Science.gov

Sample records for nuclear energy unit

  1. 76 FR 40754 - Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ..., 50-270, And 50-287] Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire... Application for Amendments to Facility Operating Licenses The U.S. Nuclear Regulatory Commission (NRC, the... From the Federal Register Online via the Government Publishing Office NUCLEAR...

  2. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear...

  3. INL Director Discusses the Future for Nuclear Energy in the United States

    ScienceCinema

    Grossenbacher, John

    2016-07-12

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  4. INL Director Discusses the Future for Nuclear Energy in the United States

    SciTech Connect

    Grossenbacher, John

    2011-01-01

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  5. 76 FR 24538 - Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ..., 50-270, and 50-287] Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; McGuire... Application for Amendment to Facility Operating License The U.S. Nuclear Regulatory Commission (NRC, the... From the Federal Register Online via the Government Publishing Office NUCLEAR...

  6. Explaining nuclear energy pursuance: A comparison of the United States, Germany, and Japan

    NASA Astrophysics Data System (ADS)

    McKee, Lauren Emily

    Energy is critical to the functioning of the global economy and seriously impacts global security as well. What factors influence the extent to which countries will pursue nuclear energy in their overall mix of energy approaches? This dissertation explores this critical question by analyzing the nuclear energy policies of the United States, Germany and Japan. Rather than citizen opposition or proximity to nuclear disasters, it seems that a country's access to other resources through natural endowments or trading relationships offers the best explanation for nuclear energy pursuance.

  7. 77 FR 26318 - Duke Energy Carolinas, LLC., Oconee Nuclear Station, Units 1, 2, and 3 Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Duke Energy Carolinas, LLC., Oconee Nuclear Station, Units 1, 2, and 3 Exemption 1.0 Background Duke Energy Carolinas, LLC (the licensee) is the holder of Renewed Facility Operating Licenses...

  8. 75 FR 24997 - FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... COMMISSION FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental Assessment... Energy Point Beach, LLC (the licensee), for operation of the Point Beach Nuclear Plant, Units 1 and 2... Licensee and Owner from ``FPL Energy Point Beach, LLC'' to ``NextEra Energy Point Beach, LLC.''...

  9. 78 FR 4467 - UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC...

  10. Interaction of science and diplomacy: Latin American, the United States and nuclear energy, 1945-1955

    SciTech Connect

    Cabral, R.

    1986-01-01

    Nuclear programs in Argentina and Brazil can be traced to August 1945 when their scientific communities articulated responses to the atomic bombings of Japan. They culminated in attempts to develop independent nuclear programs, sharply opposed by the United States, during the nationalist governments of Juan Peron and Getulio Vargas. This dissertation, based on primary sources from the three nations, analyzes these programs and the American responses. Latin America entered the nuclear age attempting to control natural resources, to improve scientific establishments, and to appraise Latin American-United States relations. Despite some clear warnings about nuclear dangers, the new form of energy was seen as the solution to industrial problems, poverty, and outside political interference. International opposition, which may have included nuclear threats from the United States, blocked Argentina's first attempt in 1947. After 1948, Peron wanted a nuclear program for cheap energy and prestige. The qualifications of the Brazilian scientists gave more substance to their program. The program originated in August, 1945, but assumed national proportion with the government of Vargas in 1951. Lack of American cooperation forced Vargas to establish a secret program with Germany. American troops intervened taking over the German equipment already completed. The final collapse came about with Vargas' suicide in August, 1954.

  11. Replacement energy costs for nuclear electricity-generating units in the United States: 1997--2001. Volume 4

    SciTech Connect

    VanKuiken, J.C.; Guziel, K.A.; Tompkins, M.M.; Buehring, W.A.

    1997-09-01

    This report updates previous estimates of replacement energy costs for potential short-term shutdowns of 109 US nuclear electricity-generating units. This information was developed to assist the US Nuclear Regulatory Commission (NRC) in its regulatory impact analyses, specifically those that examine the impacts of proposed regulations requiring retrofitting of or safety modifications to nuclear reactors. Such actions might necessitate shutdowns of nuclear power plants while these changes are being implemented. The change in energy cost represents one factor that the NRC must consider when deciding to require a particular modification. Cost estimates were derived from probabilistic production cost simulations of pooled utility system operations. Factors affecting replacement energy costs, such as random unit failures, maintenance and refueling requirements, and load variations, are treated in the analysis. This report describes an abbreviated analytical approach as it was adopted to update the cost estimates published in NUREG/CR-4012, Vol. 3. The updates were made to extend the time frame of cost estimates and to account for recent changes in utility system conditions, such as change in fuel prices, construction and retirement schedules, and system demand projects.

  12. The politics of nuclear energy in France, Sweden, and the United States

    SciTech Connect

    Jasper, J.M.

    1988-01-01

    Why did nuclear policies in France, Sweden, and the United States, virtually identical through the oil crisis of 1973-1974, come to diverge so sharply by the end of the 1970's The answer lies neither in the relative penetration of the anti-nuclear movements, which had little effect in all three countries, nor in rational economic assessments of alternative energy resources, which were recognized only after key policy choices had been made. Nuclear energy policies arose out of conflict between many individuals, organizations, and political groups within the state in each country. Political and economic structures, from autonomous bureaucracies to nationalized industries, explain the amount of power these actors had, but they cannot fully explain the policy outcomes. The structural approach has to be filled in with accounts of the symbolic grids of the actors. One of these grids is the characteristic policy styles (rhetorics, symbols, and formulas) groups used for both deriving and defending their positions. Another grid is the dominant ideological cleavages among competing political parties: government intervention versus the free market in the United States, labor versus capital in France, the governing Social Democrats versus everyone else in Sweden. Because the issue of nuclear policy was twisted to fit these grids, what was at stake differed in the three countries.

  13. Can we Plan. The political economy of commercial nuclear energy policy in the United States

    SciTech Connect

    Campbell, J.L. Jr.

    1984-01-01

    The dissertation is an analysis of the commercial nuclear energy sector's decline in the United States. The research attempts to reconcile the debate between Weberian-institutional and Marxist political theory about the state's inability to successfully plan industrial development in advanced capitalist countries. Synthesizing these views, the central hypothesis guiding the research is that the greater the state's relative autonomy from political and economic constraints in an institutional sense, i.e., the greater its insulation from the contradictions of capitalism and democracy, the greater its planning capacity and the more successful it will be in directing industrial performance. The research examines one industrial sector, commercial nuclear energy, and draws two major comparison. First, the French and US nuclear industries are compared, since the state's relative autonomy is much greater in the former than in the latter. This comparison is developed to identify policy areas where nuclear planning has succeeded in France but failed in America. Four areas are identified: reactor standardization, waste management, reactor safety, and financing. Second, looking particularly at the US, the policy areas are compared to analyze the development of policy and its effects on the sector's performance and to determine the degree to which planning was undermined by the structural constraints characteristic of a state with low relative autonomy.

  14. Nuclear energy.

    PubMed

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.

  15. Nuclear energy.

    PubMed

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened. PMID:20873683

  16. 76 FR 39913 - Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Stop: TWB-05-B01M, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001. Fax comments to: RADB..., Division of Operating Reactor Licensing, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory....gov . I. Introduction The U.S. Nuclear Regulatory Commission (NRC or the Commission) is...

  17. Accelerated Clean-up of the United States Department of Energy, Mound Nuclear Weapons Facility in Miamisburg, Ohio

    SciTech Connect

    Lehew, J.G.; Bradford, J.D.; Cabbil, C.C.

    2006-07-01

    CH2M HILL is executing a performance-based contract with the United States Department of Energy to accelerate the safe closure of the nuclear facilities at the former Mound plant in Miamisburg, Ohio. The contract started in January 2003 with a target completion date of March 31, 2006. Our accelerated baseline targets completion of the project 2 years ahead of the previous baseline schedule, by spring 2006, and for $200 million less than previous estimates. This unique decommissioning and remediation project is located within the City of Miamisburg proper and is designed for transfer of the property to the Miamisburg Mound Community Improvement Corporation for industrial reuse. The project is being performed with the Miamisburg Mound Community Improvement Corporation and their tenants co-located on the site creating significant logistical, safety and stakeholder challenges. The project is also being performed in conjunction with the United States Department of Energy, United States Environmental Protection Agency, and the Ohio Environmental Protection Agency under the Mound 2000 regulatory cleanup process. The project is currently over 95% complete. To achieve cleanup and closure of the Mound site, CH2M HILL's scope includes: - Demolition of 64 nuclear, radiological and commercial facilities - Preparation for Transfer of 9 facilities (including a Category 2 nuclear facility) to the Miamisburg Mound Community Improvement Corporation for industrial reuse - Removal of all above ground utility structures and components, and preparation for transfer of 9 utility systems to Miamisburg Mound Community Improvement Corporation - Investigation, remediation, closure, and documentation of all known Potential Release Sites contaminated with radiological and chemical contamination (73 identified in original contract) - Storage, characterization, processing, packaging and shipment of all waste and excess nuclear materials - Preparation for Transfer of the 306 acre site to the

  18. Nuclear energy.

    PubMed

    Wilson, Peter D

    2010-01-01

    The technical principles and practices of the civil nuclear industry are described with particular reference to fission and its products, natural and artificial radioactivity elements principally concerned and their relationships, main types of reactor, safety issues, the fuel cycle, waste management, issues related to weapon proliferation, environmental considerations and possible future developments.

  19. The renewable energy alternative: How the United States and the world can prosper without nuclear energy or coal

    SciTech Connect

    Blackburn, J.O.

    1987-01-01

    This book asserts that the temporary glut in oil supplies has masked energy supply problems and argues that with proper planning overall energy needs can be reduced and those reduced needs can be supplied through a combination of renewable sources, including sun, wind, water, biomass, and nonsolar sources such as geothermal energy and the tides.

  20. 78 FR 79709 - Duke Energy Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... Nuclear Generating Plant (CR-3). The PSDAR provides an overview of Duke Energy Florida, Inc.'s (DEF's, the licensee's) proposed decommissioning activities, schedule, and costs for CR-3. The NRC will hold a public...): NRC Public Meeting: The NRC will conduct a public meeting to discuss and accept comments on the...

  1. What can nuclear energy do for society.

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1971-01-01

    Nuclear fuel is a compact and abundant source of energy. Its cost per unit of energy is less than that of fossil fuel. Disadvantages of nuclear fuel are connected with the high cost of capital equipment required for releasing nuclear energy and the heavy weight of the necessary shielding. In the case of commercial electric power production and marine propulsion the advantages have outweighed the disadvantages. It is pointed out that nuclear commercial submarines have certain advantages compared to surface ships. Nuclear powerplants might make air-cushion vehicles for transoceanic ranges feasible. The problems and advantages of a nuclear aircraft are discussed together with nuclear propulsion for interplanetary space voyages.

  2. Nuclear energy technology

    NASA Technical Reports Server (NTRS)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  3. 76 FR 69120 - Regulatory Changes To Implement the United States/Australian Agreement for Peaceful Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... of America Concerning Peaceful Uses of Nuclear Energy'' (the Agreement). The Agreement prohibits the... United States of America Concerning Peaceful Uses of Nuclear Energy, dated 2010, Australian-obligated... From the Federal Register Online via the Government Publishing Office NUCLEAR...

  4. United States Department of Energy National Nuclear Security Administration Sandia Field Office NESHAP Annual Report CY2014 for Sandia National Laboratories New Mexico

    SciTech Connect

    evelo, stacie; Miller, Mark L.

    2015-05-01

    This report provides a summary of the radionuclide releases from the United States (U.S.) Department of Energy (DOE) National Nuclear Security Administration facilities at Sandia National Laboratories, New Mexico (SNL/NM) during Calendar Year (CY) 2014, including the data, calculations, and supporting documentation for demonstrating compliance with 40 Code of Federal Regulation (CFR) 61, Subpart H--NATIONAL EMISSION STANDARDS FOR EMISSIONS OF RADIONUCLIDES OTHER THAN RADON FROM DEPARTMENT OF ENERGY FACILITIES. A description is given of the sources and their contributions to the overall dose assessment. In addition, the maximally exposed individual (MEI) radiological dose calculation and the population dose to local and regional residents are discussed.

  5. 77 FR 47677 - Duke Energy Carolinas, LLC, McGuire Nuclear Station, Units 1 and 2, Notice of Consideration of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... H. Thompson, Project Manager, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory... Nuclear Reactor Regulation. BILLING CODE 7590-01-P ... From the Federal Register Online via the Government Publishing Office NUCLEAR...

  6. Nuclear Energy and the Environment.

    ERIC Educational Resources Information Center

    International Atomic Energy Agency, Vienna (Austria).

    "Nuclear Energy and the Environment" is a pocket folder of removable leaflets concerned with two major topics: Nuclear energy and Nuclear Techniques. Under Nuclear Energy, leaflets concerning the topics of "Radiation--A Fact of Life,""The Impact of a Fact: 1963 Test Ban Treaty,""Energy Needs and Nuclear Power,""Power Reactor Safety,""Transport,"…

  7. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  8. Desalting and Nuclear Energy

    ERIC Educational Resources Information Center

    Burwell, Calvin C.

    1971-01-01

    Future use of nuclear energy to produce electricity and desalted water is outlined. Possible desalting processes are analyzed to show economic feasibility and the place in planning in world's economic growth. (DS)

  9. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  10. United Campuses to Prevent Nuclear War: Nuclear War Course Summaries.

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 1983

    1983-01-01

    Briefly describes 46 courses on nuclear war available from United Campuses to Prevent Nuclear War (UCAM). These courses are currently being or have been taught at colleges/universities, addressing effects of nuclear war, arms race history, new weapons, and past arms control efforts. Syllabi (with assignments/reading lists) are available from UCAM.…

  11. What can nuclear energy do for society.

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1972-01-01

    It is pointed out that the earth's crust holds 30,000 times as much energy in the form of fissionable atoms as fossil fuel. Moreover, nuclear fuel costs less per unit of energy than fossil fuel. Capital equipment used to release nuclear energy, on the other hand, is expensive. For commercial electric-power production and marine propulsion, advantages of nuclear power have outweighed disadvantages. As to nuclear submarines, applications other than military may prove feasible. The industry has proposed cargo submarines to haul oil from the Alaskan North Slope beneath the Arctic ice. Other possible applications for nuclear power are in air-cushion-vehicles, aircraft, and rockets.-

  12. Advances in Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Frois, B.

    2005-04-01

    This paper briefly reviews the next generations of nuclear reactors and the perspectives of development of nuclear energy. Advanced reactors will progressively replace the existing ones during the next two decades. Future systems of the fourth generation are planned to be built beyond 2030. These systems have been studied in the framework of the "Generation IV" International Forum. The goals of these systems is to have a considerable increase in safety, be economically competitive and produce a significantly reduced volume of nuclear wastes. The closed fuel cycle is preferred.

  13. Nuclear hybrid energy infrastructure

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  14. Mitigating Community Impacts of Energy Development: Some Examples for Coal and Nuclear Generating Plants in the United States.

    ERIC Educational Resources Information Center

    Peelle, Elizabeth

    The Hartsville, Tennessee nuclear reactor site, the coal plant at Wheatland, Wyoming, and the nuclear plant at Skagit, Washington have mitigation plans developed in response to a federal, state, and local regulatory agency, respectively; the three mitigation plans aim at internalizing community-level social costs and benefits during the…

  15. 75 FR 77919 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental... Progress Energy Carolinas, Inc., for operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1...: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437, Supplement 33).''...

  16. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional...

  17. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional...

  18. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional...

  19. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional...

  20. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional...

  1. Nuclear Proliferation: A Unit for Study.

    ERIC Educational Resources Information Center

    Fernekes, William R.

    1990-01-01

    Using Argentina as a sample case study, presents a classroom unit designed to explain the implications for world peace of nuclear weapons development. Employs a policy analysis model to make an indepth examination of the values underlying all government policy decisions. Includes unit topics and procedures for the exercise. (NL)

  2. A Career in Nuclear Energy

    ScienceCinema

    Lambregts, Marsha

    2016-07-12

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  3. A Career in Nuclear Energy

    SciTech Connect

    Lambregts, Marsha

    2009-01-01

    Nuclear chemist Dr. Marsha Lambregts talks about the Center for Advanced Energy Studies and the benefits of a nuclear energy career. For more information about careers at INL, visit http://www.facebook.com/idahonationallaboratory.

  4. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    SciTech Connect

    1980-09-05

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

  5. 78 FR 45575 - Duke Energy Carolinas, LLC; Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    .... The Commission issued 10 CFR 72.7 under the authority granted to it under Section 133 of the Nuclear Waste Policy Act of 1982, as amended, 42 USC 10153. Section 72.7 allows the NRC to grant exemptions from... Finding of No Significant Impact was published on July 3, 2013; 78 FR 40200. 4.0 Conclusion Based on...

  6. The Harnessed Atom: Nuclear Energy & Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  7. 3 CFR - Certifications Pursuant to Section 104 of the United States-India Nuclear Cooperation Approval...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... States-India Nuclear Cooperation Approval and Nonproliferation Enhancement Act Regarding the Safeguards Agreement Between India and the International Atomic Energy Agency Presidential Documents Other Presidential... of the United States-India Nuclear Cooperation Approval and Nonproliferation Enhancement...

  8. 77 FR 41454 - Entergy Nuclear Indian Point Unit 2, LLC, Entergy Nuclear Indian Point Unit 3, LLC, Entergy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Indian Point Unit 2, LLC, Entergy Nuclear Indian Point Unit 3, LLC, Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Units 2 and 3; Environmental Assessment...

  9. 76 FR 74832 - Entergy Nuclear Indian Point Unit 2, LLC; Entergy Nuclear Indian Point Unit 3, LLC; Entergy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Indian Point Unit 2, LLC; Entergy Nuclear Indian Point Unit 3, LLC; Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Units Nos. 2 and 3; Environmental Assessment and Finding of No Significant Impact The U.S....

  10. Managing nuclear weapons in the United States

    SciTech Connect

    Miller, G.

    1993-03-16

    This report discusses the management and security of nuclear weapons in the post-cold war United States. The definition of what constitutes security is clearly changing in the US. It is now a much more integrated view that includes defense and the economy. The author tries to bring some semblance of order to these themes in this brief adaptation of a presentation.

  11. 75 FR 14206 - FPL Energy Point Beach, LLC; Point Beach Nuclear Plant, Units 1 and 2; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... revisions to 10 CFR Part 73 as discussed in a Federal Register notice dated March 27, 2009 (74 FR 13967... Requirements, 74 FR 13926, 13967 (March 27, 2009)]. The NRC staff's safety evaluation will be provided in the... COMMISSION [Docket Nos. 50-266 And 50-301; NRC-2010-0123 FPL Energy Point Beach, LLC; Point Beach...

  12. Solar Renewable Energy. Teaching Unit.

    ERIC Educational Resources Information Center

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  13. 78 FR 35646 - Byron Nuclear Station, Units 1 and 2, and Braidwood Nuclear Station, Units 1 and 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Byron Nuclear Station, Units 1 and 2, and Braidwood Nuclear Station, Units 1 and 2 AGENCY: Nuclear... U.S. Nuclear Regulatory Commission (NRC) has received an application, dated May 29, 2013,...

  14. The Nuclear Renaissance in the United States

    SciTech Connect

    Buongiorno, Jacopo

    2008-07-30

    Nuclear power currently provides 20% of the electricity generation in the U.S. and about 16% worldwide. As a carbon-free energy source, nuclear is receiving a lot of attention by industry, lawmakers and environmental groups, as they attempt to resolve the issue of man-made climate change. For the first time in 30 years several U.S. electric utilities have applied for construction and operation licenses of new nuclear power plants. This talk will review the safety, operational and economic record of the existing U.S. commercial reactor fleet, will provide an overview of the reactor designs considered for the new wave of plant construction, and will discuss several research projects being conducted at the Massachusetts Institute of Technology to support the expansion of nuclear power in the U.S. and overseas.

  15. 75 FR 75706 - Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1 and 2; Notice of... Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power Station, Unit Nos. 1 and...

  16. 76 FR 78252 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of... Management Secretariat, General Services Administration, notice is hereby given that the Nuclear...

  17. Common sense in nuclear energy

    SciTech Connect

    Hoyle, F.; Hoyle, G.

    1980-01-01

    Public concern about energy resource exhaustion is noted to have developed only after the means (nuclear power) for avoiding this disaster became available and the negative implications of a nuclear society became a focus for anxiety. Ironically, collapse of conventional energy supplies could lead to the nuclear confrontation which anti-nuclear forces claim as the inevitable outcome of nuclear power. A review of the risks, environmental impacts, and political implications of the major energy sources concludes that emotion, not common sense, has made nuclear energy an unpopular option. While the problems of proliferation, radiation protection, waste management, and accident prevention are far from trivial, they will respond to technological improvements and responsible control policies. An historical tradition of fearing new, poorly understood technologies is seen in the reaction to railroads during the early 19th Century. (DCK)

  18. NESST: A nuclear energy safety and security treaty-Separating nuclear energy from nuclear weapons

    NASA Astrophysics Data System (ADS)

    McNamara, Brendan

    2012-06-01

    Fission and Fusion energy is matched by the need to completely separate civilian energy programmes from the production of nuclear weapons. The Nuclear Proliferation Treaty (NPT, 1968) muddles these issues together. The case is presented here for making a new Nuclear Energy Security Treaty (NESST) which is rigorous, enforceable without violence, and separate from the political quagmire of nuclear weapons.

  19. Social Institutions and Nuclear Energy

    ERIC Educational Resources Information Center

    Weinberg, Alvin M.

    1972-01-01

    Nuclear technologists can offer an all but infinite source of relatively cheap and clean energy" but society must decide whether the price of eternal vigilance needed to ensure proper and safe operation of its nuclear energy system" is worth the benefits. (Author/AL)

  20. Nuclear energy: basics, present, future

    NASA Astrophysics Data System (ADS)

    Ricotti, M. E.

    2013-06-01

    The contribution is conceived for non-nuclear experts, intended as a synthetic and simplified overview of the technology related to energy by nuclear fission. At the end of the paper, the Reader will find a minimal set of references, several of them on internet, useful to start deepening the knowledge on this challenging, complex, debated albeit engaging energy source.

  1. 78 FR 39018 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3 AGENCY: Nuclear Regulatory Commission. ACTION: Supplement to Final Supplement 38 to the Generic...

  2. High energy nuclear structures

    SciTech Connect

    Boguta, J.; Kunz, J.

    1984-03-09

    In conventional nuclear physics the nucleus is described as a non-relativistic many-body system, which is governed by the Schroedinger equation. Nucleons interact in this framework via static two-body potentials, mesonic degrees of freedom are neglected. An alternative description of nuclear physics in terms of a relativistic field theory has been developed by Walecka. The model Lagrangian containing baryons, sigma-mesons and ..omega..-mesons was subsequently extended to include also ..pi..-mesons and rho-mesons. An essential feature of such a nuclear Lagrangian is its renormalizability. In addition to the description of known nuclear structure the field theoretical approach may reveal entirely new nuclear phenomena, based on the explicit treatment of mesonic degrees of freedom. The existence of such abnormal nuclear states was proposed by Lee and Wick employing the sigma-model Lagrangian. There the non-linearity of the meson field equations allows for soliton solutions in the presence of nucleons, in particular the sigma-field may exhibit a kink. Different types of soliton solutions occur in gauge theories with hidden symmetries. In the phenomenological Lagrangian the rho-meson is described by a non-abelian gauge field, that acquires its mass spontaneously due to the non-vanishing vacuum expectation value of a Higgs field. A general ansatz for soliton solutions of such a gauge theory was given by Dashen et al. A specific solution and its possible implications for nuclear physics like anomalous nuclear states were discussed by Boguta.

  3. United States Department of Energy`s reactor core protection evaluation methodology for fires at RBMK and VVER nuclear power plants. Revision 1

    SciTech Connect

    1997-06-01

    This document provides operators of Soviet-designed RBMK (graphite moderated light water boiling water reactor) and VVER (pressurized light water reactor) nuclear power plants with a systematic Methodology to qualitatively evaluate plant response to fires and to identify remedies to protect the reactor core from fire-initiated damage.

  4. Dynamic Analysis of Nuclear Energy System Strategies

    SciTech Connect

    Den Durpel, Luc Van

    2004-06-17

    DANESS is an integrated process model for nuclear energy systems allowing the simulation of multiple reactors and fuel cycles in a continuously changing nuclear reactor park configuration. The model is energy demand driven and simulates all nuclear fuel cycle facilites, up to 10 reactors and fuels. Reactor and fuel cycle facility history are traced and the cost of generating energy is calculated per reactor and for total nuclear energy system. The DANESS model aims at performing dynamic systems analysis of nuclear energy development used for integrated analysis of development paths for nuclear energy, parameter scoping for new nuclear energy systems, economic analysis of nuclear energy, government role analysis, and education.

  5. Nuclear structure at intermediate energies

    SciTech Connect

    Bonner, B.E.; Mutchler, G.S.

