Sample records for nuclear engineering science

  1. Optimizing Chemical-Vapor-Deposition Diamond for Nitrogen-Vacancy Center Ensemble Magnetrometry

    DTIC Science & Technology

    2017-06-01

    Ju Li Battelle Energy Alliance Professor of Nuclear Science and Engineering Professor of Materials Science and Engineering...Sciences, U. S. Air Force Academy (2015) Submitted to the Department of Nuclear Science and Engineering in partial fulfillment of the requirements for the...degree of Master of Science in Nuclear Science and Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2017 c○ Massachusetts Institute of

  2. 75 FR 37783 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Science Foundation's Nuclear Physics Office. Technical Talk on Deep Underground Science and Engineering... Energy's Office of Nuclear Physics Web site for viewing. Rachel Samuel, Deputy Committee Management...

  3. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2013-07-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.

  4. Midwest Nuclear Science and Engineering Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state,more » federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.« less

  5. Multi-University Southeast INIE Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayman Hawari; Nolan Hertel; Mohamed Al-Sheikhly

    2 Project Summary: The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energy’s (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year.more » In addition, to ensure proper coordination between the academic community and the nation’s premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, b) Establish a strong technical collaboration between the nuclear engineering faculty and the MUSIC URRs. This will be achieved by involving the faculty in the development of state-of-the-art research facilities at the URRs and subsequently, in the utilization of these facilities, c) Facilitate the use of the URRs by the science and engineering faculty within the individual institutions and by the general community of science and engineering, d) Develop a far-reaching educational component that is capable of addressing the needs of the nuclear science and engineering community. Specifically, the aim of this component will be to perform public outreach activities, contribute to the active recruitment of the next generation of nuclear professionals, strengthen the education of nuclear engineering students, and promote nuclear engineering education for minority students.« less

  6. Nuclear Materials Science

    NASA Astrophysics Data System (ADS)

    Whittle, Karl

    2016-06-01

    Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field.

  7. FY 1999 Laboratory Directed Research and Development annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PJ Hughes

    2000-06-13

    A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.

  8. Laboratory Directed Research and Development FY2010 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader nationalmore » needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.« less

  9. Innovations in Nuclear Infrastructure and Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Bernard

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus andmore » direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.« less

  10. Scientific and Technical Manpower Requirements of Selected Segments of the Atomic Energy Field. Final Report.

    ERIC Educational Resources Information Center

    Voight, Keith L.

    The primary purpose of the study was to develop a supply/demand ratio for nuclear degree scientists and engineers from July 1969 through 1973. The need by private industry and electric utilities for scientists and engineers with degrees in disciplines other than nuclear science or engineering, as well as for technicians, nuclear reactor operators,…

  11. The Times, They are a Changin': An Insider Indicates Where Federal Funding of Science and Engineering May be Heading.

    ERIC Educational Resources Information Center

    Raloff, Janet

    1981-01-01

    Provides quotes from President Reagan's personal science adviser, George Keyworth, concerning federal funding of science and engineering programs, including statements regarding solar energy, nuclear power, national defense, women and minorities programs, and National Science Foundation educational programs. (CS)

  12. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  13. ANNUAL REPORT ON PHYSICAL SCIENCES, ENGINEERING AND LIFE SCIENCES , JULY 1, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-10-31

    The research program at Brooknaven is described. Current activities in physics, high-energy accelerators, instrumentation, chemistry, nuclear engineering, applied mathematics, biology, and medical research are outlined. (D.L.C.)

  14. 1st International Nuclear Science and Technology Conference 2014 (INST2014)

    NASA Astrophysics Data System (ADS)

    2015-04-01

    Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.

  15. US nuclear engineering education: Status and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the aging of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratiomore » of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 12 figs., 20 tabs.« less

  16. Nuclear science abstracts (NSA) database 1948--1974 (on the Internet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Nuclear Science Abstracts (NSA) is a comprehensive abstract and index collection of the International Nuclear Science and Technology literature for the period 1948 through 1976. Included are scientific and technical reports of the US Atomic Energy Commission, US Energy Research and Development Administration and its contractors, other agencies, universities, and industrial and research organizations. Coverage of the literature since 1976 is provided by Energy Science and Technology Database. Approximately 25% of the records in the file contain abstracts. These are from the following volumes of the print Nuclear Science Abstracts: Volumes 12--18, Volume 29, and Volume 33. The database containsmore » over 900,000 bibliographic records. All aspects of nuclear science and technology are covered, including: Biomedical Sciences; Metals, Ceramics, and Other Materials; Chemistry; Nuclear Materials and Waste Management; Environmental and Earth Sciences; Particle Accelerators; Engineering; Physics; Fusion Energy; Radiation Effects; Instrumentation; Reactor Technology; Isotope and Radiation Source Technology. The database includes all records contained in Volume 1 (1948) through Volume 33 (1976) of the printed version of Nuclear Science Abstracts (NSA). This worldwide coverage includes books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal literature. This database is now available for searching through the GOV. Research Center (GRC) service. GRC is a single online web-based search service to well known Government databases. Featuring powerful search and retrieval software, GRC is an important research tool. The GRC web site is at http://grc.ntis.gov.« less

  17. Comprehensive Glossary of Nuclear Science

    NASA Astrophysics Data System (ADS)

    Langlands, Tracy; Stone, Craig; Meyer, Richard

    2001-10-01

    We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.

  18. Laboratory Directed Research and Development Annual Report for 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Pamela J.

    2012-04-09

    This report documents progress made on all LDRD-funded projects during fiscal year 2011. The following topics are discussed: (1) Advanced sensors and instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and space sciences; (5) Energy supply and use; (6) Engineering and manufacturing processes; (7) Materials science and technology; (8) Mathematics and computing sciences; (9) Nuclear science and engineering; and (10) Physics.

  19. Safety engineering: KTA code of practice. Lifting mechanisms in nuclear plant

    NASA Astrophysics Data System (ADS)

    Lifting mechanisms safety requirements are discussed in accordance with the present state of development of science and engineering for the protection of life, health, and assets against the dangers of nuclear energy and the ill effects of ionizing radiation.

  20. Advanced Nuclear Technologies

    Science.gov Websites

    Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research of the nuclear energy age, scientists and engineers have conceived and developed advanced

  1. US Nuclear Engineering Education: Status and prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study, as described in this report resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the ageing of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and researchmore » funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 24 figs., 49 tabs.« less

  2. JPRS Report. Science & Technology, USSR: Engineering & Equipment.

    DTIC Science & Technology

    1988-12-19

    unlimited Science & Technology USSR: Engineering & Equipment ^PRODUCED BY ^J’ODNALTECSL OF AMERCE SPR/NGnEL^ff’^1-INFORMATION S 22161 SERVICE...rv> DTIC QUALITY mSHBOTSD j5 Science & Technology USSR: Engineering & Equipment JPRS-UEQ-88-006 CONTENTS 19 DECEMBER 1988 Nuclear Energy Fuel...PROMYSHLENNOST, No 4, Apr 88] 36 Determining the Demand for Automated Foundry Equipment [A.A. Panov; MEKHAN1ZATS1YA IAVTOMATIZATSIYA PROIZVODSTVA, Apr 88] 40

  3. Final Progress Report for Award DE-FG07-05ID14637.pdf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Dixon

    2012-03-09

    2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missionsmore » in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.« less

  4. Nuclear Concepts & Technological Issues Institute: Teacher Activity Booklet.

    ERIC Educational Resources Information Center

    Davison, Candace C., Ed.; Lunetta, Lois W., Ed.

    For many summers the Radiation Science and Engineering Center at Pennsylvania State University has been the site of a Nuclear Concepts and Technological Issues Institute for secondary school science teachers. As a culminating activity of the institute teachers develop lesson plans, laboratory experiments, demonstrations, or other activities and…

  5. A Program for Cultivating Nuclear Talent at Engineering Educational Institute in a Remote Area from Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsuyoshi

    Recently, in Japan, the number of students who hope for finding employment at the nuclear power company has decreased as students‧ concern for the nuclear power industry decreases. To improve the situation, Ministry of Education, Culture, Sports, Science and Technology launched the program of cultivating talent for nuclear power which supports research and education of nuclear power in the academic year of 2007. Supported by the program, Kushiro College of Technology conducted several activities concerning nuclear power for about a year. The students came to be interested in nuclear engineering through these activities and its results.

  6. Aeronautical engineering: A continuing bibliography with indexes (supplement 267)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; theoretical and applied aspects of aerodynamics and general fluid dynamics; electrical engineering; aircraft control; remote sensing; computer sciences; nuclear physics; and social sciences.

  7. Restructuring Graduate Engineering Education: The M.Eng. Program at Cornell.

    ERIC Educational Resources Information Center

    Cady, K. Bingham; And Others

    1988-01-01

    Discusses the restructuring of the graduate program to accommodate emerging fields in engineering. Notes half of the graduate degrees Cornell grants each year are M.Eng. degrees. Offers 12 specialties: aerospace, agriculture, chemical, civil, electrical, mechanical and nuclear engineering; computer science, engineering physics; geological…

  8. Reactor physics teaching and research in the Swiss nuclear engineering master

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, R.; Paul Scherrer Inst., CH-5232 Villigen PSI

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  9. Jobs for Women in Science. A Discussion for the Conference for Educating Women for Science: A Continuous Spectrum.

    ERIC Educational Resources Information Center

    Hanson, Marlys C.

    Opportunities for scientists in the near future will be very good in the fields of energy research and development, both for degreed scientists and for technicians. Geologists, geophysicists, mining engineers, rock mechanics, hydrologists, applied physicists, applied chemists, and nuclear engineers are among the types of personnel needed. These…

  10. MITEE-B: A Compact Ultra Lightweight Bi-Modal Nuclear Propulsion Engine for Robotic Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.

  11. JPRS report: Science and technology. USSR: Engineering and equipment

    NASA Astrophysics Data System (ADS)

    1991-10-01

    A bibliography is given of U.S.S.R. research in engineering and equipment. Topics covered include aviation, space technology, optics, high energy devices, nuclear energy, and industrial technology, planning, and productivity.

  12. Standards in nuclear science and technology. A bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-09-01

    Abstracts of 1803 U. S. and non-U. S. publications concerning a broad range of standards used in nuclear science and technology are included. The publication dates span the period 1962 through 1972, inclusive. Abstracts are arranged chronologically within four categories entitled Reactors and Engineering, Instruments and Calibration, Radiation and Radiation Protection, and Miscellaneous. A subject index is also included. (auth)

  13. Science, Technology and Human Values.

    ERIC Educational Resources Information Center

    Batt, James R., Ed.; And Others

    1975-01-01

    Articles included in this publication represent such topics as: Science and Technology, Reproduction in the Twenty-First Century, Ethical Implications of Nuclear Technology, Bioethics, Genetic Engineering, World Food Supplies, and The Humanists Respond. (EB)

  14. A Physicist's Journey In The Nuclear Power World

    NASA Astrophysics Data System (ADS)

    Starr, Chauncey

    2000-03-01

    As a participant in the development of civilian nuclear power plants for the past half century, the author presents some of his insights to its history that may be of interest to today's applied physicists. Nuclear power development has involved a mixture of creative vision, science, engineering, and unusual technical, economic, and social obstacles. Nuclear power programs were initiated during the euphoric era of public support for new science immediately following World War II -- a support that lasted almost two decades. Subsequently, nuclear power has had to face a complex mix of public concerns and criticism. The author's involvment in some of these circumstances will be anecdotally described. Although the physics of fission and its byproducts remains at the heart of all nuclear reactor designs, its embodiment in practical energy sources has been shaped by the limitations of engineering primarily and economics secondarily. Very influential has been the continuing interplay with the military's weapons and propulsion programs, and the government's political policies. In this respect, nuclear power's history provides a learning experience that may be applicable to some of the large scale demonstration projects that physicists pursue today.

  15. Worldwide Report, Nuclear Development and Proliferation

    DTIC Science & Technology

    1985-08-21

    Junior, Secretariat of Industry, Commerce, Science and Technology; Celso Pinto Ferraz, Secretariat of Industry, Commerce, Science and Technology; and...Castro, superintendent; Dr Carlos de Souza Pinto ; and Dr Paulo Cesar Leone. Message to the Stockholders and the Public In 1984, the attention of the...settlement of accounts. Sao Paulo, 20 February 1985 Engineer Alberto Pereira Castro, superintending director; Engineer Carlos Sousa Pinto , director

  16. Journal of Undergraduate Research, Volume VIII, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiner, K. S.; Graham, S.; Khan, M.

    Th e Journal of Undergraduate Research (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; Science Policy; and Waste Management.

  17. The NASA Radiation Interuniversity Science and Engineering(RaISE) Project: A Model for Inter-collaboration and Distance Learning in Radiation Physics and Nuclear Engineering

    NASA Technical Reports Server (NTRS)

    Denkins, Pamela S.; Saganti, P.; Obot, V.; Singleterry, R.

    2006-01-01

    This viewgraph document reviews the Radiation Interuniversity Science and Engineering (RaISE) Project, which is a project that has as its goals strengthening and furthering the curriculum in radiation sciences at two Historically Black Colleges and Universities (HBCU), Prairie View A&M University and Texas Southern University. Those were chosen in part because of the proximity to NASA Johnson Space Center, a lead center for the Space Radiation Health Program. The presentation reviews the courses that have been developed, both in-class, and on-line.

  18. Thermal Hydraulic Analysis of a Packed Bed Reactor Fuel Element

    DTIC Science & Technology

    1989-05-25

    Engineer and Master of Science in Nuclear Engineering. ABSTRACT A model of the behavior of a packed bed nuclear reactor fuel element is developed . It...RECOMMENDATIONS FOR FURTHER INVESTIGATION .................... 150 APPENDIX A FUEL ELEMENT MODEL PROGRAM DESIGN AND OPERA- T IO N...follow describe the details of the packed bed reactor and then discuss the development of the mathematical representations of the fuel element. These are

  19. Journal of Undergraduate Research, Volume VI, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faletra, P.; Schuetz, A.; Cherkerzian, D.

    Students who conducted research at DOE National Laboratories during 2005 were invited to include their research abstracts, and for a select few, their completed research papers in this Journal. This Journal is direct evidence of students collaborating with their mentors. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; and Science Policy.

  20. 10 CFR 1045.15 - Classification and declassification presumptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion... the application of the criteria in § 1045.16 indicates otherwise: (1) Detailed designs, specifications... design and analysis of nuclear weapons; (3) Vulnerabilities of U.S. nuclear weapons to sabotage...

  1. 10 CFR 1045.15 - Classification and declassification presumptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion... the application of the criteria in § 1045.16 indicates otherwise: (1) Detailed designs, specifications... design and analysis of nuclear weapons; (3) Vulnerabilities of U.S. nuclear weapons to sabotage...

  2. Department of Defense In-House RDT&E Activities. Management Analysis Report

    DTIC Science & Technology

    1987-10-30

    AIRCRAFT BY NAVY PERSONNEL; ESTABLISH HUMAN TOLERANCE LIMITS FOR THESE FORCES, DEVELOP PREVENTIVE AND THERAPEUTIC METHODS TO PROTECT PERSONNEL FROM...Engineering 436 Plant Protection and 830 Mechanical Engineering Quarantine 840 Nuclear Engineering 437 Horticulture S50 Electrical Engineering 440...Technician 648 Therapeutic Radiological 1311 Physical Science Technologist Technician 649 Medical Machine Technician 1316 Hydraulic Technician 650 Medical

  3. Sandia technology engineering and science accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computationalmore » simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.« less

  4. List of Organizing Committees and Conference Programme

    NASA Astrophysics Data System (ADS)

    2012-03-01

    Organizers Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Romanian Neutron Scattering Society Sponsors Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Comenius University in Bratislava, Slovakia Institute of Macromolecular Chemistry AS CR, Czech Republic Programme Committee Valentin Gordely (chairman)Joint Institute for Nuclear Research, Russia Heinrich StuhrmannGermany Jose TeixeiraLaboratoire Leon Brillouin, France Pavel ApelJoint Institute for Nuclear Research, Russia Pavol BalgavyComenius University in Bratislava, Slovakia Alexander BelushkinJoint Institute for Nuclear Research, Russia Georg BueldtInstitute of Structural Biology and Biophysics (ISB), Germany Leonid BulavinTaras Shevchenko National University of Kyiv, Ukraine Emil BurzoBabes-Bolyai University, Romania Vadim CherezovThe Scripps Research Institute, Department of Molecular Biology, USA Ion IonitaRomanian Society of Neutron Scattering, Romania Alexei KhokhlovMoscow State University, Russia Aziz MuzafarovInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Alexander OzerinInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Gerard PepyResearch Institute for Solid State Physics and Optics, Hungary Josef PlestilInstitute of Macromolecular Chemistry CAS, Czech Republic Aurel RadulescuJuelich Centre for Neutron Science JCNS, Germany Maria BalasoiuJoint Institute for Nuclear Research, Russia Alexander KuklinJoint Institute for Nuclear Research, Russia Local Organizing Committee Alexander Kuklin - Chairman Maria Balasoiu - Co-chairman Tatiana Murugova - Secretary Natalia Malysheva Natalia Dokalenko Julia Gorshkova Andrey Rogachev Oleksandr Ivankov Dmitry Soloviev Lilia Anghel Erhan Raul The PDF also contains the Conference Programme.

  5. Real Time Conference 2016 Overview

    NASA Astrophysics Data System (ADS)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  6. Nuclear Fuel Depletion Analysis Using Matlab Software

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Nematollahi, M. R.

    Coupled first order IVPs are frequently used in many parts of engineering and sciences. In this article, we presented a code including three computer programs which are joint with the Matlab software to solve and plot the solutions of the first order coupled stiff or non-stiff IVPs. Some engineering and scientific problems related to IVPs are given and fuel depletion (production of the 239Pu isotope) in a Pressurized Water Nuclear Reactor (PWR) are computed by the present code.

  7. Historically Black Colleges and Universities Nuclear Energy Training Program: Summary of program activities, fiscal year 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-04-27

    The Historically Black Colleges and Universities Nuclear Energy Training (HBCU NET) Program, funded by DOE, Office of Nuclear Energy and administered by ORAU, began in February 1984. The program provides support for training, study, research participation, and academic enrichment of students and faculty at designated HBCUs in nuclear science, nuclear engineering, and other nuclear-related technologes and disciplines. The program is composed of undergraduate scholarships, graduate fellowships, student and faculty research participation, and an annual student training institute.

  8. Twenty Years of Symbiosis Between Art and Science

    ERIC Educational Resources Information Center

    Reichardt, Jasia

    1974-01-01

    During the past two decades advances in biology, nuclear physics, computer and material sciences, and audiovisual engineering have brought a radically new dimension to most art forms and have stimulated the artist and his innovations to breath-taking levels of achievement. (Editor/JR)

  9. 75 FR 36710 - The Texas Engineering Experiment Station/Texas A&M University System; Notice of Acceptance for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... for the Nuclear Science Center Reactor and Order Imposing Procedures for Access To Safeguards Information and Sensitive Unclassified Non- Safeguards Information AGENCY: Nuclear Regulatory Commission. ACTION: Notice of acceptance for docketing. FOR FURTHER INFORMATION CONTACT: Christian Cowdrey, Project...

