases and 50 controls with informed written consent using QIAamp Circulating Nucleic Acid Kit. Real-time polymerase chain reaction was done for copy number variation in cell-free mitochondrial DNA and cell-free nuclear DNA. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic application between the two study groups using clinicopathological parameters. The levels of cell-free nuclear DNA and cell-free mitochondrial DNA of cases in association with smoke and smokeless tobacco, alcohol with smoking (p < 0.05) were significantly higher (p < 0.01 and p < 0.001, respectively) than controls. Using receiver operating characteristic curve analysis between head and neck squamous cell carcinoma cases and controls, we distinguished cell-free mitochondrial DNA (cutoff: 19.84 raw Ct; sensitivity: 84%; specificity: 100%; p < 0.001) and cell-free nuclear DNA (cutoff: 463,282 genomic equivalent/mL; sensitivity: 53%; specificity: 87%; p < 0.001). The copy number variation in cases (cell-free nuclear DNA: 5451.66 genomic equivalent/mL and cell-free mitochondrial DNA: 29,103,476.15 genomic equivalent/mL) and controls (cell-free nuclear DNA: 1650.9 genomic equivalent/mL and cell-free mitochondrial DNA: 9,189,312.54 genomic equivalent/mL), respectively. Our result indicates that the cell-free mitochondrial DNA content is highly associated with smoke and smokeless tobacco, betel quid chewing, and alcohol which shows greater promises, holding the key characteristics of diagnostic biomarkers, that is, minimal invasiveness, high specificity, and sensitivity.

  2. The Alarmin Properties of DNA and DNA-associated Nuclear Proteins.

    PubMed

    Magna, Melinda; Pisetsky, David S

    2016-05-01

    The communication of cell injury and death is a critical element in host defense. Although immune cells can serve this function by elaborating cytokines and chemokines, somatic cells can repurpose nuclear macromolecules to function as damage-associated molecular patterns (DAMPs) or alarmins to exert similar activity. Among these molecules, DNA, high-mobility group box-1, and histone proteins can all act as DAMPs once they are in an extracellular location. This review describes current information on the role of the nuclear DAMPs, their translocation to the outside of cells, and pathways of activation after uptake into the inside of immune cells. MEDLINE and PubMed databases were searched for citations (1990-2016) in English related to the following terms: DAMPs, high-mobility group box-1, DNA, histones, cell death, danger, and immune activation. Selected articles with the most relevant studies were included for a more detailed consideration. Although nuclear molecules have important structural and genetic regulatory roles inside the cell nucleus, when released into the extracellular space during cell death, these molecules can acquire immune activity and serve as alarmins or DAMPs. Although apoptosis is generally considered the source of extracellular nuclear material, other cell death pathways such as necroptosis, NETosis, and pyroptosis can contribute to the release of nuclear molecules. Importantly, the release of nuclear DAMPs occurs with both soluble and particulate forms of these molecules. The activity of nuclear molecules may depend on posttranslational modifications, redox changes, and the binding of other molecules. Once in an extracellular location, nuclear DAMPs can engage the same pattern recognition receptors as do pathogen-associated molecular patterns. These interactions can activate immune cells and lead to cytokine and chemokine production. Among these receptors, internal receptors for DNA are key to the response to this molecule; the likely function of these internal sensors is the recognition of DNA from intracellular infection by bacteria or viruses. Activation of these receptors requires translocation of extracellular DNA into specialized compartments. In addition to nuclear DNA, mitochondrial DNA can also serve as a DAMP. The communication of cell injury and death is a critical element in host defense and involves the repurposing of nuclear molecules as immune triggers. As such, the presence of extracellular nuclear material can serve as novel biomarkers for conditions involving cell injury and death. Targeting of these molecules may also represent an important new approach to therapy. Published by Elsevier Inc.

  3. Entire plastid phylogeny of the carrot genus (Daucus, Apiaceae): Concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid.

    PubMed

    Spooner, David M; Ruess, Holly; Iorizzo, Massimo; Senalik, Douglas; Simon, Philipp

    2017-02-01

    We explored the phylogenetic utility of entire plastid DNA sequences in Daucus and compared the results with prior phylogenetic results using plastid and nuclear DNA sequences. We used Illumina sequencing to obtain full plastid sequences of 37 accessions of 20 Daucus taxa and outgroups, analyzed the data with phylogenetic methods, and examined evidence for mitochondrial DNA transfer to the plastid ( Dc MP). Our phylogenetic trees of the entire data set were highly resolved, with 100% bootstrap support for most of the external and many of the internal clades, except for the clade of D. carota and its most closely related species D. syrticus . Subsets of the data, including regions traditionally used as phylogenetically informative regions, provide various degrees of soft congruence with the entire data set. There are areas of hard incongruence, however, with phylogenies using nuclear data. We extended knowledge of a mitochondrial to plastid DNA insertion sequence previously named Dc MP and identified the first instance in flowering plants of a sequence of potential nuclear genome origin inserted into the plastid genome. There is a relationship of inverted repeat junction classes and repeat DNA to phylogeny, but no such relationship with nonsynonymous mutations. Our data have allowed us to (1) produce a well-resolved plastid phylogeny of Daucus , (2) evaluate subsets of the entire plastid data for phylogeny, (3) examine evidence for plastid and nuclear DNA phylogenetic incongruence, and (4) examine mitochondrial and nuclear DNA insertion into the plastid. © 2017 Spooner et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons public domain license (CC0 1.0).

  4. Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects.

    PubMed

    Zhang, De-Xing; Hewitt, Godfrey M

    2003-03-01

    Population-genetic studies have been remarkably productive and successful in the last decade following the invention of PCR technology and the introduction of mitochondrial and microsatellite DNA markers. While mitochondrial DNA has proven powerful for genealogical and evolutionary studies of animal populations, and microsatellite sequences are the most revealing DNA markers available so far for inferring population structure and dynamics, they both have important and unavoidable limitations. To obtain a fuller picture of the history and evolutionary potential of populations, genealogical data from nuclear loci are essential, and the inclusion of other nuclear markers, i.e. single copy nuclear polymorphic (scnp) sequences, is clearly needed. Four major uncertainties for nuclear DNA analyses of populations have been facing us, i.e. the availability of scnp markers for carrying out such analysis, technical laboratory hurdles for resolving haplotypes, difficulty in data analysis because of recombination, low divergence levels and intraspecific multifurcation evolution, and the utility of scnp markers for addressing population-genetic questions. In this review, we discuss the availability of highly polymorphic single copy DNA in the nuclear genome, describe patterns and rate of evolution of nuclear sequences, summarize past empirical and theoretical efforts to recover and analyse data from scnp markers, and examine the difficulties, challenges and opportunities faced in such studies. We show that although challenges still exist, the above-mentioned obstacles are now being removed. Recent advances in technology and increases in statistical power provide the prospect of nuclear DNA analyses becoming routine practice, allowing allele-discriminating characterization of scnp loci and microsatellite loci. This certainly will increase our ability to address more complex questions, and thereby the sophistication of genetic analyses of populations.

  5. A chimeric protein composed of NuMA fused to the DNA binding domain of LANA is sufficient for the ori-P-dependent DNA replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsaki, Eriko; Ueda, Keiji, E-mail: kueda@virus.me

    The Kaposi's sarcoma-associated herpesvirus (KSHV) genome is stably maintained in KSHV-infected PEL cell lines during cell division. We previously showed that accumulation of LANA in the nuclear matrix fraction could be important for the latent DNA replication, and that the functional significance of LANA should be its recruitment of ori-P to the nuclear matrix. Here, we investigated whether the forced localization of the LANA-DNA binding domain (DBD) to the nuclear matrix facilitated ori-P-containing plasmid replication. We demonstrated that chimeric proteins constructed by fusion of LANA DBD with the nuclear mitotic apparatus protein (NuMA), which is one of the components ofmore » the nuclear matrix, could bind with ori-P and enhance replication of an ori-P-containing plasmid, compared with that in the presence of DBD alone. These results further suggested that the ori-P recruitment to the nuclear matrix through the binding with DBD is important for latent viral DNA replication. - Highlights: •KSHV replication in latency depends on LANA localization to the nuclear matrix. •LANA DBD was fused with NuMA, a nuclear matrix protein, at the N- and C-terminus. •NuMA-DBD was in the nuclear matrix and supported the ori-P dependent replication. •LANA in the nuclear matrix should be important for the KSHV replication in latency.« less

  6. A CORRELATION BETWEEN RADIATION TOLERANCE AND NUCLEAR SURFACE AREA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, S.

    1962-09-22

    Sparrow and Miksche (Science, 134:282) determined the dose (r/day) required to produce severe growth inhibition in 23 species of plants and found a linear relationship between log nuclear volume and log dose. The following equations hold for 6 species: log nuclear volume - 4.42 -0.82 log dose and log nuclear volume = 1.66 + 0.66 log (DNA content). If all the nuclear DNA is distributed in two peripheral zones, the equations also hold: 2(log nuclear surface area) - 1.33(log nuclear volume) - 2.21 + 0.88 log(DNA content) and 5.88-- 1.09 log dose. For the 23 species, the equation was obtained:more » 2(log nuclear surface area) = 5.41 -- 0.97 log dose. All the slopes are close to the expected value of 1.00. (D.L.C.)« less

  7. Human beta-globin gene polymorphisms characterized in DNA extracted from ancient bones 12,000 years old.

    PubMed

    Béraud-Colomb, E; Roubin, R; Martin, J; Maroc, N; Gardeisen, A; Trabuchet, G; Goosséns, M

    1995-12-01

    Analyzing the nuclear DNA from ancient human bones is an essential step to the understanding of genetic diversity in current populations, provided that such systematic studies are experimentally feasible. This article reports the successful extraction and amplification of nuclear DNA from the beta-globin region from 5 of 10 bone specimens up to 12,000 years old. These have been typed for beta-globin frameworks by sequencing through two variable positions and for a polymorphic (AT) chi (T) gamma microsatellite 500 bp upstream of the beta-globin gene. These specimens of human remains are somewhat older than those analyzed in previous nuclear gene sequencing reports and considerably older than those used to study high-copy-number human mtDNA. These results show that the systematic study of nuclear DNA polymorphisms of ancient populations is feasible.

  8. Plant polyphenols mobilize nuclear copper in human peripheral lymphocytes leading to oxidatively generated DNA breakage: implications for an anticancer mechanism.

    PubMed

    Shamim, Uzma; Hanif, Sarmad; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M

    2008-08-01

    It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage.

  9. Nuclear markers confirm taxonomic status and relationships among highly endangered and closely related right whale species

    PubMed Central

    Gaines, C.A; Hare, M.P; Beck, S.E; Rosenbaum, H.C

    2005-01-01

    Right whales (genus: Eubalaena) are among the most endangered mammals, yet their taxonomy and phylogeny have been questioned. A phylogenetic hypothesis based on mitochondrial DNA (mtDNA) variation recently prompted a taxonomic revision, increasing the number of right whale species to three. We critically evaluated this hypothesis using sequence data from 13 nuclear DNA (nuDNA) loci as well as the mtDNA control region. Fixed diagnostic characters among the nuclear markers strongly support the hypothesis of three genetically distinct species, despite the lack of any diagnostic morphological characters. A phylogenetic analysis of all data produced a strict consensus cladogram with strong support at nodes that define each right whale species as well as relationships among species. Results showed very little conflict among the individual partitions as well as congruence between the mtDNA and nuDNA datasets. These data clearly demonstrate the strength of using numerous independent genetic markers during a phylogenetic analysis of closely related species. In evaluating phylogenetic support contributed by individual loci, 11 of the 14 loci provided support for at least one of the nodes of interest to this study. Only a single marker (mtDNA control region) provided support at all four nodes. A study using any single nuclear marker would have failed to support the proposed phylogeny, and a strong phylogenetic hypothesis was only revealed by the simultaneous analysis of many nuclear loci. In addition, nuDNA and mtDNA data provided complementary levels of support at nodes of different evolutionary depth indicating that the combined use of mtDNA and nuDNA data is both practical and desirable. PMID:15846869

  10. Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia.

    PubMed

    Horga, Alejandro; Pitceathly, Robert D S; Blake, Julian C; Woodward, Catherine E; Zapater, Pedro; Fratter, Carl; Mudanohwo, Ese E; Plant, Gordon T; Houlden, Henry; Sweeney, Mary G; Hanna, Michael G; Reilly, Mary M

    2014-12-01

    Progressive external ophthalmoplegia is a common clinical feature in mitochondrial disease caused by nuclear DNA defects and single, large-scale mitochondrial DNA deletions and is less frequently associated with point mutations of mitochondrial DNA. Peripheral neuropathy is also a frequent manifestation of mitochondrial disease, although its prevalence and characteristics varies considerably among the different syndromes and genetic aetiologies. Based on clinical observations, we systematically investigated whether the presence of peripheral neuropathy could predict the underlying genetic defect in patients with progressive external ophthalmoplegia. We analysed detailed demographic, clinical and neurophysiological data from 116 patients with genetically-defined mitochondrial disease and progressive external ophthalmoplegia. Seventy-eight patients (67%) had a single mitochondrial DNA deletion, 12 (10%) had a point mutation of mitochondrial DNA and 26 (22%) had mutations in either POLG, C10orf2 or RRM2B, or had multiple mitochondrial DNA deletions in muscle without an identified nuclear gene defect. Seventy-seven patients had neurophysiological studies; of these, 16 patients (21%) had a large-fibre peripheral neuropathy. The prevalence of peripheral neuropathy was significantly lower in patients with a single mitochondrial DNA deletion (2%) as compared to those with a point mutation of mitochondrial DNA or with a nuclear DNA defect (44% and 52%, respectively; P<0.001). Univariate analyses revealed significant differences in the distribution of other clinical features between genotypes, including age at disease onset, gender, family history, progressive external ophthalmoplegia at clinical presentation, hearing loss, pigmentary retinopathy and extrapyramidal features. However, binomial logistic regression analysis identified peripheral neuropathy as the only independent predictor associated with a nuclear DNA defect (P=0.002; odds ratio 8.43, 95% confidence interval 2.24-31.76). Multinomial logistic regression analysis identified peripheral neuropathy, family history and hearing loss as significant predictors of the genotype, and the same three variables showed the highest performance in genotype classification in a decision tree analysis. Of these variables, peripheral neuropathy had the highest specificity (91%), negative predictive value (83%) and positive likelihood ratio (5.87) for the diagnosis of a nuclear DNA defect. These results indicate that peripheral neuropathy is a rare finding in patients with single mitochondrial DNA deletions but that it is highly predictive of an underlying nuclear DNA defect. This observation may facilitate the development of diagnostic algorithms. We suggest that nuclear gene testing may enable a more rapid diagnosis and avoid muscle biopsy in patients with progressive external ophthalmoplegia and peripheral neuropathy. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

  11. Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia

    PubMed Central

    Pitceathly, Robert D. S.; Blake, Julian C.; Woodward, Catherine E.; Zapater, Pedro; Fratter, Carl; Mudanohwo, Ese E.; Plant, Gordon T.; Houlden, Henry; Sweeney, Mary G.; Hanna, Michael G.; Reilly, Mary M.

    2014-01-01

    Progressive external ophthalmoplegia is a common clinical feature in mitochondrial disease caused by nuclear DNA defects and single, large-scale mitochondrial DNA deletions and is less frequently associated with point mutations of mitochondrial DNA. Peripheral neuropathy is also a frequent manifestation of mitochondrial disease, although its prevalence and characteristics varies considerably among the different syndromes and genetic aetiologies. Based on clinical observations, we systematically investigated whether the presence of peripheral neuropathy could predict the underlying genetic defect in patients with progressive external ophthalmoplegia. We analysed detailed demographic, clinical and neurophysiological data from 116 patients with genetically-defined mitochondrial disease and progressive external ophthalmoplegia. Seventy-eight patients (67%) had a single mitochondrial DNA deletion, 12 (10%) had a point mutation of mitochondrial DNA and 26 (22%) had mutations in either POLG, C10orf2 or RRM2B, or had multiple mitochondrial DNA deletions in muscle without an identified nuclear gene defect. Seventy-seven patients had neurophysiological studies; of these, 16 patients (21%) had a large-fibre peripheral neuropathy. The prevalence of peripheral neuropathy was significantly lower in patients with a single mitochondrial DNA deletion (2%) as compared to those with a point mutation of mitochondrial DNA or with a nuclear DNA defect (44% and 52%, respectively; P < 0.001). Univariate analyses revealed significant differences in the distribution of other clinical features between genotypes, including age at disease onset, gender, family history, progressive external ophthalmoplegia at clinical presentation, hearing loss, pigmentary retinopathy and extrapyramidal features. However, binomial logistic regression analysis identified peripheral neuropathy as the only independent predictor associated with a nuclear DNA defect (P = 0.002; odds ratio 8.43, 95% confidence interval 2.24–31.76). Multinomial logistic regression analysis identified peripheral neuropathy, family history and hearing loss as significant predictors of the genotype, and the same three variables showed the highest performance in genotype classification in a decision tree analysis. Of these variables, peripheral neuropathy had the highest specificity (91%), negative predictive value (83%) and positive likelihood ratio (5.87) for the diagnosis of a nuclear DNA defect. These results indicate that peripheral neuropathy is a rare finding in patients with single mitochondrial DNA deletions but that it is highly predictive of an underlying nuclear DNA defect. This observation may facilitate the development of diagnostic algorithms. We suggest that nuclear gene testing may enable a more rapid diagnosis and avoid muscle biopsy in patients with progressive external ophthalmoplegia and peripheral neuropathy. PMID:25281868

  12. Few mitochondrial DNA sequences are inserted into the turkey (Meleagris gallopavo) nuclear genome: evolutionary analyses and informativity in the domestic lineage.

    PubMed

    Schiavo, G; Strillacci, M G; Ribani, A; Bovo, S; Roman-Ponce, S I; Cerolini, S; Bertolini, F; Bagnato, A; Fontanesi, L

    2018-06-01

    Mitochondrial DNA (mtDNA) insertions have been detected in the nuclear genome of many eukaryotes. These sequences are pseudogenes originated by horizontal transfer of mtDNA fragments into the nuclear genome, producing nuclear DNA sequences of mitochondrial origin (numt). In this study we determined the frequency and distribution of mtDNA-originated pseudogenes in the turkey (Meleagris gallopavo) nuclear genome. The turkey reference genome (Turkey_2.01) was aligned with the reference linearized mtDNA sequence using last. A total of 32 numt sequences (corresponding to 18 numt regions derived by unique insertional events) were identified in the turkey nuclear genome (size ranging from 66 to 1415 bp; identity against the modern turkey mtDNA corresponding region ranging from 62% to 100%). Numts were distributed in nine chromosomes and in one scaffold. They derived from parts of 10 mtDNA protein-coding genes, ribosomal genes, the control region and 10 tRNA genes. Seven numt regions reported in the turkey genome were identified in orthologues positions in the Gallus gallus genome and therefore were present in the ancestral genome that in the Cretaceous originated the lineages of the modern crown Galliformes. Five recently integrated turkey numts were validated by PCR in 168 turkeys of six different domestic populations. None of the analysed numts were polymorphic (i.e. absence of the inserted sequence, as reported in numts of recent integration in other species), suggesting that the reticulate speciation model is not useful for explaining the origin of the domesticated turkey lineage. © 2018 Stichting International Foundation for Animal Genetics.

  13. Training Program in the Molecular Basis of Breast Cancer Research

    DTIC Science & Technology

    2000-08-01

    BRCA1 protein and the product was purified by electrophoresis on a 15% polyacryl - interact with the importin-a subunit of the nuclear transport signal...40 mM potassium phos- the 2.0-kb DNA fragment containing the complete ORF of scHEC] was inserted phate [pH 6.5] containing 0.5 M MgC12 and 4...with a mM potassium HEPES [pH 7.7], 0.1 M KCI, 10% glycerol, 2 mM MgC12, 5 mM number of proteins important for GV/M progression and chro- EGTA), 0.5 ml

  14. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency

    PubMed Central

    Calvo, Sarah E; Tucker, Elena J; Compton, Alison G; Kirby, Denise M; Crawford, Gabriel; Burtt, Noel P; Rivas, Manuel A; Guiducci, Candace; Bruno, Damien L; Goldberger, Olga A; Redman, Michelle C; Wiltshire, Esko; Wilson, Callum J; Altshuler, David; Gabriel, Stacey B; Daly, Mark J; Thorburn, David R; Mootha, Vamsi K

    2010-01-01

    Discovering the molecular basis of mitochondrial respiratory chain disease is challenging given the large number of both mitochondrial and nuclear genes involved. We report a strategy of focused candidate gene prediction, high-throughput sequencing, and experimental validation to uncover the molecular basis of mitochondrial complex I (CI) disorders. We created five pools of DNA from a cohort of 103 patients and then performed deep sequencing of 103 candidate genes to spotlight 151 rare variants predicted to impact protein function. We used confirmatory experiments to establish genetic diagnoses in 22% of previously unsolved cases, and discovered that defects in NUBPL and FOXRED1 can cause CI deficiency. Our study illustrates how large-scale sequencing, coupled with functional prediction and experimental validation, can reveal novel disease-causing mutations in individual patients. PMID:20818383

  15. A multi-gene phylogeny of Chlorophyllum (Agaricaceae, Basidiomycota): new species, new combination and infrageneric classification

    PubMed Central

    Ge, Zai-Wei; Jacobs, Adriaana; Vellinga, Else C.; Sysouphanthong, Phongeun; van der Walt, Retha; Lavorato, Carmine; An, Yi-Feng; Yang, Zhu L.

    2018-01-01

    Abstract Taxonomic and phylogenetic studies of Chlorophyllum were carried out on the basis of morphological differences and molecular phylogenetic analyses. Based on the phylogeny inferred from the internal transcribed spacer (ITS), the partial large subunit nuclear ribosomal DNA (nrLSU), the second largest subunit of RNA polymerase II (rpb2) and translation elongation factor 1-α (tef1) sequences, six well-supported clades and 17 phylogenetic species are recognised. Within this phylogenetic framework and considering the diagnostic morphological characters, two new species, C. africanum and C. palaeotropicum, are described. In addition, a new infrageneric classification of Chlorophyllum is proposed, in which the genus is divided into six sections. One new combination is also made. This study provides a robust basis for a more detailed investigation of diversity and biogeography of Chlorophyllum. PMID:29681738

  16. Mito-nuclear discord in six congeneric lineages of Holarctic ducks (genus Anas).

    PubMed

    Peters, Jeffrey L; Winker, Kevin; Millam, Kendra C; Lavretsky, Philip; Kulikova, Irina; Wilson, Robert E; Zhuravlev, Yuri N; McCracken, Kevin G

    2014-06-01

    Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW-NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW-NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito-nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within-species discord. Male-mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation. © 2014 John Wiley & Sons Ltd.

  17. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    PubMed

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  18. Regulated transport into the nucleus of herpesviridae DNA replication core proteins.

    PubMed

    Gualtiero, Alvisi; Jans, David A; Camozzi, Daria; Avanzi, Simone; Loregian, Arianna; Ripalti, Alessandro; Palù, Giorgio

    2013-09-16

    The Herpesvirdae family comprises several major human pathogens belonging to three distinct subfamilies. Their double stranded DNA genome is replicated in the nuclei of infected cells by a number of host and viral products. Among the latter the viral replication complex, whose activity is strictly required for viral replication, is composed of six different polypeptides, including a two-subunit DNA polymerase holoenzyme, a trimeric primase/helicase complex and a single stranded DNA binding protein. The study of herpesviral DNA replication machinery is extremely important, both because it provides an excellent model to understand processes related to eukaryotic DNA replication and it has important implications for the development of highly needed antiviral agents. Even though all known herpesviruses utilize very similar mechanisms for amplification of their genomes, the nuclear import of the replication complex components appears to be a heterogeneous and highly regulated process to ensure the correct spatiotemporal localization of each protein. The nuclear transport process of these enzymes is controlled by three mechanisms, typifying the main processes through which protein nuclear import is generally regulated in eukaryotic cells. These include cargo post-translational modification-based recognition by the intracellular transporters, piggy-back events allowing coordinated nuclear import of multimeric holoenzymes, and chaperone-assisted nuclear import of specific subunits. In this review we summarize these mechanisms and discuss potential implications for the development of antiviral compounds aimed at inhibiting the Herpesvirus life cycle by targeting nuclear import of the Herpesvirus DNA replicating enzymes.

  19. [A study on the relationship between postmortem interval and the changes of DNA content in the kidney cellule of rat].

    PubMed

    Liu, L; Peng, D B; Liu, Y; Deng, W N; Liu, Y L; Li, J J

    2001-05-01

    To study changes of DNA content in the kidney cellule of rats and relationship with the postmortem interval. This experiment chose seven parameter of cell nuclear, including the area and integral optical density, determined the changes of DNA content in the kidney cellule of 15 rats at different intervals between 0 and 48 h postmortem with auto-TV-image system. The degradation rate of DNA in nuclear has a certainty relationship to early PMI(in 48 h) of rat, and get binomial regress equation. Determining the quantity of DNA in nuclear should be an objective and exact way to estimate the PMI.

  20. Methods to Monitor DNA Repair Defects and Genomic Instability in the Context of a Disrupted Nuclear Lamina.

    PubMed

    Gonzalo, Susana; Kreienkamp, Ray

    2016-01-01

    The organization of the genome within the nuclear space is viewed as an additional level of regulation of genome function, as well as a means to ensure genome integrity. Structural proteins associated with the nuclear envelope, in particular lamins (A- and B-type) and lamin-associated proteins, play an important role in genome organization. Interestingly, there is a whole body of evidence that links disruptions of the nuclear lamina with DNA repair defects and genomic instability. Here, we describe a few standard techniques that have been successfully utilized to identify mechanisms behind DNA repair defects and genomic instability in cells with an altered nuclear lamina. In particular, we describe protocols to monitor changes in the expression of DNA repair factors (Western blot) and their recruitment to sites of DNA damage (immunofluorescence); kinetics of DNA double-strand break repair after ionizing radiation (neutral comet assays); frequency of chromosomal aberrations (FISH, fluorescence in situ hybridization); and alterations in telomere homeostasis (Quantitative-FISH). These techniques have allowed us to shed some light onto molecular mechanisms by which alterations in A-type lamins induce genomic instability, which could contribute to the pathophysiology of aging and aging-related diseases.

  1. The changing epitome of species identification – DNA barcoding

    PubMed Central

    Ajmal Ali, M.; Gyulai, Gábor; Hidvégi, Norbert; Kerti, Balázs; Al Hemaid, Fahad M.A.; Pandey, Arun K.; Lee, Joongku

    2014-01-01

    The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The ‘DNA barcodes’ show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more. PMID:24955007

  2. Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species

    PubMed Central

    Baack, Eric J.; Whitney, Kenneth D.; Rieseberg, Loren H.

    2008-01-01

    Summary Hybridization and polyploidy can induce rapid genomic changes, including the gain or loss of DNA, but the magnitude and timing of such changes are not well understood. The homoploid hybrid system in Helianthus (three hybrid-derived species and their two parents) provides an opportunity to examine the link between hybridization and genome size changes in a replicated fashion. Flow cytometry was used to estimate the nuclear DNA content in multiple populations of three homoploid hybrid Helianthus species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus), the parental species (Helianthus annuus and Helianthus petiolaris), synthetic hybrids, and natural hybrid-zone populations. Results confirm that hybrid-derived species have 50% more nuclear DNA than the parental species. Despite multiple origins, hybrid species were largely consistent in their DNA content across populations, although H. deserticola showed significant interpopulation differences. First- and sixth-generation synthetic hybrids and hybrid-zone plants did not show an increase from parental DNA content. First-generation hybrids differed in DNA content according to the maternal parent. In summary, hybridization by itself does not lead to increased nuclear DNA content in Helianthus, and the evolutionary forces responsible for the repeated increases in DNA content seen in the hybrid-derived species remain mysterious. PMID:15998412

  3. Clinical differences in patients with mitochondriocytopathies due to nuclear versus mitochondrial DNA mutations.

    PubMed

    Rubio-Gozalbo, M E; Dijkman, K P; van den Heuvel, L P; Sengers, R C; Wendel, U; Smeitink, J A

    2000-01-01

    Defects in oxidative phosphorylation (OXPHOS) are genetically unique because the different components involved in this process, respiratory chain enzyme complexes (I, III, and IV) and complex V, are encoded by nuclear and mitochondrial genome. The objective of the study was to assess whether there are clinical differences in patients suffering from OXPHOS defects caused by nuclear or mitochondrial DNA (mtDNA) mutations. We studied 16 families with > or = two siblings with a genetically established OXPHOS deficiency, four due to a nuclear gene mutation and 12 due to a mtDNA mutation. Siblings with a nuclear gene mutation showed very similar clinical pictures that became manifest in the first years (ranging from first months to early childhood). There was a severe progressive course. Seven of the eight children died in their first decade. Conversely, siblings with a mtDNA mutation had clinical pictures that varied from almost alike to very distinct. They became symptomatic at an older age (ranging from childhood to adulthood), with the exception of defects associated with Leigh or Leigh-like phenotype. The clinical course was more gradual and relatively less severe; four of the 26 patients died, one in his second year, another in her second decade and two in their sixth decade. There are differences in age at onset, severity of clinical course, outcome, and intrafamilial variability in patients affected of an OXPHOS defect due to nuclear or mtDNA mutations. Patients with nuclear mutations become symptomatic at a young age, and have a severe clinical course. Patients with mtDNA mutations show a wider clinical spectrum of age at onset and severity. These differences may be of importance regarding the choice of which genome to study in affected patients as well as with respect to genetic counseling. Copyright 2000 Wiley-Liss, Inc.

  4. The nuclear aryl hydocarbon receptor is involved in regulation of DNA repair and cell survival following treatment with ionizing radiation.

    PubMed

    Dittmann, K H; Rothmund, M C; Paasch, A; Mayer, C; Fehrenbacher, B; Schaller, M; Frauenstein, K; Fritsche, E; Haarmann-Stemmann, T; Braeuning, A; Rodemann, H P

    2016-01-05

    In the present study, we explored the role of the aryl hydrocarbon receptor (AhR) for γ-H2AX associated DNA repair in response to treatment with ionizing radiation. Ionizing radiation was able to stabilize AhR protein and to induce a nuclear translocation in a similar way as described for exposure to aromatic hydrocarbons. A comparable AhR protein stabilization was obtained by treatment with hydroxyl-nonenal-generated by radiation-induced lipid peroxidation. AhR knockdown resulted in significant radio-sensitization of both A549- and HaCaT cells. Under these conditions an increased amount of residual γ-H2AX foci and a delayed decline of γ-H2AX foci was observed. Knockdown of the co-activator ARNT, which is essential for transcriptional activation of AhR target genes, reduced AhR-dependent CYP1A expression in response to irradiation, but was without effect on the amount of residual γ-H2AX foci. Nuclear AhR was found in complex with γ-H2AX, DNA-PK, ATM and Lamin A. AhR and γ-H2AX form together nuclear foci, which disappear during DNA repair. Presence of nuclear AhR protein is associated with ATM activation and chromatin relaxation indicated by acetylation of histone H3. Taken together, we could show, that beyond the function as a transcription factor the nuclear AhR is involved in the regulation of DNA repair. Reduction of nuclear AhR inhibits DNA-double stand repair and radiosensitizes cells. First hints for its molecular mechanism suggest a role during ATM activation and chromatin relaxation, both essential for DNA repair. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Image-based modeling of radiation-induced foci

    NASA Astrophysics Data System (ADS)

    Costes, Sylvain; Cucinotta, Francis A.; Ponomarev, Artem; Barcellos-Hoff, Mary Helen; Chen, James; Chou, William; Gascard, Philippe

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage occurs. To test this assumption, we used Monte Carlo simulations to predict the spatial distribution of DSB in human nuclei exposed to high or low-LET radiation. We then compared these predictions to the distribution patterns of three DNA damage sensing proteins, i.e. 53BP1, phosphorylated ATM and γH2AX in human mammary epithelial. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We first used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. Simulations showed a very good agreement for high-LET, predicting 0.7 foci/µm along the path of a 1 GeV/amu Fe particle against measurement of 0.69 to 0.82 foci/µm for various RIF 5 min following exposure (LET 150 keV/µm). On the other hand, discrepancies were shown in foci frequency for low-LET, with measurements 20One drawback using a theoretical model for the nucleus is that it assumes a simplistic and static pattern for DNA densities. However DNA damage pattern is highly correlated to DNA density pattern (i.e. the more DNA, the more likely to have a break). Therefore, we generalized our Monte Carlo approach to real microscope images, assuming pixel intensity of DAPI in the nucleus was directly proportional to the amount of DNA in that pixel. With such approach we could predict DNA damage pattern in real images on a per nucleus basis. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. As expected, simulations produced DNA-weighted random (Poisson) distributions. In contrast, the distributions of RIF obtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) were non-random. This deviation from the expected DNA-weighted random pattern was further characterized by "relative DNA image measurements". This novel imaging approach showed that RIF were located preferentially at the interface between high and low DNA density regions, and were more frequent than predicted in regions with lower DNA density. The same preferential nuclear location was also measured for RIF induced by 1 Gy of low-LET radiation. This deviation from random behavior was evident only 5 min after irradiation for phosphorylated ATM RIF, while γH2AX and 53BP1 RIF showed pronounced deviations up to 30 min after exposure. These data suggest that RIF within a few minutes following exposure to radiation cluster into open regions of the nucleus (i.e. euchromatin). It is possible that DNA lesions are collected in these nuclear sub-domains for more efficient repair. If so, this would imply that DSB are actively transported within the nucleus, a phenomenon that has not yet been considered in modeling DNA misrepair following exposure to radiation. These results are thus critical for more accurate risk models of radiation and we are actively working on characterizing further RIF movement in human nuclei using live cell imaging.

  6. A genomic landscape of mitochondrial DNA insertions in the pig nuclear genome provides evolutionary signatures of interspecies admixture.

    PubMed

    Schiavo, Giuseppina; Hoffmann, Orsolya Ivett; Ribani, Anisa; Utzeri, Valerio Joe; Ghionda, Marco Ciro; Bertolini, Francesca; Geraci, Claudia; Bovo, Samuele; Fontanesi, Luca

    2017-10-01

    Nuclear DNA sequences of mitochondrial origin (numts) are derived by insertion of mitochondrial DNA (mtDNA), into the nuclear genome. In this study, we provide, for the first time, a genome picture of numts inserted in the pig nuclear genome. The Sus scrofa reference nuclear genome (Sscrofa10.2) was aligned with circularized and consensus mtDNA sequences using LAST software. A total of 430 numt sequences that may represent 246 different numt integration events (57 numt regions determined by at least two numt sequences and 189 singletons) were identified, covering about 0.0078% of the nuclear genome. Numt integration events were correlated (0.99) to the chromosome length. The longest numt sequence (about 11 kbp) was located on SSC2. Six numts were sequenced and PCR amplified in pigs of European commercial and local pig breeds, of the Chinese Meishan breed and in European wild boars. Three of them were polymorphic for the presence or absence of the insertion. Surprisingly, the estimated age of insertion of two of the three polymorphic numts was more ancient than that of the speciation time of the Sus scrofa, supporting that these polymorphic sites were originated from interspecies admixture that contributed to shape the pig genome. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  7. Inherited Mitochondrial Diseases of DNA Replication

    PubMed Central

    Copeland, William C.

    2007-01-01

    Mitochondrial genetic diseases can result from defects in mitochondrial DNA (mtDNA) in the form of deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These mutations may be spontaneous, maternally inherited, or a result of inherited nuclear defects in genes that maintain mtDNA. This review focuses on our current understanding of nuclear gene mutations that produce mtDNA alterations and cause mitochondrial depletion syndrome (MDS), progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). To date, all of these etiologic nuclear genes fall into one of two categories: genes whose products function directly at the mtDNA replication fork, such as POLG, POLG2, and TWINKLE, or genes whose products supply the mitochondria with deoxynucleotide triphosphate pools needed for DNA replication, such as TK2, DGUOK, TP, SUCLA2, ANT1, and possibly the newly identified MPV17. PMID:17892433

  8. Nuclear organization of nucleotide excision repair is mediated by RING1B dependent H2A-ubiquitylation

    PubMed Central

    Chitale, Shalaka; Richly, Holger

    2017-01-01

    One of the major cellular DNA repair pathways is nucleotide excision repair (NER). It is the primary pathway for repair of various DNA lesions caused by exposure to ultraviolet (UV) light, such as cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts. Although lesion-containing DNA associates with the nuclear matrix after UV irradiation it is still not understood how nuclear organization affects NER. Analyzing unscheduled DNA synthesis (UDS) indicates that NER preferentially occurs in specific nuclear areas, viz the nucleolus. Upon inducing localized damage, we observe migration of damaged DNA towards the nucleolus. Employing a LacR-based tethering system we demonstrate that H2A-ubiquitylation via the UV-RING1B complex localizes chromatin close to the nucleolus. We further show that the H2A-ubiquitin binding protein ZRF1 resides in the nucleolus, and that it anchors ubiquitylated chromatin along with XPC. Our data thus provide insight into the sub-nuclear organization of NER and reveal a novel role for histone H2A-ubiquitylation. PMID:28416769

  9. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    PubMed

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  10. Molecular Basis of 9G4 B Cell Autoreactivity in Human Systemic Lupus Erythematosus

    PubMed Central

    Richardson, Christopher; Chida, Asiya Seema; Adlowitz, Diana; Silver, Lin; Fox, Erin; Jenks, Scott A.; Palmer, Elise; Wang, Youliang; Heimburg-Molinaro, Jamie; Li, Quan-Zhen; Mohan, Chandra; Cummings, Richard; Tipton, Christopher

    2013-01-01

    9G4+ IgG Abs expand in systemic lupus erythematosus (SLE) in a disease-specific fashion and react with different lupus Ags including B cell Ags and apoptotic cells. Their shared use of VH4-34 represents a unique system to understand the molecular basis of lupus autoreactivity. In this study, a large panel of recombinant 9G4+ mAbs from single naive and memory cells was generated and tested against B cells, apoptotic cells, and other Ags. Mutagenesis eliminated the framework-1 hydrophobic patch (HP) responsible for the 9G4 idiotype. The expression of the HP in unselected VH4-34 cells was assessed by deep sequencing. We found that 9G4 Abs recognize several Ags following two distinct structural patterns. B cell binding is dependent on the HP, whereas anti-nuclear Abs, apoptotic cells, and dsDNA binding are HP independent and correlate with positively charged H chain third CDR. The majority of mutated VH4-34 memory cells retain the HP, thereby suggesting selection by Ags that require this germline structure. Our findings show that the germline-encoded HP is compulsory for the anti–B cell reactivity largely associated with 9G4 Abs in SLE but is not required for reactivity against apoptotic cells, dsDNA, chromatin, anti-nuclear Abs, or cardiolipin. Given that the lupus memory compartment contains a majority of HP+ VH4-34 cells but decreased B cell reactivity, additional HP-dependent Ags must participate in the selection of this compartment. This study represents the first analysis, to our knowledge, of VH-restricted autoreactive B cells specifically expanded in SLE and provides the foundation to understand the antigenic forces at play in this disease. PMID:24108696

  11. Regional differences in mitochondrial DNA methylation in human post-mortem brain tissue.

    PubMed

    Devall, Matthew; Smith, Rebecca G; Jeffries, Aaron; Hannon, Eilis; Davies, Matthew N; Schalkwyk, Leonard; Mill, Jonathan; Weedon, Michael; Lunnon, Katie

    2017-01-01

    DNA methylation is an important epigenetic mechanism involved in gene regulation, with alterations in DNA methylation in the nuclear genome being linked to numerous complex diseases. Mitochondrial DNA methylation is a phenomenon that is receiving ever-increasing interest, particularly in diseases characterized by mitochondrial dysfunction; however, most studies have been limited to the investigation of specific target regions. Analyses spanning the entire mitochondrial genome have been limited, potentially due to the amount of input DNA required. Further, mitochondrial genetic studies have been previously confounded by nuclear-mitochondrial pseudogenes. Methylated DNA Immunoprecipitation Sequencing is a technique widely used to profile DNA methylation across the nuclear genome; however, reads mapped to mitochondrial DNA are often discarded. Here, we have developed an approach to control for nuclear-mitochondrial pseudogenes within Methylated DNA Immunoprecipitation Sequencing data. We highlight the utility of this approach in identifying differences in mitochondrial DNA methylation across regions of the human brain and pre-mortem blood. We were able to correlate mitochondrial DNA methylation patterns between the cortex, cerebellum and blood. We identified 74 nominally significant differentially methylated regions ( p  < 0.05) in the mitochondrial genome, between anatomically separate cortical regions and the cerebellum in matched samples ( N  = 3 matched donors). Further analysis identified eight significant differentially methylated regions between the total cortex and cerebellum after correcting for multiple testing. Using unsupervised hierarchical clustering analysis of the mitochondrial DNA methylome, we were able to identify tissue-specific patterns of mitochondrial DNA methylation between blood, cerebellum and cortex. Our study represents a comprehensive analysis of the mitochondrial methylome using pre-existing Methylated DNA Immunoprecipitation Sequencing data to identify brain region-specific patterns of mitochondrial DNA methylation.

  12. The molecular basis of conformational instability of the ecdysone receptor DNA binding domain studied by in silico and in vitro experiments.

    PubMed

    Szamborska-Gbur, Agnieszka; Rymarczyk, Grzegorz; Orłowski, Marek; Kuzynowski, Tomasz; Jakób, Michał; Dziedzic-Letka, Agnieszka; Górecki, Andrzej; Dobryszycki, Piotr; Ożyhar, Andrzej

    2014-01-01

    The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptors superfamily, regulates gene expression associated with molting and metamorphosis in insects. The DNA binding domains (DBDs) of the Usp and EcR play an important role in their DNA-dependent heterodimerization. Analysis of the crystal structure of the UspDBD/EcRDBD heterocomplex from Drosophila melanogaster on the hsp27 gene response element, suggested an appreciable similarity between both DBDs. However, the chemical denaturation experiments showed a categorically lower stability for the EcRDBD in contrast to the UspDBD. The aim of our study was an elucidation of the molecular basis of this intriguing instability. Toward this end, we mapped the EcRDBD amino acid sequence positions which have an impact on the stability of the EcRDBD. The computational protein design and in vitro analyses of the EcRDBD mutants indicate that non-conserved residues within the α-helix 2, forming the EcRDBD hydrophobic core, represent a specific structural element that contributes to instability. In particular, the L58 appears to be a key residue which differentiates the hydrophobic cores of UspDBD and EcRDBD and is the main reason for the low stability of the EcRDBD. Our results might serve as a benchmark for further studies of the intricate nature of the EcR molecule.

  13. Old foes, new understandings: nuclear entry of small non-enveloped DNA viruses.

    PubMed

    Fay, Nikta; Panté, Nelly

    2015-06-01

    The nuclear import of viral genomes is an important step of the infectious cycle for viruses that replicate in the nucleus of their host cells. Although most viruses use the cellular nuclear import machinery or some components of this machinery, others have developed sophisticated ways to reach the nucleus. Some of these have been known for some time; however, recent studies have changed our understanding of how some non-enveloped DNA viruses access the nucleus. For example, parvoviruses enter the nucleus through small disruptions of the nuclear membranes and nuclear lamina, and adenovirus tugs at the nuclear pore complex, using kinesin-1, to disassemble their capsids and deliver viral proteins and genomes into the nucleus. Here we review recent findings of the nuclear import strategies of three small non-enveloped DNA viruses, including adenovirus, parvovirus, and the polyomavirus simian virus 40. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Knockdown of RMI1 impairs DNA repair under DNA replication stress.

    PubMed

    Xu, Chang; Fang, Lianying; Kong, Yangyang; Xiao, Changyan; Yang, Mengmeng; Du, Li-Qing; Liu, Qiang

    2017-12-09

    RMI1 (RecQ-mediated genome instability protein 1) forms a conserved BTR complex with BLM, Topo IIIα, and RMI2, and its absence causes genome instability. It has been revealed that RMI1 localizes to nuclear foci with BLM and Topo IIIα in response to replication stress, and that RMI1 functions downstream of BLM in promoting replication elongation. However, the precise functions of RMI1 during replication stress are not completely understood. Here we report that RMI1 knockdown cells are hypersensitive to hydroxyurea (HU). Using comet assay, we show that RMI1 knockdown cells exhibit accumulation of broken DNAs after being released from HU treatment. Moreover, we demonstrate that RMI1 facilitates the recovery from activated checkpoint and resuming the cell cycle after replicative stress. Surprisingly, loss of RMI1 results in a failure of RAD51 loading onto DNA damage sites. These findings reveal the importance of RMI1 in response to replication stress, which could explain the molecular basis for its function in maintaining genome integrity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Nuclear translocation of Acinetobacter baumannii transposase induces DNA methylation of CpG regions in the promoters of E-cadherin gene.

    PubMed

    Moon, Dong Chan; Choi, Chul Hee; Lee, Su Man; Lee, Jung Hwa; Kim, Seung Il; Kim, Dong Sun; Lee, Je Chul

    2012-01-01

    Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp) and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs), (225)RKRKRK(230). Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP) resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1) gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.

  16. DNA damage-induced nuclear translocation of Apaf-1 is mediated by nucleoporin Nup107

    PubMed Central

    Jagot-Lacoussiere, Léonard; Faye, Audrey; Bruzzoni-Giovanelli, Heriberto; Villoutreix, Bruno O; Rain, Jean-Christophe; Poyet, Jean-Luc

    2015-01-01

    Beside its central role in the mitochondria-dependent cell death pathway, the apoptotic protease activating factor 1 (Apaf-1) is involved in the DNA damage response through cell-cycle arrest induced by genotoxic stress. This non-apoptotic function requires a nuclear translocation of Apaf-1 during the G1-to-S transition. However, the mechanisms that trigger the nuclear accumulation of Apaf-1 upon DNA damage remain to be investigated. Here we show that the main 4 isoforms of Apaf-1 can undergo nuclear translocation and restore Apaf-1 deficient MEFs cell cycle arrest in the S phase following genotoxic stress through activation of Chk-1. Interestingly, DNA damage-dependent nuclear accumulation of Apaf-1 occurs independently of p53 and the retinoblastoma (pRb) pathway. We demonstrated that Apaf-1 associates with the nucleoporin Nup107 and this association is necessary for Apaf-1 nuclear import. The CED-4 domain of Apaf-1 directly binds to the central domain of Nup107 in an ATR-regulated, phosphorylation-dependent manner. Interestingly, expression of the Apaf-1-interacting domain of Nup107 interfered with Apaf-1 nuclear translocation upon genotoxic stress, resulting in a marked reduction of Chk-1 activation and cell cycle arrest. Thus, our results confirm the crucial role of Apaf-1 nuclear relocalization in mediating cell-cycle arrest induced by genotoxic stress and implicate Nup107 as a critical regulator of the DNA damage-induced intra-S phase checkpoint response. PMID:25695197

  17. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.

    PubMed

    Andronowski, Janna M; Mundorff, Amy Z; Pratt, Isaac V; Davoren, Jon M; Cooper, David M L

    2017-05-01

    Molecular human identification has conventionally focused on DNA sampling from dense, weight-bearing cortical bone tissue, typically from femora or tibiae. A comparison of skeletal elements from three contemporary individuals demonstrated that elements with high quantities of cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially sampling cortical bone may be suboptimal (Mundorff & Davoren, 2014). Despite these findings, the reason for the differential DNA yields between cortical and cancellous bone tissues remains unknown. The primary goal of this work is to ascertain whether differences in bone microstructure can be used to explain differential nuclear DNA yield among bone tissue types observed by Mundorff and Davoren (2014), with a focus on osteocytes and the three-dimensional (3D) quantification of their associated lacunae. Osteocytes and other bone cells are recognized to house DNA in bone tissue, thus examining the density of their lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Lacunae were visualized and quantified using synchrotron radiation-based micro-Computed Tomographic imaging (SR micro-CT). Volumes of interest (VOIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed from the three skeletons sampled for Mundorff and Davoren's (2014) study. Analyses tested the primary hypothesis that the abundance and density of osteocytes (inferred from their lacunar spaces) vary between cortical and cancellous bone tissue types. Results demonstrated that osteocyte lacunar abundance and density vary between cortical and cancellous bone tissue types, with cortical bone VOIs containing a higher lacunar abundance and density. We found that the osteocyte lacunar density values are independent of nuclear DNA yield, suggesting an alternative explanation for the higher nuclear DNA yields from bones with greater quantities of cancellous bone tissue. The use of SR micro-CT allowed for a scale of analysis that revealed a high range of variation in lacunar abundance in both tissue types. Moreover, high-resolution SR micro-CT imaging revealed potential soft tissue remnants within marrow spaces not visible macroscopically. It is hypothesized that soft tissue remnants observed among the trabeculae of skeletal elements with high quantities of cancellous bone tissue are responsible for the high nuclear DNA yields. These findings have significant implications for bone-sample selection for nuclear DNA analysis in a forensic context when skeletal remains are recovered from the ground surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway.

    PubMed

    Das, Ujjal; Manna, Krishnendu; Khan, Amitava; Sinha, Mahuya; Biswas, Sushobhan; Sengupta, Aaveri; Chakraborty, Anindita; Dey, Sanjit

    2017-01-01

    The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.

  19. Elucidating polyploidization of bermudagrasses as assessed by organelle and nuclear DNA markers.

    PubMed

    Gulsen, Osman; Ceylan, Ahmet

    2011-12-01

    Clarification of relationships among ploidy series of Cynodon accessions could be beneficial to bermudagrass breeding programs, and would enhance our understanding of the evolutionary biology of this warm season grass species. This study was initiated to elucidate polyploidization among Cynodon accessions with different ploidy series collected from Turkey based on chloroplast and nuclear DNA. Forty Cynodon accessions including 7 diploids, 3 triploids, 10 tetraploids, 11 pentaploids, and 9 hexaploids were analyzed using chloroplast DNA restriction fragment-length polymorphism (cpDNA RFLP), chloroplast DNA simple sequence repeat (cpDNA SSR), and nuclear DNA markers based on neighbor-joining (NJ) and principle component analyses (PCA). All three-marker systems with two statistical algorithms clustered the diploids apart from the other ploidy levels. Assuming autopolyploidy, spontaneous polyploidization followed by rapid diversification among the higher ploidy levels than the diploids is likely in Cynodon's evolution. Few tetraploid and hexaploid accessions were clustered with or closely to the group of diploids, supporting the hypothesis above. Eleven haplotypes as estimated by cpDNA RFLP and SSR markers were detected. This study indicated that the diploids had different organelle genome from the rest of the ploidy series and provided valuable insight into relationships among ploidy series of Cynodon accessions based on cp and nuclear DNAs.