    1991-09-30

    The theme that unites the sometimes seemingly disparate experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in their radiative decays in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of our BNL experiments E810, E854, as well as our approved experiment at RHIC), -- all these projects share this common goal. Our other experiments represent different approaches to the same broad undertaking. LAMPF E1097 will provide definitive answers to the question of the spin dependence of the inelastic channel of pion production in the n-p interaction. FNAL E683 may well open a new field of investigation in nuclear physics: that of just how quarks and gluons interact with nuclear matter as they transverse nuclei of different sizes. In most all of the experiments mentioned above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are unavailable to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do.

  6. 77 FR 40091 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating, Units 2 and 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating, Units 2 and 3 AGENCY: Nuclear... statement for license renewal of nuclear plants; availability. SUMMARY: The U.S. Nuclear...

  7. Global Nuclear Energy Partnership Programmatic Environmental Impact Statement

    SciTech Connect

    R.A. Wigeland

    2008-10-01

    Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

  8. Nuclear Energy Present and Future

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.

    2006-10-01

    Nuclear power plants currently generate about 20% of US and 17% of world electricity, which makes nuclear the largest non-emitting energy source in current use. Concerns about global climate change have led to a remarkable transformation of attitudes towards nuclear energy. There remain key challenges that must be faced when considering expansion of its contribution. In summary they are: Economics, Safety, Waste Disposal, and Proliferation. Electricity from legacy fission plants is highly competitive with fossil, but perceived financial risks make the large capital cost fraction a key hurdle to new-construction, and costs of 2 per installed Watt electrical are currently considered only just economically attractive. Proliferation of nuclear-weapons-enabling technology is a major concern for global stability, in which fusion may have significant technical advantages over fission. But proliferation control requires a combination of both technical and political initiatives. The feasibility of supplying process heat or hydrogen from nuclear energy inspires additional research into novel reactor concepts and associated technologies. The presentation will lay out this overall context of the nuclear energy renaissance.

  9. The History of Nuclear Energy

    SciTech Connect

    None, None

    1995-01-31

    This is one in a series of publications on nuclear energy. The intent of the series is to present a public overview of various energy sources and it is not intended as an exhaustive treatment of the subject matter. The pamphlet traces the history of discoveries about atoms through more modern-day use of atoms a a valuable source of energy. Included is a detailed chronology and a glossary of terms.

  10. Nuclear Energy. Instructional Materials.

    ERIC Educational Resources Information Center

    Jordan, Kenneth; Thessing, Dan

    This document is one of five learning packets on alternative energy (see note) developed as part of a descriptive curriculum research project in Arkansas. The overall objectives of the learning packets are to improve the level of instruction in the alternative energies by vocational exploration teachers, and to facilitate the integration of new…

  11. Department of Energy Nuclear Energy Standards Program

    SciTech Connect

    Silver, E.G.

    1980-01-01

    The policy with respect to the development and use of standards in the Department of Energy (DOE) programs concerned with maintaining and developing the nuclear option for the civilian sector (both in the form of the currently used light water reactors and for advanced concepts including the Liquid Metal Fast Breeder Reactor), is embodied in a Nuclear Standards Policy, issued in 1978, whose perspectives and philosophy are discussed.

  12. United States Department of Energy Office of Nuclear Energy, Isotope Production and Distribution Program financial statements, September 30, 1996 and 1995

    SciTech Connect

    1997-04-01

    The charter of the Department of Energy (DOE) Isotope Production and Distribution Program (Isotope Program) covers the production and sale of radioactive and stable isotopes, associated byproducts, surplus materials such as lithium, and related isotope services. Service provided include, but are not limited to, irradiation services, target preparation and processing, source encapsulation and other special preparations, analyses, chemical separations, and leasing of stable isotopes for research purposes. Isotope Program products and services are sold worldwide for use in a wide variety of research, development, biomedical, and industrial applications. This report presents the results of the independent certified public accountants` audit of the Isotope Production and Distribution Program`s (Isotope) financial statements as of September 30, 1996.

  13. Generation-IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    McFarlane, Harold

    2008-05-01

    Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.

  14. Realizing the potential of nuclear energy. [Monograph

    SciTech Connect

    Walske, C.

    1982-01-01

    The future of nuclear power, just as the future of America, can be viewed with optimism. There is hope in America's record of overcoming obstacles, but growth is essential for that hope to be realized. Despite the downturn in energy demand made possible by conservation, we will need a 35% growth in total energy for new workers and production. Electricity generated by nuclear or coal can make US production more cost-competitive, and it can power mass-transit systems, electric heat pumps, and communications and information systems. Changes in electricity and gross national product (GNP) have been more closely in step since 1973 than have total energy and GNP. The nuclear power units now under construction will add 80,000 megawatts to the 56,000 now on line. It is important to note that, while utilities are cancelling plans for nuclear plants, they aren't ordering new coal plants, which shows the impact of the high cost of money. Interest rates must come down and public-relations efforts to sell electricity must improve to change the situation. Although capital shortages are real, waste disposal is a problem of perception that was politically induced because the government failed to provide a demonstration of safety as the French are doing. Streamlined regulatory and insurance procedures can help to justify optimism in the nuclear option. 4 figures. (DCK)

  15. Criteria for Global Nuclear Energy Development

    SciTech Connect

    Lawrence, Michael J.

    2002-07-01

    Global energy consumption will at least double over the next fifty years due to population growth, increased consumption, and an urgent need to improve the standard of living in under-developed countries. Thirty percent of this growth will be for electricity. At the same time, carbon emissions must be significantly reduced to respond to concerns regarding global warming. The use of nuclear energy to meet this growing electricity demand without carbon emissions is an obvious solution to many observers, however real concerns over economics, safety, waste and proliferation must be adequately addressed. The issue is further complicated by the fact that developing countries, which have the most pressing need for additional electricity generation, have the least capability and infrastructure to deploy nuclear energy. Nevertheless, if the specific needs of developing countries are appropriately considered now as new generation reactors are being developed, and institutional arrangements based upon the fundamental principles of President Eisenhower's 1953 Atoms For Peace speech are followed, nuclear energy could be deployed in any country. From a technical perspective, reactor safety and accessibility of special nuclear material are primary concerns. Institutionally, plant and fuel ownership and waste management issues must be addressed. International safety and safeguards authority are prerequisites. While the IAEA's IMPRO program and the United States' Generation IV programs are focusing on technical solutions, institutional issues, particularly with regard to deployment in developing countries, are not receiving corresponding attention. Full-service, cradle-to-grave, nuclear electricity companies that retain custody and responsibility for the plant and materials, including waste, are one possible solution. Small modular reactors such as the Pebble Bed Modular Reactor could be ideal for such an arrangement. While waste disposal remains a major obstacle, this is already

  16. 77 FR 67809 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  17. 75 FR 13269 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  18. 75 FR 67351 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  19. 78 FR 76599 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of... that the Nuclear Energy Advisory Committee (NEAC) will be renewed for a two-year period beginning...

  20. 76 FR 67717 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  1. 77 FR 26274 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  2. 78 FR 70932 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  3. 78 FR 29125 - Nuclear Energy Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory Committee (NEAC)....

  4. Converting Energy to Medical Progress [Nuclear Medicine

    DOE R&D Accomplishments Database

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  5. Converting energy to medical progress [nuclear medicine

    SciTech Connect

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  6. 76 FR 19148 - PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... Station (HCGS) and Salem Nuclear Generating Station, Units 1 and 2 (Salem). Possible alternatives to the proposed action (license renewal) include no action and reasonable alternative energy sources. As discussed... for energy planning decision makers would be unreasonable. This recommendation is based on: (1)...

  7. Answers to Questions: Nuclear Energy.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Electricity is an increasingly important part of our everyday lives. Its versatility allows one to heat, cool, and light homes; cook meals; watch television; listen to music; power computers; make medical diagnosis and treatment; explore the vastness of space; and study the tiniest molecules. Nuclear energy, second to coal, surpasses natural gas,…

  8. Nuclear methods in environmental and energy research

    SciTech Connect

    Vogt, J R

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  9. Manufactured Doubt: The Campaign Against Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Rogers, N. L.

    2012-12-01

    Nuclear electricity is a CO2 free technology with a proven track record of large scale commercial deployment. For example, France generates 78% of its electrical power with nuclear plants. France has the lowest pre-tax cost of electricity in Europe at 4.75 eurocents per KWH and France is the world's largest exporter of electricity. There are large world reserves of uranium sufficient for hundreds of years, even without breeder technology. Additionally, thorium, another radioactive mineral is in even more plentiful supply. Although present-day nuclear technology has proven to be safe and reliable, waiting in the wings is new generation technology that promises great improvements in both safety and cost. Yet, there has been a calculated and sophisticated campaign in the later part of the 20th century to create doubt and fear concerning nuclear power. In the United States this campaign has essentially destroyed the nuclear industry. No new plants have been commissioned for decades. Leadership in the nuclear power field has been ceded to other countries. The great paradox is that the very organizations that express great alarm concerning CO2 emissions are the same organizations that led the campaign against nuclear power decades ago. Representatives of these organizations will say privately that they are taking a new look at nuclear power, but no major organization has reversed course and become a supporter of nuclear power. To do so would involve a loss of face and create doubts concerning the credibility of the organization. As recently as 2001 environmentalist lobbyists made great efforts to ensure that no credit could be given for nuclear power under the Kyoto accords and the associated clean development mechanism. They succeeded and nuclear power receives unfavorable treatment under the Kyoto accords even though it is a proven solution for reducing CO2 emissions. The technique used to destroy nuclear energy as a viable alternative in the United States had two

  10. Dynamic Analysis of Nuclear Energy System Strategies

    2004-06-17

    DANESS is an integrated process model for nuclear energy systems allowing the simulation of multiple reactors and fuel cycles in a continuously changing nuclear reactor park configuration. The model is energy demand driven and simulates all nuclear fuel cycle facilites, up to 10 reactors and fuels. Reactor and fuel cycle facility history are traced and the cost of generating energy is calculated per reactor and for total nuclear energy system. The DANESS model aims atmore » performing dynamic systems analysis of nuclear energy development used for integrated analysis of development paths for nuclear energy, parameter scoping for new nuclear energy systems, economic analysis of nuclear energy, government role analysis, and education.« less

  11. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  12. Science, Society, and America's Nuclear Waste: Ionizing Radiation, Unit 2. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 2 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to convey factual information relevant to radioactivity and radiation and relate that information both to the personal lives of students…

  13. Nuclear Waste Policy in the United States

    SciTech Connect

    Widder, Sarah H.; Calloway, Jr., Bond T.

    2010-07-01

    The current U.S. reactor fleet produces 2,100–2,400 ton/yr of spent nuclear fuel (SNF). After 50-plus years of nuclear power generation, 58,000 tons of SNF has accumulated in temporary storage at the reactor sites. How did we get where we are, and where do we go from here?

  14. What can nuclear energy do for society?

    NASA Technical Reports Server (NTRS)

    Rom, F. E.

    1971-01-01

    The utilization of nuclear energy and the predicted impact of future uses of nuclear energy are discussed. Areas of application in electric power production and transportation methods are described. It is concluded that the need for many forms of nuclear energy will become critical as the requirements for power to supply an increasing population are met.

  15. Nuclear reactions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Shyam, Radhey

    2016-05-01

    In the domain of Nuclear reactions at intermediate energies, the QCD coupling constant αs is large enough (~ 0.3 - 0.5) to render the perturbative calculational techniques inapplicable. In this regime the quarks are confined into colorless hadrons and it is expected that effective field theories of hadron interactions via exchange of hadrons, provide useful tools to describe such reactions. In this contribution we discuss the application of one such theory, the effective Lagrangian model, in describing the hadronic reactions at intermediate energies whose measurements are the focus of a vast international experimental program.

  16. NUCLEAR ENERGY SYSTEM COST MODELING

    SciTech Connect

    Francesco Ganda; Brent Dixon

    2012-09-01

    The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability

  17. Materials Challenges in Nuclear Energy

    SciTech Connect

    Zinkle, Steven J; Was, Gary

    2013-01-01

    Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

  18. Energy from the Atom. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 9-12 social studies and/or physical science classes, this 4-8 day unit focuses on four topics: (1) the background and history of atomic development; (2) two common types of nuclear reactors (boiling water and pressurized water reactors); (3) disposal of radioactive waste; and (4) the future of nuclear energy. Each topic…

  19. A Strategy for Nuclear Energy Research and Development

    SciTech Connect

    Ralph G. Bennett

    2008-12-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce the transportation sector’s dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy’s share will require a coordinated research effort—combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.

  20. United States nuclear tests, July 1945 through September 1992

    SciTech Connect

    Not Available

    1994-12-01

    This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missile launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or in the air.

  1. Choices: A Unit on Conflict and Nuclear War.

    ERIC Educational Resources Information Center

    Massachusetts Teachers Association, Boston.

    Ten lessons on the evolution of the nuclear arms race, the nature and consequences of using nuclear weapons, and new ways that conflicts among nations might be resolved are presented for the junior high school level. The unit contains age-appropriate materials to equip students with skills and knowledge to understand what choices can be made to…

  2. Universal Nuclear Energy Density Functional

    SciTech Connect

    Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-01

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

  3. Nuclear Energy, Nuclear Weapons Proliferation, and the Arms Race.

    ERIC Educational Resources Information Center

    Hollander, Jack, Ed.

    A symposium was organized to reexamine the realities of vertical proliferation between the United States and the Soviet Union and to place into perspective the horizontal proliferation of nuclear weapons throughout the world, including the possible role of commercial nuclear power in facilitating proliferation. The four invited symposium…

  4. Nuclear phenomena in low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  5. 77 FR 16278 - License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear Operations, Inc. AGENCY: Nuclear Regulatory Commission. ACTION: License renewal application; intent...

  6. Nuclear energy in Malaysia - closing the gaps

    NASA Astrophysics Data System (ADS)

    >Malaysian Nuclear Society (Mns,

    2013-06-01

    This article is prepared by the Malaysian Nuclear Society (MNS) to present the views of the Malaysian scientific community on the need for Malaysia to urgently upgrade its technical know-how and expertise to support the nuclear energy industry for future sustainable economic development of the country. It also present scientific views that nuclear energy will bring economic growth as well as technically sound industry, capable of supporting nuclear energy industry needs in the country, and recommend action items for timely technical upgrading of Malaysian expertise related to nuclear energy industry.

  7. Nuclear Powerplant Safety: Source Terms. Nuclear Energy.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    There has been increased public interest in the potential effects of nuclear powerplant accidents since the Soviet reactor accident at Chernobyl. People have begun to look for more information about the amount of radioactivity that might be released into the environment as a result of such an accident. When this issue is discussed by people…

  8. A Nuclear Arms Race Unit for Classroom Teachers.

    ERIC Educational Resources Information Center

    Totten, Sam

    1983-01-01

    This three- to eight-week unit encourages dialog among students concerning the myriad aspects of the nuclear weapons controversy. The unit is comprised of several areas: a preassessment quiz; a section on relevant vocabulary; an historical overview; a literary exploration; guest speakers; suggestions for personal involvement; and a major project.…

  9. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  10. Commercial Nuclear Reprocessing in the United States

    SciTech Connect

    Sherrill, Charles Leland; Balatsky, Galya Ivanovna

    2015-09-09

    The short presentation outline: Reprocessing Overview; Events leading up to Carter’s Policy; Results of the decision; Policy since Nuclear Nonproliferation Act. Conclusions reached: Reprocessing ban has become an easy and visible fix to the public concern about proliferation, but has not completely stopped proliferation; and, Reprocessing needs to become detached from political considerations, so technical research can continue, regardless of the policy decisions we decide to take.

  11. On the perception and acceptability of nuclear energy in Korea

    SciTech Connect

    Kim, Jong Seok

    1997-12-01

    With the widespread recognition of the lack of indigenous energy supplies, there continues to be a general agreement that nuclear energy is necessary and will increase in importance as an energy source for Korea. In spite of that, we are faced with the difficulties of opening new sites and siting new units beside reactors on the existing sites. It is of no use to say that enhancing public understanding could be a prerequisite for implementing the related policies as well as nuclear energy supplies. This paper examines the relationships among the responses identified in opinion polls and tries to predict how attitudes could be changed.

  12. Perspectives of Nuclear Energy for Human Development

    SciTech Connect

    Rouyer, Jean-Loup

    2002-07-01

    In this period of expectation and short term viewing, everyone has difficulties to draw long term perspectives. A positive global world vision of sustainable development gives confidence in the preparation of energy future in a moving international context. This presentation proposes to share such a long term vision inside which energy scenarios for nuclear development take their right place. It is founded on a specific analysis of an index of countries global development which is representative of a country efficiency. Human Development Index (HDI) is a composite international index recommended and calculated every year since 1990 by the United Nations Development Program (UNDP). This index is still very dependent of GNP, which ignores the disparities of revenues inside the country. That is why a Country Efficiency Index (CEI) has been defined to better represent the capacity of a country to utilize its resources for welfare of its inhabitants. CEI is a ratio of health and education levels to the capacity of the country to satisfy this welfare. CEI has been calculated for the 70 more populated countries of the world for the year 1997. CEI calculation has been also performed for European Countries, the United States, China and India on the period from 1965 to 1997. It is observed a growth of CEI. for France from 0.6 to 0.78, and from 0.7 to 0.85 for USA. In 1997, CEI of China was 0.46, and 0.38 for India. This index is a good tool to measure the progression of development of the countries and the related energy needs. Comparison of the evolutions of CEI of these different countries shows a similar positive trend with some delay between OECD countries and China or India. A positive scenario for the future is based on a similar curve for these developing countries with learning effect which produces development with less energy consumption. This simulation results however in energy needs that exceed fossil fuel today available resources in 2070. Ultimate fossil

  13. A Nuclear Energy Renaissance in the U.S.?

    SciTech Connect

    Kessler, Carol E.; Mahy, Heidi A.; Ankrum, Al; Buelt, James L.; Branch, Kristi M.; Phillips, Jon R.

    2008-01-01

    Is it time for a nuclear energy renaissance? Among other things, nuclear power is a carbon neutral source of base load power. With the growth in energy use expected over the next 20 years and the growing negative impacts of global climate changes, the cost of oil and gas, energy security and diversity concerns, and progress on advanced reactor designs, it may be the right time for nuclear power to enter a new age of growth. Asia and Russia are both planning for a nuclear renaissance. In Europe, Finland and France have both taken steps to pursue new nuclear reactors. U.S. utilities are preparing for orders of new reactors; one submitted a request to the U.S. Nuclear Regulatory Commission (NRC) to review its request to construct a new reactor on an existing site. What has the industry been doing since nuclear energy was birthed in the 1960s? In those days a bold new industry boasted that nuclear power in the United States was going to be “too cheap to meter”, but as we all know this did not come about for many reasons. Eventually, it became clear that industry had neglected to do its homework. Critiques of the industry were made on safety, security, environment, economic competitiveness (without government support), and nonproliferation. All of these factors need to be effectively addressed to promote the confidence and support of the public – without which a nuclear power program is not feasible.

  14. The Science of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2007-03-01

    The large literature describing the anomalous behavior attributed to cold fusion or low energy nuclear reactions has been critically described in a recently published book. Over 950 publications are evaluated allowing the phenomenon to be understood. A new class of nuclear reactions has been discovered that are able to generate practical energy without significant radiation or radioactivity. Edmund K Storms, The Science of Low Energy Nuclear Reactions, in press (2006). Also see: http://www.lenr-canr.org/StudentsGuide.htm .

  15. Nuclear Energy for Water Desalting, A Bibliography.

    ERIC Educational Resources Information Center

    Kuhns, Helen F., Comp.; And Others

    This bibliography includes 215 abstracts of publications on the use of nuclear energy in the production of potable water from saline or brackish waters. The uses of nuclear reactors, radioisotopic heat sources, and nuclear explosives are covered in relation to the various desalination methods available. Literature through April 1967 has been…

  16. Hadronic nuclear energy: An approach towards green energy

    SciTech Connect

    Das Sarma, Indrani B.

    2015-03-10

    Nuclear energy is undoubtedly the largest energy source capable of meeting the total energy requirements to a large extent in long terms. However the conventional nuclear energy involves production of high level of radioactive wastes which possesses threat, both to the environment and mankind. The modern day demand of clean, cheap and abundant energy gets fulfilled by the novel fuels that have been developed through hadronic mechanics/chemistry. In the present paper, a short review of Hadronic nuclear energy by intermediate controlled nuclear synthesis and particle type like stimulated neutron decay and double beta decay has been presented.

  17. Integrating Geospatial Technologies in an Energy Unit

    ERIC Educational Resources Information Center

    Kulo, Violet A.; Bodzin, Alec M.

    2011-01-01

    This article presents a design-based research study of the implementation of an energy unit developed for middle school students. The unit utilized Google Earth and a geographic information system (GIS) to support student understanding of the world's energy resources and foster their spatial thinking skills. Findings from the prototype study…

  18. 76 FR 55723 - Final Supplemental Environmental Impact Statement, Sequoyah Nuclear Plant Units 1 and 2 License...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... Final Supplemental Environmental Impact Statement, Sequoyah Nuclear Plant Units 1 and 2 License Renewal... (NEPA). TVA prepared the Final Supplemental Environmental Impact Statement, Sequoyah Nuclear Plant Units... existing environmental information and analyses for the continued operation of the Sequoyah Nuclear...

  19. Estimated United States Transportation Energy Use 2005

    SciTech Connect

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  20. State regulation of nuclear power and national energy policy

    SciTech Connect

    Moeller, J.W.

    1992-12-31

    In April 1983 and January 1984, the United States Supreme Court rendered two decisions that redefined the metes and bounds of federal preemption of commercial nuclear power plant regulation. In Pacific Gas & Electric Co. v. State Energy Resources Conservation and Development Commission (PG&E), the court decided that the Atomic Energy Act of 1954, as amended (the Act), did not preempt a California state law that established a moratorium on commercial nuclear power plant construction. In Silkwood v. Kerr-McGee Corporation, the Court also decided that the Act did not preempt a claim for damages under state tort law for radiological injuries suffered in a nuclear fuel facility regulated by the United States Nuclear Regulatory Commission (NRC). The two decisions redefined the extent of federal preemption, under the Act and other federal law, of nuclear plant regulation as well as the extend of state regulation of nuclear plants. In the eight years since PG&E and Silkwood, numerous other developments have eroded further the breadth of federal preemption of commercial nuclear power plant regulation. This Article explores the developments, since PG&E and Silkwood, that have expanded further the scope of state and local regulation of commercial nuclear power plants. Specifically, the Article first identifies the extent of state and local participation in nuclear power regulation provided by the Act and other federal loan relevant to commercial nuclear power. Second, it discusses in detail the PG&E and Silkwood decisions. The Article also considers the impact of seven specific developments on the legislative implementation of a national energy policy that contemplates a role for nuclear power.

  1. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    SciTech Connect

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  2. 75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... significant effect on the quality of the human environment (75 FR 3942, dated January 25, 2010). This... COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0 Background Carolina Power & Light Company (the licensee), now doing business as Progress Energy...

  3. Application of Nuclear Energy for Seawater Desalination: Design Concepts of Nuclear Desalination Plants

    SciTech Connect

    Faibish, R.S.; Konishi, T.; Gasparini, M.

    2002-07-01

    Nuclear energy is playing an important role in electricity generation, producing 16% of the world's electricity. However, most of the world's energy consumption is in the form of heat, in which case nuclear energy could also play an important role. In particular, process heat for seawater desalination using nuclear energy has been of growing interest to some Member States of the International Atomic Energy Agency over the past two decades. This growing interest stems from increasingly acute freshwater shortages in many arid and semi-arid zones around the world. Indeed, several national and international nuclear desalination demonstration programs are already under way or being planned. Of particular interest are projects for seawater nuclear desalination plants in coastal regions, where saline feed water can serve the dual purpose of cooling water for the nuclear reactor and as feed water for the desalination plant. In principle any nuclear reactor can provide energy (low-grade heat and/or electricity), as required by desalination processes. However, there are some additional requirements to be met under specific conditions in order to introduce nuclear desalination. Technical issues include meeting more stringent safety requirements (nuclear reactors themselves and nuclear-desalination integrated complexes in particular), and performance improvement of the integrated systems. Economic competitiveness is another important factor to be considered for a broader deployment of nuclear desalination. For technical robustness and economic competitiveness a number of design variants of coupling configurations of nuclear desalination integrated plant concepts are being evaluated. This paper identifies and discusses various factors, which support the attractiveness of nuclear desalination. It further summarizes some of the key approaches recommended for nuclear desalination complex design and gives an overview of various design concepts of nuclear desalination plants, which

  4. Nuclear Energy Assessment Battery. Form C.

    ERIC Educational Resources Information Center

    Showers, Dennis Edward

    This publication consists of a nuclear energy assessment battery for secondary level students. The test contains 44 multiple choice items and is organized into four major sections. Parts include: (1) a knowledge scale; (2) attitudes toward nuclear energy; (3) a behaviors and intentions scale; and (4) an anxiety scale. Directions are provided for…

  5. Designing the Nuclear Energy Attitude Scale.

    ERIC Educational Resources Information Center

    Calhoun, Lawrence; And Others

    1988-01-01

    Presents a refined method for designing a valid and reliable Likert-type scale to test attitudes toward the generation of electricity from nuclear energy. Discusses various tests of validity that were used on the nuclear energy scale. Reports results of administration and concludes that the test is both reliable and valid. (CW)

  6. A theological view of nuclear energy

    SciTech Connect

    Pollard, W.G.