  10. Trinity to Trinity 1945-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moniz, Ernest; Carr, Alan; Bethe, Hans

    The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advancedmore » supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.« less

  11. Trinity to Trinity 1945-2015

    ScienceCinema

    Moniz, Ernest; Carr, Alan; Bethe, Hans; Morrison, Phillip; Ramsay, Norman; Teller, Edward; Brixner, Berlyn; Archer, Bill; Agnew, Harold; Morrison, John

    2018-01-16

    The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advanced supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.

  12. 10 CFR 1.19 - Other committees, boards, and panels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of Nuclear Regulatory Research on important management matters in the direction of the Commission's... science, waste disposal and seismic and structural engineering. In performing its activities, the... information science and in managing records of the Commission's licensing process for the HLW repository. [52...

  13. 10 CFR 1.19 - Other committees, boards, and panels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of Nuclear Regulatory Research on important management matters in the direction of the Commission's... science, waste disposal and seismic and structural engineering. In performing its activities, the... information science and in managing records of the Commission's licensing process for the HLW repository. [52...

  14. 10 CFR 1.19 - Other committees, boards, and panels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of Nuclear Regulatory Research on important management matters in the direction of the Commission's... science, waste disposal and seismic and structural engineering. In performing its activities, the... information science and in managing records of the Commission's licensing process for the HLW repository. [52...

  15. 10 CFR 1.19 - Other committees, boards, and panels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Nuclear Regulatory Research on important management matters in the direction of the Commission's... science, waste disposal and seismic and structural engineering. In performing its activities, the... information science and in managing records of the Commission's licensing process for the HLW repository. [52...

  16. 10 CFR 1.19 - Other committees, boards, and panels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of Nuclear Regulatory Research on important management matters in the direction of the Commission's... science, waste disposal and seismic and structural engineering. In performing its activities, the... information science and in managing records of the Commission's licensing process for the HLW repository. [52...

  17. 78 FR 43960 - Delegation by the Secretary of State to the Assistant Secretary of State for Consular Affairs of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... citizen of Iran is seeking to enter the United States to participate in coursework to prepare for a career in the energy sector of Iran or in nuclear science or nuclear engineering or a related field in Iran...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The University of Virginia Reactor Facility is an integral part of the Department of Nuclear Engineering and Engineering Physics (to become the Department of Mechanical, Aerospace and Nuclear Engineering on July 1, 1992). As such, it is effectively used to support educational programs in engineering and science at the University of Virginia as well as those at other area colleges and universities. The expansion of support to educational programs in the mid-east region is a major objective. To assist in meeting this objective, the University of Virginia has been supported under the US Department of Energy (DOE) Reactor Sharing Programmore » since 1978. Due to the success of the program, this proposal requests continued DOE support through August 1993.« less

  19. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component.

  20. Institute of Electrical and Electronics Engineers, Nuclear Science Symposium, 18th, and Nuclear Power Systems Symposium, 3rd, San Francisco, Calif., November 3-5, 1971, Proceedings.

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Potential advantages of fusion power reactors are discussed together with the protection of the public from radioactivity produced in nuclear power reactors, and the significance of tritium releases to the environment. Other subjects considered are biomedical instrumentation, radiation damage problems, low level environmental radionuclide analysis systems, nuclear techniques in environmental research, nuclear instrumentation, and space and plasma instrumentation. Individual items are abstracted in this issue.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornreich, Drew E; Vaidya, Rajendra U; Ammerman, Curtt N

    Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of thesemore » elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.« less

  2. Mass Media and the Debate about Nuclear Power.

    ERIC Educational Resources Information Center

    Sawyer, Thomas M.

    Many factors contribute to the difficulties the media have in dealing with science, engineering, and technology. These difficulties were pointed up in the media coverage of the March 1979 accident at the Three Mile Island nuclear plant, which reflected confusion and lack of understanding and which combined with other factors (including the movie…

  3. Life sciences and environmental sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment,more » applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.« less

  4. Science/Society Case Study - Ozone

    ERIC Educational Resources Information Center

    Moore, John W., Ed.; Moore, Elizabeth A., Ed.

    1975-01-01

    Describes various threats to the stability of the ozone layer of the atmosphere, including freons emitted from aerosol cans, combustion products from jet aircraft engines, and nuclear explosions in the atmosphere. (MLH)

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.C.

    In this report, our research is described through abstracts of journal articles, technical reports, and presentations organized into sections following the five major operating units in the division: Mathematical Sciences, Intelligent Systems, Nuclear Data and Measurement Analysis, Nuclear Analysis and Shielding, and the Engineering Physics Information Centers. Each section begins with an introduction highlighting honors, awards, and significant research accomplishments in that unit during the reporting period.

  6. The Fact of the Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth; Montoya, Donald Raymond

    For more than 20 years the science and engineering capabilities of the nation’s Stockpile Stewardship Program have allowed the United States to sustain a safe, secure, and effective nuclear deterrent. Most of the problems identifi ed within the nuclear stockpile are related to its aging materials. MaRIE will advance this record of excellence in addressing such materials problems.

  7. Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop: August 4-5, 2015, Washington, D.C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprague, Michael A.; Boldyrev, Stanislav; Fischer, Paul

    This report details the impact exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the DOE applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought together experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.

  8. Material Stream Strategy for Lithium and Inorganics (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safarik, Douglas Joseph; Dunn, Paul Stanton; Korzekwa, Deniece Rochelle

    Design Agency Responsibilities: Manufacturing Support to meet Stockpile Stewardship goals for maintaining the nuclear stockpile through experimental and predictive modeling capability. Development and maintenance of Manufacturing Science expertise to assess material specifications and performance boundaries, and their relationship to processing parameters. Production Engineering Evaluations with competence in design requirements, material specifications, and manufacturing controls. Maintenance and enhancement of Aging Science expertise to support Stockpile Stewardship predictive science capability.

  9. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillich, Don; Kovanen, Andrew; Anderson, Tom

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of {approx}100 keV. Within the next year, cadets and faculty atmore » USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.« less

  10. Challenges to deployment of twenty-first century nuclear reactor systems

    PubMed Central

    2017-01-01

    The science and engineering of materials have always been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems and their associated fuel cycles. This article reflects on some of the historical issues, the challenges still prevalent today and the requirement for significant ongoing materials R&D and discusses the potential role of small modular reactors. PMID:28293142

  11. Challenges to deployment of twenty-first century nuclear reactor systems.

    PubMed

    Ion, Sue

    2017-02-01

    The science and engineering of materials have always been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems and their associated fuel cycles. This article reflects on some of the historical issues, the challenges still prevalent today and the requirement for significant ongoing materials R&D and discusses the potential role of small modular reactors.

  12. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrativemore » curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and introduction to user facilities/equipment at BNL that are used for research in room-temperature semiconductor nuclear detectors, 2) presentations on advances on this project and on wide band-gap semiconductor nuclear detectors in general, and 3) graduate students' research presentations. - Invited speakers and lectures: This brings collaborating research scientist from BNL to give talks and lectures on topics directly related to the project. Attendance includes faculty members, researchers and students throughout the university. - Faculty-students team summer research at BNL: This DOE and National Science Foundation (NSF) program help train students and faculty members in research. Faculty members go on to establish research collaborations with scientists at BNL, develop and submit research proposals to funding agencies, transform research experience at BNL to establish and enhance reach capabilities at home institution, and integrate their research into teaching through class projects and hands-on training for students. The students go on to participate in research work at BNL and at home institution, co-author research papers for conferences and technical journals, and transform their experiences into developing senior and capstone projects. - Grant proposal development: Faculty members in the NERVE program collaborate with BNL scientists to develop proposals, which often help to get external funding needed to expand and sustain the continuity of research activities and supports for student's wages and scholarships (stipends, tuition and fees). - Faculty development and mentoring: The above collaboration activities help faculty professional development. The experiences, grants, joint publications in technical journals, and supervision of student's research, including thesis and dissertation research projects, contribute greatly to faculty development. Senior scientists at BNL and senior faculty members on campus jointly mentor junior faculty members to enhance their professional growth. - Graduate thesis and dissertation research: Brookhaven National Laboratory provides unique opportunities and outstanding research resources for the NERVE program graduate research. Scientists from BNL serve in master's degree thesis and PhD dissertation committees, where they play active roles in the supervision of the research. (authors)« less

  13. The international emergency management and engineering conference 1995: Proceedings. Globalization of emergency management and engineering: National and international issues concerning research and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, J.D.; Wybo, J.L.; Buisson, L.

    1995-12-31

    This conference was held May 9--12, 1995 in Nice, France. The purpose of this conference was to provide a forum for exchange of state-of-the-art information to cope more effectively with emergencies. Attention is focused on advance technology from both a managerial and a scientific viewpoint. Interests include computers and communication systems as well as the social science and management aspects involved in emergency management and engineering. The major sections are: Management and Social Sciences; Training; Natural Disasters; Nuclear Hazards; Chemical Hazards; Research; and Applications. Individual papers have been processed separately for inclusion in the appropriate data bases.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekkebus, Allen E

    Oak Ridge National Laboratory hosted two workshops in April 2007 relevant to nuclear engineering education. In the Neutron Stress, Texture, and Phase Transformation for Industry workshop [http://neutrons.ornl.gov/workshops/nst2/], several invited speakers gave examples of neutron stress mapping for nuclear engineering applications. These included John Root of National Research Council of Canada, Mike Fitzpatrick of the UK's Open University, and Yan Gao of GE Global Research on their experiences with industrial and academic uses of neutron diffraction. Xun-Li Wang and Camden Hubbard described the new instruments at ORNL that can be used for such studies. This was preceded by the Neutrons formore » Materials Science and Engineering educational symposium [http://neutrons.ornl.gov/workshops/edsym2007]. It was directed to the broad materials science and engineering community based in universities, industry and laboratories who wish to learn what the neutron sources in the US can provide for enhancing the understanding of materials behavior, processing and joining. Of particular interest was the presentation of Donald Brown of Los Alamos about using 'Neutron diffraction measurements of strain and texture to study mechanical behavior of structural materials.' At both workshops, the ORNL neutron scattering instruments relevant to nuclear engineering studies were described. The Neutron Residual Stress Mapping Facility (NRSF2) is currently in operation at the High Flux Isotope Reactor; the VULCAN Engineering Materials Diffractometer will begin commissioning in 2008 at the Spallation Neutron Source. For characteristics of these instruments, as well as details of other workshops, meetings, capabilities, and research proposal submissions, please visit http://neutrons.ornl.gov. To submit user proposals for time on NRSF2 contact Hubbard at hubbardcr@ornl.gov.« less

  15. Mini-MITEE: Ultra Small, Ultra Light NTP Engines for Robotic Science and Manned Exploration Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John

    2006-01-01

    A compact, ultra lightweight Nuclear Thermal Propulsion (NTP) engine design is described with the capability to carry out a wide range of unique and important robotic science missions that are not possible using chemical or Nuclear Electric Propulsion (NEP). The MITEE (MInature ReacTor EnginE) reactor uses hydrogeneous moderator, such as solid lithium-7 hydride, and high temperature cermet tungsten/UO2 nuclear fuel. The reactor is configured as a modular pressure tube assembly, with each pressure tube containing an outer annual shell of moderator with an inner annular region of W/UO2 cermet fuel sheets. H2 propellant flows radially inwards through the moderator and fuel regions, exiting at ~3000 K into a central channel that leads to a nozzle at the end of the pressure tube. Power density in the fuel region is 10 to 20 megawatts per liter, depending on design, producing a thrust output on the order of 15,000 Newtons and an Isp of ~1000 seconds. 3D Monte Carlo neutronic analyses are described for MITEE reactors utilizing various fissile fuel options (U-235, U-233, and Am242m) and moderators (7LiH and BeH2). Reactor mass ranges from a maximum of 100 kg for the 7LiH/U-235 option to a minimum of 28 kg for the BeH2/Am-242 m option. Pure thrust only and bi-modal (thrust plus electric power generation) MITEE designs are described. Potential unique robotic science missions enabled by the MITEE engine are described, including landing on Europa and exploring the ice sheet interior with return of samples to Earth, hopping to and exploring multiple sites on Mars, unlimited ramjet flight in the atmospheres of Jupiter, Saturn, Uranus, and Neptune and landing on, and sample return from Pluto.

  16. Mini-MITEE: Ultra Small, Ultra Light NTP Engines for Robotic Science and Manned Exploration Missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, James; Maise, George; Paniagua, John

    2006-01-20

    A compact, ultra lightweight Nuclear Thermal Propulsion (NTP) engine design is described with the capability to carry out a wide range of unique and important robotic science missions that are not possible using chemical or Nuclear Electric Propulsion (NEP). The MITEE (MInature ReacTor EnginE) reactor uses hydrogeneous moderator, such as solid lithium-7 hydride, and high temperature cermet tungsten/UO2 nuclear fuel. The reactor is configured as a modular pressure tube assembly, with each pressure tube containing an outer annual shell of moderator with an inner annular region of W/UO2 cermet fuel sheets. H2 propellant flows radially inwards through the moderator andmore » fuel regions, exiting at {approx}3000 K into a central channel that leads to a nozzle at the end of the pressure tube. Power density in the fuel region is 10 to 20 megawatts per liter, depending on design, producing a thrust output on the order of 15,000 Newtons and an Isp of {approx}1000 seconds. 3D Monte Carlo neutronic analyses are described for MITEE reactors utilizing various fissile fuel options (U-235, U-233, and Am242m) and moderators (7LiH and BeH2). Reactor mass ranges from a maximum of 100 kg for the 7LiH/U-235 option to a minimum of 28 kg for the BeH2/Am-242 m option. Pure thrust only and bi-modal (thrust plus electric power generation) MITEE designs are described. Potential unique robotic science missions enabled by the MITEE engine are described, including landing on Europa and exploring the ice sheet interior with return of samples to Earth, hopping to and exploring multiple sites on Mars, unlimited ramjet flight in the atmospheres of Jupiter, Saturn, Uranus, and Neptune and landing on, and sample return from Pluto.« less

  17. Cloud physics laboratory project science and applications working group

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1977-01-01

    The conditions of the expansion chamber under zero gravity environment were simulated. The following three branches of fluid mechanics simulation under low gravity environment were accomplished: (1) oscillation of the water droplet which characterizes the nuclear oscillation in nuclear physics, bubble oscillation of two phase flow in chemical engineering, and water drop oscillation in meteorology; (2) rotation of the droplet which characterizes nuclear fission in nuclear physics, formation of binary stars and rotating stars in astrophysics, and breakup of the water droplet in meteorology; and (3) collision and coalescence of the water droplets which characterizes nuclear fusion in nuclear physics and processes of rain formation in meteorology.

  18. Two nominated for Science Board

    NASA Astrophysics Data System (ADS)

    President Ronald Reagan plans to nominate Thomas B. Day and James J. Duderstadt to the National Science Board (NSB), according to an announcement by the National Science Foundation (NSF). Day, a theoretical and experimental high-energy physicist, is president of San Diego State University, San Diego, Calif. Duderstadt is a nuclear engineer and is dean of the College of Engineering of the University of Michigan, Ann Arbor.The 24-member NSB is the policy-making body of the NSF. Current members of the NSB include Peter T. Flawn, a geologist who is president of the University of Texas at Austin, and William A. Nierenberg, director of the Scripps Institution of Oceanography at the University of California, San Diego.

  19. Nuclear Security Education Program at the Pennsylvania State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uenlue, Kenan; The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304; Jovanovic, Igor

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basismore » of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale Reactor (PSBR), gamma irradiation facilities (in-pool irradiator, dry irradiator, and hot cells), neutron beam laboratory, radiochemistry laboratories, and various radiation detection and measurement laboratories. A new nuclear security education laboratory was created with DOE NNSA- GTRI funds at RSEC. The nuclear security graduate level curriculum enables the PSU to educate and train future nuclear security experts, both within the United States as well as worldwide. The nuclear security education program at Penn State will grant a Master's degree in nuclear security starting fall 2015. The PSU developed two courses: Nuclear Security- Detector And Source Technologies and Nuclear Security- Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements (Laboratory). Course descriptions and course topics of these courses are described briefly: - Nuclear Security - Detector and Source Technologies; - Nuclear Security - Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Laboratory.« less

  20. Publications of LASL research, 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A.K.

    1975-05-01

    This bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and U. S. patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by broad subject categories; within each section they are alphabetical by title. The following subject categories are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equationmore » of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma studies; earth science and engineering; energy (non-nuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronic and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical and KWIC indexes are included. (RWR)« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The primary purpose of this report is to provide an archival record of the activities of the Engineering Physics and Mathematics Division during the period September 1, 1989 through March 31, 1991. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research on the mathematical sciences prior to 1984 when those activities moved into the division. As in previous reports, our research is described through abstracts of journal articles, technical reports, and presentations. Summary lists of publications and presentations, staff additions and departures, scientific and professional activities of division staff, andmore » technical conferences organized and sponsored by the division are included as appendices. The report is organized following the division of our research among four sections and information centers. These research areas are: Mathematical Sciences; Nuclear Data Measurement and Evaluations; Intelligent Systems; Nuclear Analysis and Shielding; and Engineering Physics Information Center.« less

  2. Publications of LASL research, 1972--1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, L.

    1977-04-01

    This bibliography is a compilation of unclassified work done at the Los Alamos Scientific Laboratory and published during the years 1972 to 1976. Publications too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. The bibliography includes LASL reports, journal articles, books, conference papers, papers published in congressional hearings, theses, patents, etc. The following subject areas are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energymore » (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). (RWR)« less

  3. Fuel Cycle Technologies 2014 Achievement Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Bonnie C.

    2015-01-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities.more » FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.« less

  4. JPRS Report, Nuclear Developments.

    DTIC Science & Technology

    1989-09-18

    institution had strongly supported the project, which was proposed by experts from the Peruvian Nuclear Energy Institute (IPEN) with the cooperation of...the Science College of the National Engineering Univer- sity. The equipment was obtained under a Peruvian - Argentine agreement, [passage omitted...A football shaped thing was on a stand in the other corner. The official said that was the Islamic bomb and asked if we Pakistanis still denied

  5. Report of the Defense Science Board Task Force on Critical Homeland Infrastructure Protection

    DTIC Science & Technology

    2007-01-01

    nuclear, radiation and explosive hazards; • Monitoring “people of interest” while protecting civil liberties; • Detection of hostile intent; • Detect...Guardian DARPA Overview Mr. Roger Gibbs DARPA LLNL Technologies in Support of Infrastructure Protection Mr. Don Prosnitz LLNL Sandia National...Mechanical Engineers AT/FP Antiterrorism/Force Protection CBRNE Chemical Biological Radiological Nuclear Explosive CERT Commuter Emergency Response Team

  6. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    DOE PAGES

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; ...

    2016-12-28

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012more » Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.« less

  7. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012more » Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.« less

  8. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcones, Almudena; Escher, Jutta E.; Others, M.