  20. Genetic control of enhanced mutability of mitochondrial DNA and gamma-ray sensitivity in Saccharomyces cerevisiae.

    PubMed Central

    Foury, F; Goffeau, A

    1979-01-01

    Five nuclear mutants enhancing the spontaneous mutation rate of mtDNA have been isolated in Saccharomyces cerevisiae. These mutators fall into five complementation groups and are located at five genetic loci different from rad50 to rad57 loci. Three mutants (gam1, gam2, and gam4), insensitive or weakly sensitive to gamma-rays, exhibit increased frequency of spontaneous production of mutants with large deletions of the mtDNA (p-) and of all tested mitochondrial drug-resistant mutants. Two other mutants (gam3 and gam5), highly sensitive to gamma-rays, increase only the mutation rate of particular alleles of the mtDNA. The mutant gam5 enhances only the production of p- and erythromycin-resistant clones. The mutant gam3 exhibits an enhanced rate of oligomycin-resistant clones as well as a collateral increase of nuclear mutability. The existence of gam3 and gam5 mutants indicates that at least two common steps control both nuclear DNA repair and the mutability of particular alleles of the mtDNA. However, the general spontaneous mutability of the mtDNA includes at least three steps not involved in the repair of nuclear DNA, as revealed by the gam1, gam2, and gam4 mutations. PMID:392521

  1. Mitochondrial Genetic Background Modulates Bioenergetics and Susceptibility to Acute Cardiac Volume – Overload

    PubMed Central

    Fetterman, Jessica L.; Zelickson, Blake R.; Johnson, Larry W.; Moellering, Douglas R.; Westbrook, David G.; Pompilius, Melissa; Sammy, Melissa J.; Johnson, Michelle; Dunham-Snary, Kimberly J.; Cao, Xuemei; Bradley, Wayne E.; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G.; Kesterson, Robert A.; Dell’Italia, Louis J.; Darley-Usmar, Victor M.; Welch, Danny R.; Ballinger, Scott W.

    2013-01-01

    Synopsis Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mitochondrial DNA (mtDNA) sequence variation contributes to disease susceptibility. In this study we present a novel animal model of mtDNA polymorphisms, the mitochondrial nuclear exchange mouse (MNX), in which the mtDNA from C3H/HeN mouse has been inserted onto the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harboring the C57/BL6J mtDNA generate more reactive oxygen species (ROS) and have a higher mitochondrial membrane potential relative to those having the C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the “mitochondrial paradigm” for the development of disease susceptibility, and show that the mtDNA modulates, cellular bioenergetics, mitochondrial reactive oxygen species generation and susceptibility to cardiac stress. PMID:23924350

  2. The Pseudorabies Virus DNA Polymerase Accessory Subunit UL42 Directs Nuclear Transport of the Holoenzyme

    PubMed Central

    Wang, Yi-Ping; Du, Wen-Juan; Huang, Li-Ping; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-01-01

    Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354–370 and that K354, R355, and K367 are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression system. PMID:26913023

  3. Determination of initiation of DNA replication before and after nuclear formation in Xenopus egg cell free extracts

    PubMed Central

    1993-01-01

    Xenopus egg extracts prepared before and after egg activation retain M- and S-phase specific activity, respectively. Staurosporine, a potent inhibitor of protein kinase, converted M-phase extracts into interphase- like extracts that were capable of forming nuclei upon the addition of sperm DNA. The nuclei formed in the staurosporine treated M-phase extract were incapable of replicating DNA, and they were unable to initiate replication upon the addition of S-phase extracts. Furthermore, replication was inhibited when the staurosporine-treated M- phase extract was added in excess to the staurosporine-treated S-phase extract before the addition of DNA. The membrane-depleted S-phase extract supported neither nuclear formation nor replication; however, preincubation of sperm DNA with these extracts allowed them to form replication-competent nuclei upon the addition of excess staurosporine- treated M-phase extract. These results demonstrate that positive factors in the S-phase extracts determined the initiation of DNA replication before nuclear formation, although these factors were unable to initiate replication after nuclear formation. PMID:8253833

  4. Mitochondrial DNA transfer to the nucleus generates extensive insertion site variation in maize.

    PubMed

    Lough, Ashley N; Roark, Leah M; Kato, Akio; Ream, Thomas S; Lamb, Jonathan C; Birchler, James A; Newton, Kathleen J

    2008-01-01

    Mitochondrial DNA (mtDNA) insertions into nuclear chromosomes have been documented in a number of eukaryotes. We used fluorescence in situ hybridization (FISH) to examine the variation of mtDNA insertions in maize. Twenty overlapping cosmids, representing the 570-kb maize mitochondrial genome, were individually labeled and hybridized to root tip metaphase chromosomes from the B73 inbred line. A minimum of 15 mtDNA insertion sites on nine chromosomes were detectable using this method. One site near the centromere on chromosome arm 9L was identified by a majority of the cosmids. To examine variation in nuclear mitochondrial DNA sequences (NUMTs), a mixture of labeled cosmids was applied to chromosome spreads of ten diverse inbred lines: A188, A632, B37, B73, BMS, KYS, Mo17, Oh43, W22, and W23. The number of detectable NUMTs varied dramatically among the lines. None of the tested inbred lines other than B73 showed the strong hybridization signal on 9L, suggesting that there is a recent mtDNA insertion at this site in B73. Different sources of B73 and W23 were examined for NUMT variation within inbred lines. Differences were detectable, suggesting either that mtDNA is being incorporated or lost from the maize nuclear genome continuously. The results indicate that mtDNA insertions represent a major source of nuclear chromosomal variation.

  5. TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs

    PubMed Central

    Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves

    2013-01-01

    Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs. PMID:23775789

  6. Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae).

    PubMed

    Near, Thomas J; Bossu, Christen M; Bradburd, Gideon S; Carlson, Rose L; Harrington, Richard C; Hollingsworth, Phillip R; Keck, Benjamin P; Etnier, David A

    2011-10-01

    Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.

  7. Adrenocortical nuclear progesterone-binding protein: Identification by photoaffinity labeling and evidence for deoxyribonucleic acid binding and stimulation by adrenocorticotropin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demura, T.; Driscoll, W.J.; Lee, Y.C.

    1991-01-01

    Nuclei of the guinea pig adrenal cortex contain a protein that specifically binds progesterone and that, biochemically, is clearly distinct from the classical progesterone receptor. The adrenocortical nuclear progesterone-binding protein has now been purified more than 2000-fold by steroid-affinity chromatography with a 75% yield. The purified protein preparation demonstrated three major bands on sodium dodecyl sulfate-polyacrylamide gel of 79K, 74K, and 50K. To determine which of the three might represent the progesterone-binding protein, steroid photoaffinity labeling was performed which resulted in the specific and exclusive labeling of a 50K band. Thus, the adrenocortical nuclear progesterone-binding protein appears to be distinctmore » from the classical progesterone receptor not only biochemically, but also on the basis of molecular size. To test whether the adrenocortical nuclear progesterone-binding protein can be hormonally stimulated, guinea pigs were treated with ACTH. The chronic administration of ACTH caused a 4- to 6-fold increase in the specific progesterone binding capacity without a change in the binding affinity. There appeared to be no significant difference in nuclear progesterone binding between the zona fasciculata and zona reticularis. This finding suggests a mediating role for the progesterone-binding protein in ACTH action. In addition, the nuclear progesterone-binding protein bound to nonspecific DNA sequences, further suggesting a possible transcriptional regulatory role.« less

  8. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods?

    PubMed

    Nora, Elphège P; Dekker, Job; Heard, Edith

    2013-09-01

    We discuss here a series of testable hypotheses concerning the role of chromosome folding into topologically associating domains (TADs). Several lines of evidence suggest that segmental packaging of chromosomal neighborhoods may underlie features of chromatin that span large domains, such as heterochromatin blocks, association with the nuclear lamina and replication timing. By defining which DNA elements preferentially contact each other, the segmentation of chromosomes into TADs may also underlie many properties of long-range transcriptional regulation. Several observations suggest that TADs can indeed provide a structural basis to regulatory landscapes, by controlling enhancer sharing and allocation. We also discuss how TADs may shape the evolution of chromosomes, by causing maintenance of synteny over large chromosomal segments. Finally we suggest a series of experiments to challenge these ideas and provide concrete examples illustrating how they could be practically applied. © 2013 The Authors. Bioessays published by WILEY Periodicals, Inc.

  9. Segmental folding of chromosomes: A basis for structural and regulatory chromosomal neighborhoods?

    PubMed Central

    Nora, Elphège P; Dekker, Job; Heard, Edith

    2013-01-01

    We discuss here a series of testable hypotheses concerning the role of chromosome folding into topologically associating domains (TADs). Several lines of evidence suggest that segmental packaging of chromosomal neighborhoods may underlie features of chromatin that span large domains, such as heterochromatin blocks, association with the nuclear lamina and replication timing. By defining which DNA elements preferentially contact each other, the segmentation of chromosomes into TADs may also underlie many properties of long-range transcriptional regulation. Several observations suggest that TADs can indeed provide a structural basis to regulatory landscapes, by controlling enhancer sharing and allocation. We also discuss how TADs may shape the evolution of chromosomes, by causing maintenance of synteny over large chromosomal segments. Finally we suggest a series of experiments to challenge these ideas and provide concrete examples illustrating how they could be practically applied. PMID:23832846

  10. Genetics Home Reference: mitochondrial complex III deficiency

    MedlinePlus

    ... DNA packaged in chromosomes within the cell nucleus (nuclear DNA). It is not clear why the severity ... deficiency Genetic Testing Registry: Mitochondrial complex III deficiency, nuclear type 2 Genetic Testing Registry: Mitochondrial complex III ...

  11. Genetics Home Reference: mitochondrial complex I deficiency

    MedlinePlus

    ... in mitochondrial complex I deficiency are found in nuclear DNA, which is packaged in chromosomes within the ... by a mutation in a gene found in nuclear DNA, it has autosomal recessive or X-linked ...

  12. A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development.

    PubMed

    Vargas, Walter A; Sanz-Martín, José M; Rech, Gabriel E; Armijos-Jaramillo, Vinicio D; Rivera, Lina P; Echeverria, María Mercedes; Díaz-Mínguez, José M; Thon, Michael R; Sukno, Serenella A

    2016-02-01

    Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.

  13. Hybridization and massive mtDNA unidirectional introgression between the closely related Neotropical toads Rhinella marina and R. schneideri inferred from mtDNA and nuclear markers

    PubMed Central

    2011-01-01

    Background The classical perspective that interspecific hybridization in animals is rare has been changing due to a growing list of empirical examples showing the occurrence of gene flow between closely related species. Using sequence data from cyt b mitochondrial gene and three intron nuclear genes (RPL9, c-myc, and RPL3) we investigated patterns of nucleotide polymorphism and divergence between two closely related toad species R. marina and R. schneideri. By comparing levels of differentiation at nuclear and mtDNA levels we were able to describe patterns of introgression and infer the history of hybridization between these species. Results All nuclear loci are essentially concordant in revealing two well differentiated groups of haplotypes, corresponding to the morphologically-defined species R. marina and R. schneideri. Mitochondrial DNA analysis also revealed two well-differentiated groups of haplotypes but, in stark contrast with the nuclear genealogies, all R. schneideri sequences are clustered with sequences of R. marina from the right Amazon bank (RAB), while R. marina sequences from the left Amazon bank (LAB) are monophyletic. An Isolation-with-Migration (IM) analysis using nuclear data showed that R. marina and R. schneideri diverged at ≈ 1.69 Myr (early Pleistocene), while R. marina populations from LAB and RAB diverged at ≈ 0.33 Myr (middle Pleistocene). This time of divergence is not consistent with the split between LAB and RAB populations obtained with mtDNA data (≈ 1.59 Myr), which is notably similar to the estimate obtained with nuclear genes between R. marina and R. schneideri. Coalescent simulations of mtDNA phylogeny under the speciation history inferred from nuclear genes rejected the hypothesis of incomplete lineage sorting to explain the conflicting signal between mtDNA and nuclear-based phylogenies. Conclusions The cytonuclear discordance seems to reflect the occurrence of interspecific hybridization between these two closely related toad species. Overall, our results suggest a phenomenon of extensive mtDNA unidirectional introgression from the previously occurring R. schneideri into the invading R. marina. We hypothesize that climatic-induced range shifts during the Pleistocene/Holocene may have played an important role in the observed patterns of introgression. PMID:21939538

  14. JAB1 regulates unphosphorylated STAT3 DNA-binding activity through protein–protein interaction in human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimoto, Arata, E-mail: anishimo@yamaguchi-u.ac.jp; Kugimiya, Naruji; Hosoyama, Toru

    2013-08-30

    Highlights: •JAB1 interacted with unphosphorylated STAT3 in the nucleus. •JAB1 knockdown tended to increase nuclear STAT3 expression. •JAB1 knockdown significantly decreased unphosphorylated STAT3 DNA-binding activity. •JAB1 knockdown significantly decreased MDR1, NANOG, and VEGF expressions. •Nuclear JAB1, but not nuclear STAT3, correlated with STAT3 DNA-binding activity. -- Abstract: Recent studies have revealed that unphosphorylated STAT3 forms a dimer, translocates to the nucleus, binds to the STAT3 binding site, and activates the transcription of STAT3 target genes, thereby playing an important role in oncogenesis in addition to phosphorylated STAT3. Among signaling steps of unphosphorylated STAT3, nuclear translocation and target DNA-binding are themore » critical steps for its activation. Therefore, elucidating the regulatory mechanism of these signaling steps of unphosphorylated STAT3 is a potential step in the discovery of a novel cancer drug. However, the mechanism of unphosphorylated STAT3 binding to the promoter of target genes remains unclear. In this study, we focused on Jun activation domain-binding protein 1 (JAB1) as a candidate protein that regulates unphosphorylated STAT3 DNA-binding activity. Initially, we observed that both unphosphorylated STAT3 and JAB1 existed in the nucleus of human colon cancer cell line COLO205 at the basal state (no cytokine stimulation). On the other hand, phosphorylated STAT3 did not exist in the nucleus of COLO205 cells at the basal state. Immunoprecipitation using nuclear extract of COLO205 cells revealed that JAB1 interacted with unphosphorylated STAT3. To investigate the effect of JAB1 on unphosphorylated STAT3 activity, RNAi studies were performed. Although JAB1 knockdown tended to increase nuclear STAT3 expression, it significantly decreased unphosphorylated STAT3 DNA-binding activity. Subsequently, JAB1 knockdown significantly decreased the expression levels of MDR1, NANOG, and VEGF, which are STAT3 target genes. Furthermore, the expression level of nuclear JAB1, but not nuclear STAT3, correlated with unphosphorylated STAT3 DNA-binding activity between COLO205 and LoVo cells. Taken together, these results suggest that nuclear JAB1 positively regulates unphosphorylated STAT3 DNA-binding activity through protein–protein interaction in human colon cancer cell line COLO205.« less

  15. Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion.

    PubMed

    Wang, L

    2010-06-01

    Adequate mitochondrial DNA (mtDNA) copies are required for normal mitochondria function and reductions in mtDNA copy number due to genetic alterations cause tissue-specific mtDNA depletion syndrome (MDS). There are eight nuclear genes, directly or indirectly involved in mtDNA replication and mtDNA precursor synthesis, which have been identified as the cause of MDS. However, the tissue specific pathology of these nuclear gene mutations is not well understood. Here, mtDNA synthesis, mtDNA copy number control, and mtDNA turnover, as well as the synthesis of mtDNA precursors in relation to the levels of salvage enzymes are discussed. The question why MDS caused by TK2 and p53R2 mutations are predominantly muscle specific while dGK deficiency affected mainly liver will be addressed.

  16. The mitochondrial genome in embryo technologies.

    PubMed

    Hiendleder, S; Wolf, E

    2003-08-01

    The mammalian mitochondrial genome encodes for 37 genes which are involved in a broad range of cellular functions. The mitochondrial DNA (mtDNA) molecule is commonly assumed to be inherited through oocyte cytoplasm in a clonal manner, and apparently species-specific mechanisms have evolved to eliminate the contribution of sperm mitochondria after natural fertilization. However, recent evidence for paternal mtDNA inheritance in embryos and offspring questions the general validity of this model, particularly in the context of assisted reproduction and embryo biotechnology. In addition to normal mt DNA haplotype variation, oocytes and spermatozoa show remarkable differences in mtDNA content and may be affected by inherited or acquired mtDNA aberrations. All these parameters have been correlated with gamete quality and reproductive success rates. Nuclear transfer (NT) technology provides experimental models for studying interactions between nuclear and mitochondrial genomes. Recent studies demonstrated (i) a significant effect of mtDNA haplotype or other maternal cytoplasmic factors on the efficiency of NT; (ii) phenotypic differences between transmitochondrial clones pointing to functionally relevant nuclear-cytoplasmic interactions; and (iii) neutral or non-neutral selection of mtDNA haplotypes in heteroplasmic conditions. Mitochondria form a dynamic reticulum, enabling complementation of mitochondrial components and possibly mixing of different mtDNA populations in heteroplasmic individuals. Future directions of research on mtDNA in the context of reproductive biotechnology range from the elimination of adverse effects of artificial heteroplasmy, e.g. created by ooplasm transfer, to engineering of optimized constellations of nuclear and cytoplasmic genes for the production of superior livestock.

  17. Nuclear Mitochondrial DNA Activates Replication in Saccharomyces cerevisiae

    PubMed Central

    Chatre, Laurent; Ricchetti, Miria

    2011-01-01

    The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in. PMID:21408151

  18. Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae.

    PubMed

    Chatre, Laurent; Ricchetti, Miria

    2011-03-08

    The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.

  19. Molecular systematics of Gagea and Lloydia (Liliaceae; Liliales): implications of analyses of nuclear ribosomal and plastid DNA sequences for infrageneric classification

    PubMed Central

    Zarrei, M.; Wilkin, P.; Fay, M. F.; Ingrouille, M. J.; Zarre, S.; Chase, M. W.

    2009-01-01

    Background and Aims Gagea is a Eurasian genus of petaloid monocots, with a few species in North Africa, comprising between 70 and approximately 275 species depending on the author. Lloydia (thought to be the closest relative of Gagea) consists of 12–20 species that have a mostly eastern Asian distribution. Delimitation of these genera and their subdivisions are unresolved questions in Liliaceae taxonomy. The objective of this study is to evaluate generic and infrageneric circumscription of Gagea and Lloydia using DNA sequence data. Methods A phylogenetic study of Gagea and Lloydia (Liliaceae) was conducted using sequences of nuclear ribosomal internal transcribed spacer (ITS) and plastid (rpl16 intron, trnL intron, trnL-F spacer, matK and the psbA-trnH spacer) DNA regions. This included 149 accessions (seven as outgroups), with multiple accessions of some taxa; 552 sequences were included, of which 393 were generated as part of this research. Key Results A close relationship of Gagea and Lloydia was confirmed in analyses using different datasets, but neither Gagea nor Lloydia forms a monophyletic group as currently circumscribed; however, the ITS and plastid analyses did not produce congruent results for the placement of Lloydia relative to the major groups within Gagea. Gagea accessions formed five moderately to strongly supported clades in all trees, with most Lloydia taxa positioned at the basal nodes; in the strict consensus trees from the combined data a basal polytomy occurs. There is limited congruence between the classical, morphology-derived infrageneric taxonomy in Gagea (including Lloydia) and clades in the present phylogenetic analyses. Conclusions The analyses support monophyly of Gagea/Lloydia collectively, and they clearly comprise a single lineage, as some previous authors have hypothesized. The results provide the basis for a new classification of Gagea that has support from some morphological features. Incongruence between plastid and nuclear ITS results is interpreted as potentially due to ancient hybridization and/or paralogy of ITS rDNA. PMID:19451146

  20. Liver nuclear DNA synthesis in mice following carbon tetrachloride administration or partial hepatectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gans, J.H.; Korson, R.

    1984-02-01

    Long-term, continuous (twice per week) administration of CCl/sub 4/ to male mice resulted in a high incidence of liver nodules which appear to be resistant to the necrotizing effects of CCl/sub 4/ but showed no features of malignant neoplasia. Liver nuclear DNA synthesis was compared in mice given CCl/sub 4/ and in mice subjected to partial hepatectomy (PH). Mice were given by gavage corn oil or CCl/sub 4/ in corn oil for periods of 2 to 25 weeks and several mice were subjected to PH after 12 and 25 weeks of corn oil treatment. Mice were given (/sup 3/H)TdR duringmore » liver regeneration and newly synthesized liver nuclear DNA was isolated and separated by BND-cellulose chromatography. Greater than 85% of the labeled DNA from PH mice eluted from BND-cellulose columns as double-stranded (ds) DNA with single-stranded (ss) regions or ends and less than 15% as ds DNA. When mice were treated with CCl/sub 4/ for 8 weeks or longer a significantly greater portion of liver nuclear DNA eluted as ds DNA. Administration of HU and 5-FU with (/sup 3/H)TdR decreased (/sup 3/H)TdR incorporation into DNA to low levels incompatible with unscheduled DNA synthesis. Single doses of CCl/sub 4/ given to mice treated with corn oil for 2 to 12 weeks provided newly synthesized DNA which was primarily (>80%) ds DNA with ss regions or ends, but after 25 weeks of corn oil administration, a single dose of CCl/sub 4/ resulted in newly synthesized DNA with a greater proportion of ds DNA. The high labeling of ds DNA in mice treated with CCl/sub 4/ may have resulted from an alternate pathway of DNA synthesis catalyzed by the enzymes or enzyme complexes associated with semiconservative DNA synthesis or from proliferation of nonparenchymal cells with a rapid turn-over rate.« less

  1. Anhydrobiosis-Associated Nuclear DNA Damage and Repair in the Sleeping Chironomid: Linkage with Radioresistance

    PubMed Central

    Vanyagina, Veronica; Malutina, Ludmila; Cornette, Richard; Sakashita, Tetsuya; Hamada, Nobuyuki; Kikawada, Takahiro; Kobayashi, Yasuhiko; Okuda, Takashi

    2010-01-01

    Anhydrobiotic chironomid larvae can withstand prolonged complete desiccation as well as other external stresses including ionizing radiation. To understand the cross-tolerance mechanism, we have analyzed the structural changes in the nuclear DNA using transmission electron microscopy and DNA comet assays in relation to anhydrobiosis and radiation. We found that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the larvae despite successful anhydrobiosis. Furthermore, while the larvae had restored physiological activity within an hour following rehydration, nuclear DNA restoration typically took 72 to 96 h. The DNA fragmentation level and the recovery of DNA integrity in the rehydrated larvae after anhydrobiosis were similar to those of hydrated larvae irradiated with 70 Gy of high-linear energy transfer (LET) ions (4He). In contrast, low-LET radiation (gamma-rays) of the same dose caused less initial damage to the larvae, and DNA was completely repaired within within 24 h. The expression of genes encoding the DNA repair enzymes occurred upon entering anhydrobiosis and exposure to high- and low-LET radiations, indicative of DNA damage that includes double-strand breaks and their subsequent repair. The expression of antioxidant enzymes-coding genes was also elevated in the anhydrobiotic and the gamma-ray-irradiated larvae that probably functions to reduce the negative effect of reactive oxygen species upon exposure to these stresses. Indeed the mature antioxidant proteins accumulated in the dry larvae and the total activity of antioxidants increased by a 3–4 fold in association with anhydrobiosis. We conclude that one of the factors explaining the relationship between radioresistance and the ability to undergo anhydrobiosis in the sleeping chironomid could be an adaptation to desiccation-inflicted nuclear DNA damage. There were also similarities in the molecular response of the larvae to damage caused by desiccation and ionizing radiation. PMID:21103355

  2. A verotoxin 1 B subunit-lambda CRO chimeric protein specifically binds both DNA and globotriaosylceramide (Gb(3)) to effect nuclear targeting of exogenous DNA in Gb(3) positive cells.

    PubMed

    Facchini, L M; Lingwood, C A

    2001-09-10

    Inefficient nuclear incorporation of foreign DNA remains a critical roadblock in the development of effective nonviral gene delivery systems. DNA delivered by traditional protocols remains within endosomal/lysosomal vesicles, or is rapidly degraded in the cytoplasm. Verotoxin I (VT), an AB(5) subunit toxin produced by enterohaemorrhagic Escherichia coli, binds to the cell surface glycolipid, globotriaosylceramide (Gb(3)) and is internalized into preendosomes. VT is then retrograde transported to the Golgi, endoplasmic reticulum (ER), and nucleus of highly VT-sensitive cells. We have utilized this nuclear targeting of VT to design a unique delivery system which transports exogenous DNA via vesicular traffic to the nucleus. The nontoxic VT binding subunit (VTB) was fused to the lambda Cro DNA-binding repressor, generating a 14-kDa VTB-Cro chimera. VTB-Cro binds specifically via the Cro domain to a 25-bp DNA fragment containing the consensus Cro operator. VTB-Cro demonstrates simultaneous specific binding to Gb(3). Treatment of Vero cells with fluorescent-labeled Cro operator DNA in the presence of VTB-Cro, results in DNA internalization to the Golgi, ER, and nucleus, whereas fluorescent DNA alone is incorporated poorly and randomly within the cytoplasm. VTB-Cro mediated nuclear DNA transport is prevented by brefeldin A, consistent with Golgi/ER intracellular routing. Pretreatment with filipin had no effect, indicating that caveoli are not involved. This novel VTB-Cro shuttle protein may find practical applications in the fields of intracellular targeting, gene delivery, and gene therapy. Copyright 2001 Academic Press.

  3. Nuclear aggregates of polyamines in a radiation-induced DNA damage model.

    PubMed

    Iacomino, Giuseppe; Picariello, Gianluca; Stillitano, Ilaria; D'Agostino, Luciano

    2014-02-01

    Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs-pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies.

    PubMed

    Komatsu, Tetsuro; Nagata, Kyosuke; Wodrich, Harald

    2016-02-01

    Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and/or subsequent viral DNA replication. Here we performed a detailed analyses of the spatiotemporal distribution of incoming adenoviral genome complexes and found, in contrast to the expectation, that an adenoviral DNA replication factor, but not incoming genomes, targets PML-NBs. Thus, our findings may explain why adenoviral genomes could be observed at PML-NBs in earlier reports but argue against a generalized role for PML-NBs in targeting invading viral genomes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. APE/Ref-1 is increased in nuclear fractions of human thyroid hyperfunctioning nodules.

    PubMed

    Russo, D; Celano, M; Bulotta, S; Bruno, R; Arturi, F; Giannasio, P; Filetti, S; Damante, G; Tell, G

    2002-08-30

    Apurinic/apyrimidinic endonuclease APE/Ref-1 is a multifunctional protein provided with DNA repair, transcription-factor regulation and anti-apoptotic activities. We have previously reported that, in thyroid cells, TSH regulates both the synthesis and nuclear translocation of APE/Ref-1. We have also shown that nuclear levels of this protein are reduced both in thyroid carcinoma tissues and cell lines. In the present study, APE/Ref-1 expression and cellular localization were analysed by Western blot in hyperfunctioning thyroid nodules from patients with toxic adenoma and/or toxic multinodular goiter. The total content of APE/Ref-1 protein was increased in the majority of the hyperfunctioning tissues with respect to normal adjacent tissue. There was also an increase in the nuclear levels of APE/Ref-1, suggesting enhanced cytoplasm-to-nucleus translocation of the protein in addition to its increased rate of synthesis. These results demonstrate that the phenomenon of nuclear translocation of APE/Ref-1 hypothesized on the basis of cell culture experiments does actually occur in vivo. Together with previous observations in thyroid carcinomas and tumoral cell lines, our findings suggest a two-stage model of APE/Ref-1 behaviour during malignant thyrocyte transformation: an early stage characterized by simple hyperplasia and upregulation of APE/Ref-1 in the nuclear compartment of the cell and a later stage in which nuclear levels of the protein drop to below-normal levels as the cell becomes progressively undifferentiated.

  6. Nuclear glutathione S-transferase pi prevents apoptosis by reducing the oxidative stress-induced formation of exocyclic DNA products.

    PubMed

    Kamada, Kensaku; Goto, Shinji; Okunaga, Tomohiro; Ihara, Yoshito; Tsuji, Kentaro; Kawai, Yoshichika; Uchida, Koji; Osawa, Toshihiko; Matsuo, Takayuki; Nagata, Izumi; Kondo, Takahito

    2004-12-01

    We previously found that nuclear glutathione S-transferase pi (GSTpi) accumulates in cancer cells resistant to anticancer drugs, suggesting that it has a role in the acquisition of resistance to anticancer drugs. In the present study, the effect of oxidative stress on the nuclear translocation of GSTpi and its role in the protection of DNA from damage were investigated. In human colonic cancer HCT8 cells, the hydrogen peroxide (H(2)O(2))-induced increase in nuclear condensation, the population of sub-G(1) peak, and the number of TUNEL-positive cells were observed in cells pretreated with edible mushroom lectin, an inhibitor of the nuclear transport of GSTpi. The DNA damage and the formation of lipid peroxide were dependent on the dose of H(2)O(2) and the incubation time. Immunological analysis showed that H(2)O(2) induced the nuclear accumulation of GSTpi but not of glutathione peroxidase. Formation of the 7-(2-oxo-hepyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct by the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with 2'-deoxyguanosine was inhibited by GSTpi in the presence of glutathione. The conjugation product of 4-oxo-2-nonenal, a lipid aldehyde of 13-HPODE, with GSH in the presence of GSTpi, was identified by LS/MS. These results suggested that nuclear GSTpi prevents H(2)O(2)-induced DNA damage by scavenging the formation of lipid-peroxide-modified DNA.

  7. Occurrence of mitochondrial CO1 pseudogenes in Neocalanus plumchrus (Crustacea: Copepoda): Hybridization indicated by recombined nuclear mitochondrial pseudogenes

    PubMed Central

    Lin, Ya-Ying

    2017-01-01

    A portion of the mitochondrial cytochrome c oxidase I gene was sequenced using both genomic DNA and complement DNA from three planktonic copepod Neocalanus species (N. cristatus, N. plumchrus, and N. flemingeri). Small but critical sequence differences in CO1 were observed between gDNA and cDNA from N. plumchrus. Furthermore, careful observation revealed the presence of recombination between sequences in gDNA from N. plumchrus. Moreover, a chimera of the N. cristatus and N. plumchrus sequences was obtained from N. plumchrus gDNA. The observed phenomena can be best explained by the preferential amplification of the nuclear mitochondrial pseudogenes from gDNA of N. plumchrus. Two conclusions can be drawn from the observations. First, nuclear mitochondrial pseudogenes are pervasive in N. plumchrus. Second, a mating between a female N. cristatus and a male N. plumchrus produced viable offspring, which further backcrossed to a N. plumchrus individual. These observations not only demonstrate intriguing mating behavior in these species, but also emphasize the importance of careful interpretation of species marker sequences amplified from gDNA. PMID:28231343

  8. Ancient DNA analysis reveals woolly rhino evolutionary relationships.

    PubMed

    Orlando, Ludovic; Leonard, Jennifer A; Thenot, Aurélie; Laudet, Vincent; Guerin, Claude; Hänni, Catherine

    2003-09-01

    With ancient DNA technology, DNA sequences have been added to the list of characters available to infer the phyletic position of extinct species in evolutionary trees. We have sequenced the entire 12S rRNA and partial cytochrome b (cyt b) genes of one 60-70,000-year-old sample, and partial 12S rRNA and cyt b sequences of two 40-45,000-year-old samples of the extinct woolly rhinoceros (Coelodonta antiquitatis). Based on these two mitochondrial markers, phylogenetic analyses show that C. antiquitatis is most closely related to one of the three extant Asian rhinoceros species, Dicerorhinus sumatrensis. Calculations based on a molecular clock suggest that the lineage leading to C. antiquitatis and D. sumatrensis diverged in the Oligocene, 21-26 MYA. Both results agree with morphological models deduced from palaeontological data. Nuclear inserts of mitochondrial DNA were identified in the ancient specimens. These data should encourage the use of nuclear DNA in future ancient DNA studies. It also further establishes that the degraded nature of ancient DNA does not completely protect ancient DNA studies based on mitochondrial data from the problems associated with nuclear inserts.

  9. Efficiency of ITS Sequences for DNA Barcoding in Passiflora (Passifloraceae)

    PubMed Central

    Giudicelli, Giovanna Câmara; Mäder, Geraldo; de Freitas, Loreta Brandão

    2015-01-01

    DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using “best match” and “best close match” methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1) region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species. PMID:25837628

  10. Syndromes associated with mitochondrial DNA depletion

    PubMed Central

    2014-01-01

    Mitochondrial dysfunction accounts for a large group of inherited metabolic disorders most of which are due to a dysfunctional mitochondrial respiratory chain (MRC) and, consequently, deficient energy production. MRC function depends on the coordinated expression of both nuclear (nDNA) and mitochondrial (mtDNA) genomes. Thus, mitochondrial diseases can be caused by genetic defects in either the mitochondrial or the nuclear genome, or in the cross-talk between the two. This impaired cross-talk gives rise to so-called nuclear-mitochondrial intergenomic communication disorders, which result in loss or instability of the mitochondrial genome and, in turn, impaired maintenance of qualitative and quantitative mtDNA integrity. In children, most MRC disorders are associated with nuclear gene defects rather than alterations in the mtDNA itself. The mitochondrial DNA depletion syndromes (MDSs) are a clinically heterogeneous group of disorders with an autosomal recessive pattern of transmission that have onset in infancy or early childhood and are characterized by a reduced number of copies of mtDNA in affected tissues and organs. The MDSs can be divided into least four clinical presentations: hepatocerebral, myopathic, encephalomyopathic and neurogastrointestinal. The focus of this review is to offer an overview of these syndromes, listing the clinical phenotypes, together with their relative frequency, mutational spectrum, and possible insights for improving diagnostic strategies. PMID:24708634

  11. Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload.

    PubMed

    Fetterman, Jessica L; Zelickson, Blake R; Johnson, Larry W; Moellering, Douglas R; Westbrook, David G; Pompilius, Melissa; Sammy, Melissa J; Johnson, Michelle; Dunham-Snary, Kimberly J; Cao, Xuemei; Bradley, Wayne E; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G; Kesterson, Robert A; Dell'italia, Louis J; Darley-Usmar, Victor M; Welch, Danny R; Ballinger, Scott W

    2013-10-15

    Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mtDNA sequence variation contributes to disease susceptibility. In the present study we show a novel animal model of mtDNA polymorphisms, the MNX (mitochondrial-nuclear exchange) mouse, in which the mtDNA from the C3H/HeN mouse has been inserted on to the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harbouring the C57/BL6J mtDNA generate more ROS (reactive oxygen species) and have a higher mitochondrial membrane potential relative to those with C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the 'mitochondrial paradigm' for the development of disease susceptibility, and show that the mtDNA modulates cellular bioenergetics, mitochondrial ROS generation and susceptibility to cardiac stress.

  12. Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis.

    PubMed

    Anderson, Donald D; Woeller, Collynn F; Chiang, En-Pei; Shane, Barry; Stover, Patrick J

    2012-03-02

    The de novo thymidylate biosynthetic pathway in mammalian cells translocates to the nucleus for DNA replication and repair and consists of the enzymes serine hydroxymethyltransferase 1 and 2α (SHMT1 and SHMT2α), thymidylate synthase, and dihydrofolate reductase. In this study, we demonstrate that this pathway forms a multienzyme complex that is associated with the nuclear lamina. SHMT1 or SHMT2α is required for co-localization of dihydrofolate reductase, SHMT, and thymidylate synthase to the nuclear lamina, indicating that SHMT serves as scaffold protein that is essential for complex formation. The metabolic complex is enriched at sites of DNA replication initiation and associated with proliferating cell nuclear antigen and other components of the DNA replication machinery. These data provide a mechanism for previous studies demonstrating that SHMT expression is rate-limiting for de novo thymidylate synthesis and indicate that de novo thymidylate biosynthesis occurs at replication forks.

  13. Enhancing Electrotransfection Efficiency through Improvement in Nuclear Entry of Plasmid DNA.

    PubMed

    Cervia, Lisa D; Chang, Chun-Chi; Wang, Liangli; Mao, Mao; Yuan, Fan

    2018-06-01

    The nuclear envelope is a physiological barrier to electrogene transfer. To understand different mechanisms of the nuclear entry for electrotransfected plasmid DNA (pDNA), the current study investigated how manipulation of the mechanisms could affect electrotransfection efficiency (eTE), transgene expression level (EL), and cell viability. In the investigation, cells were first synchronized at G2-M phase prior to electrotransfection so that the nuclear envelope breakdown (NEBD) occurred before pDNA entered the cells. The NEBD significantly increased the eTE and the EL while the cell viability was not compromised. In the second experiment, the cells were treated with a nuclear pore dilating agent (i.e., trans-1,2-cyclohexanediol). The treatment could increase the EL, but had only minor effects on eTE. Furthermore, the treatment was more cytotoxic, compared with the cell synchronization. In the third experiment, a nuclear targeting sequence (i.e., SV40) was incorporated into the pDNA prior to electrotransfection. The incorporation was more effective than the cell synchronization for enhancing the EL, but not the eTE, and the effectiveness was cell type dependent. Taken together, the data described above suggested that synchronization of the NEBD could be a practical approach to improving electrogene transfer in all dividing cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. 76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Hurricane Missiles for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide... regulatory guide, (RG) 1.221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants... missiles that a nuclear power plant should be designed to withstand to prevent undue risk to the health and...

  15. Lack of spatial genetic structure among nesting and wintering King Eiders

    USGS Publications Warehouse

    Pearce, J.M.; Talbot, S.L.; Pierson, Barbara J.; Petersen, M.R.; Scribner, K.T.; Dickson, D.L.; Mosbech, A.

    2004-01-01

    The King Eider (Somateria spectabilis) has been delineated into two broadly distributed breeding populations in North America (the western and eastern Arctic) on the basis of banding data and their use of widely separated Pacific and Atlantic wintering areas. Little is known about the level of gene flow between these two populations. Also unknown is whether behavioral patterns common among migratory waterfowl, such as site fidelity to wintering areas and pair formation at these sites, have existed for sufficient time to create a population structure defined by philopatry to wintering rather than to nesting locations. We used six nuclear microsatellite DNA loci and cytochrome b mitochondrial DNA sequence data to estimate the extent of spatial genetic differentiation among nesting and wintering areas of King Eiders across North America and adjacent regions. Estimates of interpopulation variance in microsatellite allele and mtDNA haplotype frequency were both low and nonsignificant based on samples from three wintering and four nesting areas. Results from nested clade analysis, mismatch distributions, and coalescent-based analyses suggest historical population growth and gene flow that collectively may have homogenized gene frequencies. The presence of several unique mtDNA haplotypes among birds wintering near Greenland suggests that gene flow may now be more limited between the western and eastern Arctic, which is consistent with banding data.

  16. Influence of structural variation on nuclear localization of DNA-binding polyamide-fluorophore conjugates.

    PubMed

    Edelson, Benjamin S; Best, Timothy P; Olenyuk, Bogdan; Nickols, Nicholas G; Doss, Raymond M; Foister, Shane; Heckel, Alexander; Dervan, Peter B

    2004-01-01

    A pivotal step forward in chemical approaches to controlling gene expression is the development of sequence-specific DNA-binding molecules that can enter live cells and traffic to nuclei unaided. DNA-binding polyamides are a class of programmable, sequence-specific small molecules that have been shown to influence a wide variety of protein-DNA interactions. We have synthesized over 100 polyamide-fluorophore conjugates and assayed their nuclear uptake profiles in 13 mammalian cell lines. The compiled dataset, comprising 1300 entries, establishes a benchmark for the nuclear localization of polyamide-dye conjugates. Compounds in this series were chosen to provide systematic variation in several structural variables, including dye composition and placement, molecular weight, charge, ordering of the aromatic and aliphatic amino-acid building blocks and overall shape. Nuclear uptake does not appear to be correlated with polyamide molecular weight or with the number of imidazole residues, although the positions of imidazole residues affect nuclear access properties significantly. Generally negative determinants for nuclear access include the presence of a beta-Ala-tail residue and the lack of a cationic alkyl amine moiety, whereas the presence of an acetylated 2,4-diaminobutyric acid-turn is a positive factor for nuclear localization. We discuss implications of these data on the design of polyamide-dye conjugates for use in biological systems.

  17. Potential use of low-copy nuclear genes in DNA barcoding: a comparison with plastid genes in two Hawaiian plant radiations

    PubMed Central

    2013-01-01

    Background DNA barcoding of land plants has relied traditionally on a small number of markers from the plastid genome. In contrast, low-copy nuclear genes have received little attention as DNA barcodes because of the absence of universal primers for PCR amplification. Results From pooled-species 454 transcriptome data we identified two variable intron-less nuclear loci for each of two species-rich genera of the Hawaiian flora: Clermontia (Campanulaceae) and Cyrtandra (Gesneriaceae) and compared their utility as DNA barcodes with that of plastid genes. We found that nuclear genes showed an overall greater variability, but also displayed a high level of heterozygosity, intraspecific variation, and retention of ancient alleles. Thus, nuclear genes displayed fewer species-diagnostic haplotypes compared to plastid genes and no interspecies gaps. Conclusions The apparently greater coalescence times of nuclear genes are likely to limit their utility as barcodes, as only a small proportion of their alleles were fixed and unique to individual species. In both groups, species-diagnostic markers from either genome were scarce on the youngest island; a minimum age of ca. two million years may be needed for a species flock to be barcoded. For young plant groups, nuclear genes may not be a superior alternative to slowly evolving plastid genes. PMID:23394592

  18. Nuclear mtDNA pseudogenes as a source of new variants of mitochondrial genes: A case study of Siberian rubythroat Luscinia calliope (muscicapidae, aves).

    PubMed

    Spiridonova, L N; Red'kin, Ya A; Valchuk, O P

    2016-01-01

    First evidence for the presence of copies of mitochondrial cytochrome b gene of the subspecies group Luscinia calliope anadyrensis-L. c. camtschatkensis in the nuclear genome of nominative L. c. calliope was obtained, which indirectly indicates the nuclear origin of the subspecies-specific mitochondrial haplotypes in Siberian rubythroat. This fact clarifies the appearance of mitochondrial haplotypes of eastern subspecies by exchange between the homologous regions of the nuclear and mitochondrial genomes followed by fixation by the founder effect. This is the first study to propose a mechanism of DNA fragment exchange between the nucleus and mitochondria (intergenomic recombination) and to show the role of nuclear copies of mtDNA as a source of new taxon-specific mitochondrial haplotypes, which implies their involvement in the microevolutionary processes and morphogenesis.

  19. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety basis...

  20. 10 CFR 830.202 - Safety basis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Safety basis. 830.202 Section 830.202 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.202 Safety basis. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE nuclear facility must establish and maintain the safety basis...

  1. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch; Gallati, Sabina, E-mail: sabina.gallati@insel.ch; Schaller, Andre, E-mail: andre.schaller@insel.ch

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serialmore » qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two genomes is demonstrated and which evaluates systematically the impact of DNA degradation on quantification of mtDNA copy number.« less

  2. Expanding the functional human mitochondrial DNA database by the establishment of primate xenomitochondrial cybrids

    PubMed Central

    Kenyon, Lesley; Moraes, Carlos T.

    1997-01-01

    The nuclear and mitochondrial genomes coevolve to optimize approximately 100 different interactions necessary for an efficient ATP-generating system. This coevolution led to a species-specific compatibility between these genomes. We introduced mitochondrial DNA (mtDNA) from different primates into mtDNA-less human cells and selected for growth of cells with a functional oxidative phosphorylation system. mtDNA from common chimpanzee, pigmy chimpanzee, and gorilla were able to restore oxidative phosphorylation in the context of a human nuclear background, whereas mtDNA from orangutan, and species representative of Old-World monkeys, New-World monkeys, and lemurs were not. Oxygen consumption, a sensitive index of respiratory function, showed that mtDNA from chimpanzee, pigmy chimpanzee, and gorilla replaced the human mtDNA and restored respiration to essentially normal levels. Mitochondrial protein synthesis was also unaltered in successful “xenomitochondrial cybrids.” The abrupt failure of mtDNA from primate species that diverged from humans as recently as 8–18 million years ago to functionally replace human mtDNA suggests the presence of one or a few mutations affecting critical nuclear–mitochondrial genome interactions between these species. These cellular systems provide a demonstration of intergenus mtDNA transfer, expand more than 20-fold the number of mtDNA polymorphisms that can be analyzed in a human nuclear background, and provide a novel model for the study of nuclear–mitochondrial interactions. PMID:9256447

  3. Migration of mitochondrial DNA in the nuclear genome of colorectal adenocarcinoma.

    PubMed

    Srinivasainagendra, Vinodh; Sandel, Michael W; Singh, Bhupendra; Sundaresan, Aishwarya; Mooga, Ved P; Bajpai, Prachi; Tiwari, Hemant K; Singh, Keshav K

    2017-03-29

    Colorectal adenocarcinomas are characterized by abnormal mitochondrial DNA (mtDNA) copy number and genomic instability, but a molecular interaction between mitochondrial and nuclear genome remains unknown. Here we report the discovery of increased copies of nuclear mtDNA (NUMT) in colorectal adenocarcinomas, which supports link between mtDNA and genomic instability in the nucleus. We name this phenomenon of nuclear occurrence of mitochondrial component as numtogenesis. We provide a description of NUMT abundance and distribution in tumor versus matched blood-derived normal genomes. Whole-genome sequence data were obtained for colon adenocarcinoma and rectum adenocarcinoma patients participating in The Cancer Genome Atlas, via the Cancer Genomics Hub, using the GeneTorrent file acquisition tool. Data were analyzed to determine NUMT proportion and distribution on a genome-wide scale. A NUMT suppressor gene was identified by comparing numtogenesis in other organisms. Our study reveals that colorectal adenocarcinoma genomes, on average, contains up to 4.2-fold more somatic NUMTs than matched normal genomes. Women colorectal tumors contained more NUMT than men. NUMT abundance in tumor predicted parallel abundance in blood. NUMT abundance positively correlated with GC content and gene density. Increased numtogenesis was observed with higher mortality. We identified YME1L1, a human homolog of yeast YME1 (yeast mitochondrial DNA escape 1) to be frequently mutated in colorectal tumors. YME1L1 was also mutated in tumors derived from other tissues. We show that inactivation of YME1L1 results in increased transfer of mtDNA in the nuclear genome. Our study demonstrates increased somatic transfer of mtDNA in colorectal tumors. Our study also reveals sex-based differences in frequency of NUMT occurrence and that NUMT in blood reflects NUMT in tumors, suggesting NUMT may be used as a biomarker for tumorigenesis. We identify YME1L1 as the first NUMT suppressor gene in human and demonstrate that inactivation of YME1L1 induces migration of mtDNA to the nuclear genome. Our study reveals that numtogenesis plays an important role in the development of cancer.

  4. The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure?

    PubMed Central

    O’Sullivan, Justin M.; Pai, Dave A.; Cridge, Andrew G.; Engelke, David R.; Ganley, Austen R. D.

    2016-01-01

    The nucleolus is a prominent nuclear structure that is the site of ribosomal RNA (rRNA) transcription, and hence ribosome biogenesis. Cellular demand for ribosomes, and hence rRNA, is tightly linked to cell growth and the rRNA makes up the majority of all the RNA within a cell. To fulfil the cellular demand for rRNA, the ribosomal RNA genes (rDNA) genes are amplified to high copy number and transcribed at very high rates. As such, understanding the rDNA has profound consequences for our comprehension of genome and transcriptional organization in cells. In this review we address the question of whether the nucleolus is a raft adrift the sea of nuclear DNA, or actively contributes to genome organization. We present evidence supporting the idea that the nucleolus, and the rDNA contained therein, play more roles in the biology of the cell than simply ribosome biogenesis. We propose that the nucleolus and the rDNA are central factors in the spatial organization of the genome, and that rapid alterations in nucleolar structure in response to changing conditions manifest themselves in altered genomic structures that have functional consequences. Finally, we discuss some predictions that result from the nucleolus having a central role in nuclear organization. PMID:25436580

  5. Peripheral re-localization of constitutive heterochromatin advances its replication timing and impairs maintenance of silencing marks.

    PubMed

    Heinz, Kathrin S; Casas-Delucchi, Corella S; Török, Timea; Cmarko, Dusan; Rapp, Alexander; Raska, Ivan; Cardoso, M Cristina

    2018-05-10

    The replication of the genome is a highly organized process, both spatially and temporally. Although a lot is known on the composition of the basic replication machinery, how its activity is regulated is mostly unknown. Several chromatin properties have been proposed as regulators, but a potential role of the nuclear DNA position remains unclear. We made use of the prominent structure and well-defined heterochromatic landscape of mouse pericentric chromosome domains as a well-studied example of late replicating constitutive heterochromatin. We established a method to manipulate its nuclear position and evaluated the effect on replication timing, DNA compaction and epigenetic composition. Using time-lapse microscopy, we observed that constitutive heterochromatin, known to replicate during late S-phase, was replicated in mid S-phase when repositioned to the nuclear periphery. Out-of-schedule replication resulted in deficient post-replicative maintenance of chromatin modifications, namely silencing marks. We propose that repositioned constitutive heterochromatin was activated in trans according to the domino model of origin firing by nearby (mid S) firing origins. In summary, our data provide, on the one hand, a novel approach to manipulate nuclear DNA position and, on the other hand, establish nuclear DNA position as a novel mechanism regulating DNA replication timing and epigenetic maintenance.

  6. The nucleolus: a raft adrift in the nuclear sea or the keystone in nuclear structure?

    PubMed

    O'Sullivan, Justin M; Pai, Dave A; Cridge, Andrew G; Engelke, David R; Ganley, Austen R D

    2013-06-01

    The nucleolus is a prominent nuclear structure that is the site of ribosomal RNA (rRNA) transcription, and hence ribosome biogenesis. Cellular demand for ribosomes, and hence rRNA, is tightly linked to cell growth and the rRNA makes up the majority of all the RNA within a cell. To fulfill the cellular demand for rRNA, the ribosomal RNA (rDNA) genes are amplified to high copy number and transcribed at very high rates. As such, understanding the rDNA has profound consequences for our comprehension of genome and transcriptional organization in cells. In this review, we address the question of whether the nucleolus is a raft adrift the sea of nuclear DNA, or actively contributes to genome organization. We present evidence supporting the idea that the nucleolus, and the rDNA contained therein, play more roles in the biology of the cell than simply ribosome biogenesis. We propose that the nucleolus and the rDNA are central factors in the spatial organization of the genome, and that rapid alterations in nucleolar structure in response to changing conditions manifest themselves in altered genomic structures that have functional consequences. Finally, we discuss some predictions that result from the nucleolus having a central role in nuclear organization.