    1982-07-01

    The author presents a theological perspective on nuclear power based on Israel's history, as revealed in the Hebrew Bible and the Alexandrian Greek Septuagint. Nuclear energy is described as God's energy choice for the whole of creation, which can be made as safe as traditional sources.

  7. Future Energy Technology. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 7-12 language arts, science, and social studies classes, this 5-7 day unit encourages students to investigate alternative energy sources through research. Focusing on geothermal energy, tide and ocean, fusion, wind, biomass, and solar energy as possible areas of consideration, the unit attempts to create an awareness of the…

  8. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP), respectively... (ISFSI), currently held by Calvert Cliffs Nuclear Power Plant, LLC as owner and licensed...

  9. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and...

  10. DOE`s nuclear energy plant optimization program

    SciTech Connect

    Harrison, D.; Savage, C.D.; Singh, B.P.

    1999-09-01

    In December 1997, the United States agreed to the Kyoto Protocol on Climate Change that outlines specific greenhouse gas emissions reduction requirements. A key element of this protocol is binding emissions targets and timetables. The Protocol calls for the United States to reach emissions targets 7% below 1990 emissions levels over the 5-yr period from 2008 to 2012. A key element to achieving this goal will be the continued safe and economic operation of the Nation`s 104 nuclear power plants. These plants provide >20% of the Nation`s electricity, and nearly one-half of the 50 states receive >25% of their electricity from nuclear power. DOE`s current Strategic Plan specifies that the United States maintain its nuclear energy option and improve the efficiency of existing plants as part of its energy portfolio, in the interest of national security. As a result, DOE proposed two new nuclear energy R and D programs for fiscal year (FY) 1999: the Nuclear Energy Research Initiative (NERI), a peer-reviewed, competitively selected R and D program in advanced concepts, and the Nuclear Energy Plant Optimization Program (NEPO). NERI was authorized and received initial funding of $19 million for its first year. NEPO was not funded in 1999 but has been reintroduced in the FY 2000 budget request. NEPO will be a jointly funded R and D program with industry through the Electric Power Research Institute (EPRI) and will address those issues that could hinder continued safe operation of the Nation`s operating nuclear power plants. The FY 2000 funding request to Congress for NEPO is $5 million.

  11. Evaluating Russian space nuclear reactor technology for United States applications

    SciTech Connect

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-08-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch.

  12. Teachers Environmental Resource Unit: Energy and Power.

    ERIC Educational Resources Information Center

    Bemiss, Clair W.

    Problems associated with energy production and power are studied in this teacher's guide to better understand the impact of man's energy production on the environment, how he consumes energy, and in what quantities. The resource unit is intended to provide the teacher with basic information that will aid classroom review of these problems. Topics…

  13. Before it's too late: a scientist's case for nuclear energy

    SciTech Connect

    Cohen, B.L.

    1983-01-01

    Up to now the truth about nuclear energy has been consistently distorted to the public. Here a scientist--unaffiliated with the nuclear industry or the government, and the 1981 recipient of the American Physical Society Bonner Prize for basic research in nuclear physics--explains to the layman how dangerous radiation from a nuclear reactor really is; what actually happened at Three Mile Island; how risks of different sources of energy compare with risks of everyday life; why nuclear waste is very much less hazardous than the waste from coal burning or solar energy; what scientists truly think about radiation hazards, as revealed by a new poll published for the first time; and how time is running out for an inexpensive nuclear program. What originated as a scientific question has turned into a political controversy steeped in propaganda. If nothing is done soon to promote a nuclear energy program, electricity in the United States will cost twice as much as it does in Europe.

  14. An Atlas of Nuclear Energy. A Non-Technical World Portrait of Commercial Nuclear Energy.

    ERIC Educational Resources Information Center

    Ball, John M.

    This atlas is a nontechnical presentation of the geography and history of world commercial nuclear power with particular emphasis on the United States. Neither pro- nor antinuclear, it presents commercial nuclear power data in a series of specially prepared, easily read maps, tables, and text. The first section (United States) includes information…

  15. India's baseline plan for nuclear energy self-sufficiency.

    SciTech Connect

    Bucher, R .G.; Nuclear Engineering Division

    2009-01-01

    United Nations Conference on the Peaceful Uses of Atomic Energy in 1958. The paper described a three stage plan for a sustainable nuclear energy program consistent with India's limited uranium but abundant thorium natural resources. In the first stage, natural uranium would be used to fuel graphite or heavy water moderated reactors. Plutonium extracted from the spent fuel of these thermal reactors would drive fast reactors in the second stage that would contain thorium blankets for breeding uranium-233 (U-233). In the final stage, this U-233 would fuel thorium burning reactors that would breed and fission U-233 in situ. This three stage blueprint still reigns as the core of India's civil nuclear power program. India's progress in the development of nuclear power, however, has been impacted by its isolation from the international nuclear community for its development of nuclear weapons and consequent refusal to sign the Nuclear Nonproliferation Treaty (NPT). Initially, India was engaged in numerous cooperative research programs with foreign countries; for example, under the 'Atoms for Peace' program, India acquired the Cirus reactor, a 40 MWt research reactor from Canada moderated with heavy water from the United States. India was also actively engaged in negotiations for the NPT. But, on May 18, 1974, India conducted a 'peaceful nuclear explosion' at Pokharan using plutonium produced by the Cirus reactor, abruptly ending the era of international collaboration. India then refused to sign the NPT, which it viewed as discriminatory since it would be required to join as a non-nuclear weapons state. As a result of India's actions, the Nuclear Suppliers Group (NSG) was created in 1975 to establish guidelines 'to apply to nuclear transfers for peaceful purposes to help ensure that such transfers would not be diverted to unsafeguarded nuclear fuel cycle or nuclear explosive activities. These nuclear export controls have forced India to be largely self-sufficient in all nuclear

  16. Density dependence of nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Behera, B.; Routray, T. R.; Tripathy, S. K.

    2016-10-01

    High density behavior of nuclear symmetry energy is studied on the basis of the stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral n + p + e + μ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars.

  17. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S

  18. Current status of nuclear power in the United States and around the world.

    PubMed

    McKlveen, J W

    1990-09-01

    Nuclear energy's share of the world electricity market has been growing over the past 35 years. In 1989, eight generating units entered commercial operation abroad and three new units were licensed in the U.S. In early 1990, Mexico became the 26th country to produce electricity from nuclear power. Currently the 426 operating reactors supply one sixth of the world's total electrical capacity. Fourteen countries have now operated nuclear plants for 20 or more years. Since 1980, France has been the leader in the use of nuclear power and currently generates three quarters of its electricity from 54 nuclear plants. The U.S. has 112 nuclear plants, the largest number of any country in the world. These plants satisfy almost 20 percent of U.S. electrical energy requirements. Last year Three Mile Island, the would-be icon for everything that is wrong with the nuclear industry was rated as the most efficient nuclear plant in the world. The worldwide trend toward acceptance of nuclear is improving slightly, but many political and societal issues need to be resolved. Whereas recent polls indicate that a majority of the people realize nuclear must be a major contributor to the energy mix of the future, many are reluctant to support the technology until the issue of waste disposal has been resolved. Fears of another Chernobyl, lack of capital, and a new anti-nuclear campaign by Greenpeace will keep the nuclear debate alive in many countries. Additional stumbling blocks in the U.S. include the need to develop a new generation of improved reactor designs which emphasize passive safety features, standardized designs and a stream-lined federal licensing process. Nuclear power is really not dead. Even environmentalists are starting to give it another look. A nuclear renaissance will occur in the U.S. How soon or under what conditions remain to be seen. The next crisis in the U.S. will not be a shortage of energy, rather a shortage of electricity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID

  19. Low Energy Nuclear Reactions: 2007 Update

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  20. Nuclear Energy: Benefits Versus Risks

    ERIC Educational Resources Information Center

    Jordan, Walter H.

    1970-01-01

    Discusses the benefits as well as the risks of nuclear-power plants. Suggests that critics who dwell on the risks to the public from nuclear-power plants should compare these risks with the present hazards that would be eliminated. Bibliography. (LC)

  1. International Energy Agency and global energy-security matters. Hearing before the Subcommittee on Energy, Nuclear Proliferation, and Government Processes of the Committee on Governmental Affairs, United States Senate, Ninety-Seventh Congress, First Session, July 14, 1981

    SciTech Connect

    Not Available

    1982-01-01

    Testimony on the role of the International Energy Agency and the value of the Emergency Preparedness Act of 1980, as well as other initiatives, reviewed the response of world oil markets in terms of global energy security. The testimony focused on the effects of the Iran-Iraq war, current oil glut, Windfall profit Tax, and pricing policies. The eight witnesses presented the views of several federal and international agencies and academic institutes. Additional material submitted for the record follows their testimony. (DCK)

  2. 75 FR 44292 - Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ...-AA90) published in the Federal Register on April 26, 1991 (56 FR 18997); and (C) The Nuclear Energy... contrary to the rationale for rulemaking, as discussed in 56 FR 18997. On October 26 and December 2, 2009... Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Issuance of...

  3. Basic Teaching Units, BTU's on Energy. Nebraska Energy Conservation Plan.

    ERIC Educational Resources Information Center

    Lay, Gary A., Ed.; McCurdy, Donald, Ed.

    This collection of 21 teaching units is designed for use in energy education within various disciplines of the secondary curriculum. Each unit is designed to stand alone. Suggested teaching times range from five to fifteen days. No particular order of presentation is implied. Each unit is organized as follows: abstract, recommended level, time…

  4. The radioactive waste debate in the United States and nuclear technology for peaceful purposes

    NASA Astrophysics Data System (ADS)

    Tehan, Terrence Norbert

    Many ethical, cultural, and economic concerns have accompanied the rapid growth of Western technology. Nuclear technology in particular has experienced considerable opposition because of its perceived dangers, especially disposal of atomic waste. While this field of science remains in its infancy, many legal, political and ecological groups oppose any further application of nuclear technology--including the significant medical, environmental, and economic benefits possible from a safe and responsible application of nuclear energy. Complete and objective knowledge of this technology is needed to balance a healthy respect for the danger of atomic power with its many advantages. This study focuses on one aspect of nuclear technology that has particularly aroused political and social controversy: nuclear waste. Finding ways of disposing safely of nuclear waste has become an extremely volatile issue because of the popular misconception that there is no permanent solution to this problem. This investigation will demonstrate that the supposedly enduring waste problem has been resolved in several industrial countries that now outstrip the United States in safe commercial applications of nuclear science. This dissertation offers a reasoned and objective contribution to the continuing national debate on the peaceful uses of nuclear technology. This debate becomes more crucial as the nation seeks a dependable substitute for the non-renewable sources of energy now rapidly being exhausted.

  5. The Future of Energy from Nuclear Fission

    SciTech Connect

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of these five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel

  6. On the Role of Nuclear Energy

    ERIC Educational Resources Information Center

    Parsegian, V. Lawrence

    1974-01-01

    The author elaborates on the thesis that much of the confusion and argument about the role of nuclear energy in meeting the energy needs of the nation and the world is caused by failure to place the known facts in perspective with respect to time, to hazards that accompany the use of energy in any form, to economics, and to ultimate limitations in…

  7. Nuclear material control and accounting safeguards in the United States

    SciTech Connect

    Woltermann, H.A.; Rudy, C.R.; Rakel, D.A.; DeVer, E.A.

    1982-07-01

    Material control and accounting (MC and A) of special nuclear material (SNM) must supplement physical security to protect SNM from unlawful use such as terrorist activities. This article reviews MC and A safeguards of SNM in the United States. The following topics are covered: a brief perspective and history of MC and A safeguards, current MC and A practices, measurement methods for SNM, historical MC and A performance, a description of near-real-time MC and A systems, and conclusions on the status of MC and A in the United States.

  8. Nuclear energy for the third millennium

    SciTech Connect

    Teller, E.

    1997-10-01

    The major energy sources of today are expected to last for only a small fraction of the millennium starting three years hence. In the plans of most people, nuclear energy has been ruled out for four separate reasons: 1. The danger of radioactivity from a reactor accident or from reactor products during a long period after reactor shutdown; 2. The proposed fuels, U-235 and also Pu-239, as obtained by presently available procedures will serve only for a limited duration; 3. Energy from nuclear reactors will be more expensive than costs of present alternatives; 4. The possibility of misusing the products for military purposes is an unacceptable danger. The development described below 1 attempts to meet all four objections. Specifically, we propose a structure as an example of future reactors that is deployed two hundred meters underground in loose and dry earth. The reactor is designed to function for thirty years, delivering electrical power on demand up to a level of thousand electrical megawatts. From the time that the reactor is started to the time of its shutdown thirty years later, the functioning is to be completely automatic. This is an obviously difficult condition to fulfill. The most important factor in making it possible is to design and operate the reactor without moving mechanical parts. At the start, the reactor functions on thermal neutrons within a structure containing uranium enriched in U-235 or having an addition of plutonium. That part of the reactor is to deliver energy for approximately one year after which a neighboring portion of the reactor containing thorium has been converted into Th-233 which rather rapidly decays into fissile U-233. This part of the assembly works on fission by fast neutrons. It will heat-up if insufficient thermal energy is withdrawn from the reactor`s core, under the negative feedback action of engineered-in thermostats. Indeed, these specifically designed thermostatic units absorb neutrons if excessive reactor core

  9. The nuclear energy outlook--a new book from the OECD nuclear energy agency.

    PubMed

    Yoshimura, Uichiro

    2011-01-01

    This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation.

  10. The nuclear energy outlook--a new book from the OECD nuclear energy agency.

    PubMed

    Yoshimura, Uichiro

    2011-01-01

    This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation. PMID:21399406

  11. Proposal for broader United States-Russian transparency of nuclear arms reductions

    SciTech Connect

    Percival, C.M.; Ingle, T.H.; Bieniawski, A.J.

    1995-07-01

    During the January 1994 Summit Presidents Clinton and Yeltsin agreed on the goal of ensuring the ``transparency and irreversibility`` of the nuclear arms reduction process. As a result, negotiations are presently underway between the United States Government and the Russian Federation to confirm the stockpiles of plutonium and highly enriched uranium removed from nuclear weapons. In December 1994 the United States presented a paper to the Russian Federation proposing additional measures to provide broader transparency of nuclear arms reduction. The US Department of Energy is studying the implementation of these broader transparency measures at appropriate DOE facilities. The results of the studies include draft protocols for implementation, assessments of the implementation procedures and the impacts on the facilities and estimates of the cost to implement these measures at various facilities.

  12. Intermediate-energy nuclear chemistry workshop

    SciTech Connect

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  13. Public Acceptance of Nuclear Energy in Mexico

    SciTech Connect

    Ramirez-Sanchez, Jose R.; Alonso, Gustavo; Palacios, H. Javier

    2006-07-01

    The nuclear energy is attracting renewed interest of public and policy makers due to his potential role in long term strategies aiming to reduce the risk of global warming and in a more general, to carry out sustainable policies, however, any project of nuclear nature arise concerns about the risks associated with the release of radioactivity during accident conditions, radioactive waste disposal and nuclear weapons proliferation. Then in light of the likeliness for a new nuclear project in Mexico, is necessary to design a strategy to improve the social acceptance of nuclear power. This concern is been boarding since the environmental and economic point of view. The information that can change the perception of nuclear energy towards increase public acceptance, should be an honest debate about the benefits of nuclear energy, of course there are questions and they have to be answered, but in a realistic and scientific way: So thinking in Mexico as a first step it is important to communicate to the government entities and political parties that nuclear energy is a proven asset that it is emission free and safe. Of course besides the guarantee of a proven technology, clean and safe relies the economic fact, and in Mexico this could be the most important aspect to communicate to key people in government. Based in the Laguna Verde survey it is clear that we have to find the adequate means to distribute the real information concerning nuclear technology to the public, because the results shows that Mexican people does not have complete information about nuclear energy, but public can support it when they have enough information. From the IAEA study we can say that in Mexico public acceptance of nuclear energy it s not so bad, is the highest percentage of acceptance of nuclear technology for health, considering benefits to the environment Mexican opposition to build new plants is the second less percentage, and generally speaking 60% of the people accept somehow nuclear

  14. Advanced nuclear energy analysis technology.

    SciTech Connect

    Gauntt, Randall O.; Murata, Kenneth K.; Romero, Vicente JosÔe; Young, Michael Francis; Rochau, Gary Eugene

    2004-05-01

    A two-year effort focused on applying ASCI technology developed for the analysis of weapons systems to the state-of-the-art accident analysis of a nuclear reactor system was proposed. The Sandia SIERRA parallel computing platform for ASCI codes includes high-fidelity thermal, fluids, and structural codes whose coupling through SIERRA can be specifically tailored to the particular problem at hand to analyze complex multiphysics problems. Presently, however, the suite lacks several physics modules unique to the analysis of nuclear reactors. The NRC MELCOR code, not presently part of SIERRA, was developed to analyze severe accidents in present-technology reactor systems. We attempted to: (1) evaluate the SIERRA code suite for its current applicability to the analysis of next generation nuclear reactors, and the feasibility of implementing MELCOR models into the SIERRA suite, (2) examine the possibility of augmenting ASCI codes or alternatives by coupling to the MELCOR code, or portions thereof, to address physics particular to nuclear reactor issues, especially those facing next generation reactor designs, and (3) apply the coupled code set to a demonstration problem involving a nuclear reactor system. We were successful in completing the first two in sufficient detail to determine that an extensive demonstration problem was not feasible at this time. In the future, completion of this research would demonstrate the feasibility of performing high fidelity and rapid analyses of safety and design issues needed to support the development of next generation power reactor systems.

  15. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for...

  16. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for...

  17. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for...

  18. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for...

  19. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for...

  20. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would

  1. Novel Nuclear Powered Photocatalytic Energy Conversion

    SciTech Connect

    White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

    2005-08-29

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  2. A perfect match: Nuclear energy and the National Energy Strategy

    SciTech Connect

    Not Available

    1990-11-01

    In the course of developing the National Energy Strategy, the Department of Energy held 15 public hearings, heard from more than 375 witnesses and received more than 1000 written comments. In April 1990, the Department published an Interim Report on the National Energy Strategy, which compiles those public comments. The National Energy Strategy must be based on actual experience and factual analysis of our energy, economic and environmental situation. This report by the Nuclear Power Oversight committee, which represents electric utilities and other organizations involved in supplying electricity from nuclear energy to the American people, provides such an analysis. The conclusions here are based on hard facts and actual worldwide experience. This analysis of all the available data supports -- indeed, dictates -- expanded reliance on nuclear energy in this nation's energy supply to achieve the President's goals. 33 figs.

  3. Nuclear Energy Encore in Sweden.

    ERIC Educational Resources Information Center

    Fishlock, David

    1991-01-01

    This article traces Sweden's decision to indefinitely delay their previous plan to phase out nuclear power generators which had been scheduled for 1995. Discussed as major factors in this delay are the excellent safety record of current reactors and the unacceptable economic, as well as environmental, consequences of switching to other power…

  4. 75 FR 3942 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental Assessment...), for operation of the Shearon Harris Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North... Environmental Impact Statement for License Renewal of Nuclear Plants: Regarding Shearon Harris Nuclear......

  5. 76 FR 39134 - ZIONSOLUTIONS, LLC; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... COMMISSION ZIONSOLUTIONS, LLC; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt... licensing basis requirements previously applicable to the nuclear power units and associated...

  6. Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it

    SciTech Connect

    1996-01-01

    In the grand scheme of things we are a little more than halfway through the cycle of splitting the atom for weapons purposes. If we visualize this historic cycle as the full sweep of a clockface, at zero hour we would find the first nuclear chain reaction by Enrico Fermi, followed immediately by the Manhattan Project and the explosion of the first atomic bombs. From two o`clock until five, the United States built and ran a massive industrial complex that produced tens of thousands of nuclear weapons. At half past, the Cold War ended, and the United States shut down most of its nuclear weapons factories. The second half of this cycle involves dealing with the waste and contamination from nuclear weapons production - a task that had, for the most part, been postponed into the indefinite future. That future is now upon us. Dealing with the environmental legacy of the Cold War is in many ways as big a challenge for us today as the building of the atomic bomb was for the Manhattan Project pioneers in the 1940s. Our challenges are political and social as well as technical, and we are meeting those challenges. We are reducing risks, treating wastes, developing new technologies, and building democratic institutions for a constructive debate on our future course.

  7. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    SciTech Connect

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  8. Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it

    NASA Astrophysics Data System (ADS)

    1995-01-01

    This book describes environmental, safety, and health problems throughout the nuclear weapons complex and what the Department of Energy is doing to address them. Because of the secrecy that until recently surrounded nuclear weapons, many citizens today are unaware of how and where nuclear weapons were made and the resulting problems. The intention of this book it to help foster better public understanding of some of the issues concerning the nuclear legacy of the Cold War so as to help hasten progress as the DOE moves ahead on resolving these problems. Chapter 1 is an overview and a summary, including a brief history of the Department's nuclear weapons complex. Chapter 2 describes nuclear warhead production for uranium mining to final assembly to give a sense of the scale and complexity of nuclear weapons production and to characterize the sources and varieties of wastes and contamination. Chapters 3 and 4 look at the wastes and the contamination left by the Cold War and the progress and plans for solving these problems. Chapter 5 provides and international perspective on the legacy of nuclear weapons production. Chapter 6 describes the engineering and institutional challenges faced by the DOE as it embarks on new missions. Chapter 7 presents some of the long-term issues our nation faces as we come to terms with the legacy of the Cold War. The book ends with a glossary of terms and a list of books and reports that provide additional information about the nuclear weapons complex and the Department's plans for its cleanup.

  9. Reframing nuclear power in the UK energy debate: nuclear power, climate change mitigation and radioactive waste.

    PubMed

    Bickerstaff, K; Lorenzoni, I; Pidgeon, N F; Poortinga, W; Simmons, P

    2008-04-01

    In the past decade, human influence on the climate through increased use of fossil fuels has become widely acknowledged as one of the most pressing issues for the global community. For the United Kingdom, we suggest that these concerns have increasingly become manifest in a new strand of political debate around energy policy, which reframes nuclear power as part of the solution to the need for low-carbon energy options. A mixed-methods analysis of citizen views of climate change and radioactive waste is presented, integrating focus group data and a nationally representative survey. The data allow us to explore how UK citizens might now and in the future interpret and make sense of this new framing of nuclear power--which ultimately centers on a risk-risk trade-off scenario. We use the term "reluctant acceptance" to describe how, in complex ways, many focus group participants discursively re-negotiated their position on nuclear energy when it was positioned alongside climate change. In the concluding section of the paper, we reflect on the societal implications of the emerging discourse of new nuclear build as a means of delivering climate change mitigation and set an agenda for future research regarding the (re)framing of the nuclear energy debate in the UK and beyond.

  10. A Nuclear Energy Elective for "Ungineers"

    ERIC Educational Resources Information Center

    Long, R. L.; And Others

    1975-01-01

    Describes a course in the technology of nuclear energy which responds to the immediate concerns of students in areas such as environmental effects, weapons effects, national energy needs, and medical and forensic applications. Includes a course outline and description of appropriate textbooks, (GS)

  11. Nuclear Energy for Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2010-01-01

    Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future

  12. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    SciTech Connect

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  13. Energy: A Guide to Organizations and Information Resources in the United States.

    ERIC Educational Resources Information Center

    Center for California Public Affairs, Claremont.

    A central source of information on the key organizations concerned with energy in the United States has been compiled. Chapter 2 covers organizations involved with broad questions of energy policy; Chapters 2-6 describe organizations having to do with sources of energy: oil, natural gas, coal, water power, nuclear fission, and alternate sources;…

  14. Nuclear and gravitational energies in stars

    SciTech Connect

    Meynet, Georges; Ekström, Sylvia; Courvoisier, Thierry

    2014-05-09

    The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M < 8 M{sub ⊙}) extract roughly 90 times more energy from their nuclear reservoir than from their gravitational one, while massive stars (M > 8 M{sub ⊙}), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

  15. Coal and nuclear power: Illinois' energy future

    SciTech Connect

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  16. [The Chinese nuclear test and 'atoms for peace' as a measure for preventing nuclear armament of Japan: the nuclear non-proliferation policy of the United States and the introduction of light water reactors into Japan, 1964-1968].

    PubMed

    Yamazaki, Masakatsu

    2014-07-01

    Japan and the United States signed in 1968 a new atomic energy agreement through which US light-water nuclear reactors, including those of the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, were to be introduced into Japan. This paper studies the history of negotiations for the 1968 agreement using documents declassified in the 1990s in the US and Japan. After the success of the Chinese nuclear test in October 1964, the United States became seriously concerned about nuclear armament of other countries in Asia including Japan. Expecting that Japan would not have its own nuclear weapons, the US offered to help the country to demonstrate its superiority in some fields of science including peaceful nuclear energy to counter the psychological effect of the Chinese nuclear armament. Driven by his own political agenda, the newly appointed Prime Minister Eisaku Sato responded to the US expectation favorably. When he met in January 1965 with President Johnson, Sato made it clear that Japan would not pursue nuclear weapons. Although the US continued its support after this visit, it nevertheless gave priority to the control of nuclear technology in Japan through the bilateral peaceful nuclear agreement. This paper argues that the 1968 agreement implicitly meant a strategic measure to prevent Japan from going nuclear and also a tactic to persuade Japan to join the Nuclear Non -Proliferation Treaty.