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9more » - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.« less

  9. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; Bernstein, Lee A.; Blackmon, Jeffrey C.; Messer, Bronson; Brown, B. Alex; Brown, Edward F.; Brune, Carl R.; Champagne, Art E.; Chieffi, Alessandro; Couture, Aaron J.; Danielewicz, Pawel; Diehl, Roland; El-Eid, Mounib; Escher, Jutta E.; Fields, Brian D.; Fröhlich, Carla; Herwig, Falk; Hix, William Raphael; Iliadis, Christian; Lynch, William G.; McLaughlin, Gail C.; Meyer, Bradley S.; Mezzacappa, Anthony; Nunes, Filomena; O'Shea, Brian W.; Prakash, Madappa; Pritychenko, Boris; Reddy, Sanjay; Rehm, Ernst; Rogachev, Grigory; Rutledge, Robert E.; Schatz, Hendrik; Smith, Michael S.; Stairs, Ingrid H.; Steiner, Andrew W.; Strohmayer, Tod E.; Timmes, F. X.; Townsley, Dean M.; Wiescher, Michael; Zegers, Remco G. T.; Zingale, Michael

    2017-05-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9-10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long standing key questions are well within reach in the coming decade.

  10. MITEE: A Compact Ultralight Nuclear Thermal Propulsion Engine for Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, J.; Maise, G.; Paniagua, J.

    2001-01-01

    A new approach for a near-term compact, ultralight nuclear thermal propulsion engine, termed MITEE (Miniature Reactor Engine) is described. MITEE enables a wide range of new and unique planetary science missions that are not possible with chemical rockets. With U-235 nuclear fuel and hydrogen propellant the baseline MITEE engine achieves a specific impulse of approximately 1000 seconds, a thrust of 28,000 newtons, and a total mass of only 140 kilograms, including reactor, controls, and turbo-pump. Using higher performance nuclear fuels like U-233, engine mass can be reduced to as little as 80 kg. Using MITEE, V additions of 20 km/s for missions to outer planets are possible compared to only 10 km/s for H2/O2 engines. The much greater V with MITEE enables much faster trips to the outer planets, e.g., two years to Jupiter, three years to Saturn, and five years to Pluto, without needing multiple planetary gravity assists. Moreover, MITEE can utilize in-situ resources to further extend mission V. One example of a very attractive, unique mission enabled by MITEE is the exploration of a possible subsurface ocean on Europa and the return of samples to Earth. Using MITEE, a spacecraft would land on Europa after a two-year trip from Earth orbit and deploy a small nuclear heated probe that would melt down through its ice sheet. The probe would then convert to a submersible and travel through the ocean collecting samples. After a few months, the probe would melt its way back up to the MITEE lander, which would have replenished its hydrogen propellant by melting and electrolyzing Europa surface ice. The spacecraft would then return to Earth. Total mission time is only five years, starting from departure from Earth orbit. Other unique missions include Neptune and Pluto orbiter, and even a Pluto sample return. MITEE uses the cermet Tungsten-UO2 fuel developed in the 1960's for the 710 reactor program. The W-UO2 fuel has demonstrated capability to operate in 3000 K hydrogen for many hours - a much longer period than the approximately one hour burn time for MITEE. Using this cermet fuel, and technology available from other nuclear propulsion programs, MITEE could be developed and ready for implementation in a relatively short time, i.e., approximately seven years. An overview description of the MITEE engine and its performance capabilities is provided.

  11. Nuclear thermal source transfer unit, post-blast soil sample drying system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ralph S.; Valencia, Matthew J

    Los Alamos National Laboratory states that its mission is “To solve national security challenges through scientific excellence.” The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in toolmore » design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.« less

  12. Utility operations review of North Carolina State University BSNE curriculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, E.A.; Faggart, E.M.; Jackson, G.D.

    1988-01-01

    The industry advisors group of the North Carolina State University (NCSU) Department of Nuclear Engineering raised the question of how well the curriculum for a bachelor of science in nuclear engineering (BSNE) meets the needs of educating students to enter the nuclear operations field. The concern was that the nuclear industry has evolved from a design to an operations mode, but that the BSNE curriculum may not have responded to this evolution. To address this issue, a group of four persons qualified as senior reactor operators with operational experience from different utilities was selected. The authors are the members ofmore » this review group. All are degreed personnel, with three BSNE graduates from NCSU, and all have participated in nuclear plant startups and currently work at nuclear plant sites. The group prepared by reviewing the curriculum before arriving on campus, including the report developed for the Accreditation Board for Engineering and Technology. During our two-day campus visit, we reviewed course materials, interviewed professors, and toured laboratory and reactor facilities in order to get more insight into the breadth and thrust of the BSNE curriculum. The observations and recommendations contained in this paper were developed based on these reviews and discussions and represent the opinions of the authors and not necessarily their companies.« less

  13. Preliminary Results from Pyroelectric Crystal Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Tom; Edwards, Ronald; Bright, Kevin

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. Cadets in the Department of Physics and Nuclear Engineering at USMA are using pyroelectric crystals to ionize and accelerate residual gas trapped inside a vacuum system. A system using two lithium tantalate crystals with associated diagnostics was designed and is now operational. X-ray energies of approximately 150 keV have been achieved. Future work will focus on developing a portable neutron generator using the D-D nuclearmore » fusion process.« less

  14. JPRS Report, Science & Technology, Japan.

    DTIC Science & Technology

    1988-08-03

    SHIMBUN, 4 Feb 88] 72 Advanced Reactor Design System To Be Developed [GENSHIRYOKU SANGYO SHIMBUN, 4 Feb 88] 73 Functional Testing on " Mutsu ...new types of reactors. 13008 74 NUCLEAR ENGINEERING FUNCTIONAL TESTING ON " MUTSU " SCHEDULED 43062060c Tokyo GENSHIRYOKU SANGYO SHIMBUN in Japanese...and to rebuild the power supply rectifiers used in the instrumentation controls on the nuclear powered ship, the " Mutsu ," which was launched on 27

  15. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  16. Nuclear energy related capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickering, Susan Y.

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing themore » nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.« less

  17. Disarmament, Security and Development

    ERIC Educational Resources Information Center

    Bulletin of the Atomic Scientists, 1976

    1976-01-01

    Provided is a summary of the 26th Pugwash Conference on Science and World Affairs held August 26-31, 1976, in Muhlhausen, East Germany. World problems discussed included: arms limitations, military research and development, nuclear test ban, alternative energy sources, and genetic engineering. (SL)

  18. Overview of Nuclear Physics Data: Databases, Web Applications and Teaching Tools

    NASA Astrophysics Data System (ADS)

    McCutchan, Elizabeth

    2017-01-01

    The mission of the United States Nuclear Data Program (USNDP) is to provide current, accurate, and authoritative data for use in pure and applied areas of nuclear science and engineering. This is accomplished by compiling, evaluating, and disseminating extensive datasets. Our main products include the Evaluated Nuclear Structure File (ENSDF) containing information on nuclear structure and decay properties and the Evaluated Nuclear Data File (ENDF) containing information on neutron-induced reactions. The National Nuclear Data Center (NNDC), through the website www.nndc.bnl.gov, provides web-based retrieval systems for these and many other databases. In addition, the NNDC hosts several on-line physics tools, useful for calculating various quantities relating to basic nuclear physics. In this talk, I will first introduce the quantities which are evaluated and recommended in our databases. I will then outline the searching capabilities which allow one to quickly and efficiently retrieve data. Finally, I will demonstrate how the database searches and web applications can provide effective teaching tools concerning the structure of nuclei and how they interact. Work supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

  19. Exploratory Research and Development Fund, FY 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicinemore » and radiation biophysics.« less

  20. Sandia National Laboratories focus issue: introduction.

    PubMed

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  1. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDeavitt, Sean

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period ofmore » time.« less

  2. Thomas D. Foust, Ph.D, P.E. | NREL

    Science.gov Websites

    -June 1997 Mechanical Systems Engineer, Nuclear Energy Program, DOE, August 1990-August 1992 Test Production," Science (2007) Heat Exchanger Performance Enhancement Methodologies, DOE Technical Report Separation Systems for Bioenergy Separations," presented at 24th Symposium on Biotechnology for Fuels

  3. Welcome Address

    NASA Astrophysics Data System (ADS)

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology etc. Therefore, I am very happy that the excellent scientists of nuclear physics over 120 visit to our university for discussing the latest results and scope in nuclear physics, and enjoy our facilities and City of Yokohama. I believe that this conference will transmit the forefront of the nuclear physics from Yokohama to the world. Finally, I hope this international workshop will be successful and fruitful, and all you have nice days in Yokohama. Thank you very much for your attention.

  4. The ^58,60Ni(n,α) Reactions from Threshold to 50 MeV

    NASA Astrophysics Data System (ADS)

    Haight, R. C.; Bateman, F. B.; Sterbenz, S. M.; Chadwick, M. B.; Young, P. G.; Grimes, S. M.; Wasson, O. A.; Vonach, H.; Maier-Komor, P.

    1996-10-01

    Information on nuclear level densities over a wide range of excitation energies can be obtained from data on (n,α) reactions.(M. B. Chadwick et al., this meeting) We have measured α-particle emission cross sections, angular distributions and emission spectra for neutrons up to 50 MeV on targets of ^58Ni and ^60Ni using the pulsed spallation source of fast neutrons at the Los Alamos Neutron Science Center. The results will be compared with our previous measurements on ^59Co.(S. M. Grimes et al., Nuclear Science and Engineering in press) The possibilities of extending this method to much heavier nuclides will be discussed.

  5. Contributions of the SCK.CEN Academy to education and training in nuclear science and technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coeck, Michele

    Thanks to its thorough experience in the field of nuclear science and technology, its innovative research and the availability of large and unique nuclear installations, SCK.CEN is not only a renowned nuclear research institution, but also an important partner for nuclear education and training in Belgium as well as at international level. Within the SCK.CEN Academy, more than 60 years of nuclear expertise and experience gained from our different research projects is collected and transferred. In the interest of maintaining a competent workforce in industry, Healthcare, research, and policy, and of transferring nuclear knowledge and skills to the next generations,more » the SCK.CEN Academy takes it as its mission to: - provide guidance for students and early-stage researchers; - organize academic courses and customized training for professionals; - offer policy support with regard to education and training matters; - care for critical-intellectual capacities for society. Specifically in the domain of nuclear instrumentation the SCK.CEN Academy provides an opportunity to students at Bachelor, Master and PhD level to make use of the SCK.CEN infrastructure to support their thesis research or to perform an internship with the aim to improve and extend their knowledge and skills in a specific research or technical domain. Further, they can contribute to new findings in the field of nuclear instrumentation. The students are guided by our scientists, engineers and technicians who have years of experience in the relevant field. In addition, the SCK.CEN Academy contributes to traditional university education programs and delivers courses in several nuclear topics such as dosimetry. We also coordinate the Belgian Nuclear higher Engineering Network (BNEN), a one year (60 ECTS) master-after-master specialization in nuclear engineering in which 6 Belgian universities and SCK.CEN are involved. Beyond the contributions to academic education, we also provide several customized training programs tailored to the needs of the learners in terms of content, duration, level, language, location, etc. Complementary to the theoretical classes, ample attention is given to practical sessions and technical visits are foreseen which enable trainees to enrich and illustrate their acquired knowledge with the practice of real-life situations. In this poster presentation an overview will be given of the activities in the domains described above. Moreover it will be shown how these initiatives are embedded in the most recent European approaches to nuclear education and training via collaboration in several EU projects and networks. (authors)« less

  6. 2016 Gilbert W. Beebe symposium

    Cancer.gov

    The National Academies of Sciences, Engineering, and Medicine is hosting the 2016 Gilbert W. Beebe Symposium. Its focus will be on commemorating the 1986 Chernobyl nuclear reactor accident and discussing the achievements of 30 years of studies on the radiation health effects following the accident and future research directions.

  7. JOWOG 22/2 - Actinide Chemical Technology (July 9-13, 2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Jay M.; Lopez, Jacquelyn C.; Wayne, David M.

    2012-07-05

    The Plutonium Science and Manufacturing Directorate provides world-class, safe, secure, and reliable special nuclear material research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs. We safely and efficiently process plutonium, uranium, and other actinide materials to meet national program requirements, while expanding the scientific and engineering basis of nuclear weapons-based manufacturing, and while producing the next generation of nuclear engineers and scientists. Actinide Process Chemistry (NCO-2) safely and efficiently processes plutonium and other actinide compounds to meet the nation's nuclear defense program needs. All of our processing activities are done in amore » world class and highly regulated nuclear facility. NCO-2's plutonium processing activities consist of direct oxide reduction, metal chlorination, americium extraction, and electrorefining. In addition, NCO-2 uses hydrochloric and nitric acid dissolutions for both plutonium processing and reduction of hazardous components in the waste streams. Finally, NCO-2 is a key team member in the processing of plutonium oxide from disassembled pits and the subsequent stabilization of plutonium oxide for safe and stable long-term storage.« less

  8. An overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Smith, T.H.; Chew, E.W.; Hedahl, T.G.; Mann, L.J.; Pointer, T.F.; Wiersma, G.B.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the U.S. Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological Environmental Sciences Laboratory (RESL), and the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG&G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities radiation is integrated with the overall INEL Site surveillance program. Air, warer, soil, biota, and environmental radiation are monitored or sampled routinely at INEL. Results to date indicate very small or no impacts from INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL.

  9. CASL Dakota Capabilities Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Simmons, Chris; Williams, Brian J.

    2017-10-10

    The Dakota software project serves the mission of Sandia National Laboratories and supports a worldwide user community by delivering state-of-the-art research and robust, usable software for optimization and uncertainty quantification. These capabilities enable advanced exploration and riskinformed prediction with a wide range of computational science and engineering models. Dakota is the verification and validation (V&V) / uncertainty quantification (UQ) software delivery vehicle for CASL, allowing analysts across focus areas to apply these capabilities to myriad nuclear engineering analyses.

  10. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiationmore » biophysics.« less

  11. Computation of Thermodynamic Equilibria Pertinent to Nuclear Materials in Multi-Physics Codes

    NASA Astrophysics Data System (ADS)

    Piro, Markus Hans Alexander

    Nuclear energy plays a vital role in supporting electrical needs and fulfilling commitments to reduce greenhouse gas emissions. Research is a continuing necessity to improve the predictive capabilities of fuel behaviour in order to reduce costs and to meet increasingly stringent safety requirements by the regulator. Moreover, a renewed interest in nuclear energy has given rise to a "nuclear renaissance" and the necessity to design the next generation of reactors. In support of this goal, significant research efforts have been dedicated to the advancement of numerical modelling and computational tools in simulating various physical and chemical phenomena associated with nuclear fuel behaviour. This undertaking in effect is collecting the experience and observations of a past generation of nuclear engineers and scientists in a meaningful way for future design purposes. There is an increasing desire to integrate thermodynamic computations directly into multi-physics nuclear fuel performance and safety codes. A new equilibrium thermodynamic solver is being developed with this matter as a primary objective. This solver is intended to provide thermodynamic material properties and boundary conditions for continuum transport calculations. There are several concerns with the use of existing commercial thermodynamic codes: computational performance; limited capabilities in handling large multi-component systems of interest to the nuclear industry; convenient incorporation into other codes with quality assurance considerations; and, licensing entanglements associated with code distribution. The development of this software in this research is aimed at addressing all of these concerns. The approach taken in this work exploits fundamental principles of equilibrium thermodynamics to simplify the numerical optimization equations. In brief, the chemical potentials of all species and phases in the system are constrained by estimates of the chemical potentials of the system components at each iterative step, and the objective is to minimize the residuals of the mass balance equations. Several numerical advantages are achieved through this simplification. In particular, computational expense is reduced and the rate of convergence is enhanced. Furthermore, the software has demonstrated the ability to solve systems involving as many as 118 component elements. An early version of the code has already been integrated into the Advanced Multi-Physics (AMP) code under development by the Oak Ridge National Laboratory, Los Alamos National Laboratory, Idaho National Laboratory and Argonne National Laboratory. Keywords: Engineering, Nuclear -- 0552, Engineering, Material Science -- 0794, Chemistry, Mathematics -- 0405, Computer Science -- 0984

  12. Careers in Atomic Energy, Understanding the Atom Series, Revised.

    ERIC Educational Resources Information Center

    McIlhenny, Loyce J.

    This booklet identifies careers in nuclear energy and suggests preparation for such careers. Suggested are the types of courses in high school and college necessary for work in physical, biological, and veterinary sciences, engineering, medicine, scientific writing, and supporting fields such as nursing and laboratory technology. Brief…

  13. The European Safeguards Research and Development Association Addresses Safeguards and Nonproliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens-Maenhout, Greet; Kusumi, R.; Daures, Pascal A.

    2010-06-16

    The renaissance of efforts to expand the use of nuclear energy requires the parallel development of a renewed and more sophisticated work force. Growth in the nuclear sector with high standard of safety, safeguards and security requires skilled staff for design, operations, inspections etc. High-quality nuclear technology educational programs are diminished from past years, and the ability of universities to attract students and to meet future staffing requirements of the nuclear industry is becoming seriously compromised. Thus, education and training in nuclear engineering and sciences is one of the cornerstones for the nuclear sector. Teaching in the nuclear field stillmore » seems strongly influenced by national history but it is time to strengthen resources and collaborate. Moreover with the current nuclear security threats it becomes critical that nuclear technology experts master the basic principles not only of safety, but also of nuclear safeguards, nonproliferation and nuclear security. In Europe the European Nuclear Education Network (ENEN) Association has established the certificate 'European Master of Science in Nuclear Engineering (EMSNE)' as the classic nuclear engineering program covering reactor operation and nuclear safety. However, it does not include courses on nonproliferation, safeguards, or dual-use technologies. The lack of education in nuclear safeguards was tackled by the European Safeguards Research and Development Association (ESARDA), through development and implementation of safeguards course modules. Since 2005 the ESARDA Working Group, called the Training and Knowledge Management Working Group, (TKMWG) has worked with the Joint Research Centre (JRC) in Ispra, Italy to organize a Nuclear Safeguards and Nonproliferation course. This five-day course is held each spring at the JRC, and continues to show increasing interest as evidenced by the positive responses of international lecturers and students. The standard set of lectures covers a broad range of subjects, including nuclear material accountancy principles, legal definitions and the regulatory base and inspection tools and techniques. This 60% core part is given by representatives from regulatory bodies (The International Atomic Energy Agency (IAEA), Institute for Radiological Protection and Nuclear Safety, Directorate General for Nuclear Energy and Transport), industry (AREVA, British Nuclear Group), and research (Stockholm University, Hamburg University, Joint Research Centre-Institute of Transuranic Elements, and Joint Research Centre-Institute for the Protection of the Citizen). The remaining part is completed with topical lectures addressed by invited lecturers, such as from Pacific Northwest National Laboratory and the IAEA addressing topics of physical protection, illicit trafficking, the Iraq case study, exercises, including satellite imagery interpretation etc. With this structure of a stable core plus a variable set of invited lectures, the course will remain sustainable and up-to-date. A syllabus provides the students a homogeneous set of information material in nuclear safeguards and nonproliferation matters at the European and international level. In this way, the ESARDA TKMWG aims to contribute to a two-fold scientific-technical and political-juridical education and training.« less

  14. Status of DEMO-FNS development

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Shpanskiy, Yu. S.; DEMO-FNS Team

    2017-07-01

    Fusion-fission hybrid facility based on superconducting tokamak DEMO-FNS is developed in Russia for integrated commissioning of steady-state and nuclear fusion technologies at the power level up to 40 MW for fusion and 400 MW for fission reactions. The project status corresponds to the transition from a conceptual design to an engineering one. This facility is considered, in RF, as the main source of technological and nuclear science information, which should complement the ITER research results in the fields of burning plasma physics and control.