  7. DNA-histone complexes as ligands amplify cell penetration and nuclear targeting of anti-DNA antibodies via energy-independent mechanisms.

    PubMed

    Zannikou, Markella; Bellou, Sofia; Eliades, Petros; Hatzioannou, Aikaterini; Mantzaris, Michael D; Carayanniotis, George; Avrameas, Stratis; Lymberi, Peggy

    2016-01-01

    We have generated three monoclonal cell-penetrating antibodies (CPAbs) from a non-immunized lupus-prone (NZB × NZW)F1 mouse that exhibited high anti-DNA serum titres. These CPAbs are polyreactive because they bind to DNA and other cellular components, and localize mainly in the nucleus of HeLa cells, albeit with a distinct nuclear labelling profile. Herein, we have examined whether DNA-histone complexes (DHC) binding to CPAbs, before cell entry, could modify the cell penetration of CPAbs or their nuclear staining properties. By applying confocal microscopy and image analysis, we found that extracellular binding of purified CPAbs to DHC significantly enhanced their subsequent cell-entry, both in terms of percentages of positively labelled cells and fluorescence intensity (internalized CPAb amount), whereas there was a variable effect on their nuclear staining profile. Internalization of CPAbs, either alone or bound to DHC, remained unaltered after the addition of endocytosis-specific inhibitors at 37° or assay performance at 4°, suggesting the involvement of energy-independent mechanisms in the internalization process. These findings assign to CPAbs a more complex pathogenetic role in systemic lupus erythematosus where both CPAbs and nuclear components are abundant. © 2015 John Wiley & Sons Ltd.

  8. Molecular simulations of polycation-DNA binding exploring the effect of peptide chemistry and sequence in nuclear localization sequence based polycations.

    PubMed

    Elder, Robert M; Jayaraman, Arthi

    2013-10-10

    Gene therapy relies on the delivery of DNA into cells, and polycations are one class of vectors enabling efficient DNA delivery. Nuclear localization sequences (NLS), cationic oligopeptides that target molecules for nuclear entry, can be incorporated into polycations to improve their gene delivery efficiency. We use simulations to study the effect of peptide chemistry and sequence on the DNA-binding behavior of NLS-grafted polycations by systematically mutating the residues in the grafts, which are based on the SV40 NLS (peptide sequence PKKKRKV). Replacing arginine (R) with lysine (K) reduces binding strength by eliminating arginine-DNA interactions, but placing R in a less hindered location (e.g., farther from the grafting point to the polycation backbone) has surprisingly little effect on polycation-DNA binding strength. Changing the positions of the hydrophobic proline (P) and valine (V) residues relative to the polycation backbone changes hydrophobic aggregation within the polycation and, consequently, changes the conformational entropy loss that occurs upon polycation-DNA binding. Since conformational entropy loss affects the free energy of binding, the positions of P and V in the grafts affect DNA binding affinity. The insight from this work guides synthesis of polycations with tailored DNA binding affinity and, in turn, efficient DNA delivery.

  9. Genetic characterization of Common Eiders breeding in the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Talbot, Sandra L.; McCracken, Kevin G.

    2007-01-01

    We assessed population genetic subdivision among four colonies of Common Eiders (Somateria mollissima v-nigrum) breeding in the Yukon-Kuskokwim Delta (YKD), Alaska, using microsatellite genotypes and DNA sequences with differing modes of inheritance. Significant, albeit low, levels of genetic differentiation were observed between mainland populations and Kigigak Island for nuclear intron lamin A and mitochondrial DNA (mtDNA) control region. Intercolony variation in haplotypic frequencies also was observed at mtDNA. Positive growth signatures assayed from microsatellites, nuclear introns, and mtDNA indicate recent colonization of the YKD, and may explain the low levels of structuring observed. Gene flow estimates based on microsatellites, nuclear introns, and mtDNA suggest asymmetrical gene flow between mainland colonies and Kigigak Island, with more individuals on average dispersing from mainland populations to Kigigak Island than vice versa. The directionality of gene flow observed may be explained by the colonization of the YKD from northern glacial refugia or by YKD metapopulation dynamics.

  10. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP.

    PubMed

    Lin, C H; Patel, D J

    1997-11-01

    Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.

  11. A Highly Organized Structure Mediating Nuclear Localization of a Myb2 Transcription Factor in the Protozoan Parasite Trichomonas vaginalis ▿ †

    PubMed Central

    Chu, Chien-Hsin; Chang, Lung-Chun; Hsu, Hong-Ming; Wei, Shu-Yi; Liu, Hsing-Wei; Lee, Yu; Kuo, Chung-Chi; Indra, Dharmu; Chen, Chinpan; Ong, Shiou-Jeng; Tai, Jung-Hsiang

    2011-01-01

    Nuclear proteins usually contain specific peptide sequences, referred to as nuclear localization signals (NLSs), for nuclear import. These signals remain unexplored in the protozoan pathogen, Trichomonas vaginalis. The nuclear import of a Myb2 transcription factor was studied here using immunodetection of a hemagglutinin-tagged Myb2 overexpressed in the parasite. The tagged Myb2 was localized to the nucleus as punctate signals. With mutations of its polybasic sequences, 48KKQK51 and 61KR62, Myb2 was localized to the nucleus, but the signal was diffusive. When fused to a C-terminal non-nuclear protein, the Myb2 sequence spanning amino acid (aa) residues 48 to 143, which is embedded within the R2R3 DNA-binding domain (aa 40 to 156), was essential and sufficient for efficient nuclear import of a bacterial tetracycline repressor (TetR), and yet the transport efficiency was reduced with an additional fusion of a firefly luciferase to TetR, while classical NLSs from the simian virus 40 T-antigen had no function in this assay system. Myb2 nuclear import and DNA-binding activity were substantially perturbed with mutation of a conserved isoleucine (I74) in helix 2 to proline that altered secondary structure and ternary folding of the R2R3 domain. Disruption of DNA-binding activity alone by point mutation of a lysine residue, K51, preceding the structural domain had little effect on Myb2 nuclear localization, suggesting that nuclear translocation of Myb2, which requires an ordered structural domain, is independent of its DNA binding activity. These findings provide useful information for testing whether myriad Mybs in the parasite use a common module to regulate nuclear import. PMID:22021237

  12. Genealogy of the nuclear beta-fibrinogen locus in a highly structured lizard species: comparison with mtDNA and evidence for intragenic recombination in the hybrid zone.

    PubMed

    Godinho, R; Mendonça, B; Crespo, E G; Ferrand, N

    2006-06-01

    The study of nuclear genealogies in natural populations of nonmodel organisms is expected to provide novel insights into the evolutionary history of populations, especially when developed in the framework of well-established mtDNA phylogeographical scenarios. In the Iberian Peninsula, the endemic Schreiber's green lizard Lacerta schreiberi exhibits two highly divergent and allopatric mtDNA lineages that started to split during the late Pliocene. In this work, we performed a fine-scale analysis of the putative mtDNA contact zone together with a global analysis of the patterns of variation observed at the nuclear beta-fibrinogen intron 7 (beta-fibint7). Using a combination of DNA sequencing with single-strand conformational polymorphism (SSCP) analysis, we show that the observed genealogy at the beta-fibint7 locus reveals extensive admixture between two formerly isolated lizard populations while the two mtDNA lineages remain essentially allopatric. In addition, a private beta-fibint7 haplotype detected in the single population where both mtDNA lineages were found in sympatry is probably the result of intragenic recombination between the two more common and divergent beta-fibint7 haplotypes. Our results suggest that the progressive incorporation of nuclear genealogies in investigating the ancient demography and admixture dynamics of divergent genomes will be necessary to obtain a more comprehensive picture of the evolutionary history of organisms.

  13. The Mitochondrial Genome and a 60-kb Nuclear DNA Segment from Naegleria fowleri, the Causative Agent of Primary Amoebic Meningoencephalitis

    PubMed Central

    Herman, Emily K.; Greninger, Alexander L.; Visvesvara, Govinda S.; Marciano-Cabral, Francine; Dacks, Joel B.; Chiu, Charles Y.

    2013-01-01

    Naegleria fowleri is a unicellular eukaryote causing primary amoebic meningoencephalitis, a neuropathic disease killing 99% of those infected, usually within 7–14 days. N. fowleri is found globally in regions including the US and Australia. The genome of the related non-pathogenic species Naegleria gruberi has been sequenced, but the genetic basis for N. fowleri pathogenicity is unclear. To generate such insight, we sequenced and assembled the mitochondrial genome and a 60-kb segment of nuclear genome from N. fowleri. The mitochondrial genome is highly similar to its counterpart in N. gruberi in gene complement and organization, while distinct lack of synteny is observed for the nuclear segments. Even in this short (60-kb) segment, we identified examples of potential factors for pathogenesis, including ten novel N. fowleri-specific genes. We also identified a homologue of cathepsin B; proteases proposed to be involved in the pathogenesis of diverse eukaryotic pathogens, including N. fowleri. Finally, we demonstrate a likely case of horizontal gene transfer between N. fowleri and two unrelated amoebae, one of which causes granulomatous amoebic encephalitis. This initial look into the N. fowleri nuclear genome has revealed several examples of potential pathogenesis factors, improving our understanding of a neglected pathogen of increasing global importance. PMID:23360210

  14. Image-Based Modeling Reveals Dynamic Redistribution of DNA Damageinto Nuclear Sub-Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costes Sylvain V., Ponomarev Artem, Chen James L.; Nguyen, David; Cucinotta, Francis A.

    2007-08-03

    Several proteins involved in the response to DNA doublestrand breaks (DSB) f orm microscopically visible nuclear domains, orfoci, after exposure to ionizing radiation. Radiation-induced foci (RIF)are believed to be located where DNA damage occurs. To test thisassumption, we analyzed the spatial distribution of 53BP1, phosphorylatedATM, and gammaH2AX RIF in cells irradiated with high linear energytransfer (LET) radiation and low LET. Since energy is randomly depositedalong high-LET particle paths, RIF along these paths should also berandomly distributed. The probability to induce DSB can be derived fromDNA fragment data measured experimentally by pulsed-field gelelectrophoresis. We used this probability in Monte Carlo simulationsmore » topredict DSB locations in synthetic nuclei geometrically described by acomplete set of human chromosomes, taking into account microscope opticsfrom real experiments. As expected, simulations produced DNA-weightedrandom (Poisson) distributions. In contrast, the distributions of RIFobtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) werenon-random. This deviation from the expected DNA-weighted random patterncan be further characterized by "relative DNA image measurements." Thisnovel imaging approach shows that RIF were located preferentially at theinterface between high and low DNA density regions, and were morefrequent than predicted in regions with lower DNA density. The samepreferential nuclear location was also measured for RIF induced by 1 Gyof low-LET radiation. This deviation from random behavior was evidentonly 5 min after irradiation for phosphorylated ATM RIF, while gammaH2AXand 53BP1 RIF showed pronounced deviations up to 30 min after exposure.These data suggest that DNA damage induced foci are restricted to certainregions of the nucleus of human epithelial cells. It is possible that DNAlesions are collected in these nuclear sub-domains for more efficientrepair.« less

  15. From famine to feast? Selecting nuclear DNA sequence loci for plant species-level phylogeny reconstruction

    PubMed Central

    Hughes, Colin E; Eastwood, Ruth J; Donovan Bailey, C

    2005-01-01

    Phylogenetic analyses of DNA sequences have prompted spectacular progress in assembling the Tree of Life. However, progress in constructing phylogenies among closely related species, at least for plants, has been less encouraging. We show that for plants, the rapid accumulation of DNA characters at higher taxonomic levels has not been matched by conventional sequence loci at the species level, leaving a lack of well-resolved gene trees that is hindering investigations of many fundamental questions in plant evolutionary biology. The most popular approach to address this problem has been to use low-copy nuclear genes as a source of DNA sequence data. However, this has had limited success because levels of variation among nuclear intron sequences across groups of closely related species are extremely variable and generally lower than conventionally used loci, and because no universally useful low-copy nuclear DNA sequence loci have been developed. This suggests that solutions will, for the most part, be lineage-specific, prompting a move away from ‘universal’ gene thinking for species-level phylogenetics. The benefits and limitations of alternative approaches to locate more variable nuclear loci are discussed and the potential of anonymous non-genic nuclear loci is highlighted. Given the virtually unlimited number of loci that can be generated using these new approaches, it is clear that effective screening will be critical for efficient selection of the most informative loci. Strategies for screening are outlined. PMID:16553318

  16. Nuclear 28S rDNA phylogeny supports the basal placement of Noctiluca scintillans (Dinophyceae; Noctilucales) in dinoflagellates.

    PubMed

    Ki, Jang-Seu

    2010-05-01

    Noctiluca scintillans (Macartney) Kofoid et Swezy, 1921 is an unarmoured heterotrophic dinoflagellate with a global distribution, and has been considered as one of the ancestral taxa among dinoflagellates. Recently, 18S rDNA, actin, alpha-, beta-tubulin, and Hsp90-based phylogenies have shown the basal position of the noctilucids. However, the relationships of dinoflagellates in the basal lineages are still controversial. Although the nuclear rDNA (e.g. 18S, ITS-5.8S, and 28S) contains much genetic information, DNA sequences of N. scintillans rDNA molecules were insufficiently characterized as yet. Here the author sequenced a long-range nuclear rDNA, spanning from the 18S to the D5 region of the 28S rDNA, of N. scintillans. The present N. scintillans had a nearly identical genotype (>99.0% similarity) compared to other Noctiluca sequences from different geographic origins. Nucleotide divergence in the partial 28S rDNA was significantly high (p<0.05) as compared to the 18S rDNA, demonstrating that the information from 28S rDNA is more variable. The 28S rDNA phylogeny of 17 selected dinoflagellates, two perkinsids, and two apicomplexans as outgroups showed that N. scintillans and Oxyrrhis marina formed a clade that diverged separately from core dinoflagellates. Copyright (c) 2009 Elsevier GmbH. All rights reserved.

  17. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Proposed interim...-ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' DATES: Submit...

  18. Entropy in DNA Double-Strand Break, Detection and Signaling

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Schindler, Christina; Heermann, Dieter

    2014-03-01

    In biology, the term entropy is often understood as a measure of disorder - a restrictive interpretation that can even be misleading. Recently it has become clearer and clearer that entropy, contrary to conventional wisdom, can help to order and guide biological processes in living cells. DNA double-strand breaks (DSBs) are among the most dangerous lesions and efficient damage detection and repair is essential for organism viability. However, what remains unknown is the precise mechanism of targeting the site of damage within billions of intact nucleotides and a crowded nuclear environment, a process which is often referred to as recruitment or signaling. Here we show that the change in entropy associated with inflicting a DSB facilitates the recruitment of damage sensor proteins. By means of computational modeling we found that higher mobility and local chromatin structure accelerate protein association at DSB ends. We compared the effect of different chromatin architectures on protein dynamics and concentrations in the vicinity of DSBs, and related these results to experiments on repair in heterochromatin. Our results demonstrate how entropy contributes to a more efficient damage detection. We identify entropy as the physical basis for DNA double-strand break signaling.

  19. Repeated trans-watershed hybridization among haplochromine cichlids (Cichlidae) was triggered by Neogene landscape evolution.

    PubMed

    Schwarzer, Julia; Swartz, Ernst Roelof; Vreven, Emmanuel; Snoeks, Jos; Cotterill, Fenton Peter David; Misof, Bernhard; Schliewen, Ulrich Kurt

    2012-11-07

    The megadiverse haplochromine cichlid radiations of the East African lakes, famous examples of explosive speciation and adaptive radiation, are according to recent studies, introgressed by different riverine lineages. This study is based on the first comprehensive mitochondrial and nuclear DNA dataset from extensive sampling of riverine haplochromine cichlids. It includes species from the lower River Congo and Angolan (River Kwanza) drainages. Reconstruction of phylogenetic hypotheses revealed the paradox of clearly discordant phylogenetic signals. Closely related mtDNA haplotypes are distributed thousands of kilometres apart and across major African watersheds, whereas some neighbouring species carry drastically divergent mtDNA haplotypes. At shallow and deep phylogenetic layers, strong signals of hybridization are attributed to the complex Late Miocene/Early Pliocene palaeohistory of African rivers. Hybridization of multiple lineages across changing watersheds shaped each of the major haplochromine radiations in lakes Tanganyika, Victoria, Malawi and the Kalahari Palaeolakes, as well as a miniature species flock in the Congo basin (River Fwa). On the basis of our results, introgression occurred not only on a spatially restricted scale, but massively over almost the whole range of the haplochromine distribution. This provides an alternative view on the origin and exceptional high diversity of this enigmatic vertebrate group.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo

    Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain a canonicalmore » PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo

    Here, proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain amore » canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less

  2. The product of the Saccharomyces cerevisiae cell cycle gene DBF2 has homology with protein kinases and is periodically expressed in the cell cycle.

    PubMed Central

    Johnston, L H; Eberly, S L; Chapman, J W; Araki, H; Sugino, A

    1990-01-01

    Several Saccharomyces cerevisiae dbf mutants defective in DNA synthesis have been described previously. In this paper, one of them, dbf2, is characterized in detail. The DBF2 gene has been cloned and mapped, and its nucleotide sequence has been determined. This process has identified an open reading frame capable of encoding a protein of molecular weight 64,883 (561 amino acids). The deduced amino acid sequence contains all 11 conserved domains found in various protein kinases. DBF2 was periodically expressed in the cell cycle at a time that clearly differed from the time of expression of either the histone H2A or DNA polymerase I gene. Its first function was completed very near to initiation of DNA synthesis. However, DNA synthesis in the mutant was only delayed at 37 degrees C, and the cells blocked in nuclear division. Consistent with this finding, the execution point occurred about 1 h after DNA synthesis, and the nuclear morphology of the mutant at the restrictive temperature was that of cells blocked in late nuclear division. DBF2 is therefore likely to encode a protein kinase that may function in initiation of DNA synthesis and also in late nuclear division. Images PMID:2181271

  3. Nuclear transfer to prevent mitochondrial DNA disorders: revisiting the debate on reproductive cloning.

    PubMed

    Bredenoord, A L; Dondorp, W; Pennings, G; De Wert, G

    2011-02-01

    Preclinical experiments are currently performed to examine the feasibility of several types of nuclear transfer to prevent mitochondrial DNA (mtDNA) disorders. Whereas the two most promising types of nuclear transfer to prevent mtDNA disorders, spindle transfer and pronuclear transfer, do not amount to reproductive cloning, one theoretical variant, blastomere transfer does. This seems the most challenging both technically and ethically. It is prohibited by many jurisdictions and also the scientific community seems to avoid it. Nevertheless, this paper examines the moral acceptability of blastomere transfer as a method to prevent mtDNA disorders. The reason for doing so is that most objections against reproductive cloning refer to reproductive adult cloning, while blastomere transfer would amount to reproductive embryo cloning. After clarifying this conceptual difference, this paper examines whether the main non-safety objections brought forward against reproductive cloning also apply in the context of blastomere transfer. The conclusion is that if this variant were to become safe and effective, dismissing it because it would involve reproductive cloning is unjustified. Nevertheless, as it may lead to more complex ethical appraisals than the other variants, researchers should initially focus on the development of the other types of nuclear transfer to prevent mtDNA disorders. Copyright © 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Nuclear DNA content variation in life history phases of the Bonnemasoniaceae (Rhodophyta).

    PubMed

    Salvador Soler, Noemi; Gómez Garreta, Amelia; Ribera Siguan, Ma Antonia; Kapraun, Donald F

    2014-01-01

    Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4', 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15-1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome.

  5. Mitochondrial and nuclear genetic relationships of deer (Odocoileus spp.) in western North America

    USGS Publications Warehouse

    Cronin, Matthew A.

    1991-01-01

    Odocoileus hemionus (mule deer and black-tailed deer) and Odocoileus virginanus (white-tailed deer) are sympatric in western North America and are characterized by distinct morphology, behavior, and allozyme allele frequencies. However, there is discordance among nuclear and mitochondrial genetic relationships, as mule deer (O. h. hemionus) and white-tailed deer have similar mitochondrial DNA (mtDNA) which is very different from that of black-tailed deer (O. h. columbianus, O. h. sitkensis). I expanded previous studies to clarify the genetic relationships of these groups by determining mtDNA haplotype and allozyme genotypes for 667 deer from several locations in northwestern North America. Different mtDNA haplotypes in mule deer, black-tailed deer, and white-tailed deer indicate that mitochondrial gene flow is restricted. Allozyme allele frequencies indicate that there is also restriction of nuclear gene flow between O. virginianus and O. hemionus, and to a lesser extent between mule deer and black-tailed deer. There is a low level of introgressive hybridization of mtDNA from mule deer and black-tailed deer into white-tailed deer populations and considerable interbreeding of mule deer and black-tailed deer in a contact zone. The discordance of mitochondrial and nuclear genomes is apparent only if mtDNA sequence divergences, and not haplotype frequencies, are considered.

  6. Social cohesion among kin, gene flow without dispersal and the evolution of population genetic structure in the killer whale (Orcinus orca).

    PubMed

    Pilot, M; Dahlheim, M E; Hoelzel, A R

    2010-01-01

    In social species, breeding system and gregarious behavior are key factors influencing the evolution of large-scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male-mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.

  7. Structural Basis of Mitochondrial Transcription Initiation.

    PubMed

    Hillen, Hauke S; Morozov, Yaroslav I; Sarfallah, Azadeh; Temiakov, Dmitry; Cramer, Patrick

    2017-11-16

    Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Structural insights into the histone H1-nucleosome complex

    PubMed Central

    Zhou, Bing-Rui; Feng, Hanqiao; Kato, Hidenori; Dai, Liang; Yang, Yuedong; Zhou, Yaoqi; Bai, Yawen

    2013-01-01

    Linker H1 histones facilitate formation of higher-order chromatin structures and play important roles in various cell functions. Despite several decades of effort, the structural basis of how H1 interacts with the nucleosome remains elusive. Here, we investigated Drosophila H1 in complex with the nucleosome, using solution nuclear magnetic resonance spectroscopy and other biophysical methods. We found that the globular domain of H1 bridges the nucleosome core and one 10-base pair linker DNA asymmetrically, with its α3 helix facing the nucleosomal DNA near the dyad axis. Two short regions in the C-terminal tail of H1 and the C-terminal tail of one of the two H2A histones are also involved in the formation of the H1–nucleosome complex. Our results lead to a residue-specific structural model for the globular domain of the Drosophila H1 in complex with the nucleosome, which is different from all previous experiment-based models and has implications for chromatin dynamics in vivo. PMID:24218562

  9. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants.

    PubMed

    Goremykin, Vadim V; Lockhart, Peter J; Viola, Roberto; Velasco, Riccardo

    2012-08-01

    Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  10. The identification of FANCD2 DNA binding domains reveals nuclear localization sequences.

    PubMed

    Niraj, Joshi; Caron, Marie-Christine; Drapeau, Karine; Bérubé, Stéphanie; Guitton-Sert, Laure; Coulombe, Yan; Couturier, Anthony M; Masson, Jean-Yves

    2017-08-21

    Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. The FA pathway consists of at least 21 FANC genes (FANCA-FANCV), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA interstrand crosslinks. After DNA damage, FANCD2 is monoubiquitinated and accumulates on chromatin. FANCD2 plays a central role in the FA pathway, using yet unidentified DNA binding regions. By using synthetic peptide mapping and DNA binding screen by electromobility shift assays, we found that FANCD2 bears two major DNA binding domains predominantly consisting of evolutionary conserved lysine residues. Furthermore, one domain at the N-terminus of FANCD2 bears also nuclear localization sequences for the protein. Mutations in the bifunctional DNA binding/NLS domain lead to a reduction in FANCD2 monoubiquitination and increase in mitomycin C sensitivity. Such phenotypes are not fully rescued by fusion with an heterologous NLS, which enable separation of DNA binding and nuclear import functions within this domain that are necessary for FANCD2 functions. Collectively, our results enlighten the importance of DNA binding and NLS residues in FANCD2 to activate an efficient FA pathway. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    PubMed

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  12. Genetics Home Reference: RRM2B-related mitochondrial DNA depletion syndrome, encephalomyopathic form with renal ...

    MedlinePlus

    ... is packaged in chromosomes within the cell's nucleus (nuclear DNA), mitochondria also have a small amount of their own DNA ( mitochondrial DNA or mtDNA). Mitochondria are the energy-producing centers in cells, and the DNA in ...

  13. Assessing the Fidelity of Ancient DNA Sequences Amplified From Nuclear Genes

    PubMed Central

    Binladen, Jonas; Wiuf, Carsten; Gilbert, M. Thomas P.; Bunce, Michael; Barnett, Ross; Larson, Greger; Greenwood, Alex D.; Haile, James; Ho, Simon Y. W.; Hansen, Anders J.; Willerslev, Eske

    2006-01-01

    To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine → guanine and thymine → cytosine) and type 2 transitions (cytosine → thymine and guanine → adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences. PMID:16299392

  14. Drosophila nuclear factor DREF regulates the expression of the mitochondrial DNA helicase and mitochondrial transcription factor B2 but not the mitochondrial translation factor B1

    PubMed Central

    Fernández-Moreno, Miguel A.; Hernández, Rosana; Adán, Cristina; Roberti, Marina; Bruni, Francesco; Polosa, Paola Loguercio; Cantatore, Palmiro; Matsushima, Yuichi; Kaguni, Laurie S.; Garesse, Rafael

    2016-01-01

    DREF [DRE (DNA replication-related element)-binding factor] controls the transcription of numerous genes in Drosophila, many involved in nuclear DNA (nDNA) replication and cell proliferation, three in mitochondrial DNA (mtDNA) replication and two in mtDNA transcription termination. In this work, we have analysed the involvement of DREF in the expression of the known remaining genes engaged in the minimal mtDNA replication (d-mtDNA helicase) and transcription (the activator d-mtTFB2) machineries and of a gene involved in mitochondrial mRNA translation (d-mtTFB1). We have identified their transcriptional initiation sites and DRE sequences in their promoter regions. Gel-shift and chromatin immunoprecipitation assays demonstrate that DREF interacts in vitro and in vivo with the d-mtDNA helicase and d-mtTFB2, but not with the d-mtTFB1 promoters. Transient transfection assays in Drosophila S2 cells with mutated DRE motifs and truncated promoter regions show that DREF controls the transcription of d-mtDNA helicase and d-mtTFB2, but not that of d-mtTFB1. RNA interference of DREF in S2 cells reinforces these results showing a decrease in the mRNA levels of d-mtDNA helicase and d-mtTFB2 and no changes in those of the d-mtTFB1. These results link the genetic regulation of nuclear DNA replication with the genetic control of mtDNA replication and transcriptional activation in Drosophila. PMID:23916463

  15. Two New Nuclear Isolation Buffers for Plant DNA Flow Cytometry: A Test with 37 Species

    PubMed Central

    Loureiro, João; Rodriguez, Eleazar; Doležel, Jaroslav; Santos, Conceição

    2007-01-01

    Background and Aims After the initial boom in the application of flow cytometry in plant sciences in the late 1980s and early 1990s, which was accompanied by development of many nuclear isolation buffers, only a few efforts were made to develop new buffer formulas. In this work, recent data on the performance of nuclear isolation buffers are utilized in order to develop new buffers, general purpose buffer (GPB) and woody plant buffer (WPB), for plant DNA flow cytometry. Methods GPB and WPB were used to prepare samples for flow cytometric analysis of nuclear DNA content in a set of 37 plant species that included herbaceous and woody taxa with leaf tissues differing in structure and chemical composition. The following parameters of isolated nuclei were assessed: forward and side light scatter, propidium iodide fluorescence, coefficient of variation of DNA peaks, quantity of debris background, and the number of particles released from sample tissue. The nuclear genome size of 30 selected species was also estimated using the buffer that performed better for a given species. Key Results In unproblematic species, the use of both buffers resulted in high quality samples. The analysis of samples obtained with GPB usually resulted in histograms of DNA content with higher or similar resolution than those prepared with the WPB. In more recalcitrant tissues, such as those from woody plants, WPB performed better and GPB failed to provide acceptable results in some cases. Improved resolution of DNA content histograms in comparison with previously published buffers was achieved in most of the species analysed. Conclusions WPB is a reliable buffer which is also suitable for the analysis of problematic tissues/species. Although GPB failed with some plant species, it provided high-quality DNA histograms in species from which nuclear suspensions are easy to prepare. The results indicate that even with a broad range of species, either GPB or WPB is suitable for preparation of high-quality suspensions of intact nuclei suitable for DNA flow cytometry. PMID:17684025

  16. Arginine-rich cross-linking peptides with different SV40 nuclear localization signal content as vectors for intranuclear DNA delivery.

    PubMed

    Bogacheva, Mariia; Egorova, Anna; Slita, Anna; Maretina, Marianna; Baranov, Vladislav; Kiselev, Anton

    2017-11-01

    The major barriers for intracellular DNA transportation by cationic polymers are their toxicity, poor endosomal escape and inefficient nuclear uptake. Therefore, we designed novel modular peptide-based carriers modified with SV40 nuclear localization signal (NLS). Core peptide consists of arginine, histidine and cysteine residues for DNA condensation, endosomal escape promotion and interpeptide cross-linking, respectively. We investigated three polyplexes with different NLS content (10 mol%, 50 mol% and 90 mol% of SV40 NLS) as vectors for intranuclear DNA delivery. All carriers tested were able to condense DNA, to protect it from DNAase I and were not toxic to the cells. We observed that cell cycle arrest by hydroxyurea did not affect transfection efficacy of NLS-modified carriers which we confirmed using quantitative confocal microscopy analysis. Overall, peptide carrier modified with 90 mol% of SV40 NLS provided efficient transfection and nuclear uptake in non-dividing cells. Thus, incorporation of NLS into arginine-rich cross-linking peptides is an adequate approach to the development of efficient intranuclear gene delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. First Nuclear DNA C-values for 18 Eudicot Families

    PubMed Central

    HANSON, LYNDA; BOYD, AMY; JOHNSON, MARGARET A. T.; BENNETT, MICHAEL D.

    2005-01-01

    • Background and Aims A key target set at the second Plant Genome Size Workshop, held at the Royal Botanic Gardens, Kew in 2003, was to produce first DNA C-value data for an additional 1 % of angiosperm species, and, within this, to achieve 75 % familial coverage overall (up from approx. 50 %) by 2009. The present study targeted eudicot families for which representation in 2003 (42·5 %) was much lower than monocot (72·8 %) and basal angiosperm (69·0 %) families. • Methods Flow cytometry or Feulgen microdensitometry were used to estimate nuclear DNA C-values, and chromosome counts were obtained where possible. • Key Results First nuclear DNA C-values are reported for 20 angiosperm families, including 18 eudicots. This substantially increases familial representation to 55·2 % for angiosperms and 48·5 % for eudicots. • Conclusions The importance of targeting specific plant families to improve familial nuclear DNA C-value representation is reconfirmed. International collaboration will be increasingly essential to locate and obtain material of unsampled plant families, if the target set by the second Plant Genome Size Workshop is to be met. PMID:16239248

  18. Iron-Inducible Nuclear Translocation of a Myb3 Transcription Factor in the Protozoan Parasite Trichomonas vaginalis

    PubMed Central

    Hsu, Hong-Ming; Lee, Yu; Indra, Dharmu; Wei, Shu-Yi; Liu, Hsing-Wei; Chang, Lung-Chun; Chen, Chinpan; Ong, Shiou-Jeng

    2012-01-01

    In Trichomonas vaginalis, a novel nuclear localization signal spanning the folded R2R3 DNA-binding domain of a Myb2 protein was previously identified. To study whether a similar signal is used for nuclear translocation by other Myb proteins, nuclear translocation of Myb3 was examined in this report. When overexpressed, hemagglutinin-tagged Myb3 was localized to nuclei of transfected cells, with a cellular distribution similar to that of endogenous Myb3. Fusion to a bacterial tetracycline repressor, R2R3, of Myb3 that spans amino acids (aa) 48 to 156 was insufficient for nuclear translocation of the fusion protein, unless its C terminus was extended to aa 167. The conserved isoleucine in helix 2 of R2R3, which is important for Myb2's structural integrity in maintaining DNA-binding activity and nuclear translocation, was also vital for the former activity of Myb3, but less crucial for the latter. Sequential nuclear influx and efflux of Myb3, which require further extension of the nuclear localization signal to aa 180, were immediately induced after iron repletion. Sequence elements that regulate nuclear translocation with cytoplasmic retention, nuclear influx, and nuclear efflux were identified within the C-terminal tail. These results suggest that the R2R3 DNA-binding domain also serves as a common module for the nuclear translocation of both Myb2 and Myb3, but there are intrinsic differences between the two nuclear localization signals. PMID:23042127

  19. Rapid screening for nuclear genes mutations in isolated respiratory chain complex I defects.

    PubMed

    Pagniez-Mammeri, Hélène; Lombes, Anne; Brivet, Michèle; Ogier-de Baulny, Hélène; Landrieu, Pierre; Legrand, Alain; Slama, Abdelhamid

    2009-04-01

    Complex I or reduced nicotinamide adenine dinucleotide (NADH): ubiquinone oxydoreductase deficiency is the most common cause of respiratory chain defects. Molecular bases of complex I deficiencies are rarely identified because of the dual genetic origin of this multi-enzymatic complex (nuclear DNA and mitochondrial DNA) and the lack of phenotype-genotype correlation. We used a rapid method to screen patients with isolated complex I deficiencies for nuclear genes mutations by Surveyor nuclease digestion of cDNAs. Eight complex I nuclear genes, among the most frequently mutated (NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1 and NDUFV2), were studied in 22 cDNA fragments spanning their coding sequences in 8 patients with a biochemically proved complex I deficiency. Single nucleotide polymorphisms and missense mutations were detected in 18.7% of the cDNA fragments by Surveyor nuclease treatment. Molecular defects were detected in 3 patients. Surveyor nuclease screening is a reliable method for genotyping nuclear complex I deficiencies, easy to interpret, and limits the number of sequence reactions. Its use will enhance the possibility of prenatal diagnosis and help us for a better understanding of complex I molecular defects.

  20. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity.

    PubMed

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal S M; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K

    2016-02-17

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Modular structural elements in the replication origin region of Tetrahymena rDNA.

    PubMed Central

    Du, C; Sanzgiri, R P; Shaiu, W L; Choi, J K; Hou, Z; Benbow, R M; Dobbs, D L

    1995-01-01

    Computer analyses of the DNA replication origin region in the amplified rRNA genes of Tetrahymena thermophila identified a potential initiation zone in the 5'NTS [Dobbs, Shaiu and Benbow (1994), Nucleic Acids Res. 22, 2479-2489]. This region consists of a putative DNA unwinding element (DUE) aligned with predicted bent DNA segments, nuclear matrix or scaffold associated region (MAR/SAR) consensus sequences, and other common modular sequence elements previously shown to be clustered in eukaryotic chromosomal origin regions. In this study, two mung bean nuclease-hypersensitive sites in super-coiled plasmid DNA were localized within the major DUE-like element predicted by thermodynamic analyses. Three restriction fragments of the 5'NTS region predicted to contain bent DNA segments exhibited anomalous migration characteristic of bent DNA during electrophoresis on polyacrylamide gels. Restriction fragments containing the 5'NTS region bound Tetrahymena nuclear matrices in an in vitro binding assay, consistent with an association of the replication origin region with the nuclear matrix in vivo. The direct demonstration in a protozoan origin region of elements previously identified in Drosophila, chick and mammalian origin regions suggests that clusters of modular structural elements may be a conserved feature of eukaryotic chromosomal origins of replication. Images PMID:7784181

  2. 32 CFR 338.1 - Ordering DNA issuances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Ordering DNA issuances. 338.1 Section 338.1... DOD INFORMATION AVAILABILITY TO THE PUBLIC OF DEFENSE NUCLEAR AGENCY (DNA) INSTRUCTIONS AND CHANGES THERETO § 338.1 Ordering DNA issuances. (a) The DNA issuances published in the DNA indexes are published...

  3. 32 CFR 338.1 - Ordering DNA issuances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Ordering DNA issuances. 338.1 Section 338.1... DOD INFORMATION AVAILABILITY TO THE PUBLIC OF DEFENSE NUCLEAR AGENCY (DNA) INSTRUCTIONS AND CHANGES THERETO § 338.1 Ordering DNA issuances. (a) The DNA issuances published in the DNA indexes are published...

  4. 32 CFR 338.1 - Ordering DNA issuances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Ordering DNA issuances. 338.1 Section 338.1... DOD INFORMATION AVAILABILITY TO THE PUBLIC OF DEFENSE NUCLEAR AGENCY (DNA) INSTRUCTIONS AND CHANGES THERETO § 338.1 Ordering DNA issuances. (a) The DNA issuances published in the DNA indexes are published...

  5. 32 CFR 338.1 - Ordering DNA issuances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Ordering DNA issuances. 338.1 Section 338.1... DOD INFORMATION AVAILABILITY TO THE PUBLIC OF DEFENSE NUCLEAR AGENCY (DNA) INSTRUCTIONS AND CHANGES THERETO § 338.1 Ordering DNA issuances. (a) The DNA issuances published in the DNA indexes are published...

  6. 32 CFR 338.1 - Ordering DNA issuances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Ordering DNA issuances. 338.1 Section 338.1... DOD INFORMATION AVAILABILITY TO THE PUBLIC OF DEFENSE NUCLEAR AGENCY (DNA) INSTRUCTIONS AND CHANGES THERETO § 338.1 Ordering DNA issuances. (a) The DNA issuances published in the DNA indexes are published...

  7. The molecular basis for stability of heterochromatin-mediated silencing in mammals.

    PubMed

    Hiragami-Hamada, Kyoko; Xie, Sheila Q; Saveliev, Alexander; Uribe-Lewis, Santiago; Pombo, Ana; Festenstein, Richard

    2009-11-04

    The archetypal epigenetic phenomenon of position effect variegation (PEV) in Drosophila occurs when a gene is brought abnormally close to heterochromatin, resulting in stochastic silencing of the affected gene in a proportion of cells that would normally express it. PEV has been instrumental in unraveling epigenetic mechanisms. Using an in vivo mammalian model for PEV we have extensively investigated the molecular basis for heterochromatin-mediated gene silencing. Here we distinguish 'epigenetic effects' from other cellular differences by studying ex vivo cells that are identical, apart from the expression of the variegating gene which is silenced in a proportion of the cells. By separating cells according to transgene expression we show here that silencing appears to be associated with histone H3 lysine 9 trimethylation (H3K9me3), DNA methylation and the localization of the silenced gene to a specific nuclear compartment enriched in these modifications. In contrast, histone H3 acetylation (H3Ac) and lysine 4 di or tri methylation (H3K4me2/3) are the predominant modifications associated with expression where we see the gene in a euchromatic compartment. Interestingly, DNA methylation and inaccessibility, rather than H3K9me3, correlated most strongly with resistance to de-repression by cellular activation. These results have important implications for understanding the contribution of specific factors involved in the establishment and maintenance of gene silencing and activation in vivo.

  8. [Variation of mini- and microsatellite DNA markers in populations of parthenogenetic rock lizard Darevskia rostombekovi].

    PubMed

    Martirosian, I A; Ryskov, A P; Petrosian, V G; Arakelian, M S; Aslanian, A V; Danielian, F D; Darevskiĭ, I S; Tokarskaia, O N

    2002-06-01

    Variation and clonal diversity in populations of the parthenogenetic rock lizard Darevskia rostombekovi was examined by means of multilocus DNA fingerprinting using mini- and microsatellite DNA markers M13, (GATA)4, and (TCC)50). The animals examined were shown to exhibit a clonally inherited, species-specific pattern of DNA markers (fingerprint profile) that is different from the species-specific patterns of parthenogenetic species D. dahli, D. armeniaca, and D. unisexualis. The mean intraspecific similarity index S was 0.950 (0.003) for a sample of 19 animals from three isolated populations of North Armenia. This significantly differed from the estimate of this parameter for a sample of 21 animals including two individuals from mountainous, relict population from the vicinity of the Sevan Lake, which was equal to 0.875 (0.001). A comparison of DNA fingerprints showed differences between 21 individuals attaining 79 DNA fragments of 1801 mini- and microsatellite markers included in the analysis. The results obtained show that intraspecific variation in D. rostombekovi is higher than that in the previously studied parthenogenetic species D. dahli (S = 0.962) and D. unisexualis (S = 0.950) (P < 0.001). Taking into account that D. rostombekovi is considered monoclonal on the basis of allozyme data, the problem of clonal variability is discussed with regard to the evidence on nuclear DNA markers. It is suggested that the hybrid karyotype of D. rostombekovi, which is more unstable than that of D. dahli and D. unisexualis, generates a series of chromosomal rearrangements (mutations). This may lead to the appearance of a geographically isolated chromosomal race (clone) in the population inhabiting the southeastern coast of the Sevan Lake.

  9. Image-Based Modeling Reveals Dynamic Redistribution of DNA Damage into Nuclear Sub-Domains

    PubMed Central

    Costes, Sylvain V; Ponomarev, Artem; Chen, James L; Nguyen, David; Cucinotta, Francis A; Barcellos-Hoff, Mary Helen

    2007-01-01

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage occurs. To test this assumption, we analyzed the spatial distribution of 53BP1, phosphorylated ATM, and γH2AX RIF in cells irradiated with high linear energy transfer (LET) radiation and low LET. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. As expected, simulations produced DNA-weighted random (Poisson) distributions. In contrast, the distributions of RIF obtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) were non-random. This deviation from the expected DNA-weighted random pattern can be further characterized by “relative DNA image measurements.” This novel imaging approach shows that RIF were located preferentially at the interface between high and low DNA density regions, and were more frequent than predicted in regions with lower DNA density. The same preferential nuclear location was also measured for RIF induced by 1 Gy of low-LET radiation. This deviation from random behavior was evident only 5 min after irradiation for phosphorylated ATM RIF, while γH2AX and 53BP1 RIF showed pronounced deviations up to 30 min after exposure. These data suggest that DNA damage–induced foci are restricted to certain regions of the nucleus of human epithelial cells. It is possible that DNA lesions are collected in these nuclear sub-domains for more efficient repair. PMID:17676951

  10. Disruption of PCNA-lamins A/C interactions by prelamin A induces DNA replication fork stalling.

    PubMed

    Cobb, Andrew M; Murray, Thomas V; Warren, Derek T; Liu, Yiwen; Shanahan, Catherine M

    2016-09-02

    The accumulation of prelamin A is linked to disruption of cellular homeostasis, tissue degeneration and aging. Its expression is implicated in compromised genome stability and increased levels of DNA damage, but to date there is no complete explanation for how prelamin A exerts its toxic effects. As the nuclear lamina is important for DNA replication we wanted to investigate the relationship between prelamin A expression and DNA replication fork stability. In this study we report that the expression of prelamin A in U2OS cells induced both mono-ubiquitination of proliferating cell nuclear antigen (PCNA) and subsequent induction of Pol η, two hallmarks of DNA replication fork stalling. Immunofluorescence microscopy revealed that cells expressing prelamin A presented with high levels of colocalisation between PCNA and γH2AX, indicating collapse of stalled DNA replication forks into DNA double-strand breaks. Subsequent protein-protein interaction assays showed prelamin A interacted with PCNA and that its presence mitigated interactions between PCNA and the mature nuclear lamina. Thus, we propose that the cytotoxicity of prelamin A arises in part, from it actively competing against mature lamin A to bind PCNA and that this destabilises DNA replication to induce fork stalling which in turn contributes to genomic instability.

  11. Nuclear and mitochondrial genome instability induced by senna (Cassia angustifolia Vahl.) aqueous extract in Saccharomyces cerevisiae strains.

    PubMed

    Silva, C R; Caldeira-de-Araújo, A; Leitão, A C; Pádula, M

    2014-11-27

    Cassia angustifolia Vahl. (senna) is commonly used in self-medication and is frequently used to treat intestine constipation. A previous study involving bacteria and plasmid DNA suggested the possible toxicity of the aqueous extract of senna (SAE). The aim of this study was to extend the knowledge concerning SAE genotoxicity mechanisms because of its widespread use and its risks to human health. We investigated the impact of SAE on nuclear DNA and on the stability of mitochondrial DNA in Saccharomyces cerevisiae (wt, ogg1, msh6, and ogg1msh6) strains, monitoring the formation of petite mutants. Our results demonstrated that SAE specifically increased Can(R) mutagenesis only in the msh6 mutant, supporting the view that SAE can induce misincorporation errors in DNA. We observed a significant increase in the frequency of petite colonies in all studied strains. Our data indicate that SAE has genotoxic activity towards both mitochondrial and nuclear DNA.

  12. Ddx19 links mRNA nuclear export with progression of transcription and replication and suppresses genomic instability upon DNA damage in proliferating cells.

    PubMed

    Hodroj, Dana; Serhal, Kamar; Maiorano, Domenico

    2017-09-03

    The DEAD-box Helicase 19 (Ddx19) gene codes for an RNA helicase involved in both mRNA (mRNA) export from the nucleus into the cytoplasm and in mRNA translation. In unperturbed cells, Ddx19 localizes in the cytoplasm and at the cytoplasmic face of the nuclear pore. Here we review recent findings related to an additional Ddx19 function in the nucleus in resolving RNA:DNA hybrids (R-loops) generated during collision between transcription and replication, and upon DNA damage. Activation of a DNA damage response pathway dependent upon the ATR kinase, a major regulator of replication fork progression, stimulates translocation of the Ddx19 protein from the cytoplasm into the nucleus. Only nuclear Ddx19 is competent to resolve R-loops, and down regulation of Ddx19 expression induces DNA double strand breaks only in proliferating cells. Overall these observations put forward Ddx19 as an important novel mediator of the crosstalk between transcription and replication.

  13. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.

    PubMed Central

    Podsakoff, G; Wong, K K; Chatterjee, S

    1994-01-01

    Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthesis inhibitors fluorodeoxyuridine and aphidicolin or by contact inhibition induced by confluence and serum starvation. Cells in logarithmic growth or DNA synthesis arrest were transduced with vCWR:beta gal, an AAV-based vector encoding beta-galactosidase under Rous sarcoma virus long terminal repeat promoter control. Under each condition tested, vCWR:beta Gal expression in nondividing cells was at least equivalent to that in actively proliferating cells, suggesting that mechanisms for virus attachment, nuclear transport, virion uncoating, and perhaps some limited second-strand synthesis of AAV vectors were present in nondividing cells. Southern hybridization analysis of vector sequences from cells transduced while in DNA synthetic arrest and expanded after release of the block confirmed ultimate integration of the vector genome into cellular chromosomal DNA. These findings may provide the basis for the use of AAV-based vectors for gene transfer into quiescent cell populations such as totipotent hematopoietic stem cells. Images PMID:8057446

  14. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.

    PubMed

    Podsakoff, G; Wong, K K; Chatterjee, S

    1994-09-01

    Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthesis inhibitors fluorodeoxyuridine and aphidicolin or by contact inhibition induced by confluence and serum starvation. Cells in logarithmic growth or DNA synthesis arrest were transduced with vCWR:beta gal, an AAV-based vector encoding beta-galactosidase under Rous sarcoma virus long terminal repeat promoter control. Under each condition tested, vCWR:beta Gal expression in nondividing cells was at least equivalent to that in actively proliferating cells, suggesting that mechanisms for virus attachment, nuclear transport, virion uncoating, and perhaps some limited second-strand synthesis of AAV vectors were present in nondividing cells. Southern hybridization analysis of vector sequences from cells transduced while in DNA synthetic arrest and expanded after release of the block confirmed ultimate integration of the vector genome into cellular chromosomal DNA. These findings may provide the basis for the use of AAV-based vectors for gene transfer into quiescent cell populations such as totipotent hematopoietic stem cells.

  15. Molecular characterization of human thyroid hormone receptor β isoform 4.

    PubMed

    Moriyama, Kenji; Yamamoto, Hiroyuki; Futawaka, Kumi; Atake, Asami; Kasahara, Masato; Tagami, Tetsuya

    2016-01-01

    Thyroid hormone exerts a pleiotropic effect on development, differentiation, and metabolism through thyroid hormone receptor (TR). A novel thyroid hormone receptor β isoform (TRβ4) was cloned using PCR from a human pituitary cDNA library as a template. We report here the characterization of TRβ4 from a molecular basis. Temporal expression of TRβ4 during the fetal period is abundant in the brain and kidney, comparable with the adult pattern. Western blot analysis revealed that TRs are ubiquitination labile proteins, while TRβ1 is potentially stable. TRβ1, peroxisome proliferator-activated receptors (PPAR), and vitamin D receptor (VDR), which belong to class II transcription factors that function via the formation of heterodimeric complexes with retinoid X receptor (RXR), were suppressed by TRβ4 in a dose-dependent manner. Thus, TRβ4 exhibits ligand-independent transcriptional silencing, possibly as a substitute for dimerized RXR. In this study, TRβ1 and TRβ4 transcripts were detected in several cell lines. Quantitative RT-PCR assay showed that the expression of TRβ4 in human embryonic carcinoma cells of the testis was suppressed by sex hormone in a reciprocal manner to TRβ1. In contrast, TRβ4 was expressed under a high dose of triiodothyronine (T3) in a reciprocal manner to TRβ1. Finally, in transiently transfected NIH-3T3 cells, green fluorescence protein (GFP)-tagged TRβ4 was mostly nuclear in both the absence and the presence of T3. By mutating defined regions of both TRβs, we found that both TRβ1 and TRβ4 had altered nuclear/cytoplasmic distribution as compared with wild-type, and different to T3 and the nuclear receptor corepressor (NCoR). Thus, site-specific DNA binding is not essential for maintaining TRβs within the nucleus.

  16. The confounding effects of hybridization on phylogenetic estimation in the New Zealand cicada genus Kikihia.

    PubMed

    Banker, Sarah E; Wade, Elizabeth J; Simon, Chris

    2017-11-01

    Phylogenetic studies of multiple independently inherited nuclear genes considered in combination with patterns of inheritance of organelle DNA have provided considerable insight into the history of species evolution. In particular, investigations of cicadas in the New Zealand genus Kikihia have identified interesting cases where mitochondrial DNA (mtDNA) crosses species boundaries in some species pairs but not others. Previous phylogenetic studies focusing on mtDNA largely corroborated Kikihia species groups identified by song, morphology and ecology with the exception of a unique South Island mitochondrial haplotype clade-the Westlandica group. This newly identified group consists of diverse taxa previously classified as belonging to three different sub-generic clades. We sequenced five nuclear loci from multiple individuals from every species of Kikihia to assess the nuclear gene concordance for this newly-identified mtDNA lineage. Bayes Factor analysis of the constrained phylogeny suggests some support for the mtDNA-based hypotheses, despite the fact that neither concatenation nor multiple species tree methods resolve the Westlandica group as monophyletic. The nuclear analyses suggest a geographic distinction between clearly defined monophyletic North Island clades and unresolved South Island clades. We suggest that more extreme habitat modification on South Island during the Pliocene and Pleistocene resulted in secondary contact and hybridization between species pairs and a series of mitochondrial capture events followed by subsequent lineage evolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Nuclear DNA Content Variation in Life History Phases of the Bonnemasoniaceae (Rhodophyta)

    PubMed Central

    Salvador Soler, Noemi; Gómez Garreta, Amelia; Ribera Siguan, Mª Antonia; Kapraun, Donald F.