  17. [The Chinese nuclear test and 'atoms for peace' as a measure for preventing nuclear armament of Japan: the nuclear non-proliferation policy of the United States and the introduction of light water reactors into Japan, 1964-1968].

    PubMed

    Yamazaki, Masakatsu

    2014-07-01

    Japan and the United States signed in 1968 a new atomic energy agreement through which US light-water nuclear reactors, including those of the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, were to be introduced into Japan. This paper studies the history of negotiations for the 1968 agreement using documents declassified in the 1990s in the US and Japan. After the success of the Chinese nuclear test in October 1964, the United States became seriously concerned about nuclear armament of other countries in Asia including Japan. Expecting that Japan would not have its own nuclear weapons, the US offered to help the country to demonstrate its superiority in some fields of science including peaceful nuclear energy to counter the psychological effect of the Chinese nuclear armament. Driven by his own political agenda, the newly appointed Prime Minister Eisaku Sato responded to the US expectation favorably. When he met in January 1965 with President Johnson, Sato made it clear that Japan would not pursue nuclear weapons. Although the US continued its support after this visit, it nevertheless gave priority to the control of nuclear technology in Japan through the bilateral peaceful nuclear agreement. This paper argues that the 1968 agreement implicitly meant a strategic measure to prevent Japan from going nuclear and also a tactic to persuade Japan to join the Nuclear Non -Proliferation Treaty. PMID:25296517

  18. 75 FR 14638 - FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... COMMISSION FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and...Energy Nuclear Operating Company (FENOC, the licensee), for operation of the Perry Nuclear Power Plant... Manager, Plant Licensing Branch III-2, Division of Operating Reactor Licensing, Office of Nuclear...

  19. ALARA Overview System at Crystal River Unit 3 Nuclear Station.

    PubMed

    Kline, K B; Cope, W B

    1995-08-01

    During the Spring of 1994 the Health Physics Department at Florida Power Company used video and audio equipment to support remote health physics coverage for their Crystal River Unit 3 refueling outage (Refuel 9). The system consisted of eight cameras with audio interface linked to a control center located in a low-dose area. The system allowed health physics personnel to monitor steam generator and refueling activities with minimum exposure in high-dose areas, cutting by half the dose from the previous outage. B&W Nuclear Technologies provided complete setup, maintenance and tear-down, as well as assuming responsibilities for contaminated video and audio equipment. PMID:7622378

  20. Nuclear structure at intermediate energies. Progress report

    SciTech Connect

    Bonner, B.E.; Mutchler, G.S.

    1992-07-15

    We report here oil the progress that we made for the nine months beginning October 1, 1991 for DOE Grant No. DE-FG05-87ER40309. The report covers the third year of a three year grant. Since we are submitting an accompanying Grant Renewal Proposal, we provide in this report more background information than usual for the different projects. The theme that unites the experiments undertaken by the Bonner Lab Medium Energy Group is a determination to understand in detail the many facets and manifestations of the strong interaction, that which is now referred to as nonperturbative QCD. Whether we are investigating the question of just what does carry the spin of baryons, or the extent of the validity of the SU(6) wavefunctions for the excited hyperons (as will be measured in our CEBAF experiment), or questions associated with the formation of a new state of matter predicted by QCD (the subject of AGS {bar p} experiment E854, AGS heavy ion experiment E810, as-well as the approved STAR experiment at RHIC), - all these projects share this common goal. FNAL E683 may well open a new field of investigation in nuclear physics: That of just how colored quarks and gluons interact with nuclear matter as they traverse nuclei of different-sizes. In most all of the experiments mentioned, above, the Bonner Lab Group is playing major leadership roles as well as doing a big fraction of the hard work that such experiments require. We use many of the facilities that are available to the intermediate energy physics community and we use our expertise to design and fabricate the detectors and instrumentation that are required to perform the measurements which we decide to do. The format we follow in the Progress Report is,to provide a concise, but fairly complete write-up on each project. The publications listed in Section In give much greater detail on many of the projects. The aim in this report is to focus on the physics goals, the results, and their significance.

  1. State-induced technological change in the United States nuclear power industry 1947-1987

    SciTech Connect

    Bischak, G.A.

    1988-01-01

    The development of the nuclear power industry in the United States was the consequence of sustained state economic intervention to induce technological change and to promote the private development of civilian nuclear power. State planning, research and development funding, safety regulation and technology transfers from the military to private sector, are the principal instruments by which the state-induced technological change in nuclear power. This dissertation presents a historical and empirical analysis of the political and economic determinants of state-induced technical change. The first three chapters present an economic history showing that state research and regulatory policies determined the direction of technical change through regulation-induced innovations, while the competitive dynamics of the private-sector nuclear development determined the rate of technological change in the nuclear power industry. The next chapter presents an empirical study based on the results of a simultaneous multiple regression analysis of the inter-industry determinants of federal research intensity in the nuclear power industry and 25 other manufacturing and energy industries. A final chapter develops another two-equation simultaneous model to estimate the determinants of federal research intensity in the nuclear industry from 1961 to 1983.

  2. Accelerator Driven Nuclear Energy: The Thorium Option

    SciTech Connect

    Raja, Rajendran

    2009-03-18

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.

  3. The development of nuclear energy in the Philippines

    SciTech Connect

    Aleta, C. )

    1992-01-01

    The paper traces the development of nuclear energy in the Philippines and outlines the program on the peaceful uses of nuclear energy in the country as well as the problems and prospects of nuclear energy development. Nuclear power is at a standstill but the other areas of nuclear energy development are underway. The projects on the application of nuclear energy in agriculture, industry, public health and safety, are being pursued. Technology transfer to end users is sometimes hampered by public acceptance issues, such as irradiated food being believed to become radioactive, dislike with anything associated with radiation, and plain inherent fear of nuclear energy.

  4. Renewable energy atlas of the United States.

    SciTech Connect

    Kuiper, J.A.; Hlava, K.Greenwood, H.; Carr, A.

    2012-05-01

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. It is designed for the U.S. Department of Agriculture Forest Service (USFS) and other federal land management agencies to evaluate existing and proposed renewable energy projects. Much of the content of the Atlas was compiled at Argonne National Laboratory (Argonne) to support recent and current energy-related Environmental Impact Statements and studies, including the following projects: (1) West-wide Energy Corridor Programmatic Environmental Impact Statement (PEIS) (BLM 2008); (2) Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2010); (3) Supplement to the Draft PEIS for Solar Energy Development in Six Southwestern States (DOE/BLM 2011); (4) Upper Great Plains Wind Energy PEIS (WAPA/USFWS 2012, in progress); and (5) Energy Transport Corridors: The Potential Role of Federal Lands in States Identified by the Energy Policy Act of 2005, Section 368(b) (in progress). This report explains how to add the Atlas to your computer and install the associated software; describes each of the components of the Atlas; lists the Geographic Information System (GIS) database content and sources; and provides a brief introduction to the major renewable energy technologies.

  5. A Technology Roadmap for Generation IV Nuclear Energy Systems Executive Summary

    SciTech Connect

    2003-03-01

    To meet future energy needs, ten countries--Argentina, Brazil, Canada, France, Japan, the Republic of Korea, the Republic of South Africa, Switzerland, the United Kingdom, and the United States--have agreed on a framework for international cooperation in research for an advanced generation of nuclear energy systems, known as Generation IV. These ten countries have joined together to form the Generation IV International Forum (GIF) to develop future-generation nuclear energy systems that can be licensed, constructed, and operated in a manner that will provide competitively priced and reliable energy products while satisfactorily addressing nuclear safety, waste, proliferation, and public perception concerns. The objective for Generation IV nuclear energy systems is to be available for international deployment before the year 2030, when many of the world's currently operating nuclear power plants will be at or near the end of their operating licenses.

  6. Nuclear energy release from fragmentation

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Souza, S. R.; Tsang, M. B.; Zhang, Feng-Shou

    2016-08-01

    It is well known that binary fission occurs with positive energy gain. In this article we examine the energetics of splitting uranium and thorium isotopes into various numbers of fragments (from two to eight) with nearly equal size. We find that the energy released by splitting 230,232Th and 235,238U into three equal size fragments is largest. The statistical multifragmentation model (SMM) is applied to calculate the probability of different breakup channels for excited nuclei. By weighing the probability distributions of fragment multiplicity at different excitation energies, we find the peaks of energy release for 230,232Th and 235,238U are around 0.7-0.75 MeV/u at excitation energy between 1.2 and 2 MeV/u in the primary breakup process. Taking into account the secondary de-excitation processes of primary fragments with the GEMINI code, these energy peaks fall to about 0.45 MeV/u.

  7. 76 FR 23798 - Nuclear Energy Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee; Meeting AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear Energy Advisory...

  8. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  9. 75 FR 16523 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... COMMISSION FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC, the licensee) is the holder of Facility Operating License... M.S. Fertel, Nuclear Energy Institute). The licensee's request for an exemption is...

  10. Nuclear Energy Infrastructure Database Description and User’s Manual

    SciTech Connect

    Heidrich, Brenden

    2015-11-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE’s infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from a variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.

  11. Influence of nuclear power unit on decreasing emissions of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Stanek, Wojciech; Szargut, Jan; Kolenda, Zygmunt; Czarnowska, Lucyna

    2015-03-01

    The paper presents a comparison of selected power technologies from the point of view of emissions of greenhouse gases. Such evaluation is most often based only on analysis of direct emissions from combustion. However, the direct analysis does not show full picture of the problem as significant emissions of GHG appear also in the process of mining and transportation of fuel. It is demonstrated in the paper that comparison of power technologies from the GHG point of view has to be done using the cumulative calculus covering the whole cycle of fuel mining, processing, transportation and end-use. From this point of view coal technologies are in comparable level as gas technologies while nuclear power units are characterised with lowest GHG emissions. Mentioned technologies are compared from the point of view of GHG emissions in full cycle. Specific GHG cumulative emission factors per unit of generated electricity are determined. These factors have been applied to simulation of the influence of introduction of nuclear power units on decrease of GHG emissions in domestic scale. Within the presented simulations the prognosis of domestic power sector development according to the Polish energy policy till 2030 has been taken into account. The profitability of introduction of nuclear power units from the point of view of decreasing GHG emissions has been proved.

  12. An approach to a self-consistent nuclear energy system

    SciTech Connect

    Fujii-e, Yoichi ); Arie, Kazuo; Endo, Hiroshi )

    1992-01-01

    A nuclear energy system should provide a stable supply of energy without endangering the environment or humans. If there is fear about exhausting world energy resources, accumulating radionuclides, and nuclear reactor safety, tension is created in human society. Nuclear energy systems of the future should be able to eliminate fear from people's minds. In other words, the whole system, including the nuclear fuel cycle, should be self-consistent. This is the ultimate goal of nuclear energy. If it can be realized, public acceptance of nuclear energy will increase significantly. In a self-consistent nuclear energy system, misunderstandings between experts on nuclear energy and the public should be minimized. The way to achieve this goal is to explain using simple logic. This paper proposes specific targets for self-consistent nuclear energy systems and shows that the fast breeder reactor (FBR) lies on the route to attaining the final goal.

  13. 78 FR 49726 - International Framework for Nuclear Energy Cooperation Finance/Regulatory/Energy Planning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... International Trade Administration International Framework for Nuclear Energy Cooperation Finance/ Regulatory... International Framework for Nuclear Energy Cooperation (IFNEC)--to organize participation by representatives of... power projects, including national energy planning authorities, nuclear regulatory institutions,...

  14. History of United States Energy. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Intended as a supplement to the units "Oil: Fuel of the Past" and "Coal: Fuel of the Past, Hope of the Future," this 3-4 day unit contains three activities which briefly explain the chronological development of energy resources and the formation and development of the Organization of Petroleum Exporting Countries (OPEC). The first activity…

  15. Data requirements for intermediate energy nuclear applications

    SciTech Connect

    Pearlstein, S.

    1990-01-01

    Several applications that include spallation neutron sources, space radiation effects, biomedical isotope production, accelerator shielding and radiation therapy make use of intermediate energy nuclear data extending to several GeV. The overlapping data needs of these applications are discussed in terms of what projectiles, targets and reactions are of interest. Included is a discussion of what is generally known about these data and what is needed to facilitate their use in intermediate energy applications. 40 refs., 2 figs., 2 tabs.

  16. A nuclear fragmentation energy deposition model

    NASA Technical Reports Server (NTRS)

    Ngo, D. M.; Wilson, J. W.; Fogarty, T. N.; Buck, W. W.; Townsend, L. W. (Principal Investigator)

    1991-01-01

    A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. A nuclear data base is recommended that agrees well with the measurements of McNulty et al. using surface barrier detectors. High-energy events observed by McNulty et al., which are not predicted by intranuclear cascade models, are well represented by the present work.

  17. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  18. NSTA Conducts Nuclear Energy Survey for AIF

    ERIC Educational Resources Information Center

    Science Teacher, 1972

    1972-01-01

    A survey conducted to determine teacher's instructional resources, methods, materials, and attitudes toward various uses of nuclear energy resulted in nearly one thousand science teachers throughout the nation responding. Results of survey are presented and five recommendations for action are made. (DF)

  19. Stamps Tell the Story of Nuclear Energy.

    ERIC Educational Resources Information Center

    Angelo, Joseph A., Jr.

    This document provides a summary history of the individual scientists principally responsible for the development of nuclear physics and a survey of modern utilization of atomic energy. Identified throughout the booklet are postage stamps illustrating each individual and topic discussed. (SL)

  20. Towards the Universal Nuclear Energy Density Functional

    SciTech Connect

    Stoitsov, Mario; More, J.; Nazarewicz, Witold; Pei, Junchen; Sarich, J.; Schunck, Nicolas F; Staszczak, A.; Wild, S.

    2009-01-01

    The UNEDF SciDAC project to develop and optimize the energy density functional for atomic nuclei using state-of-the-art computational infrastructure is briefly described. The ultimate goal is to replace current phenomenological models of the nucleus with a well-founded microscopic theory with minimal uncertainties, capable of describing nuclear data and extrapolating to unknown regions.

  1. 77 FR 50533 - Dominion Nuclear Connecticut, Inc.; Millstone Power Station, Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... COMMISSION Dominion Nuclear Connecticut, Inc.; Millstone Power Station, Unit 3 AGENCY: Nuclear Regulatory... systems for light-water nuclear power reactors,'' and Appendix K to 10 CFR Part 50, ``ECCS Evaluation... for Millstone Power Station, Unit 3 (MPS3), for Renewed Facility Operating License No. NPF-49...

  2. Nuclear Energy Technologies for Hydrogen Production

    SciTech Connect

    Yildiz, Bilge; Kazimi, Mujid S.

    2004-07-01

    Nuclear energy can be used as the primary thermal energy source in centralized hydrogen production through several methods to address the expected demand for hydrogen. The hydrogen production technologies that the nuclear reactors can be coupled to are such as high temperature thermochemical and hybrid processes, water electrolysis, and high-temperature steam electrolysis. Energy efficiency and use of clean technologies is important to meet the increasing energy demand in a climate friendly manner. High operating temperatures are needed for more efficient thermochemical and electrochemical hydrogen production using nuclear energy. Therefore, high temperature reactors, such as the gas cooled, molten salt cooled and liquid metal cooled reactor technologies, are the candidates for use in hydrogen production. Among these alternatives, high temperature steam electrolysis (HTSE) coupled to an advanced gas reactor cooled by supercritical CO{sub 2} (S-CO{sub 2}) and a direct S-CO{sub 2} power conversion cycle has the potential to provide higher energy efficiency at lower temperature range than the other alternatives. (authors)

  3. 77 FR 47121 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... Consideration (73 FR 17148; March 31, 2008), states that ``Plant emergencies are extraordinary circumstances... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC (the licensee) is the holder of...

  4. 75 FR 9620 - Southern Nuclear Operating Company, Inc.; Edwin I. Hatch Nuclear Plant, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... have a significant effect on the quality of the human environment (75 FR 3761; dated January 22, 2010... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Southern Nuclear Operating Company, Inc.; Edwin I. Hatch Nuclear Plant, Units 1 and 2; Exemption...

  5. 78 FR 26662 - Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... notice appearing in the Federal Register on April 3, 2013 (78 FR 20144), by extending the original public... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of...

  6. Flywheel energy storage unit technology development program

    NASA Astrophysics Data System (ADS)

    1980-06-01

    A program to demonstrate an improved flywheel energy storage unit (ESU) to be used in combination with a heat engine for propelling a 1985 family sedan is described. Information is included on flywheel ESU design criteria, design, stress analysis thermal analysis, and performance. The ESU was designed, fabricated, and partially evaluated prior to the program being discontinued by LLL because of electrical machine failures and insufficient funds to correct the hardware discrepancies.

  7. Application of Nuclear Energy to Bitumen Upgrading and Biomass Conversion

    SciTech Connect

    Mamoru Numata; Yasushi Fujimura; Takayuki Amaya; Masao Hori

    2006-07-01

    Key drivers for the increasing use of nuclear energy are the need to mitigate global warming and the requirement for energy security. Nuclear energy can be applied not only to generate electricity but also as a heat source. Moreover, nuclear energy can be applied for hydrogen as well as water production. The application of nuclear energy to oil processing and biomass production is studied in this paper. (authors)

  8. 76 FR 78702 - Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant, Units 1 and 2) Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR...

  9. Nuclear Hybrid Energy Systems: Imperatives, Prospects, and Challenges

    SciTech Connect

    Steven E. Aumeier

    2010-10-01

    applications is certainly not new, renewed interest in more tightly coupled energy product plants (such as HES) that meet the objectives outline above have gained additional interest recently, an interest likely sparked by sharpening energy security concerns. Studies have shown that non-nuclear integrated (hybrid) energy systems can have appealing attributes in terms of overall process efficiency, enhanced electric grid stability, renewable energy integration, and economic performance, and lifecycle greenhouse gas emissions. These attributes seem to be sufficiently compelling that several significant commercial investments in fossil-renewable HES are being made in the United States while the U.S. Defense Advanced Research Projects Agency (DARPA) has openly solicited information regarding nuclear energy integration schemes. The challenges of nuclear energy integration include myriad issues associated with the following RD&D areas, or “platforms”: • feedstock processing (e.g. bio-feedstock integration with coal, carbon feedstock extraction using nuclear energy); • heat / energy management (e.g. advanced heat exchangers, process design); • energy storage (e.g. H2 production, liquid fuels synthesis); • byproduct management (e.g. CO2 recycle approaches); • systems dynamics, integration and control (e.g. process dynamics analyses and optimization, advanced prognostics, diagnostics, variable time scale control and flow sheet optimization).

  10. Symmetry energy of dilute warm nuclear matter.

    PubMed

    Natowitz, J B; Röpke, G; Typel, S; Blaschke, D; Bonasera, A; Hagel, K; Klähn, T; Kowalski, S; Qin, L; Shlomo, S; Wada, R; Wolter, H H

    2010-05-21

    The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.

  11. 75 FR 66399 - FirstEnergy Nuclear Operating Company; Notice of Intent To Prepare an Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... no action and reasonable alternative energy sources. The NRC is required by 10 CFR 51.95 to prepare a... COMMISSION FirstEnergy Nuclear Operating Company; Notice of Intent To Prepare an Environmental Impact Statement and Conduct the Scoping Process for Davis-Besse Nuclear Power Station, Unit 1 FirstEnergy...

  12. 75 FR 16524 - FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... COMMISSION FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC, the licensee) is the holder of Facility Operating License No... compliance date (Reference: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear...

  13. 75 FR 38147 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC, the licensee) is the holder of Facility Operating...

  14. 75 FR 80549 - FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC, the licensee) is the holder of Facility Operating...

  15. Medium energy nuclear physics research

    NASA Astrophysics Data System (ADS)

    Peterson, G. A.; Dubach, J. F.; Hicks, R. S.; Miskimen, R. A.

    1991-06-01

    Research on the following topics is discussed: Transverse from factors of (Sn-117); Elastic magnetic electron scattering from C-13 at Q(exp 2) = 1 GeV(exp 2)/sq c; A reanalysis of C-13 elastic scattering; Deuteron threshold electrodisintegration; Measurement of the elastic magnetic form factor of He-3 at high momentum transfer; Coincidence measurement of the D(electron, electron proton) cross section at low excitation energy and high momentum transfer; Measurement of the quadrupole contribution to the N yields Delta excitation; measurement of the x-, Q(exp 2)-, and A-dependence of R = sigma sub L/sigma sub T; The PEGASYS project; PEP beam-gas event analysis; Plans for other experiments at SLAC, i.e., polarized electron scattering on polarized nuclei; Experiment PR-89-015 (study of coincidence reactions in the dip and delta resonance regions); Experiment PR-89-031 (multi-nulceon knockout using the CLAS detector); Drift chamber tests; A memorandum of understanding and test experiments; Photoprotons from (exp 10)B; And hadronic electroproduction at LEP.

  16. Medium energy nuclear physics research

    SciTech Connect

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1992-06-01

    This paper covers the following topics: Experiment 87-02: Threshold Electrodisintegration of the Deuteron at High Q{sup 2}; Measurement of the 5th Structure Function in Deuterium and {sup 12}C; Single-Particle Densities of sd-Shell Nuclei; Experiment 84-28: Transverse Form Factors of {sup 117}Sn; Experiment 82-11: Elastic Magnetic Electron Scattering from {sup 13}C; Experiment 89-09: Measurement of the Elastic Magnetic Form Factor of {sup 3}He at High Momentum Transfer; Experiment 89-15: Coincidence Measurement of the D(e,e{prime}p) Cross-Section at Low Excitation Energy and High Momentum Transfer; Experiment 87-09: Measurement of the Quadrupole Contribution to the N {yields} {Delta} Excitation; Experiment E-140: Measurement of the x-, Q{sup 2} and A-Dependence of R = {sigma}{sub L}/{sigma}{sub T}; PEP Beam-Gas Event Analysis: Physics with the SLAC TPC/2{gamma} Detector; Drift Chamber Tests at Brookhaven National Laboratory; Experiment PR-89-031: Multi-nucleon Knockout Using the CLAS Detector; Electronics Design for the CLAS Region 1 Drift Chamber; Color Transparencies in the Electroproduction of Nucleon Resonances; and Experiment PR-89-015: Study of Coincidence Reactions in the Dip and Delta-Resonance Regions.

  17. Renewable Energy Atlas of the United States

    SciTech Connect

    Kuiper, J.; Hlava, K.; Greenwood, H.; Carr, A.

    2013-12-13

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. This report explains how to add the Atlas to your computer and install the associated software. The report also includes: A description of each of the components of the Atlas; Lists of the Geographic Information System (GIS) database content and sources; and A brief introduction to the major renewable energy technologies. The Atlas includes the following: A GIS database organized as a set of Environmental Systems Research Institute (ESRI) ArcGIS Personal GeoDatabases, and ESRI ArcReader and ArcGIS project files providing an interactive map visualization and analysis interface.

  18. Nuclear Weapon Systems Today: A Unit Curriculum for Liberal Arts Students.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    1988-01-01

    Described is a unit of study on nuclear weapons from a course on nuclear technology. Provided are the elements of first strike attack designed for invoking students' interest and an explanation of each. (YP)

  19. 75 FR 69136 - Southern California Edison Company, San Onofre Nuclear Generating Station, Units 2 and 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... 73, Power Reactor Security Requirements, March 27, 2009; 74 FR 13926). Thus, through the proposed... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Southern California Edison Company, San Onofre Nuclear Generating Station, Units 2 and...

  20. Decoding the nuclear genome using nuclear binding and fusion energies

    NASA Astrophysics Data System (ADS)

    Yablon, Jay R.

    2015-04-01

    In several publications the author has presented the theory that protons and neutrons and other baryons are the chromo-magnetic monopoles of Yang-Mills gauge theory and used that to deduce the up and down current quark masses from the tightly-known Q = 0 empirical electron mass and the neutron minus proton mass difference with commensurately high precision. This is then used as a springboard to closely fit a wide range of empirical nuclear binding and fusion energy data and to obtain the proton and neutron masses themselves within all experimental errors. This presentation will systematically pull all of this together and a) establishes that this way of defining current quark masses constitutes a valid measurement scheme, b) lays out the empirical support for this theory via observed nuclear binding and fusion energies as well as the proton and neutron masses themselves, c) solidifies the interface used to connect the theory to these empirical results and uncovers a mixing between the up and down current quark masses, and d) presents clearly how and why the underlying theory is very conservative, being no more and no less than a deductive mathematical synthesis of Maxwell's classical theory with both the electric and magnetic field equations merged into one, Yang-Mills gauge theory, Dirac fermion theory, the Fermi-Dirac-Pauli Exclusion Principle, and to get from classical chromodynamics to QCD, Feynman path integration.