  15. Idaho National Laboratory Research & Development Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, Nicole

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and governmentmore » agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.« less

  16. Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew D.

    2011-06-01

    There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here on the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.

  17. Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Andrew D.

    2011-06-01

    There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here onmore » the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.« less

  18. Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005

    NASA Technical Reports Server (NTRS)

    Bowles, Mark D.

    2006-01-01

    Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.

  19. Journal of Undergraduate Research, Volume IX, 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiner, K. S.; Graham, S.; Khan, M.

    Each year more than 600 undergraduate students are awarded paid internships at the Department of Energy’s (DOE) National Laboratories. Th ese interns are paired with research scientists who serve as mentors in authentic research projects. All participants write a research abstract and present at a poster session and/or complete a fulllength research paper. Abstracts and selected papers from our 2007–2008 interns that represent the breadth and depth of undergraduate research performed each year at our National Laboratories are published here in the Journal of Undergraduate Research. The fields in which these students worked included: Biology; Chemistry; Computer Science; Engineering; Environmentalmore » Science; General Science; Materials Science; Medical and Health Sciences; Nuclear Science; Physics; Science Policy; and Waste Management.« less

  20. Experiments in progress: The geography of science in the Atomic Energy Commission's peaceful uses of nuclear explosives program, 1956-1973

    NASA Astrophysics Data System (ADS)

    Kirsch, Scott Lawrence

    From 1957 to 1973, the United States Atomic Energy Commission (AEC) actively pursued the "peaceful uses of nuclear explosives" through Project Plowshare. Nuclear excavation, the detonation of shallowly buried hydrogen bombs for massive earthmoving projects like harbors and canals, was considered the most promising of the Plowshare applications, and for a time, the most economically and technically "feasible." With a basis in and contributing to theory in critical human geography and science studies, the purpose of this dissertation is to examine the collisions of science, ideology, and politics which kept Plowshare designs alive--but only as "experiments in progress." That is, this research asks how the experimental program persisted in places like the national weapons laboratory in Livermore, California, and how its ideas were tested at the nuclear test site in Nevada, yet Plowshare was kept out of those spaces beyond AEC control. Primary research focuses on AEC-related archival materials collected from the Department of Energy Coordination and Information Center, Las Vegas, Nevada, and from the Lawrence Livermore National Laboratory, as well as the public discourse through which support for and opposition to Plowshare projects was voiced. Through critical analysis of Plowshare's grandiose "geographical engineering" schemes, I thus examine the complex relations between the social construction of science and technology, on one hand, and the social production of space, on the other.

  1. Mass and Performance Estimates for 5 to 1000 kW(e) Nuclear Reactor Power Systems for Space Applications

    DTIC Science & Technology

    1990-12-01

    Albany Street Cambridge, MA 02139 Dave Berwald Grumman Aerospace Corporation MS B20-05 Bethpage, NY 11714 F. Best Assistant Professor Texas A&M... Zielinski U. S. Department of Energy SAN-ACR Division 13333 Broadway Oakland, CA 94612 G. L. Zigler Science & Engineering Associates 6301

  2. 2004 research briefs :Materials and Process Sciences Center.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-sciencemore » base has on the ultimate success of the NW program and the overall DOE technology portfolio.« less

  3. Earth Sciences annual report, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J.

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.

  4. Rocketry, film and fiction: the road to Sputnik

    NASA Astrophysics Data System (ADS)

    Brake, Mark; Hook, Neil

    2007-07-01

    The launch of Sputnik 1 in 1957 was fuelled by science fiction as well as science fact. The field of early rocketry included the work of Russians Nikolai Rynin and Konstantin Tsiolkovsky, American Robert Goddard, and German engineers Herman Oberth and Wernher Von Braun. All were directly inspired and influenced by early science fiction that heralded a space age decades ahead of time. The work of these pioneers led directly to the development of the technology needed to boost Sputnik skyward. After the launch of Sputnik, the context of the nuclear arms race opened the floodgates for a new wave of apocalyptic fiction.

  5. Proceedings of the 1995 Particle Accelerator Conference and international Conference on High-Energy Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1996-01-01

    Papers from the sixteenth biennial Particle Accelerator Conference, an international forum on accelerator science and technology held May 1–5, 1995, in Dallas, Texas, organized by Los Alamos National Laboratory (LANL) and Stanford Linear Accelerator Center (SLAC), jointly sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Plasma Sciences Society (NPSS), the American Physical Society (APS) Division of Particles and Beams (DPB), and the International Union of Pure and Applied Physics (IUPAP), and conducted with support from the US Department of Energy, the National Science Foundation, and the Office of Naval Research.

  6. Review of 1953-2003 ORAU Follow-Up Studies on Science Education Programs: Impacts on Participants' Education and Careers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oak Ridge Associated Universities

    2006-06-01

    Through sponsorship of science education programs for undergraduates and graduates, such as research participation programs and fellowships, the Department of Energy (DOE) encouraged the development of adequate numbers of qualified science and engineering (S&E) personnel to meet its current and future research and development (R&D) needs. This retrospective study summarizes impacts of selected programs on these participants. The summary data are from follow-up studies conducted from 1953 through 2003 by Oak Ridge Associated Universities and its predecessor, the Oak Ridge Institute for Nuclear Studies (ORINS).

  7. Plowshare

    DOE R&D Accomplishments Database

    Teller, E.

    1963-02-04

    The purpose of this lecture is to give an impression of the main characteristic feature of Plowshare: its exceedingly wide applicability throughout fields of economic or scientific interest. If one wants to find the right applications, knowledge of the nuclear tool is not enough. One needs to have a thorough familiarity with the materials, with the processes, with all of science, with all the economics on our globe and maybe beyond. A survey is presented of all aspects of peaceful applications of nuclear explosives: earth moving, large-scale chemical and mining engineering, and scientific experiments. (D.L.C.)

  8. Compelling Research Opportunities using Isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies andmore » diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.« less

  9. Normal accidents: Living with high-risk technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perrow, Ch.

    1984-01-01

    It was a major nuclear accident, the one at Three Mile Island in 1979, that turned Perrow's attention to accidents in general. A specialist in the sociology of organizations, he soon learned that events at TMI were not simply the result of an engineering failure or the result of operator error; rather, they were a consequence of systems failure. What the author learned from his research into the accident at TMI is that there was no coherent theory of accidents in either the engineering or the social science literature, so he set out to create one. This book discusses themore » science of accident research. Since Perrow is an outsider to all of the many technical fields reviewed in the book, ranging from nuclear power to marine transport to DNA research, experts may challenge his sources and point out his errors. Perrow's central thesis is that accidents are inevitable - that is, they are ''normal'' - in technologies that have two system characteristics that he terms ''interactive complexity'' and ''tight coupling''. Using these concepts, Perrow constructs a theory of systems which he believes to be unique in the literature on accidents and the literature on organizations. His theory concentrates upon the properties of systems themselves, rather than on the errors that owners, designers and operators make in running them. He seeks a more basic explanation than operator error; faulty design or equipment; inadequately trained personnel; or the system is too big, under-financed or mismanaged. Nuclear power in the United States may not survive its current economic and regulatory troubles, but discussion continues. Only a small part of the debate concerns plant safety: economic competitiveness, nuclear arms proliferation and nuclear waste disposal are the salient themes.« less

  10. LANSCE Activity Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amy Robinson; Audrey Archuleta; Barbara Maes

    1999-02-01

    The Los Alamos Neutron Science Center Activity Report describes scientific and technological progress and achievements in LANSCE Division during the period of 1995 to 1998. This report includes a message from the Division Director, an overview of LANSCE, sponsor overviews, research highlights, advanced projects and facility upgrades achievements, experimental and user program accomplishments, news and events, and a list of publications. The research highlights cover the areas of condensed-matter science and engineering, accelerator science, nuclear science, and radiography. This report also contains a compact disk that includes an overview, the Activity Report itself, LANSCE operations progress reports for 1996 andmore » 1997, experiment reports from LANSCE users, as well as a search capability.« less

  11. DOE/Industry Matching Grant Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John C. Lee

    2003-09-30

    For the academic year 2001-2002, the Department of Nuclear Engineering and Radiological Sciences received $50,000 of industrial contributions, matched by a DOE grant of $35,000. We used the combined DOE/Industry Matching Grant of $85,000 toward (a) undergraduate merit scholarships and research support, (b) graduate student support, and (c) partial support of a research scientist.

  12. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-03-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.

  13. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.

  14. Nuclear Thermal Rocket (NTR) Propulsion and Power Systems for Outer Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, S. K.; Cataldo, R. L.

    2001-01-01

    The high specific impulse (I (sub sp)) and engine thrust generated using liquid hydrogen (LH2)-cooled Nuclear Thermal Rocket (NTR) propulsion makes them attractive for upper stage applications for difficult robotic science missions to the outer planets. Besides high (I (sub sp)) and thrust, NTR engines can also be designed for "bimodal" operation allowing substantial amounts of electrical power (10's of kWe ) to be generated for onboard spacecraft systems and high data rate communications with Earth during the course of the mission. Two possible options for using the NTR are examined here. A high performance injection stage utilizing a single 15 klbf thrust engine can inject large payloads to the outer planets using a 20 t-class launch vehicle when operated in an "expendable mode". A smaller bimodal NTR stage generating approx. 1 klbf of thrust and 20 to 40 kWe for electric propulsion can deliver approx. 100 kg using lower cost launch vehicles. Additional information is contained in the original extended abstract.

  15. The Story of the Nuclear Rocket: Back to the Future

    NASA Astrophysics Data System (ADS)

    Dewar, James A.

    2002-01-01

    The United States had a nuclear rocket development program from 1955-1973 called Project Rover/NERVA. Twenty reactor tests demonstrated conclusively the superiority, flexibility and reliability of nuclear rocket engines over their chemical counterparts. This paper surveys the technical accomplishments from that perspective, to help illustrate why many call for the program's reestablishment. Most focus on the large NERVA, but this review will consider the little known Small Nuclear Engine. KIWI-B1B was one of the first tests in which nuclear rockets demonstrated their superiority. It ejected its core as it rose to 1000MW (a megawatt equals 50 pounds of thrust). This seems contradictory, how can a `failure' demonstrate superiority? Precisely in this: the reactor remained controllable going to and from 1000MW, still ejecting its core, but still turning out power. That gave insurance to a mission. A solid or liquid chemical engine suffering similar damage would likely shutdown or blow up. KIWI-TNT and Phoebus-1A had planned and unplanned accidents. That verified the safety of nuclear engines in launch operations. NRX/EST and XE-Prime proved they could startup reliably under their own power in a simulated space environment and change power without loss of specific impulse or control, from 20MW to 1000MW and back. That gave flexibility for mid-course corrections, maneuvering between orbits or breaking into orbit. Pewee and the Nuclear Furnace tested fuels to achieve 10 hours of engine operation with 60 recycles (stops and starts). That meant an engine could perform multiple missions. Work started on fuels promising1000 seconds of specific impulse. That meant increased power and payload capacity and speed. This contrasts with the 450 seconds of LOX/LH2. The NERVA of 1971 would be 1500MW, with 10/60 capability and 825 seconds of a specific impulse. Later generation NERVAs would be in excess of 1000 seconds, 3000MW and 10/60. The Nixon Administration cancelled it in 1971. After its demise, the Small Nuclear Engine appeared for unmanned missions. To fit in the space shuttle's 15 by 60 foot cargo bay, the 10 foot long engine would be 400MW, weigh 5600 pounds and use slush hydrogen. That left 50 feet and almost 60,000 pounds for the tank, propellant and payload that could vary in size, but it was nominally 5 tons. It would cost 500 million (in1972 dollars) and take a decade to develop. It had NERVA's operating characteristics, but subsequent generation systems envisioned longer engine life and recycle capability and specific impulses of 1000+ seconds. Nixon ended this in 1973. By reconsidering it instead of a nuclear electric engine that serves only space science, the nation could gain a fast, powerful system that would radically change most future unmanned space missions. With its recycle capability, a single engine could ferry large scientific payloads swiftly throughout the solar system. Yet it also could propel heavy national security and commercial payloads to geo-synchronous orbit. NASA might even offer a satellite retrieval service. Thus, one lesson is clear: it is 1960s era technology, but the Small Engine is not obsolete. If developed, it would serve not just one, but three users yet have growth potential for decades for an ever more expansive space program.

  16. Applications of spaceborne laser ranger on EOS

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Cohen, Steven C.

    1988-01-01

    An account is given of the design concept and potential applications in science and engineering of the spaceborne laser ranging and altimeter apparatus employed by the Geodynamics Laser Ranging System; this is scheduled for 1997 launch as part of the multiple-satellite Earth Observing System. In the retrograding mode for geodynamics, the system will use a Nd:YAG laser's green and UV output for distance determination to ground retroreflectors. Engineering applications encompass land management and long-term ground stability studies relevant to nuclear power plant, pipeline, and aqueduct locations.

  17. Environmental Science and Research Foundation. Annual technical report, April 11, 1994--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, T.D.; Morris, R.C.; Markham, O.D.

    1995-06-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office, by the Environmental Science and Research Foundation (Foundation) for work under contract DE-AC07-94ID13268. The Foundation began, on April 11, 1994, to conduct environmental surveillance near to and distant from the Idaho National Engineering Laboratory, provide environmental public relations and education related to INEL natural resource issues, and conduct ecological and radioecological research benefiting major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Infrastructure.

  18. Preparing to understand and use science in the real world: interdisciplinary study concentrations at the Technical University of Darmstadt.

    PubMed

    Liebert, Wolfgang J

    2013-12-01

    In order to raise awareness of the ambiguous nature of scientific-technological progress, and of the challenging problems it raises, problems which are not easily addressed by courses in a single discipline and cannot be projected onto disciplinary curricula, Technical University of Darmstadt has established three interdisciplinary study concentrations: "Technology and International Development", "Environmental Sciences", and "Sustainable Shaping of Technology and Science". These three programmes seek to overcome the limitations of strictly disciplinary research and teaching by developing an integrated, problem-oriented approach. For example, one course considers fundamental nuclear dilemmas and uses role-playing techniques to address a controversy in the area of nuclear security. At the same time, incorporating interdisciplinary teaching into a university that is organized around mono- or multi-disciplinary faculties also poses a number of challenges. Recognition in disciplinary curricula, and appropriate organizational support and funding are examples of those challenges. It is expected that science and engineering students, empowered by such interdisciplinary study programmes, will be better prepared to act responsibly with regard to scientific and technological challenges.

  19. Science-based stockpile stewardship at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Immele, J.

    1995-10-01

    I would like to start by working from Vic Reis`s total quality management diagram in which he began with the strategy and then worked through the customer requirements-what the Department of Defense (DoD) is hoping for from the science-based stockpile stewardship program. Maybe our customer`s requirements will help guide some of the issues that we should be working on. ONe quick answer to {open_quotes}why have we adopted a science-based strategy{close_quotes} is that nuclear weapons are a 50-year responsibility, not just a 5-year responsibility, and stewardship without testing is a grand challenge. While we can do engineering maintenance and turn overmore » and remake a few things on the short time scale, without nuclear testing, without new weapons development, and without much of the manufacturing base that we had in the past, we need to learn better just how these weapons are actually working.« less

  20. Mitochondrial Genomics and Northwestern Atlantic Population Genetics of Marine Annelids

    DTIC Science & Technology

    2005-09-01

    surfclams , Spisula solidissima, in the western North Atlantic based on mitochondrial and nuclear DNA sequences. Marine Biology, 146: 707-716. Hayden BP...Science 1930 and Engineering DOCTORAL DISSERTATION Mitochondrial Genomics and Northwestern Atlantic Population Genetics of Marine Annelids by Robert M...Jennings September 2005 MITIWHOI 2005-15 Mitochondrial Genomics and Northwestern Atlantic Population Genetics of Marine Annelids by Robert M. Jennings

  1. This is Sandia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-02-01

    Sandia is a multiprogram engineering and science laboratory operated for the Department of Energy with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. It has major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. The principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. This publication gives a brief overview of the multifaceted research programs conductedmore » by the laboratory.« less

  2. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  3. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  4. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  5. Outcomes from the DOE Workshop on Turbulent Flow Simulation at the Exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprague, Michael; Boldyrev, Stanislav; Chang, Choong-Seock

    This paper summarizes the outcomes from the Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop, which was held 4-5 August 2015, and was sponsored by the U.S. Department of Energy Office of Advanced Scientific Computing Research. The workshop objective was to define and describe the challenges and opportunities that computing at the exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the U.S. Department of Energy applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought togethermore » experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.« less

  6. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statementmore » for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.« less

  7. Technical Review of the Domestic Nuclear Detection Office Transformational and Applied Research Directorate’s Research and Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavietes, Anthony; Trebes, James; Borchers, Robert

    2013-01-01

    At the request of the Domestic Nuclear Detection Office (DNDO), a Review Committee comprised of representatives from the American Physical Society (APS) Panel on Public Affairs (POPA) and the Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Plasma Sciences Society (NPSS) performed a technical review of the DNDO Transformational and Applied Research Directorate (TARD) research and development program. TARD’s principal objective is to address gaps in the Global Nuclear Detection Architecture (GNDA) through improvements in the performance, cost, and operational burden of detectors and systems. The charge to the Review Committee was to investigate the existing TARD research andmore » development plan and portfolio, recommend changes to the existing plan, and recommend possible new R&D areas and opportunities. The Review Committee has several recommendations.« less

  8. Design consideration for a nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Pawlik, E. V.

    1978-01-01

    A study is currently underway to design a nuclear electric propulsion vehicle capable of performing detailed exploration of the outer-planets. Primary emphasis is on the power subsystem. Secondary emphasis includes integration into a spacecraft, and integration with the thrust subsystem and science package or payload. The results of several design iterations indicate an all-heat-pipe system offers greater reliability, elimination of many technology development areas and a specific weight of under 20 kg/kWe at the 400 kWe power level. The system is compatible with a single Shuttle launch and provides greater safety than could be obtained with designs using pumped liquid metal cooling. Two configurations, one with the reactor and power conversion forward on the spacecraft with the ion engines aft and the other with reactor, power conversion and ion engines aft were selected as dual baseline designs based on minimum weight, minimum required technology development and maximum growth potential and flexibility.