    2014-01-01

    Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4′, 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15–1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome. PMID:24465835

  18. Evolutionary and demographic processes shaping geographic patterns of genetic diversity in a keystone species, the African forest elephant (Loxodonta cyclotis).

    PubMed

    Ishida, Yasuko; Gugala, Natalie A; Georgiadis, Nicholas J; Roca, Alfred L

    2018-05-01

    The past processes that have shaped geographic patterns of genetic diversity may be difficult to infer from current patterns. However, in species with sex differences in dispersal, differing phylogeographic patterns between mitochondrial (mt) and nuclear (nu) DNA may provide contrasting insights into past events. Forest elephants ( Loxodonta cyclotis ) were impacted by climate and habitat change during the Pleistocene, which likely shaped phylogeographic patterns in mitochondrial (mt) DNA that have persisted due to limited female dispersal. By contrast, the nuclear (nu) DNA phylogeography of forest elephants in Central Africa has not been determined. We therefore examined the population structure of Central African forest elephants by genotyping 94 individuals from six localities at 21 microsatellite loci. Between forest elephants in western and eastern Congolian forests, there was only modest genetic differentiation, a pattern highly discordant with that of mtDNA. Nuclear genetic patterns are consistent with isolation by distance. Alternatively, male-mediated gene flow may have reduced the previous regional differentiation in Central Africa suggested by mtDNA patterns, which likely reflect forest fragmentation during the Pleistocene. In species like elephants, male-mediated gene flow erases the nuclear genetic signatures of past climate and habitat changes, but these continue to persist as patterns in mtDNA because females do not disperse. Conservation implications of these results are discussed.

  19. 'Junk' DNA and long-term phenotypic evolution in Silene section Elisanthe (Caryophyllaceae).

    PubMed Central

    Meagher, Thomas R; Costich, Denise E

    2004-01-01

    Nuclear DNA content variation over orders of magnitude across species has been attributed to 'junk' repetitive DNA with limited adaptive significance. By contrast, our previous work on Silene latifolia showed that DNA content is negatively correlated with flower size, a character of clear adaptive relevance. The present paper explores this relationship in a broader phylogenetic context to investigate the long-term evolutionary impacts of DNA content variation. The relationship between nuclear DNA content and phenotype variation was determined for four closely related species of Silene section Elisanthe (Caryophyllaceae). In addition to a consistent sexual dimorphism in DNA content across all of the species, we found DNA content variation among populations within, as well as among, species. We also found a general trend towards a negative correlation between DNA content and flower and leaf size over all four species, within males and females as well as overall. These results indicate that repetitive DNA may play a role in long-term phenotypic evolution. PMID:15801614

  20. Episomal HBV persistence within transcribed host nuclear chromatin compartments involves HBx.

    PubMed

    Hensel, Kai O; Cantner, Franziska; Bangert, Felix; Wirth, Stefan; Postberg, Jan

    2018-06-22

    In hepatocyte nuclei, hepatitis B virus (HBV) genomes occur episomally as covalently closed circular DNA (cccDNA). The HBV X protein (HBx) is required to initiate and maintain HBV replication. The functional nuclear localization of cccDNA and HBx remains unexplored. To identify virus-host genome interactions and the underlying nuclear landscape for the first time, we combined circular chromosome conformation capture (4C) with RNA-seq and ChIP-seq. Moreover, we studied HBx-binding to HBV episomes. In HBV-positive HepaRG hepatocytes, we observed preferential association of HBV episomes and HBx with actively transcribed nuclear domains on the host genome correlating in size with constrained topological units of chromatin. Interestingly, HBx alone occupied transcribed chromatin domains. Silencing of native HBx caused reduced episomal HBV stability. As part of the HBV episome, HBx might stabilize HBV episomal nuclear localization. Our observations may contribute to the understanding of long-term episomal stability and the facilitation of viral persistence. The exact mechanism by which HBx contributes to HBV nuclear persistence warrants further investigations.

  1. A gene delivery system containing nuclear localization signal: Increased nucleus import and transfection efficiency with the assistance of RanGAP1.

    PubMed

    Chen, Kang; Guo, Lingling; Zhang, Jiulong; Chen, Qing; Wang, Kuanglei; Li, Chenxi; Li, Weinan; Qiao, Mingxi; Zhao, Xiuli; Hu, Haiyang; Chen, Dawei

    2017-01-15

    In the present report, a degradable gene delivery system (PAMS/DNA/10NLS) containing nucleus location signal peptide (NLS) was prepared. The agarose gel electrophoresis, particle size and zeta potential of PAMS/DNA/10NLS were similar to those of PAMS/DNA, which proved that NLS did not affect the interaction between PAMS and DNA. PAMS/DNA/10NLS exhibited marked extracellular and intracellular degradation under acidic conditions. The degradation was believed to allow NLS to come into contact with importins easily, which was able to mediate the nucleus import. With the help of NLS, PAMS/DNA/10NLS exhibited a higher transfection capability than PAMS/DNA. Moreover, the transfection of PAMS/DNA/10NLS was less dependent on the breakdown of the nucleus envelope than PAMS/DNA. Considering that GTPase-activating protein 1 (RanGAP1) was able to activate the endogenous GTPase, which was necessary for NLS-mediated nucleus import, RanGAP1 overexpressed cells (RanGAP1 cells) were produced. This result showed that RanGAP1 cells had higher GTPase activities than normal cells. Both the nucleus import and transfection efficiency of PAMS/DNA/10NLS were markedly higher in RanGAP1 cells than that in normal cells. The in vivo transfection results also showed that the transfection efficiency of PAMS/DNA/10NLS was higher in RanGAP1 pre-treated mice than that in normal mice. These findings showed that PAMS/DNA/10NLS is a promising gene delivery system with the assistance of RanGAP1. The present report describes the increased transfection efficiency of a degradable gene delivery system (PAMS/DNA/10NLS) containing nuclear location signal (NLS) with the assistance of GTPase-activating protein 1 (RanGAP1). The physicochemical properties of PAMS/DNA/10NLS were similar to those of PAMS/DNA. PAMS/DNA/10NLS exhibited great extracellular and intracellular degradations, which might allow NLS to contact with importins easily. With the help of NLS, PAMS/DNA/10NLS exhibited a higher transfection capability than PAMS/DNA. The transfection of PAMS/DNA/10NLS had less dependence on the breakdown of nuclear envelope. Both the nuclear import and transfection efficiency of PAMS/DNA/10NLS were higher in RanGAP1 overexpressed cells than that in normal cells. Moreover, the transfection efficiency of PAMS/DNA/10NLS was higher in RanGAP1 pre-treated mice than that in normal mice. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Visualization of chromatin domains created by the gypsy insulator of Drosophila.

    PubMed

    Byrd, Keith; Corces, Victor G

    2003-08-18

    Insulators might regulate gene expression by establishing and maintaining the organization of the chromatin fiber within the nucleus. Biochemical fractionation and in situ high salt extraction of lysed cells show that two known protein components of the gypsy insulator are present in the nuclear matrix. Using FISH with DNA probes located between two endogenous Su(Hw) binding sites, we show that the intervening DNA is arranged in a loop, with the two insulators located at the base. Mutations in insulator proteins, subjecting the cells to a brief heat shock, or destruction of the nuclear matrix lead to disruption of the loop. Insertion of an additional gypsy insulator in the center of the loop results in the formation of paired loops through the attachment of the inserted sequences to the nuclear matrix. These results suggest that the gypsy insulator might establish higher-order domains of chromatin structure and regulate nuclear organization by tethering the DNA to the nuclear matrix and creating chromatin loops.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiriyama, Takao; Hirano, Makito; Asai, Hirohide

    Triple A syndrome is an autosomal recessive neurological disease, mimicking motor neuron disease, and is caused by mutant ALADIN, a nuclear-pore complex component. We recently discovered that the pathogenesis involved impaired nuclear import of DNA repair proteins, including DNA ligase I and the cerebellar ataxia causative protein aprataxin. Such impairment was overcome by fusing classical nuclear localization signal (NLS) and 137-aa downstream sequence of XRCC1, designated stretched NLS (stNLS). We report here that the minimum essential sequence of stNLS (mstNLS) is residues 239-276, downsized by more than 100 aa. mstNLS enabled efficient nuclear import of DNA repair proteins in patientmore » fibroblasts, functioned under oxidative stress, and reduced oxidative-stress-induced cell death, more effectively than stNLS. The stress-tolerability of mstNLS was also exerted in control fibroblasts and neuroblastoma cells. These findings may help develop treatments for currently intractable triple A syndrome and other oxidative-stress-related neurological diseases, and contribute to nuclear compartmentalization study.« less

  4. Nuclear grade and DNA ploidy in stage IV breast cancer with only visceral metastases at initial diagnosis.

    PubMed

    De Lena, M; Barletta, A; Marzullo, F; Rabinovich, M; Leone, B; Vallejo, C; Machiavelli, M; Romero, A; Perez, J; Lacava, J; Cuevas, M A; Rodriguez, R; Schittulli, F; Paradisco, A

    1996-01-01

    The presence of early metastases to distant sites in breast cancer patients is an infrequent event whose mechanisms are still not clear. The aim of this study was to evaluate the biologic and clinical role of DNA ploidy and cell nuclear grade of primary tumors in the metastatic process of a series of stage IV previously untreated breast cancer patients with only visceral metastases. DNA flow cytometry analysis on paraffin-embedded material and cell nuclear grading of primary tumors was performed on a series of 50 breast cancer patients with only visceral metastases at the time of initial diagnosis. Aneuploidy was found in 28/46 (61%) of evaluable cases and was independent of site of involvement, clinical response, time of progression and overall survival of patients. Of the 46 cases evaluable for nuclear grade, 5 (11%), 16 (35%) and 25 (54%) were classified as G1 (well-differentiated) G2 and G3, respectively. Nuclear grade also was unrelated to response to therapy and overall survival, whereas time to progression was significantly longer in G1-2 than G3 tumors with the logrank test (P < 0.03) and multivariate analysis. Our results seem to stress the difficulty to individualize different prognostic subsets from a series of breast cancer patients with only visceral metastases at initial diagnosis according to DNA flow cytometry and nuclear grade.

  5. Large Variation in the Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker.

    PubMed

    Allio, Remi; Donega, Stefano; Galtier, Nicolas; Nabholz, Benoit

    2017-11-01

    It is commonly assumed that mitochondrial DNA (mtDNA) evolves at a faster rate than nuclear DNA (nuDNA) in animals. This has contributed to the popularity of mtDNA as a molecular marker in evolutionary studies. Analyzing 121 multilocus data sets and four phylogenomic data sets encompassing 4,676 species of animals, we demonstrate that the ratio of mitochondrial over nuclear mutation rate is highly variable among animal taxa. In nonvertebrates, such as insects and arachnids, the ratio of mtDNA over nuDNA mutation rate varies between 2 and 6, whereas it is above 20, on average, in vertebrates such as scaled reptiles and birds. Interestingly, this variation is sufficient to explain the previous report of a similar level of mitochondrial polymorphism, on average, between vertebrates and nonvertebrates, which was originally interpreted as reflecting the effect of pervasive positive selection. Our analysis rather indicates that the among-phyla homogeneity in within-species mtDNA diversity is due to a negative correlation between mtDNA per-generation mutation rate and effective population size, irrespective of the action of natural selection. Finally, we explore the variation in the absolute per-year mutation rate of both mtDNA and nuDNA using a reduced data set for which fossil calibration is available, and discuss the potential determinants of mutation rate variation across genomes and taxa. This study has important implications regarding DNA-based identification methods in predicting that mtDNA barcoding should be less reliable in nonvertebrates than in vertebrates. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales)

    PubMed Central

    Bensch, K.; Groenewald, J.Z.; Dijksterhuis, J.; Starink-Willemse, M.; Andersen, B.; Summerell, B.A.; Shin, H.-D.; Dugan, F.M.; Schroers, H.-J.; Braun, U.; Crous, P.W.

    2010-01-01

    The genus Cladosporium is one of the largest genera of dematiaceous hyphomycetes, and is characterised by a coronate scar structure, conidia in acropetal chains and Davidiella teleomorphs. Based on morphology and DNA phylogeny, the species complexes of C. herbarum and C. sphaerospermum have been resolved, resulting in the elucidation of numerous new taxa. In the present study, more than 200 isolates belonging to the C. cladosporioides complex were examined and phylogenetically analysed on the basis of DNA sequences of the nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S nrDNA, as well as partial actin and translation elongation factor 1-α gene sequences. For the saprobic, widely distributed species Cladosporium cladosporioides, both a neotype and epitype are designated in order to specify a well established circumscription and concept of this species. Cladosporium tenuissimum and C. oxysporum, two saprobes abundant in the tropics, are epitypified and shown to be allied to, but distinct from C. cladosporioides. Twenty-two species are newly described on the basis of phylogenetic characters and cryptic morphological differences. The most important phenotypic characters for distinguishing species within the C. cladosporioides complex, which represents a monophyletic subclade within the genus, are shape, width, length, septation and surface ornamentation of conidia and conidiophores; length and branching patterns of conidial chains and hyphal shape, width and arrangement. Many of the treated species, e.g., C. acalyphae, C. angustisporum, C. australiense, C. basiinflatum, C. chalastosporoides, C. colocasiae, C. cucumerinum, C. exasperatum, C. exile, C. flabelliforme, C. gamsianum, and C. globisporum are currently known only from specific hosts, or have a restricted geographical distribution. A key to all species recognised within the C. cladosporioides complex is provided. PMID:20877444

  7. Novel methods for the molecular discrimination of Fasciola spp. on the basis of nuclear protein-coding genes.

    PubMed

    Shoriki, Takuya; Ichikawa-Seki, Madoka; Suganuma, Keisuke; Naito, Ikunori; Hayashi, Kei; Nakao, Minoru; Aita, Junya; Mohanta, Uday Kumar; Inoue, Noboru; Murakami, Kenji; Itagaki, Tadashi

    2016-06-01

    Fasciolosis is an economically important disease of livestock caused by Fasciola hepatica, Fasciola gigantica, and aspermic Fasciola flukes. The aspermic Fasciola flukes have been discriminated morphologically from the two other species by the absence of sperm in their seminal vesicles. To date, the molecular discrimination of F. hepatica and F. gigantica has relied on the nucleotide sequences of the internal transcribed spacer 1 (ITS1) region. However, ITS1 genotypes of aspermic Fasciola flukes cannot be clearly differentiated from those of F. hepatica and F. gigantica. Therefore, more precise and robust methods are required to discriminate Fasciola spp. In this study, we developed PCR restriction fragment length polymorphism and multiplex PCR methods to discriminate F. hepatica, F. gigantica, and aspermic Fasciola flukes on the basis of the nuclear protein-coding genes, phosphoenolpyruvate carboxykinase and DNA polymerase delta, which are single locus genes in most eukaryotes. All aspermic Fasciola flukes used in this study had mixed fragment pattern of F. hepatica and F. gigantica for both of these genes, suggesting that the flukes are descended through hybridization between the two species. These molecular methods will facilitate the identification of F. hepatica, F. gigantica, and aspermic Fasciola flukes, and will also prove useful in etiological studies of fasciolosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Phylogenetic relationships of the Gomphales based on nuc-25S-rDNA, mit-12S-rDNA, and mit-atp6-DNA combined sequences

    Treesearch

    Admir J. Giachini; Kentaro Hosaka; Eduardo Nouhra; Joseph Spatafora; James M. Trappe

    2010-01-01

    Phylogenetic relationships among Geastrales, Gomphales, Hysterangiales, and Phallales were estimated via combined sequences: nuclear large subunit ribosomal DNA (nuc-25S-rDNA), mitochondrial small subunit ribosomal DNA (mit-12S-rDNA), and mitochondrial atp6 DNA (mit-atp6-DNA). Eighty-one taxa comprising 19 genera and 58 species...

  9. Human Heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins.

    PubMed

    Batra, Jyoti; Tripathi, Shashank; Kumar, Amrita; Katz, Jacqueline M; Cox, Nancy J; Lal, Renu B; Sambhara, Suryaprakash; Lal, Sunil K

    2016-01-11

    A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins.

  10. Human Heat shock protein 40 (Hsp40/DnaJB1) promotes influenza A virus replication by assisting nuclear import of viral ribonucleoproteins

    PubMed Central

    Batra, Jyoti; Tripathi, Shashank; Kumar, Amrita; Katz, Jacqueline M.; Cox, Nancy J.; Lal, Renu B.; Sambhara, Suryaprakash; Lal, Sunil K.

    2016-01-01

    A unique feature of influenza A virus (IAV) life cycle is replication of the viral genome in the host cell nucleus. The nuclear import of IAV genome is an indispensable step in establishing virus infection. IAV nucleoprotein (NP) is known to mediate the nuclear import of viral genome via its nuclear localization signals. Here, we demonstrate that cellular heat shock protein 40 (Hsp40/DnaJB1) facilitates the nuclear import of incoming IAV viral ribonucleoproteins (vRNPs) and is important for efficient IAV replication. Hsp40 was found to interact with NP component of IAV RNPs during early stages of infection. This interaction is mediated by the J domain of Hsp40 and N-terminal region of NP. Drug or RNAi mediated inhibition of Hsp40 resulted in reduced nuclear import of IAV RNPs, diminished viral polymerase function and attenuates overall viral replication. Hsp40 was also found to be required for efficient association between NP and importin alpha, which is crucial for IAV RNP nuclear translocation. These studies demonstrate an important role for cellular chaperone Hsp40/DnaJB1 in influenza A virus life cycle by assisting nuclear trafficking of viral ribonucleoproteins. PMID:26750153

  11. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.

    PubMed

    Wolf, Christine; Rapp, Alexander; Berndt, Nicole; Staroske, Wolfgang; Schuster, Max; Dobrick-Mattheuer, Manuela; Kretschmer, Stefanie; König, Nadja; Kurth, Thomas; Wieczorek, Dagmar; Kast, Karin; Cardoso, M Cristina; Günther, Claudia; Lee-Kirsch, Min Ae

    2016-05-27

    Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.

  12. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    EPA Science Inventory

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this...

  13. Ultra-barcoding in cacao (Theobroma spp.; malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA

    USDA-ARS?s Scientific Manuscript database

    High-throughput next-generation sequencing was used to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an indivi...

  14. Lineage-specific evolutionary rate in plants: Contributions of a screening for Cereus (Cactaceae).

    PubMed

    Romeiro-Brito, Monique; Moraes, Evandro M; Taylor, Nigel P; Zappi, Daniela C; Franco, Fernando F

    2016-01-01

    Predictable chloroplast DNA (cpDNA) sequences have been listed for the shallowest taxonomic studies in plants. We investigated whether plastid regions that vary between closely allied species could be applied for intraspecific studies and compared the variation of these plastid segments with two nuclear regions. We screened 16 plastid and two nuclear intronic regions for species of the genus Cereus (Cactaceae) at three hierarchical levels (species from different clades, species of the same clade, and allopatric populations). Ten plastid regions presented interspecific variation, and six of them showed variation at the intraspecific level. The two nuclear regions showed both inter- and intraspecific variation, and in general they showed higher levels of variability in almost all hierarchical levels than the plastid segments. Our data suggest no correspondence between variation of plastid regions at the interspecific and intraspecific level, probably due to lineage-specific variation in cpDNA, which appears to have less effect in nuclear data. Despite the heterogeneity in evolutionary rates of cpDNA, we highlight three plastid segments that may be considered in initial screenings in plant phylogeographic studies.

  15. The evolution of sex: A new hypothesis based on mitochondrial mutational erosion: Mitochondrial mutational erosion in ancestral eukaryotes would favor the evolution of sex, harnessing nuclear recombination to optimize compensatory nuclear coadaptation.

    PubMed

    Havird, Justin C; Hall, Matthew D; Dowling, Damian K

    2015-09-01

    The evolution of sex in eukaryotes represents a paradox, given the "twofold" fitness cost it incurs. We hypothesize that the mutational dynamics of the mitochondrial genome would have favored the evolution of sexual reproduction. Mitochondrial DNA (mtDNA) exhibits a high-mutation rate across most eukaryote taxa, and several lines of evidence suggest that this high rate is an ancestral character. This seems inexplicable given that mtDNA-encoded genes underlie the expression of life's most salient functions, including energy conversion. We propose that negative metabolic effects linked to mitochondrial mutation accumulation would have invoked selection for sexual recombination between divergent host nuclear genomes in early eukaryote lineages. This would provide a mechanism by which recombinant host genotypes could be rapidly shuffled and screened for the presence of compensatory modifiers that offset mtDNA-induced harm. Under this hypothesis, recombination provides the genetic variation necessary for compensatory nuclear coadaptation to keep pace with mitochondrial mutation accumulation. © 2015 WILEY Periodicals, Inc.

  16. E1B and E4 oncoproteins of adenovirus antagonize the effect of apoptosis inducing factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Roberta L.; Wilkinson, John C., E-mail: john.wilkinson@ndsu.edu; Ornelles, David A., E-mail: ornelles@wakehealth.edu

    2014-05-15

    Adenovirus inundates the productively infected cell with linear, double-stranded DNA and an abundance of single-stranded DNA. The cellular response to this stimulus is antagonized by the adenoviral E1B and E4 early genes. A mutant group C adenovirus that fails to express the E1B-55K and E4ORF3 genes is unable to suppress the DNA-damage response. Cells infected with this double-mutant virus display significant morphological heterogeneity at late times of infection and frequently contain fragmented nuclei. Nuclear fragmentation was due to the translocation of apoptosis inducing factor (AIF) from the mitochondria into the nucleus. The release of AIF was dependent on active poly(ADP-ribose)more » polymerase-1 (PARP-1), which appeared to be activated by viral DNA replication. Nuclear fragmentation did not occur in AIF-deficient cells or in cells treated with a PARP-1 inhibitor. The E1B-55K or E4ORF3 proteins independently prevented nuclear fragmentation subsequent to PARP-1 activation, possibly by altering the intracellular distribution of PAR-modified proteins. - Highlights: • E1B-55K or E4orf3 prevents nuclear fragmentation. • Nuclear fragmentation requires AIF and PARP-1 activity. • Adenovirus DNA replication activates PARP-1. • E1B-55K or E4orf3 proteins alter the distribution of PAR.« less

  17. Relationships in subtribe Diocleinae (Leguminosae; Papilionoideae) inferred from internal transcribed spacer sequences from nuclear ribosomal DNA.

    PubMed

    Varela, Eduardo S; Lima, João P M S; Galdino, Alexsandro S; Pinto, Luciano da S; Bezerra, Walderly M; Nunes, Edson P; Alves, Maria A O; Grangeiro, Thalles B

    2004-01-01

    The complete sequences of nuclear ribosomal DNA (nrDNA) internal transcribed spacer regions (ITS/5.8S) were determined for species belonging to six genera from the subtribe Diocleinae as well as for the anomalous genera Calopogonium and Pachyrhizus. Phylogenetic trees constructed by distance matrix, maximum parsimony and maximum likelihood methods showed that Calopogonium and Pachyrhizus were outside the clade Diocleinae (Canavalia, Camptosema, Cratylia, Dioclea, Cymbosema, and Galactia). This finding supports previous morphological, phytochemical, and molecular evidence that Calopogonium and Pachyrhizus do not belong to the subtribe Diocleinae. Within the true Diocleinae clade, the clustering of genera and species were congruent with morphology-based classifications, suggesting that ITS/5.8S sequences can provide enough informative sites to allow resolution below the genus level. This is the first evidence of the phylogeny of subtribe Diocleinae based on nuclear DNA sequences.

  18. Taxonomic confirmation of mud crab species (genus Scylla) in Bangladesh by nuclear and mitochondrial DNA markers.

    PubMed

    Sarower, Mohammed Golam; Shahriar, Sheik Istiak Md; Nakamura, Hiromasa; Rouf, Muhammad Abdur; Okada, Shigeru

    2017-11-01

    Taxonomy of mud crabs genus Scylla has been misidentified for several years due to their high morphological plasticity. Several reports concerning mud crab have been published with misleading identification in Bangladesh. In this study, partial fragments of nuclear and mitochondrial DNA of Scylla species obtained from four locations along the Bangladesh coast were used to resolve taxonomical ambiguity of mud crab species. A single PCR product from the nuclear first internal transcribed spacer (ITS-1) marker and phylogenetic trees constructed based on 16S rDNA sequences indicated that all Scylla species obtained in this study were S. olivacea. Both molecular data and morphological characters revealed that S. olivacea is the only major species in Bangladesh coastal waters. Further, the 16S rDNA haplotypes significantly differed with known S. serrata by 33%. From this study it is clear that 'S. serrata' commonly reported from Bangladesh should be S. olivacea.

  19. Epstein-Barr Viral Productive Amplification Reprograms Nuclear Architecture, DNA Replication and Histone Deposition

    PubMed Central

    Chiu, Ya-Fang; Sugden, Arthur U.; Sugden, Bill

    2014-01-01

    Summary The spontaneous transition of Epstein-Barr Virus (EBV) from latency to productive infection is infrequent, making its analysis in the resulting mixed cell populations difficult. We engineered cells to support this transition efficiently and developed EBV DNA variants that could be visualized and measured as fluorescent signals over multiple cell cycles. This approach revealed that EBV’s productive replication began synchronously for viral DNAs within a cell but asynchronously between cells. EBV DNA amplification was delayed until early S-phase and occurred in factories characterized by the absence of cellular DNA and histones, by a sequential redistribution of PCNA, and by localization away from the nuclear periphery. The earliest amplified DNAs lacked histones accompanying a decline in four histone chaperones. Thus, EBV transitions from being dependent on the cellular replication machinery during latency to commandeering both that machinery and nuclear structure for its own reproductive needs. PMID:24331459

  20. An ATR-dependent function for the Ddx19 RNA helicase in nuclear R-loop metabolism.

    PubMed

    Hodroj, Dana; Recolin, Bénédicte; Serhal, Kamar; Martinez, Susan; Tsanov, Nikolay; Abou Merhi, Raghida; Maiorano, Domenico

    2017-05-02

    Coordination between transcription and replication is crucial in the maintenance of genome integrity. Disturbance of these processes leads to accumulation of aberrant DNA:RNA hybrids (R-loops) that, if unresolved, generate DNA damage and genomic instability. Here we report a novel, unexpected role for the nucleopore-associated mRNA export factor Ddx19 in removing nuclear R-loops formed upon replication stress or DNA damage. We show, in live cells, that Ddx19 transiently relocalizes from the nucleopore to the nucleus upon DNA damage, in an ATR/Chk1-dependent manner, and that Ddx19 nuclear relocalization is required to clear R-loops. Ddx19 depletion induces R-loop accumulation, proliferation-dependent DNA damage and defects in replication fork progression. Further, we show that Ddx19 resolves R-loops in vitro via its helicase activity. Furthermore, mutation of a residue phosphorylated by Chk1 in Ddx19 disrupts its interaction with Nup214 and allows its nuclear relocalization. Finally, we show that Ddx19 operates in resolving R-loops independently of the RNA helicase senataxin. Altogether these observations put forward a novel, ATR-dependent function for Ddx19 in R-loop metabolism to preserve genome integrity in mammalian cells. © 2017 The Authors.

  1. Population Genetic Structure and Phylogeography of Camellia flavida (Theaceae) Based on Chloroplast and Nuclear DNA Sequences

    PubMed Central

    Wei, Su-Juan; Lu, Yong-Bin; Ye, Quan-Qing; Tang, Shao-Qing

    2017-01-01

    Camellia flavida is an endangered species of yellow camellia growing in limestone mountains in southwest China. The current classification of C. flavida into two varieties, var. flavida and var. patens, is controversial. We conducted a genetic analysis of C. flavida to determine its taxonomic structure. A total of 188 individual plants from 20 populations across the entire distribution range in southwest China were analyzed using two DNA fragments: a chloroplast DNA fragment from the small single copy region and a single-copy nuclear gene called phenylalanine ammonia-lyase (PAL). Sequences from both chloroplast and nuclear DNA were highly diverse; with high levels of genetic differentiation and restricted gene flow. This result can be attributed to the high habitat heterogeneity in limestone karst, which isolates C. flavida populations from each other. Our nuclear DNA results demonstrate that there are three differentiated groups within C. flavida: var. flavida 1, var. flavida 2, and var. patens. These genetic groupings are consistent with the morphological characteristics of the plants. We suggest that the samples included in this study constitute three taxa and the var. flavida 2 group is the genuine C. flavida. The three groups should be recognized as three management units for conservation concerns. PMID:28579991

  2. Enlightenment of Yeast Mitochondrial Homoplasmy: Diversified Roles of Gene Conversion

    PubMed Central

    Ling, Feng; Mikawa, Tsutomu; Shibata, Takehiko

    2011-01-01

    Mitochondria have their own genomic DNA. Unlike the nuclear genome, each cell contains hundreds to thousands of copies of mitochondrial DNA (mtDNA). The copies of mtDNA tend to have heterogeneous sequences, due to the high frequency of mutagenesis, but are quickly homogenized within a cell (“homoplasmy”) during vegetative cell growth or through a few sexual generations. Heteroplasmy is strongly associated with mitochondrial diseases, diabetes and aging. Recent studies revealed that the yeast cell has the machinery to homogenize mtDNA, using a common DNA processing pathway with gene conversion; i.e., both genetic events are initiated by a double-stranded break, which is processed into 3′ single-stranded tails. One of the tails is base-paired with the complementary sequence of the recipient double-stranded DNA to form a D-loop (homologous pairing), in which repair DNA synthesis is initiated to restore the sequence lost by the breakage. Gene conversion generates sequence diversity, depending on the divergence between the donor and recipient sequences, especially when it occurs among a number of copies of a DNA sequence family with some sequence variations, such as in immunoglobulin diversification in chicken. MtDNA can be regarded as a sequence family, in which the members tend to be diversified by a high frequency of spontaneous mutagenesis. Thus, it would be interesting to determine why and how double-stranded breakage and D-loop formation induce sequence homogenization in mitochondria and sequence diversification in nuclear DNA. We will review the mechanisms and roles of mtDNA homoplasmy, in contrast to nuclear gene conversion, which diversifies gene and genome sequences, to provide clues toward understanding how the common DNA processing pathway results in such divergent outcomes. PMID:24710143

  3. Structural and mechanistic insights into nuclear transport and delivery of the critical pluripotency factor Oct4 to DNA.

    PubMed

    Okuyama, Takahide; Yamagishi, Ryosuke; Shimada, Jiro; Ikeda, Masaaki; Maruoka, Yayoi; Kaneko, Hiroki

    2018-02-01

    Oct4 is a master regulator of the induction and maintenance of cellular pluripotency, and has crucial roles in early stages of differentiation. It is the only factor that cannot be substituted by other members of the same protein family to induce pluripotency. However, although Oct4 nuclear transport and delivery to target DNA are critical events for reprogramming to pluripotency, little is known about the molecular mechanism. Oct4 is imported to the nucleus by the classical nuclear transport mechanism, which requires importin α as an adaptor to bind the nuclear localization signal (NLS). Although there are structures of complexes of the NLS of transcription factors (TFs) in complex with importin α, there are no structures available for complexes involving intact TFs. We have therefore modeled the structure of the complex of the whole Oct4 POU domain and importin α2 using protein-protein docking and molecular dynamics. The model explains how the Ebola virus VP24 protein has a negative effect on the nuclear import of STAT1 by importin α but not on Oct4, and how Nup 50 facilitates cargo release from importin α. The model demonstrates the structural differences between the Oct4 importin α bound and DNA bound crystal states. We propose that the 'expanded linker' between the two DNA-binding domains of Oct4 is an intrinsically disordered region and that its conformational changes have a key role in the recognition/binding to both DNA and importin α. Moreover, we propose that this structural change enables efficient delivery to DNA after release from importin α.

  4. Correlation of DNA content and nucleomorphometric features with World Health Organization grading of meningiomas.

    PubMed

    Grunewald, J P; Röhl, F W; Kirches, E; Dietzmann, K

    1998-02-01

    Many studies dealing with extracranial cancer showed a strong correlation of DNA ploidy to a poor clinical outcome, recurrence, or malignancy. In brain tumors, analysis of DNA content did not always provided significant diagnostic information. In this study, DNA density and karyometric parameters of 50 meningiomas (26 Grade I, 10 Grade II, 14 Grade III) were quantitatively evaluated by digital cell image analyses of Feulgen-stained nuclei. In particular, the densitometric parameter SEXT, which describes nuclear DNA content, as well as the morphometric values LENG (a computer-assisted measurement of nuclear circumference), AREA (a computer-assisted measurement of nuclear area), FCON (a parameter that describes nuclear roundness), and CONC (a describing nuclear contour), evaluated with the software IMAGE C, were correlated to World Health Organization (WHO) grading using univariate and multivariate methods. AREA and LENG values showed significant differences between tumors of Grades I and III. FCON values were unable to distinguish WHO Grade III from Grade I/II but were useful in clearly separating Grade II from Grade I tumors. CONC values detected differences between WHO Grades II and I/III tumors but not between the latter. SEXT values clearly distinguished Grade III from Grade I/II tumors. The 1c, 2c, 2.5c, and 5c exceeding rates showed no predictive values. Only the 6c exceeding rate showed a significant difference between Grades I and III. These results outline the characteristic features of the atypical (Grade II) meningiomas, which make them a recognizable tumor entity distinct from benign and anaplastic meningiomas. The combination of DNA densitometric and morphometric findings seems to be a powerful addition to the histopathologic classification of meningiomas, as suggested by the WHO.

  5. A multi-locus analysis of phylogenetic relationships within grass subfamily Pooideae (Poaceae) inferred from sequences of nuclear single copy gene regions compared with plastid DNA.

    PubMed

    Hochbach, Anne; Schneider, Julia; Röser, Martin

    2015-06-01

    To investigate phylogenetic relationships within the grass subfamily Pooideae we studied about 50 taxa covering all recognized tribes, using one plastid DNA (cpDNA) marker (matK gene-3'trnK exon) and for the first time four nuclear single copy gene loci. DNA sequence information from two parts of the nuclear genes topoisomerase 6 (Topo6) spanning the exons 8-13 and 17-19, the exons 9-13 encoding plastid acetyl-CoA-carboxylase (Acc1) and the partial exon 1 of phytochrome B (PhyB) were generated. Individual and nuclear combined data were evaluated using maximum parsimony, maximum likelihood and Bayesian methods. All of the phylogenetic results show Brachyelytrum and the tribe Nardeae as earliest diverging lineages within the subfamily. The 'core' Pooideae (Hordeeae and the Aveneae/Poeae tribe complex) are also strongly supported, as well as the monophyly of the tribes Brachypodieae, Meliceae and Stipeae (except PhyB). The beak grass tribe Diarrheneae and the tribe Duthieeae are not monophyletic in some of the analyses. However, the combined nuclear DNA (nDNA) tree yields the highest resolution and the best delimitation of the tribes, and provides the following evolutionary hypothesis for the tribes: Brachyelytrum, Nardeae, Duthieeae, Meliceae, Stipeae, Diarrheneae, Brachypodieae and the 'core' Pooideae. Within the individual datasets, the phylogenetic trees obtained from Topo6 exon 8-13 shows the most interesting results. The divergent positions of some clone sequences of Ampelodesmos mauritanicus and Trikeraia pappiformis, for instance, may indicate a hybrid origin of these stipoid taxa. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Genetic Diversity in Endangered Guizhou Snub-Nosed Monkeys (Rhinopithecus brelichi): Contrasting Results from Microsatellite and Mitochondrial DNA Data

    PubMed Central

    Kolleck, Jakob; Yang, Mouyu; Zinner, Dietmar; Roos, Christian

    2013-01-01

    To evaluate the conservation status of a species or population it is necessary to gain insight into its ecological requirements, reproduction, genetic population structure, and overall genetic diversity. In our study we examined the genetic diversity of Rhinopithecus brelichi by analyzing microsatellite data and compared them with already existing data derived from mitochondrial DNA, which revealed that R. brelichi exhibits the lowest mitochondrial diversity of all so far studied Rhinopithecus species. In contrast, the genetic diversity of nuclear DNA is high and comparable to other Rhinopithecus species, i.e. the examined microsatellite loci are similarly highly polymorphic as in other species of the genus. An explanation for these differences in mitochondrial and nuclear genetic diversity could be a male biased dispersal. Females most likely stay within their natal band and males migrate between bands, thus mitochondrial DNA will not be exchanged between bands but nuclear DNA via males. A Bayesian Skyline Plot based on mitochondrial DNA sequences shows a strong decrease of the female effective population size (Nef) starting about 3,500 to 4,000 years ago, which concurs with the increasing human population in the area and respective expansion of agriculture. Given that we found no indication for a loss of nuclear DNA diversity in R. brelichi it seems that this factor does not represent the most prominent conservation threat for the long-term survival of the species. Conservation efforts should therefore focus more on immediate threats such as development of tourism and habitat destruction. PMID:24009761

  7. Around and beyond 53BP1 Nuclear Bodies.

    PubMed

    Fernandez-Vidal, Anne; Vignard, Julien; Mirey, Gladys

    2017-12-05

    Within the nucleus, sub-nuclear domains define territories where specific functions occur. Nuclear bodies (NBs) are dynamic structures that concentrate nuclear factors and that can be observed microscopically. Recently, NBs containing the p53 binding protein 1 (53BP1), a key component of the DNA damage response, were defined. Interestingly, 53BP1 NBs are visualized during G1 phase, in daughter cells, while DNA damage was generated in mother cells and not properly processed. Unlike most NBs involved in transcriptional processes, replication has proven to be key for 53BP1 NBs, with replication stress leading to the formation of these large chromatin domains in daughter cells. In this review, we expose the composition and organization of 53BP1 NBs and focus on recent findings regarding their regulation and dynamics. We then concentrate on the importance of the replication stress, examine the relation of 53BP1 NBs with DNA damage and discuss their dysfunction.

  8. Chernobyl Doses. Volume 3. Habitat and Vegetation Near the Chernobyl Nuclear Reactor Station

    DTIC Science & Technology

    1993-01-01

    AD-A260 167 A lexandria, VA 22310-3398 l,* Defense Nuclear Agency Alexandria, VA 22310-.3398 DNA-TR-92-37-V3 Chernobyl Doses, Volume 3-Habitat and...Vegetation Near the Chernobyl Nuclear Reactor Station DTIC~ ELECTF. Elizabeth L. Painter i IN•9 199EIF F. Ward Whicker JAN % 93f Pacific-Sierra...930101 Technical 870929- 920228 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Chernobyl Doses C - DNA 001-87-C-0104 Volume 3-Habitat and Vegetation Near the

  9. 10 CFR 110.80 - Basis for hearings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Basis for hearings. 110.80 Section 110.80 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Public Participation Procedures Concerning License Applications § 110.80 Basis for hearings. The procedures in this part will...

  10. Kaposi's Sarcoma-Associated Herpesvirus mRNA Accumulation in Nuclear Foci Is Influenced by Viral DNA Replication and Viral Noncoding Polyadenylated Nuclear RNA.

    PubMed

    Vallery, Tenaya K; Withers, Johanna B; Andoh, Joana A; Steitz, Joan A

    2018-07-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), like other herpesviruses, replicates within the nuclei of its human cell host and hijacks host machinery for expression of its genes. The activities that culminate in viral DNA synthesis and assembly of viral proteins into capsids physically concentrate in nuclear areas termed viral replication compartments. We sought to better understand the spatiotemporal regulation of viral RNAs during the KSHV lytic phase by examining and quantifying the subcellular localization of select viral transcripts. We found that viral mRNAs, as expected, localized to the cytoplasm throughout the lytic phase. However, dependent on active viral DNA replication, viral transcripts also accumulated in the nucleus, often in foci in and around replication compartments, independent of the host shutoff effect. Our data point to involvement of the viral long noncoding polyadenylated nuclear (PAN) RNA in the localization of an early, intronless viral mRNA encoding ORF59-58 to nuclear foci that are associated with replication compartments. IMPORTANCE Late in the lytic phase, mRNAs from Kaposi's sarcoma-associated herpesvirus accumulate in the host cell nucleus near viral replication compartments, centers of viral DNA synthesis and virion production. This work contributes spatiotemporal data on herpesviral mRNAs within the lytic host cell and suggests a mechanism for viral RNA accumulation. Our findings indicate that the mechanism is independent of the host shutoff effect and splicing but dependent on active viral DNA synthesis and in part on the viral noncoding RNA, PAN RNA. PAN RNA is essential for the viral life cycle, and its contribution to the nuclear accumulation of viral messages may facilitate propagation of the virus. Copyright © 2018 American Society for Microbiology.

  11. A role for nuclear translocation of tripeptidyl-peptidase II in reactive oxygen species-dependent DNA damage responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preta, Giulio; Klark, Rainier de; Glas, Rickard, E-mail: rickard.glas@ki.se

    2009-11-27

    Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to {gamma}-irradiation, and that nuclear expression of TPPII was present in most {gamma}-irradiated transformed cell lines. We used amore » panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after {gamma}-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following {gamma}-irradiation (at 1-4 h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in {gamma}-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.« less

  12. A role for nuclear translocation of tripeptidyl-peptidase II in reactive oxygen species-dependent DNA damage responses.

    PubMed

    Preta, Giulio; de Klark, Rainier; Glas, Rickard

    2009-11-27

    Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to gamma-irradiation, and that nuclear expression of TPPII was present in most gamma-irradiated transformed cell lines. We used a panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after gamma-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following gamma-irradiation (at 1-4h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in gamma-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.

  13. The mitochondrial genome and a 60-kb nuclear DNA segment from Naegleria fowleri, the causative agent of primary amoebic meningoencephalitis.

    PubMed

    Herman, Emily K; Greninger, Alexander L; Visvesvara, Govinda S; Marciano-Cabral, Francine; Dacks, Joel B; Chiu, Charles Y

    2013-01-01

    Naegleria fowleri is a unicellular eukaryote causing primary amoebic meningoencephalitis, a neuropathic disease killing 99% of those infected, usually within 7-14 days. Naegleria fowleri is found globally in regions including the US and Australia. The genome of the related nonpathogenic species Naegleria gruberi has been sequenced, but the genetic basis for N. fowleri pathogenicity is unclear. To generate such insight, we sequenced and assembled the mitochondrial genome and a 60-kb segment of nuclear genome from N. fowleri. The mitochondrial genome is highly similar to its counterpart in N. gruberi in gene complement and organization, while distinct lack of synteny is observed for the nuclear segments. Even in this short (60-kb) segment, we identified examples of potential factors for pathogenesis, including ten novel N. fowleri-specific genes. We also identified a homolog of cathepsin B; proteases proposed to be involved in the pathogenesis of diverse eukaryotic pathogens, including N. fowleri. Finally, we demonstrate a likely case of horizontal gene transfer between N. fowleri and two unrelated amoebae, one of which causes granulomatous amoebic encephalitis. This initial look into the N. fowleri nuclear genome has revealed several examples of potential pathogenesis factors, improving our understanding of a neglected pathogen of increasing global importance. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  14. Biological Sexing of a 4000-Year-Old Egyptian Mummy Head to Assess the Potential of Nuclear DNA Recovery from the Most Damaged and Limited Forensic Specimens

    PubMed Central

    Loreille, Odile; Ratnayake, Shashikala; Stockwell, Timothy B.; Mallick, Swapan; Skoglund, Pontus; Onorato, Anthony J.; Bergman, Nicholas H.; Reich, David; Irwin, Jodi A.

    2018-01-01

    High throughput sequencing (HTS) has been used for a number of years in the field of paleogenomics to facilitate the recovery of small DNA fragments from ancient specimens. Recently, these techniques have also been applied in forensics, where they have been used for the recovery of mitochondrial DNA sequences from samples where traditional PCR-based assays fail because of the very short length of endogenous DNA molecules. Here, we describe the biological sexing of a ~4000-year-old Egyptian mummy using shotgun sequencing and two established methods of biological sex determination (RX and RY), by way of mitochondrial genome analysis as a means of sequence data authentication. This particular case of historical interest increases the potential utility of HTS techniques for forensic purposes by demonstrating that data from the more discriminatory nuclear genome can be recovered from the most damaged specimens, even in cases where mitochondrial DNA cannot be recovered with current PCR-based forensic technologies. Although additional work remains to be done before nuclear DNA recovered via these methods can be used routinely in operational casework for individual identification purposes, these results indicate substantial promise for the retrieval of probative individually identifying DNA data from the most limited and degraded forensic specimens. PMID:29494531

  15. Blood micronutrients and DNA damage in children.

    PubMed

    Milne, Elizabeth; Greenop, Kathryn R; Ramankutty, Padmaja; Miller, Margaret; de Klerk, Nicholas H; Armstrong, Bruce K; Almond, Theodora; O'Callaghan, Nathan J; Fenech, Michael

    2015-10-01

    Maintenance of normal cellular phenotype depends largely on accurate DNA replication and repair. DNA damage causes gene mutations and predisposes to cancer and other chronic diseases. Growing evidence indicates that nutritional factors are associated with DNA damage in adults; here, we investigate these associations in children. We conducted a cross-sectional study among 462 healthy children 3, 6, and 9 years of age. Blood was collected and micronutrient levels were measured. The cytokinesis-block micronucleus cytome assay was used to measure chromosomal DNA damage (micronuclei, nucleoplasmic bridges, and nuclear buds) in lymphocytes. Cell apoptosis, necrosis, and the nuclear division index were also measured. Nine loci in genes involved in folate metabolism and DNA repair were genotyped. Data were analyzed using linear regression with adjustment for potential confounders. Plasma calcium was positively associated with micronuclei and necrosis, and α-tocopherol negatively associated with apoptosis, nuclear division index, and nucleoplasmic bridges; lutein was positively associated with nucleoplasmic bridges. α-tocopherol was positively associated with necrosis. DNA damage in healthy children may be influenced by blood micronutrient levels and certain genotypes. Further investigation of associations between nutritional status and genomic integrity in children is needed to shed additional light on potential mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast.

    PubMed

    Chen, Miao; Gartenberg, Marc R

    2014-05-01

    tRNAs are encoded by RNA polymerase III-transcribed genes that reside at seemingly random intervals along the chromosomes of budding yeast. Existing evidence suggests that the genes congregate together at the nucleolus and/or centromeres. In this study, we re-examined spatial and temporal aspects of tRNA gene (tDNA) expression. We show that tDNA transcription fluctuates during cell cycle progression. In M phase, when tRNA synthesis peaks, tDNAs localize at nuclear pore complexes (NPCs). Docking of a tDNA requires the DNA sequence of the contacted gene, nucleoporins Nup60 and Nup2, and cohesin. Characterization of mutants that block NPC localization revealed that docking is a consequence of elevated tDNA transcription. NPC-tDNA contact falters in the absence of the principal exportin of nascent tRNA, Los1, and genetic assays indicate that gating of tDNAs at NPCs favors cytoplasmic accumulation of functional tRNA. Collectively, the data suggest that tDNAs associate with NPCs to coordinate RNA polymerase III transcription with the nuclear export of pre-tRNA. The M-phase specificity of NPC contact reflects a regulatory mechanism that may have evolved, in part, to avoid collisions between DNA replication forks and transcribing RNA polymerase III machinery at NPCs.

  17. Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast

    PubMed Central

    Chen, Miao; Gartenberg, Marc R.

    2014-01-01

    tRNAs are encoded by RNA polymerase III-transcribed genes that reside at seemingly random intervals along the chromosomes of budding yeast. Existing evidence suggests that the genes congregate together at the nucleolus and/or centromeres. In this study, we re-examined spatial and temporal aspects of tRNA gene (tDNA) expression. We show that tDNA transcription fluctuates during cell cycle progression. In M phase, when tRNA synthesis peaks, tDNAs localize at nuclear pore complexes (NPCs). Docking of a tDNA requires the DNA sequence of the contacted gene, nucleoporins Nup60 and Nup2, and cohesin. Characterization of mutants that block NPC localization revealed that docking is a consequence of elevated tDNA transcription. NPC–tDNA contact falters in the absence of the principal exportin of nascent tRNA, Los1, and genetic assays indicate that gating of tDNAs at NPCs favors cytoplasmic accumulation of functional tRNA. Collectively, the data suggest that tDNAs associate with NPCs to coordinate RNA polymerase III transcription with the nuclear export of pre-tRNA. The M-phase specificity of NPC contact reflects a regulatory mechanism that may have evolved, in part, to avoid collisions between DNA replication forks and transcribing RNA polymerase III machinery at NPCs. PMID:24788517

  18. A nuclear mutation defective in mitochondrial recombination in yeast.

    PubMed

    Ling, F; Makishima, F; Morishima, N; Shibata, T

    1995-08-15

    Homologous recombination (crossing over and gene conversion) is generally essential for heritage and DNA repair, and occasionally causes DNA aberrations, in nuclei of eukaryotes. However, little is known about the roles of homologous recombination in the inheritance and stability of mitochondrial DNA which is continuously damaged by reactive oxygen species, by-products of respiration. Here, we report the first example of a nuclear recessive mutation which suggests an essential role for homologous recombination in the stable inheritance of mitochondrial DNA. For the detection of this class of mutants, we devised a novel procedure, 'mitochondrial crossing in haploid', which has enabled us to examine many mutant clones. Using this procedure, we examined mutants of Saccharomyces cerevisiae that showed an elevated UV induction of respiration-deficient mutations. We obtained a mutant that was defective in both the omega-intron homing and Endo.SceI-induced homologous gene conversion. We found that the mutant cells are temperature sensitive in the maintenance of mitochondrial DNA. A tetrad analysis indicated that elevated UV induction of respiration-deficient mutations, recombination deficiency and temperature sensitivity are all caused by a single nuclear mutation (mhr1) on chromosome XII. The pleiotropic characteristics of the mutant suggest an essential role for the MHR1 gene in DNA repair, recombination and the maintenance of DNA in mitochondria.