  1. Energy resources of the United States

    USGS Publications Warehouse

    Theobald, P.K.; Schweinfurth, Stanley P.; Duncan, Donald Cave

    1972-01-01

    Estimates are made of United States resources of coal, petroleum liquids, natural gas, uranium, geothermal energy, and oil from oil shale. The estimates, compiled by specialists of the U.S. Geological Survey, are generally made on geologic projections of favorable rocks and on anticipated frequency of the energy resource in the favorable rocks. Accuracy of the estimates probably ranges from 20 to 50 percent for identified-recoverable resources to about an order of magnitude for undiscovered-submarginal resources. The total coal resource base in the United States is estimated to be about 3,200 billion tons, of which 200-390 billion tons can be considered in the category identified and recoverable. More than 70 percent of current production comes from the Appalachian basin where the resource base, better known than for the United States as a whole, is about 330 billion tons, of which 22 billion tons is identified and recoverable. Coals containing less than 1 percent sulfur are the premium coals. These are abundant in the western coal fields, but in the Appalachian basin the resource base for low-sulfur coal is estimated to be only a little more than 100 billion tons, of which 12 billion tons is identified and recoverable. Of the many estimates of petroleum liquids and natural-gas resources, those of the U.S. Geological Survey are the largest because, in general, our estimates include the largest proportion of favorable ground for exploration. We estimate the total resource base for petroleum liquids to be about 2,900 billion barrels, of which 52 billion barrels is identified and recoverable. Of the total resource base, some 600 billion barrels is in Alaska or offshore from Alaska, 1,500 billion barrels is offshore from the United States, and 1,300 billion barrels is onshore in the conterminous United States. Identified-recoverable resources of petroleum liquids corresponding to these geographic units are 11, 6, and 36 billion barrels, respectively. The total natural

  2. Radiation chemistry for modern nuclear energy development

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Szołucha, Monika M.

    2016-07-01

    Radiation chemistry plays a significant role in modern nuclear energy development. Pioneering research in nuclear science, for example the development of generation IV nuclear reactors, cannot be pursued without chemical solutions. Present issues related to light water reactors concern radiolysis of water in the primary circuit; long-term storage of spent nuclear fuel; radiation effects on cables and wire insulation, and on ion exchangers used for water purification; as well as the procedures of radioactive waste reprocessing and storage. Radiation effects on materials and enhanced corrosion are crucial in current (II/III/III+) and future (IV) generation reactors, and in waste management, deep geological disposal and spent fuel reprocessing. The new generation of reactors (III+ and IV) impose new challenges for radiation chemists due to their new conditions of operation and the usage of new types of coolant. In the case of the supercritical water-cooled reactor (SCWR), water chemistry control may be the key factor in preventing corrosion of reactor structural materials. This paper mainly focuses on radiation effects on long-term performance and safety in the development of nuclear power plants.

  3. Nuclear Energy Innovation Workshops. Executive Summary

    SciTech Connect

    Allen, Todd; Jackson, John; Hildebrandt, Phil; Baker, Suzy

    2015-06-01

    The nuclear energy innovation workshops were organized and conducted by INL on March 2-4, 2015 at the five NUC universities and Boise State University. The output from these workshops is summarized with particular attention to final summaries that were provided by technical leads at each of the workshops. The current revision includes 3-4 punctuation corrections and a correction of the month of release from May to June.

  4. Accelerator Driven Nuclear Energy: The Thorium Option

    SciTech Connect

    Raja, Rajendran

    2009-03-18

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  5. Sanitary engineering aspects of nuclear energy developments*

    PubMed Central

    Kenny, A. W.

    1962-01-01

    So many developments have taken place in the field of nuclear energy since 1956, when the author's previous paper on radioactive waste disposal was published in the Bulletin of the World Health Organization, that a fresh review of the subject is now appropriate. The present paper deals with those aspects of the problem which are of most interest to the sanitary engineer. It considers specific points in the latest recommendations of the International Commission on Radiological Protection in relation to public drinking-water supplies, and examines the problem of fall-out, with special reference to the presence and significance of strontium-90 in drinking-water. A general survey of the various uses of radioactive materials is followed by a discussion of the legislative and control measures necessary to ensure safe disposal of wastes. The methods of waste disposal adopted in a number of nuclear energy establishments are described in detail. The paper concludes with some remarks on solid waste disposal, siting of nuclear energy industries and area monitoring. PMID:14455214

  6. Accelerator Driven Nuclear Energy: The Thorium Option

    ScienceCinema

    Raja, Rajendran

    2016-07-12

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  7. Transient Testing of Nuclear Fuels and Materials in United States

    SciTech Connect

    Daniel M. Wachs

    2012-12-01

    The US Department of Energy (DOE) has been engaged in an effort to develop and qualify next generation LWR fuel with enhanced performance and safety and reduced waste generation since 2010. This program, which has emphasized collaboration between the DOE, U.S. national laboratories and nuclear industry, was refocused from enhanced performance to enhanced accident tolerance following the events at Fukushima in 2011. Accident tolerant fuels have been specifically described as fuels that, in comparison with standard UO2-Zircaloy, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events. The program maintains an ambitious goal to insert a lead test assembly (LTA) of the new design into a commercial power reactor by 2022 .

  8. United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management

    SciTech Connect

    Stewart, L.

    2004-10-03

    The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas.

  9. Emerging nuclear energy systems: Economic challenge: Revision 1

    SciTech Connect

    Nuckolls, J.H.

    1986-01-01

    Future nuclear energy systems may achieve substantially lower energy costs than those of existing fossil energy systems and comparable capital costs. Such low cost nuclear energy would provide a strong economic incentive to minimize the use of fossil fuels. If these low cost nuclear energy systems emerge in the next few decades, 21st century civilization may be able to avert potentially disastrous CO/sub 2/ induced global climate changes. 12 refs., 1 fig.

  10. Building a Universal Nuclear Energy Density Functional

    SciTech Connect

    Carlson, Joe A.; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold:  First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties;  Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data;  Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  11. Proposal for a High Energy Nuclear Database

    SciTech Connect

    Brown, David A.; Vogt, Ramona

    2005-03-31

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  12. Proposal for a High Energy Nuclear Database

    SciTech Connect

    Brown, D A; Vogt, R

    2005-03-31

    The authors propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, they propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  13. Energy R&D in the United States

    SciTech Connect

    J.J. Dooley

    1999-08-09

    In 1997, the US public and private sectors invested $205.7 billion in R&D. Private sector investments in R&D increased 34% between 1990 and 1997; over the same period the federal government decreased its expenditures by 15% in real terms. Projections of outyear federal budgets indicate the federal government will continue to reduce its investments in R&D for the foreseeable future. Defense R&D continues to be the largest area of concentration for federal government's R&D investments, with defense R&D accounting for 54% of all federal R&D outlays in 1998. Defense R&D is funded at a level which is there times higher than health R&D. Health R&D has experienced the largest inflation-adjusted increases of any federal R&D program, up 21% in real terms since 1990. US national (i.e., public and private) investments in energy R&D currently stand at a 23-year low of $4.4 billion in 1996. Federal support for energy R&D has declined 22% in real terms between 1990 and 1996. Federal energy R&D investments are also undergoing changes in priority. Fossil energy R&D programs are at the beginning of a potentially significant change away from ''clean coal'' technology development programs and towards more fundamental research on ways to decarbonize fossil fuels and sequester carbon dioxide. The federal nuclear energy R&D program has restarted (at a modest level) research to develop new reactor concepts after many years of no federal research in this area. The United States has withdrawn from the ITER project, calling into question the viability of this international fusion energy program. Renewable energy and energy efficiency R&D programs continue to be the only consistent areas of growth in the federal energy R&D budget.

  14. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    SciTech Connect

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  15. Applying activity-based costing to the nuclear medicine unit.

    PubMed

    Suthummanon, Sakesun; Omachonu, Vincent K; Akcin, Mehmet

    2005-08-01

    Previous studies have shown the feasibility of using activity-based costing (ABC) in hospital environments. However, many of these studies discuss the general applications of ABC in health-care organizations. This research explores the potential application of ABC to the nuclear medicine unit (NMU) at a teaching hospital. The finding indicates that the current cost averages 236.11 US dollars for all procedures, which is quite different from the costs computed by using ABC. The difference is most significant with positron emission tomography scan, 463 US dollars (an increase of 96%), as well as bone scan and thyroid scan, 114 US dollars (a decrease of 52%). The result of ABC analysis demonstrates that the operational time (machine time and direct labour time) and the cost of drugs have the most influence on cost per procedure. Clearly, to reduce the cost per procedure for the NMU, the reduction in operational time and cost of drugs should be analysed. The result also indicates that ABC can be used to improve resource allocation and management. It can be an important aid in making management decisions, particularly for improving pricing practices by making costing more accurate. It also facilitates the identification of underutilized resources and related costs, leading to cost reduction. The ABC system will also help hospitals control costs, improve the quality and efficiency of the care they provide, and manage their resources better. PMID:16102243

  16. Applying activity-based costing to the nuclear medicine unit.

    PubMed

    Suthummanon, Sakesun; Omachonu, Vincent K; Akcin, Mehmet

    2005-08-01

    Previous studies have shown the feasibility of using activity-based costing (ABC) in hospital environments. However, many of these studies discuss the general applications of ABC in health-care organizations. This research explores the potential application of ABC to the nuclear medicine unit (NMU) at a teaching hospital. The finding indicates that the current cost averages 236.11 US dollars for all procedures, which is quite different from the costs computed by using ABC. The difference is most significant with positron emission tomography scan, 463 US dollars (an increase of 96%), as well as bone scan and thyroid scan, 114 US dollars (a decrease of 52%). The result of ABC analysis demonstrates that the operational time (machine time and direct labour time) and the cost of drugs have the most influence on cost per procedure. Clearly, to reduce the cost per procedure for the NMU, the reduction in operational time and cost of drugs should be analysed. The result also indicates that ABC can be used to improve resource allocation and management. It can be an important aid in making management decisions, particularly for improving pricing practices by making costing more accurate. It also facilitates the identification of underutilized resources and related costs, leading to cost reduction. The ABC system will also help hospitals control costs, improve the quality and efficiency of the care they provide, and manage their resources better.

  17. 76 FR 78805 - Regulatory Changes To Implement the United States/Australian Agreement for Peaceful Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... America Concerning Peaceful Uses of Nuclear Energy.'' The present NRC action is necessary to relocate a... / Tuesday, December 20, 2011 / Rules and Regulations#0;#0; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 40... Nuclear Cooperation; Corrections AGENCY: Nuclear Regulatory Commission. ACTION: Final rule;...

  18. 75 FR 61226 - Exemption; Entergy Operations, Inc.; Arkansas Nuclear One, Units 1 and 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... COMMISSION Exemption; Entergy Operations, Inc.; Arkansas Nuclear One, Units 1 and 2 1.0 Background Entergy..., which authorize operation of the Arkansas Nuclear One, Units 1 and 2 (ANO-1 and ANO-2), respectively... the ANO-1 TS conversion, the submittal date for ANO-1 became May 1. The licensee continued to send...

  19. 76 FR 5216 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... COMMISSION Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Exemption 1.0 Background... authorizes operation of the Crystal River ] Unit 3 Nuclear Generating Plant (Crystal River). The license... under 10 CFR 55.11 from the schedule requirements of 10 CFR 55.59. Specifically for Crystal River,...

  20. 76 FR 53972 - Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... COMMISSION Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of..., publicly available documents at the NRC's PDR, O1-F21, One White Flint North, 11555 Rockville Pike... Facility Operating License No. DPR-72 for Crystal River Unit 3 Nuclear generating Plant (CR-3),...

  1. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  2. Nuclear binding energy and symmetry energy of nuclear matter with modern nucleon-nucleon potentials

    SciTech Connect

    Hassaneen, Kh.S.A.; Abo-Elsebaa, H.M.; Sultan, E.A.; Mansour, H.M.M.

    2011-03-15

    Research Highlights: > The nuclear matter is studied within the Brueckner-Hartree-Fock (BHF) approach employing the most recent accurate nucleon-nucleon potentials. > The results come out by approximating the single particle self-consistent potential with a parabolic form. > We discuss the current status of the Coester line, i.e., density and energy of the various saturation points being strongly linearly correlated. > The nuclear symmetry energy is calculated as the difference between the binding energy of pure neutron matter and that of symmetric nuclear matter. - Abstract: The binding energy of nuclear matter at zero temperature in the Brueckner-Hartree-Fock approximation with modern nucleon-nucleon potentials is studied. Both the standard and continuous choices of single particle energies are used. These modern nucleon-nucleon potentials fit the deuteron properties and are phase shifts equivalent. Comparison with other calculations is made. In addition we present results for the symmetry energy obtained with different potentials, which is of great importance in astrophysical calculation.

  3. Development, Integration and Utilization of Surface Nuclear Energy Sources for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon; Hickman, Robert; Hissam, Andy; Houston, Vance; Martin, Jim; Mireles, Omar; Reid, Bob; Schneider, Todd

    2005-01-01

    Throughout the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for human surface exploration missions. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Nuclear energy sources were used to provide heat on the Pathfinder; Spirit, and Discovery rovers. Scenarios have been proposed that utilize -1 kWe radioisotope systems for early missions, followed by fission systems in the 10 - 30 kWe range when energy requirements increase. A fission energy source unit size of approximately 150 kWt has been proposed based on previous lunar and Mars base architecture studies. Such a unit could support both early and advanced bases through a building block approach.

  4. Nuclear Strategy and World Order: The United States Imperative.

    ERIC Educational Resources Information Center

    Beres, Louis Rene

    The current U.S. nuclear strategy goes beyond the legitimate objective of survivable strategic forces to active preparation for nuclear war. The Reagan administration strategy rejects minimum deterrence and prepares for a nuclear war that might be protracted and controlled. The strategy reflects the understanding that a combination of counterforce…

  5. Preservation and Implementation of Decommissioning Lessons Learned in the United States Nuclear Regulatory Commission

    SciTech Connect

    Rodriguez, Rafael L.

    2008-01-15

    Over the past several years, the United States Nuclear Regulatory Commission (NRC) has actively worked to capture and preserve lessons learned from the decommissioning of nuclear facilities. More recently, NRC has involved industry groups, the Organization of Agreement States (OAS), and the Department of Energy (DOE) in the effort to develop approaches to capture, preserve and disseminate decommissioning lessons learned. This paper discusses the accomplishments of the working group, some lessons learned by the NRC in the recent past, and how NRC will incorporate these lessons learned into its regulatory framework. This should help ensure that the design and operation of current and future nuclear facilities will result in less environmental impact and more efficient decommissioning. In summary, the NRC will continue capturing today's experience in decommissioning so that future facilities can take advantage of lessons learned from today's decommissioning projects. NRC, both individually and collectively with industry groups, OAS, and DOE, is aggressively working on the preservation and implementation of decommissioning lessons learned. The joint effort has helped to ensure the lessons from the whole spectrum of decommissioning facilities (i.e., reactor, fuel cycle, and material facilities) are better understood, thus maximizing the amount of knowledge and best practices obtained from decommissioning activities. Anticipated regulatory activities at the NRC will make sure that the knowledge gained from today's decommissioning projects is preserved and implemented to benefit the nuclear facilities that will decommission in the future.

  6. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory...

  7. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory...

  8. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory...

  9. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory...

  10. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory...

  11. Update on DOE's Nuclear Energy University Program

    NASA Astrophysics Data System (ADS)

    Lambregts, Marsha J.

    2009-08-01

    The Nuclear Energy University Program (NEUP) Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the Technical Integration Offices (TIOs)/Technology Development Offices (TDOs), a process was designed and administered which includes two competitive Requests for Proposals (RFPs) and two Funding Opportunity Announcements (FOAs) in the following areas: (1) Research and Development (R&D) Grants, (2) Infrastructure improvement, and (3) Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R&D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Department's research needs to facilitate continued alignment of university R&D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.

  12. Update on DOE's Nuclear Energy University Program

    SciTech Connect

    Lambregts, Marsha J.

    2009-08-19

    The Nuclear Energy University Program (NEUP) Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the Technical Integration Offices (TIOs)/Technology Development Offices (TDOs), a process was designed and administered which includes two competitive Requests for Proposals (RFPs) and two Funding Opportunity Announcements (FOAs) in the following areas: (1) Research and Development (R and D) Grants, (2) Infrastructure improvement, and (3) Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R and D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Department's research needs to facilitate continued alignment of university R and D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.

  13. An Assessment of Nuclear Isomers as an Energy Storage Medium

    SciTech Connect

    Hartouni, E P

    2008-12-08

    Nuclear Isomers have been suggested as a potential high energy density medium that might be used to store energy. This talk assesses the state of the science supporting key elements of using nuclear isomers in energy storage applications. The focus is on the nuclear isomer {sup 178m2}Hf which has been most widely suggested for energy storage applications. However, the science issues apply to all nuclear isomer. The assessment addresses the production of the nuclear isomer, and inducing the release of the isomer. Also discussed are novel speculations on photon and/or neutron chain reactions, both as a 'pure' material as well as mixed with other materials.

  14. An Assessment of Nuclear Isomers as an Energy Storage Medium

    SciTech Connect

    Hartouni, Edward P.

    2009-03-16

    Nuclear Isomers have been suggested as a potential high energy density medium that might be used to store energy. This talk assesses the state of the science supporting key elements of using nuclear isomers in energy storage applications. The focus is on the nuclear isomer {sup 178m2}Hf which has been most widely suggested for energy storage applications. However, the science issues apply to all nuclear isomer. The assessment addresses the production of the nuclear isomer, and inducing the release of the isomer. Also discussed are novel speculations on photon and/or neutron chain reactions, both as a 'pure' material as well as mixed with other materials.

  15. Overview of Nuclear Energy: Present and Projected Use

    SciTech Connect

    Alexander Stanculescu

    2011-09-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  16. Overview of nuclear energy: Present and projected use

    SciTech Connect

    Stanculescu, Alexander

    2012-06-19

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  17. Overview of nuclear energy: Present and projected use

    NASA Astrophysics Data System (ADS)

    Stanculescu, Alexander

    2012-06-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  18. The Control of the PBMR Nuclear Power Unit

    SciTech Connect

    Rubin, Olis; Venter, Miek; Jordaan, Johannes

    2006-07-01

    PBMR is an advanced, helium-cooled, graphite-moderated High Temperature Gas-cooled Reactor (HTGR). Heat is converted to electric energy by means of a direct recuperative Brayton cycle. This paper considers various design aspects associated with the control of the unit and examples are given of generator load control. Physical material restrictions and process dynamics have a major effect on control, necessitating detail thermo-hydraulic simulation of the plant operation. The Flownex dynamic thermo-hydraulic simulation code was developed to model the plant, which is linked to the control software for co-simulation. Matlab and Simulink are used for controller development while care was taken to ensure compatibility with the operational control code based on IEC standards. Generator load is controlled by regulating the helium inventory in the pressurized system. Helium is injected in order to increase the generator load, and extracted for load reduction. While this method of actuation produces the required steady state response, the plant dynamic response is non minimum phase, i.e. the load initially reduces on a load ramp-up. In base load operation, the extent of the power dip is contained by limiting the rate at which the helium injection can be increased. Feasibility studies show that it is possible to achieve faster load ramp rates by combining helium injection with quick response cycle gas bypass control. Lead compensation on the input load reference signal further enhances the load following capabilities of the unit. (authors)

  19. An Energy Education Unit for Upper Elementary Grades.

    ERIC Educational Resources Information Center

    Doyle, Charles

    1980-01-01

    Describes a two-part energy unit for gifted fifth and sixth graders. Students conduct energy use/waste surveys and participate in a simulation game concerning a particular environmental/energy problem. (SJL)

  20. Nuclear's role in 21. century Pacific rim energy use

    SciTech Connect

    Singer, Clifford; Taylor, J'Tia

    2007-07-01

    Extrapolations contrast the future of nuclear energy use in Japan and the Republic of Korea (ROK) to that of the Association of Southeast Asian Nations (ASEAN). Japan can expect a gradual rise in the nuclear fraction of a nearly constant total energy use rate as the use of fossil fuels declines. ROK nuclear energy rises gradually with total energy use. ASEAN's total nuclear energy use rate can rapidly approach that of the ROK if Indonesia and Vietnam make their current nuclear energy targets by 2020, but experience elsewhere suggests that nuclear energy growth may be slower than planned. Extrapolations are based on econometric calibration to a utility optimization model of the impact of growth of population, gross domestic product, total energy use, and cumulative fossil carbon use. Fractions of total energy use from fluid fossil fuels, coal, water-driven electrical power production, nuclear energy, and wind and solar electric energy sources are fit to market fractions data. Where historical data is insufficient for extrapolation, plans for non-fossil energy are used as a guide. Extrapolations suggest much more U.S. nuclear energy and spent nuclear fuel generation than for the ROK and ASEAN until beyond the first half of the twenty-first century. (authors)

  1. Energy Fuels Nuclear, Inc. Arizona Strip Operations

    SciTech Connect

    Pool, T.C.

    1993-05-01

    Founded in 1975 by uranium pioneer, Robert W. Adams, Energy Fuels Nuclear, Inc. (EFNI) emerged as the largest US uranium mining company by the mid-1980s. Confronting the challenges of declining uranium market prices and the development of high-grade ore bodies in Australia and Canada, EFNI aggressively pursued exploration and development of breccia-pipe ore bodies in Northwestern Arizona. As a result, EFNI's production for the Arizona Strip of 18.9 million pounds U[sub 3]O[sub 8] over the period 1980 through 1991, maintained the company's status as a leading US uranium producer.

  2. Renewability and sustainability aspects of nuclear energy

    SciTech Connect

    Şahin, Sümer

    2014-09-30

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, {sup 233}U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO{sub 2}/RG‐PuO{sub 2}) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG‐PuO{sub 2} + 96 % ThO{sub 2}; 6 % RG‐PuO{sub 2} + 94 % ThO{sub 2}; 10 % RG‐PuO{sub 2} + 90 % ThO{sub 2}; 20 % RG‐PuO{sub 2} + 80 % ThO{sub 2}; 30 % RG‐PuO{sub 2} + 70 % ThO{sub 2}, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ∼ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ∼ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG‐PuO{sub 2} fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MW{sub th} has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ∼160 kg {sup 233}U per year in addition to fission

  3. Renewability and sustainability aspects of nuclear energy

    NASA Astrophysics Data System (ADS)

    Şahin, Sümer

    2014-09-01

    Renewability and sustainability aspects of nuclear energy have been presented on the basis of two different technologies: (1) Conventional nuclear technology; CANDU reactors. (2) Emerging nuclear technology; fusion/fission (hybrid) reactors. Reactor grade (RG) plutonium, 233U fuels and heavy water moderator have given a good combination with respect to neutron economy so that mixed fuel made of (ThO2/RG-PuO2) or (ThC/RG-PuC) has lead to very high burn up grades. Five different mixed fuel have been selected for CANDU reactors composed of 4 % RG-PuO2 + 96 % ThO2; 6 % RG-PuO2 + 94 % ThO2; 10 % RG-PuO2 + 90 % ThO2; 20 % RG-PuO2 + 80 % ThO2; 30 % RG-PuO2 + 70 % ThO2, uniformly taken in each fuel rod in a fuel channel. Corresponding operation lifetimes have been found as ˜ 0.65, 1.1, 1.9, 3.5, and 4.8 years and with burn ups of ˜ 30 000, 60 000, 100 000, 200 000 and 290 000 MW.d/ton, respectively. Increase of RG-PuO2 fraction in radial direction for the purpose of power flattening in the CANDU fuel bundle has driven the burn up grade to 580 000 MW.d/ton level. A laser fusion driver power of 500 MWth has been investigated to burn the minor actinides (MA) out of the nuclear waste of LWRs. MA have been homogenously dispersed as carbide fuel in form of TRISO particles with volume fractions of 0, 2, 3, 4 and 5 % in the Flibe coolant zone in the blanket surrounding the fusion chamber. Tritium breeding for a continuous operation of the fusion reactor is calculated as TBR = 1.134, 1.286, 1.387, 1.52 and 1.67, respectively. Fission reactions in the MA fuel under high energetic fusion neutrons have lead to the multiplication of the fusion energy by a factor of M = 3.3, 4.6, 6.15 and 8.1 with 2, 3, 4 and 5 % TRISO volume fraction at start up, respectively. Alternatively with thorium, the same fusion driver would produce ˜160 kg 233U per year in addition to fission energy production in situ, multiplying the fusion energy by a factor of ˜1.3.