  9. The Relationship of Discipline Background to Upper Secondary Students' Argumentation on Socioscientific Issues

    NASA Astrophysics Data System (ADS)

    Christenson, Nina; Chang Rundgren, Shu-Nu; Zeidler, Dana L.

    2014-08-01

    In the present STEM (Science, Technology, Engineering, and Mathematics)-driven society, socioscientific issues (SSI) have become a focus globally and SSI research has grown into an important area of study in science education. Since students attending the social and science programs have a different focus in their studies and research has shown that students attending a science program are less familiar with argumentation practice, we make a comparison of the supporting reasons social science and science majors use in arguing different SSI with the goal to provide important information for pedagogical decisions about curriculum and instruction. As an analytical framework, a model termed SEE-SEP covering three aspects (of knowledge, value, and experiences) and six subject areas (of sociology/culture, economy, environment/ecology, science, ethics/morality, and policy) was adopted to analyze students' justifications. A total of 208 upper secondary students (105 social science majors and 103 science majors) from Sweden were invited to justify and expound their arguments on four SSI including global warming, genetically modified organisms (GMO), nuclear power, and consumer consumption. The results showed that the social science majors generated more justifications than the science majors, the aspect of value was used most in students' argumentation regardless of students' discipline background, and justifications from the subject area of science were most often presented in nuclear power and GMO issues. We conclude by arguing that engaging teachers from different subjects to cooperate when teaching argumentation on SSI could be of great value and provide students from both social science and science programs the best possible conditions in which to develop argumentation skills.

  10. Characterization of Interface State Density of Ni/p-GaN Structures by Capacitance/Conductance-Voltage-Frequency Measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Fu; Zhang, He-Qiu; Liang, Hong-Wei; Peng, Xin-Cun; Zou, Ji-Jun; Tang, Bin; Du, Guo-Tong

    2017-08-01

    Not Available Supported by the Natural Science Foundation of Jiangxi Province under Grant No 20133ACB20005, the Key Program of National Natural Science Foundation of China under Grant No 41330318, the Key Program of Science and Technology Research of Ministry of Education under Grant No NRE1515, the Foundation of Training Academic and Technical Leaders for Main Majors of Jiangxi Province under Grant No 20142BCB22006, the Research Foundation of Education Bureau of Jiangxi Province under Grant No GJJ14501, and the Engineering Research Center of Nuclear Technology Application (East China Institute of Technology) Ministry of Education under Grant No HJSJYB2016-1.

  11. Laboratory-directed research and development: FY 1996 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less

  12. Final report, DOE/industry matching grant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Arvind S.

    2003-02-25

    The Department of Energy/Industry Matching Grant was used to help improve nuclear engineering and science education at the University of Missouri-Rolla. The funds helped in the areas of recruitment and retention. Funds allowed the department to give scholarships to over 100 students (names included). Funds were also used for equipment upgrade and research, including two computers with peripherals, two NaI detectors, and a thermoluminescent dosimeter.

  13. Nuclear Matters. A Practical Guide

    DTIC Science & Technology

    2008-01-01

    plutonium science and engineering. Figure 4.6 depicts LANL workers in Technical Area (TA)-55, the Los Alamos plutonium facility. LANL oversees...facility at Los Alamos to produce plutonium pits in a laboratory environment, with a capacity to produce a small number of pits per year . At that...Office of Secure Transportation (OST). Technical Advisors represent the following organizations: Los Alamos National Chair ATSD(NCB) Vice-Chair

  14. Job Prospects for Nuclear Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    As the debate over nuclear safety continues, the job market remains healthy for nuclear engineers. The average salary offered to new nuclear engineers with bachelor's degrees is $27,400. Salary averages and increases compare favorably with other engineering disciplines. Various job sources in the field are noted. (JN)

  15. Mathematics and statistics research department. Progress report, period ending June 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lever, W.E.; Kane, V.E.; Scott, D.S.

    1981-09-01

    This report is the twenty-fourth in the series of progress reports of the Mathematics and Statistics Research Department of the Computer Sciences Division, Union Carbide Corporation - Nuclear Division (UCC-ND). Part A records research progress in biometrics research, materials science applications, model evaluation, moving boundary problems, multivariate analysis, numerical linear algebra, risk analysis, and complementary areas. Collaboration and consulting with others throughout the UCC-ND complex are recorded in Part B. Included are sections on biology and health sciences, chemistry, energy, engineering, environmental sciences, health and safety research, materials sciences, safeguards, surveys, and uranium resource evaluation. Part C summarizes the variousmore » educational activities in which the staff was engaged. Part D lists the presentations of research results, and Part E records the staff's other professional activities during the report period.« less

  16. PREFACE: 7th International Conference on Quantum Theory and Symmetries (QTS7)

    NASA Astrophysics Data System (ADS)

    Burdík, Čestmír; Navrátil, Ondřej; Pošta, Severin; Schnabl, Martin; Šnobl, Libor

    2012-02-01

    The Seventh International Conference Quantum Theory and Symmetries (QTS7), organized by the Departments of Mathematics and Physics, Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague, the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research and the Institute of Physics at the Academy of Sciences of the Czech Republic, belongs to a successful series of conferences which began at Goslar, Germany in 1999. More recent QTS conferences were held in Poland, Bulgaria, USA and Spain. QTS7 gathered around 300 scientists from all over the world. 136 of the plenary lectures and contributions presented at QTS7 are published in this issue of Journal of Physics: Conference Series. We acknowledge support from the Commission for co-operation with JINR Dubna and grant LA-08002 from the Ministry of Education of the Czech Republic. Čestmír Burdík Chairman Local Organizing Committee

  17. NASA's Kilopower Reactor Development and the Path to Higher Power Missions

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Oleson, Steven R.; Poston, David I.; McClure, Patrick

    2017-01-01

    The development of NASAs Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.

  18. NASA's Kilopower Reactor Development and the Path to Higher Power Missions

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Oleson, Steven R.; Poston, Dave I.; McClure, Patrick

    2017-01-01

    The development of NASA's Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.

  19. Mathematics and statistics research progress report, period ending June 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beauchamp, J. J.; Denson, M. V.; Heath, M. T.

    1983-08-01

    This report is the twenty-sixth in the series of progress reports of Mathematics and Statistics Research of the Computer Sciences organization, Union Carbide Corporation Nuclear Division. Part A records research progress in analysis of large data sets, applied analysis, biometrics research, computational statistics, materials science applications, numerical linear algebra, and risk analysis. Collaboration and consulting with others throughout the Oak Ridge Department of Energy complex are recorded in Part B. Included are sections on biological sciences, energy, engineering, environmental sciences, health and safety, and safeguards. Part C summarizes the various educational activities in which the staff was engaged. Part Dmore » lists the presentations of research results, and Part E records the staff's other professional activities during the report period.« less

  20. Analysis of Alternatives (AoA) of Open Colllaboration and Research Capabilities Collaboratipon in Research and Engineering in Advanced Technology and Education and High-Performance Computing Innovation Center (HPCIC) on the LVOC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrieling, P. Douglas

    2016-01-01

    The Livermore Valley Open Campus (LVOC), a joint initiative of the National Nuclear Security Administration (NNSA), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), enhances the national security missions of NNSA by promoting greater collaboration between world-class scientists at the national security laboratories, and their partners in industry and academia. Strengthening the science, technology, and engineering (ST&E) base of our nation is one of the NNSA’s top goals. By conducting coordinated and collaborative programs, LVOC enhances both the NNSA and the broader national science and technology base, and helps to ensure the health of core capabilities at LLNLmore » and SNL. These capabilities must remain strong to enable the laboratories to execute their primary mission for NNSA.« less

  1. JPRS Report Science & Technology Japan

    DTIC Science & Technology

    1989-10-25

    Testing Slated for New BWR Fuel Assemblies [GENSHIRYOKU SANGYO SHIMBUN, 25 May 89] .... 37 Nuclear Fuel Planning System Developed [GENSHIRYOKU... Development (Debt) 13,272 ((Debt) 3,839) 7,995 (3,610) In addition, the budget has guaranteed that the following programs will proceed according... develop a combined cycle engine that will be capable of attaining high reliability and good fuel consumption at a wide range of speeds from low speed to

  2. Federal Plan for High-End Computing. Report of the High-End Computing Revitalization Task Force (HECRTF)

    DTIC Science & Technology

    2004-07-01

    steadily for the past fifteen years, while memory latency and bandwidth have improved much more slowly. For example, Intel processor clock rates38 have... processor and memory performance) all greatly restrict the ability to achieve high levels of performance for science, engineering, and national...sub-nuclear distances. Guide experiments to identify transition from quantum chromodynamics to quark -gluon plasma. Accelerator Physics Accurate

  3. JPRS Report, Science & Technology Japan.

    DTIC Science & Technology

    1989-07-11

    Kimura , honorary professor, Tokyo University, as the leader) to design research for the recovery of rare metals and the annihilation of radioactivity...et al.; JOURNAL OF THE JAPANESE ASSOCIATION OF CRYSTAL GROWTH, 10 Jul 88] 39 Optical Absorption of Ti:Al203 Single Crystal [Shigeyuki Kimura ...IGENSH1RY0KU SANGYO SHIMBUN, 26 Jan 89] 132 Atomic Lasers for Uranium Enrichment Tested IGENSHIRYOKU SANGYO SHIMBUN, 2 Feb 89] 133 NUCLEAR ENGINEERING

  4. Highly Integrated Quality Assurance – An Empirical Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake Kirkham; Amy Powell; Lucas Rich

    2011-02-01

    Highly Integrated Quality Assurance – An Empirical Case Drake Kirkham1, Amy Powell2, Lucas Rich3 1Quality Manager, Radioisotope Power Systems (RPS) Program, Idaho National Laboratory, P.O. Box 1625 M/S 6122, Idaho Falls, ID 83415-6122 2Quality Engineer, RPS Program, Idaho National Laboratory 3Quality Engineer, RPS Program, Idaho National Laboratory Contact: Voice: (208) 533-7550 Email: Drake.Kirkham@inl.gov Abstract. The Radioisotope Power Systems Program of the Idaho National Laboratory makes an empirical case for a highly integrated Quality Assurance function pertaining to the preparation, assembly, testing, storage and transportation of 238Pu fueled radioisotope thermoelectric generators. Case data represents multiple campaigns including the Pluto/New Horizons mission,more » the Mars Science Laboratory mission in progress, and other related projects. Traditional Quality Assurance models would attempt to reduce cost by minimizing the role of dedicated Quality Assurance personnel in favor of either functional tasking or peer-based implementations. Highly integrated Quality Assurance adds value by placing trained quality inspectors on the production floor side-by-side with nuclear facility operators to enhance team dynamics, reduce inspection wait time, and provide for immediate, independent feedback. Value is also added by maintaining dedicated Quality Engineers to provide for rapid identification and resolution of corrective action, enhanced and expedited supply chain interfaces, improved bonded storage capabilities, and technical resources for requirements management including data package development and Certificates of Inspection. A broad examination of cost-benefit indicates highly integrated Quality Assurance can reduce cost through the mitigation of risk and reducing administrative burden thereby allowing engineers to be engineers, nuclear operators to be nuclear operators, and the cross-functional team to operate more efficiently. Applicability of this case extends to any high-value, long-term project where traceability and accountability are determining factors.« less

  5. Educational Innovation in the Design of an Online Nuclear Engineering Curriculum

    ERIC Educational Resources Information Center

    Hall, Simin; Jones, Brett D.; Amelink, Catherine; Hu, Deyu

    2013-01-01

    The purpose of this paper is to describe the development and implementation phases of online graduate nuclear engineering courses that are part of the Graduate Nuclear Engineering Certificate program at Virginia Tech. Virginia Tech restarted its nuclear engineering program in the Fall of 2007 with 60 students, and by 2009, the enrollment had grown…

  6. Perspectives of hyperpolarized noble gas MRI beyond 3He

    PubMed Central

    Lilburn, David M.L.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp 3He. A particular focus are the many intriguing experiments with 129Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp 83Kr MRI is discussed. PMID:23290627

  7. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines.

  8. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    NASA Astrophysics Data System (ADS)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact nuclear reactors and radiation protection, thermal physics, physical chemistry and technology of liquid metal coolants, and physics of radiation-induced defects, and radiation materials science. The activity of the institute is aimed at solving matters concerned with technological development of large-scale nuclear power engineering on the basis of a closed nuclear fuel cycle with the use of fast-neutron reactors (referred to henceforth as fast reactors), development of innovative nuclear and conventional technologies, and extension of their application fields.

  9. Current status of nuclear engineering education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palladino, N.J.

    1975-09-01

    The 65 colleges and universities offering undergraduate degrees in nuclear engineering and the 15 schools offering strong nuclear engineering options are, in general, doing a good job to meet the current spectrum of job opportunities. But, nuclear engineering programs are not producing enough graduates to meet growing demands. They currently receive little aid and support from their customers --industry and government--in the form of scholarships, grants, faculty research support, student thesis and project support, or student summer jobs. There is not enough interaction between industry and universities. Most nuclear engineering programs are geared too closely to the technology of themore » present family of reactors and too little to the future breeder reactors and controlled thermonuclear reactors. In addition, nuclear engineering programs attract too few women and members of minority ethnic groups. Further study of the reasons for this fact is needed so that effective corrective action can be taken. Faculty in nuclear engineering programs should assume greater initiative to provide attractive and objective nuclear energy electives for technical and nontechnical students in other disciplines to improve their technical understanding of the safety and environmental issues involved. More aggressive and persistent efforts must be made by nuclear engineering schools to obtain industry support and involvement in their programs. (auth)« less

  10. Job Prospects for Nuclear Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses trends in job opportunities for nuclear engineers. Lists some of the factors influencing increases and decreases in the demand for nuclear engineers. Describes the effects on career opportunities from recent nuclear accidents, military research and development, and projected increases of demand for electricity. (TW)

  11. The changing face of women in physics in Ghana

    NASA Astrophysics Data System (ADS)

    Andam, Aba Bentil; Amponsah, Paulina Ekua; Nsiah-Akoto, Irene; Gyamfi, Kwame; Hood, Christiana Odumah

    2013-03-01

    Ghana is said to be the first independent sub-Saharan African country outside South Africa to promote science education and the application of science in industrial and social development. It has long been recognized that many schools' science curricula extend the extracurricular activities of boys more than those of girls. In order to bridge this gap, efforts have been made to give girls extra assistance in the learning of science by exposing them to science activities through specific camps, road shows, exhibitions, and so on. The best known of such efforts is the Science, Technology, and Mathematics Education (STME) camps and clinics for girls, which started in Ghana 23 years ago. Since our attendance at the Third International Conference on Women in Physics in Seoul, Korea, a lot has been achieved to further improve female science education, and this credit goes to STME. The first female nuclear engineer from Ghana graduated from the University of Ghana in March 2010.

  12. Mathematics and Statistics Research Department progress report, period ending June 30, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denson, M.V.; Funderlic, R.E.; Gosslee, D.G.

    1982-08-01

    This report is the twenty-fifth in the series of progress reports of the Mathematics and Statistics Research Department of the Computer Sciences Division, Union Carbide Corporation Nuclear Division (UCC-ND). Part A records research progress in analysis of large data sets, biometrics research, computational statistics, materials science applications, moving boundary problems, numerical linear algebra, and risk analysis. Collaboration and consulting with others throughout the UCC-ND complex are recorded in Part B. Included are sections on biology, chemistry, energy, engineering, environmental sciences, health and safety, materials science, safeguards, surveys, and the waste storage program. Part C summarizes the various educational activities inmore » which the staff was engaged. Part D lists the presentations of research results, and Part E records the staff's other professional activities during the report period.« less

  13. Innovate or Die: Innovation and Technology for Special Operations

    DTIC Science & Technology

    2010-12-01

    in Physics, Astronomy , and Nuclear Engineering. Dr. Spulak has been an adjunct professor of Political Science at the University of New Mexico in U.S...objectives, creativity is the ability to rapidly change the operational method to something different from what conventional forces can use: the ability to...emphasizes the importance of friction:7 There are other aspects of human conflict that will not change no matter what advances in technology or

  14. Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eipeldauer, Mary D; Shelander Jr, Bruce R

    2012-01-01

    The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) wasmore » established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.« less

  15. Institutional plan FY 1999--FY 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-01

    Los Alamos has a well-defined and nationally important mission: to reduce the global nuclear danger. This central national security mission consists of four main elements: stockpile stewardship, nuclear materials management, nonproliferation and arms control, and cleanup of the environmental legacy of nuclear weapons activities. The Laboratory provides support for and ensures confidence in the nation`s nuclear stockpile without nuclear testing. This challenge requires the Laboratory to continually hone its scientific acumen and technological capabilities to perform this task reliably using an interdisciplinary approach and advanced experimental and modeling techniques. In the last two National Defense Authorization Acts, Congress identified themore » need to protect the nation from the proliferation of weapons of mass destruction, which includes nuclear, chemical, and biological weapons, and their potential use by terrorists. Los Alamos is applying multidisciplinary science and engineering skills to address these problems. In addition, the Laboratory`s critical programmatic roles in stockpile stewardship and threat reduction are complemented by its waste management operations and environmental restoration work. Information on specific programs is available in Section 2 of this document.« less

  16. Manpower Assessment Brief #44: NUCLEAR ENGINEERING Enrollments Decreased at All Levels in 1998. Undergraduate and Doctoral Degrees Decreased, While Master's Degrees Increased Slightly.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirley, Duveen

    1999-05-04

    The survey of "Nuclear Engineering Enrollments and Degrees, 1998" was sent to 45 institutions offering a major in nuclear engineering or an option program in another discipline or department (for example, electrical or mechanical engineering) equivalent to a major that qualifies the graduates to perform as nuclear engineers. This document provides statistical data on undergraduate and graduate enrollments and degrees, employment and post-graduation plans, and foreign national participation.

  17. Geoethics and decision science issues in Japan's disaster management system: case study in the 2011 Tohoku earthquake and tsunami

    NASA Astrophysics Data System (ADS)

    Sugimoto, Megumi

    2015-04-01

    The March 11, 2011 Tohoku earthquake and its tsunami killed 18,508 people, including the missing (National Police Agency report as of April 2014) and raise the Level 7 accident at TEPCO's Fukushima Dai-ichi nuclear power station in Japan. The problems revealed can be viewed as due to a combination of risk-management, risk-communication, and geoethics issues. Japan's preparations for earthquakes and tsunamis are based on the magnitude of the anticipated earthquake for each region. The government organization coordinating the estimation of anticipated earthquakes is the "Headquarters for Earthquake Research Promotion" (HERP), which is under the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Japan's disaster mitigation system is depicted schematically as consisting of three layers: seismology, civil engineering, and disaster mitigation planning. This research explains students in geoscience should study geoethics as part of their education related Tohoku earthquake and the Level 7 accident at TEPCO's Fukushima Dai-ichi nuclear power station. Only when they become practicing professionals, they will be faced with real geoethical dilemmas. A crisis such as the 2011 earthquake, tsunami, and Fukushima Dai-ichi nuclear accident, will force many geoscientists to suddenly confront previously unanticipated geoethics and risk-communication issues. One hopes that previous training will help them to make appropriate decisions under stress. We name it "decision science".