  19. DNA-PK/Ku complex binds to latency-associated nuclear antigen and negatively regulates Kaposi's sarcoma-associated herpesvirus latent replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Seho; Lim, Chunghun; Lee, Jae Young

    2010-04-16

    During latent infection, latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) plays important roles in episomal persistence and replication. Several host factors are associated with KSHV latent replication. Here, we show that the catalytic subunit of DNA protein kinase (DNA-PKcs), Ku70, and Ku86 bind the N-terminal region of LANA. LANA was phosphorylated by DNA-PK and overexpression of Ku70, but not Ku86, impaired transient replication. The efficiency of transient replication was significantly increased in the HCT116 (Ku86 +/-) cell line, compared to the HCT116 (Ku86 +/+) cell line, suggesting that the DNA-PK/Ku complex negatively regulates KSHV latent replication.

  20. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains.

    PubMed

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Cammarota, Marcella; Galderisi, Umberto; Cascino, Antonino; Cipollaro, Marilena

    2002-02-15

    Ancient DNA (aDNA) samples extracted from the bone remains of six equids buried by the Vesuvius eruption in 79 AD were investigated to test pre-amplification and enzymatic repair procedures designed to enhance the rescue of nuclear genes. The extracts, which proved all positive for Equidae mtDNA amplification, proved positive only four times out of 18 when tested for single-copy Equidae nuclear genes (epsilon globin, p53 and gamma interferon). Pre-amplification did not change the number of retrieved aDNA sequences but 10 times out of 14 enzymatic repair restored the amplifiability of the genes analysed, proving that repair increases the rate of successful rescue from 22 to alpha(lambda)mu(omicron)sigma(tau) 80%. These findings support the hypothesis that some of these cross-linked aDNA molecules, which are not completely separated when DNA is extracted under denaturing conditions, become homoduplex substrates for Pol I and/or T4 ligase action upon renaturation. aDNA authenticity is proved by the homology of the nucleotide sequences of loci tested to the corresponding modern Equidae sequences. Data also indicate that cross-linked homoduplex molecules selected by denaturation of the extract are repaired without any chimera formation. The general features of aDNA amplification with and without denaturation and enzymatic repair are discussed.

  1. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains

    PubMed Central

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Cammarota, Marcella; Galderisi, Umberto; Cascino, Antonino; Cipollaro, Marilena

    2002-01-01

    Ancient DNA (aDNA) samples extracted from the bone remains of six equids buried by the Vesuvius eruption in 79 AD were investigated to test pre-amplification and enzymatic repair procedures designed to enhance the rescue of nuclear genes. The extracts, which proved all positive for Equidae mtDNA amplification, proved positive only four times out of 18 when tested for single-copy Equidae nuclear genes (ɛ globin, p53 and γ interferon). Pre-amplification did not change the number of retrieved aDNA sequences but 10 times out of 14 enzymatic repair restored the amplifiability of the genes analysed, proving that repair increases the rate of successful rescue from 22 to αλµοστ 80%. These findings support the hypothesis that some of these cross-linked aDNA molecules, which are not completely separated when DNA is extracted under denaturing conditions, become homoduplex substrates for Pol I and/or T4 ligase action upon renaturation. aDNA authenticity is proved by the homology of the nucleotide sequences of loci tested to the corresponding modern Equidae sequences. Data also indicate that cross-linked homoduplex molecules selected by denaturation of the extract are repaired without any chimera formation. The general features of aDNA amplification with and without denaturation and enzymatic repair are discussed. PMID:11842122

  2. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex.

    PubMed

    Osada, Naoki; Akashi, Hiroshi

    2012-01-01

    Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.

  3. Intracellular pathways and nuclear localization signal peptide-mediated gene transfection by cationic polymeric nanovectors.

    PubMed

    Hu, Qinglian; Wang, Jinlei; Shen, Jie; Liu, Min; Jin, Xue; Tang, Guping; Chu, Paul K

    2012-02-01

    Polyethylenimine (PEI) - based polymers are promising cationic nanovectors. A good understanding of the mechanism by which cationic polymers/DNA complexes are internalized and delivered to nuclei helps to identify which transport steps may be manipulated in order to improve the transfection efficiency. In this work, cell internalization and trafficking of PEI-CyD (PC) composed of β-cyclodextrin (β-CyD) and polyethylenimine (PEI, Mw 600) are studied. The results show that the PC transfected DNA is internalized by binding membrane-associated proteoglycans. The endocytic pathway of the PC particles is caveolae- and clathrin-dependent with both pathways converging to the lysosome. The intracellular fate of the PC provides visual evidence that it can escape from the lysosome. Lysosomal inhibition with chloroquine has no effect on PC mediated transfection implying that blocking the lysosomal traffic does not improve transfection. To improve the nuclear delivery of PC transfected DNA, nuclear localization signal (NLS) peptides are chosen to conjugate and combine with the PC. Compared to PC/pDNA, PC-NLS/pDNA, and PC/pDNA/NLS can effectively improve gene transfection in dividing and non-dividing cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Clinico-laboratory aspects of anti-nuclear and anti-native DNA antibody tests.

    PubMed

    Webb, J

    1978-01-01

    Available techniques for detection of anti-nuclear antibodies are here briefly reviewed. The relatively insensitive LE cell test has been largely supplanted by the indirect immunofluorescent ANA test which should be reported in terms of titre and pattern. Specific measurement of nDNA antibodies is now a regular technique in SLE diagnosis and management.

  5. Stability of nuclear DNA content among divergent and isolated populations of Fraser fir

    Treesearch

    L.D. Auckland; J.S. Johnston; H.J. Price; F.E. Bridgwater

    2001-01-01

    Fraser fir (Abies fraseri (Pursh) Poir.) is an endemic species consisting of six major disjunct populations in the Appalachian Mountains, U.S.A. Nuclear DNA content was measured with laser flow cytometry to determine if genome size differences could be detected among the disjunct populations of Fraser fir and its close relatives, balsam fir

  6. Cytogenetic and Sequence Analyses of Mitochondrial DNA Insertions in Nuclear Chromosomes of Maize

    PubMed Central

    Lough, Ashley N.; Faries, Kaitlyn M.; Koo, Dal-Hoe; Hussain, Abid; Roark, Leah M.; Langewisch, Tiffany L.; Backes, Teresa; Kremling, Karl A. G.; Jiang, Jiming; Birchler, James A.; Newton, Kathleen J.

    2015-01-01

    The transfer of mitochondrial DNA (mtDNA) into nuclear genomes is a regularly occurring process that has been observed in many species. Few studies, however, have focused on the variation of nuclear-mtDNA sequences (NUMTs) within a species. This study examined mtDNA insertions within chromosomes of a diverse set of Zea mays ssp. mays (maize) inbred lines by the use of fluorescence in situ hybridization. A relatively large NUMT on the long arm of chromosome 9 (9L) was identified at approximately the same position in four inbred lines (B73, M825, HP301, and Oh7B). Further examination of the similarly positioned 9L NUMT in two lines, B73 and M825, indicated that the large size of these sites is due to the presence of a majority of the mitochondrial genome; however, only portions of this NUMT (∼252 kb total) were found in the publically available B73 nuclear sequence for chromosome 9. Fiber-fluorescence in situ hybridization analysis estimated the size of the B73 9L NUMT to be ∼1.8 Mb and revealed that the NUMT is methylated. Two regions of mtDNA (2.4 kb and 3.3 kb) within the 9L NUMT are not present in the B73 mitochondrial NB genome; however, these 2.4-kb and 3.3-kb segments are present in other Zea mitochondrial genomes, including that of Zea mays ssp. parviglumis, a progenitor of domesticated maize. PMID:26333837

  7. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress.

    PubMed

    Preta, Giulio; de Klark, Rainier; Chakraborti, Shankhamala; Glas, Rickard

    2010-08-27

    Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to gamma-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer gamma-hexa-chloro-cyclohexane (gamma-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon gamma-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of gamma-H2AX in gamma-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Highly Effective DNA Extraction Method for Nuclear Short Tandem Repeat Testing of Skeletal Remains from Mass Graves

    PubMed Central

    Davoren, Jon; Vanek, Daniel; Konjhodzić, Rijad; Crews, John; Huffine, Edwin; Parsons, Thomas J.

    2007-01-01

    Aim To quantitatively compare a silica extraction method with a commonly used phenol/chloroform extraction method for DNA analysis of specimens exhumed from mass graves. Methods DNA was extracted from twenty randomly chosen femur samples, using the International Commission on Missing Persons (ICMP) silica method, based on Qiagen Blood Maxi Kit, and compared with the DNA extracted by the standard phenol/chloroform-based method. The efficacy of extraction methods was compared by real time polymerase chain reaction (PCR) to measure DNA quantity and the presence of inhibitors and by amplification with the PowerPlex 16 (PP16) multiplex nuclear short tandem repeat (STR) kit. Results DNA quantification results showed that the silica-based method extracted on average 1.94 ng of DNA per gram of bone (range 0.25-9.58 ng/g), compared with only 0.68 ng/g by the organic method extracted (range 0.0016-4.4880 ng/g). Inhibition tests showed that there were on average significantly lower levels of PCR inhibitors in DNA isolated by the organic method. When amplified with PP16, all samples extracted by silica-based method produced 16 full loci profiles, while only 75% of the DNA extracts obtained by organic technique amplified 16 loci profiles. Conclusions The silica-based extraction method showed better results in nuclear STR typing from degraded bone samples than a commonly used phenol/chloroform method. PMID:17696302

  9. Thermodynamic and structural insights into CSL-DNA complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, David R.; Kovall, Rhett A.

    The Notch pathway is an intercellular signaling mechanism that plays important roles in cell fates decisions throughout the developing and adult organism. Extracellular complexation of Notch receptors with ligands ultimately results in changes in gene expression, which is regulated by the nuclear effector of the pathway, CSL (C-promoter binding factor 1 (CBF-1), suppressor of hairless (Su(H)), lin-12 and glp-1 (Lag-1)). CSL is a DNA binding protein that is involved in both repression and activation of transcription from genes that are responsive to Notch signaling. One well-characterized Notch target gene is hairy and enhancer of split-1 (HES-1), which is regulated bymore » a promoter element consisting of two CSL binding sites oriented in a head-to-head arrangement. Although previous studies have identified in vivo and consensus binding sites for CSL, and crystal structures of these complexes have been determined, to date, a quantitative description of the energetics that underlie CSL-DNA binding is unknown. Here, we provide a thermodynamic and structural analysis of the interaction between CSL and the two individual sites that comprise the HES-1 promoter element. Our comprehensive studies that analyze binding as a function of temperature, salt, and pH reveal moderate, but distinct, differences in the affinities of CSL for the two HES-1 binding sites. Similarly, our structural results indicate that overall CSL binds both DNA sites in a similar manner; however, minor changes are observed in both the conformation of CSL and DNA. Taken together, our results provide a quantitative and biophysical basis for understanding how CSL interacts with DNA sites in vivo.« less

  10. The combination of dimethoxycurcumin with DNA methylation inhibitor enhances gene re-expression of promoter-methylated genes and antagonizes their cytotoxic effect

    PubMed Central

    Hassan, Hazem E.; Keita, Jean-Arnaud; Narayan, Lawrence; Brady, Sean M.; Frederick, Richard; Carlson, Samuel; C. Glass, Karen; Natesan, Senthil; Buttolph, Thomm; Fandy, Tamer E.

    2016-01-01

    ABSTRACT Curcumin and its analogs exhibited antileukemic activity either as single agent or in combination therapy. Dimethoxycurcumin (DMC) is a more metabolically stable curcumin analog that was shown to induce the expression of promoter-methylated genes without reversing DNA methylation. Accordingly, co-treatment with DMC and DNA methyltransferase (DNMT) inhibitors could hypothetically enhance the re-expression of promoter-methylated tumor suppressor genes. In this study, we investigated the cytotoxic effects and epigenetic changes associated with the combination of DMC and the DNMT inhibitor decitabine (DAC) in primary leukemia samples and cell lines. The combination demonstrated antagonistic cytotoxic effects and was minimally cytotoxic to primary leukemia cells. The combination did not affect the metabolic stability of DMC. Although the combination enhanced the downregulation of nuclear DNMT proteins, the hypomethylating activity of the combination was not increased significantly compared to DAC alone. On the other hand, the combination significantly increased H3K27 acetylation (H3K27Ac) compared to the single agents near the promoter region of promoter-methylated genes. Furthermore, sequential chromatin immunoprecipitation (ChIP) and DNA pyrosequencing of the chromatin-enriched H3K27Ac did not show any significant decrease in DNA methylation compared to other regions. Consequently, the enhanced induction of promoter-methylated genes by the combination compared to DAC alone is mediated by a mechanism that involves increased histone acetylation and not through potentiation of the DNA hypomethylating activity of DAC. Collectively, our results provide the mechanistic basis for further characterization of this combination in leukemia animal models and early phase clinical trials. PMID:27588609

  11. FANC Pathway Promotes UV-Induced Stalled Replication Forks Recovery by Acting Both Upstream and Downstream Polη and Rev1

    PubMed Central

    Renaud, Emilie; Rosselli, Filippo

    2013-01-01

    To cope with ultraviolet C (UVC)-stalled replication forks and restart DNA synthesis, cells either undergo DNA translesion synthesis (TLS) by specialised DNA polymerases or tolerate the lesions using homologous recombination (HR)-based mechanisms. To gain insight into how cells manage UVC-induced stalled replication forks, we analysed the molecular crosstalk between the TLS DNA polymerases Polη and Rev1, the double-strand break repair (DSB)-associated protein MDC1 and the FANC pathway. We describe three novel functional interactions that occur in response to UVC-induced DNA lesions. First, Polη and Rev1, whose optimal expression and/or relocalisation depend on the FANC core complex, act upstream of FANCD2 and are required for the proper relocalisation of monoubiquitinylated FANCD2 (Ub-FANCD2) to subnuclear foci. Second, during S-phase, Ub-FANCD2 and MDC1 relocalise to UVC-damaged nuclear areas or foci simultaneously but independently of each other. Third, Ub-FANCD2 and MDC1 are independently required for optimal BRCA1 relocalisation. While RPA32 phosphorylation (p-RPA32) and RPA foci formation were reduced in parallel with increasing levels of H2AX phosphorylation and MDC1 foci in UVC-irradiated FANC pathway-depleted cells, MDC1 depletion was associated with increased UVC-induced Ub-FANCD2 and FANCD2 foci as well as p-RPA32 levels and p-RPA32 foci. On the basis of the previous observations, we propose that the FANC pathway participates in the rescue of UVC-stalled replication forks in association with TLS by maintaining the integrity of ssDNA regions and by preserving genome stability and preventing the formation of DSBs, the resolution of which would require the intervention of MDC1. PMID:23365640

  12. Phylogeography of Trichuris populations isolated from different Cricetidae rodents.

    PubMed

    Callejón, Rocío; De Rojas, Manuel; Feliú, Carlos; Balao, Francisco; Marrugal, Angela; Henttonen, Heikki; Guevara, Diego; Cutillas, Cristina

    2012-11-01

    The phylogeography of Trichuris populations (Nematoda) collected from Cricetidae rodents (Muroidea) from different geographical regions was studied. Ribosomal DNA (Internal Transcribed Spacers 1 and 2, and mitochondrial DNA (cytochrome c- oxidase subunit 1 partial gene) have been used as molecular markers. The nuclear internal transcribed spacers (ITSs) 1 and 2 showed 2 clear-cut geographical and genetic lineages: one of the Nearctic region (Oregon), although the second was widespread throughout the Palaearctic region and appeared as a star-like structure in the minimum spanning network. The mitochondrial results revealed that T. arvicolae populations from the Palaearctic region were separated into 3 clear-cut geographical and genetic lineages: populations from Northern Europe, populations from Southern (Spain) and Eastern Europe (Croatia, Belarus, Kazahstan), and populations from Italy and France (Eastern Pyrénean Mountains). Phylogenetic analysis obtained on the basis of ITS1-5·8S-ITS2 rDNA sequences did not show a differential geographical structure; however, these markers suggest a new Trichuris species parasitizing Chionomys roberti and Cricetulus barabensis. The mitochondrial results revealed that Trichuris populations from arvicolinae rodents show signals of a post-glacial northward population expansion starting from the Pyrenees and Italy. Apparently, the Pyrenees and the Alps were not barriers to the dispersal of Trichuris populations.

  13. Structural basis for autoantibody recognition of phosphatidylserine-β2 glycoprotein I and apoptotic cells

    PubMed Central

    Cocca, Brian A.; Seal, Samarendra N.; D'Agnillo, Paolo; Mueller, Yvonne M.; Katsikis, Peter D.; Rauch, Joyce; Weigert, Martin; Radic, Marko Z.

    2001-01-01

    Apoptotic cells contain nuclear autoantigens that may initiate a systemic autoimmune response. To explore the mechanism of antibody binding to apoptotic cells, 3H9, a murine autoantibody with dual specificity for phospholipids and DNA, was used. H chain mutants of 3H9 were constructed, expressed as single-chain Fv (scFv) in Escherichia coli, and assessed for binding to phosphatidylserine, an antigen expressed on apoptotic cells. Both 3H9 and its germline revertant bound to dioleoyl phosphatidylserine in ELISA, and binding was enhanced by β2 glycoprotein I (β2GPI), a plasma protein that selectively binds to apoptotic cells. Higher relative affinity for DOPS-β2GPI was achieved by the introduction of Arg residues into the 3H9 H chain variable region at positions previously shown to mediate DNA binding. Specificity of the two structurally most diverse scFv for apoptotic cells was shown by flow cytometry, and two populations of scFv-bound cells were identified by differences in propidium iodide staining. The results suggest that, in autoimmunity, B cells with Ig receptors for apoptotic cells and DNA are positively selected, and that the antibodies they produce have the potential to affect the clearance and processing of apoptotic cells. PMID:11717440

  14. A comprehensive molecular phylogeny for the hornbills (Aves: Bucerotidae).

    PubMed

    Gonzalez, Juan-Carlos T; Sheldon, Ben C; Collar, Nigel J; Tobias, Joseph A

    2013-05-01

    The hornbills comprise a group of morphologically and behaviorally distinct Palaeotropical bird species that feature prominently in studies of ecology and conservation biology. Although the monophyly of hornbills is well established, previous phylogenetic hypotheses were based solely on mtDNA and limited sampling of species diversity. We used parsimony, maximum likelihood and Bayesian methods to reconstruct relationships among all 61 extant hornbill species, based on nuclear and mtDNA gene sequences extracted largely from historical samples. The resulting phylogenetic trees closely match vocal variation across the family but conflict with current taxonomic treatments. In particular, they highlight a new arrangement for the six major clades of hornbills and reveal that three groups traditionally treated as genera (Tockus, Aceros, Penelopides) are non-monophyletic. In addition, two other genera (Anthracoceros, Ocyceros) were non-monophyletic in the mtDNA gene tree. Our findings resolve some longstanding problems in hornbill systematics, including the placement of 'Penelopides exharatus' (embedded in Aceros) and 'Tockus hartlaubi' (sister to Tropicranus albocristatus). We also confirm that an Asiatic lineage (Berenicornis) is sister to a trio of Afrotropical genera (Tropicranus [including 'Tockus hartlaubi'], Ceratogymna, Bycanistes). We present a summary phylogeny as a robust basis for further studies of hornbill ecology, evolution and historical biogeography. Copyright © 2013. Published by Elsevier Inc.

  15. Imaging analysis of nuclear antiviral factors through direct detection of incoming adenovirus genome complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komatsu, Tetsuro; Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575; Will, Hans

    2016-04-22

    Recent studies involving several viral systems have highlighted the importance of cellular intrinsic defense mechanisms through nuclear antiviral proteins that restrict viral propagation. These factors include among others components of PML nuclear bodies, the nuclear DNA sensor IFI16, and a potential restriction factor PHF13/SPOC1. For several nuclear replicating DNA viruses, it was shown that these factors sense and target viral genomes immediately upon nuclear import. In contrast to the anticipated view, we recently found that incoming adenoviral genomes are not targeted by PML nuclear bodies. Here we further explored cellular responses against adenoviral infection by focusing on specific conditions asmore » well as additional nuclear antiviral factors. In line with our previous findings, we show that neither interferon treatment nor the use of specific isoforms of PML nuclear body components results in co-localization between incoming adenoviral genomes and the subnuclear domains. Furthermore, our imaging analyses indicated that neither IFI16 nor PHF13/SPOC1 are likely to target incoming adenoviral genomes. Thus our findings suggest that incoming adenoviral genomes may be able to escape from a large repertoire of nuclear antiviral mechanisms, providing a rationale for the efficient initiation of lytic replication cycle. - Highlights: • Host nuclear antiviral factors were analyzed upon adenovirus genome delivery. • Interferon treatments fail to permit PML nuclear bodies to target adenoviral genomes. • Neither Sp100A nor B targets adenoviral genomes despite potentially opposite roles. • The nuclear DNA sensor IFI16 does not target incoming adenoviral genomes. • PHF13/SPOC1 targets neither incoming adenoviral genomes nor genome-bound protein VII.« less

  16. Nuclear translocation of p21{sup WAF1/CIP1} protein prior to its cytosolic degradation by UV enhances DNA repair and survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji Young; Kim, Hee Suk; Kim, Joo Young

    2009-12-25

    We previously reported that UV induced rapid proteasomal degradation of p21 protein in an ubiquitination-independent manner. Here, UV-induced p21 proteolysis was found to occur in the cytosol. Before cytosolic degradation, however, p21 protein translocated to and transiently accumulated in the nucleus. Nuclear translocation of p21 was not required for its degradation, but rather promoted DNA repair and cell survival. Overexpression of the wild type p21, but not the one with defective nuclear localization signal (NLS), reduced UV-induced DNA damage and cell death. Some of p21 protein translocated to the nucleus were associated with chromatin-bound PCNA and saved from UV-induced proteolysis.more » These data together show that p21 translocates to the nucleus to participate in DNA repair, while the rest is rapidly degraded in the cytosol. We propose that our findings reflect a mechanism to facilitate removal of damaged cells, enhancing DNA repair at the same time.« less

  17. Identification of DNA-PKcs as a primary resistance factor of TIC10 in hepatocellular carcinoma cells.

    PubMed

    Cheng, Long; Liu, Yuan-Yuan; Lu, Pei-Hua; Peng, Yi; Yuan, Qiang; Gu, Xin-Shi; Jin, Yong; Chen, Min-Bin; Bai, Xu-Ming

    2017-04-25

    The current study tested the anti-hepatocellular carcinoma (HCC) cell activity of TIC10, a first-in-class small-molecule tumor necrosis (TNF)-related apoptosis-inducing ligand (TRAIL) inducer. TIC10 exerted potent anti-proliferative and pro-apoptotic actions in primary and established human HCC cells. TIC10 blocked Akt-Erk activation, leading to Foxo3a nuclear translocation, as well as TRAIL and death receptor-5 (DR5) transcription in HCC cells. We propose that DNA-PKcs is a major resistance factor of TIC10 possibly via inhibiting Foxo3a nuclear translocation. DNA-PKcs inhibition, knockdown or mutation facilitated TIC10-induced Foxo3a nuclear translocation, TRAIL/DR5 expression and cell apoptosis. Reversely, exogenous DNA-PKcs over-expression inhibited above actions by TIC10. In vivo, oral administration of TIC10 significantly inhibited HepG2 tumor growth in nude mice, which was further potentiated with Nu7026 co-administration. Thus, TIC10 shows promising anti-HCC activity, alone or together with DNA-PKcs inhibitors.

  18. Phenolic promiscuity in the cell nucleus--epigallocatechingallate (EGCG) and theaflavin-3,3'-digallate from green and black tea bind to model cell nuclear structures including histone proteins, double stranded DNA and telomeric quadruplex DNA.

    PubMed

    Mikutis, Gediminas; Karaköse, Hande; Jaiswal, Rakesh; LeGresley, Adam; Islam, Tuhidul; Fernandez-Lahore, Marcelo; Kuhnert, Nikolai

    2013-02-01

    Flavanols from tea have been reported to accumulate in the cell nucleus in considerable concentrations. The nature of this phenomenon, which could provide novel approaches in understanding the well-known beneficial health effects of tea phenols, is investigated in this contribution. The interaction between epigallocatechin gallate (EGCG) from green tea and a selection of theaflavins from black tea with selected cell nuclear structures such as model histone proteins, double stranded DNA and quadruplex DNA was investigated using mass spectrometry, Circular Dichroism spectroscopy and fluorescent assays. The selected polyphenols were shown to display affinity to all of the selected cell nuclear structures, thereby demonstrating a degree of unexpected molecular promiscuity. Most interestingly theaflavin-digallate was shown to display the highest affinity to quadruplex DNA reported for any naturally occurring molecule reported so far. This finding has immediate implications in rationalising the chemopreventive effect of the tea beverage against cancer and possibly the role of tea phenolics as "life span essentials".

  19. Ploidy levels among species in the 'Oxalis tuberosa alliance' as inferred by flow cytometry.

    PubMed

    Emshwiller, Eve

    2002-06-01

    The 'Oxalis tuberosa alliance' is a group of Andean Oxalis species allied to the Andean tuber crop O. tuberosa Molina (Oxalidaceae), commonly known as 'oca'. As part of a larger project studying the origins of polyploidy and domestication of cultivated oca, flow cytometry was used to survey DNA ploidy levels among Bolivian and Peruvian accessions of alliance members. In addition, this study provided a first assessment of C-values in the alliance by estimating nuclear DNA contents of these accessions using chicken erythrocytes as internal standard. Ten Bolivian accessions of cultivated O. tuberosa were confirmed to be octoploid, with a mean nuclear DNA content of approx. 3.6 pg/2C. Two Peruvian wild Oxalis species, O. phaeotricha and O. picchensis, were inferred to be tetraploid (both with approx. 1.67 pg/2C), the latter being one of the putative progenitors of O. tuberosa identified by chloroplast-expressed glutamine synthetase data in prior work. The remaining accessions (from 78 populations provisionally identified as 35 species) were DNA diploid, with nuclear DNA contents varying from 0.79 to 1.34 pg/2C.

  20. 75 FR 54918 - Draft Regulatory Guide, DG-1247, “Design-Basis Hurricane and Hurricane Missiles for Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... that the staff uses in evaluating specific problems or postulated accidents, and data that the staff... turbine missiles. NUREG/CR 7004 is the technical basis for regulatory guidance on design-basis hurricane... hurricane wind speeds for new nuclear power plants. [[Page 54919

  1. Classification of Normal and Male-Sterile Cytoplasms in Maize. II. Electrophoretic Analysis of DNA Species in Mitochondria

    PubMed Central

    Kemble, R. J.; Gunn, R. E.; Flavell, R. B.

    1980-01-01

    Mitochondrial DNA preparations were made from 31 maize lines carrying different sources of cytoplasm in the same nuclear genetic background. The DNAs were analyzed by agarose gel electrophoresis. A number of discrete low molecular weight bands were present in all lines. However, only four different DNA banding patterns were observed. These were correlated with the N, T, S and C cytoplasms defined by nuclear fertility restorer genes. Of the 31 cytoplasmic sources examined, six possessed DNA species characteristic of N cytoplasms, four possessed DNA species characteristic of T cytoplasm, 19 possessed DNA species characteristic of S cytoplasm and two possessed DNA species characteristic of C cytoplasm. This classification is in complete agreement with that based on mitochondrial translation products reported in the accompanying paper. No within-group heterogeneity was observed in the DNA banding patterns, indicating a lack of cytoplasmic variation within the four cytoplasmic groups. Attributes of the various methods available for classifying maize cytoplasms are compared and discussed. PMID:17249046

  2. Nuclear targeting of viral and non-viral DNA.

    PubMed

    Chowdhury, E H

    2009-07-01

    The nuclear envelope presents a major barrier to transgene delivery and expression using a non-viral vector. Virus is capable of overcoming the barrier to deliver their genetic materials efficiently into the nucleus by virtue of the specialized protein components with the unique amino acid sequences recognizing cellular nuclear transport machinery. However, considering the safety issues in the clinical gene therapy for treating critical human diseases, non-viral systems are highly promising compared with their viral counterparts. This review summarizes the progress on exploring the nuclear traffic mechanisms for the prominent viral vectors and the technological innovations for the nuclear delivery of non-viral DNA by mimicking those natural processes evolved for the viruses as well as for many cellular proteins.

  3. Evaluation of the human hair root for DNA typing subsequent to microscopic comparison.

    PubMed

    Linch, C A; Smith, S L; Prahlow, J A

    1998-03-01

    Telogen human hairs are one of the most common useful evidence findings at crime scenes and/or on homicide victims. Occasionally, the microscopic characterization of the found telogen hair is the only physical evidence association to a victim or suspect. Recently efforts to characterize these hairs by mitochondrial DNA (mtDNA) methods have progressed. The nature of the telogen hair root morphology and ultrastructure has, however, been largely ignored. Examiners have recognized these hairs are unlikely to be typable by nuclear DNA (nuDNA) methods. Most forensic biologists have little knowledge of the complex cellular composition of anagen, catagen, and telogen hair roots or their morphogenesis. This paper reviews ex situ human hair root morphology as it relates to the likelihood of successful nuclear DNA typing. Dermatology texts of hair root morphology always demonstrate their microscopic appearance in the skin. This study investigates the use of fluorescence in situ hybridization (FISH) methods to sex type telogen head hairs, and it further investigates hair root morphology as it relates to the potential nuclear DNA content of evidence hairs. There is a need for the use of appropriate, consensus terminology for describing hair root morphology. There is also a need for standardized laboratory light microscopic methods in evaluating a hair root for DNA typing. FISH was found to be an unsuitable technique for sex determination of telogen hair clubs. It was determined that anagen/catagen hair roots without translucent sheath material are excellent candidates for nuDNA PCR-based typing and that hairs with telogen club root material only should not be submitted for nuDNA typing attempts.

  4. Mechanisms and dynamics of nuclear lamina-genome interactions.

    PubMed

    Amendola, Mario; van Steensel, Bas

    2014-06-01

    The nuclear lamina (NL) interacts with the genomic DNA and is thought to influence chromosome organization and gene expression. Both DNA sequences and histone modifications are important for NL tethering of the genomic DNA. These interactions are dynamic in individual cells and can change during differentiation and development. Evidence is accumulating that the NL contributes to the repression of transcription. Advances in mapping, genome-editing and microscopy techniques are increasing our understanding of the molecular mechanisms involved in NL-genome interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Pharmacologic Effects on Mitochondrial Function

    ERIC Educational Resources Information Center

    Cohen, Bruce H.

    2010-01-01

    The vast majority of energy necessary for cellular function is produced in mitochondria. Free-radical production and apoptosis are other critical mitochondrial functions. The complex structure, electrochemical properties of the inner mitochondrial membrane (IMM), and genetic control from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) are…

  6. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis.

    PubMed

    Shidara, Yujiro; Yamagata, Kumi; Kanamori, Takashi; Nakano, Kazutoshi; Kwong, Jennifer Q; Manfredi, Giovanni; Oda, Hideaki; Ohta, Shigeo

    2005-03-01

    The role of mitochondrial dysfunction in cancer has been a subject of great interest and much ongoing investigation. Although most cancer cells harbor somatic mutations in mitochondrial DNA (mtDNA), the question of whether such mutations contribute to the promotion of carcinomas remains unsolved. Here we used trans-mitochondrial hybrids (cybrids) containing a common HeLa nucleus and mtDNA of interest to compare the role of mtDNA against the common nuclear background. We constructed cybrids with or without a homoplasmic pathogenic point mutation at nucleotide position 8,993 or 9,176 in the mtDNA ATP synthase subunit 6 gene (MTATP6) derived from patients with mitochondrial encephalomyopathy. When the cybrids were transplanted into nude mice, the MTATP6 mutations conferred an advantage in the early stage of tumor growth. The mutant cybrids also increased faster than wild type in culture. To complement the mtDNA mutations, we transfected a wild-type nuclear version of MTATP, whose codons were converted to the universal genetic codes containing a mitochondrial target sequence, into the nucleus of cybrids carrying mutant MTATP6. The restoration of MTATP slowed down the growth of tumor in transplantation. Conversely, expression of a mutant nuclear version of MTATP6 in the wild-type cybrids declined respiration and accelerated the tumor growth. These findings showed that the advantage in tumor growth depended upon the MTATP6 function but was not due to secondary nuclear mutations caused by the mutant mitochondria. Because apoptosis occurred less frequently in the mutant versus wild-type cybrids in cultures and tumors, the pathogenic mtDNA mutations seem to promote tumors by preventing apoptosis.

  7. Localization microscopy of DNA in situ using Vybrant{sup ®} DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Żurek-Biesiada, Dominika; Szczurek, Aleksander T.; Prakash, Kirti

    Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant{sup ®} DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei ofmore » fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10{sup 6} signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100 nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy. - Highlights: • Super-resolution imaging of nuclear DNA with Vybrant Violet and blue excitation. • 90nm resolution images of DNA structures in optically thick eukaryotic nuclei. • Enhanced resolution confirms the existence of DNA-free regions inside the nucleus. • Optimized imaging conditions enable multicolor super-resolution imaging.« less

  8. Evolutionary relationships among Pinus (Pinaceae) subsections inferred from multiple low-copy nuclear loci.

    Treesearch

    John Syring; Ann Willyard; Richard Cronn; Aaron Liston

    2005-01-01

    Sequence data from nrITS and cpDNA have failed to fully resolve phylogenetic relationships among Pinus species. Four low-copy nuclear genes, developed from the screening of 73 mapped conifer anchor loci, were sequenced from 12 species representing all subsections. Individual loci do not uniformly support either the nrITS or cpDNA hypotheses and in...

  9. Monoblepharidomycetes diversity includes new parasitic and saprotrophic species with highly intronized rDNA.

    PubMed

    Karpov, Sergey A; Mamanazarova, Karomat S; Popova, Olga V; Aleoshin, Vladimir V; James, Timothy Y; Mamkaeva, Maria A; Tcvetkova, Victoria S; Vishnyakov, Andrey E; Longcore, Joyce E

    2017-08-01

    The Monoblepharidomycetes is the sister class to the Chytridiomycetes in the phylum Chytridiomycota. The six known genera have thalli that are either monocentric and without rhizoids or produce hyphae with an independent evolutionary origin from the hyphae of higher fungi. On the basis of morphological characters and phylogenetic evidence from the small and large subunits of nuclear ribosomal RNA, we established two new genera, Sanchytrium and Telasphaerula, each with a single species. We re-analyzed intergeneric relationships within the monoblephs, and established two new families. The new genera significantly expand the known morphological and ecological diversity of the Monoblepharidomycetes by adding a monocentric, epibiotic, algal parasitic species and a rhizomycelial, saprotrophic species. Based on the presence of environmental sequences related to Sanchytrium strains, the Monoblepharidomycetes contain previously unsuspected diversity. The ribosomal DNA of the new genera contains an unusually high density of group I introns. We found 20 intron insertion positions including six that are new for rRNA genes (S1053, L803, L829, L961, L1844, and L2281). Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. [Kinetic study of neutrophil and macrophage cell reproduction and differentiation in the common frog at different seasons of the year].

    PubMed

    Goryshina, E N

    1980-07-01

    A supposed life-span of hemosiderin-containing macrophages in the frog spleen has been described on the basis of their morphology, changes in the number of nuclei, and results of autoradiographic studies of DNA synthesis in various seasons. The hibernating stages of the lines are hemocytoblasts, mononuclear and moderately polynuclear macrophages, which renew the phagocytosis and nuclear division at the beginning of spring. A new population of monomuclear macrophages develops from hemocytoblasts during spring. Large polynuclear forms appear during spring and summer, reach their maximal size and erythrophagocytotic activity towards the end of summer, and die in winter. The most part of the stored pigments is removed from the spleen. DNA synthesis and division occur asynchronously in the nuclei of one cell. Some pathologic forms of macrophages are described. The similarity in the proliferation cell kinetics of neutrophilic and macrophagal lines confirms a close relation between the two. The role of temperature and photoperiod in the regulations of proliferative activity of these cells during spring is discussed.

  11. Lineage-specific evolutionary rate in plants: Contributions of a screening for Cereus (Cactaceae)1

    PubMed Central

    Romeiro-Brito, Monique; Moraes, Evandro M.; Taylor, Nigel P.; Zappi, Daniela C.; Franco, Fernando F.

    2016-01-01

    Premise of the study: Predictable chloroplast DNA (cpDNA) sequences have been listed for the shallowest taxonomic studies in plants. We investigated whether plastid regions that vary between closely allied species could be applied for intraspecific studies and compared the variation of these plastid segments with two nuclear regions. Methods: We screened 16 plastid and two nuclear intronic regions for species of the genus Cereus (Cactaceae) at three hierarchical levels (species from different clades, species of the same clade, and allopatric populations). Results: Ten plastid regions presented interspecific variation, and six of them showed variation at the intraspecific level. The two nuclear regions showed both inter- and intraspecific variation, and in general they showed higher levels of variability in almost all hierarchical levels than the plastid segments. Discussion: Our data suggest no correspondence between variation of plastid regions at the interspecific and intraspecific level, probably due to lineage-specific variation in cpDNA, which appears to have less effect in nuclear data. Despite the heterogeneity in evolutionary rates of cpDNA, we highlight three plastid segments that may be considered in initial screenings in plant phylogeographic studies. PMID:26819857

  12. Mitochondrial inheritance in budding yeasts: towards an integrated understanding.

    PubMed

    Solieri, Lisa

    2010-11-01

    Recent advances in yeast mitogenomics have significantly contributed to our understanding of the diversity of organization, structure and topology in the mitochondrial genome of budding yeasts. In parallel, new insights on mitochondrial DNA (mtDNA) inheritance in the model organism Saccharomyces cerevisiae highlighted an integrated scenario where recombination, replication and segregation of mtDNA are intricately linked to mitochondrial nucleoid (mt-nucleoid) structure and organelle sorting. In addition to this, recent discoveries of bifunctional roles of some mitochondrial proteins have interesting implications on mito-nuclear genome interactions and the relationship between mtDNA inheritance, yeast fitness and speciation. This review summarizes the current knowledge on yeast mitogenomics, mtDNA inheritance with regard to mt-nucleoid structure and organelle dynamics, and mito-nuclear genome interactions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Nuclear localisation of 53BP1 is regulated by phosphorylation of the nuclear localisation signal.

    PubMed

    von Morgen, Patrick; Lidak, Tomas; Horejsi, Zuzana; Macurek, Libor

    2018-06-01

    Repair of damaged DNA is essential for maintaining genomic stability. TP53-binding protein 1 (53BP1) plays an important role in repair of the DNA double-strand breaks. Nuclear localisation of 53BP1 depends on importin β and nucleoporin 153, but the type and location of 53BP1 nuclear localisation signal (NLS) have yet to be determined. Here, we show that nuclear import of 53BP1 depends on two basic regions, namely 1667-KRK-1669 and 1681-KRGRK-1685, which are both needed for importin binding. Lysine 1667 is essential for interaction with importin and its substitution to arginine reduced nuclear localisation of 53BP1. Furthermore, we have found that CDK1-dependent phosphorylation of 53BP1 at S1678 impairs importin binding during mitosis. Phosphorylation-mimicking mutant S1678D showed reduced nuclear localisation, suggesting that phosphorylation of the NLS interferes with nuclear import of the 53BP1 CONCLUSIONS: We show that 53BP1 contains a classical bipartite NLS 1666-GKRKLITSEEERSPAKRGRKS-1686, which enables the importin-mediated nuclear transport of 53BP1. Additionally, we found that posttranslational modification within the NLS region can regulate 53BP1 nuclear import. Our results indicate that integrity of the NLS is important for 53BP1 nuclear localisation. Precise mapping of the NLS will facilitate further studies on the effect of posttranslational modifications and somatic mutations on the nuclear localisation 53BP1 and DNA repair. © 2018 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  14. Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells

    PubMed Central

    Domínguez, Fernando; Cejudo, Francisco J.

    2006-01-01

    PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed. PMID:16613587

  15. 10 CFR 72.94 - Design basis external man-induced events.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design basis external man-induced events. 72.94 Section 72.94 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.94 Design basi...

  16. Stress-specific p38 MAPK activation is sufficient to drive EGFR endocytosis but not its nuclear translocation.

    PubMed

    Tomas, Alejandra; Jones, Sylwia; Vaughan, Simon O; Hochhauser, Daniel; Futter, Clare E

    2017-08-01

    EGF receptor (EGFR) endocytosis is induced by stress in a manner dependent on the p38 MAPK family. Ligand and stresses such as X-rays, reportedly promote nuclear trafficking of endocytosed EGFR for regulation of gene transcription and DNA repair. We fail to detect EGFR endocytosis or nuclear transport following X-ray treatment of HeLa or head and neck cancer cells, despite extensive DNA damage induction. Apparent nuclear staining with EGFR extracellular domain antibody remained present despite reduced/absent EGFR expression, and so did not represent nuclear EGFR. UVB and UVC, but not X-ray or UVA, treatment induced p38 activation and EGFR endocytosis, although all of these stresses induced DNA damage, indicating that DNA damage alone is not sufficient to induce EGFR endocytosis. Increased reactive oxygen species (ROS) levels following UVB treatment, compared to that seen with X-rays, do not alone explain differences in p38 activation. UVB, like UVC, induced EGFR accumulation predominantly in perinuclear endosomes, rather than in the nucleus. Our morphological techniques identifying major changes in receptor distribution do not exclude the possibility that small but biologically relevant amounts of EGFR enter the nucleus. This study highlights the importance and limitations of morphological analyses of receptor distribution in understanding signaling outcome. © 2017. Published by The Company of Biologists Ltd.

  17. The ability of human nuclear DNA to cause false positive low-abundance heteroplasmy calls varies across the mitochondrial genome.

    PubMed

    Albayrak, Levent; Khanipov, Kamil; Pimenova, Maria; Golovko, George; Rojas, Mark; Pavlidis, Ioannis; Chumakov, Sergei; Aguilar, Gerardo; Chávez, Arturo; Widger, William R; Fofanov, Yuriy

    2016-12-12

    Low-abundance mutations in mitochondrial populations (mutations with minor allele frequency ≤ 1%), are associated with cancer, aging, and neurodegenerative disorders. While recent progress in high-throughput sequencing technology has significantly improved the heteroplasmy identification process, the ability of this technology to detect low-abundance mutations can be affected by the presence of similar sequences originating from nuclear DNA (nDNA). To determine to what extent nDNA can cause false positive low-abundance heteroplasmy calls, we have identified mitochondrial locations of all subsequences that are common or similar (one mismatch allowed) between nDNA and mitochondrial DNA (mtDNA). Performed analysis revealed up to a 25-fold variation in the lengths of longest common and longest similar (one mismatch allowed) subsequences across the mitochondrial genome. The size of the longest subsequences shared between nDNA and mtDNA in several regions of the mitochondrial genome were found to be as low as 11 bases, which not only allows using these regions to design new, very specific PCR primers, but also supports the hypothesis of the non-random introduction of mtDNA into the human nuclear DNA. Analysis of the mitochondrial locations of the subsequences shared between nDNA and mtDNA suggested that even very short (36 bases) single-end sequencing reads can be used to identify low-abundance variation in 20.4% of the mitochondrial genome. For longer (76 and 150 bases) reads, the proportion of the mitochondrial genome where nDNA presence will not interfere found to be 44.5 and 67.9%, when low-abundance mutations at 100% of locations can be identified using 417 bases long single reads. This observation suggests that the analysis of low-abundance variations in mitochondria population can be extended to a variety of large data collections such as NCBI Sequence Read Archive, European Nucleotide Archive, The Cancer Genome Atlas, and International Cancer Genome Consortium.

  18. Efficient DNA binding and nuclear uptake by distamycin derivatives conjugated to octa-arginine sequences.

    PubMed

    Vázquez, Olalla; Blanco-Canosa, Juan B; Vázquez, M Eugenio; Martínez-Costas, Jose; Castedo, Luis; Mascareñas, José L

    2008-11-24

    Efficient targeting of DNA by designed molecules requires not only careful fine-tuning of their DNA-recognition properties, but also appropriate cell internalization of the compounds so that they can reach the cell nucleus in a short period of time. Previous observations in our group on the relatively high affinity displayed by conjugates between distamycin derivatives and bZIP basic regions for A-rich DNA sites, led us to investigate whether the covalent attachment of a positively charged cell-penetrating peptide to a distamycin-like tripyrrole might yield high affinity DNA binders with improved cell internalization properties. Our work has led to the discovery of synthetic tripyrrole-octa-arginine conjugates that are capable of targeting specific DNA sites that contain A-rich tracts with low nanomolar affinity; they simultaneously exhibit excellent membrane and nuclear translocation properties in living HeLa cells.

  19. The effect of inflammation-related lifestyle exposures and interactions with gene variants on long interspersed nuclear element-1 DNA methylation.

    PubMed

    Gogna, Priyanka; O'Sullivan, Dylan E; King, Will D

    2018-06-11

    To examine the relationship between inflammation-related lifestyle factors and long interspersed nuclear element-1 (LINE-1) DNA methylation, and test for interaction by gene variants involved in one-carbon metabolism. The study population consisted of 280 individuals undergoing colonoscopy screening. Multivariable linear regression was employed to examine associations of physical activity, BMI and NSAID use with LINE-1 DNA methylation and interactions with MTR and MTHFR gene variants. The highest quartile of physical activity compared with the lowest was associated with higher LINE-1 DNA methylation (p = 0.005). Long-term NSAID use and a normal BMI were associated with increased LINE-1 DNA methylation among individuals with the variant MTR allele (p = 0.02; p = 0.03). This study provides evidence that inflammation-related exposures may influence LINE-1 DNA methylation.

  20. Mycobacterium tuberculosis promotes genomic instability in macrophages.

    PubMed

    Castro-Garza, Jorge; Luévano-Martínez, Miriam Lorena; Villarreal-Treviño, Licet; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha Imelda; García-Vielma, Catalina; González-Hernández, Silvia; Cortés-Gutiérrez, Elva Irene

    2018-03-01

    Mycobacterium tuberculosis is an intracellular pathogen, which may either block cellular defensive mechanisms and survive inside the host cell or induce cell death. Several studies are still exploring the mechanisms involved in these processes. To evaluate the genomic instability of M. tuberculosis-infected macrophages and compare it with that of uninfected macrophages. We analysed the possible variations in the genomic instability of Mycobacterium-infected macrophages using the DNA breakage detection fluorescence in situ hybridisation (DBD-FISH) technique with a whole human genome DNA probe. Quantitative image analyses showed a significant increase in DNA damage in infected macrophages as compared with uninfected cells. DNA breaks were localised in nuclear membrane blebs, as confirmed with DNA fragmentation assay. Furthermore, a significant increase in micronuclei and nuclear abnormalities were observed in infected macrophages versus uninfected cells. Genomic instability occurs during mycobacterial infection and these data may be seminal for future research on host cell DNA damage in M. tuberculosis infection.

  1. Quantification of transcription factor-DNA binding affinity in a living cell

    PubMed Central

    Belikov, Sergey; Berg, Otto G.; Wrange, Örjan

    2016-01-01

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. PMID:26657626

  2. The molecular basis for stability of heterochromatin-mediated silencing in mammals

    PubMed Central

    2009-01-01

    The archetypal epigenetic phenomenon of position effect variegation (PEV) in Drosophila occurs when a gene is brought abnormally close to heterochromatin, resulting in stochastic silencing of the affected gene in a proportion of cells that would normally express it. PEV has been instrumental in unraveling epigenetic mechanisms. Using an in vivo mammalian model for PEV we have extensively investigated the molecular basis for heterochromatin-mediated gene silencing. Here we distinguish 'epigenetic effects' from other cellular differences by studying ex vivo cells that are identical, apart from the expression of the variegating gene which is silenced in a proportion of the cells. By separating cells according to transgene expression we show here that silencing appears to be associated with histone H3 lysine 9 trimethylation (H3K9me3), DNA methylation and the localization of the silenced gene to a specific nuclear compartment enriched in these modifications. In contrast, histone H3 acetylation (H3Ac) and lysine 4 di or tri methylation (H3K4me2/3) are the predominant modifications associated with expression where we see the gene in a euchromatic compartment. Interestingly, DNA methylation and inaccessibility, rather than H3K9me3, correlated most strongly with resistance to de-repression by cellular activation. These results have important implications for understanding the contribution of specific factors involved in the establishment and maintenance of gene silencing and activation in vivo. PMID:19889207

  3. The effects of dexamethasone on rat brain cortical nuclear factor kappa B (NF-{kappa}B) in endotoxic shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Zhi; Kang Jinsong; Li Yang

    2006-08-01

    To explore the molecular mechanism of brain tissue injury induced by lipopolysaccharide (LPS), we studied the effects of endotoxic shock on rat brain cortex NF-{kappa}B and the effects of dexamethasone on these changes. Rats were randomly divided into LPS, LPS + dexamethasone, and control groups. The DNA-binding activity of NF-{kappa}B was observed using electrophoretic mobility shift assay (EMSA). Protein expression in nuclear extracts was studied using Western blots, and nuclear translocation was observed using immunohistochemistry. These indices were assayed at 1 h and 4 h after intravenous injection of LPS (4 mg.kg{sup -1}). EMSA showed significantly increased NF-{kappa}B DNA-binding activitymore » in nuclear extracts from the LPS group at both 1 h and 4 h after LPS injection, compared with the control group (P < 0.01). For the LPS group, the NF-{kappa}B DNA-binding activity was greater at 1 h than at 4 h (P < 0.05). The expression of p65 and p50 protein in the nuclear extracts was also increased, as compared with the control group. However, the expression of p65 and p50 protein from cytosolic extracts did not show any significant change. Dexamethasone down-regulated not only NF-{kappa}B DNA-binding activity but also the expression of p65 protein in the nuclear extracts. From these data, we have concluded that NF-{kappa}B activation and nuclear translocation of NF-{kappa}B play a key role in the molecular mechanism of brain tissue injury in endotoxic shock. Dexamethasone may alleviate brain injury by inhibiting NF-{kappa}B activation.« less

  4. Nucleo-cytoplasmic shuttling of the endonuclease ankyrin repeats and LEM domain-containing protein 1 (Ankle1) is mediated by canonical nuclear export- and nuclear import signals.

    PubMed

    Zlopasa, Livija; Brachner, Andreas; Foisner, Roland

    2016-06-01

    Ankyrin repeats and LEM domain containing protein 1 (Ankle1) belongs to the LEM protein family, whose members share a chromatin-interacting LEM motif. Unlike most other LEM proteins, Ankle1 is not an integral protein of the inner nuclear membrane but shuttles between the nucleus and the cytoplasm. It contains a GIY-YIG-type nuclease domain, but its function is unknown. The mammalian genome encodes only one other GIY-YIG domain protein, termed Slx1. Slx1 has been described as a resolvase that processes Holliday junctions during homologous recombination-mediated DNA double strand break repair. Resolvase activity is regulated in a spatial and temporal manner during the cell cycle. We hypothesized that Ankle1 may have a similar function and its nucleo-cytoplasmic shuttling may contribute to the regulation of Ankle1 activity. Hence, we aimed at identifying the domains mediating Ankle1 shuttling and investigating whether cellular localization is affected during DNA damage response. Sequence analysis predicts the presence of two canonical nuclear import and export signals in Ankle1. Immunofluorescence microscopy of cells expressing wild-type and various mutated Ankle1-fusion proteins revealed a C-terminally located classical monopartite nuclear localization signal and a centrally located CRM1-dependent nuclear export signal that mediate nucleo-cytoplasmic shuttling of Ankle1. These sequences are also functional in heterologous proteins. The predominant localization of Ankle1 in the cytoplasm, however, does not change upon induction of several DNA damage response pathways throughout the cell cycle. We identified the domains mediating nuclear import and export of Ankle1. Ankle1's cellular localization was not affected following DNA damage.