  4. Nuclear Energy Response in the EMF27 Study

    SciTech Connect

    Kim, Son H.; Wada, Kenichi; Kurosawa, Atsushi; Roberts, Matthew

    2014-03-25

    The nuclear energy response for mitigating global climate change across eighteen participating models of the EMF27 study is investigated. Diverse perspectives on the future role of nuclear power in the global energy system are evident in the broad range of nuclear power contributions from participating models of the study. In the Baseline scenario without climate policy, nuclear electricity generation and shares span 0 – 66 EJ/ year and 0 - 25% in 2100 for all models, with a median nuclear electricity generation of 39 EJ/year (1,389 GWe at 90% capacity factor) and median share of 9%. The role of nuclear energy increased under the climate policy scenarios. The median of nuclear energy use across all models doubled in the 450 ppm CO2e scenario with a nuclear electricity generation of 67 EJ/year (2,352 GWe at 90% capacity factor) and share of 17% in 2100. The broad range of nuclear electricity generation (11 – 214 EJ/year) and shares (2 - 38%) in 2100 of the 450 ppm CO2e scenario reflect differences in the technology choice behavior, technology assumptions and competitiveness of low carbon technologies. Greater clarification of nuclear fuel cycle issues and risk factors associated with nuclear energy use are necessary for understanding the nuclear deployment constraints imposed in models and for improving the assessment of the nuclear energy potential in addressing climate change.

  5. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Brune, Carl R; Grimes, Steven M

    2006-03-30

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

  6. Nuclear Energy and Synthetic Liquid Transportation Fuels

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  7. 76 FR 62457 - Atomic Safety and Licensing Board; Nextera Energy Seabrook, LLC (Seabrook Station, Unit 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Atomic Safety and Licensing Board; Nextera Energy Seabrook, LLC (Seabrook Station, Unit 1); Notice... hearing will be announced in a subsequent notice or order. \\2\\ Id. at 63. It is so ordered. For the...

  8. Nuclear energy in a nuclear weapon free world

    SciTech Connect

    Pilat, Joseph

    2009-01-01

    The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

  9. Supporting Our Nation's Nuclear Industry

    SciTech Connect

    Lyons, Peter

    2011-01-01

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  10. Supporting Our Nation's Nuclear Industry

    ScienceCinema

    Lyons, Peter

    2016-07-12

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  11. United States Civilian Nuclear Power Policy, 1954-1984: a summary history

    SciTech Connect

    Holl, J.M.; Anders, R.M.; Buck, A.L.

    1986-02-01

    This review covers US civilian nuclear power policy under Eisenhower, Kennedy, Johnson, Nixon, Ford, Carter, and Reagan administrations covering Atomic Energy Commission, the Energy Research and Development Administration, and Department of Energy tenures. Public opinion, domestic order cancellations for uranium fuels, institutional origins, and the nuclear power plant diagrams are included in appendices. (PSB)

  12. Nuclear Energy Readiness Indicator Index (NERI): A benchmarking tool for assessing nuclear capacity in developing countries

    SciTech Connect

    Saum-Manning,L.

    2008-07-13

    Declining natural resources, rising oil prices, looming climate change and the introduction of nuclear energy partnerships, such as GNEP, have reinvigorated global interest in nuclear energy. The convergence of such issues has prompted countries to move ahead quickly to deal with the challenges that lie ahead. However, developing countries, in particular, often lack the domestic infrastructure and public support needed to implement a nuclear energy program in a safe, secure, and nonproliferation-conscious environment. How might countries become ready for nuclear energy? What is needed is a framework for assessing a country's readiness for nuclear energy. This paper suggests that a Nuclear Energy Readiness Indicator (NERI) Index might serve as a meaningful basis for assessing a country's status in terms of progress toward nuclear energy utilization under appropriate conditions. The NERI Index is a benchmarking tool that measures a country's level of 'readiness' for nonproliferation-conscious nuclear energy development. NERI first identifies 8 key indicators that have been recognized by the International Atomic Energy Agency as key nonproliferation and security milestones to achieve prior to establishing a nuclear energy program. It then measures a country's progress in each of these areas on a 1-5 point scale. In doing so NERI illuminates gaps or underdeveloped areas in a country's nuclear infrastructure with a view to enable stakeholders to prioritize the allocation of resources toward programs and policies supporting international nonproliferation goals through responsible nuclear energy development. On a preliminary basis, the indicators selected include: (1) demonstrated need; (2) expressed political support; (3) participation in nonproliferation and nuclear security treaties, international terrorism conventions, and export and border control arrangements; (4) national nuclear-related legal and regulatory mechanisms; (5) nuclear infrastructure; (6) the

  13. ICENES '91:Sixth international conference on emerging nuclear energy systems

    SciTech Connect

    Not Available

    1991-01-01

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, [mu]-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  14. A Practical Approach to a Closed Nuclear Fuel Cycle and Sustained Nuclear Energy - 12383

    SciTech Connect

    Collins, Emory D.; Del Cul, Guillermo D.; Spencer, Barry B.; Williams, Kent A.

    2012-07-01

    Recent systems analysis studies at Oak Ridge National Laboratory (ORNL) have shown that sufficient information is available from previous research and development (R and D), industrial experience, and current studies to make rational decisions on a practical approach to a closed nuclear fuel cycle in the United States. These studies show that a near-term decision is needed to recycle used nuclear fuel (UNF) in the United States, to encourage public recognition that a practical solution to disposal of nuclear energy wastes, primarily UNF, is achievable, and to ensure a focus on essential near-term actions and future R and D. Recognition of the importance of time factors is essential, including the multi-decade time period required to implement industrial-scale fuel recycle at the capacity needed, and the effects of radioactive decay on proliferation resistance, recycling complexity, radioactive emissions, and high-level-waste storage, disposal form development, and eventual emplacement in a geologic repository. Analysis of time factors led to identification of the benefits of processing older fuel and an 'optimum decay storage time'. Further benefits of focused R and D can ensure more complete recycling of UNF components and minimize wastes requiring disposal. Analysis of recycling costs and nonproliferation requirements, which are often cited as reasons for delaying a decision to recycle, shows that (1) the differences in costs of nuclear energy with open or closed fuel cycles are insignificant and (2) nonproliferation requirements can be met by a combination of 'safeguards-by-design' co-location of back-end fuel cycle facilities, and applied engineered safeguards and monitoring. The study shows why different methods of separating and recycling used fuel components do not have a significant effect on nonproliferation requirements and can be selected on other bases, such as process efficiency, maturity, and cost-effectiveness. Finally, the study concludes that

  15. Renewable Energy Resources in the United Kingdom.

    ERIC Educational Resources Information Center

    Roberts, Michael J.; Thomas, M. Pugh

    1990-01-01

    This paper defines renewable energy and outlines possible sources of this energy. Supplies, and ethics are considered. The position of renewable energy sources in the energy policy of Great Britain are discussed. (CW)

  16. 75 FR 13801 - Exelon Generation Company, LLC; Zion Nuclear Power Station, Units 1 and 2; Order Extending the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... Company, LLC; Zion Nuclear Power Station, Units 1 and 2; Order Extending the Effectiveness of the Approval... holder of licenses DPR-39 and DPR-48, for the Zion Nuclear Power Station, Units 1 and 2 (Zion...

  17. Functional Mock-up Unit Export of EnergyPlus

    SciTech Connect

    2012-08-01

    The Functional Mock-up Unit Export of EnergyPlus is a software package that allows EnergyPlus to be exported as a Functional Mock-up Unit. This allows other software tools to run EnergyPlus as part of a larger simulation. To do so, the outside software needs to implement the Functional Mock-up interface standard (http://www.modelisar.com/), and be able to import Functional Mock-up Units for co-simulation.

  18. Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings

    SciTech Connect

    Ruth, M.; Antkowiak, M.; Gossett, S.

    2011-12-01

    Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

  19. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  20. Theoretical interpretation of high-energy nuclear collisions.

    SciTech Connect

    Fai, G.

    1992-06-01

    Nuclear collisions are interpreted theoretically. The nuclear equation of state is studied in a wide energy range. Subnucleonic degrees of freedom are invoked at high energy densities and at short length-scales. Questions of dynamical collision simulations are investigated. Direct support is provided for experiment in the form of collaborative projects. The major objective of this nuclear theory program is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions.

  1. Energy recovery linacs in high-energy and nuclear physics

    SciTech Connect

    I. Ben-Zvi; Ya. Derbenev; V. Litvinenko; L. Merminga

    2005-03-01

    Energy Recovery Linacs (ERL) have significant potential uses in High Energy Physics and Nuclear Physics. We describe some of the potential applications which are under development by our laboratories in this area and the technology issues that are associated with these applications. The applications that we discuss are electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for some of these applications are high currents of polarized electrons, high-charge and high-current electron beams and the associated issues of High-Order Modes. The advantages of ERLs for these applications are numerous and will be outlined in the text. It is worth noting that some of these advantages are the high-brightness of the ERL beams and their relative immunity to beam-beam disturbances.

  2. Nuclear and High-Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Weber, Fridolin

    2003-10-01

    There has never been a more exciting time in the overlapping areas of nuclear physics, particle physics and relativistic astrophysics than today. Orbiting observatories such as the Hubble Space Telescope, Rossi X-ray Timing Explorer (RXTE), Chandra X-ray satellite, and the X-ray Multi Mirror Mission (XMM) have extended our vision tremendously, allowing us to see vistas with an unprecedented clarity and angular resolution that previously were only imagined, enabling astrophysicists for the first time ever to perform detailed studies of large samples of galactic and extragalactic objects. On the Earth, radio telescopes (e.g., Arecibo, Green Bank, Parkes, VLA) and instruments using adaptive optics and other revolutionary techniques have exceeded previous expectations of what can be accomplished from the ground. The gravitational wave detectors LIGO, LISA VIRGO, and Geo-600 are opening up a window for the detection of gravitational waves emitted from compact stellar objects such as neutron stars and black holes. Together with new experimental forefront facilities like ISAC, ORLAND and RIA, these detectors provide direct, quantitative physical insight into nucleosynthesis, supernova dynamics, accreting compact objects, cosmic-ray acceleration, and pairproduction in high energy sources which reinforce the urgent need for a strong and continuous feedback from nuclear and particle theory and theoretical astrophysics. In my lectures, I shall concentrate on three selected topics, which range from the behavior of superdense stellar matter, to general relativistic stellar models, to strange quark stars and possible signals of quark matter in neutron stars.

  3. Molten salts and nuclear energy production

    NASA Astrophysics Data System (ADS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed.

  4. Using the sound of nuclear energy

    DOE PAGESBeta

    Garrett, Steven; Smith, James; Smith, Robert; Heidrich, Benden; Heibel, Michael

    2016-08-01

    The generation of sound by heat has been documented as an “acoustical curiosity” since a Buddhist monk reported the loud tone generated by a ceremonial rice-cooker in his diary, in 1568. Over the last four decades, significant progress has been made in understanding “thermoacoustic processes,” enabling the design of thermoacoustic engines and refrigerators. Motivated by the Fukushima nuclear reactor disaster, we have developed and tested a thermoacoustic engine that exploits the energy-rich conditions in the core of a nuclear reactor to provide core condition information to the operators without a need for external electrical power. The heat engine is self-poweredmore » and can wirelessly transmit the temperature and reactor power level by generation of a pure tone which can be detected outside the reactor. We report here the first use of a fission-powered thermoacoustic engine capable of serving as a performance and safety sensor in the core of a research reactor and present data from the hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These measurements confirmed that the frequency of the sound produced indicates the reactor’s coolant temperature and that the amplitude (above an onset threshold) is related to the reactor’s operating power level. Furthermore, these signals can be detected even in the presence of substantial background noise generated by the reactor’s fluid pumps.« less

  5. 3 CFR - Delegation of Certain Functions Under Section 204(c) of the United States-India Nuclear...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) of the United States-India Nuclear Cooperation Approval and Nonproliferation Enhancement Act (Public... Delegation of Certain Functions Under Section 204(c) of the United States-India Nuclear Cooperation Approval... the President by section 204(c) of the United States-India Nuclear Cooperation Approval...

  6. Decay heat studies for nuclear energy

    NASA Astrophysics Data System (ADS)

    Algora, A.; Jordan, D.; Taín, J. L.; Rubio, B.; Agramunt, J.; Caballero, L.; Nácher, E.; Perez-Cerdan, A. B.; Molina, F.; Estevez, E.; Valencia, E.; Krasznahorkay, A.; Hunyadi, M. D.; Gulyás, J.; Vitéz, A.; Csatlós, M.; Csige, L.; Eronen, T.; Rissanen, J.; Saastamoinen, A.; Moore, I. D.; Penttilä, H.; Kolhinen, V. S.; Burkard, K.; Hüller, W.; Batist, L.; Gelletly, W.; Nichols, A. L.; Yoshida, T.; Sonzogni, A. A.; Peräjärvi, K.

    2014-01-01

    The energy associated with the decay of fission products plays an important role in the estimation of the amount of heat released by nuclear fuel in reactors. In this article we present results of the study of the beta decay of some refractory isotopes that were considered important contributors to the decay heat in reactors. The measurements were performed at the IGISOL facility of the University of Jyväskylä, Finland. In these studies we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat summation calculations are discussed.

  7. Energy- and water-development appropriations for Fiscal Year 1982. Hearings before the Committee on Appropriations, United States Senate, Ninety-Seventh Congress, First Session on H. R. 4144, an act making appropriations for energy and water development for the fiscal year ending September 30, 1982, and for other purposes. Part 2 (pages 679-1574). Department of Energy, Federal Energy Regulatory Commission, Nuclear Regulatory Commission, Tennessee Valley Authority

    SciTech Connect

    Not Available

    1981-01-01

    Part 2 of the hearing record on appropriations for the fiscal year 1982 DOE budget for certain energy and water development programs opens with remarks by Energy Secretary James B. Edwards, who summarizes the Reagan energy policy of reducing federal participation in the funding and regulation of these projects and gives an overview of DOE programs. Subsequent hearings covered the Federal Power Marketing Administration; high-energy physics and basic energy science, and magnetic fusion; nuclear fission and uranium enrichment programs, conservation and renewable energy programs; departmental and related activities; Federal Energy Regulatory Commission and Nuclear Regulatory Commission, Tennessee Valley Authority, and national security and defense programs. The record covers nine days of hearings. (DCK)

  8. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    SciTech Connect

    2013-07-01

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  9. United States Nuclear Tests, July 1945 through September 1992, December 2000

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    2000-12-01

    This document list chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Revision 15, dated December 2000.

  10. Unit: Solar Energy, Inspection Pack, National Trial Print.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    This unit is one of a series developed by the Australian Science Education Project (ASEP) for use by students at the junior secondary level (grades 7-10) in Australian schools. The unit is a trial version dealing with solar energy, and may be used independently or integrated into a sequential program with other units. All students complete the…

  11. Unit: Energy for Life, Inspection Pack, National Trial Print.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    This unit, providing information about human nutrition and energy use, has been prepared for students whose level of thinking is transitional between concrete and formal stages. The unit is based upon an analogy between combustion and respiration and upon the molecular structure of food components. The core portion of the unit presents activities…

  12. Shadow Radiation Shield Required Thickness Estimation for Space Nuclear Power Units

    NASA Astrophysics Data System (ADS)

    Voevodina, E. V.; Martishin, V. M.; Ivanovsky, V. A.; Prasolova, N. O.

    The paper concerns theoretical possibility of visiting orbital transport vehicles based on nuclear power unit and electric propulsion system on the Earth's orbit by astronauts to maintain work with payload from the perspective of radiation safety. There has been done estimation of possible time of the crew's staying in the area of payload of orbital transport vehicles for different reactor powers, which is a consistent part of nuclear power unit.

  13. Probabilistic reliability analysis, quantitative safety goals, and nuclear licensing in the United Kingdom.

    PubMed

    Cannell, W

    1987-09-01

    Although unpublicized, the use of quantitative safety goals and probabilistic reliability analysis for licensing nuclear reactors has become a reality in the United Kingdom. This conclusion results from an examination of the process leading to the licensing of the Sizewell B PWR in England. The licensing process for this reactor has substantial implications for nuclear safety standards in Britain, and is examined in the context of the growing trend towards quantitative safety goals in the United States. PMID:3685540

  14. United States Department of Energy: a history

    SciTech Connect

    Holl, J.M.

    1982-11-01

    This pamphlet traces the origins of the Department of Energy and outlines the history of the Department as reflected in the energy policies of Presidents Nixon, Ford, Carter, and Reagan. It attempts to place recent energy policy into historical perspective by describing the evolution of the federal Government's role in energy research, development, and regulation.

  15. United States Department of Energy: A History

    DOE R&D Accomplishments Database

    Holl, J. M.

    1982-01-01

    This pamphlet traces the origins of the Department of Energy and outlines the history of the Department as reflected in the energy policies of Presidents Nixon, Ford, Carter, and Reagan. It attempts to place recent energy policy into historical perspective by describing the evolution of the federal Government's role in energy research, development, and regulation.

  16. New safe nuclear energy for the next century thorium molten-salt nuclear energy synergetics

    SciTech Connect

    Furukawa, K. ); Lecocq, A. ); Mitachi, K. ); Kato, Y. )

    1991-01-01

    In the next century, the fission breeder concept will not be practical from the several reasons to solve the global energy problems, including environmental and North-South problems. In this paper as a new measure, a simple rational Th breeding fuel cycle system, composed of simple power stations and fissile producers, is proposed to establish the essential improvement in issues of safety, powersize flexibility, nuclear-proliferation and terrorism, radio-waste, economy, etc. securing the simple operation, maintenance and chemical processing.

  17. 76 FR 55422 - Indiana Michigan Power Company; Donald C. Cook Nuclear Plant, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... COMMISSION Indiana Michigan Power Company; Donald C. Cook Nuclear Plant, Unit 1; Exemption 1.0 Background Indiana Michigan Power Company (the licensee) is the holder of Facility Operating License No. DPR-58... systems for light-water nuclear power reactors,'' and Appendix K to 10 CFR part 50, ``ECCS...

  18. Fast neutron fluence of yonggwang nuclear unit 1 reactor pressure vessel

    SciTech Connect

    Yoo, C.; Km, B.; Chang, K.; Leeand, S.; Park, J.

    2006-07-01

    The Code of Federal Regulations, Title 10, Part 50, Appendix H, requires that the neutron dosimetry be present to monitor the reactor vessel throughout plant life. The Ex-Vessel Neutron Dosimetry System has been installed for Yonggwang Nuclear Unit 1 after complete withdrawal of all six in-vessel surveillance capsules. This system has been installed in the reactor cavity annulus in order to measure the fast neutron spectrum coming out through the reactor pressure vessel. Cycle specific neutron transport calculations were performed to obtain the energy dependent neutron flux throughout the reactor geometry including dosimetry positions. Comparisons between calculations and measurements were performed for the reaction rates of each dosimetry sensors and results show good agreements. (authors)

  19. Wind Energy Conversion Systems. A Unit of Instruction.

    ERIC Educational Resources Information Center

    Greenwald, Martin

    The number of secondary schools, colleges, and universities offering courses in wind energy machine construction, repair, and installation, continues to increase. It is the purpose of this unit to include the study of wind energy conversion systems (WECS) as an integral part of related vocational and technical curriculum materials. The unit's…

  20. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Joyner, Claude Russell; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.

  1. Future energy system in environment, economy, and energy problems (2) various nuclear energy system evaluations

    SciTech Connect

    Matsui, Kazuaki; Ujita, Hiroshi; Tashimo, Masanori

    2006-07-01

    Role and potentials of nuclear energy system in the energy options are discussed from the viewpoint of sustainable development with protecting from global warming by using the energy module structure of GRAPE model. They change and are affected dramatically by different sets of energy characteristics, nuclear behavior and energy policy even under the moderate set of presumptions. Introduction of thousands of reactors in the end of the century seems inevitable for better life and cleaner earth, but it will not come without efforts and cost. The analysis suggests the need of long term planning and R and D efforts under the wisdom. (authors)

  2. The reactor ALLEGRO and the sustainable nuclear energy in Central Europe

    NASA Astrophysics Data System (ADS)

    Gadó, János

    2014-09-01

    The Visegrád-4 countries (CZ, HU, PL and SK) would like to use nuclear energy on the long run. The construction of new Generation 3+ nuclear units probably belong in each country to this realm. These reactors will provide safe and cheap electric energy approximately until the end of the 21st century. In order to use nuclear energy in the 22nd century, sustainability of fuel supply shall be achieved by applying Generation 4 breeder reactors with fast spectrum. The corresponding research and development is organized now in the framework of the V4G4 Centre of Excellence establshed by the nuclear research institutes of the region with a strong technical support from the French CEA. The most important milestone of these efforts is the start-up of the ALLEGRO reactor that shall demonstrate the viability of the gas cooled fast reactor technology.

  3. Thorium Deposits of the United States - Energy Resources for the Future?

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Gillerman, Virginia S.; Armbrustmacher, Theodore J.

    2009-01-01

    Many nations are exploring new ways to meet their growing energy supply needs, with a particular focus upon methods that produce lower carbon dioxide emissions compared to traditional oil, natural gas, and coal power plants. As a result, thorium-based nuclear power has experienced renewed attention as a potential energy source. Thus, it benefits the United States and other countries to identify and evaluate their indigenous thorium resources. This report describes the geology and resources of the principal thorium districts of the United States.

  4. (Intermediate/high energy nuclear physics)

    SciTech Connect

    Not Available

    1987-01-01

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. We have solved a non-trivial model field theory in the strong coupling regime using a discretized light front quantization (DLFQ) scheme. The method we developed expands upon the method of Pauli and Brodsky by incorporating a dynamical treatment of the vacuum. This is a major result since we have shown directly that the light-cone vacuum is not structureless as has been traditionally claimed by some particle theorists. We have thus succeeded in elucidating the consequences of spontaneous symmetry breaking in light-cone quantization. We now propose to address QCD in low dimensionality with the purpose of extracting non-perturbative predictions for quark and gluon amplitudes in few baryon systems. Simultaneously with this new effort we will continue to develop extensions and applications of the QCM. We propose to continue predicting phenomena to be observed in high energy particle-nucleus collisions that reflect the rearrangement of quarks and gluons in nuclei. We will complete our analysis of the SLAC NE3 data to explicate the degree to which they confirm the QCM prediction of ''steps'' in the ratio of nuclear structure functions when Bjorken x exceeds unity. In another effort, we will perform a search for narrow resonances in electron-positron interactions high in the continuum using the Bethe-Salpeter equation. We have completed our development of microscopic effective Hamiltonians for nuclear structure which include the explicit treatment of delta resonances. These effective Hamiltonians were successfully used in constrained mean field calculations evaluating conditions for nuclei to undergo a transition from nucleon matter to delta matter. 73 refs.

  5. 76 FR 11522 - In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear Power Plant, Units 1 and 2); Notice of Appointment of Adjudicatory Employee Commissioners: Gregory...

  6. Recommendations for a Department of Energy Nuclear Energy R and D Agenda Volume 2 Appendices

    SciTech Connect

    1997-12-01

    The current US nuclear energy policy is primarily formulated as part of the nation`s overall energy policy. In addition, nuclear energy policy is impacted by other US policies, such as those for defense and environment, and by international obligations through their effects on nuclear weapons dismantlement and stewardship, continued reliance on space and naval nuclear power sources, defense waste cleanup, and on nuclear nonproliferation. This volume is composed of the following appendices: Appendix 1--Objectives of the Federal Government Nuclear Energy Related Policies and Research and Development Programs; Appendix 2--Nuclear Energy and Related R and D in the US; Appendix 3--Summary of Issues That Drive Nuclear Energy Research and Development; Appendix 4: Options for Policy and Research and Development; Appendix 5--Pros and Cons of Objectives and Options; and Appendices 6--Recommendations.

  7. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  8. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency and Renewable Energy, Department... FURTHER INFORMATION CONTACT: Mohammed Khan, U.S. Department of Energy, Office of Energy Efficiency...

  9. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    SciTech Connect

    Shannon Bragg-Sitton; Richard Boardman; John Collins; Mark Ruth; Owen Zinaman; Charles Forsberg

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  10. Energy Awareness Resource Unit for Intermediate Grades.

    ERIC Educational Resources Information Center

    Myers, Richard S.; Myers, Harriet B.

    This instructional package suggests objectives, activities, and evaluation methods for use in an elementary school minicourse on energy. Objectives are to help students become aware of the present energy situation and to make more intelligent energy-related decisions in the future. Activities involve language arts, science, math, social studies,…

  11. Geothermal Energy Potential in Western United States

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  12. An architecture for nuclear energy in the 21st century

    SciTech Connect

    Arthur, E.D.; Cunningham, P.T.; Wagner, R.L. Jr.

    1998-12-01

    Nuclear energy currently plays a significant role in the energy economies of the US and other major industrial nations. Its future (several scenarios are described later) may involve significant growth in developing countries but controversy and debate surrounds future nuclear energy scenarios. In that ongoing debate, proponents and critics both appear to assume that nuclear technologies, practices and institutions will continue over the long term to look much as they do today. This paper discusses possible global and regional nuclear energy scenarios, and proposes changes in the global nuclear architecture that could reshape technologies, practices and institutions of nuclear energy over the coming decades. In doing so the array of choices available for exercising the nuclear energy option could be enlarged, making such a potential deployment less problematic and perhaps less controversial. How fuel discharged from power reactors is used and disposed of is a central issue of nuclear energy`s present controversy and central factor in determining its long-term potential. Many proponents of nuclear power, especially outside the US, believe that extracting all the energy available in reactor fuel--and, in particular, recovering the plutonium from discharged fuel for recycling through breeder reactors--is necessary to realize the technology`s ultimate potential as a source of virtually inexhaustible energy. Others consider the plutonium contained in discharged fuel to be a challenge to waste disposal and a potential proliferation risk. Focusing on the back end of the nuclear fuel cycle as a principal arena for improvement represents a fruitful pathway towards creating a significantly improved fuel-cycle architecture.