  18. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    NASA Astrophysics Data System (ADS)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-04-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students' enrolment and performance, and teaching staff's human resource development.

  19. A case study for retaining nuclear power experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckjord, E.S.

    1996-12-31

    Nuclear engineering departments at U.S. universities are rethinking curricula to focus on essentials. Prospective engineers must know nuclear engineering disciplines, but knowing how their engineering forebears solved important problems will empower them even more by learning some history along with engineering. I suggest a way to retain experience, giving an example: the emergency core cooling system (ECCS) controversy and resolution.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhodie, K B; Mailhiot, C; Eaglesham, D

    Lawrence Livermore National Laboratory's mission is as clear today as it was in 1952 when the Laboratory was founded--to ensure our country's national security and the safety and reliability of its nuclear deterrent. As a laboratory pursuing applied science in the national interest, we strive to accomplish our mission through excellence in science and technology. We do this while developing and implementing sound and robust business practices in an environment that emphasizes security and ensures our safety and the safety of the community around us. Our mission as a directorate derives directly from the Laboratory's charter. When I accepted themore » assignment of Associate Director for Chemistry and Materials Science (CMS), I talked to you about the need for strategic balance and excellence in all our endeavors. We also discussed how to take the directorate to the next level. The long-range CMS strategic plan presented here was developed with this purpose in mind. It also aligns with the Lab's institutional long-range science and technology plan and its 10-year facilities and infrastructure site plan. The plan is aimed at ensuring that we fulfill our directorate's two governing principles: (1) delivering on our commitments to Laboratory programs and sponsors, and (2) anticipating change and capitalizing on opportunities through innovation in science and technology. This will require us to attain a new level of creativity, agility, and flexibility as we move forward. Moreover, a new level of engagement in partnerships with other directorates across the Laboratory as well as with universities and other national labs will also be required. The group of managers and staff that I chartered to build a strategic plan identified four organizing themes that define our directorate's work and unite our staff with a set of common goals. The plan presented here explains how we will proceed in each of these four theme areas: (1) Materials properties and performance under extreme conditions--Fundamental investigations of the properties and performance of states of matter under extreme dynamic, environmental, and nanoscale conditions, with an emphasis on materials of interest to Laboratory programs and mission needs. (2) Chemistry under extreme conditions and chemical engineering to support national security programs--Insights into the chemical reactions of energetic materials in the nuclear stockpile through models of molecular response to extreme conditions of temperature and pressure, advancing a new technique for processing energetic materials by using sol-gel chemistry, providing materials for NIF optics, and furthering developments to enhance other high-power lasers. (3) Science supporting national objectives at the intersection of chemistry, materials science, and biology--Multidisciplinary research for developing new technologies to combat chemical and biological terrorism, to monitor changes in the nation's nuclear stockpile, and to enable the development and application of new physical-science-based methodologies and tools for fundamental biology studies and human health applications. (4) Applied nuclear science for human health and national security: Nuclear science research that is used to develop new methods and technologies for detecting and attributing nuclear materials, assisting Laboratory programs that require nuclear and radiochemical expertise in carrying out their missions, discovering new elements in the periodic table, and finding ways of detecting and understanding cellular response to radiation.« less

  1. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  2. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  3. 78 FR 12044 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Office of Science... Nuclear Science Advisory Committee (NSAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... Energy and the National Science Foundation on scientific priorities within the field of basic nuclear...

  4. 78 FR 716 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Office of Science, DOE. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science... Energy and the National Science Foundation on scientific priorities within the field of basic nuclear...

  5. Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong

    2016-02-01

    China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  6. Nuclear Engine System Simulation (NESS) version 2.0

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    The topics are presented in viewgraph form and include the following; nuclear thermal propulsion (NTP) engine system analysis program development; nuclear thermal propulsion engine analysis capability requirements; team resources used to support NESS development; expanded liquid engine simulations (ELES) computer model; ELES verification examples; NESS program development evolution; past NTP ELES analysis code modifications and verifications; general NTP engine system features modeled by NESS; representative NTP expander, gas generator, and bleed engine system cycles modeled by NESS; NESS program overview; NESS program flow logic; enabler (NERVA type) nuclear thermal rocket engine; prismatic fuel elements and supports; reactor fuel and support element parameters; reactor parameters as a function of thrust level; internal shield sizing; and reactor thermal model.

  7. Cognitive engineering and health informatics: Applications and intersections.

    PubMed

    Hettinger, A Zachary; Roth, Emilie M; Bisantz, Ann M

    2017-03-01

    Cognitive engineering is an applied field with roots in both cognitive science and engineering that has been used to support design of information displays, decision support, human-automation interaction, and training in numerous high risk domains ranging from nuclear power plant control to transportation and defense systems. Cognitive engineering provides a set of structured, analytic methods for data collection and analysis that intersect with and complement methods of Cognitive Informatics. These methods support discovery of aspects of the work that make performance challenging, as well as the knowledge, skills, and strategies that experts use to meet those challenges. Importantly, cognitive engineering methods provide novel representations that highlight the inherent complexities of the work domain and traceable links between the results of cognitive analyses and actionable design requirements. This article provides an overview of relevant cognitive engineering methods, and illustrates how they have been applied to the design of health information technology (HIT) systems. Additionally, although cognitive engineering methods have been applied in the design of user-centered informatics systems, methods drawn from informatics are not typically incorporated into a cognitive engineering analysis. This article presents a discussion regarding ways in which data-rich methods can inform cognitive engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Revitalizing Fusion via Fission Fusion

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  9. Feasibility of Optical Instruments Based on Multiaperture Optics.

    DTIC Science & Technology

    1984-10-16

    system may be configured. The optical elements may be nonimaging concentrators (light horns), the field of view (FOV) of which may be controlled by a...RD-RI58 868 FEASIBILITY OF OPTICAL INSTRUMENTS BASED ON i/I MULTIAPERTURE OPTICS (U) FLORIDA UNIV GAINESVILLE DEPT OF NUCLEAR ENGINEERING SCIENCES J D...d Subtitle) 5. TYPE OF REPORT & PERIOD COVERED ’ 0 Feasibility of Optical Instruments Based on Final Report * CD Multiaperature Optics 615/83 to 9/30

  10. Molecular Dynamics-based Simulations of Bulk/Interfacial Structures and Diffusion Behaviors in Nuclear Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jincheng; Rimsza, Jessica; Deng, Lu

    This NEUP Project aimed to generate accurate atomic structural models of nuclear waste glasses by using large-scale molecular dynamics-based computer simulations and to use these models to investigate self-diffusion behaviors, interfacial structures, and hydrated gel structures formed during dissolution of these glasses. The goal was to obtain realistic and accurate short and medium range structures of these complex oxide glasses, to provide a mechanistic understanding of the dissolution behaviors, and to generate reliable information with predictive power in designing nuclear waste glasses for long-term geological storage. Looking back of the research accomplishments of this project, most of the scientific goalsmore » initially proposed have been achieved through intensive research in the three and a half year period of the project. This project has also generated a wealth of scientific data and vibrant discussions with various groups through collaborations within and outside of this project. Throughout the project one book chapter and 14 peer reviewed journal publications have been generated (including one under review) and 16 presentations (including 8 invited talks) have been made to disseminate the results of this project in national and international conference. Furthermore, this project has trained several outstanding graduate students and young researchers for future workforce in nuclear related field, especially on nuclear waste immobilization. One postdoc and four PhD students have been fully or partially supported through the project with intensive training in the field material science and engineering with expertise on glass science and nuclear waste disposal« less

  11. HISPANIC ENVIRONMENTAL AND WASTE MANAGEMENT OUTREACH PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian Puente

    The Department of Energy Office of Environmental Management (DOE-EM) in cooperation with the Self Reliance Foundation (SRF) is conducting the Hispanic Environmental and Waste Management Outreach Project (HEWMO) to increase science and environmental literacy, specifically that related to nuclear engineering and waste management in the nuclear industry, among the US Hispanic population. The project will encourage Hispanic youth and young adults to pursue careers through the regular presentation of Spanish-speaking scientists and engineers and other role models, as well as career information on nationally broadcast radio programs reaching youth and parents. This project will encourage making science, mathematics, and technologymore » a conscious part of the everyday life experiences of Hispanic youth and families. The SRF in collaboration with the Hispanic Radio Network (HRN) produces and broadcasts radio programs to address the topics and meet the objectives as outlined in the Environmental Literacy Plan and DOE-EM Communications Plan in this document. The SRF has in place a toll-free ''800'' number Information and Resource Referral (I and RR) service that national radio program listeners can call to obtain information and resource referrals as well as give their reactions to the radio programs that will air. HRN uses this feature to put listeners in touch with local organizations and resources that can provide them with further information and assistance on the related program topics.« less

  12. Publications of LASL research, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A.K.

    1976-09-01

    This bibliography lists unclassified 1975 publications of work done at the Los Alamos Scientific Laboratory and those earlier publications that were received too late for inclusion in earlier compilations. Papers published in 1975 are included regardless of when they were actually written. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, andmore » U.S. Patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by the following broad subject categories: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energy (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical, and KWIC indexes are included. (RWR)« less

  13. Basic and Applied Materials Science Research Efforts at MSFC Germane to NASA Goals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Presently, a number of investigations are ongoing that blend basic research with engineering applications in support of NASA goals. These include (1) "Pore Formation and Mobility (PFMI) " An ISS Glovebox Investigation" NASA Selected Project - 400-34-3D; (2) "Interactions Between Rotating Bodies" Center Director's Discretionary Fund (CDDF) Project - 279-62-00-16; (3) "Molybdenum - Rhenium (Mo-Re) Alloys for Nuclear Fuel Containment" TD Collaboration - 800-11-02; (4) "Fabrication of Alumina - Metal Composites for Propulsion Components" ED Collaboration - 090-50-10; (5) "Radiation Shielding for Deep-Space Missions" SD Effort; (6) "Other Research". In brief, "Pore Formation and Mobility" is an experiment to be conducted in the ISS Microgravity Science Glovebox that will systematically investigate the development, movement, and interactions of bubbles (porosity) during the controlled directional solidification of a transparent material. In addition to promoting our general knowledge of porosity physics, this work will serve as a guide to future ISS experiments utilizing metal alloys. "Interactions Between Rotating Bodies" is a CDDF sponsored project that is critically examining, through theory and experiment, claims of "new" physics relating to gravity modification and electric field effects. "Molybdenum - Rhenium Alloys for Nuclear Fuel Containment" is a TD collaboration in support of nuclear propulsion. Mo-Re alloys are being evaluated and developed for nuclear fuel containment. "Fabrication of Alumina - Metal Composites for Propulsion Components" is an ED collaboration with the intent of increasing strength and decreasing weight of metal engine components through the incorporation of nanometer-sized alumina fibers. "Radiation Shielding for Deep-Space Missions" is an SD effort aimed at minimizing the health risk from radiation to human space voyagers; work to date has been primarily programmatic but experiments to develop hydrogen-rich materials for shielding are planned. "Other Research" includes: BUNDLE (Bridgman Unidirectional Dendrite in a Liquid Experiment) activities (primarily crucible development), vibrational float-zone processing (with Vanderbilt University), use of ultrasonics in materials processing (with UAH), rotational effects on microstructural development, and application of magnetic fields for mixing.

  14. Implanting a Discipline: The Academic Trajectory of Nuclear Engineering in the USA and UK

    ERIC Educational Resources Information Center

    Johnston, Sean F.

    2009-01-01

    The nuclear engineer emerged as a new form of recognised technical professional between 1940 and the early 1960s as nuclear fission, the chain reaction and their applications were explored. The institutionalization of nuclear engineering--channelled into new national laboratories and corporate design offices during the decade after the war, and…

  15. Development of undergraduate nuclear security curriculum at College of Engineering, Universiti Tenaga Nasional

    NASA Astrophysics Data System (ADS)

    Hamid, Nasri A.; Mujaini, Madihah; Mohamed, Abdul Aziz

    2017-01-01

    The Center for Nuclear Energy (CNE), College of Engineering, Universiti Tenaga Nasional (UNITEN) has a great responsibility to undertake educational activities that promote developing human capital in the area of nuclear engineering and technology. Developing human capital in nuclear through education programs is necessary to support the implementation of nuclear power projects in Malaysia in the near future. In addition, the educational program must also meet the nuclear power industry needs and requirements. In developing a certain curriculum, the contents must comply with the university's Outcomes Based Education (OBE) philosophy. One of the important courses in the nuclear curriculum is in the area of nuclear security. Basically the nuclear security course covers the current issues of law, politics, military strategy, and technology with regard to weapons of mass destruction and related topics in international security, and review legal regulations and political relationship that determine the state of nuclear security at the moment. In addition, the course looks into all aspects of the nuclear safeguards, builds basic knowledge and understanding of nuclear non-proliferation, nuclear forensics and nuclear safeguards in general. The course also discusses tools used to combat nuclear proliferation such as treaties, institutions, multilateral arrangements and technology controls. In this paper, we elaborate the development of undergraduate nuclear security course at the College of Engineering, Universiti Tenaga Nasional. Since the course is categorized as mechanical engineering subject, it must be developed in tandem with the program educational objectives (PEO) of the Bachelor of Mechanical Engineering program. The course outcomes (CO) and transferrable skills are also identified. Furthermore, in aligning the CO with program outcomes (PO), the PO elements need to be emphasized through the CO-PO mapping. As such, all assessments and distribution of Bloom Taxonomy levels are assigned in accordance with the CO-PO mapping. Finally, the course has to fulfill the International Engineering Alliance (IEA) Graduate Attributes of the Washington Accord.

  16. ASC FY17 Implementation Plan, Rev. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, P. G.

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resources, including technical staff, hardware, simulation software, and computer science solutions.« less

  17. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  18. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  19. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  20. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... applicant or holder whose construction permit was issued before January 10, 1997, the earthquake engineering...

  1. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    ERIC Educational Resources Information Center

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  2. Establishing Physical and Engineering Science Base to Bridge from ITER to Demo

    NASA Astrophysics Data System (ADS)

    Peng, Y.-K. Martin; Abdou, M.; Gates, D.; Hegna, C.; Hill, D.; Najmabadi, F.; Navratil, G.; Parker, R.

    2007-11-01

    A Nuclear Component Testing (NCT) Discussion Group emerged recently to clarify how ``a lowered-risk, reduced-cost approach can provide a progressive fusion environment beyond the ITER level to explore, discover, and help establish the remaining, critically needed physical and engineering sciences knowledge base for Demo.'' The group, assuming success of ITER and other contemporary projects, identified critical ``gap-filling'' investigations: plasma startup, tritium self-sufficiency, plasma facing surface performance and maintainability, first wall/blanket/divertor materials defect control and lifetime management, and remote handling. Only standard or spherical tokamak plasma conditions below the advanced regime are assumed to lower the anticipated physics risk to continuous operation (˜2 weeks). Modular designs and remote handling capabilities are included to mitigate the risk of component failure and ease replacement. Aspect ratio should be varied to lower the cost, accounting for the contending physics risks and the near-term R&D. Cost and time-effective staging from H-H, D-D, to D-T will also be considered. *Work supported by USDOE.

  3. 75 FR 6651 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Department of Energy.../NSF Nuclear Science Advisory Committee (NSAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86... on scientific priorities within the field of basic nuclear science research. Tentative Agenda: Agenda...

  4. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO{sub 2} emission. The commitment by the government has been mademore » clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students’ enrolment and performance, and teaching staff’s human resource development.« less

  5. Nuclear Engineering Technologists in the Nuclear Power Era

    ERIC Educational Resources Information Center

    Wang, C. H.; And Others

    1974-01-01

    Describes manpower needs in nuclear engineering in the areas of research and development, architectural engineering and construction supervision, power reactor operations, and regulatory tasks. Outlines a suitable curriculum to prepare students for the tasks related to construction and operation of power reactors. (GS)

  6. Stockpile stewardship past, present, and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Marvin L., E-mail: mladams@tamu.edu

    2014-05-09

    The U.S. National Academies released a report in 2012 on technical issues related to the Comprehensive Test Ban Treaty. One important question addressed therein is whether the U.S. could maintain a safe, secure, and reliable nuclear-weapons stockpile in the absence of nuclear-explosion testing. Here we discuss two main conclusions from the 2012 Academies report, which we paraphrase as follows: 1) Provided that sufficient resources and a national commitment to stockpile stewardship are in place, the U.S. has the technical capabilities to maintain a safe, secure, and reliable stockpile of nuclear weapons into the foreseeable future without nuclear-explosion testing. 2) Doingmore » this would require: a) a strong weapons science and engineering program that addresses gaps in understanding; b) an outstanding workforce that applies deep and broad weapons expertise to deliver solutions to stockpile problems; c) a vigorous, stable surveillance program that delivers the requisite data; d) production facilities that meet stewardship needs. We emphasize that these conclusions are independent of CTBT ratification-they apply provided only that the U.S. continues its nuclear-explosion moratorium.« less

  7. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, Anne C.

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsiblemore » for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.« less

  8. Physics and nuclear power

    NASA Astrophysics Data System (ADS)

    Buttery, N. E.

    2008-03-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.

  9. The world's nuclear future - built on material success

    NASA Astrophysics Data System (ADS)

    Ion, Sue

    2010-07-01

    In our energy hungry world of the twenty-first century, the future of electricity generation must meet the twin challenges of security of supply and reduced carbon emissions. The expectations for nuclear power programmes to play a part in delivering success on both counts, grows ever higher. The nuclear industry is poised on a renaissance likely to dwarf the heady days of the 1960s and early 1970s. Global supply chain and project management challenges abound, now just as then. The science and engineering of materials will be key to the successful deployment and operation of a new generation of reactor systems and their associated fuel cycles. Understanding and predicting materials performance will be key to achieving life extension of existing assets and underpinning waste disposal options, as well as giving confidence to the designers, their financial backers and governments across the globe, that the next generation of reactors will deliver their full potential.

  10. Security Hardened Cyber Components for Nuclear Power Plants: Phase I SBIR Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franusich, Michael D.

    SpiralGen, Inc. built a proof-of-concept toolkit for enhancing the cyber security of nuclear power plants and other critical infrastructure with high-assurance instrumentation and control code. The toolkit is based on technology from the DARPA High-Assurance Cyber Military Systems (HACMS) program, which has focused on applying the science of formal methods to the formidable set of problems involved in securing cyber physical systems. The primary challenges beyond HACMS in developing this toolkit were to make the new technology usable by control system engineers and compatible with the regulatory and commercial constraints of the nuclear power industry. The toolkit, packaged as amore » Simulink add-on, allows a system designer to assemble a high-assurance component from formally specified and proven blocks and generate provably correct control and monitor code for that subsystem.« less

  11. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less

  12. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less

  13. 77 FR 51791 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Department of Energy.../NSF Nuclear Science Advisory Committee (NSAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86... on scientific priorities within the field of basic nuclear science research. Tentative Agenda: Agenda...