  5. Nuclear and chloroplast DNA differentiation in Andean potatoes.

    PubMed

    Sukhotu, Thitaporn; Kamijima, Osamu; Hosaka, Kazuyoshi

    2004-02-01

    Over 3500 accessions of Andean landraces have been known in potato, classified into 7 cultivated species ranging from 2x to 5x (Hawkes 1990). Chloroplast DNA (ctDNA), distinguished into T, W, C, S, and A types, showed extensive overlaps in their frequencies among cultivated species and between cultivated and putative ancestral wild species. In this study, 76 accessions of cultivated and 19 accessions of wild species were evaluated for ctDNA types and examined by ctDNA high-resolution markers (ctDNA microsatellites and H3 marker) and nuclear DNA restriction fragment length polymorphisms (RFLPs). ctDNA high-resolution markers identified 25 different ctDNA haplotypes. The S- and A-type ctDNAs were discriminated as unique haplotypes from 12 haplotypes having C-type ctDNA and T-type ctDNA from 10 haplotypes having W-type ctDNA. Differences among ctDNA types were strongly correlated with those of ctDNA high-resolution markers (r = 0.822). Differentiation between W-type ctDNA and C-, S-, and A-type ctDNAs was supported by nDNA RFLPs in most species except for those of recent or immediate hybrid origin. However, differentiation among C-, S-, and A-type ctDNAs was not clearly supported by nDNA RFLPs, suggesting that frequent genetic exchange occurred among them and (or) they shared the same gene pool owing to common ancestry.

  6. Quantitative 3D Analysis of Nuclear Morphology and Heterochromatin Organization from Whole-Mount Plant Tissue Using NucleusJ.

    PubMed

    Desset, Sophie; Poulet, Axel; Tatout, Christophe

    2018-01-01

    Image analysis is a classical way to study nuclear organization. While nuclear organization used to be investigated by colorimetric or fluorescent labeling of DNA or specific nuclear compartments, new methods in microscopy imaging now enable qualitative and quantitative analyses of chromatin pattern, and nuclear size and shape. Several procedures have been developed to prepare samples in order to collect 3D images for the analysis of spatial chromatin organization, but only few preserve the positional information of the cell within its tissue context. Here, we describe a whole mount tissue preparation procedure coupled to DNA staining using the PicoGreen ® intercalating agent suitable for image analysis of the nucleus in living and fixed tissues. 3D Image analysis is then performed using NucleusJ, an open source ImageJ plugin, which allows for quantifying variations in nuclear morphology such as nuclear volume, sphericity, elongation, and flatness as well as in heterochromatin content and position in respect to the nuclear periphery.

  7. The genomic ancestry, landscape genetics and invasion history of introduced mice in New Zealand

    PubMed Central

    Russell, James C.; King, Carolyn M.

    2018-01-01

    The house mouse (Mus musculus) provides a fascinating system for studying both the genomic basis of reproductive isolation, and the patterns of human-mediated dispersal. New Zealand has a complex history of mouse invasions, and the living descendants of these invaders have genetic ancestry from all three subspecies, although most are primarily descended from M. m. domesticus. We used the GigaMUGA genotyping array (approximately 135 000 loci) to describe the genomic ancestry of 161 mice, sampled from 34 locations from across New Zealand (and one Australian city—Sydney). Of these, two populations, one in the south of the South Island, and one on Chatham Island, showed complete mitochondrial lineage capture, featuring two different lineages of M. m. castaneus mitochondrial DNA but with only M. m. domesticus nuclear ancestry detectable. Mice in the northern and southern parts of the North Island had small traces (approx. 2–3%) of M. m. castaneus nuclear ancestry, and mice in the upper South Island had approximately 7–8% M. m. musculus nuclear ancestry including some Y-chromosomal ancestry—though no detectable M. m. musculus mitochondrial ancestry. This is the most thorough genomic study of introduced populations of house mice yet conducted, and will have relevance to studies of the isolation mechanisms separating subspecies of mice. PMID:29410804

  8. Nuclear localization of the DNA repair scaffold XRCC1: Uncovering the functional role of a bipartite NLS

    DOE PAGES

    Kirby, Thomas W.; Gassman, Natalie R.; Smith, Cassandra E.; ...

    2015-08-25

    We have characterized the nuclear localization signal (NLS) of XRCC1 structurally using X-ray crystallography and functionally using fluorescence imaging. Crystallography and binding studies confirm the bipartite nature of the XRCC1 NLS interaction with Importin α (Impα) in which the major and minor binding motifs are separated by >20 residues, and resolve previous inconsistent determinations. Binding studies of peptides corresponding to the bipartite NLS, as well as its major and minor binding motifs, to both wild-type and mutated forms of Impα reveal pronounced cooperative binding behavior that is generated by the proximity effect of the tethered major and minor motifs ofmore » the NLS. The cooperativity stems from the increased local concentration of the second motif near its cognate binding site that is a consequence of the stepwise binding behavior of the bipartite NLS. We predict that the stepwise dissociation of the NLS from Impα facilitates unloading by providing a partially complexed intermediate that is available for competitive binding by Nup50 or the Importin β binding domain. This behavior gives a basis for meeting the intrinsically conflicting high affinity and high flux requirements of an efficient nuclear transport system.« less

  9. DNA Barcoding in Fragaria L. (Strawberry) Species

    USDA-ARS?s Scientific Manuscript database

    DNA barcoding for species identification using a short DNA sequence has been successful in animals due to rapid mutation rates of the mitochondrial genome where the animal DNA barocode, cytochrome c oxidase 1 gene is located. The chloroplast PsbA-trnH spacer and the nuclear ribosomal internal transc...

  10. Genome-Wide Analysis of DNA Methylation before-and after Exercise in the Thoroughbred Horse with MeDIP-Seq

    PubMed Central

    Gim, Jeong-An; Hong, Chang Pyo; Kim, Dae-Soo; Moon, Jae-Woo; Choi, Yuri; Eo, Jungwoo; Kwon, Yun-Jeong; Lee, Ja-Rang; Jung, Yi-Deun; Bae, Jin-Han; Choi, Bong-Hwan; Ko, Junsu; Song, Sanghoon; Ahn, Kung; Ha, Hong-Seok; Yang, Young Mok; Lee, Hak-Kyo; Park, Kyung-Do; Do, Kyoung-Tag; Han, Kyudong; Yi, Joo Mi; Cha, Hee-Jae; Ayarpadikannan, Selvam; Cho, Byung-Wook; Bhak, Jong; Kim, Heui-Soo

    2015-01-01

    Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits. PMID:25666347

  11. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity

    PubMed Central

    Zhang, Jin; Ruhlman, Tracey A.; Sabir, Jamal S. M.; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K.

    2016-01-01

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear–plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. PMID:26893456

  12. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes

    PubMed Central

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P.

    2016-01-01

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes. PMID:27574114

  13. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes.

    PubMed

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P

    2016-08-30

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes.

  14. Integrity of nuclear genomic deoxyribonucleic acid in cooked meat: Implications for food traceability.

    PubMed

    Aslan, O; Hamill, R M; Sweeney, T; Reardon, W; Mullen, A M

    2009-01-01

    It is essential to isolate high-quality DNA from muscle tissue for PCR-based applications in traceability of animal origin. We wished to examine the impact of cooking meat to a range of core temperatures on the quality and quantity of subsequently isolated genomic (specifically, nuclear) DNA. Triplicate steak samples were cooked in a water bath (100 degrees C) until their final internal temperature was 75, 80, 85, 90, 95, or 100 degrees C, and DNA was extracted. Deoxyribonucleic acid quantity was significantly reduced in cooked meat samples compared with raw (6.5 vs. 56.6 ng/microL; P < 0.001), but there was no relationship with cooking temperature. Quality (A(260)/A(280), i.e., absorbance at 260 and 280 nm) was also affected by cooking (P < 0.001). For all 3 genes, large PCR amplicons (product size >800 bp) were observed only when using DNA from raw meat and steak cooked to lower core temperatures. Small amplicons (<200 bp) were present for all core temperatures. Cooking meat to high temperatures thus resulted in a reduced overall yield and probable fragmentation of DNA to sizes less than 800 bp. Although nuclear DNA is preferable to mitochondrial DNA for food authentication, it is less abundant, and results suggest that analyses should be designed to use small amplicon sizes for meat cooked to high core temperatures.

  15. The Causal Relationship between DNA Damage Induction in Bovine Lymphocytes and the Fukushima Nuclear Power Plant Accident

    PubMed Central

    Nakamura, Asako J.; Suzuki, Masatoshi; Redon, Christophe E.; Kuwahara, Yoshikazu; Yamashiro, Hideaki; Abe, Yasuyuki; Takahashi, Shintaro; Fukuda, Tomokazu; Isogai, Emiko; Bonner, William M.; Fukumoto, Manabu

    2017-01-01

    The Fukushima Daiichi Nuclear Power Plant (FNPP) accident, the largest nuclear incident since the 1986 Chernobyl disaster, occurred when the plant was hit by a tsunami triggered by the Great East Japan Earthquake on March 11, 2011. The subsequent uncontrolled release of radioactive substances resulted in massive evacuations in a 20-km zone. To better understand the biological consequences of the FNPP accident, we have been measuring DNA damage levels in cattle in the evacuation zone. DNA damage was evaluated by assessing the levels of DNA double-strand breaks in peripheral blood lymphocytes by immunocyto-fluorescence-based quantification of γ-H2AX foci. A greater than two-fold increase in the fraction of damaged lymphocytes was observed in all animal cohorts within the evacuation zone, and the levels of DNA damage decreased slightly over the 700-day sample collection period. While the extent of damage appeared to be independent of the distance from the accident site and the estimated radiation dose from radiocesium, we observed age-dependent accumulation of DNA damage. Thus, this study, which was the first to evaluate the biological impact of the FNPP accident utilizing the γ-H2AX assays, indicated the causal relation between high levels of DNA damage in animals living in the evacuation zone and the FNPP accident. PMID:28240558

  16. The Causal Relationship between DNA Damage Induction in Bovine Lymphocytes and the Fukushima Nuclear Power Plant Accident.

    PubMed

    Nakamura, Asako J; Suzuki, Masatoshi; Redon, Christophe E; Kuwahara, Yoshikazu; Yamashiro, Hideaki; Abe, Yasuyuki; Takahashi, Shintaro; Fukuda, Tomokazu; Isogai, Emiko; Bonner, William M; Fukumoto, Manabu

    2017-05-01

    The Fukushima Daiichi Nuclear Power Plant (FNPP) accident, the largest nuclear incident since the 1986 Chernobyl disaster, occurred when the plant was hit by a tsunami triggered by the Great East Japan Earthquake on March 11, 2011. The subsequent uncontrolled release of radioactive substances resulted in massive evacuations in a 20-km zone. To better understand the biological consequences of the FNPP accident, we have been measuring DNA damage levels in cattle in the evacuation zone. DNA damage was evaluated by assessing the levels of DNA double-strand breaks in peripheral blood lymphocytes by immunocytofluorescence-based quantification of γ-H2AX foci. A greater than two-fold increase in the fraction of damaged lymphocytes was observed in all animal cohorts within the evacuation zone, and the levels of DNA damage decreased slightly over the 700-day sample collection period. While the extent of damage appeared to be independent of the distance from the accident site and the estimated radiation dose from radiocesium, we observed age-dependent accumulation of DNA damage. Thus, this study, which was the first to evaluate the biological impact of the FNPP accident utilizing the γ-H2AX assays, indicated the causal relation between high levels of DNA damage in animals living in the evacuation zone and the FNPP accident.

  17. Molecular basis of splotch and Waardenburg Pax-3 mutations.

    PubMed Central

    Chalepakis, G; Goulding, M; Read, A; Strachan, T; Gruss, P

    1994-01-01

    Pax genes control certain aspects of development, as mutations result in (semi)dominant defects apparent during embryogenesis. Pax-3 has been associated with the mouse mutant splotch (Sp) and the human Waardenburg syndrome type 1 (WS1). We have examined the molecular basis of splotch and WS1 by studying the effect of mutations on DNA binding, using a defined target sequence. Pax-3 contains two different types of functional DNA-binding domains, a paired domain and a homeodomain. Mutational analysis of Pax-3 reveals different modes of DNA binding depending on the presence of these domains. A segment of Pax-3 located between the two DNA-binding domains, including a conserved octapeptide, participates in protein homodimerization. Pax-3 mutations found in splotch alleles and WS1 individuals change DNA binding and, in the case of a protein product of the Sp allele, dimerization. These findings were taken as a basis to define the molecular nature of the mutants. Images PMID:7909605

  18. UDP-glucuronosyltransferase-dependent bioactivation of clofibric acid to a DNA-damaging intermediate in mouse hepatocytes.

    PubMed

    Ghaoui, Roula; Sallustio, Benedetta C; Burcham, Philip C; Fontaine, Frank R

    2003-05-06

    Glucuronidation of a number of carboxyl-containing drugs generates reactive acyl glucuronide metabolites. These electrophilic species alkylate cell proteins and may be implicated in the pathogenesis of a number of toxic syndromes seen in patients receiving the parent aglycones. Whether acyl glucuronides also attack nuclear DNA is unknown, although the acyl glucuronide formed from clofibric acid was recently found to decrease the transfection efficiency of phage DNA and generate strand breaks in plasmid DNA in vitro. To determine if such a DNA damage occurs within a cellular environment, the comet assay (i.e. single-cell gel electrophoresis) was used to detect DNA lesions in the nuclear genome of isolated mouse hepatocytes cultured with clofibric acid. Overnight exposure to 50 microM and higher concentrations of clofibric acid produced concentration-dependent increases in the comet areas of hepatocyte nuclei, with 1 mM clofibrate producing a 3.6-fold elevation over controls. These effects closely coincided with culture medium concentrations of the glucuronide metabolite formed from clofibric acid, 1-O-beta-clofibryl glucuronide. Consistent with a role for glucuronidation in the DNA damage observed, the glucuronidation inhibitor borneol diminished glucuronide formation from 100 microM clofibrate by 98% and returned comet areas to baseline levels. Collectively, these results suggest that the acyl glucuronide formed from clofibric acid is capable of migrating from its site of formation within the endoplasmic reticulum to generate strand nicks in nuclear DNA.

  19. Exon trapping: a genetic screen to identify candidate transcribed sequences in cloned mammalian genomic DNA.

    PubMed

    Duyk, G M; Kim, S W; Myers, R M; Cox, D R

    1990-11-01

    Identification and recovery of transcribed sequences from cloned mammalian genomic DNA remains an important problem in isolating genes on the basis of their chromosomal location. We have developed a strategy that facilitates the recovery of exons from random pieces of cloned genomic DNA. The basis of this "exon trapping" strategy is that, during a retroviral life cycle, genomic sequences of nonviral origin are correctly spliced and may be recovered as a cDNA copy of the introduced segment. By using this genetic assay for cis-acting sequences required for RNA splicing, we have screened approximately 20 kilobase pairs of cloned genomic DNA and have recovered all four predicted exons.

  20. Exon trapping: a genetic screen to identify candidate transcribed sequences in cloned mammalian genomic DNA.

    PubMed Central

    Duyk, G M; Kim, S W; Myers, R M; Cox, D R

    1990-01-01

    Identification and recovery of transcribed sequences from cloned mammalian genomic DNA remains an important problem in isolating genes on the basis of their chromosomal location. We have developed a strategy that facilitates the recovery of exons from random pieces of cloned genomic DNA. The basis of this "exon trapping" strategy is that, during a retroviral life cycle, genomic sequences of nonviral origin are correctly spliced and may be recovered as a cDNA copy of the introduced segment. By using this genetic assay for cis-acting sequences required for RNA splicing, we have screened approximately 20 kilobase pairs of cloned genomic DNA and have recovered all four predicted exons. PMID:2247475

  1. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial–nuclear interactions

    PubMed Central

    Cristina Kenney, M.; Chwa, Marilyn; Atilano, Shari R.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Tarek, Mohamed; Cáceres-del-Carpio, Javier; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Vawter, Marquis; Michal Jazwinski, S.; Miceli, Michael; Wallace, Douglas C.; Udar, Nitin

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in developed countries. While linked to genetic polymorphisms in the complement pathway, there are many individuals with high risk alleles that do not develop AMD, suggesting that other ‘modifiers’ may be involved. Mitochondrial (mt) haplogroups, defined by accumulations of specific mtDNA single nucleotide polymorphisms (SNPs) which represent population origins, may be one such modifier. J haplogroup has been associated with high risk for AMD while the H haplogroup is protective. It has been difficult to assign biological consequences for haplogroups so we created human ARPE-19 cybrids (cytoplasmic hybrids), which have identical nuclei but mitochondria of either J or H haplogroups, to investigate their effects upon bioenergetics and molecular pathways. J cybrids have altered bioenergetic profiles compared with H cybrids. Q-PCR analyses show significantly lower expression levels for seven respiratory complex genes encoded by mtDNA. J and H cybrids have significantly altered expression of eight nuclear genes of the alternative complement, inflammation and apoptosis pathways. Sequencing of the entire mtDNA was carried out for all the cybrids to identify haplogroup and non-haplogroup defining SNPs. mtDNA can mediate cellular bioenergetics and expression levels of nuclear genes related to complement, inflammation and apoptosis. Sequencing data suggest that observed effects are not due to rare mtDNA variants but rather the combination of SNPs representing the J versus H haplogroups. These findings represent a paradigm shift in our concepts of mt–nuclear interactions. PMID:24584571

  2. Philopatry of male marine turtles inferred from mitochondrial DNA markers

    PubMed Central

    FitzSimmons, Nancy N.; Limpus, Colin J.; Norman, Janette A.; Goldizen, Alan R.; Miller, Jeffrey D.; Moritz, Craig

    1997-01-01

    Recent studies of mitochondrial DNA (mtDNA) variation among marine turtle populations are consistent with the hypothesis that females return to beaches in their natal region to nest as adults. In contrast, less is known about breeding migrations of male marine turtles and whether they too are philopatric to natal regions. Studies of geographic structuring of restriction fragment and microsatellite polymorphisms at anonymous nuclear loci in green turtle (Chelonia mydas) populations indicate that nuclear gene flow is higher than estimates from mtDNA analyses. Regional populations from the northern and southern Great Barrier Reef were distinct for mtDNA but indistinguishable at nuclear loci, whereas the Gulf of Carpentaria (northern Australia) population was distinct for both types of marker. To assess whether this result was due to reduced philopatry of males across the Great Barrier Reef, we determined the mtDNA haplotypes of breeding males at courtship areas for comparison with breeding females from the same three locations. We used a PCR-restriction fragment length polymorphism approach to determine control region haplotypes and designed mismatch primers for the identification of specific haplotypes. The mtDNA haplotype frequencies were not significantly different between males and females at any of the three areas and estimates of Fst among the regions were similar for males and females (Fst = 0.78 and 0.73, respectively). We conclude that breeding males, like females, are philopatric to courtship areas within their natal region. Nuclear gene flow between populations is most likely occurring through matings during migrations of both males and females through nonnatal courtship areas. PMID:9238077

  3. Role of mitochondrial DNA damage and dysfunction in veterans with Gulf War Illness.

    PubMed

    Chen, Yang; Meyer, Joel N; Hill, Helene Z; Lange, Gudrun; Condon, Michael R; Klein, Jacquelyn C; Ndirangu, Duncan; Falvo, Michael J

    2017-01-01

    Gulf War Illness (GWI) is a chronic multi-symptom illness not currently diagnosed by standard medical or laboratory test that affects 30% of veterans who served during the 1990-1991 Gulf War. The clinical presentation of GWI is comparable to that of patients with certain mitochondrial disorders-i.e., clinically heterogeneous multisystem symptoms. Therefore, we hypothesized that mitochondrial dysfunction may contribute to both the symptoms of GWI as well as its persistence over time. We recruited 21 cases of GWI (CDC and Kansas criteria) and 7 controls to participate in this study. Peripheral blood samples were obtained in all participants and a quantitative polymerase chain reaction (QPCR) based assay was performed to quantify mitochondrial and nuclear DNA lesion frequency and mitochondrial DNA (mtDNA) copy number (mtDNAcn) from peripheral blood mononuclear cells. Samples were also used to analyze nuclear DNA lesion frequency and enzyme activity for mitochondrial complexes I and IV. Both mtDNA lesion frequency (p = 0.015, d = 1.13) and mtDNAcn (p = 0.001; d = 1.69) were elevated in veterans with GWI relative to controls. Nuclear DNA lesion frequency was also elevated in veterans with GWI (p = 0.344; d = 1.41), but did not reach statistical significance. Complex I and IV activity (p > 0.05) were similar between groups and greater mtDNA lesion frequency was associated with reduced complex I (r2 = -0.35, p = 0.007) and IV (r2 = -0.28, p < 0.01) enzyme activity. In conclusion, veterans with GWI exhibit greater mtDNA damage which is consistent with mitochondrial dysfunction.

  4. Blastocele fluid from in vitro- and in vivo-produced equine embryos contains nuclear DNA.

    PubMed

    Herrera, C; Morikawa, M I; Castex, C Baca; Pinto, M R; Ortega, N; Fanti, T; Garaguso, R; Franco, M J; Castañares, M; Castañeira, C; Losinno, L; Miragaya, M H; Mutto, A A

    2015-02-01

    Normal mammalian early embryonic development involves apoptosis of blastomeres as a remodeling process during differentiation, starting at the blastocyst stage. Genomic DNA has been recently detected in the blastocele fluid of human embryos and has been amplified by real-time polymerase chain reaction (PCR) to diagnose the sex of in vitro-produced human embryos. This new approach varies from conventional preimplantation genetic diagnosis in that no cells are extracted from the embryo and only the blastocele fluid is aspirated and used as a DNA sample for diagnosis. In the present work, we investigated whether the blastocele fluid of equine preimplantation embryos contains nuclear DNA and whether this DNA could be used to diagnose the sex of the embryos by conventional PCR, using specific primers that target the TSPY and AMEL equine genes. The sex of 11 of 13 in vivo-produced embryos and of four of five in vitro-produced embryos was successfully diagnosed. The PCR amplification product was analyzed using genetic sequencing reporting that the DNA present in blastocele fluid was genomic. Additionally, after polyacrylamide gel electrophoresis and silver staining, the blastocele fluid from three different embryos produced a ladder pattern characteristic of DNA fragmented during apoptosis. Therefore, the results presented in this work report that blastocele fluid from in vivo- and in vitro-produced equine embryos contains nuclear DNA which is probably originated by apoptosis of embryonic cells, and this DNA could be used to diagnose the sex of preimlpantation embryos by conventional PCR. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Preferential mitochondrial DNA injury caused by glucose oxidase as a steady generator of hydrogen peroxide in human fibroblasts.

    PubMed

    Salazar, J J; Van Houten, B

    1997-11-01

    To test the hypothesis that mitochondrial DNA (mtDNA) is more prone to reactive oxygen species (ROS) damage than nuclear DNA, a continuous flux of hydrogen peroxide (H2O2) was produced with the glucose/glucose oxidase system. Using a horse radish peroxidase (HRPO)-based colorimetric assay to detect H2O2, glucose oxidase (GO; 12 mU/ml) produced 95 microM of H2O2 in 1 h, whereas only 46 microM of hydrogen peroxide accumulated in the presence of SV40-transformed human fibroblasts ( approximately 1 x 10(6). DNA damage was assessed in the mitochondira and three nuclear regions using a quantitative PCR assay. GO (12 mU/ml) resulted in more damage to the mitochondrial DNA (2.250 +/- 0.045 lesions/10 kb) than in any one of three nuclear targets, which included the non-expressed beta-globin locus (0.436 +/- 0.029 lesions/10 kb); and the active DNA polymerase b gene (0.442 +/- 0.037 lesions/10 kb); and the active hprt gene (0.310 +/- 0.025). Damage to the mtDNA occurred within 15 min of GO treatment, whereas nuclear damage did not appear until after 30 min, and reached a maximum after 60 min. Repair of mitochondrial damage after a 15 min GO (6 mU/ml) treatment was examined. Mitochondria repaired 50% of the damage after 1 h, and by 6 h all the damage was repaired. Higher doses of GO-generated H202, or more extended treatment periods, lead to mitochondrial DNA damage which was not repaired. Mitochondrial function was monitored using the MTT (3,(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay. A 15 min treatment with 6 mU/ml of GO decreased mitochondrial activity to 80% of the control; the activity recovered completely within 1 h after damage. These data show that GO-generated H202 causes acute damage to mtDNA and function, and demonstrate that this organelle is an important site for the cellular toxicity of ROS.

  6. Chloroplast and nuclear DNA studies in a few members of the Brassica oleracea L. group using PCR-RFLP and ISSR-PCR markers: a population genetic analysis.

    PubMed

    Panda, S; Martín, J P; Aguinagalde, I

    2003-04-01

    A population genetic analysis of chloroplast and nuclear DNA was performed covering nine wild populations of Brassica oleracea. Three members of the n = 9 group, all close to B. oleracea, Brassica alboglabra Bailey, Brassica bourgeaui (Webb) O. Kuntze and Brassica montana Pourret, were also studied to better understand their relationship with B. oleracea. Chloroplast DNA was analysed using the PCR-RFLP (polymerase chain reaction - restriction fragment length polymorphism) method. The ISSR-PCR (inter-simple sequence repeat - polymerase chain reaction) technique was adopted to study nuclear DNA. Twelve primer pairs of chloroplast DNA showed very good amplification. The amplified product of each primer pair, digested by three restriction enzymes, revealed no variation of cpDNA among the taxa studied. This indicates they may have the same chloroplast genotype. Seven selected ISSR primers have detected genetic variation, both within and among the populations/taxa surveyed. The information obtained on the intra- and inter-populational genetic diversity of wild populations of B. oleracea neatly defined the individual plants. It could provide important guidelines for backing management and conservation strategies in this species. The study confirms a close relationship between B. alboglabra, B. bourgeaui and B. montana, which is parallel to their morphological similitude.

  7. Gadd45a Is an RNA Binding Protein and Is Localized in Nuclear Speckles

    PubMed Central

    Sytnikova, Yuliya A.; Kubarenko, Andriy V.; Schäfer, Andrea; Weber, Alexander N. R.; Niehrs, Christof

    2011-01-01

    Background The Gadd45 proteins play important roles in growth control, maintenance of genomic stability, DNA repair, and apoptosis. Recently, Gadd45 proteins have also been implicated in epigenetic gene regulation by promoting active DNA demethylation. Gadd45 proteins have sequence homology with the L7Ae/L30e/S12e RNA binding superfamily of ribosomal proteins, which raises the question if they may interact directly with nucleic acids. Principal Findings Here we show that Gadd45a binds RNA but not single- or double stranded DNA or methylated DNA in vitro. Sucrose density gradient centrifugation experiments demonstrate that Gadd45a is present in high molecular weight particles, which are RNase sensitive. Gadd45a displays RNase-sensitive colocalization in nuclear speckles with the RNA helicase p68 and the RNA binding protein SC35. A K45A point mutation defective in RNA binding was still active in DNA demethylation. This suggests that RNA binding is not absolutely essential for demethylation of an artificial substrate. A point mutation at G39 impared RNA binding, nuclear speckle localization and DNA demethylation, emphasizing its relevance for Gadd45a function. Significance The results implicate RNA in Gadd45a function and suggest that Gadd45a is associated with a ribonucleoprotein particle. PMID:21249130

  8. Around and beyond 53BP1 Nuclear Bodies

    PubMed Central

    Fernandez-Vidal, Anne; Vignard, Julien

    2017-01-01

    Within the nucleus, sub-nuclear domains define territories where specific functions occur. Nuclear bodies (NBs) are dynamic structures that concentrate nuclear factors and that can be observed microscopically. Recently, NBs containing the p53 binding protein 1 (53BP1), a key component of the DNA damage response, were defined. Interestingly, 53BP1 NBs are visualized during G1 phase, in daughter cells, while DNA damage was generated in mother cells and not properly processed. Unlike most NBs involved in transcriptional processes, replication has proven to be key for 53BP1 NBs, with replication stress leading to the formation of these large chromatin domains in daughter cells. In this review, we expose the composition and organization of 53BP1 NBs and focus on recent findings regarding their regulation and dynamics. We then concentrate on the importance of the replication stress, examine the relation of 53BP1 NBs with DNA damage and discuss their dysfunction. PMID:29206178

  9. Producing primate embryonic stem cells by somatic cell nuclear transfer.

    PubMed

    Byrne, J A; Pedersen, D A; Clepper, L L; Nelson, M; Sanger, W G; Gokhale, S; Wolf, D P; Mitalipov, S M

    2007-11-22

    Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.

  10. Overexpression of Tet3 in donor cells enhances goat somatic cell nuclear transfer efficiency.

    PubMed

    Han, Chengquan; Deng, Ruizhi; Mao, Tingchao; Luo, Yan; Wei, Biao; Meng, Peng; Zhao, Lu; Zhang, Qing; Quan, Fusheng; Liu, Jun; Zhang, Yong

    2018-05-23

    Ten-eleven translocation 3 (TET3) mediates active DNA demethylation of paternal genomes during mouse embryonic development. However, the mechanism of DNA demethylation in goat embryos remains unknown. In addition, aberrant DNA methylation reprogramming prevalently occurs in embryos cloned by somatic cell nuclear transfer (SCNT). In this study, we reported that TET3 is a key factor in DNA demethylation in goat pre-implantation embryos. Knockdown of Tet3 hindered DNA demethylation at the two- to four-cell stage in goat embryos and decreased Nanog expression in blastocysts. Overexpression of Tet3 in somatic cells can initiate DNA demethylation, reduce 5-methylcytosine level, increase 5-hydroxymethylcytosine level and promote the expression of key pluripotency genes. After SCNT, overexpression of Tet3 in donor cells corrected abnormal DNA hypermethylation of cloned embryos and significantly enhanced in vitro and in vivo developmental rate (P < 0.05). We conclude that overexpression of Tet3 in donor cells significantly improves goat SCNT efficiency. © 2018 Federation of European Biochemical Societies.

  11. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.

    PubMed

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-12-02

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Mitochondrial DNA replication: a PrimPol perspective

    PubMed Central

    Bailey, Laura J.

    2017-01-01

    PrimPol, (primase–polymerase), the most recently identified eukaryotic polymerase, has roles in both nuclear and mitochondrial DNA maintenance. PrimPol is capable of acting as a DNA polymerase, with the ability to extend primers and also bypass a variety of oxidative and photolesions. In addition, PrimPol also functions as a primase, catalysing the preferential formation of DNA primers in a zinc finger-dependent manner. Although PrimPol's catalytic activities have been uncovered in vitro, we still know little about how and why it is targeted to the mitochondrion and what its key roles are in the maintenance of this multicopy DNA molecule. Unlike nuclear DNA, the mammalian mitochondrial genome is circular and the organelle has many unique proteins essential for its maintenance, presenting a differing environment within which PrimPol must function. Here, we discuss what is currently known about the mechanisms of DNA replication in the mitochondrion, the proteins that carry out these processes and how PrimPol is likely to be involved in assisting this vital cellular process. PMID:28408491

  13. Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p.

    PubMed

    Brewer, Laurence R; Friddle, Raymond; Noy, Aleksandr; Baldwin, Enoch; Martin, Shelley S; Corzett, Michele; Balhorn, Rod; Baskin, Ronald J

    2003-10-01

    Mitochondrial and nuclear DNA are packaged by proteins in a very different manner. Although protein-DNA complexes called "nucleoids" have been identified as the genetic units of mitochondrial inheritance in yeast and man, little is known about their physical structure. The yeast mitochondrial protein Abf2p was shown to be sufficient to compact linear dsDNA, without the benefit of supercoiling, using optical and atomic force microscopy single molecule techniques. The packaging of DNA by Abf2p was observed to be very weak as evidenced by a fast Abf2p off-rate (k(off) = 0.014 +/- 0.001 s(-1)) and the extremely small forces (<0.6 pN) stabilizing the condensed protein-DNA complex. Atomic force microscopy images of individual complexes showed the 190-nm structures are loosely packaged relative to nuclear chromatin. This organization may leave mtDNA accessible for transcription and replication, while making it more vulnerable to damage.

  14. Mitoepigenetics and drug addiction.

    PubMed

    Sadakierska-Chudy, Anna; Frankowska, Małgorzata; Filip, Małgorzata

    2014-11-01

    Being the center of energy production in eukaryotic cells, mitochondria are also crucial for various cellular processes including intracellular Ca(2+) signaling and generation of reactive oxygen species (ROS). Mitochondria contain their own circular DNA which encodes not only proteins, transfer RNA and ribosomal RNAs but also non-coding RNAs. The most recent line of evidence indicates the presence of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (mtDNA); thus, the level of gene expression - in a way similar to nuclear DNA - can be regulated by direct epigenetic modifications. Up to now, very little data shows the possibility of epigenetic regulation of mtDNA. Mitochondria and mtDNA are particularly important in the nervous system and may participate in the initiation of drug addiction. In fact, some addictive drugs enhance ROS production and generate oxidative stress that in turn alters mitochondrial and nuclear gene expression. This review summarizes recent findings on mitochondrial function, mtDNA copy number and epigenetics in drug addiction. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Remodeling of the Nuclear Envelope and Lamina during Bovine Preimplantation Development and Its Functional Implications

    PubMed Central

    Popken, Jens; Graf, Alexander; Krebs, Stefan; Blum, Helmut; Schmid, Volker J.; Strauss, Axel; Guengoer, Tuna; Zakhartchenko, Valeri; Wolf, Eckhard; Cremer, Thomas

    2015-01-01

    The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA. PMID:25932910

  16. Remodeling of the Nuclear Envelope and Lamina during Bovine Preimplantation Development and Its Functional Implications.

    PubMed

    Popken, Jens; Graf, Alexander; Krebs, Stefan; Blum, Helmut; Schmid, Volker J; Strauss, Axel; Guengoer, Tuna; Zakhartchenko, Valeri; Wolf, Eckhard; Cremer, Thomas

    2015-01-01

    The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA.

  17. Genetic divergence and phylogeographic history of two closely related species (Leucomeris decora and Nouelia insignis) across the 'Tanaka Line' in Southwest China.

    PubMed

    Zhao, Yu-Juan; Gong, Xun

    2015-07-08

    Leucomeris decora and Nouelia insignis (Asteraceae) are narrowly and allopatrically distributed species, separated by the important biogeographic boundary Tanaka Line in Southwest China. Previous morphological, cytogenetic and molecular studies suggested that L. decora is sister to N. insignis. However, it is less clear how the two species diverged, whether in full isolation or occurring gene flow across the Tanaka Line. Here, we performed a molecular study at the population level to characterize genetic differentiation and decipher phylogeographic history in two closely related species based on variation examined in plastid and nuclear DNAs using a coalescent-based approach. These morphologically distinct species share plastid DNA (cpDNA) haplotypes. In contrast, Bayesian analysis of nuclear DNA (nDNA) uncovered two distinct clusters corresponding to L. decora and N. insignis. Based on the IMa analysis, no strong indication of migration was detected based on both cpDNA and nDNA sequences. The molecular data pointed to a major west-east split in nuclear DNA between the two species corresponding with the Tanaka Line. The coalescent time estimate for all cpDNA haplotypes dated to the Mid-Late Pleistocene. The estimated demographic parameters showed that the population size of L. decora was similar to that of N. insignis and both experienced limited demographic fluctuations recently. The study revealed comprehensive species divergence and phylogeographic histories of N. insignis and L. decora divided by the Tanaka Line. The phylogeographic pattern inferred from cpDNA reflected ancestrally shared polymorphisms without post-divergence gene flow between species. The marked genealogical lineage divergence in nDNA provided some indication of Tanaka Line for its role as a barrier to plant dispersal, and lent support to its importance in promoting strong population structure and allopatric divergence.

  18. Evaluating droplet digital PCR for the quantification of human genomic DNA: converting copies per nanoliter to nanograms nuclear DNA per microliter.

    PubMed

    Duewer, David L; Kline, Margaret C; Romsos, Erica L; Toman, Blaza

    2018-05-01

    The highly multiplexed polymerase chain reaction (PCR) assays used for forensic human identification perform best when used with an accurately determined quantity of input DNA. To help ensure the reliable performance of these assays, we are developing a certified reference material (CRM) for calibrating human genomic DNA working standards. To enable sharing information over time and place, CRMs must provide accurate and stable values that are metrologically traceable to a common reference. We have shown that droplet digital PCR (ddPCR) limiting dilution end-point measurements of the concentration of DNA copies per volume of sample can be traceably linked to the International System of Units (SI). Unlike values assigned using conventional relationships between ultraviolet absorbance and DNA mass concentration, entity-based ddPCR measurements are expected to be stable over time. However, the forensic community expects DNA quantity to be stated in terms of mass concentration rather than entity concentration. The transformation can be accomplished given SI-traceable values and uncertainties for the number of nucleotide bases per human haploid genome equivalent (HHGE) and the average molar mass of a nucleotide monomer in the DNA polymer. This report presents the considerations required to establish the metrological traceability of ddPCR-based mass concentration estimates of human nuclear DNA. Graphical abstract The roots of metrological traceability for human nuclear DNA mass concentration results. Values for the factors in blue must be established experimentally. Values for the factors in red have been established from authoritative source materials. HHGE stands for "haploid human genome equivalent"; there are two HHGE per diploid human genome.

  19. Chromosome Model reveals Dynamic Redistribution of DNA Damage into Nuclear Sub-domains

    NASA Technical Reports Server (NTRS)

    Costes, Sylvain V.; Ponomarev, Artem; Chen, James L.; Cucinotta, Francis A.; Barcellos-Hoff, Helen

    2007-01-01

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage is induced. To test this assumption, we analyzed the spatial distribution of 53BP1, phosphorylated ATM and gammaH2AX RIF in cells irradiated with high linear energy transfer (LET) radiation. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. As expected, simulations produced DNA-weighted random (Poisson) distributions. In contrast, the distributions of RIF obtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) were non-random. This deviation from the expected DNA-weighted random pattern can be further characterized by relative DNA image measurements. This novel imaging approach shows that RIF were located preferentially at the interface between high and low DNA density regions, and were more frequent in regions with lower density DNA than predicted. This deviation from random behavior was more pronounced within the first 5 min following irradiation for phosphorylated ATM RIF, while gammaH2AX and 53BP1 RIF showed very pronounced deviation up to 30 min after exposure. These data suggest the existence of repair centers in mammalian epithelial cells. These centers would be nuclear sub-domains where DNA lesions would be collected for more efficient repair.

  20. FTS is responsible for radiation-induced nuclear phosphorylation of EGFR and repair of DNA damage in cervical cancer cells.

    PubMed

    Muthusami, Sridhar; Prabakaran, D S; Yu, Jae-Ran; Park, Woo-Yoon

    2015-02-01

    Radiation-induced nuclear stabilization and phosphorylation of epidermal growth factor receptor (EGFR) confers radioresistance. Understanding of the factor(s) regulating the nuclear stabilization and phosphorylation of EGFR is important for the modulation of radioresistance. Present study was designed to delineate the regulation of EGFR nuclear stabilization and phosphorylation by fused toes homolog (FTS), an oncoprotein, which is responsible for the radioresistance in cervical cancer cells. A cervical cancer cell line, ME180 was used. Radiation-induced change in the levels of EGFR, p-EGFR and FTS were evaluated in the cytoplasm and nucleus using Western blot analyses. FTS was silenced using siRNA-based approach. Interaction between EGFR and FTS was assessed using immunofluorescence and immunoprecipitation analyses. Double-strand breaks (DSB) of DNA were assessed using γ H2AX. Radiation increased the levels of EGFR and FTS in the cytoplasm and nucleus. EGFR and FTS are in physical association with each other and are co-localized in the cells. FTS silencing largely reduced the nuclear stabilization and phosphorylation of EGFR and DNA-protein kinase along with increased initial and residual DSBs. EGFR and FTS physically associate with each other and FTS silencing radiosensitizes ME180 cells through impaired nuclear EGFR signaling.

  1. Nuclear scaffold attachment stimulates, but is not essential for ARS activity in Saccharomyces cerevisiae: analysis of the Drosophila ftz SAR.

    PubMed Central

    Amati, B; Pick, L; Laroche, T; Gasser, S M

    1990-01-01

    Nuclei isolated from eukaryotic cells can be depleted of histones and most soluble nuclear proteins to isolate a structural framework called the nuclear scaffold. This structure maintains specific interactions with genomic DNA at sites known as scaffold attached regions (SARs), which are thought to be the bases of DNA loops. In both Saccharomyces cerevisiae and Schizosaccharomyces pombe, genomic ARS elements are recovered as SARs. In addition, SARs from Drosophila melanogaster bind to yeast nuclear scaffolds in vitro and a subclass of these promotes autonomous replication of plasmids in yeast. In the present report, we present fine mapping studies of the Drosophila ftz SAR, which has both SAR and ARS activities in yeast. The data establish a close relationship between the sequences involved in ARS activity and scaffold binding: ARS elements that can bind the nuclear scaffold in vitro promote more efficient plasmid replication in vivo, but scaffold association is not a strict prerequisite for ARS function. Efficient interaction with nuclear scaffolds from both yeast and Drosophila requires a minimal length of SAR DNA that contains reiteration of a narrow minor groove structure of the double helix. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:2123454

  2. Inhibition of EGFR nuclear shuttling decreases irradiation resistance in HeLa cells.

    PubMed

    Wei, Hong; Zhu, Zijie; Lu, Longtao

    2017-01-01

    Cervical cancer is a leading cause of mortality in women worldwide. The resistance to irradiation at the advanced stage is the main reason for the poor prognosis and high mortality. This work aims to elucidate the molecular mechanism underlying the radio-resistance. In this study, we determined the pEGFR-T654 and pDNA-PK-T2609 expression level changes in irradiated HeLa cells treated with T654 peptide, a nuclear localization signal (NLS) inhibitor, to inhibit EGFR nuclear transport. Cell viability, cell cycle and migratory capacity were analyzed. Xenograft animal model was used to evaluate the effect of EGFR nuclear transport inhibition on the tumor growth in vivo. The enhanced translocation of nuclear EGFR in the irradiated HeLa cells correlated with the increasing level of pEGFR-T654 and pDNA-PK-T2609. Inhibition of EGFR nuclear translocation by NLS peptide inhibitor attenuated DNA damage repair in the irradiated HeLa cells, decreased cell viability and promoted cell death through arrest at G0 phase. NLS peptide inhibitor impaired the migratory capacity of irradiated HeLa cells, and negatively affected tumorigenesis in xenograft mice. This work puts forward a potential molecular mechanism of the irradiation resistance in cervical cancer cells, providing a promising direction towards an efficient therapy of cervical cancer.

  3. Technical basis for nuclear accident dosimetry at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, G.D.; Mei, G.T.

    The Oak Ridge National Laboratory (ORNL) Environmental, Safety, and Health Emergency Response Organization has the responsibility of providing analyses of personnel exposures to neutrons and gamma rays from a nuclear accident. This report presents the technical and philosophical basis for the dose assessment aspects of the nuclear accident dosimetry (NAD) system at ORNL. The issues addressed are regulatory guidelines, ORNL NAD system components and performance, and the interpretation of dosimetric information that would be gathered following a nuclear accident.

  4. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming.

    PubMed

    Couldrey, Christine; Lee, Rita Sf

    2010-03-07

    Cloning of cattle by somatic cell nuclear transfer (SCNT) is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appropriately established during nuclear reprogramming following SCNT. A panel of imprinted, non-imprinted genes and satellite repeat sequences was examined in tissues collected from viable and failing mid-gestation SCNT foetuses and compared with similar tissues from gestation-matched normal foetuses generated by artificial insemination (AI). Most of the genomic regions examined in tissues from viable and failing SCNT foetuses had DNA methylation patterns similar to those in comparable tissues from AI controls. However, statistically significant differences were found between SCNT and AI at specific CpG sites in some regions of the genome, particularly those associated with SNRPN and KCNQ1OT1, which tended to be hypomethylated in SCNT tissues. There was a high degree of variation between individuals in methylation levels at almost every CpG site in these two regions, even in AI controls. In other genomic regions, methylation levels at specific CpG sites were tightly controlled with little variation between individuals. Only one site (HAND1) showed a tissue-specific pattern of DNA methylation. Overall, DNA methylation patterns in tissues of failing foetuses were similar to apparently viable SCNT foetuses, although there were individuals showing extreme deviant patterns. These results show that SCNT foetuses that had developed to mid-gestation had largely undergone nuclear reprogramming and that the epigenetic signature at this stage was not a good predictor of whether the foetus would develop to term or not.

  5. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming

    PubMed Central

    2010-01-01

    Background Cloning of cattle by somatic cell nuclear transfer (SCNT) is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appropriately established during nuclear reprogramming following SCNT. A panel of imprinted, non-imprinted genes and satellite repeat sequences was examined in tissues collected from viable and failing mid-gestation SCNT foetuses and compared with similar tissues from gestation-matched normal foetuses generated by artificial insemination (AI). Results Most of the genomic regions examined in tissues from viable and failing SCNT foetuses had DNA methylation patterns similar to those in comparable tissues from AI controls. However, statistically significant differences were found between SCNT and AI at specific CpG sites in some regions of the genome, particularly those associated with SNRPN and KCNQ1OT1, which tended to be hypomethylated in SCNT tissues. There was a high degree of variation between individuals in methylation levels at almost every CpG site in these two regions, even in AI controls. In other genomic regions, methylation levels at specific CpG sites were tightly controlled with little variation between individuals. Only one site (HAND1) showed a tissue-specific pattern of DNA methylation. Overall, DNA methylation patterns in tissues of failing foetuses were similar to apparently viable SCNT foetuses, although there were individuals showing extreme deviant patterns. Conclusion These results show that SCNT foetuses that had developed to mid-gestation had largely undergone nuclear reprogramming and that the epigenetic signature at this stage was not a good predictor of whether the foetus would develop to term or not. PMID:20205951

  6. The Regulatory Interactions of p21 and PCNA in Human Breast Cancer

    DTIC Science & Technology

    2002-07-01

    Proliferating cell nuclear antigen (PCNA) is a multifunctional enzyme involved in multiple cellular processes including DNA replication and repair...During DNA replication , PCNA function as an accessory factor- for the DNA polymerases E arid and are part of a multiprotein DNA replication complex...a cyclin-dependent kinase inhibitor, p21WAF1 ability to inhibit DNA replication in response to DNA damage has been wall characterized. Interestingly

  7. From America to Eurasia: a multigenomes history of the genus Abies.

    PubMed

    Semerikova, Svetlana A; Khrunyk, Yuliya Y; Lascoux, Martin; Semerikov, Vladimir L

    2018-03-15

    The origin of conifer genera, the main components of mountain temperate and boreal forests, was deemed to arise in the Mesozoic, although paleontological records and molecular data point to a recent diversification, presumably related to Neogene cooling. The geographical area(s) where the modern lines of conifers emerged remains uncertain, as is the sequence of events leading to their present distribution. To gain further insights into the biogeography of firs (Abies), we conducted phylogenetic analyses of chloroplast, mitochondrial and nuclear markers. The species tree, generated from ten single-copy nuclear genes, yielded probably the best phylogenetic hypothesis available for Abies. The tree obtained from five regions of chloroplast DNA largely corresponded to the nuclear species tree. Ancestral area reconstructions based on fossil calibrated chloroplast DNA and nuclear DNA trees pointed to repeated intercontinental migrations. The mitochondrial DNA haplotype tree, however, disagreed with nuclear and chloroplast DNA trees. It consisted of two clusters: one included mainly American haplotypes, while the other was composed of only Eurasian haplotypes. Presumably, this conflict is due to inter-continental migrations and introgressive hybridization, accompanied by the capture of the mitotypes from aboriginal species by the invading firs. Given that several species inhabiting Northeastern Asia carry American mitotypes and mutations typical for the American cluster, whereas no Asian mitotypes were detected within the American species, we hypothesize that Abies migrated from America to Eurasia, but not in the opposite direction. The direction and age of intercontinental migrations in firs are congruent with other conifers, such as spruces and pines of subsection Strobus, suggesting that these events had the same cause. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Evolutionary dynamics of emblematic Araucaria species (Araucariaceae) in New Caledonia: nuclear and chloroplast markers suggest recent diversification, introgression, and a tight link between genetics and geography within species.

    PubMed

    Gaudeul, Myriam; Gardner, Martin F; Thomas, Philip; Ennos, Richard A; Hollingsworth, Pete M

    2014-09-05

    New Caledonia harbours a highly diverse and endemic flora, and 13 (out of the 19 worldwide) species of Araucaria are endemic to this territory. Their phylogenetic relationships remain largely unresolved. Using nuclear microsatellites and chloroplast DNA sequencing, we focused on five closely related Araucaria species to investigate among-species relationships and the distribution of within-species genetic diversity across New Caledonia. The species could be clearly distinguished here, except A. montana and A. laubenfelsii that were not differentiated and, at most, form a genetic cline. Given their apparent morphological and ecological similarity, we suggested that these two species may be considered as a single evolutionary unit. We observed cases of nuclear admixture and incongruence between nuclear and chloroplast data, probably explained by introgression and shared ancestral polymorphism. Ancient hybridization was evidenced between A. biramulata and A. laubenfelsii in Mt Do, and is strongly suspected between A. biramulata and A. rulei in Mt Tonta. In both cases, extensive asymmetrical backcrossing eliminated the influence of one parent in the nuclear DNA composition. Shared ancestral polymorphism was also observed for cpDNA, suggesting that species diverged recently, have large effective sizes and/or that cpDNA experienced slow rates of molecular evolution. Within-species genetic structure was pronounced, probably because of low gene flow and significant inbreeding, and appeared clearly influenced by geography. This may be due to survival in distinct refugia during Quaternary climatic oscillations. The study species probably diverged recently and/or are characterized by a slow rate of cpDNA sequence evolution, and introgression is strongly suspected. Within-species genetic structure is tightly linked with geography. We underline the conservation implications of our results, and highlight several perspectives.

  9. Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization.