  13. The Advanced BWR Nuclear Plant: Safe, economic nuclear energy

    SciTech Connect

    Redding, J.R.

    1994-12-31

    The safety and economics of Advanced BWR Nuclear Power Plants are outlined. The topics discussed include: ABWR Programs: status in US and Japan; ABWR competitiveness: safety and economics; SBWR status; combining ABWR and SBWR: the passive ABWR; and Korean/GE partnership.

  14. 78 FR 44603 - Byron Nuclear Station, Units 1 and 2, and Braidwood Nuclear Station, Units 1 and 2; Exelon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... the license renewal application (LRA) was published in the Federal Register on June 13, 2013 (78 FR... accordance with the NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires... Byron, Units 1 and 2, at 3586.6 megawatts thermal each, and Braidwood, Units 1 and 2, at...

  15. 75 FR 76052 - Southern Nuclear Operating Company, Inc. Joseph M. Farley Nuclear Plant, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... environment (75 FR 73135, dated November 29, 2010). This exemption is effective upon issuance. Dated at.... Farley Nuclear Plant, Units 1 and 2 (FNP). The licenses provide, among other things, that the facility is... consistent with the approach set forth by the Commission as discussed in the June 4, 2009, letter....

  16. 78 FR 28245 - In the Matter of Southern Nuclear Operating Company, Farley Nuclear Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... FR 49139; August 28, 2007). The E-Filing process requires participants to submit and serve all... Nuclear Plant (FNP), Units 1 and 2, in accordance with conditions specified therein. The facility is... investigation, the NRC issued a letter to FNP dated January 9, 2013, which documented an apparent violation...

  17. Low Energy Nuclear Reaction Products at Surfaces

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  18. Influence of binding energies of electrons on nuclear mass predictions

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Niu, Zhong-Ming; Guo, Jian-You

    2016-07-01

    Nuclear mass contains a wealth of nuclear structure information, and has been widely employed to extract the nuclear effective interactions. The known nuclear mass is usually extracted from the experimental atomic mass by subtracting the masses of electrons and adding the binding energy of electrons in the atom. However, the binding energies of electrons are sometimes neglected in extracting the known nuclear masses. The influence of binding energies of electrons on nuclear mass predictions are carefully investigated in this work. If the binding energies of electrons are directly subtracted from the theoretical mass predictions, the rms deviations of nuclear mass predictions with respect to the known data are increased by about 200 keV for nuclei with Z, N ⩾ 8. Furthermore, by using the Coulomb energies between protons to absorb the binding energies of electrons, their influence on the rms deviations is significantly reduced to only about 10 keV for nuclei with Z, N ⩾ 8. However, the binding energies of electrons are still important for the heavy nuclei, about 150 keV for nuclei around Z = 100 and up to about 500 keV for nuclei around Z = 120. Therefore, it is necessary to consider the binding energies of electrons to reliably predict the masses of heavy nuclei at an accuracy of hundreds of keV. Supported by National Natural Science Foundation of China (11205004)

  19. Long-term global nuclear energy and fuel cycle strategies

    SciTech Connect

    Krakowski, R.A.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  20. 77 FR 35079 - License Renewal Application for Seabrook Station, Unit 1 ; NextEra Energy Seabrook, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... COMMISSION License Renewal Application for Seabrook Station, Unit 1 ; NextEra Energy Seabrook, LLC AGENCY: Nuclear Regulatory Commission. ACTION: License renewal application; intent to prepare supplement to draft ] supplemental environmental impact statement. SUMMARY: On May 25, 2010, NextEra Energy Seabrook, LLC...

  1. (Intermediate/high energy nuclear physics)

    SciTech Connect

    Not Available

    1989-01-01

    We have continued to develop a theoretical framework for the quark and gluon structure of nuclei. Our approach features a successful phenomenological model, the quark cluster model (QCM), and an ambitious program in the non-perturbative solution of quantum field theories. The effort in quantum field theory provides theoretical results to test or replace assumed ingredients of the QCM. By the explicit example of a scalar field theory in 2D we have solved the long-standing problem of how to treat the dynamics of the vacuum in light-front quantization. We now propose to solve the same problem for simple Fermion field theories in 2D such as the Gross-Neveu model. We propose in subsequent years to address QCD in low dimensionality with the purpose of extracting non-perturbative predictions for quark and gluon amplitudes in few baryon systems. Simultaneously with this new effort we will continue to develop extensions and applications of the QCM. We propose to continue predicting phenomena to be observed in high energy particle-nucleus collisions that reflect the rearrangement of quarks and gluons in nuclei. We have completed our analysis of the SLAC E101 and E133 experiments on Deuterium to elucidate the degree to which a six-quark cluster contribution is admissable in the Bjorken x > 1 data. We have completed our development of a parameterized thermal liquid drop model for light nuclei. In addition we have completed a set of predictions for the formation of a ''nuclear stratosphere'' in nuclei created by intermediate energy heavy ion interactions. These results motivate a new investigation of the temperature dependence of the ion-ion potential with particular emphasis on the thermal dependence of the barrier height and radius. We have also shown that a consistent treatment of relativistic effects is important for a theoretical description of the elastic magnetic form factor of /sup 17/O. 85 refs.

  2. High energy physics in the United States

    SciTech Connect

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  3. Nuclear energy with inherent safety: Change of outdated paradigm, criteria

    NASA Astrophysics Data System (ADS)

    Adamov, E. O.; Orlov, V. V.; Rachkov, V. I.; Slessarev, I. S.; Khomyakov, Yu. S.

    2015-12-01

    Modern nuclear power technology still has significant sources of risk, and, weak links, such as, a threat of severe accidents with catastrophic unpredictable consequences and damage to the population, proliferation of nuclear weapon-usable materials, risks of long-term storage of toxic radioactive waste, risks of loss of major investments in nuclear facilities and their construction, lack of fuel resources for the ambitious role of nuclear power in the competitive balance of energy. Each of these risks is important and almost independent, though the elimination of some of them does not significantly alter the overall assessment of nuclear power.

  4. White paper on VU for Modeling Nuclear Energy Systems

    SciTech Connect

    Klein, R; Turinsky, P

    2009-05-07

    The purpose of this whitepaper is to provide a framework for understanding the role that Verification and Validation (V&V), Uncertainty Quantification (UQ) and Risk Quantification, collectively referred to as VU, is expected to play in modeling nuclear energy systems. We first provide background for the modeling of nuclear energy based systems. We then provide a brief discussion that emphasizes the critical elements of V&V as applied to nuclear energy systems but is general enough to cover a broad spectrum of scientific and engineering disciplines that include but are not limited to astrophysics, chemistry, physics, geology, hydrology, chemical engineering, mechanical engineering, civil engineering, electrical engineering, nu nuclear engineering material clear science science, etc. Finally, we discuss the critical issues and challenges that must be faced in the development of a viable and sustainable VU program in support of modeling nuclear energy systems.

  5. PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION

    SciTech Connect

    Allender, J.; Koenig, R.; Davies, S.

    2009-06-01

    Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

  6. Atomic Mass and Nuclear Binding Energy for F-16 (Fluorine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-16 (Fluorine, atomic number Z = 9, mass number A = 16).

  7. Atomic Mass and Nuclear Binding Energy for I-162 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-162 (Iodine, atomic number Z = 53, mass number A = 162).

  8. Atomic Mass and Nuclear Binding Energy for I-189 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-189 (Iodine, atomic number Z = 53, mass number A = 189).

  9. Atomic Mass and Nuclear Binding Energy for I-182 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-182 (Iodine, atomic number Z = 53, mass number A = 182).

  10. Atomic Mass and Nuclear Binding Energy for I-171 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-171 (Iodine, atomic number Z = 53, mass number A = 171).

  11. Atomic Mass and Nuclear Binding Energy for I-175 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-175 (Iodine, atomic number Z = 53, mass number A = 175).

  12. Atomic Mass and Nuclear Binding Energy for I-184 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-184 (Iodine, atomic number Z = 53, mass number A = 184).

  13. Atomic Mass and Nuclear Binding Energy for I-169 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-169 (Iodine, atomic number Z = 53, mass number A = 169).

  14. Atomic Mass and Nuclear Binding Energy for I-174 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-174 (Iodine, atomic number Z = 53, mass number A = 174).

  15. Atomic Mass and Nuclear Binding Energy for I-172 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-172 (Iodine, atomic number Z = 53, mass number A = 172).

  16. Atomic Mass and Nuclear Binding Energy for I-168 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-168 (Iodine, atomic number Z = 53, mass number A = 168).

  17. Atomic Mass and Nuclear Binding Energy for I-170 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-170 (Iodine, atomic number Z = 53, mass number A = 170).

  18. Atomic Mass and Nuclear Binding Energy for I-194 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-194 (Iodine, atomic number Z = 53, mass number A = 194).

  19. Atomic Mass and Nuclear Binding Energy for I-186 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-186 (Iodine, atomic number Z = 53, mass number A = 186).

  20. Atomic Mass and Nuclear Binding Energy for I-161 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-161 (Iodine, atomic number Z = 53, mass number A = 161).

  1. Atomic Mass and Nuclear Binding Energy for I-190 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-190 (Iodine, atomic number Z = 53, mass number A = 190).

  2. Atomic Mass and Nuclear Binding Energy for I-181 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-181 (Iodine, atomic number Z = 53, mass number A = 181).

  3. Atomic Mass and Nuclear Binding Energy for I-193 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-193 (Iodine, atomic number Z = 53, mass number A = 193).

  4. Atomic Mass and Nuclear Binding Energy for I-179 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-179 (Iodine, atomic number Z = 53, mass number A = 179).

  5. Atomic Mass and Nuclear Binding Energy for I-164 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-164 (Iodine, atomic number Z = 53, mass number A = 164).

  6. Atomic Mass and Nuclear Binding Energy for I-176 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-176 (Iodine, atomic number Z = 53, mass number A = 176).

  7. Atomic Mass and Nuclear Binding Energy for I-185 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-185 (Iodine, atomic number Z = 53, mass number A = 185).

  8. Atomic Mass and Nuclear Binding Energy for I-163 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-163 (Iodine, atomic number Z = 53, mass number A = 163).

  9. Atomic Mass and Nuclear Binding Energy for I-187 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-187 (Iodine, atomic number Z = 53, mass number A = 187).

  10. Atomic Mass and Nuclear Binding Energy for I-165 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-165 (Iodine, atomic number Z = 53, mass number A = 165).

  11. Atomic Mass and Nuclear Binding Energy for I-160 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-160 (Iodine, atomic number Z = 53, mass number A = 160).

  12. Atomic Mass and Nuclear Binding Energy for I-177 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-177 (Iodine, atomic number Z = 53, mass number A = 177).

  13. Atomic Mass and Nuclear Binding Energy for I-167 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-167 (Iodine, atomic number Z = 53, mass number A = 167).

  14. Atomic Mass and Nuclear Binding Energy for I-178 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-178 (Iodine, atomic number Z = 53, mass number A = 178).

  15. Atomic Mass and Nuclear Binding Energy for I-192 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-192 (Iodine, atomic number Z = 53, mass number A = 192).

  16. Atomic Mass and Nuclear Binding Energy for I-173 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-173 (Iodine, atomic number Z = 53, mass number A = 173).

  17. Atomic Mass and Nuclear Binding Energy for I-191 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-191 (Iodine, atomic number Z = 53, mass number A = 191).

  18. Atomic Mass and Nuclear Binding Energy for I-183 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-183 (Iodine, atomic number Z = 53, mass number A = 183).

  19. Atomic Mass and Nuclear Binding Energy for I-188 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-188 (Iodine, atomic number Z = 53, mass number A = 188).

  20. Atomic Mass and Nuclear Binding Energy for I-166 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-166 (Iodine, atomic number Z = 53, mass number A = 166).

  1. Atomic Mass and Nuclear Binding Energy for I-180 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-180 (Iodine, atomic number Z = 53, mass number A = 180).

  2. Atomic Mass and Nuclear Binding Energy for Sr-71 (Strontium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Sr-71 (Strontium, atomic number Z = 38, mass number A = 71).

  3. Lessons from an Energy Curriculum for the Senior High Grades. Unit VII - Energy Conservation. Energy Education Curriculum Project.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Public Instruction, Indianapolis. Div. of Curriculum.

    Energy education units (consisting of a general teacher's guide and nine units containing a wide variety of energy lessons, resources, learning aids, and bibliography) were developed for the Indiana Energy Education Program from existing energy education materials. The units were designed to serve as an entire curriculum, resource document,…

  4. Lessons from an Energy Curriculum for the Senior High Grades. Unit VIII - Energy Measurement. Energy Education Curriculum Project.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Public Instruction, Indianapolis. Div. of Curriculum.

    Energy education units (consisting of a general teacher's guide and nine units containing a wide variety of energy lessons, resources, learning aids, and bibliography) were developed for the Indiana Energy Education Program from existing energy education materials. The units were designed to serve as an entire curriculum, resource document,…

  5. The Big E (Energy). 4-H Member Guide, Unit 2.

    ERIC Educational Resources Information Center

    Caldwell, William; And Others

    This activity and record book is designed for unit 2 (ages 12-14) of the Nebraska 4-H Energy Project. Aims, energy attitudes to be developed, and instructions are provided for each activity. Activities include: (1) a word search of energy-related words (with definitions provided); (2) determining fuel waste; (3) reading electric/gas meters and…

  6. The Big E (Energy). 4-H Member Guide, Unit 3.

    ERIC Educational Resources Information Center

    Caldwell, William; And Others

    This activity and record book is designed for unit 3 (ages 15-19) of the Nebraska 4-H Energy Project. Aims, energy attitudes to be developed, and instructions are provided for each activity. Activities include: (1) determining ways to reduce energy waste with hot water heaters; (2) making personal choices about using appliances; (3) conducting a…

  7. Renewable energy in the United States: is there enough land?

    PubMed

    Converse, Alvin O

    2007-04-01

    A review of studies of biomass potential in the United States finds a wide variation in the estimates. A number of specific policy-relevant questions about the potential of biofuels in the United States are answered. A recently published global analysis of the potential conflict between land needed for bioenergy and land needed for food is extended to the situation in the United States. A renewable energy supply scenario, capable of meeting the 2001 US energy demand, indicates that there is enough land to support a renewable energy system but that the utilization of biomass would be limited by its land requirement.

  8. Nuclear Energy for a Low-Carbon-Dioxide-Emission Transportation System with Liquid Fuels

    SciTech Connect

    Forsberg, Charles W

    2007-01-01

    The two major energy challenges for the United States are to replace crude oil in our transportation system and reduce greenhouse gas emissions. A multilayer strategy to replace oil using nuclear energy and various carbon sources (fossil fuels, biomass, or air) is described that (a) allows the continued use of liquid fuels (ethanol, gasoline, diesel, and jet fuel) in the transport sector, (b) does not require major changes in lifestyle by the consumer, and (c) ultimately eliminates carbon dioxide emissions from the transport sector. Nuclear energy is used to provide electricity, heat, and ultimately hydrogen, with the hydrogen produced by either electrolysis or more advanced thermochemical production methods. In the near term, nuclear energy can provide low-temperature heat (steam) for ethanol production and electricity for transportation. Midterm options include low-temperature heat and limited quantities of hydrogen for processing cellulosic biomass into liquid fuels (ethanol and lignin-derived hydrocarbons) and providing high-temperature heat for (a) traditional refining and (b) underground oil production and refining. In the longer term, biomass becomes the feedstock for liquid-fuels production, with nuclear energy providing heat and large quantities of hydrogen for complete biomass conversion to hydrocarbon fuels. Nuclear energy could be used to provide over half the total energy required by the transportation system, and the use of oil in the transport sector could potentially be eliminated within several decades.

  9. 75 FR 54920 - In the Matter of Pacific Gas & Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... COMMISSION In the Matter of Pacific Gas & Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 and 2... Operating License Nos. DPR-80 and DPR-82 for the Diablo Canyon Nuclear Power Plant, Units 1 and 2, near San... understanding of seismic risks to the Diablo Canyon nuclear power plant. Further, that omission is not......

  10. 76 FR 72007 - ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250...

  11. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    SciTech Connect

    2005-03-01

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R&D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R&D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan.

  12. Nuclear structure studies with intermediate energy probes

    SciTech Connect

    Lee, T.S.H.

    1993-10-01

    Nuclear structure studies with pions are reviewed. Results from a recent study of 1 p-shell nuclei using (e,e{prime}), ({pi}, {pi}{prime}), and ({gamma},{pi}) reactions are reported. Future nuclear structure studies with GeV electrons at CEBAF are also briefly discussed.

  13. The United States Naval Nuclear Propulsion Program - Over 151 Million Miles Safely Steamed on Nuclear Power

    SciTech Connect

    None, None

    2015-03-01

    NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise required to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.

  14. Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel

    2007-01-01

    Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

  15. Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems

    SciTech Connect

    Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel

    2007-01-30

    Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

  16. Five Requirements for Nuclear Energy and CANDLE Fast Reactor

    SciTech Connect

    Sekimoto, Hiroshi

    2010-06-22

    The Center for Research into Innovative Nuclear Energy Systems (CRINES) was established in order to succeed the COE-INES mission after finishing this program in Tokyo Tech. CRINES considers nuclear energy should satisfy 5 requirements; sustainability as basic energy, solving 3 problems inherent to accidents, radioactive waste and nuclear bomb, and economical acceptance. Characteristics of CANDLE fast reactor are discussed for these requirements. It satisfies 4 requirements; sustainability and solving 3 inherent problems. For the remaining requirement for economy, a high potential to satisfy this requirement is also shown.

  17. Automatic chemical monitoring in the composition of functions performed by the unit level control system in the new projects of nuclear power plant units

    NASA Astrophysics Data System (ADS)

    Denisova, L. G.; Khrennikov, N. N.

    2014-08-01

    The article presents information on the state of regulatory framework and development of a subsystem for automated chemical monitoring of water chemistries in the primary and secondary coolant circuits used as part of the automatic process control system in new projects of VVER reactor-based nuclear power plant units. For the strategy of developing and putting in use the water chemistry-related part of the automated process control system within the standard AES-2006 nuclear power plant project to be implemented, it is necessary to develop regulatory documents dealing with certain requirements imposed on automatic water chemistry monitoring systems in accordance with the requirements of federal codes and regulations in the field of using atomic energy.

  18. Nuclear Forensics and Attribution for Improved Energy Security: The Use of Taggants in Nuclear Fuel

    SciTech Connect

    Kristo, M J; Robel, M; Hutcheon, I D

    2007-04-05

    The Global Nuclear Energy Partnership (GNEP), recently announced by DOE Secretary Bodman, poses significant new challenges with regard to securing, safeguarding, monitoring and tracking nuclear materials. In order to reduce the risk of nuclear proliferation, new technologies must be developed to reduce the risk that nuclear material can be diverted from its intended use. Regardless of the specific nature of the fuel cycle, nuclear forensics and attribution will play key roles to ensure the effectiveness of nonproliferation controls and to deter the likelihood of illicit activities. As the leader of the DHS nuclear and radiological pre-detonation attribution program, LLNL is uniquely positioned to play a national leadership role in this effort. Ensuring that individuals or organizations engaged in illicit trafficking are rapidly identified and apprehended following theft or diversion of nuclear material provides a strong deterrent against unlawful activities. Key to establishing this deterrent is developing the ability to rapidly and accurately determine the identity, source and prior use history of any interdicted nuclear material. Taggants offer one potentially effective means for positively identifying lost or stolen nuclear fuels. Taggants are materials that can be encoded with a unique signature and introduced into nuclear fuel during fuel fabrication. During a nuclear forensics investigation, the taggant signature can be recovered and the nuclear material identified through comparison with information stored in an appropriate database. Unlike serial numbers or barcodes, microtaggants can provide positive identification with only partial recovery, providing extreme resistance to any attempt to delete or alter them.

  19. Nuclear energy: Where do we go from here?

    NASA Astrophysics Data System (ADS)

    Muslim, Dato'Noramly, Dr

    2015-04-01

    As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower is a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia's moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands.

  20. Nuclear energy: Where do we go from here?

    SciTech Connect

    Muslim, Dato’ Dr Noramly

    2015-04-29

    As Malaysia progresses towards 2020, the depleting resource of oil and gas has forced a re-look at alternatives to replace fossil fuels as energy sources. Among the viable options is nuclear energy, enabling us to meet energy needs and sustain national development in the twenty-first century. Three essential steps Malaysia must take to introduce nuclear power into its energy mix are: energy planning, infrastructure development, and deployment. Malaysia has to face a series of challenges, including public acceptance, waste management, minimizing proliferation risk, and ensuring the security of nuclear plants and materials. Timely development of qualified and competent manpower is a key limiting factor in the development and transfer of nuclear technologies — and education and training take time, effort and money. There is a need for political will. Within the Asian region, China, Korea and Japan are in the forefront in utilizing nuclear power to meet electricity demands. Countries such as UAE, Bangladesh, Vietnam and Turkey are moving ahead with the nuclear option for electricity generation and they have begun planning and construction of nuclear power plants. Against this backdrop, what are Malaysia’s moves? This paper discusses various options and challenges, obstacles and repercussions in meeting future energy demands.

  1. Country Report on Building Energy Codes in the United States

    SciTech Connect

    Halverson, Mark A.; Shui, Bin; Evans, Meredydd

    2009-04-30

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

  2. Anatomy of the symmetry energy of dilute nuclear matter

    SciTech Connect

    De, J. N.; Samaddar, S. K.; Agrawal, B. K.

    2010-10-15

    The symmetry energy coefficients of dilute clusters nuclear matter are evaluated in the S-matrix framework. Employing a few different definitions commonly used in the literature for uniform nuclear matter, it is seen that the different definitions lead to perceptibly different results for the symmetry coefficients for dilute nuclear matter. They are found to be higher compared to those obtained for uniform matter in the low density domain. The calculated results are in reasonable consonance with those extracted recently from experimental data.

  3. Nuclear energy: salvation or suicide. [Contains glossary

    SciTech Connect

    Collins, C.C.

    1984-01-01

    A collection of 700 editorials and feature articles collected from 125 US newspapers addresses the dominant areas of concern about nuclear power: plant safety, radioactive wastes, proliferation, and cost. The editorial debates present the pros and cons of Three Mile Island and other accidents, ocean dumping, evacuation plans, radioactive waste transport and storage, nuclear fuel processing, the Karen Silkwood case, and breeder reactors. The appendix raises the question of the future for fission and the possibility of nuclear fusion as an alternative. There is a subject index and a glossary of basic terms.

  4. Energy Education: Responding to the Nuclear Power Controversy.

    ERIC Educational Resources Information Center

    Fry-Miller, Kathleen M.

    1982-01-01

    Discusses problems associated with the use of nuclear power as a source of energy. Sources of exposure to radiation, the effects of exposure to radiation on children's health, and safe alternatives to nuclear power that can be taught to children are among the topics addressed. (Author/RH)

  5. The prospect of nuclear energy in Türkiye especially after Fukushima accident

    NASA Astrophysics Data System (ADS)

    Şahin, Sümer

    2014-09-01

    Türkiye considers since mid-50's to use nuclear electricity, but Government and bureaucracy have continuously postponed reactor construction. However, since 2010 the case has gained a real shape. Official agreement has been signed for the construction of 4 units of Russian VVER type reactors with installed power of 4×1200 MWel. It is expected that they will begin to deliver electricity early 20's. Further negotiations are being conducted with Japanese Mitsubashi and French AREVA. The target is to have nuclear electricity by 2023 at the 100th anniversary of Turkish Republic. Turkish Nuclear Energy Strategy aims; • Decrease country's dependency on foreign suppliers of energy sources • Provide fuel supply mix diversification • Utilization of environmentally friendly energy production technologies Possess advanced and prestigious power generation technologies.

  6. The prospect of nuclear energy in Türkiye especially after Fukushima accident

    SciTech Connect

    Şahin, Sümer

    2014-09-30

    Türkiye considers since mid-50's to use nuclear electricity, but Government and bureaucracy have continuously postponed reactor construction. However, since 2010 the case has gained a real shape. Official agreement has been signed for the construction of 4 units of Russian VVER type reactors with installed power of 4×1200 MW{sub el}. It is expected that they will begin to deliver electricity early 20's. Further negotiations are being conducted with Japanese Mitsubashi and French AREVA. The target is to have nuclear electricity by 2023 at the 100{sup th} anniversary of Turkish Republic. Turkish Nuclear Energy Strategy aims; • Decrease country's dependency on foreign suppliers of energy sources • Provide fuel supply mix diversification • Utilization of environmentally friendly energy production technologies Possess advanced and prestigious power generation technologies.

  7. Peer review of the Barselina Level 1 probabilistic safety assessment of the Ignalina Nuclear Power Plant, Unit 2

    SciTech Connect

    McKay, S.L.; Coles, G.A.