  14. 76 FR 31945 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Department of Energy.../NSF Nuclear Science Advisory Committee (NSAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86... the field of basic nuclear science research. Tentative Agenda: Agenda will include discussions of the...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jun-hyung

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a hugemore » opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)« less

  16. Nuclear War and Science Teaching.

    ERIC Educational Resources Information Center

    Hobson, Art

    1983-01-01

    Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)

  17. Nuclear Science Outreach in the World Year of Physics

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret

    2006-04-01

    The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.

  18. U.S.-Russian Cooperation in Science and Technology: A Case Study of the TOPAZ Space-Based Nuclear Reactor International Program

    NASA Astrophysics Data System (ADS)

    Dabrowski, Richard S.

    2014-08-01

    The TOPAZ International Program (TIP) was the final name given to a series of projects to purchase and test the TOPAZ-II, a space-based nuclear reactor of a type that had been further developed in the Soviet Union than in the United States. In the changing political situation associated with the break-up of the Soviet Union it became possible for the United States to not just purchase the system, but also to employ Russian scientists, engineers and testing facilities to verify its reliability. The lessons learned from the TIP illuminate some of the institutional and cultural challenges to U.S. - Russian cooperation in technology research which remain true today.

  19. Status and improvement of CLAM for nuclear application

    NASA Astrophysics Data System (ADS)

    Huang, Qunying

    2017-08-01

    A program for China low activation martensitic steel (CLAM) development has been underway since 2001 to satisfy the material requirements of the test blanket module (TBM) for ITER, China fusion engineering test reactor and China fusion demonstration reactor. It has been undertaken by the Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences under wide domestic and international collaborations. Extensive work and efforts are being devoted to the R&D of CLAM, such as mechanical property evaluation before and after neutron irradiation, fabrication of scaled TBM by welding and additive manufacturing, improvement of its irradiation resistance as well as high temperature properties by precipitate strengthening to achieve its final successful application in fusion systems. The status and improvement of CLAM are introduced in this paper.

  20. Consortium for Verification Technology Fellowship Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Lorraine E.

    2017-06-01

    As one recipient of the Consortium for Verification Technology (CVT) Fellowship, I spent eight days as a visiting scientist at the University of Michigan, Department of Nuclear Engineering and Radiological Sciences (NERS). During this time, I participated in multiple department and research group meetings and presentations, met with individual faculty and students, toured multiple laboratories, and taught one-half of a one-unit class on Risk Analysis in Nuclear Arms control (six 1.5 hour lectures). The following report describes some of the interactions that I had during my time as well as a brief discussion of the impact of this fellowship onmore » members of the consortium and on me/my laboratory’s technical knowledge and network.« less

  1. XXIV International Conference on Integrable Systems and Quantum symmetries (ISQS-24)

    NASA Astrophysics Data System (ADS)

    Burdík, Čestmír; Navrátil, Ondřej; Posta, Severin

    2017-01-01

    The XXIV International Conference on Integrable Systems and Quantum Symmetries (ISQS-24), organized by the Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University Prague and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, belongs to the successful series of conferences held at the Czech Technical University which began in 1992 and is devoted to problems of mathematical physics related to the theory of integrable systems, quantum groups and quantum symmetries. During the last 5 years, each of the conferences gathered around 110 scientists from all over the world. 43 papers of plenary lectures and contributions presented at ISQS-24 are published in the present issue of Journal of Physics: Conference Series.

  2. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    ScienceCinema

    Wiens, Roger

    2018-02-06

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

  3. McGraw Hill encyclopedia of science and technology. An international reference work in fifteen volumes including an index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    This extensively revised and updated 5th Edition features contributions by 3000 distinguished experts - including 16 Nobel Prize winners - working with an international advisory board and 60 consulting editors. Thorough coverage is devoted to 75 separate disciplines in science and technology, from acoustics and biochemistry through fluid mechanics and geophysics to thermodynamics and vertebrate zoology. Detailed entries examine not only the physical and natural sciences, but also all engineering disciplines, discussing both the basic and the most recent theories, concepts, terminology, discoveries, materials, methods, and techniques. All of the new developments and technical advances that have occurred during themore » last five years - in each of the 75 disciplines - have been added to the encyclopedia and are explored in depth. Completely new material deals with such timely and newsworthy subjects as genetic engineering, artificial intelligence, nuclear medicine, desertification, psycholinguistics, industrial robots, and immunoassay. Also covered in extensive entries are such current topics as video disk recording, metallic glasses, acoustic levitation, magnetic bubble memory, gluons, and computerized tomography. The encyclopedia includes more than 15,000 photographs, drawings, maps, charts, and diagrams, shown in full-color, two-color, or black-and-white reproductions.« less

  4. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger

    2010-09-03

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008.more » The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.« less

  5. ChemCam Rock Laser for the Mars Science Laboratory

    ScienceCinema

    LANL

    2017-12-09

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  6. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Michael Charles

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  7. Metals and Ceramics Division progress report for period ending December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  8. Rocketdyne/Westinghouse nuclear thermal rocket engine modeling

    NASA Technical Reports Server (NTRS)

    Glass, James F.

    1993-01-01

    The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.

  9. Nuclear Science in the Undergraduate Curriculum: The New Nuclear Science Facility at San Jose State University.

    ERIC Educational Resources Information Center

    Ling, A. Campbell

    1979-01-01

    The following aspects of the radiochemistry program at San Jose State University in California are described: the undergraduate program in radiation chemistry, the new nuclear science facility, and academic programs in nuclear science for students not attending San Jose State University. (BT)

  10. Technicians Manufacture a Nozzle for the Kiwi B-1-B Engine

    NASA Image and Video Library

    1964-05-21

    Technicians manufacture a nozzle for the Kiwi B-1-B nuclear rocket engine in the Fabrication Shop’s vacuum oven at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test basic nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The final phase of the program, called Reactor-In-Flight-Test, would be an actual launch test. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The turbopump, which pumped the fuels from the storage tanks to the engine, was the primary tool for restarting the engine. The NERVA had to be able to restart in space on its own using a safe preprogrammed startup system. Lewis researchers endeavored to design and test this system. This non-nuclear Kiwi engine, seen here, was being prepared for tests at Lewis’ High Energy Rocket Engine Research Facility (B-1) located at Plum Brook Station. The tests were designed to start an unfueled Kiwi B-1-B reactor and its Aerojet Mark IX turbopump without any external power.

  11. Teaching Problem-Solving Skills to Nuclear Engineering Students

    ERIC Educational Resources Information Center

    Waller, E.; Kaye, M. H.

    2012-01-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…

  12. Nuclear Engineering Enrollments and Degrees, 1982.

    ERIC Educational Resources Information Center

    Sweeney, Deborah H.; And Others

    This report presents data on the number of students enrolled and the number of bachelor's, master's, and doctoral degrees awarded in academic year 1981-82 from 72 United States institutions offering degree programs in nuclear engineering or nuclear options within other engineering fields. Presented as well are historical data for the last decade…

  13. Brief 76 Nuclear Engineering Enrollments and Degrees Survey, 2015 Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The 2015 Nuclear Engineering Enrollments and Degrees Survey reports degrees granted between September 1, 2014 and August 31, 2015. Enrollment information refers to the fall term 2015. The enrollments and degrees data comprises students majoring in nuclear engineering or in an option program equivalent to a major. Thirty-five academic programs reported having nuclear engineering programs during 2015, and data was received from all thirty-five programs. The report includes enrollment information on undergraduate students and graduate students and information by degree level for post-graduation plans.

  14. Brief 74 Nuclear Engineering Enrollments and Degrees Survey, 2014 Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2015-03-15

    The 2014 survey includes degrees granted between September 1, 2013 and August 31, 2014, and enrollments for fall 2014. There are three academic programs new to this year's survey. Thirty-five academic programs reported having nuclear engineering programs during 2014, and data were provided by all thirty-five. The enrollments and degrees data include students majoring in nuclear engineering or in an option program equivalent to a major. Two nuclear engineering programs have indicated that health physics option enrollments and degrees are also reported in the health physics enrollments and degrees survey.

  15. Nuclear Physics Made Very, Very Easy

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1968-01-01

    The fundamental approach to nuclear physics was prepared to introduce basic reactor principles to various groups of non-nuclear technical personnel associated with NERVA Test Operations. NERVA Test Operations functions as the field test group for the Nuclear Rocket Engine Program. Nuclear Engine for Rocket Vehicle Application (NERVA) program is the combined efforts of Aerojet-General Corporation as prime contractor, and Westinghouse Astronuclear Laboratory as the major subcontractor, for the assembly and testing of nuclear rocket engines. Development of the NERVA Program is under the direction of the Space Nuclear Propulsion Office, a joint agency of the U.S. Atomic Energy Commission and the National Aeronautics and Space Administration.

  16. Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, William

    The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uraniummore » processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.« less

  17. Global Security, Medical Isotopes, and Nuclear Science

    NASA Astrophysics Data System (ADS)

    Ahle, Larry

    2007-10-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  18. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    NASA Technical Reports Server (NTRS)

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  19. 16 CFR 1000.29 - Directorate for Engineering Sciences.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Directorate for Engineering Sciences. 1000... ORGANIZATION AND FUNCTIONS § 1000.29 Directorate for Engineering Sciences. The Directorate for Engineering Sciences, which is managed by the Associate Executive Director for Engineering Sciences, is responsible for...

  20. 16 CFR 1000.29 - Directorate for Engineering Sciences.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Directorate for Engineering Sciences. 1000... ORGANIZATION AND FUNCTIONS § 1000.29 Directorate for Engineering Sciences. The Directorate for Engineering Sciences, which is managed by the Associate Executive Director for Engineering Sciences, is responsible for...

  1. 16 CFR § 1000.29 - Directorate for Engineering Sciences.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Directorate for Engineering Sciences. Â... ORGANIZATION AND FUNCTIONS § 1000.29 Directorate for Engineering Sciences. The Directorate for Engineering Sciences, which is managed by the Associate Executive Director for Engineering Sciences, is responsible for...

  2. 1L Mark-IV Target Design Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehler, Paul E.

    This presentation includes General Design Considerations; Current (Mark-III) Lower Tier; Mark-III Upper Tier; Performance Metrics; General Improvements for Material Science; General Improvements for Nuclear Science; Improving FOM for Nuclear Science; General Design Considerations Summary; Design Optimization Studies; Expected Mark-IV Performance: Material Science; Expected Mark-IV Performance: Nuclear Science (Disk); Mark IV Enables Much Wider Range of Nuclear-Science FOM Gains than Mark III; Mark-IV Performance Summary; Rod or Disk? Center or Real FOV?; and Project Cost and Schedule.

  3. Nuclear science outreach program for high school girls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, D.E.; Stone, C.A.

    1996-12-31

    The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.

  4. Program For Optimization Of Nuclear Rocket Engines

    NASA Technical Reports Server (NTRS)

    Plebuch, R. K.; Mcdougall, J. K.; Ridolphi, F.; Walton, James T.

    1994-01-01

    NOP is versatile digital-computer program devoloped for parametric analysis of beryllium-reflected, graphite-moderated nuclear rocket engines. Facilitates analysis of performance of engine with respect to such considerations as specific impulse, engine power, type of engine cycle, and engine-design constraints arising from complications of fuel loading and internal gradients of temperature. Predicts minimum weight for specified performance.

  5. Overview of the ISOL facility for the RISP

    NASA Astrophysics Data System (ADS)

    Woo, H. J.; Kang, B. H.; Tshoo, K.; Seo, C. S.; Hwang, W.; Park, Y.-H.; Yoon, J. W.; Yoo, S. H.; Kim, Y. K.; Jang, D. Y.

    2015-02-01

    The key feature of the Isotope Separation On-Line (ISOL) facility is its ability to provide high-intensity and high-quality beams of neutron-rich isotopes with masses in the range of 80-160 by means of a 70-MeV proton beam directly impinging on uranium-carbide thin-disc targets to perform forefront research in nuclear structure, nuclear astrophysics, reaction dynamics and interdisciplinary fields like medical, biological and material sciences. The technical design of the 10-kW and the 35-kW direct fission targets with in-target fission rates of up to 1014 fissions/s has been finished, and for the development of the ISOL fission-target chemistry an initial effort has been made to produce porous lanthanum-carbide (LaCx) discs as a benchmark for the final production of porous UCx discs. For the production of various beams, three classes of ion sources are under development at RISP (Rare Isotope Science Project), the surface ion source, the plasma ion source (FEBIAD), the laser ion source, and the engineering design of the FEBIAD is in progress for prototype fabrication. The engineering design of the ISOL target/ion source front-end system is also in progress, and a prototype will be used for an off-line test facility in front of the pre-separator. The technical designs of other basic elements at the ISOL facility, such as the RF-cooler, the high-resolution mass separator, and the A/q separator, have been finished, and the results, along with the future plans, are introduced.

  6. 75 FR 43208 - Withdrawal of Regulatory Guide 5.17

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555.... Introduction The U.S. Nuclear Regulatory Commission (NRC) is withdrawing Regulatory Guide 5.17, ``Truck... Development Branch, Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2010-18077 Filed...

  7. Researcher Poses with a Nuclear Rocket Model

    NASA Image and Video Library

    1961-11-21

    A researcher at the NASA Lewis Research Center with slide ruler poses with models of the earth and a nuclear-propelled rocket. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The nuclear rocket model in this photograph includes a reactor at the far right with a hydrogen propellant tank and large radiator below. The payload or crew would be at the far left, distanced from the reactor.

  8. Collaborative Lab Reports with Google Docs

    NASA Astrophysics Data System (ADS)

    Wood, Michael

    2011-03-01

    Science is a collaborative endeavor. The solitary genius working on the next great scientific breakthrough is a myth not seen much today. Instead, most physicists have worked in a group at one point in their careers, whether as a graduate student, faculty member, staff scientist, or industrial researcher. As an experimental nuclear physicist with research at the Thomas Jefferson National Accelerator Facility, my collaboration consists of over 200 scientists, both national and international. A typical experiment will have a dozen or so principal investigators. Add in the hundreds of staff scientists, engineers, and technicians, and it is clear that science is truly a collaborative effort. This paper will describe the use of Google Docs for collaborative reports for an introductory physics laboratory.

  9. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    PubMed

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  10. Current state of nuclear fuel cycles in nuclear engineering and trends in their development according to the environmental safety requirements

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.

    2016-08-01

    The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel assemblies. Based on analysis of modern engineering solutions on SNF regeneration, it has been concluded that new reprocessing technologies should meet the ecological safety requirements, provide a more extensive use of the resource base of nuclear engineering, allow the production of valuable and trace elements on an industrial scale, and decrease radioactive waste release.

  11. 75 FR 79049 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ..., Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission... INFORMATION: I. Introduction The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to an existing... Development Branch, Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2010-31731 Filed...

  12. Unique educational opportunities at the Missouri University research reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketring, A.R.; Ross, F.K.; Spate, V.

    1997-12-01

    Since the Missouri University Research Reactor (MURR) went critical in 1966, it has been a center where students from many departments conduct their graduate research. In the past three decades, hundreds of graduate students from the MU departments of chemistry, physics, anthropology, nuclear engineering, etc., have received masters and doctoral degrees based on research using neutrons produced at MURR. More recently, the educational opportunities at MURR have been expanded to include undergraduate students and local high school students. Since 1989 MURR has participated in the National Science Foundation-funded Research Experience for Undergraduates (REU) program. As part of this program, undergraduatemore » students from universities and colleges throughout the United States come to MURR and get hands-on research experience during the summer. Another program, started in 1994 by the Nuclear Analysis Program at MURR, allows students from a local high school to conduct a neutron activation analysis (NAA) experiment. We also conduct tours of the center, where we describe the research and educational programs at MURR to groups of elementary school children, high school science teachers, state legislators, professional organizations, and many other groups.« less

  13. Development of a 3-D Nuclear Event Visualization Program Using Unity

    NASA Astrophysics Data System (ADS)

    Kuhn, Victoria

    2017-09-01

    Simulations have become increasingly important for science and there is an increasing emphasis on the visualization of simulations within a Virtual Reality (VR) environment. Our group is exploring this capability as a visualization tool not just for those curious about science, but also for educational purposes for K-12 students. Using data collected in 3-D by a Time Projection Chamber (TPC), we are able to visualize nuclear and cosmic events. The Unity game engine was used to recreate the TPC to visualize these events and construct a VR application. The methods used to create these simulations will be presented along with an example of a simulation. I will also present on the development and testing of this program, which I carried out this past summer at MSU as part of an REU program. We used data from the S πRIT TPC, but the software can be applied to other 3-D detectors. This work is supported by the U.S. Department of Energy under Grant Nos. DE-SC0014530, DE-NA0002923 and US NSF under Grant No. PHY-1565546.

  14. 75 FR 62591 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Equal Opportunities in Science and Engineering (1173). Dates/Time: October 25, 2010, 8:30 a.m.-5:30 p.m... the National Science Foundation (NSF) concerning broadening participation in science and engineering...

  15. The Impact of Design-Based STEM Integration Curricula on Student Achievement in Engineering, Science, and Mathematics

    NASA Astrophysics Data System (ADS)

    Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.

    2017-04-01

    The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering design-based science curriculum units on learning and achievement among grade 4-8 students of different races, gender, special education status, and limited English proficiency (LEP) status. Treatment and control students ( n = 4450) completed pretest and posttest assessments in science, engineering, and mathematics as well as a state-mandated mathematics test. Single-level regression results for science outcomes favored the treatment for one science assessment (physical science, heat transfer), but multilevel analyses showed no significant treatment effect. We also found that engineering integration had different effects across race and gender and that teacher gender can reduce or exacerbate the gap in engineering achievement for student subgroups depending on the outcome. Other teacher factors such as the quality of engineering-focused science units and engineering instruction were predictive of student achievement in engineering. Implications for practice are discussed.

  16. 78 FR 69658 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... Science Foundation's Nuclear Physics Office's The 2013 ONP Comparative Research Review Presentation of the... Foundation on scientific priorities within the field of basic nuclear science research. Tentative Agenda...

  17. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  18. Honors

    NASA Astrophysics Data System (ADS)

    2013-01-01

    U.S. president Barack Obama recently announced his intent to appoint several people, four of whom are AGU members, to the Nuclear Waste Technical Review Board, an independent agency of the U.S. federal government that provides independent scientific and technical oversight of the Department of Energy's program for managing and disposing of high-level radioactive waste and spent nuclear fuel. The appointees include Jean Bahr, professor in the Department of Geoscience at the University of Wisconsin-Madison; Susan Brantley, distinguished professor of geosciences and director of the Earth and Environmental Systems Institute at The Pennsylvania State University; Efi Foufoula-Georgiou, professor of civil engineering and director of the National Center for Earth-Surface Dynamics at the University of Minnesota; and Mary Lou Zoback, consulting professor in the Environmental Earth System Science Department at Stanford University.