    PubMed

    Michalovova, M; Vyskot, B; Kejnovsky, E

    2013-10-01

    We analysed the size, relative age and chromosomal localization of nuclear sequences of plastid and mitochondrial origin (NUPTs-nuclear plastid DNA and NUMTs-nuclear mitochondrial DNA) in six completely sequenced plant species. We found that the largest insertions showed lower divergence from organelle DNA than shorter insertions in all species, indicating their recent origin. The largest NUPT and NUMT insertions were localized in the vicinity of the centromeres in the small genomes of Arabidopsis and rice. They were also present in other chromosomal regions in the large genomes of soybean and maize. Localization of NUPTs and NUMTs correlated positively with distribution of transposable elements (TEs) in Arabidopsis and sorghum, negatively in grapevine and soybean, and did not correlate in rice or maize. We propose a model where new plastid and mitochondrial DNA sequences are inserted close to centromeres and are later fragmented by TE insertions and reshuffled away from the centromere or removed by ectopic recombination. The mode and tempo of TE dynamism determines the turnover of NUPTs and NUMTs resulting in their species-specific chromosomal distributions.

  10. Novel approach for the simultaneous detection of DNA from different fish species based on a nuclear target: quantification potential.

    PubMed

    Prado, Marta; Boix, Ana; von Holst, Christoph

    2012-07-01

    The development of DNA-based methods for the identification and quantification of fish in food and feed samples is frequently focused on a specific fish species and/or on the detection of mitochondrial DNA of fish origin. However, a quantitative method for the most common fish species used by the food and feed industry is needed for official control purposes, and such a method should rely on the use of a single-copy nuclear DNA target owing to its more stable copy number in different tissues. In this article, we report on the development of a real-time PCR method based on the use of a nuclear gene as a target for the simultaneous detection of fish DNA from different species and on the evaluation of its quantification potential. The method was tested in 22 different fish species, including those most commonly used by the food and feed industry, and in negative control samples, which included 15 animal species and nine feed ingredients. The results show that the method reported here complies with the requirements concerning specificity and with the criteria required for real-time PCR methods with high sensitivity.

  11. Ploidy Levels among Species in the ‘Oxalis tuberosa Alliance’ as Inferred by Flow Cytometry

    PubMed Central

    EMSHWILLER, EVE

    2002-01-01

    The ‘Oxalis tuberosa alliance’ is a group of Andean Oxalis species allied to the Andean tuber crop O. tuberosa Molina (Oxalidaceae), commonly known as ‘oca’. As part of a larger project studying the origins of polyploidy and domestication of cultivated oca, flow cytometry was used to survey DNA ploidy levels among Bolivian and Peruvian accessions of alliance members. In addition, this study provided a first assessment of C‐values in the alliance by estimating nuclear DNA contents of these accessions using chicken erythrocytes as internal standard. Ten Bolivian accessions of cultivated O. tuberosa were confirmed to be octoploid, with a mean nuclear DNA content of approx. 3·6 pg/2C. Two Peruvian wild Oxalis species, O. phaeotricha and O. picchensis, were inferred to be tetraploid (both with approx. 1·67 pg/2C), the latter being one of the putative progenitors of O. tuberosa identified by chloroplast‐expressed glutamine synthetase data in prior work. The remaining accessions (from 78 populations provisionally identified as 35 species) were DNA diploid, with nuclear DNA contents varying from 0·79 to 1·34 pg/2C. PMID:12102530

  12. 32 CFR 291.6 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.6 Procedures. (a) If HQ, DNA... handcarry the request to PAO. TDNM and AFRRI personnel will forward all FOIA requests to HQ, DNA, Attn: PAO. FCDNA will adhere to paragraph 6d and FCDNA Supplement to DNA Instruction 5400.7C. 2 2 Copies can be...

  13. 32 CFR 291.6 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.6 Procedures. (a) If HQ, DNA... handcarry the request to PAO. TDNM and AFRRI personnel will forward all FOIA requests to HQ, DNA, Attn: PAO. FCDNA will adhere to paragraph 6d and FCDNA Supplement to DNA Instruction 5400.7C. 2 2 Copies can be...

  14. 32 CFR 291.6 - Procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.6 Procedures. (a) If HQ, DNA... handcarry the request to PAO. TDNM and AFRRI personnel will forward all FOIA requests to HQ, DNA, Attn: PAO. FCDNA will adhere to paragraph 6d and FCDNA Supplement to DNA Instruction 5400.7C. 2 2 Copies can be...

  15. 32 CFR 291.6 - Procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.6 Procedures. (a) If HQ, DNA... handcarry the request to PAO. TDNM and AFRRI personnel will forward all FOIA requests to HQ, DNA, Attn: PAO. FCDNA will adhere to paragraph 6d and FCDNA Supplement to DNA Instruction 5400.7C. 2 2 Copies can be...

  16. 32 CFR 291.6 - Procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.6 Procedures. (a) If HQ, DNA... handcarry the request to PAO. TDNM and AFRRI personnel will forward all FOIA requests to HQ, DNA, Attn: PAO. FCDNA will adhere to paragraph 6d and FCDNA Supplement to DNA Instruction 5400.7C. 2 2 Copies can be...

  17. Effects of mobile phone radiation on reproduction and development in Drosophila melanogaster.

    PubMed

    Weisbrot, David; Lin, Hana; Ye, Lin; Blank, Martin; Goodman, Reba

    2003-05-01

    In this report we examined the effects of a discontinuous radio frequency (RF) signal produced by a GSM multiband mobile phone (900/1,900 MHz; SAR approximately 1.4 W/kg) on Drosophila melanogaster, during the 10-day developmental period from egg laying through pupation. As found earlier with low frequency exposures, the non-thermal radiation from the GSM mobile phone increased numbers of offspring, elevated hsp70 levels, increased serum response element (SRE) DNA-binding and induced the phosphorylation of the nuclear transcription factor, ELK-1. The rapid induction of hsp70 within minutes, by a non-thermal stress, together with identified components of signal transduction pathways, provide sensitive and reliable biomarkers that could serve as the basis for realistic mobile phone safety guidelines. Copyright 2003 Wiley-Liss, Inc.

  18. Chlorxanthomycin, a Fluorescent, Chlorinated, Pentacyclic Pyrene from a Bacillus sp.†

    PubMed Central

    Magyarosy, Andrew; Ho, Jonathan Z.; Rapoport, Henry; Dawson, Scott; Hancock, Joe; Keasling, Jay D.

    2002-01-01

    A gram-positive Bacillus sp. that fluoresces yellow under long-wavelength UV light on several common culture media was isolated from soil samples. On the basis of carbon source utilization studies, fatty acid methyl ester analysis, and 16S ribosomal DNA analysis, this bacterium was most similar to Bacillus megaterium. Chemical extraction yielded a yellow-orange fluorescent pigment, which was characterized by X-ray crystallography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The fluorescent compound, chlorxanthomycin, is a pentacyclic, chlorinated molecule with the molecular formula C22H15O6Cl and a molecular weight of 409.7865. Chlorxanthomycin appears to be located in the cytoplasm, does not diffuse out of the cells into the culture medium, and has selective antibiotic activity. PMID:12147512

  19. Mitochondrial-nuclear genome interactions in nonalcoholic fatty liver disease in mice

    PubMed Central

    Betancourt, Angela M.; King, Adrienne L.; Fetterman, Jessica L.; Millender-Swain, Telisha; Finley, Rachel D.; Oliva, Claudia R.; Crowe, David Ralph; Ballinger, Scott W.; Bailey, Shannon M.

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation, and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. Herein, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, Mitochondrial-Nuclear eXchange (MNX) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared to wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation, and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD. PMID:24758559

  20. Mitochondrial-nuclear genome interactions in non-alcoholic fatty liver disease in mice.

    PubMed

    Betancourt, Angela M; King, Adrienne L; Fetterman, Jessica L; Millender-Swain, Telisha; Finley, Rachel D; Oliva, Claudia R; Crowe, David R; Ballinger, Scott W; Bailey, Shannon M

    2014-07-15

    NAFLD (non-alcoholic fatty liver disease) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. In the present study, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, MNX (mitochondrial-nuclear exchange) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared with wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR (respiratory control ratio) when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD.

  1. Ultraviolet mutagenesis studies of [psi], a cytoplasmic determinant of Saccharomyces cerevisiae.

    PubMed

    Tuite, M F; Cox, B S

    1980-07-01

    UV mutagenesis was used to probe the molecular nature of [psi], a nonmitochondrial cytoplasmic determinant of Saccharomyces cerevisiae involved in the control of nonsense suppression. The UV-induced mutation from [psi+] to [psi-] showed characteristics of forward nuclear gene mutation in terms of frequency, induction kinetics, occurrence of whole and sectored mutant clones and the effect of the stage in the growth cycle on mutation frequency. The involvement of pyrimidine dimers in the premutational lesion giving the [psi-] mutation was demonstrated by photoreactivation. UV-induced damage to the [psi] genetic determinant was shown to be repaired by nuclear-coded repair enzymes that are responsible for the repair of nuclear DNA damage. UV-induced damage to mitochondrial DNA appeared to be, at least partly, under the control of different repair processes. The evidence obtained suggests that the [psi] determinant is DNA.

  2. A chromatin insulator determines the nuclear localization of DNA.

    PubMed

    Gerasimova, T I; Byrd, K; Corces, V G

    2000-11-01

    Chromatin insulators might regulate gene expression by controlling the subnuclear organization of DNA. We found that a DNA sequence normally located inside of the nucleus moved to the periphery when the gypsy insulator was placed within the sequence. The presence of the gypsy insulator also caused two sequences, normally found in different regions of the nucleus, to come together at a single location. Alterations in this subnuclear organization imposed by the gypsy insulator correlated with changes in gene expression that took place during the heat-shock response. These global changes in transcription were accompanied by dramatic alterations in the distribution of insulator proteins and DNA. The results suggest that the nuclear organization imposed by the gypsy insulator on the chromatin fiber is important for gene expression.

  3. Characterization of the host factors required for hepadnavirus covalently closed circular (ccc) DNA formation.

    PubMed

    Guo, Haitao; Xu, Chunxiao; Zhou, Tianlun; Block, Timothy M; Guo, Ju-Tao

    2012-01-01

    Synthesis of the covalently closed circular (ccc) DNA is a critical, but not well-understood step in the life cycle of hepadnaviruses. Our previous studies favor a model that removal of genome-linked viral DNA polymerase occurs in the cytoplasm and the resulting deproteinized relaxed circular DNA (DP-rcDNA) is subsequently transported into the nucleus and converted into cccDNA. In support of this model, our current study showed that deproteinization of viral double-stranded linear (dsl) DNA also took place in the cytoplasm. Furthermore, we demonstrated that Ku80, a component of non-homologous end joining DNA repair pathway, was essential for synthesis of cccDNA from dslDNA, but not rcDNA. In an attempt to identify additional host factors regulating cccDNA biosynthesis, we found that the DP-rcDNA was produced in all tested cell lines that supported DHBV DNA replication, but cccDNA was only synthesized in the cell lines that accumulated high levels of DP-rcDNA, except for NCI-H322M and MDBK cells, which failed to synthesize cccDNA despite of the existence of nuclear DP-rcDNA. The results thus imply that while removal of the genome-linked viral DNA polymerase is most likely catalyzed by viral or ubiquitous host function(s), nuclear factors required for the conversion of DP-rcDNA into cccDNA and/or its maintenance are deficient in the above two cell lines, which could be useful tools for identification of the elusive host factors essential for cccDNA biosynthesis or maintenance.

  4. STUDIES ON ISOLATED NUCLEI. I. ISOLATION AND CHEMICAL CHARACTERIZATION OF A NUCLEAR FRACTION FROM GUINEA PIG LIVER.

    PubMed

    MAGGIO, R; SIEKEVITZ, P; PALADE, G E

    1963-08-01

    This article describes a method for the isolation of nuclei from guinea pig liver. It involves the homogenization of the tissue in 0.88 M sucrose-1.5 mM CaCl(2) followed by centrifugation in a discontinuous density gradient in which the upper phase is the homogenate and the lower phase is 2.2 M sucrose-0.5 mM CaCl(2). Based on DNA recovery, the isolated fraction contains 25 to 30 per cent of the nuclei of the original homogenate. Electron microscopical observations showed that approximately 88 per cent of the isolated nuclei come from liver cells (the rest from von Kupffer cells and leucocytes) and that approximately 90 per cent of the nuclei appear intact, with well preserved nucleoli, nucleoplasm, nuclear envelope, and pores. Cytoplasmic contamination is minimal and consists primarily of the nuclear envelope and its attached ribosomes. The nuclear fraction consists of approximately 22.3 per cent DNA, approximately 4.7 per cent RNA, and approximately 73 per cent protein, the DNA/RNA ratio being 4.7. Data on RNA extractibility by phosphate and salt and on the base composition of total nuclear RNA are included.

  5. Species boundaries and phylogenetic relationships in the critically endangered Asian box turtle genus Cuora.

    PubMed

    Spinks, Phillip Q; Thomson, Robert C; Zhang, YaPing; Che, Jing; Wu, Yonghua; Shaffer, H Bradley

    2012-06-01

    Turtles are currently the most endangered major clade of vertebrates on earth, and Asian box turtles (Cuora) are in catastrophic decline. Effective management of this diverse turtle clade has been hampered by human-mediated, and perhaps natural hybridization, resulting in discordance between mitochondrial and nuclear markers and confusion regarding species boundaries and phylogenetic relationships among hypothesized species of Cuora. Here, we present analyses of mitochondrial and nuclear DNA data for all 12 currently hypothesized species to resolve both species boundaries and phylogenetic relationships. Our 15-gene, 40-individual nuclear data set was frequently in conflict with our mitochondrial data set; based on its general concordance with published morphological analyses and the strength of 15 independent estimates of evolutionary history, we interpret the nuclear data as representing the most reliable estimate of species boundaries and phylogeny of Cuora. Our results strongly reiterate the necessity of using multiple nuclear markers for phylogeny and species delimitation in these animals, including any form of DNA "barcoding", and point to Cuora as an important case study where reliance on mitochondrial DNA can lead to incorrect species identification. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. On the value of nuclear and mitochondrial gene sequences for reconstructing the phylogeny of vanilloid orchids (Vanilloideae, Orchidaceae)

    PubMed Central

    Cameron, Kenneth M.

    2009-01-01

    Background and Aims Most molecular phylogenetic studies of Orchidaceae have relied heavily on DNA sequences from the plastid genome. Nuclear and mitochondrial loci have only been superficially examined for their systematic value. Since 40% of the genera within Vanilloideae are achlorophyllous mycoheterotrophs, this is an ideal group of orchids in which to evaluate non-plastid gene sequences. Methods Phylogenetic reconstructions for Vanilloideae were produced using independent and combined data from the nuclear 18S, 5·8S and 26S rDNA genes and the mitochondrial atpA gene and nad1b-c intron. Key Results These new data indicate placements for genera such as Lecanorchis and Galeola, for which plastid gene sequences have been mostly unavailable. Nuclear and mitochondrial parsimony jackknife trees are congruent with each other and previously published trees based solely on plastid data. Because of high rates of sequence divergence among vanilloid orchids, even the short 5·8S rDNA gene provides impressive levels of resolution and support. Conclusions Orchid systematists are encouraged to sequence nuclear and mitochondrial gene regions along with the growing number of plastid loci available. PMID:19251715

  7. Ultraviolet radiation-induced interleukin 6 release in HeLa cells is mediated via membrane events in a DNA damage-independent way.

    PubMed

    Kulms, D; Pöppelmann, B; Schwarz, T

    2000-05-19

    Evidence exists that ultraviolet radiation (UV) affects molecular targets in the nucleus or at the cell membrane. UV-induced apoptosis was found to be mediated via DNA damage and activation of death receptors, suggesting that nuclear and membrane effects are not mutually exclusive. To determine whether participation of nuclear and membrane components is also essential for other UV responses, we studied the induction of interleukin-6 (IL-6) by UV. Exposing HeLa cells to UV at 4 degrees C, which inhibits activation of surface receptors, almost completely prevented IL-6 release. Enhanced repair of UV-mediated DNA damage by addition of the DNA repair enzyme photolyase did not affect UV-induced IL-6 production, suggesting that in this case membrane events predominant over nuclear effects. UV-induced IL-6 release is mediated via NFkappaB since the NFkappaB inhibitor MG132 or transfection of cells with a super-repressor form of the NFkappaB inhibitor IkappaB reduced IL-6 release. Transfection with a dominant negative mutant of the signaling protein TRAF-2 reduced IL-6 release upon exposure to UV, indicating that UV-induced IL-6 release is mediated by activation of the tumor necrosis factor receptor-1. These data demonstrate that UV can exert biological effects mainly by affecting cell surface receptors and that this is independent of its ability to induce nuclear DNA damage.

  8. Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics.

    PubMed

    Straub, Shannon C K; Parks, Matthew; Weitemier, Kevin; Fishbein, Mark; Cronn, Richard C; Liston, Aaron

    2012-02-01

    Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach for plant systematics. Through simulations, we evaluated optimal sequencing depth and performance of single-end and paired-end short read sequences for assembly of nuclear ribosomal DNA (rDNA) and plastomes and addressed the effect of divergence on reference-guided plastome assembly. We also used simulations to identify potential phylogenetic markers from low-copy nuclear loci at different sequencing depths. We demonstrated the utility of genome skimming through phylogenetic analysis of the Sonoran Desert clade (SDC) of Asclepias (Apocynaceae). Paired-end reads performed better than single-end reads. Minimum sequencing depths for high quality rDNA and plastome assemblies were 40× and 30×, respectively. Divergence from the reference significantly affected plastome assembly, but relatively similar references are available for most seed plants. Deeper rDNA sequencing is necessary to characterize intragenomic polymorphism. The low-copy fraction of the nuclear genome was readily surveyed, even at low sequencing depths. Nearly 160000 bp of sequence from three organelles provided evidence of phylogenetic incongruence in the SDC. Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.

  9. High-Resolution Whole-Genome Sequencing Reveals That Specific Chromatin Domains from Most Human Chromosomes Associate with Nucleoli

    PubMed Central

    van Koningsbruggen, Silvana; Gierliński, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J.; Ariyurek, Yavuz; den Dunnen, Johan T.

    2010-01-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope. PMID:20826608

  10. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli.

    PubMed

    van Koningsbruggen, Silvana; Gierlinski, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J; Ariyurek, Yavuz; den Dunnen, Johan T; Lamond, Angus I

    2010-11-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope.

  11. Spatial epigenetics: linking nuclear structure and function in higher eukaryotes.

    PubMed

    Jackson, Dean A

    2010-09-20

    Eukaryotic cells are defined by the genetic information that is stored in their DNA. To function, this genetic information must be decoded. In doing this, the information encoded in DNA is copied first into RNA, during RNA transcription. Primary RNA transcripts are generated within transcription factories, where they are also processed into mature mRNAs, which then pass to the cytoplasm. In the cytoplasm these mRNAs can finally be translated into protein in order to express the genetic information as a functional product. With only rare exceptions, the cells of an individual multicellular eukaryote contain identical genetic information. However, as different genes must be expressed in different cell types to define the structure and function of individual tissues, it is clear that mechanisms must have evolved to regulate gene expression. In higher eukaryotes, mechanisms that regulate the interaction of DNA with the sites where nuclear functions are performed provide one such layer of regulation. In this chapter, I evaluate how a detailed understanding of nuclear structure and chromatin dynamics are beginning to reveal how spatial mechanisms link chromatin structure and function. As these mechanisms operate to modulate the genetic information in DNA, the regulation of chromatin function by nuclear architecture defines the concept of 'spatial epigenetics'.

  12. Changes in Whole-Body Oxygen Consumption and Skeletal Muscle Mitochondria During Linezolid-Induced Lactic Acidosis.

    PubMed

    Protti, Alessandro; Ronchi, Dario; Bassi, Gabriele; Fortunato, Francesco; Bordoni, Andreina; Rizzuti, Tommaso; Fumagalli, Roberto

    2016-07-01

    To better clarify the pathogenesis of linezolid-induced lactic acidosis. Case report. ICU. A 64-year-old man who died with linezolid-induced lactic acidosis. Skeletal muscle was sampled at autopsy to study mitochondrial function. Lactic acidosis developed during continuous infusion of linezolid while oxygen consumption and oxygen extraction were diminishing from 172 to 52 mL/min/m and from 0.27 to 0.10, respectively. Activities of skeletal muscle respiratory chain complexes I, III, and IV, encoded by nuclear and mitochondrial DNA, were abnormally low, whereas activity of complex II, entirely encoded by nuclear DNA, was not. Protein studies confirmed stoichiometric imbalance between mitochondrial (cytochrome c oxidase subunits 1 and 2) and nuclear (succinate dehydrogenase A) DNA-encoded respiratory chain subunits. These findings were not explained by defects in mitochondrial DNA or transcription. There were no compensatory mitochondrial biogenesis (no induction of nuclear respiratory factor 1 and mitochondrial transcript factor A) or adaptive unfolded protein response (reduced concentration of heat shock proteins 60 and 70). Linezolid-induced lactic acidosis is associated with diminished global oxygen consumption and extraction. These changes reflect selective inhibition of mitochondrial protein synthesis (probably translation) with secondary mitonuclear imbalance. One novel aspect of linezolid toxicity that needs to be confirmed is blunting of reactive mitochondrial biogenesis and unfolded protein response.

  13. A unique mitigator sequence determines the species specificity of the major late promoter in adenovirus type 12 DNA.

    PubMed Central

    Zock, C; Iselt, A; Doerfler, W

    1993-01-01

    Human adenovirus type 12 (Ad12) cannot replicate in hamster cells, whereas human cells are permissive for Ad12. Ad12 DNA replication and late-gene and virus-associated RNA expression are blocked in hamster cells. Early Ad12 genes are transcribed, and the viral DNA can be integrated into the host genome. Ad12 DNA replication and late-gene transcription can be complemented in hamster cells by E1 functions of Ad2 or Ad5, for which hamster cells are fully permissive (for a review, see W. Doerfler, Adv. Virus Res. 39:89-128, 1991). We have previously demonstrated that a 33-nucleotide mitigator sequence, which is located in the downstream region of the major late promoter (MLP) of Ad12 DNA, is responsible for the inactivity of the Ad12 MLP in hamster cells (C. Zock and W. Doerfler, EMBO J. 9:1615-1623, 1990). A similar negative regulator has not been found in the MLP of Ad2 DNA. We have now studied the mechanism of action of this mitigator element. The results of nuclear run-on experiments document the absence of MLP transcripts in the nuclei of Ad12-infected BHK21 hamster cells. Surprisingly, the mitigator element cannot elicit its function in in vitro transcription experiments with nuclear extracts from both hamster BHK21 and human HeLa cells. Intact nuclear topology and/or tightly bound nuclear elements that cannot be eluted in nuclear extracts are somehow required for recognition of the Ad12 mitigator. Electrophoretic mobility shift assays have not revealed significant differences in the binding of proteins from human HeLa or hamster BHK21 cells to the mitigator sequence in the MLP of Ad12 DNA or to the corresponding sequence in Ad2 DNA. We have converted the sequence of the mitigator in the MLP of Ad12 DNA to the equivalent sequence in the MLP of Ad2 DNA by site-directed mutagenesis. This construct was not active in hamster cells. When the Ad12 mitigator, on the other hand, was inserted into the Ad2 MLP, the latter's function in hamster cells was not compromised. Deletions in the 5' upstream region of the Ad12 MLP have provided evidence for the existence of additional sequences that codetermine the deficiency of the Ad12 MLP in hamster cells. The amphifunctional YY1 protein from HeLa cells can bind specifically to the mitigator and to upstream elements of the MLP of Ad12 DNA.(ABSTRACT TRUNCATED AT 400 WORDS) Images PMID:8419643

  14. DNA Cytometry and Nuclear Morphometry in Ovarian Benign, Borderline and Malignant Tumors

    PubMed Central

    el Din, Amina A. Gamal; Badawi, Manal A.; Aal, Shereen E. Abdel; Ibrahim, Nihad A.; Morsy, Fatma A.; Shaffie, Nermeen M.

    2015-01-01

    BACKDROUND: Ovarian carcinoma is a leading cause of death in gynecological malignancy. Ovarian surface epithelial serous and mucinous tumours are classified as benign, borderline, and malignant. The identification of borderline tumours most likely to act aggressively remains an important clinical issue. AIM: This work aimed to study DNA ploidy and nuclear area in ovarian serous and mucinous; benign, borderline and malignant tumours. MATERIAL AND METHODS: This study included forty ovarian (23 serous and 17 mucinous) tumours. Paraffin blocks were sectioned; stained with haematoxylin and eosin for histopathologic and morphometric studies and with blue feulgen for DNA analysis. RESULTS: All four serous and six out of nine mucinous benign tumours were diploid. All eight serous and five mucinous malignant tumours were aneuploid. Nine of eleven (81.8%) serous and all three mucinous borderline tumours were aneuploid. There were highly significant differences in mean aneuploid cells percentage between serous benign (1.5%), borderline (45.6%) and malignant (74.5%) (p = 0.0001) and between mucinous benign (13.2%) and both borderline (63.7%) and malignant (68.4%) groups (p = 0.0001). There were significant differences in nuclear area between serous benign (26.191%), borderline (45.619%) and malignant (67.634 %) and a significant positive correlation between mean percentage aneuploid value and mean nuclear area in all serous and mucinous groups. CONCLUSION: We suggest that DNA ploidy and nuclear area combined, may be adjuncts to histopathology; in ovarian serous and mucinous benign, borderline and malignant neoplasms; identifying the aggressive borderline tumours. PMID:27275284

  15. DNA Cytometry and Nuclear Morphometry in Ovarian Benign, Borderline and Malignant Tumors.

    PubMed

    El Din, Amina A Gamal; Badawi, Manal A; Aal, Shereen E Abdel; Ibrahim, Nihad A; Morsy, Fatma A; Shaffie, Nermeen M

    2015-12-15

    Ovarian carcinoma is a leading cause of death in gynecological malignancy. Ovarian surface epithelial serous and mucinous tumours are classified as benign, borderline, and malignant. The identification of borderline tumours most likely to act aggressively remains an important clinical issue. This work aimed to study DNA ploidy and nuclear area in ovarian serous and mucinous; benign, borderline and malignant tumours. This study included forty ovarian (23 serous and 17 mucinous) tumours. Paraffin blocks were sectioned; stained with haematoxylin and eosin for histopathologic and morphometric studies and with blue feulgen for DNA analysis. All four serous and six out of nine mucinous benign tumours were diploid. All eight serous and five mucinous malignant tumours were aneuploid. Nine of eleven (81.8%) serous and all three mucinous borderline tumours were aneuploid. There were highly significant differences in mean aneuploid cells percentage between serous benign (1.5%), borderline (45.6%) and malignant (74.5%) (p = 0.0001) and between mucinous benign (13.2%) and both borderline (63.7%) and malignant (68.4%) groups (p = 0.0001). There were significant differences in nuclear area between serous benign (26.191%), borderline (45.619%) and malignant (67.634 %) and a significant positive correlation between mean percentage aneuploid value and mean nuclear area in all serous and mucinous groups. We suggest that DNA ploidy and nuclear area combined, may be adjuncts to histopathology; in ovarian serous and mucinous benign, borderline and malignant neoplasms; identifying the aggressive borderline tumours.

  16. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.

    PubMed

    Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine

    2009-06-17

    P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  17. DNA-based approaches to identify forest fungi in Pacific Islands: A pilot study

    Treesearch

    Anna E. Case; Sara M. Ashiglar; Phil G. Cannon; Ernesto P. Militante; Edwin R. Tadiosa; Mutya Quintos-Manalo; Nelson M. Pampolina; John W. Hanna; Fred E. Brooks; Amy L. Ross-Davis; Mee-Sook Kim; Ned B. Klopfenstein

    2013-01-01

    DNA-based diagnostics have been successfully used to characterize diverse forest fungi (e.g., Hoff et al. 2004, Kim et al. 2006, Glaeser & Lindner 2011). DNA sequencing of the internal transcribed spacer (ITS) and large subunit (LSU) regions of nuclear ribosomal DNA (rDNA) has proved especially useful (Sonnenberg et al. 2007, Seifert 2009, Schoch et al. 2012) for...

  18. Characterization of North American Armillaria species: Genetic relationships determined by ribosomal DNA sequences and AFLP markers

    Treesearch

    M. -S. Kim; N. B. Klopfenstein; J. W. Hanna; G. I. McDonald

    2006-01-01

    Phylogenetic and genetic relationships among 10 North American Armillaria species were analysed using sequence data from ribosomal DNA (rDNA), including intergenic spacer (IGS-1), internal transcribed spacers with associated 5.8S (ITS + 5.8S), and nuclear large subunit rDNA (nLSU), and amplified fragment length polymorphism (AFLP) markers. Based on rDNA sequence data,...

  19. Evidence for a Role of FEN1 in Maintaining Mitochondrial DNA Integrity

    PubMed Central

    Kalifa, Lidza; Beutner, Gisela; Phadnis, Naina; Sheu, Shey-Shing; Sia, Elaine A.

    2009-01-01

    Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle’s high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5′ flap structures generated during DNA synthesis. Furthermore, removal of 5′ flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity. PMID:19699691

  20. Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives.

    PubMed

    Fregene, M A; Vargas, J; Ikea, J; Angel, F; Tohme, J; Asiedu, R A; Akoroda, M O; Roca, W M

    1994-11-01

    Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Minhwa; Jang, Won-Gu; Hwang, Jeong Hee

    Highlights: Black-Right-Pointing-Pointer We success serial SCNT through the third generation using pig fibroblasts. Black-Right-Pointing-Pointer Donor-specific mtDNA in the recloned pigs was detected. Black-Right-Pointing-Pointer SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loopmore » regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A{yields}T), 16062 (T{yields}C), and 16135 (G{yields}A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.« less

  2. 10 CFR 830.200 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Scope. 830.200 Section 830.200 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.200 Scope. This Subpart establishes safety basis requirements for hazard category 1, 2, and 3 DOE nuclear facilities. ...

  3. 10 CFR 830.200 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Scope. 830.200 Section 830.200 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.200 Scope. This Subpart establishes safety basis requirements for hazard category 1, 2, and 3 DOE nuclear facilities. ...

  4. 10 CFR 830.200 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Scope. 830.200 Section 830.200 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.200 Scope. This Subpart establishes safety basis requirements for hazard category 1, 2, and 3 DOE nuclear facilities. ...

  5. 10 CFR 830.200 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Scope. 830.200 Section 830.200 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.200 Scope. This Subpart establishes safety basis requirements for hazard category 1, 2, and 3 DOE nuclear facilities. ...

  6. Missing genes, multiple ORFs, and C-to-U type RNA editing in Acrasis kona (Heterolobosea, Excavata) mitochondrial DNA.

    PubMed

    Fu, Cheng-Jie; Sheikh, Sanea; Miao, Wei; Andersson, Siv G E; Baldauf, Sandra L

    2014-08-21

    Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Multi-locus DNA sequence data reveal a history of deep cryptic vicariance and habitat-driven convergence in the desert night lizard Xantusia vigilis species complex (Squamata: Xantusiidae).

    PubMed

    Leavitt, Dean H; Bezy, Robert L; Crandall, Keith A; Sites, Jack W

    2007-11-01

    The lizard genus Xantusia of southwestern North America has received recent attention in relation to delimiting species. Using more than 500 lizards from 156 localities, we further test hypothesized species boundaries and clarify phylogeographical patterns, particularly in regions of potential secondary contact. We sequenced the entire mitochondrial cytochrome b gene for every lizard in the study, plus a second mitochondrial DNA (mtDNA) region and two nuclear introns for subsets of the total sample. Phylogenetic analyses of the mtDNA recover a well-resolved, novel hypothesis for species in the Xantusia vigilis complex. The nuclear DNA (nDNA) data provide independent support for the recognition of X. arizonae, X. bezyi and X. wigginsi. Differences between the respective mtDNA and nDNA topologies result from either the effects of lineage sorting or ancient introgression. Nuclear data confirm the inference that some populations of X. vigilis in northwestern Arizona converged on rock-crevice-dwelling morphology and are not X. arizonae with an introgressed X. vigilis mtDNA genome. The historical independence of ancient cryptic lineages of Xantusia in southern California is also corroborated, though limited introgression is detected. Our proposed biogeographical scenario indicates that diversification of this group was driven by vicariance beginning in the late Miocene. Additionally, Pleistocene climatical changes influenced Xantusia distribution, and the now inhospitable Colorado Desert previously supported night lizard presence. The current taxonomy of the group likely underestimates species diversity within the group, and our results collectively show that while convergence on the rock-crevice-dwelling morphology is one hallmark of Xantusia evolution, morphological stasis is paradoxically another.

  8. Human primitive brain displays negative mitochondrial-nuclear expression correlation of respiratory genes.

    PubMed

    Barshad, Gilad; Blumberg, Amit; Cohen, Tal; Mishmar, Dan

    2018-06-14

    Oxidative phosphorylation (OXPHOS), a fundamental energy source in all human tissues, requires interactions between mitochondrial (mtDNA)- and nuclear (nDNA)-encoded protein subunits. Although such interactions are fundamental to OXPHOS, bi-genomic coregulation is poorly understood. To address this question, we analyzed ∼8500 RNA-seq experiments from 48 human body sites. Despite well-known variation in mitochondrial activity, quantity, and morphology, we found overall positive mtDNA-nDNA OXPHOS genes' co-expression across human tissues. Nevertheless, negative mtDNA-nDNA gene expression correlation was identified in the hypothalamus, basal ganglia, and amygdala (subcortical brain regions, collectively termed the "primitive" brain). Single-cell RNA-seq analysis of mouse and human brains revealed that this phenomenon is evolutionarily conserved, and both are influenced by brain cell types (involving excitatory/inhibitory neurons and nonneuronal cells) and by their spatial brain location. As the "primitive" brain is highly oxidative, we hypothesized that such negative mtDNA-nDNA co-expression likely controls for the high mtDNA transcript levels, which enforce tight OXPHOS regulation, rather than rewiring toward glycolysis. Accordingly, we found "primitive" brain-specific up-regulation of lactate dehydrogenase B ( LDHB ), which associates with high OXPHOS activity, at the expense of LDHA , which promotes glycolysis. Analyses of co-expression, DNase-seq, and ChIP-seq experiments revealed candidate RNA-binding proteins and CEBPB as the best regulatory candidates to explain these phenomena. Finally, cross-tissue expression analysis unearthed tissue-dependent splice variants and OXPHOS subunit paralogs and allowed revising the list of canonical OXPHOS transcripts. Taken together, our analysis provides a comprehensive view of mito-nuclear gene co-expression across human tissues and provides overall insights into the bi-genomic regulation of mitochondrial activities. © 2018 Barshad et al.; Published by Cold Spring Harbor Laboratory Press.

  9. The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poeschla, Eric, E-mail: poeschla.eric@mayo.edu

    Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient “central DNA flap” in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins,more » and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. - Highlights: • Two main functional models for HIV central plus strand synthesis have been proposed. • In one, a transient central DNA flap in the viral cDNA mediates HIV-1 nuclear import. • In the other, multiple kinetic consequences are emphasized. • One is defense against APOBEC3G, which deaminates single-stranded DNA. • Future questions pertain to antiviral restriction, uncoating and nuclear import.« less

  10. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    PubMed

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. Challenges of flow-cytometric estimation of nuclear genome size in orchids, a plant group with both whole-genome and progressively partial endoreplication.

    PubMed

    Trávníček, Pavel; Ponert, Jan; Urfus, Tomáš; Jersáková, Jana; Vrána, Jan; Hřibová, Eva; Doležel, Jaroslav; Suda, Jan

    2015-10-01

    Nuclear genome size is an inherited quantitative trait of eukaryotic organisms with both practical and biological consequences. A detailed analysis of major families is a promising approach to fully understand the biological meaning of the extensive variation in genome size in plants. Although Orchidaceae accounts for ∼10% of the angiosperm diversity, the knowledge of patterns and dynamics of their genome size is limited, in part due to difficulties in flow cytometric analyses. Cells in various somatic tissues of orchids undergo extensive endoreplication, either whole-genome or partial, and the G1-phase nuclei with 2C DNA amounts may be lacking, resulting in overestimated genome size values. Interpretation of DNA content histograms is particularly challenging in species with progressively partial endoreplication, in which the ratios between the positions of two neighboring DNA peaks are lower than two. In order to assess distributions of nuclear DNA amounts and identify tissue suitable for reliable estimation of nuclear DNA content, we analyzed six different tissue types in 48 orchid species belonging to all recognized subfamilies. Although traditionally used leaves may provide incorrect C-values, particularly in species with progressively partial endoreplication, young ovaries and pollinaria consistently yield 2C and 1C peaks of their G1-phase nuclei, respectively, and are, therefore, the most suitable parts for genome size studies in orchids. We also provide new DNA C-values for 22 orchid genera and 42 species. Adhering to the proposed methodology would allow for reliable genome size estimates in this largest plant family. Although our research was limited to orchids, the need to find a suitable tissue with dominant 2C peak of G1-phase nuclei applies to all endopolyploid species. © 2015 International Society for Advancement of Cytometry.

  12. Switchable DNA wire: deposition-stripping of copper nanoclusters as an "ON-OFF" nanoswitch.

    PubMed

    Zhu, Xiaoli; Liu, Siyu; Cao, Jiepei; Mao, Xiaoxia; Li, Genxi

    2016-01-19

    Today, a consensus that DNA working as a molecular wire shows promise in nanoscale electronics is reached. Considering that the "ON-OFF" switch is the basis of a logic circuit, the switch of DNA-mediated charge transport (DNA CT) should be conquered. Here, on the basis of chemical or electrochemical deposition and stripping of DNA-templated copper nanoclusters (CuNCs), we develop an "ON-OFF" nanoswitch for DNA CT. While CuNCs are deposited, the DNA CT is blocked, which can be also recovered after stripping the CuNCs. A switch cycle can be completed in a few seconds and can be repeated for many times. Moreover, by regulating the amount of reagents, deposition/stripping time, applied potential, etc., the switch is adjustable to make the wire at either an "ON-OFF" state or an intermediate state. We believe that this concept and the successful implementation will promote the practical application of DNA wire one step further.

  13. Visualization of yeast chromosomal DNA

    NASA Technical Reports Server (NTRS)

    Lubega, Seth

    1990-01-01

    The DNA molecule is the most significant life molecule since it codes the blue print for other structural and functional molecules of all living organisms. Agarose gel electrophoresis is now being widely used to separate DNA of virus, bacteria, and lower eukaryotes. The task was undertaken of reviewing the existing methods of DNA fractionation and microscopic visualization of individual chromosonal DNA molecules by gel electrophoresis as a basis for a proposed study to investigate the feasibility of separating DNA molecules in free fluids as an alternative to gel electrophoresis. Various techniques were studied. On the molecular level, agarose gel electrophoresis is being widely used to separate chromosomal DNA according to molecular weight. Carl and Olson separate and characterized the entire karyotype of a lab strain of Saccharomyces cerevisiae. Smith et al. and Schwartz and Koval independently reported the visualization of individual DNA molecules migrating through agarose gel matrix during electrophoresis. The techniques used by these researchers are being reviewed in the lab as a basis for the proposed studies.

  14. Switchable DNA wire: deposition-stripping of copper nanoclusters as an “ON-OFF” nanoswitch

    PubMed Central

    Zhu, Xiaoli; Liu, Siyu; Cao, Jiepei; Mao, Xiaoxia; Li, Genxi

    2016-01-01

    Today, a consensus that DNA working as a molecular wire shows promise in nanoscale electronics is reached. Considering that the “ON-OFF” switch is the basis of a logic circuit, the switch of DNA-mediated charge transport (DNA CT) should be conquered. Here, on the basis of chemical or electrochemical deposition and stripping of DNA-templated copper nanoclusters (CuNCs), we develop an “ON-OFF” nanoswitch for DNA CT. While CuNCs are deposited, the DNA CT is blocked, which can be also recovered after stripping the CuNCs. A switch cycle can be completed in a few seconds and can be repeated for many times. Moreover, by regulating the amount of reagents, deposition/stripping time, applied potential, etc., the switch is adjustable to make the wire at either an “ON-OFF” state or an intermediate state. We believe that this concept and the successful implementation will promote the practical application of DNA wire one step further. PMID:26781761

  15. An evaluation of long-term preservation methods for brown bear (Ursus arctos) faecal DNA samples

    USGS Publications Warehouse

    Murphy, M.A.; Waits, L.P.; Kendall, K.C.; Wasser, S.K.; Higbee, J.A.; Bogden, R.

    2002-01-01

    Relatively few large-scale faecal DNA studies have been initiated due to difficulties in amplifying low quality and quantity DNA template. To improve brown bear faecal DNA PCR amplification success rates and to determine post collection sample longevity, five preservation methods were evaluated: 90% ethanol, DETs buffer, silica-dried, oven-dried stored at room temperature, and oven-dried stored at -20??C. Preservation effectiveness was evaluated for 50 faecal samples by PCR amplification of a mitochondrial DNA (mtDNA) locus (???146 bp) and a nuclear DNA (nDNA) locus (???200 bp) at time points of one week, one month, three months and six months. Preservation method and storage time significantly impacted mtDNA and nDNA amplification success rates. For mtDNA, all preservation methods had ??? 75% success at one week, but storage time had a significant impact on the effectiveness of the silica preservation method. Ethanol preserved samples had the highest success rates for both mtDNA (86.5%) and nDNA (84%). Nuclear DNA amplification success rates ranged from 26-88%, and storage time had a significant impact on all methods but ethanol. Preservation method and storage time should be important considerations for researchers planning projects utilizing faecal DNA. We recommend preservation of faecal samples in 90% ethanol when feasible, although when collecting in remote field conditions or for both DNA and hormone assays a dry collection method may be advantageous.

  16. Measuring ribonucleotide incorporation into DNA in vitro and in vivo.

    PubMed

    Clausen, Anders R; Williams, Jessica S; Kunkel, Thomas A

    2015-01-01

    Ribonucleotides are incorporated into genomes by DNA polymerases, they can be removed, and if not removed, they can have deleterious and beneficial consequences. Here, we describe an assay to quantify stable ribonucleotide incorporation by DNA polymerases in vitro, and an assay to probe for ribonucleotides in each of the two DNA strands of the yeast nuclear genome.

  17. Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers.

    PubMed

    Kam, Winnie W Y; Lake, Vanessa; Banos, Connie; Davies, Justin; Banati, Richard

    2013-05-30

    Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization.

  18. Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences

    USGS Publications Warehouse

    Redberg, G.L.; Hibbett, D.S.; Ammirati, J.F.; Rodriguez, R.J.

    2003-01-01

    The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

  19. Arranging eukaryotic nuclear DNA polymerases for replication: Specific interactions with accessory proteins arrange Pols α, δ, and ϵ in the replisome for leading-strand and lagging-strand DNA replication.

    PubMed

    Kunkel, Thomas A; Burgers, Peter M J

    2017-08-01

    Biochemical and cryo-electron microscopy studies have just been published revealing interactions among proteins of the yeast replisome that are important for highly coordinated synthesis of the two DNA strands of the nuclear genome. These studies reveal key interactions important for arranging DNA polymerases α, δ, and ϵ for leading and lagging strand replication. The CMG (Mcm2-7, Cdc45, GINS) helicase is central to this interaction network. These are but the latest examples of elegant studies performed in the recent past that lead to a much better understanding of how the eukaryotic replication fork achieves efficient DNA replication that is accurate enough to prevent diseases yet allows evolution. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  20. 32 CFR 291.5 - Responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.5 Responsibilities. (a) The Director, DNA, as appellate authority, is responsible for reviewing and making the final... requests and has sole responsibility for withholding that information. (c) The DNA FOIA Officer, who is...

  1. 32 CFR 291.5 - Responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.5 Responsibilities. (a) The Director, DNA, as appellate authority, is responsible for reviewing and making the final... requests and has sole responsibility for withholding that information. (c) The DNA FOIA Officer, who is...

  2. 32 CFR 291.5 - Responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.5 Responsibilities. (a) The Director, DNA, as appellate authority, is responsible for reviewing and making the final... requests and has sole responsibility for withholding that information. (c) The DNA FOIA Officer, who is...

  3. 32 CFR 291.5 - Responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.5 Responsibilities. (a) The Director, DNA, as appellate authority, is responsible for reviewing and making the final... requests and has sole responsibility for withholding that information. (c) The DNA FOIA Officer, who is...

  4. Characterization of a linear DNA plasmid from the filamentous fungal plant pathogen Glomerella musae [Anamorph: Colletotrichum musae (Berk. and Curt.) arx.

    USGS Publications Warehouse

    Freeman, S.; Redman, R.S.; Grantham, G.; Rodriguez, R.J.

    1997-01-01

    A 7.4-kilobase (kb) DNA plasmid was isolated from Glomerella musae isolate 927 and designated pGML1. Exonuclease treatments indicated that pGML1 was a linear plasmid with blocked 5' termini. Cell-fractionation experiments combined with sequence-specific PCR amplification revealed that pGML1 resided in mitochondria. The pGML1 plasmid hybridized to cesium chloride-fractionated nuclear DNA but not to A + T-rich mitochondrial DNA. An internal 7.0-kb section of pGML1 was cloned and did not hybridize with either nuclear or mitochondrial DNA from G. musae. Sequence analysis revealed identical terminal inverted repeats (TIR) of 520 bp at the ends of the cloned 7.0-kb section of pGML1. The occurrence of pGML1 did not correspond with the pathogenicity of G. musae on banana fruit. Four additional isolates of G. musae possessed extrachromosomal DNA fragments similar in size and sequence to pGML1.

  5. Mycobacterium tuberculosis promotes genomic instability in macrophages

    PubMed Central

    Castro-Garza, Jorge; Luévano-Martínez, Miriam Lorena; Villarreal-Treviño, Licet; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha Imelda; García-Vielma, Catalina; González-Hernández, Silvia; Cortés-Gutiérrez, Elva Irene

    2018-01-01

    BACKGROUND Mycobacterium tuberculosis is an intracellular pathogen, which may either block cellular defensive mechanisms and survive inside the host cell or induce cell death. Several studies are still exploring the mechanisms involved in these processes. OBJECTIVES To evaluate the genomic instability of M. tuberculosis-infected macrophages and compare it with that of uninfected macrophages. METHODS We analysed the possible variations in the genomic instability of Mycobacterium-infected macrophages using the DNA breakage detection fluorescence in situ hybridisation (DBD-FISH) technique with a whole human genome DNA probe. FINDINGS Quantitative image analyses showed a significant increase in DNA damage in infected macrophages as compared with uninfected cells. DNA breaks were localised in nuclear membrane blebs, as confirmed with DNA fragmentation assay. Furthermore, a significant increase in micronuclei and nuclear abnormalities were observed in infected macrophages versus uninfected cells. MAIN CONCLUSIONS Genomic instability occurs during mycobacterial infection and these data may be seminal for future research on host cell DNA damage in M. tuberculosis infection. PMID:29412354

  6. Complete mtDNA sequencing reveals mutations m.9185T>C and m.13513G>A in three patients with Leigh syndrome.

    PubMed

    Pelnena, Dita; Burnyte, Birute; Jankevics, Eriks; Lace, Baiba; Dagyte, Evelina; Grigalioniene, Kristina; Utkus, Algirdas; Krumina, Zita; Rozentale, Jolanta; Adomaitiene, Irina; Stavusis, Janis; Pliss, Liana; Inashkina, Inna

    2017-12-12

    The most common mitochondrial disorder in children is Leigh syndrome, which is a progressive and genetically heterogeneous neurodegenerative disorder caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the present study, a novel and robust method of complete mtDNA sequencing, which allows amplification of the whole mitochondrial genome, was tested. Complete mtDNA sequencing was performed in a cohort of patients with suspected mitochondrial mutations. Patients from Latvia and Lithuania (n = 92 and n = 57, respectively) referred by clinical geneticists were included. The de novo point mutations m.9185T>C and m.13513G>A, respectively, were detected in two patients with lactic acidosis and neurodegenerative lesions. In one patient with neurodegenerative lesions, the mutation m.9185T>C was identified. These mutations are associated with Leigh syndrome. The present data suggest that full-length mtDNA sequencing is recommended as a supplement to nuclear gene testing and enzymatic assays to enhance mitochondrial disease diagnostics.

  7. Functional transferred DNA within extracellular vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Jin; Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province; Wu, Gengze

    Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmicmore » macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.« less

  8. 75 FR 53352 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... Guide, DG-1247, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' FOR FURTHER...'s ``Regulatory Guide'' series. This series was developed to describe and make available to the.... The draft regulatory guide (DG), entitled, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear...

  9. In vitro anticancer activities of Schiff base and its lanthanum complex

    NASA Astrophysics Data System (ADS)

    Neelima; Poonia, Kavita; Siddiqui, Sahabjada; Arshad, Md; Kumar, Dinesh

    2016-02-01

    Schiff base metal complexes are well-known to intercalate DNA. The La(III) complexes have been synthesized such that they hinder with the role of the topoisomerases, which control the topology of DNA during the cell-division cycle. Although several promising chemotherapeutics have been developed, on the basis of Schiff base metal complex DNA intercalating system they did not proceed past clinical trials due to their dose-limiting toxicity. Herein, we discuss an alternative compound, the La(III) complex, [La(L1)2Cl3]·7H2O based on a Schiff base ligand 2,3-dihydro-1H-indolo-[2,3-b]-phenazin-4(5H)-ylidene)benzothiazole-2-amine (L1), and report in vitro cell studies. Results of antitumor activity using cell viability assay, reactive oxygen species (ROS) generation and nuclear condensation in PC-3 (Human, prostate carcinoma) cells show that the metal complex is more potent than ligand. La(III) complexes have been synthesized by reaction of lanthanum(III) salt in 1:2 M ratio with ligands L1 and 3-(ethoxymethylene)-2,3-dihydro-1H-indolo[2,3-b]-phenazin-4(5H)-ylidene)benzathiazole-2-amine (L2) in methanol. The ligands and their La(III) complexes were characterized by molar conductance, magnetic susceptibility, elemental analyses, FT-IR, UV-Vis, 1H/13C NMR, thermogravimetric, XRD, and SEM analysis.