    1995-01-01

    The Barselina Project is a Swedish-funded, cooperative effort among Lithuania, Russia and Sweden to transfer Western probabilistic safety assessment (PSA) methodology to the designers/operators of Ignalina Nuclear Power Plant (INPP). The overall goal is to use the PSA as a tool for assessing plant operational safety. The INPP is a two-unit, Former Soviet Union-designed nuclear facility located in Lithuania. The results of this PSA will ultimately be used to identify plant-specific improvements in system design and the conduct of facility operations, allowing improved operational safety. Pacific Northwest Laboratory (PNL) was asked to perform an independent expert peer review of the Barselina PSA. This report documents the findings of this review. This review, financed with nuclear safety assistance funds through the US Agency for International Development (USAID) and the US Department of Energy (DOE), satisfies Task II of the PNL peer review of the Barselina project. The objective is to provide an independent, in-proce ss examination of the Barselina Level 1 PSA of Ignalina Nuclear Power Plant, Unit 2. The review consisted of an investigation of the project documentation, interviews, and extensive discussions with the PSA staff during critical stages of the project. PNL assessed the readability, completeness, consistency, validity, and applicability of the PSA. The major aspects explored were its purpose, major assumptions, analysis/modeling, results, and interpretation. It was not within the scope of this review to perform plant walkdowns or to review material other than the PSA documentation.

  8. Nuclear physics at extreme energy density

    SciTech Connect

    Mueller, B.

    1992-05-15

    This report discusses topics in the following areas: QCD transport theory; minijets in hadronic and nuclear collisions; lattice gauge theory; hadronic matter and other studies; and strong electromagnetic fields. (LSP)

  9. Using the Microcomputer to Teach about Nuclear Energy.

    ERIC Educational Resources Information Center

    Saltinski, Ronald

    1984-01-01

    Examines various types of software useful in teaching about nuclear energy. Includes a list of 11 software resources (including program name, source and cost, system requirements, and brief comments about the program). (JN)

  10. Impacts of Nuclear Symmetry Energy on Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Bao, S. S.; Shen, H.

    2015-11-01

    Using the relativistic mean-field theory, we adopt two different methods, namely, the coexisting phase method and the self-consistent Thomas-Fermi approximation, to study the impacts of nuclear symmetry energy on the properties of neutron star crusts within a wide range of densities. It is found that the nuclear symmetry energy and its density slope play an important role in determining the pasta phases and the crust-core transition.

  11. What would it take to revitalize nuclear power in the United States?

    SciTech Connect

    Morgan, M.G.

    1993-03-01

    Although nuclear power continues to play an active role in the energy planning of other nations, the U.S. nuclear power industry is dead. Its rebirth will take more than increasing energy supply pressures, public relations, and a little fine tuning. Five basic domestic problems plague the current US nuclear power system: The nation has been building the wrong kind of reactors; has organized and managed reactor construction improperly; has taken the wrong approach to handling radioactive wastes; and has failed to resolve issues that can be solved only through high-level political will and leadership. A critical element that pervades much of the nuclear issue is a failure to treat the public with respect. With a change in philosophy and some bold new programs, these five problems could be resolved domestically. A sixth problem, involving the more effective management of nuclear weapons and their proliferation, will require collective international solutions. This paper examines each of these areas.

  12. Energy-range relations for hadrons in nuclear matter

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  13. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  14. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  15. Proceedings of the second US Department of Energy environmental control symposium. Volume 2. Nuclear energy, conservation, and solar energy

    SciTech Connect

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume II contains papers relating to: environmental control aspects of nuclear energy use and development; nuclear waste management; renewable energy sources; transportation and building conservation (fuel economy, gasohol, building standards, and industry); and geothermal energy, power transmission, and energy storage. (DMC)

  16. Space and energy conservation housing prototype unit development

    NASA Technical Reports Server (NTRS)

    Sunshine, D. R.

    1975-01-01

    Construction plans are discussed for a house which will demonstrate the application of advanced technology to minimize energy requirements and to help direct further development in home construction by defining the interaction of integrated energy and water systems with building configuration and construction materials. Housing unit designs are provided and procedures for the analysis of a variety of housing strategies are developed.

  17. Estimated United States Residential Energy Use in 2005

    SciTech Connect

    Smith, C A; Johnson, D M; Simon, A J; Belles, R D

    2011-12-12

    A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

  18. Future Directions, Challenges and Opportunities in Nuclear Energy

    SciTech Connect

    Klein, Andy; Lance, Jack

    2007-03-21

    The renaissance of nuclear energy for electricity and hydrogen production and process heat for other potential applications is moving ahead rapidly. Both near- and far-term roles are envisioned for this important energy technology, and each of these roles will have its own particular technical challenges and opportunities. Numerous power producers world-wide are actively considering the construction of new nuclear power plants for the production of electricity in the near-term. The U.S. Department of Energy has announced plans to develop both the next generation of nuclear power plants and the technology necessary to recycle used nuclear fuel. These exciting technologies will bring novel challenges to their developers and designers as they push the knowledge base in materials utilization, high temperatures and pressures, extended operating cycles, and extreme operating environments. Development of the techniques and methods to interrogate, understand, manage and control these devices will be crucial to enabling the full extension of these technologies.

  19. Future Directions, Challenges and Opportunities in Nuclear Energy

    SciTech Connect

    Andy Klein; Jack Lance

    2006-07-01

    The renaissance of nuclear energy for electricity and hydrogen production and process heat for other potential applications is moving ahead rapidly. Both near- and far-term roles are envisioned for this important energy technology, and each of these roles will have its own particular technical challenges and opportunities. Numerous power producers world-wide are actively considering the construction of new nuclear power plants for the production of electricity in the near-term. The U.S. Department of Energy has announced plans to develop both the next generation of nuclear power plants and the technology necessary to recycle used nuclear fuel. These exciting technologies will bring novel challenges to their developers and designers as they push the knowledge base in materials utilization, high temperatures and pressures, extended operating cycles, and extreme operating environments. Development of the techniques and methods to interrogate, understand, manage and control these devices will be crucial to enabling the full extension of these technologies.

  20. Decision-Makers' Forum on a Unified Strategy for Nuclear Energy

    SciTech Connect

    2004-11-01

    An abundant and secure energy supply is critical to our country’s prosperity, and energy supply is now a central issue in global stability and security. Unfortunately, the Unites States continues to steadily increase the fraction of energy it imports from foreign sources. In May 2001, the National Energy Policy noted that this imbalance, "if allowed to continue, will inevitably undermine our economy, our standard of living, and our national security." In addition to these serious impacts, growing concern about air pollution and atmospheric carbon levels hold the potential for global climate change. According to the National Academy of Sciences, the Earth’s surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. The current energy supply situation clearly demands coordinated action. Nuclear energy is preeminent in its ability to deliver affordable energy today and meet the growing imperatives for clean air and energy supplies in the future.

  1. New and renewable energy in the United States of America

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The current technical and economic status of technologies and with and expectations for new and renewable energy sources in the United States are described. The roles of the public and private sectors in developing and using these energy sources are outlined. Specific technologies discussed are: low, intermediate, and high temperature solar collectors; biomass, wind, and ocean energy systems; hydropower; geothermal systems; oil shale; and tar sands.

  2. Proposed plan for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1991-03-01

    The US Department of Energy (DOE) in compliance with Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, is releasing the proposed plan for remedial action at the United Nuclear Corporation (UNC) Disposal Site located at the DOE Oak Ridge Operations (ORO) Y-12 Plant, Oak Ridge, Tennessee. The purpose of this document is to present and solicit for comment to the public and all interested parties the preferred plan'' to remediate the UNC Disposal Site. However, comments on all alternatives are invited.

  3. Nuclear power: Fourth edition

    SciTech Connect

    Deutsch, R.W.

    1986-01-01

    This book describes the basics of nuclear power generation, explaining both the benefits and the real and imagined risks of nuclear power. It includes a discussion of the Three Mile Island accident and its effects. Nuclear Power has been used in the public information programs of more than 100 utilities. The contents discussed are: Nuclear Power and People; Why Nuclear Power. Electricity produced by coal; Electricity produced by nuclear fuel; Nuclear plant sites in the United States; Short History of Commercial Nuclear Power; U.S. nuclear submarines, Regulation of Nuclear Power Plants; Licensing process, Nuclear Power Plant Operator Training; Nuclear power plant simulator, Are Nuclear Plants Safe.; Containment structure, Nuclear Power Plant Insurance; Is Radiation Dangerous.; Man-made radiation, What is Nuclear Fuel.; Fuel cycle for commercial nuclear power plants; Warm Water Discharge; Cooling tower; Protection of Radioactive Materials; Plutonium and Proliferation; Disposal of Radioactive Wastes; Are Alternate Energy Sources Available.; Nuclear Opposition; and Nuclear Power in the Future.

  4. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of... GE Hitachi Nuclear Energy (GEH) for the economic simplified boiling water reactor (ESBWR)...

  5. Nuclear Energy and the Malthusian Dilemma

    ERIC Educational Resources Information Center

    Inglis, David Rittenhouse

    1971-01-01

    Suggests that in trying to avoid the extreme Malthusian catastrophy, collision between decreasing resources and increasing population, expanded efforts should be made to develop safe and plentiful nuclear power while meeting the real needs of the near future by moderating unwarrented demands and improving conventional techniques. (Author/AL)

  6. Intermediate/high energy nuclear physics

    SciTech Connect

    Vary, J.P.

    1992-01-01

    This report discusses progress on the following research: quark cluster model; solving quantum field theories in non-perturbative regime;relativistic wave equations, quarkonia and electron-positron resonances; nuclear dependence at large transverse momentum; factorization at the order of power corrections; single-spin asymmetries; and hadronic photon production. (LSP)

  7. High energy nuclear collisions: Theory overview

    SciTech Connect

    Fries, R.J.

    2010-08-01

    We review some basic concepts of relativistic heavy-ion physics and discuss our understanding of some key results from the experimental program at the relativistic heavy-ion collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.

  8. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... FR 13926), establish and update generically applicable security requirements similar to those... FR 77919 dated December 14, 2010). This exemption is effective upon issuance. Dated at Rockville... COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption...

  9. 77 FR 39746 - Dominion Nuclear Connecticut, Inc. Millstone Power Station, Unit 2; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... COMMISSION Dominion Nuclear Connecticut, Inc. Millstone Power Station, Unit 2; Environmental Assessment and... Waterford, CT. Therefore, as required by 10 CFR 51.21, the NRC staff performed an environmental assessment. Based on the results of the environmental assessment, the NRC staff is issuing a finding of...

  10. 76 FR 53994 - Final Environmental Impact Statement, Single Nuclear Unit at the Bellefonte Plant Site, Jackson...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... this decision was published on September 9, 2010 (75 FR 54961). Bellefonte Unit 1 is a 1,260-megawatt... other descriptions as set forth in the NRC Policy Statement on Deferred Plants (52 FR 38077... tsunami-induced events at the Fukushima (Japan) Daiichi Nuclear Plant on March 11, 2011, TVA performed...

  11. 75 FR 13320 - Florida Power Corporation, et al., Crystal River Unit 3 Nuclear Generating Plant; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... March 27, 2009 (74 FR 13967). There will be no change to radioactive effluents that affect radiation... [Part 73, Power Reactor Security Requirements, 74 FR 13926, 13967 (March 27, 2009)]. The licensee... COMMISSION Florida Power Corporation, et al., Crystal River Unit 3 Nuclear Generating Plant;...

  12. Generation IV nuclear energy systems and the need of accurate nuclear data

    NASA Astrophysics Data System (ADS)

    Colonna, N.

    2009-05-01

    To satisfy the world's demand of energy, constantly increasing over the years, a suitable mix of different energy sources has to be envisaged. In this scenario, an important role may be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. In this respect, a large effort is under way since a few years towards the development of advanced nuclear systems that would use more efficiently the uranium resources, and produce a minimal amount of long-lived nuclear waste. The main activity concerns Generation IV reactors, with full or partial waste recycling capability. Their design requires R&D in numerous fields. Among the different needs, it is of fundamental importance to improve the knowledge of basic nuclear data, such as cross-sections for neutron-induced reactions on actinides. The main characteristics and principle of operation of the new generation nuclear systems are here described, together with the related needs of new and accurate nuclear data. Finally, an example of activity currently undergoing in the field is shown, with the recent experimental results obtained at the neutron facility n_TOF at CERN.

  13. PARTON SATURATION, PRODUCTION, AND EQUILIBRATION IN HIGH ENERGY NUCLEAR COLLISIONS

    SciTech Connect

    VENUGOPALAN,R.

    1999-03-20

    Deeply inelastic scattering of electrons off nuclei can determine whether parton distributions saturate at HERA energies. If so, this phenomenon will also tell us a great deal about how particles are produced, and whether they equilibrate, in high energy nuclear collisions.

  14. Atomic Mass and Nuclear Binding Energy for Ra-226 (Radium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Ra-226 (Radium, atomic number Z = 88, mass number A = 226).

  15. Atomic Mass and Nuclear Binding Energy for Md-281 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-281 (Mendelevium, atomic number Z = 101, mass number A = 281).

  16. Atomic Mass and Nuclear Binding Energy for Md-289 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-289 (Mendelevium, atomic number Z = 101, mass number A = 289).

  17. Atomic Mass and Nuclear Binding Energy for Md-282 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-282 (Mendelevium, atomic number Z = 101, mass number A = 282).

  18. Atomic Mass and Nuclear Binding Energy for Md-330 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-330 (Mendelevium, atomic number Z = 101, mass number A = 330).

  19. Atomic Mass and Nuclear Binding Energy for Md-299 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-299 (Mendelevium, atomic number Z = 101, mass number A = 299).

  20. Atomic Mass and Nuclear Binding Energy for Md-318 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-318 (Mendelevium, atomic number Z = 101, mass number A = 318).

  1. Atomic Mass and Nuclear Binding Energy for Md-328 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-328 (Mendelevium, atomic number Z = 101, mass number A = 328).

  2. Atomic Mass and Nuclear Binding Energy for Md-263 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-263 (Mendelevium, atomic number Z = 101, mass number A = 263).

  3. Atomic Mass and Nuclear Binding Energy for Md-286 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-286 (Mendelevium, atomic number Z = 101, mass number A = 286).

  4. Atomic Mass and Nuclear Binding Energy for Md-324 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-324 (Mendelevium, atomic number Z = 101, mass number A = 324).

  5. Atomic Mass and Nuclear Binding Energy for Md-331 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-331 (Mendelevium, atomic number Z = 101, mass number A = 331).

  6. Atomic Mass and Nuclear Binding Energy for Md-279 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-279 (Mendelevium, atomic number Z = 101, mass number A = 279).

  7. Atomic Mass and Nuclear Binding Energy for Md-334 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-334 (Mendelevium, atomic number Z = 101, mass number A = 334).

  8. Atomic Mass and Nuclear Binding Energy for Md-326 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-326 (Mendelevium, atomic number Z = 101, mass number A = 326).

  9. Atomic Mass and Nuclear Binding Energy for Md-297 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-297 (Mendelevium, atomic number Z = 101, mass number A = 297).

  10. Atomic Mass and Nuclear Binding Energy for Md-339 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-339 (Mendelevium, atomic number Z = 101, mass number A = 339).

  11. Atomic Mass and Nuclear Binding Energy for Md-315 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-315 (Mendelevium, atomic number Z = 101, mass number A = 315).

  12. Atomic Mass and Nuclear Binding Energy for Md-268 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-268 (Mendelevium, atomic number Z = 101, mass number A = 268).

  13. Atomic Mass and Nuclear Binding Energy for Md-335 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-335 (Mendelevium, atomic number Z = 101, mass number A = 335).

  14. Atomic Mass and Nuclear Binding Energy for Md-272 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-272 (Mendelevium, atomic number Z = 101, mass number A = 272).

  15. Atomic Mass and Nuclear Binding Energy for Md-329 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-329 (Mendelevium, atomic number Z = 101, mass number A = 329).

  16. Atomic Mass and Nuclear Binding Energy for Md-336 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-336 (Mendelevium, atomic number Z = 101, mass number A = 336).

  17. Atomic Mass and Nuclear Binding Energy for Md-307 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-307 (Mendelevium, atomic number Z = 101, mass number A = 307).

  18. Atomic Mass and Nuclear Binding Energy for Md-273 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-273 (Mendelevium, atomic number Z = 101, mass number A = 273).

  19. Atomic Mass and Nuclear Binding Energy for Md-308 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-308 (Mendelevium, atomic number Z = 101, mass number A = 308).

  20. Atomic Mass and Nuclear Binding Energy for Md-327 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-327 (Mendelevium, atomic number Z = 101, mass number A = 327).

  1. Atomic Mass and Nuclear Binding Energy for Md-341 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-341 (Mendelevium, atomic number Z = 101, mass number A = 341).

  2. Atomic Mass and Nuclear Binding Energy for Md-266 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-266 (Mendelevium, atomic number Z = 101, mass number A = 266).

  3. Atomic Mass and Nuclear Binding Energy for Md-274 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-274 (Mendelevium, atomic number Z = 101, mass number A = 274).

  4. Atomic Mass and Nuclear Binding Energy for Md-338 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-338 (Mendelevium, atomic number Z = 101, mass number A = 338).

  5. Atomic Mass and Nuclear Binding Energy for Md-291 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-291 (Mendelevium, atomic number Z = 101, mass number A = 291).

  6. Atomic Mass and Nuclear Binding Energy for Md-321 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-321 (Mendelevium, atomic number Z = 101, mass number A = 321).

  7. Atomic Mass and Nuclear Binding Energy for Md-319 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-319 (Mendelevium, atomic number Z = 101, mass number A = 319).

  8. Atomic Mass and Nuclear Binding Energy for Md-267 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-267 (Mendelevium, atomic number Z = 101, mass number A = 267).

  9. Atomic Mass and Nuclear Binding Energy for Md-325 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-325 (Mendelevium, atomic number Z = 101, mass number A = 325).

  10. Atomic Mass and Nuclear Binding Energy for Md-302 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-302 (Mendelevium, atomic number Z = 101, mass number A = 302).

  11. Atomic Mass and Nuclear Binding Energy for Md-292 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-292 (Mendelevium, atomic number Z = 101, mass number A = 292).

  12. Atomic Mass and Nuclear Binding Energy for Md-304 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-304 (Mendelevium, atomic number Z = 101, mass number A = 304).

  13. Atomic Mass and Nuclear Binding Energy for Md-288 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-288 (Mendelevium, atomic number Z = 101, mass number A = 288).

  14. Atomic Mass and Nuclear Binding Energy for Md-254 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-254 (Mendelevium, atomic number Z = 101, mass number A = 254).

  15. Atomic Mass and Nuclear Binding Energy for Md-261 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-261 (Mendelevium, atomic number Z = 101, mass number A = 261).

  16. Atomic Mass and Nuclear Binding Energy for Md-275 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-275 (Mendelevium, atomic number Z = 101, mass number A = 275).

  17. Atomic Mass and Nuclear Binding Energy for Md-337 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-337 (Mendelevium, atomic number Z = 101, mass number A = 337).

  18. Atomic Mass and Nuclear Binding Energy for Md-320 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-320 (Mendelevium, atomic number Z = 101, mass number A = 320).

  19. Atomic Mass and Nuclear Binding Energy for Md-285 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-285 (Mendelevium, atomic number Z = 101, mass number A = 285).

  20. Atomic Mass and Nuclear Binding Energy for Md-284 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-284 (Mendelevium, atomic number Z = 101, mass number A = 284).

  1. Atomic Mass and Nuclear Binding Energy for Md-332 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-332 (Mendelevium, atomic number Z = 101, mass number A = 332).

  2. Atomic Mass and Nuclear Binding Energy for Md-290 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-290 (Mendelevium, atomic number Z = 101, mass number A = 290).

  3. Atomic Mass and Nuclear Binding Energy for Md-312 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-312 (Mendelevium, atomic number Z = 101, mass number A = 312).

  4. Atomic Mass and Nuclear Binding Energy for Md-296 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-296 (Mendelevium, atomic number Z = 101, mass number A = 296).

  5. Atomic Mass and Nuclear Binding Energy for Md-253 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-253 (Mendelevium, atomic number Z = 101, mass number A = 253).

  6. Atomic Mass and Nuclear Binding Energy for Md-314 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-314 (Mendelevium, atomic number Z = 101, mass number A = 314).

  7. Atomic Mass and Nuclear Binding Energy for Md-301 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-301 (Mendelevium, atomic number Z = 101, mass number A = 301).

  8. Atomic Mass and Nuclear Binding Energy for Md-317 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-317 (Mendelevium, atomic number Z = 101, mass number A = 317).

  9. Atomic Mass and Nuclear Binding Energy for Md-271 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-271 (Mendelevium, atomic number Z = 101, mass number A = 271).

  10. Atomic Mass and Nuclear Binding Energy for Md-313 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-313 (Mendelevium, atomic number Z = 101, mass number A = 313).

  11. Atomic Mass and Nuclear Binding Energy for Md-293 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-293 (Mendelevium, atomic number Z = 101, mass number A = 293).

  12. Atomic Mass and Nuclear Binding Energy for Md-277 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-277 (Mendelevium, atomic number Z = 101, mass number A = 277).

  13. Atomic Mass and Nuclear Binding Energy for Md-298 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-298 (Mendelevium, atomic number Z = 101, mass number A = 298).

  14. Atomic Mass and Nuclear Binding Energy for Md-287 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-287 (Mendelevium, atomic number Z = 101, mass number A = 287).

  15. Atomic Mass and Nuclear Binding Energy for Md-262 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-262 (Mendelevium, atomic number Z = 101, mass number A = 262).

  16. Atomic Mass and Nuclear Binding Energy for Md-280 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-280 (Mendelevium, atomic number Z = 101, mass number A = 280).

  17. Atomic Mass and Nuclear Binding Energy for Md-270 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-270 (Mendelevium, atomic number Z = 101, mass number A = 270).

  18. Atomic Mass and Nuclear Binding Energy for Md-260 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-260 (Mendelevium, atomic number Z = 101, mass number A = 260).

  19. Atomic Mass and Nuclear Binding Energy for Md-303 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-303 (Mendelevium, atomic number Z = 101, mass number A = 303).

  20. Atomic Mass and Nuclear Binding Energy for Md-316 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-316 (Mendelevium, atomic number Z = 101, mass number A = 316).

  1. Atomic Mass and Nuclear Binding Energy for Md-283 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-283 (Mendelevium, atomic number Z = 101, mass number A = 283).

  2. Atomic Mass and Nuclear Binding Energy for Md-264 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-264 (Mendelevium, atomic number Z = 101, mass number A = 264).

  3. Atomic Mass and Nuclear Binding Energy for Md-278 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-278 (Mendelevium, atomic number Z = 101, mass number A = 278).

  4. Atomic Mass and Nuclear Binding Energy for Md-276 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-276 (Mendelevium, atomic number Z = 101, mass number A = 276).

  5. Atomic Mass and Nuclear Binding Energy for Md-259 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-259 (Mendelevium, atomic number Z = 101, mass number A = 259).

  6. Atomic Mass and Nuclear Binding Energy for Md-306 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-306 (Mendelevium, atomic number Z = 101, mass number A = 306).

  7. Atomic Mass and Nuclear Binding Energy for Md-309 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-309 (Mendelevium, atomic number Z = 101, mass number A = 309).

  8. Atomic Mass and Nuclear Binding Energy for Md-333 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-333 (Mendelevium, atomic number Z = 101, mass number A = 333).

  9. Atomic Mass and Nuclear Binding Energy for Md-305 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-305 (Mendelevium, atomic number Z = 101, mass number A = 305).

  10. Atomic Mass and Nuclear Binding Energy for Md-323 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-323 (Mendelevium, atomic number Z = 101, mass number A = 323).

  11. Atomic Mass and Nuclear Binding Energy for Md-310 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-310 (Mendelevium, atomic number Z = 101, mass number A = 310).

  12. Atomic Mass and Nuclear Binding Energy for Md-300 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-300 (Mendelevium, atomic number Z = 101, mass number A = 300).

  13. Atomic Mass and Nuclear Binding Energy for Md-269 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-269 (Mendelevium, atomic number Z = 101, mass number A = 269).

  14. Atomic Mass and Nuclear Binding Energy for Md-295 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-295 (Mendelevium, atomic number Z = 101, mass number A = 295).

  15. Atomic Mass and Nuclear Binding Energy for Md-265 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-265 (Mendelevium, atomic number Z = 101, mass number A = 265).

  16. Atomic Mass and Nuclear Binding Energy for Md-294 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-294 (Mendelevium, atomic number Z = 101, mass number A = 294).

  17. Atomic Mass and Nuclear Binding Energy for Md-311 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-311 (Mendelevium, atomic number Z = 101, mass number A = 311).

  18. Atomic Mass and Nuclear Binding Energy for Md-322 (Mendelevium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Md-322 (Mendelevium, atomic number Z = 101, mass number A = 322).

  19. Atomic Mass and Nuclear Binding Energy for Po-281 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-281 (Polonium, atomic number Z = 84, mass number A = 281).

  20. Atomic Mass and Nuclear Binding Energy for Po-277 (Polonium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Po-277 (Polonium, atomic number Z = 84, mass number A = 277).