  10. DNA strand breaks and TDP-43 mislocation are absent in the murine hSOD1G93A model of amyotrophic lateral sclerosis in vivo and in vitro

    PubMed Central

    Witte, Otto W.; Grosskreutz, Julian

    2017-01-01

    Mutations in the human Cu/Zn superoxide dismutase type-1 (hSOD1) gene are common in familial amyotrophic lateral sclerosis (fALS). The pathophysiology has been linked to, e.g., organelle dysfunction, RNA metabolism and oxidative DNA damage conferred by SOD1 malfunction. However, apart from metabolically evoked DNA oxidation, it is unclear whether severe genotoxicity including DNA single-strand breaks (SSBs) and double-strand breaks (DSBs), originates from loss of function of nuclear SOD1 enzyme. Factors that endogenously interfere with DNA integrity and repair complexes in hSOD1-mediated fALS remain similarly unexplored. In this regard, uncontrolled activation of transposable elements (TEs) might contribute to DNA disintegration and neurodegeneration. The aim of this study was to elucidate the role of the fALS-causing hSOD1G93A mutation in the generation of severe DNA damage beyond well-characterized DNA base oxidation. Therefore, DNA damage was assessed in spinal tissue of hSOD1G93A-overexpressing mice and in corresponding motor neuron-enriched cell cultures in vitro. Overexpression of the hSOD1G93A locus did not change the threshold for severe DNA damage per se. We found that levels of SSBs and DSBs were unaltered between hSOD1G93A and control conditions, as demonstrated in post-mitotic motor neurons and in astrocytes susceptible to replication-dependent DNA breakage. Analogously, parameters indicative of DNA damage response processes were not activated in vivo or in vitro. Evidence for a mutation-related elevation in TE activation was not detected, in accordance with the absence of TAR DNA binding protein 43 (TDP-43) proteinopathy in terms of cytoplasmic mislocation or nuclear loss, as nuclear TDP-43 is supposed to silence TEs physiologically. Conclusively, the superoxide dismutase function of SOD1 might not be required to preserve DNA integrity in motor neurons, at least when the function of TDP-43 is unaltered. Our data establish a foundation for further investigations addressing functional TDP-43 interaction with ALS-relevant genetic mutations. PMID:28832631

  11. FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway

    PubMed Central

    Ali, Abdullah Mahmood; Pradhan, Arun; Singh, Thiyam Ramsingh; Du, Changhu; Li, Jie; Wahengbam, Kebola; Grassman, Elke; Auerbach, Arleen D.; Pang, Qishen

    2012-01-01

    Fanconi anemia (FA) nuclear core complex is a multiprotein complex required for the functional integrity of the FA-BRCA pathway regulating DNA repair. This pathway is inactivated in FA, a devastating genetic disease, which leads to hematologic defects and cancer in patients. Here we report the isolation and characterization of a novel 20-kDa FANCA-associated protein (FAAP20). We show that FAAP20 is an integral component of the FA nuclear core complex. We identify a region on FANCA that physically interacts with FAAP20, and show that FANCA regulates stability of this protein. FAAP20 contains a conserved ubiquitin-binding zinc-finger domain (UBZ), and binds K-63–linked ubiquitin chains in vitro. The FAAP20-UBZ domain is not required for interaction with FANCA, but is required for DNA-damage–induced chromatin loading of FANCA and the functional integrity of the FA pathway. These findings reveal critical roles for FAAP20 in the FA-BRCA pathway of DNA damage repair and genome maintenance. PMID:22343915

  12. Cell permeability and nuclear DNA staining by propidium iodide in basidiomycetous yeasts.

    PubMed

    Zhang, Ning; Fan, Yuxuan; Li, Chen; Wang, Qiming; Leksawasdi, Noppol; Li, Fuli; Wang, Shi'an

    2018-05-01

    Non-model yeasts within basidiomycetes have considerable importance in agriculture, industry, and environment, but they are not as well studied as ascomycetous yeasts. Serving as a basic technique, nuclear DNA staining is widely used in physiology, ecology, cell biology, and genetics. However, it is unclear whether the classical nuclear DNA staining method for ascomycetous yeasts is applicable to basidiomycetous yeasts. In this study, 5 yeasts ineffectively stained by the classical propidium iodide (PI) staining method were identified from 23 representative basidiomycetous yeasts. Pretreatment of cells using dimethyl sulfoxide (DMSO) or snailase markedly improved cell penetration to PI and thus enabled DNA content determination by flow cytometry on the recalcitrant yeasts. The pretreatments are efficient, simple, and fast, avoiding tedious mutagenesis or genetic engineering used in previous reports. The heterogeneity of cell penetration to PI among basidiomycetous yeasts was attributed to the discrepancy in cell wall polysaccharides instead of capsule or plasma membrane. This study also indicated that care must be taken in attributing PI-negative staining as viable cells when studying non-model microorganisms.

  13. Fanconi anemia FANCD2 and FANCI proteins regulate the nuclear dynamics of splicing factors.

    PubMed

    Moriel-Carretero, María; Ovejero, Sara; Gérus-Durand, Marie; Vryzas, Dimos; Constantinou, Angelos

    2017-12-04

    Proteins disabled in the cancer-prone disorder Fanconi anemia (FA) ensure the maintenance of chromosomal stability during DNA replication. FA proteins regulate replication dynamics, coordinate replication-coupled repair of interstrand DNA cross-links, and mitigate conflicts between replication and transcription. Here we show that FANCI and FANCD2 associate with splicing factor 3B1 (SF3B1), a key spliceosomal protein of the U2 small nuclear ribonucleoprotein (U2 snRNP). FANCI is in close proximity to SF3B1 in the nucleoplasm of interphase and mitotic cells. Furthermore, we find that DNA replication stress induces the release of SF3B1 from nuclear speckles in a manner that depends on FANCI and on the activity of the checkpoint kinase ATR. In chromatin, both FANCD2 and FANCI associate with SF3B1, prevent accumulation of postcatalytic intron lariats, and contribute to the timely eviction of splicing factors. We propose that FANCD2 and FANCI contribute to the organization of functional domains in chromatin, ensuring the coordination of DNA replication and cotranscriptional processes. © 2017 Moriel-Carretero et al.

  14. Intranuclear DNA density affects chromosome condensation in metazoans

    PubMed Central

    Hara, Yuki; Iwabuchi, Mari; Ohsumi, Keita; Kimura, Akatsuki

    2013-01-01

    Chromosome condensation is critical for accurate inheritance of genetic information. The degree of condensation, which is reflected in the size of the condensed chromosomes during mitosis, is not constant. It is differentially regulated in embryonic and somatic cells. In addition to the developmentally programmed regulation of chromosome condensation, there may be adaptive regulation based on spatial parameters such as genomic length or cell size. We propose that chromosome condensation is affected by a spatial parameter called the chromosome amount per nuclear space, or “intranuclear DNA density.” Using Caenorhabditis elegans embryos, we show that condensed chromosome sizes vary during early embryogenesis. Of importance, changing DNA content to haploid or polyploid changes the condensed chromosome size, even at the same developmental stage. Condensed chromosome size correlates with interphase nuclear size. Finally, a reduction in nuclear size in a cell-free system from Xenopus laevis eggs resulted in reduced condensed chromosome sizes. These data support the hypothesis that intranuclear DNA density regulates chromosome condensation. This suggests an adaptive mode of chromosome condensation regulation in metazoans. PMID:23783035

  15. Pre-neurodegeneration of mitral cells in the pcd mutant mouse is associated with DNA damage, transcriptional repression, and reorganization of nuclear speckles and Cajal bodies.

    PubMed

    Valero, Jorge; Berciano, Maria T; Weruaga, Eduardo; Lafarga, Miguel; Alonso, José R

    2006-11-01

    DNA damage and impairment of its repair underlie several neurodegenerative diseases. The Purkinje cell degeneration (pcd) mutation causes the loss of Nna1 expression and is associated with a selective and progressive degeneration of specific neuronal populations, including mitral cells in the olfactory bulb. Using an in situ transcription assay, molecular markers for both nuclear compartments and components of the DNA damage/repair pathway, and ultrastructural analysis, here we demonstrate that the pcd mutation induces the formation of DNA damage/repair foci in mitral cells. Furthermore, this effect is associated with transcriptional inhibition, heterochromatinization, nucleolar segregation and the reorganization of nuclear speckles of splicing factors and Cajal bodies. The most significant cytoplasmic alteration observed was a partial replacement of rough endoplasmic reticulum cisternae by a larger amount of free ribosomes, while other organelles were structurally preserved. The tools employed in this work may be of use for the early detection of predegenerative processes in neurodegenerative disorders and for validating rescue strategies.

  16. Cyclosporin A and FK-506 both affect DNA binding of regulatory nuclear proteins to the human interleukin-2 promoter.

    PubMed

    Baumann, G; Geisse, S; Sullivan, M

    1991-03-01

    The structurally unrelated immunosuppressive drugs cyclosporin A (Sandimmun) and FK-506 both interfere with the process of T-cell proliferation by blocking the transcription of the T-cell growth factor interleukin-2 (IL-2). Here we demonstrate that the transcriptional activation of this gene requires the binding of regulatory nuclear proteins to a promoter element with sequence similarity to the consensus binding site for NF-kappa B-related transcription factors. We present evidence that the binding by regulatory nuclear proteins to the kappa B element of the IL-2 promoter is affected negatively by cyclosporin A and FK-506 at concentrations paralleling their immunosuppressive activity in vivo. The decrease in DNA-protein complex formation induced by the immunosuppressive drugs correlates with a decrease in IL-2 production. FK-506 is 10 to 100 times more potent than cyclosporin A in its ability to inhibit sequence-specific DNA binding and IL-2 production. Our findings suggest that the actions of both drugs converge at the level of DNA-protein interaction.

  17. Cell-surface glycosaminoglycans inhibit intranuclear uptake but promote post-nuclear processes of polyamidoamine dendrimer-pDNA transfection.

    PubMed

    Ziraksaz, Zarrintaj; Nomani, Alireza; Ruponen, Marika; Soleimani, Masoud; Tabbakhian, Majid; Haririan, Ismaeil

    2013-01-23

    Interaction of cell-surface glycosaminoglycans (GAGs) with non-viral vectors seems to be an important factor which modifies the intracellular destination of the gene complexes. Intracellular kinetics of polyamidoamine (PAMAM) dendrimer as a non-viral vector in cellular uptake, intranuclear delivery and transgene expression of plasmid DNA with regard to the cell-surface GAGs has not been investigated until now. The physicochemical properties of the PAMAM-pDNA complexes were characterized by photon correlation spectroscopy, atomic force microscopy, zeta measurement and agarose gel electrophoresis. The transfection efficiency and toxicity of the complexes at different nitrogen to phosphate (N:P) ratios were determined using various in vitro cell models such as human embryonic kidney cells, chinese hamster ovary cells and its mutants lacking cell-surface GAGs or heparan sulphate proteoglycans (HSPGs). Cellular uptake, nuclear uptake and transfection efficiency of the complexes were determined using flow cytometry and optimized cell-nuclei isolation with quantitative real-time PCR and luciferase assay. Physicochemical studies showed that PAMAM dendrimer binds pDNA efficiently, forms small complexes with high positive zeta potential and transfects cells properly at N:P ratios around 5 and higher. The cytotoxicity could be a problem at N:Ps higher than 10. GAGs elimination caused nearly one order of magnitude higher pDNA nuclear uptake and more than 2.6-fold higher transfection efficiency than CHO parent cells. However, neither AUC of nuclear uptake, nor AUC of transfection affected significantly by only cell-surface HSPGs elimination and interesting data related to the effect of GAGs on intranuclear pDNA using PAMAM as delivery vector have been reported in this study. Presented data shows that the rate-limiting step of PAMAM-pDNA complexes transfection is located after delivery to the cell nucleus and GAGs are regarded as an inhibitor of the intranuclear delivery step, while slightly promotes transgene expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Opposing effects of pericentrin and microcephalin on the pericentriolar material regulate CHK1 activation in the DNA damage response.

    PubMed

    Antonczak, A K; Mullee, L I; Wang, Y; Comartin, D; Inoue, T; Pelletier, L; Morrison, C G

    2016-04-14

    Genotoxic stresses lead to centrosome amplification, a frequently-observed feature in cancer that may contribute to genome instability and to tumour cell invasion. Here we have explored how the centrosome controls DNA damage responses. For most of the cell cycle, centrosomes consist of two centrioles embedded in the proteinaceous pericentriolar material (PCM). Recent data indicate that the PCM is not an amorphous assembly of proteins, but actually a highly organised scaffold around the centrioles. The large coiled-coil protein, pericentrin, participates in PCM assembly and has been implicated in the control of DNA damage responses (DDRs) through its interactions with checkpoint kinase 1 (CHK1) and microcephalin (MCPH1). CHK1 is required for DNA damage-induced centrosome amplification, whereas MCPH1 deficiency greatly increases the amplification seen after DNA damage. We found that the PCM showed a marked expansion in volume and a noticeable change in higher-order organisation after ionising radiation treatment. PCM expansion was dependent on CHK1 kinase activity and was potentiated by MCPH1 deficiency. Furthermore, pericentrin deficiency or mutation of a separase cleavage site blocked DNA damage-induced PCM expansion. The extent of nuclear CHK1 activation after DNA damage reflected the level of PCM expansion, with a reduction in pericentrin-deficient or separase cleavage site mutant-expressing cells, and an increase in MCPH1-deficient cells that was suppressed by the loss of pericentrin. Deletion of the nuclear export signal of CHK1 led to its hyperphosphorylation after irradiation and reduced centrosome amplification. Deletion of the nuclear localisation signal led to low CHK1 activation and low centrosome amplification. From these data, we propose a feedback loop from the PCM to the nuclear DDR in which CHK1 regulates pericentrin-dependent PCM expansion to control its own activation.

  19. PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Knowlton, Nancy

    2012-01-01

    Background Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity. Methodology/Principal Findings Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes. Conclusions/Significance The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets for metazoan metagenetic analyses, are discussed. PMID:23049971

  20. Transcription factor FoxA (HNF3) on a nucleosome at an enhancer complex in liver chromatin.

    PubMed

    Chaya, D; Hayamizu, T; Bustin, M; Zaret, K S

    2001-11-30

    Nucleosome-like particles and acetylated histones occur near active promoters and enhancers, and certain transcription factors can recognize their target sites on the surface of a nucleosome in vitro; yet it has been unclear whether transcription factors can occupy target sites on nucleosomes in native chromatin. We developed a method for sequential chromatin immunoprecipitation of distinct nuclear proteins that are simultaneously cross-linked to nucleosome-sized genomic DNA segments. We find that core histone H2A co-occupies, along with the FoxA (hepatocyte nuclear factor-3) transcription factor, DNA for the albumin transcriptional enhancer in native liver chromatin, where the enhancer is active. Because histone H2A on nuclear DNA is only known to exist in nucleosomes, we conclude that transcription factors can form a stable complex on nucleosomes at an active enhancer element in vivo.

  1. Molecular phylogenetics of subfamily Ornithogaloideae (Hyacinthaceae) based on nuclear and plastid DNA regions, including a new taxonomic arrangement

    PubMed Central

    Martínez-Azorín, Mario; Crespo, Manuel B.; Juan, Ana; Fay, Michael F.

    2011-01-01

    Background and Aims The taxonomic arrangement within subfamily Ornithogaloideae (Hyacinthaceae) has been a matter of controversy in recent decades: several new taxonomic treatments have been proposed, based exclusively on plastid DNA sequences, and these have resulted in classifications which are to a great extent contradictory. Some authors have recognized only a single genus Ornithogalum for the whole subfamily, including 250–300 species of variable morphology, whereas others have recognized many genera. In the latter case, the genera are inevitably much smaller and they are better defined morphologically. However, some are not monophyletic as circumscribed. Methods Phylogenetic analyses of Ornithogaloideae were based on nucleotide sequences of four plastid regions (trnL intron, trnL-F spacer, rbcL and matK) and a nuclear region (ITS). Eighty species covering all relevant taxonomic groups previously recognized in the subfamily were sampled. Parsimony and Bayesian analyses were performed. The molecular data were compared with a matrix of 34 morphological characters. Key Results Combinations of plastid and nuclear data yielded phylogenetic trees which are better resolved than those obtained with any plastid region alone or plastid regions in combination. Three main clades are found, corresponding to the previously recognized tribes Albuceae, Dipcadieae and Ornithogaleae. In these, up to 19 clades are described which are definable by morphology and biogeography. These mostly correspond to previously described taxa, though some need recircumscription. Morphological characters are assessed for their diagnostic value for taxonomy in the subfamily. Conclusions On the basis of the phylogenetic analyses, 19 monophyletic genera are accepted within Ornithogaloideae: Albuca, Avonsera, Battandiera, Cathissa, Coilonox, Dipcadi, Eliokarmos, Elsiea, Ethesia, Galtonia, Honorius, Loncomelos, Melomphis, Neopatersonia, Nicipe, Ornithogalum, Pseudogaltonia, Stellarioides and Trimelopter. Each of these has a particular syndrome of morphological characters. As a result, 105 new combinations are made and two new names are proposed to accommodate the taxa studied in the new arrangement. A short morphological diagnosis, synonymy, details of distribution and an identification key are presented. PMID:21163815

  2. The persistence of human DNA in soil following surface decomposition.

    PubMed

    Emmons, Alexandra L; DeBruyn, Jennifer M; Mundorff, Amy Z; Cobaugh, Kelly L; Cabana, Graciela S

    2017-09-01

    Though recent decades have seen a marked increase in research concerning the impact of human decomposition on the grave soil environment, the fate of human DNA in grave soil has been relatively understudied. With the purpose of supplementing the growing body of literature in forensic soil taphonomy, this study assessed the relative persistence of human DNA in soil over the course of decomposition. Endpoint PCR was used to assess the presence or absence of human nuclear and mitochondrial DNA, while qPCR was used to evaluate the quantity of human DNA recovered from the soil beneath four cadavers at the University of Tennessee's Anthropology Research Facility (ARF). Human nuclear DNA from the soil was largely unrecoverable, while human mitochondrial DNA was detectable in the soil throughout all decomposition stages. Mitochondrial DNA copy abundances were not significantly different between decomposition stages and were not significantly correlated to soil edaphic parameters tested. There was, however, a significant positive correlation between mitochondrial DNA copy abundances and the human associated bacteria, Bacteroides, as estimated by 16S rRNA gene abundances. These results show that human mitochondrial DNA can persist in grave soil and be consistently detected throughout decomposition. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  3. Oxidative DNA Damage Bypass in Arabidopsis thaliana Requires DNA Polymerase λ and Proliferating Cell Nuclear Antigen 2[W

    PubMed Central

    Amoroso, Alessandra; Concia, Lorenzo; Maggio, Caterina; Raynaud, Cécile; Bergounioux, Catherine; Crespan, Emmanuele; Cella, Rino; Maga, Giovanni

    2011-01-01

    The oxidized base 7,8-oxoguanine (8-oxo-G) is the most common DNA lesion generated by reactive oxygen species. This lesion is highly mutagenic due to the frequent misincorporation of A opposite 8-oxo-G during DNA replication. In mammalian cells, the DNA polymerase (pol) family X enzyme DNA pol λ catalyzes the correct incorporation of C opposite 8-oxo-G, together with the auxiliary factor proliferating cell nuclear antigen (PCNA). Here, we show that Arabidopsis thaliana DNA pol λ, the only member of the X family in plants, is as efficient in performing error-free translesion synthesis past 8-oxo-G as its mammalian homolog. Arabidopsis, in contrast with animal cells, possesses two genes for PCNA. Using in vitro and in vivo approaches, we observed that PCNA2, but not PCNA1, physically interacts with DNA pol λ, enhancing its fidelity and efficiency in translesion synthesis. The levels of DNA pol λ in transgenic plantlets characterized by overexpression or silencing of Arabidopsis POLL correlate with the ability of cell extracts to perform error-free translesion synthesis. The important role of DNA pol λ is corroborated by the observation that the promoter of POLL is activated by UV and that both overexpressing and silenced plants show altered growth phenotypes. PMID:21325140

  4. DNA methylation and genome rearrangement characteristics of phase change in cultured shoots of Sequoia sempervirens.

    PubMed

    Huang, Li-Chun; Hsiao, Lin-June; Pu, Szu-Yuan; Kuo, Ching-I; Huang, Bau-Lian; Tseng, Tsung-Che; Huang, Hao-Jen; Chen, Yu-Ting

    2012-06-01

    Epigenetic machinery regulates the expression of individual genes and plays a crucial role in globally shaping and maintaining developmental patterning. We studied the extent of DNA methylation in the nucleus, mitochondrion and chloroplast in cultured Sequoia sempervirens (coast redwood) adult, juvenile and rejuvenated shoots by measuring the ratio of methylcytosine to total cytosine using high-performance liquid chromatography (HPLC). We also analyzed nuclear DNA (nuDNA) polymorphisms of different shoot types by methylation-sensitive amplified fragment length polymorphism (MSAP) and Southern blot analysis. The extent of nuDNA methylation was greater in the adult vegetative than juvenile and rejuvenated shoots (8% vs 6.5-7.5%). In contrast, the proportion of methylcytosine was higher in mitochondrial DNA (mDNA) of juvenile and rejuvenated shoots than adult shoots (6.6% vs 7.8-8.2%). MSAP and Southern blot analyses identified three MSAP fragments which could be applied as phase-specific molecular markers. We also found nuclear genome and mtDNA rearrangement may be as important as DNA methylation status during the phase change. Our findings strongly suggest that DNA methylation and genome rearrangement may affect the dynamic tissue- and cell type-specific changes that determine the developmental phase of S. sempervirens shoots. Copyright © Physiologia Plantarum 2012.

  5. In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe.

    PubMed

    Zhang, Jing; Liang, Lijia; Guan, Xin; Deng, Rong; Qu, Huixin; Huang, Dianshuai; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-01

    A surface-enhanced Raman scattering (SERS) method for in situ detection and analysis of the intranuclear biomolecular information of a cell has been developed based on a small, biocompatible, nuclear-targeting alkyne-tagged deoxyribonucleic acid (DNA) probe (5-ethynyl-2'-deoxyuridine, EDU) that can specially accumulate in the cell nucleus during DNA replications to precisely locate the nuclear region without disturbance in cell biological activities and functions. Since the specific alkyne group shows a Raman peak in the Raman-silent region of cells, it is an interior label to visualize the nuclear location synchronously in real time when measuring the SERS spectra of a cell. Because no fluorescent-labeled dyes were used for locating cell nuclei, this method is simple, nondestructive, non- photobleaching, and valuable for the in situ exploration of vital physiological processes with DNA participation in cell organelles. Graphical abstract A universal strategy was developed to accurately locate the nuclear region and obtain precise molecular information of cell nuclei by SERS.

  6. IN SITU DEMONSTRATION OF DNA HYBRIDIZING WITH CHROMOSOMAL AND NUCLEAR SAP RNA IN CHIRONOMUS TENTANS

    PubMed Central

    Lambert, B.; Wieslander, L.; Daneholt, B.; Egyházi, E.; Ringborg, U.

    1972-01-01

    Cytological hybridization combined with microdissection of Chironomus tentans salivary gland cells was used to locate DNA complementary to newly synthesized RNA from chromosomes and nuclear sap and from a single chromosomal puff, the Balbiani ring 2 (BR 2). Salivary glands were incubated with tritiated nucleosides. The labeled RNA was extracted from microdissected nuclei and hybridized to denatured squash preparations of salivary gland cells under conditions which primarily allow repeated sequences to interact. The bound RNA, resistant to ribonuclease treatment, was detected radioautographically. It was found that BR 2 RNA hybridizes specifically with the BR 2 region of chromosome IV. Nuclear sap RNA was fractionated into high and low molecular-weight RNA; the former hybridizes with the BR 2 region of chromosome IV, the latter in a diffuse distribution over the whole chromosome set. RNA from chromosome I hybridizes diffusely with all chromosomes. Nucleolar RNA hybridizes specifically with the nucleolar organizers, contained in chromosomes II and III. It is concluded that the BR 2 region of chromosome IV contains repeated DNA sequences and that nuclear sap contains BR 2 RNA. PMID:5025107

  7. Nuclear RNA quantification in protoplast cell-cycle phases.

    PubMed

    Bergounioux, C; Perennes, C; Brown, S C; Gadal, P

    1988-01-01

    Using acridine orange staining and flow cytometry the DNA and RNA levels (arbitrary units) of individual cells may be established. Here, this method has been applied to nuclei isolated from plant protoplasts during culture. The specificity of the technique has been validated for such plant material; ribonuclease markedly reduced nuclear staining without modifying the DNA histogram; ribonuclease inhibitor prevented the action of released cell nucleases; and protoplasts cultivated with actinomycin D did not synthesize RNA. First RNA synthesis was evident 18 h after Petunia hybrida protoplasts had been put into culture. An increase of RNA above a critical level was required for cells to be able to initiate DNA replication from G1, termed G1B. G2 nuclei had an RNA:DNA ratio similar to that of G1 nuclei.

  8. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenicmore » mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.« less

  9. RNA Polymerase Collision versus DNA Structural Distortion: Twists and Turns Can Cause Break Failure

    PubMed Central

    Pannunzio, Nicholas R.; Lieber, Michael R.

    2016-01-01

    Summary The twisting of DNA due to the movement of RNA polymerases is the basis of numerous classic experiments in molecular biology. Recent mouse genetic models indicate that chromosomal breakage is common at sites of transcriptional turbulence. Two key studies on this point mapped breakpoints to sites of either convergent or divergent transcription, but arrived at different conclusions as to which is more detrimental and why. The issue turns on whether DNA strand separation is the basis for the chromosomal instability or collision of RNA polymerases? PMID:27153532

  10. An open reading frame in intron seven of the sea urchin DNA-methyltransferase gene codes for a functional AP1 endonuclease.

    PubMed

    Cioffi, Anna Valentina; Ferrara, Diana; Cubellis, Maria Vittoria; Aniello, Francesco; Corrado, Marcella; Liguori, Francesca; Amoroso, Alessandro; Fucci, Laura; Branno, Margherita

    2002-08-01

    Analysis of the genome structure of the Paracentrotus lividus (sea urchin) DNA methyltransferase (DNA MTase) gene showed the presence of an open reading frame, named METEX, in intron 7 of the gene. METEX expression is developmentally regulated, showing no correlation with DNA MTase expression. In fact, DNA MTase transcripts are present at high concentrations in the early developmental stages, while METEX is expressed at late stages of development. Two METEX cDNA clones (Met1 and Met2) that are different in the 3' end have been isolated in a cDNA library screening. The putative translated protein from Met2 cDNA clone showed similarity with Escherichia coli endonuclease III on the basis of sequence and predictive three-dimensional structure. The protein, overexpressed in E. coli and purified, had functional properties similar to the endonuclease specific for apurinic/apyrimidinic (AP) sites on the basis of the lyase activity. Therefore the open reading frame, present in intron 7 of the P. lividus DNA MTase gene, codes for a functional AP endonuclease designated SuAP1.

  11. Nuclear and mitochondrial DNA in blastocoele fluid and embryo culture medium: evidence and potential clinical use.

    PubMed

    Hammond, Elizabeth R; Shelling, Andrew N; Cree, Lynsey M

    2016-08-01

    The ability to screen embryos for aneuploidy or inherited disorders in a minimally invasive manner may represent a major advancement for the future of embryo viability assessment. Recent studies have demonstrated that both blastocoele fluid and embryo culture medium contain genetic material, which can be isolated and subjected to downstream genetic analysis. The blastocoele fluid may represent an alternative source of nuclear DNA for aneuploidy testing, although the degree to which the isolated genetic material is solely representative of the developing embryo is currently unclear. In addition to nuclear DNA, mitochondrial DNA (mtDNA) can be detected in the embryo culture medium. Currently, the origin of this nuclear and mtDNA has not been fully evaluated and there are several potential sources of contamination that may contribute to the genetic material detected in the culture medium. There is however evidence that the mtDNA content of the culture medium is related to embryo fragmentation levels and its presence is predictive of blastulation, indicating that embryo development may influence the levels of genetic material detected. If the levels of genetic material are strongly related to aspects of embryo quality, then this may be a novel biomarker of embryo viability. If the genetic material does have an embryo origin, the mechanisms by which DNA may be released into the blastocoele fluid and embryo culture medium are unknown, although apoptosis may play a role. While the presence of this genetic material is an exciting discovery, the DNA in the blastocoele fluid and embryo culture medium appears to be of low yield and integrity, which makes it challenging to study. Further research aimed at assessing the methodologies used for both isolating and analysing this genetic material, as well as tracing its origin, are needed in order to evaluate its potential for clinical use. Should such methodologies prove to be routinely successful and the DNA recovered demonstrated to be embryonic in origin, then they may be used in a minimally invasive and less technical methodology for genetic analysis and embryo viability assessment than those currently available. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Micronuclei and nuclear anomalies in Mexico's indigenous population.

    PubMed

    Lazalde-Ramos, Blanca Patricia; Zamora-Pérez, Ana Lourdes; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Zúñiga-González, Guillermo Moisés

    2017-01-01

    To determine the number of micronuclei and nuclear anomalies in Mexico's indigenous population. One hundred twenty indigenous individuals were evaluated, including thirty from the ethnicities Cora, Huichol, Tarahumara and Tepehuano. The number of micronuclei (MN) and any nuclear abnormality (NA) in oral mucosa cells, including cells with nuclear buds, binucleated cells, cells with karyolysis, karyorrhetic, condensed chromatin and pyknotic cells were determined for each participant. Tepehuano and Tarahumaras showed the greatest damage to DNA. The Tepehuano group presented the highest number of MN and NA, this being a significant difference (p < 0.05) compared with the rest of the studied groups. This group also presented the highest herbicide exposure (46.7%). In relation to the smoking and drinking habits, these were more frequent in the Tarahumara group (33.3 and 50% respectively). The ethnic diversity, habits and customs may influence the DNA nuclear integrity in the Amerindian groups.

  13. Nuclear ferritin: A new role for ferritin in cell biology.

    PubMed

    Alkhateeb, Ahmed A; Connor, James R

    2010-08-01

    Ferritin has been traditionally considered a cytoplasmic iron storage protein. However, several studies over the last two decades have reported the nuclear localization of ferritin, specifically H-ferritin, in developing neurons, hepatocytes, corneal epithelial cells, and some cancer cells. These observations encouraged a new perspective on ferritin beyond iron storage, such as a role in the regulation of iron accessibility to nuclear components, DNA protection from iron-induced oxidative damage, and transcriptional regulation. This review will address the translocation and functional significance of nuclear ferritin in the context of human development and disease. The nuclear translocation of ferritin is a selective energy-dependent process that does not seem to require a consensus nuclear localization signal. It is still unclear what regulates the nuclear import/export of ferritin. Some reports have implicated the phosphorylation and O-glycosylation of the ferritin protein in nuclear transport; others suggested the existence of a specific nuclear chaperone for ferritin. The data argue strongly for nuclear ferritin as a factor in human development and disease. Ferritin can bind and protect DNA from oxidative damage. It also has the potential of playing a regulatory role in transcription. Nuclear ferritin represents a novel new outlook on ferritin functionality beyond its classical role as an iron storage molecule. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology

    PubMed Central

    Janzen, Daniel H.; Burns, John M.; Cong, Qian; Hallwachs, Winnie; Dapkey, Tanya; Manjunath, Ramya; Hajibabaei, Mehrdad; Hebert, Paul D. N.; Grishin, Nick V.

    2017-01-01

    DNA sequencing brings another dimension to exploration of biodiversity, and large-scale mitochondrial DNA cytochrome oxidase I barcoding has exposed many potential new cryptic species. Here, we add complete nuclear genome sequencing to DNA barcoding, ecological distribution, natural history, and subtleties of adult color pattern and size to show that a widespread neotropical skipper butterfly known as Udranomia kikkawai (Weeks) comprises three different species in Costa Rica. Full-length barcodes obtained from all three century-old Venezuelan syntypes of U. kikkawai show that it is a rainforest species occurring from Costa Rica to Brazil. The two new species are Udranomia sallydaleyae Burns, a dry forest denizen occurring from Costa Rica to Mexico, and Udranomia tomdaleyi Burns, which occupies the junction between the rainforest and dry forest and currently is known only from Costa Rica. Whereas the three species are cryptic, differing but slightly in appearance, their complete nuclear genomes totaling 15 million aligned positions reveal significant differences consistent with their 0.00065-Mbp (million base pair) mitochondrial barcodes and their ecological diversification. DNA barcoding of tropical insects reared by a massive inventory suggests that the presence of cryptic species is a widespread phenomenon and that further studies will substantially increase current estimates of insect species richness. PMID:28716927

  15. α-Synuclein Sequesters Dnmt1 from the Nucleus

    PubMed Central

    Desplats, Paula; Spencer, Brian; Coffee, Elizabeth; Patel, Pruthul; Michael, Sarah; Patrick, Christina; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer

    2011-01-01

    DNA methylation is a major epigenetic modification that regulates gene expression. Dnmt1, the maintenance DNA methylation enzyme, is abundantly expressed in the adult brain and is mainly located in the nuclear compartment, where it has access to chromatin. Hypomethylation of CpG islands at intron 1 of the SNCA gene has recently been reported to result in overexpression of α-synuclein in Parkinson disease (PD) and related disorders. We therefore investigated the mechanisms underlying altered DNA methylation in PD and dementia with Lewy bodies (DLB). We present evidence of reduction of nuclear Dnmt1 levels in human postmortem brain samples from PD and DLB patients as well as in the brains of α-synuclein transgenic mice models. Furthermore, sequestration of Dnmt1 in the cytoplasm results in global DNA hypomethylation in human and mouse brains, involving CpG islands upstream of SNCA, SEPW1, and PRKAR2A genes. We report that association of Dnmt1 and α-synuclein might mediate aberrant subcellular localization of Dnmt1. Nuclear Dnmt1 levels were partially rescued by overexpression of Dnmt1 in neuronal cell cultures and in α-synuclein transgenic mice brains. Our results underscore a novel mechanism for epigenetic dysregulation in Lewy body diseases, which might underlie the decrease in DNA methylation reported for PD and DLB. PMID:21296890

  16. Mitochondrial DNA transmission and confounding mitochondrial influences in cloned cattle and pigs.

    PubMed

    Takeda, Kumiko

    2013-04-01

    Although somatic cell nuclear transfer (SCNT) is a powerful tool for production of cloned animals, SCNT embryos generally have low developmental competency and many abnormalities. The interaction between the donor nucleus and the enucleated ooplasm plays an important role in early embryonic development, but the underlying mechanisms that negatively impact developmental competency remain unclear. Mitochondria have a broad range of critical functions in cellular energy supply, cell signaling, and programmed cell death; thus, affect embryonic and fetal development. This review focuses on mitochondrial considerations influencing SCNT techniques in farm animals. Donor somatic cell mitochondrial DNA (mtDNA) can be transmitted through what has been considered a "bottleneck" in mitochondrial genetics via the SCNT maternal lineage. This indicates that donor somatic cell mitochondria have a role in the reconstructed cytoplasm. However, foreign somatic cell mitochondria may affect the early development of SCNT embryos. Nuclear-mitochondrial interactions in interspecies/intergeneric SCNT (iSCNT) result in severe problems. A major biological selective pressure exists against survival of exogenous mtDNA in iSCNT. Yet, mtDNA differences in SCNT animals did not reflect transfer of proteomic components following proteomic analysis. Further study of nuclear-cytoplasmic interactions is needed to illuminate key developmental characteristics of SCNT animals associated with mitochondrial biology.

  17. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto

    2009-12-18

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins aremore » known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.« less

  18. 32 CFR Appendix A to Part 291 - Freedom of Information Act Request (DNA Form 524)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Freedom of Information Act Request (DNA Form 524... OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM Pt. 291, App. A Appendix A to Part 291—Freedom of Information Act Request (DNA Form...

  19. 32 CFR Appendix A to Part 291 - Freedom of Information Act Request (DNA Form 524)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Freedom of Information Act Request (DNA Form 524... OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM Pt. 291, App. A Appendix A to Part 291—Freedom of Information Act Request (DNA Form...

  20. 32 CFR Appendix A to Part 291 - Freedom of Information Act Request (DNA Form 524)

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Freedom of Information Act Request (DNA Form 524... OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM Pt. 291, App. A Appendix A to Part 291—Freedom of Information Act Request (DNA Form...

  1. 32 CFR Appendix A to Part 291 - Freedom of Information Act Request (DNA Form 524)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Freedom of Information Act Request (DNA Form 524... OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM Pt. 291, App. A Appendix A to Part 291—Freedom of Information Act Request (DNA Form...

  2. 32 CFR Appendix A to Part 291 - Freedom of Information Act Request (DNA Form 524)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Freedom of Information Act Request (DNA Form 524... OF DEFENSE (CONTINUED) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM Pt. 291, App. A Appendix A to Part 291—Freedom of Information Act Request (DNA Form...

  3. A Herpesvirus Protein Selectively Inhibits Cellular mRNA Nuclear Export.

    PubMed

    Gong, Danyang; Kim, Yong Hoon; Xiao, Yuchen; Du, Yushen; Xie, Yafang; Lee, Kevin K; Feng, Jun; Farhat, Nisar; Zhao, Dawei; Shu, Sara; Dai, Xinghong; Chanda, Sumit K; Rana, Tariq M; Krogan, Nevan J; Sun, Ren; Wu, Ting-Ting

    2016-11-09

    Nuclear mRNA export is highly regulated to ensure accurate cellular gene expression. Viral inhibition of cellular mRNA export can enhance viral access to the cellular translation machinery and prevent anti-viral protein production but is generally thought to be nonselective. We report that ORF10 of Kaposi's sarcoma-associated herpesvirus (KSHV), a nuclear DNA virus, inhibits mRNA export in a transcript-selective manner to control cellular gene expression. Nuclear export inhibition by ORF10 requires an interaction with an RNA export factor, Rae1. Genome-wide analysis reveals a subset of cellular mRNAs whose nuclear export is blocked by ORF10 with the 3' UTRs of ORF10-targeted transcripts conferring sensitivity to export inhibition. The ORF10-Rae1 interaction is important for the virus to express viral genes and produce infectious virions. These results suggest that a nuclear DNA virus can selectively interfere with RNA export to restrict host gene expression for optimal replication. Published by Elsevier Inc.

  4. A decade of understanding spatio-temporal regulation of DNA repair by the nuclear architecture.

    PubMed

    Saad, Hicham; Cobb, Jennifer A

    2016-10-01

    The nucleus is a hub for gene expression and is a highly organized entity. The nucleoplasm is heterogeneous, owing to the preferential localization of specific metabolic factors, which lead to the definition of nuclear compartments or bodies. The genome is organized into chromosome territories, as well as heterochromatin and euchromatin domains. Recent observations have indicated that nuclear organization is important for maintaining genomic stability. For example, nuclear organization has been implicated in stabilizing damaged DNA, repair-pathway choice, and in preventing chromosomal rearrangements. Over the past decade, several studies have revealed that dynamic changes in the nuclear architecture are important during double-strand break repair. Stemming from work in yeast, relocation of a damaged site prior to repair appears to be at least partially conserved in multicellular eukaryotes. In this review, we will discuss genome and nucleoplasm architecture, particularly the importance of the nuclear periphery in genome stability. We will also discuss how the site of relocation regulates repair-pathway choice.

  5. History of retinoic acid receptors.

    PubMed

    Benbrook, Doris M; Chambon, Pierre; Rochette-Egly, Cécile; Asson-Batres, Mary Ann

    2014-01-01

    The discovery of retinoic acid receptors arose from research into how vitamins are essential for life. Early studies indicated that Vitamin A was metabolized into an active factor, retinoic acid (RA), which regulates RNA and protein expression in cells. Each step forward in our understanding of retinoic acid in human health was accomplished by the development and application of new technologies. Development cDNA cloning techniques and discovery of nuclear receptors for steroid hormones provided the basis for identification of two classes of retinoic acid receptors, RARs and RXRs, each of which has three isoforms, α, β and ɣ. DNA manipulation and crystallographic studies revealed that the receptors contain discrete functional domains responsible for binding to DNA, ligands and cofactors. Ligand binding was shown to induce conformational changes in the receptors that cause release of corepressors and recruitment of coactivators to create functional complexes that are bound to consensus promoter DNA sequences called retinoic acid response elements (RAREs) and that cause opening of chromatin and transcription of adjacent genes. Homologous recombination technology allowed the development of mice lacking expression of retinoic acid receptors, individually or in various combinations, which demonstrated that the receptors exhibit vital, but redundant, functions in fetal development and in vision, reproduction, and other functions required for maintenance of adult life. More recent advancements in sequencing and proteomic technologies reveal the complexity of retinoic acid receptor involvement in cellular function through regulation of gene expression and kinase activity. Future directions will require systems biology approaches to decipher how these integrated networks affect human stem cells, health, and disease.

  6. Chapter 2: Genetic Variability in Nuclear Ribosomal and Chloroplast DNA in Utah (Juniperus Osteosperma) and Western (J. Occidentalis) Juniper (Cupressaceae): Evidence for Interspecific Gene Flow1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, Randall G.; Tausch, Robin J.; Nowak, Robert S.

    1998-02-14

    Early studies of evolutionary change in chloroplast DNA indicated limited variability within species. This finding has been attributed to relatively low rates of sequence evolution and has been maintained as justification for the lack of intraspecific sampling in studies examining, relationships at the species level and above. However, documentation of intraspecific variation in cpDNA has become increasingly common and has been attributed in many cases to ''chloroplast capture'' following genetic exchange across species boundaries. Rleseberg and Wendel (1993) list 37 cases of proposed hybridization in plants that include intraspecific variation in cpDNA, 24 (65%) of which they considered to bemore » probable instances of introgression. Rieseberg (1995) suspected that a review of the literature at that time would reveal over 100 cases of intraspecific variation in CPDNA that could be attributed to hybridization and introgression. That intraspecific variation in cpDNA is potentially indicative of hybridization is founded on the expectation that slowly evolving loci or genomes will produce greater molecular variation between than within species. In cases where a species is polymorphic for CPDNA and at least one of the molecular variants is diagnostic for a second species, interspecific hybridization is a plausible explanation. Incongruence between relationships suggested by cpDNA variation and those supported by other types of data (e.g., morphology or molecular data from an additional locus) provides additional support for introgression. One aspect of hybridization in both animals and plants that has become increasingly evident is incongruence in the phylogenetic and geographic distribution of cytoplasmic and nuclear markers. In most cases cytoplasmic introgression appears to be more pervasive than nuclear exchange. This discordance appears attributable to several factors including differences in the mutation rate, number of effective alleles, and modes of inheritance of cytoplasmic and nuclear loci. In addition, unidirectional introgression following an initial hybridization event can result in populations that have the cytoplasmic genome of one parental species and the nuclear genome of the other. In such cases, discordance in the phylogenetic, taxonomic, and geographic distribution of cytoplasmic and nuclear markers can provide insight into the biogeographic and population genetic forces affecting parental and hybrid populations.« less

  7. Ubiquitin‑like protein FAT10 regulates DNA damage repair via modification of proliferating cell nuclear antigen.

    PubMed

    Chen, Zhenchuan; Zhang, Wei; Yun, Zhimin; Zhang, Xue; Gong, Feng; Wang, Yunfang; Ji, Shouping; Leng, Ling

    2018-06-01

    In response to DNA damage, proliferating cell nuclear antigen (PCNA) has an important role as a positive regulator and as a scaffold protein associated with DNA damage bypass and repair pathways by serving as a platform for the recruitment of associated components. As demonstrated in the present study, the ubiquitin‑like modifier human leukocyte antigen F locus adjacent transcript 10 (FAT10), which binds to PCNA but has not previously been demonstrated to be associated with the DNA damage response (DDR), is induced by ultraviolet/ionizing radiation and VP‑16 treatment in HeLa cells. Furthermore, DNA damage enhances FAT10 expression. Immunoprecipitation analysis suggested PCNA is modified by FAT10, and the degradation of FATylated PCNA located in the cytoplasm is regulated by the 26S proteasome, which is also responsible for the upregulation of nuclear foci formation. Furthermore, immunofluorescence experiment suggested FAT10 co‑localizes with PCNA in nuclear foci, thus suggesting that FATylation of PCNA may affect DDR via the induction of PCNA degradation in the cytoplasm or nucleus. In addition, immunohistochemistry experiment suggested the expression levels of FAT10 and PCNA are enhanced in HCC tissues compared with healthy liver tissues; however, the expression of FAT10 is suppressed in regenerated liver tissues, which express high levels of PCNA, thus suggesting that the association between FAT10 and PCNA expression is only exhibited in tumor tissues. In conclusion, the results of the present study suggest that FAT10 may be involved in DDR and therefore the progression of tumorigenesis.

  8. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costes, Sylvain V; Chiolo, Irene; Pluth, Janice M.

    2009-09-15

    DNA damage sensing proteins have been shown to localize to the sites of DSB within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatio-temporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and nuclear densities. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and ?H2AX (phosphorylated variant histonemore » H2AX). Early post-IR, we propose that RIF mark chromatin reorganization, leading to a local nuclear scaffold rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. At later time post-IR, we propose that persistent RIF observed days following exposure to ionizing radiation are nuclear ?scars? marking permanent disruption of the chromatin architecture. When DNA damage is resolved, such chromatin modifications should not necessarily lead to growth arrest and it has been shown that persistent RIF can replicate during mitosis. Thus, heritable persistent RIF spanning over tens of Mbp may affect the transcriptome of a large progeny of cells. This opens the door for a non DNA mutation-based mechanism of radiation-induced phenotypes.« less

  9. New insights into the origin and the genetic status of the Balkan donkey from Serbia.

    PubMed

    Stanisic, L J; Aleksic, J M; Dimitrijevic, V; Simeunovic, P; Glavinic, U; Stevanovic, J; Stanimirovic, Z

    2017-10-01

    The Balkan donkey (Equus asinus L.) is commonly regarded as a large-sized, unselected, unstructured and traditionally managed donkey breed. We assessed the current genetic status of the three largest E. asinus populations in the central Balkans (Serbia) by analysing the variability of nuclear microsatellites and the mitochondrial (mtDNA) control region of 77 and 49 individuals respectively. We further analysed our mtDNA dataset along with 209 published mtDNA sequences of ancient and modern individuals from 19 European and African populations to provide new insights into the origin and the history of the Balkan donkey. Serbian donkey populations are highly genetically diverse at both the nuclear and mtDNA levels despite severe population decline. Traditional Balkan donkeys in Serbia are rather heterogeneous; we found two groups of individuals with similar phenotypic features, somewhat distinct nuclear backgrounds and different proportions of mtDNA haplotypes belonging to matrilineal Clades 1 and 2. Another group, characterized by larger body size, different coat colour, distinct nuclear gene pool and predominantly Clade 2 haplotypes, was delineated as the Banat donkey breed. The maternal landscape of the large Balkan donkey population is highly heterogeneous and more complex than previously thought. Given the two independent domestication events in donkeys, multiple waves of introductions into the Balkans from Greece are hypothesized. Clade 2 donkeys probably appeared in Greece prior to those belonging to Clade 1, whereas expansion and diversification of Clade 1 donkeys within the Balkans predated that of Clade 2 donkeys. © 2017 Stichting International Foundation for Animal Genetics.

  10. Mammalian proliferating cell nuclear antigen stimulates the processivity of two wheat embryo DNA polymerases.

    PubMed Central

    Laquel, P; Litvak, S; Castroviejo, M

    1993-01-01

    Multiple DNA polymerases have been described in all organisms studied to date. Their specific functions are not easy to determine, except when powerful genetic and/or biochemical tools are available. However, the processivity of a DNA polymerase could reflect the physiological role of the enzyme. In this study, analogies between plant and animal DNA polymerases have been investigated by analyzing the size of the products synthesized by wheat DNA polymerases A, B, CI, and CII as a measure of their processivity. Thus, incubations have been carried out with poly(dA)-oligo(dT) as a template-primer under varying assay conditions. In the presence of MgCl2, DNA polymerase A was highly processive, whereas DNA polymerases B, CI, and CII synthesized much shorter products. With MnCl2 instead of MgCl2, DNA polymerase A was highly processive, DNA polymerases B and CII were moderately processive, and DNA polymerase CI remained strictly distributive. The effect of calf thymus proliferating cell nuclear antigen (PCNA) on wheat polymerases was studied as described for animal DNA polymerases. The high processivity of DNA polymerase A was PCNA independent, whereas both enzyme activity and processivity of wheat DNA polymerases B and CII were significantly stimulated by PCNA. On the other hand, DNA polymerase CI was not stimulated by PCNA and, like animal DNA polymerase beta, was distributive in all cases. From these results, we propose that wheat DNA polymerase A could correspond to a DNA polymerase alpha, DNA polymerases B and CII could correspond to the delta-like enzyme, and DNA polymerase CI could correspond to DNA polymerase beta. PMID:7906418

  11. 32 CFR 291.9 - For official use only (FOUO).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.9... authorized as an anemic form of classification to protect national security interests. See DNA Instruction... papers. Records, such as notes, working papers, and drafts retained as historical evidence of DNA actions...

  12. 32 CFR 291.7 - Administrative instruction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.7... requester. The requester must provide a description of the desired record that enables DNA to locate it with..., both on the envelope and in the body of the letter. Persons appealing DNA denial letters should include...

  13. 32 CFR 291.4 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.4 Policy. (a) Compliance with the FOIA. DNA personnel are expected to comply with the FOIA and this part in both letter and spirit. This strict adherence is necessary to provide uniformity in the implementation of the DNA FOIA...

  14. 32 CFR 291.7 - Administrative instruction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.7... requester. The requester must provide a description of the desired record that enables DNA to locate it with..., both on the envelope and in the body of the letter. Persons appealing DNA denial letters should include...

  15. 32 CFR 291.4 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.4 Policy. (a) Compliance with the FOIA. DNA personnel are expected to comply with the FOIA and this part in both letter and spirit. This strict adherence is necessary to provide uniformity in the implementation of the DNA FOIA...

  16. 32 CFR 291.7 - Administrative instruction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.7... requester. The requester must provide a description of the desired record that enables DNA to locate it with..., both on the envelope and in the body of the letter. Persons appealing DNA denial letters should include...

  17. 32 CFR 291.4 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.4 Policy. (a) Compliance with the FOIA. DNA personnel are expected to comply with the FOIA and this part in both letter and spirit. This strict adherence is necessary to provide uniformity in the implementation of the DNA FOIA...

  18. 32 CFR 291.9 - For official use only (FOUO).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) FREEDOM OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.9... authorized as an anemic form of classification to protect national security interests. See DNA Instruction... papers. Records, such as notes, working papers, and drafts retained as historical evidence of DNA actions...

  19. 32 CFR 291.4 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.4 Policy. (a) Compliance with the FOIA. DNA personnel are expected to comply with the FOIA and this part in both letter and spirit. This strict adherence is necessary to provide uniformity in the implementation of the DNA FOIA...

  20. 32 CFR 291.7 - Administrative instruction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.7... requester. The requester must provide a description of the desired record that enables DNA to locate it with..., both on the envelope and in the body of the letter. Persons appealing DNA denial letters should include...

Top