  19. Technology needs for lunar and Mars space transfer systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Cothran, Bradley C.; Donahue, Benjamin; Mcghee, Jerry

    1991-01-01

    The determination of appropriate space transportation technologies and operating modes is discussed with respect to both lunar and Mars missions. Three levels of activity are set forth to examine the sensitivity of transportation preferences including 'minimum,' 'full science,' and 'industrialization and settlement' categories. High-thrust-profile missions for lunar and Mars transportation are considered in terms of their relative advantages, and transportation options are defined in terms of propulsion and braking technologies. Costs and life-cycle cost estimates are prepared for the transportation preferences by using a parametric cost model, and a return-on-investment summary is given. Major technological needs for the programs are listed and include storable propulsion systems; cryogenic engines and fluids management; aerobraking; and nuclear thermal, nuclear electric, electric, and solar electric propulsion technologies.

  20. Editorial Conference Comments by the General Chair

    NASA Astrophysics Data System (ADS)

    Reed, Robert A.

    2017-01-01

    The 53rd IEEE Nuclear and Space Radiation Effects Conference (NSREC) was held July 11-15, 2016, at the Oregon Convention Center in Portland; the conference hotel was the Portland Doubletree. The NSREC is recognized as one of the premier international conferences on radiation effects in electronic materials, devices, and systems. The 2016 conference continued this tradition with a strong technical program, a one-day tutorial short course, radiation effects data workshop, industrial exhibit, and meetings for the IEEE Women in Engineering and Young Professionals organizations. The conference was sponsored by the Radiation Effects Committee of the IEEE Nuclear and Plasma Sciences Society (NPSS), and supported by Atmel, BAE Systems, Boeing, Cobham Semiconductor Solutions, Freebird Semiconductor, Honeywell, International Rectifier, Intersil Corporation, Jet Propulsion Laboratory, Northrop Grumman, Southwest Research Institute, and VPT Rad.

  1. Marketing Strategy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report documents the research that has been undertaken as background for preparation of a marketing campaign for middle and high school students to increase interest in national security careers at the National Nuclear Security Administration. This work is a part of the National Security Preparedness Project (NSPP), being performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. Previous research on the development of a properly trained and skilled national security workforce has identified a lack of interest by k-12 students in the STEM (Science, Technology, Engineering, and Mathematics) fields. Further, participation in these careers by womenmore » and minority populations is limited and is not increasing. Added to this are low educational achievement levels in New Mexico, where the marketing campaign will be deployed.« less

  2. Decision Analysis: Engineering Science or Clinical Art

    DTIC Science & Technology

    1979-11-01

    TECHNICAL REPORT TR 79-2-97 DECISION ANALYSIS: ENGINEERING SCIENCE OR CLINICAL ART ? by Dennis M. Buede Prepared for Defense Advanced Research...APPLICATIONS OF THE ENGINEER- ING SCIENCE AND CLINICAL ART EXTREMES 9 3.1 Applications of the Engineering Science Approach 9 3.1.1 Mexican electrical...DISCUSSION 29 4.1 Engineering Science versus Clinical Art : A Characterization of When Each is Most Attractive 30 4.2 The Implications of the Engineering

  3. Livermore Accelerator Source for Radionuclide Science (LASRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Scott; Bleuel, Darren; Johnson, Micah

    The Livermore Accelerator Source for Radionuclide Science (LASRS) will generate intense photon and neutron beams to address important gaps in the study of radionuclide science that directly impact Stockpile Stewardship, Nuclear Forensics, and Nuclear Material Detection. The co-location of MeV-scale neutral and photon sources with radiochemical analytics provides a unique facility to meet current and future challenges in nuclear security and nuclear science.

  4. The Impact of Engineering Integrated Science (EIS) Curricula on First-Year Technical High School Students' Attitudes toward Science and Perceptions of Engineering

    ERIC Educational Resources Information Center

    Nam, Younkyeong; Lee, Sun-Ju; Paik, Seoung-Hey

    2016-01-01

    This study investigated how engineering integrated science (EIS) curricula affect first-year technical high school students' attitudes toward science and perceptions of engineering. The effect of the EIS participation period on students' attitudes toward science was also investigated via experimental study design. Two engineering integrated…

  5. STEM Leader from the Roeper School: An Interview with Nuclear Engineer Clair J. Sullivan

    ERIC Educational Resources Information Center

    Ambrose, Don

    2016-01-01

    Clair J. Sullivan is an assistant professor in the Department of Nuclear, Plasma and Radiological Engineering at the University of Illinois at Urbana-Champaign (UIUC). Her research interests include radiation detection and measurements; gamma-ray spectroscopy; automated isotope identification algorithms; nuclear forensics; nuclear security;…

  6. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    NASA Astrophysics Data System (ADS)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  7. TANGRA - an experimental setup for basic and applied nuclear research by means of 14.1 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Ruskov, Ivan; Kopatch, Yury; Bystritsky, Vyacheslav; Skoy, Vadim; Shvetsov, Valery; Hambsch, Franz-Josef; Oberstedt, Stephan; Noy, Roberto Capote; Grozdanov, Dimitar; Zontikov, Artem; Rogov, Yury; Zamyatin, Nikolay; Sapozhnikov, Mikhail; Slepnev, Vyacheslav; Bogolyubov, Evgeny; Sadovsky, Andrey; Barmakov, Yury; Ryzhkov, Valentin; Yurkov, Dimitry; Valković, Vladivoj; Obhođaš, Jasmina; Aliyev, Fuad

    2017-09-01

    For investigation of the basic characteristics of 14.1 MeV neutron induced nuclear reactions on a number of important isotopes for nuclear science and engineering, a new experimental setup TANGRA has been constructed at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research in Dubna. For testing its performance, the angular distribution of γ-rays (and neutrons) from the inelastic scattering of 14.1 MeV neutrons on high-purity carbon was measured and the angular anisotropy of γ-rays from the reaction 12C(n, n'γ)12C was determined. This reaction is important from fundamental (differential cross-sections) and practical (non-destructive elemental analysis of materials containing carbon) point of view. The preliminary results for the anisotropy of the γ-ray emission from the inelastic scattering of 14.1- MeV neutrons on carbon are compared with already published literature data. A detailed data analysis for determining the correlations between inelastic scattered neutron and γ-ray emission will be published elsewhere.

  8. 76 FR 4138 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173). Dates/Time: February 8, 2011, 9 a.m.-5:30 p.m. February 9, 2011... National Science Foundation (NSF) concerning broadening participation in science and engineering. Agenda...

  9. 78 FR 13384 - Advisory Committee for International Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science and Engineering; Notice... Science and Engineering (25104). Date/Time: March 14, 2013 9:30 a.m.-5:00 p.m. March 15, 2013 8:30 a.m.-12... of International Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Arlington...

  10. Laboratory Directed Research and Development FY2011 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundationalmore » science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.« less

  11. Multimedia: Developing Creativity and Innovation in Engineering, Science,

    Science.gov Websites

    Find ScienceCinema Search Results Multimedia: Developing Creativity and Innovation in Engineering , Science, and Medicine Citation Details Title: Developing Creativity and Innovation in Engineering, Science , and Medicine Title: Developing Creativity and Innovation in Engineering, Science, and Medicine Authors

  12. NASA Propulsion Engineering Research Center, volume 1

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Over the past year, the Propulsion Engineering Research Center at The Pennsylvania State University continued its progress toward meeting the goals of NASA's University Space Engineering Research Centers (USERC) program. The USERC program was initiated in 1988 by the Office of Aeronautics and Space Technology to provide an invigorating force to drive technology advancements in the U.S. space industry. The Propulsion Center's role in this effort is to provide a fundamental basis from which the technology advances in propulsion can be derived. To fulfill this role, an integrated program was developed that focuses research efforts on key technical areas, provides students with a broad education in traditional propulsion-related science and engineering disciplines, and provides minority and other under-represented students with opportunities to take their first step toward professional careers in propulsion engineering. The program is made efficient by incorporating government propulsion laboratories and the U.S. propulsion industry into the program through extensive interactions and research involvement. The Center is comprised of faculty, professional staff, and graduate and undergraduate students working on a broad spectrum of research issues related to propulsion. The Center's research focus encompasses both current and advanced propulsion concepts for space transportation, with a research emphasis on liquid propellant rocket engines. The liquid rocket engine research includes programs in combustion and turbomachinery. Other space transportation modes that are being addressed include anti-matter, electric, nuclear, and solid propellant propulsion. Outside funding supports a significant fraction of Center research, with the major portion of the basic USERC grant being used for graduate student support and recruitment. The remainder of the USERC funds are used to support programs to increase minority student enrollment in engineering, to maintain Center infrastructure, and to develop research capability in key new areas. Significant research programs in propulsion systems for air and land transportation complement the space propulsion focus. The primary mission of the Center is student education. The student program emphasizes formal class work and research in classical engineering and science disciplines with applications to propulsion.

  13. 76 FR 69252 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... Science Foundation Update from the Department of Energy and National Science Foundation's Nuclear Physics... available on the U.S. Department of Energy's Office of Nuclear Physics Web site for viewing. Issued in...

  14. 75 FR 71425 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... Science Foundation Update from the Department of Energy and National Science Foundation's Nuclear Physics.... Department of Energy's Office of Nuclear Physics Web site for viewing. Issued in Washington, DC on November...

  15. 76 FR 62050 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal. SUMMARY: Pursuant to Section 14(a)(2)(A) of the Federal... Services Administration, notice is hereby given that the DOE/NSF Nuclear Science Advisory Committee (NSAC...

  16. Conceptual design studies and experiments related to cavity exhaust systems for nuclear light bulb configurations

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Stoeffler, R. C.

    1972-01-01

    Investigations of various phases of gaseous nuclear rocket technology have been conducted. The principal research efforts have recently been directed toward the closed-cycle, vortex-stabilized nuclear light bulb engine and toward a small-scale fissioning uranium plasma experiment that could be conducted in the Los Alamos Scientific Laboratory's Nuclear Furnace. The engine concept is based on the transfer of energy by thermal radiation from gaseous fissioning uranium, through a transparent wall, to hydrogen propellant. The reference engine configuration is comprised of seven unit cavities, each having its own fuel transparent wall and propellant duct. The basic design of the engine is described. Subsequent studies performed to supplement and investigate the basic design are reported. Summaries of other nuclear light bulb research programs are included.

  17. Materials Science & Engineering | Classification | College of Engineering &

    Science.gov Websites

    ChairMaterials Science and Engineering(414) 229-2668nidal@uwm.eduEng & Math Sciences E351 profile photo (414) 229-2615jhchen@uwm.eduEng & Math Sciences 1225 profile photo Benjamin Church, Ph.D.Associate ProfessorMaterials Science & Engineering(414) 229-2825church@uwm.eduEng & Math Sciences EMS 1175 profile

  18. 78 FR 13743 - Requirements for the Recognizing Aviation and Aerospace Innovation in Science and Engineering...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Aerospace Innovation in Science and Engineering (RAISE) Award AGENCY: Office of the Secretary, U.S... demonstrate unique, innovative thinking in aerospace science and engineering. With this award, the Secretary... Science and Engineering) Award will recognize innovative scientific and engineering achievements that will...

  19. Engineering Encounters: Engineer It, Learn It--Science and Engineering Practices in Action

    ERIC Educational Resources Information Center

    Lachapelle, Cathy P.; Sargianis, Kristin; Cunningham, Christine M.

    2013-01-01

    Engineering is prominently included in the "Next Generation Science Standards" (Achieve Inc. 2013), as it was in "A Framework for K-12 Science Education" (NRC 2012). The National Research Council, authors of the "Framework," write, "Engineering and technology are featured alongside the natural sciences (physical…

  20. An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    Robbins, W. H.; Finger, H. B.

    1991-01-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  1. Science & Engineering Indicators. National Science Board. NSB 14-01

    ERIC Educational Resources Information Center

    National Science Foundation, 2014

    2014-01-01

    The "Science and Engineering Indicators" series was designed to provide a broad base of quantitative information about U.S. science, engineering, and technology for use by policymakers, researchers, and the general public. "Science and Engineering Indicators 2014" contains analyses of key aspects of the scope, quality, and…

  2. 77 FR 6143 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173). Dates/Time: February 28, 2012, 9 a.m.-5:30 p.m., February 29... provide advice and recommendations concerning broadening participation in science and engineering. Agenda...

  3. 76 FR 4138 - Committee on Equal Opportunity in Science and Engineering Solicitation of Recommendations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunity in Science and Engineering Solicitation... recommendations for membership on the Committee on Equal Opportunities in Science and Engineering (CEOSE) (1173... provides advice to NSF on the implementation of the provisions of the Science and Engineering Equal...

  4. 77 FR 30029 - Advisory Committee for International Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science and Engineering; Notice... Science and Engineering (25104). Date and Time: June 11, 2012, 10:00 a.m.-12:00 p.m. Place.... Contact Person for More Information: Robert Webber, Office of International Science and Engineering...

  5. 78 FR 60918 - Committee on Equal Opportunities in Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering; Notice of... Engineering (1173). Dates/Time: October 30, 2013, 10:00 a.m.-3:30 p.m. Place: National Science Foundation... advice and recommendations concerning broadening participation in science and engineering. Agenda...

  6. Final report to DOE: Matching Grant Program for the Penn State University Nuclear Engineering Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack S. Brenizer, Jr.

    2003-01-17

    The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs.more » Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students.« less

  7. Early Program Development

    NASA Image and Video Library

    2004-04-15

    This artist's concept illustrates the NERVA (Nuclear Engine for Rocket Vehicle Application) engine's hot bleed cycle in which a small amount of hydrogen gas is diverted from the thrust nozzle, thus eliminating the need for a separate system to drive the turbine. The NERVA engine, based on KIWI nuclear reactor technology, would power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which the Marshall Space Flight Center had development responsibility.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A.

    The North American industry has employed major solvent-extraction processes to support a wide range of separations including but not limited to chemical, metallurgical, nuclear, biochemical, pharmaceutical, and petroleum applications. The knowledge enabling these separations has been obtained through fundamental studies in academe, government and industry. The International Solvent Extraction Conferences have been and continue to be a major gathering of scientists, engineers, operators, and vendors from around the world, who present new findings since the last meeting, exchange ideas, make business contacts, and conduct collegial discussions. The ISEC 2008 program emphasizes fundamentals to industrial applications of solvent extraction, particularly howmore » this broad spectrum of activities is interconnected and has led to the implementation of novel processes. The oral and poster sessions have been organized into seven topics: Fundamentals; Novel Reagents, Materials and Techniques; Nuclear Fuel Reprocessing; Hydrometallurgy and Metals Extraction; Analytical and Preparative Applications; Biotechnology, Pharmaceuticals, Life-Science Products, and Organic Products; and Process Chemistry and Engineering. Over 350 abstracts were received, resulting in more than 260 manuscripts published in these proceedings. Five outstanding plenary presentations have been identified, with five parallel sessions for oral presentations and posters. In recognition of the major role solvent extraction (SX) plays in the hydrometallurgical and nuclear industries, these proceedings begin with sections focusing on hydrometallurgy, process chemistry, and engineering. More fundamental topics follow, including sections on novel reagents, materials, and techniques, featuring novel applications in analytical and biotechnology areas. Despite the diversity of topics and ideas represented, however, the primary focus of the ISEC community continues to be metals extraction. Four papers from these proceedings have been entered already in INIS in the form of individual reports. Among the remaining papers, 60 have been selected from the following sessions: Plenary Lectures, Hydrometallurgy and Metals Extraction, Nuclear Fuel Reprocessing, Analytical and Preparative Applications, Fundamentals, and Novel Reagents, Materials, and Techniques.« less

  9. Practical Strategy on the Subject of “Science and Ethics” for Overcoming Hybrid Engineering Ethics Education

    NASA Astrophysics Data System (ADS)

    Yasui, Yoshiaki

    The issue of economic globalization and JABEE (Japan Accreditation Board for Engineering Education) mean that education on engineering ethics has now become increasingly important for science-engineering students who will become the next generation of engineers. This is clearly indicated when engineers are made professionally responsible for various unfortunate accidents that happen during daily life in society. Learning hybrid engineering ethics is an essential part of the education of the humanities and sciences. This paper treats the contents for the subject of “Science and Ethics” drawing on several years of practice and the fruits of studying science and engineering ethics at the faculty of science-engineering in university. This paper can be considered to be a practical strategy to the formation of morality.

  10. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    NASA Astrophysics Data System (ADS)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  11. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  12. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  13. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  14. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  15. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  16. NSUF Ion Beam Investment Options Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich, Brenden John

    2016-03-01

    The workshop that generated this data was convened to develop a set of recommendations (a priority list) for possible funding in the area of US domestic ion beam irradiation capabilities for nuclear energy-focused RD&D. The results of this workshop were intended for use by the Department of Energy - Office of Nuclear Energy (DOE-NE) for consideration of support for these facilities. The workshop considered, as part of the initial potential future support discussions, input submitted through the Office of Nuclear Energy Request for Information (RFI) (DE-SOL-0008318, April 13, 2015), but welcomed discussion (and presentation) of other options, whether specific ormore » general in scope. Input from users, including DOE-NE program interests and needs for ion irradiation RD&D were also included. Participants were selected from various sources: RFI respondents, NEUP/NEET infrastructure applicants, universities with known expertise in nuclear engineering and materials science and other developed sources. During the three days from March 22-24, 2016, the workshop was held at the Idaho National Laboratory Meeting Center in the Energy Innovation Laboratory at 775 University Drive, Idaho Falls, ID 83401. Thirty-one members of the ion beam community attended the workshop, including 15 ion beam facilities, six representatives of Office of Nuclear Energy R&D programs, an industry representative from EPRI and the chairs of the NSUF User’s Organization and the NSUF Scientific Review Board. Another four ion beam users were in attendance acting as advisors to the process, but did not participate in the options assessment. Three members of the sponsoring agency, the Office of Science and Technology Innovation (NE-4) also attended the workshop.« less

  17. 75 FR 43943 - Defense Science Board; Task Force on Nuclear Treaty Monitoring and Verification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board; Task Force on Nuclear Treaty... meetings. SUMMARY: The Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification will... held September 13-14, and 25-26, 2010. ADDRESSES: The meetings will be held at Science Applications...

  18. 77 FR 61790 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173). Dates/Time: October 30, 2012, 10 a.m.-5:30 p.m.; October 31... science and engineering. Agenda Tuesday, October 30, 2012 Opening Statement by the CEOSE Chair...

  19. 77 FR 13367 - Advisory Committee for International Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science and Engineering; Notice... Science and Engineering (25104). Date and Time: March 19, 2012, 8:30 a.m.-5 p.m. March 20, 2012, 8:30 a.m.... Type of Meeting: Open. Contact Person: Robert Webber, Office of International Science and Engineering...

  20. 78 FR 8596 - Committee on Equal Opportunities in Science and Engineering #1173; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering 1173... Science and Engineering (CEOSE). Dates/Time: February 25, 2013, 9:00 a.m.-5:30 p.m.; February 26, 2013, 9... participation in science and engineering. Agenda: Opening Statement by the CEOSE Chair Discussions: Concurrence...

  1. 77 FR 61644 - Advisory Committee for International Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science and Engineering; Notice... Science and Engineering (25104). Date and Time: October 25, 2012 8:30 a.m.-5 p.m. October 26, 2012 8:30 a...: Open. Contact Person: Robert Webber, NSF Office of International Science and Engineering, 4201 Wilson...

  2. 75 FR 33652 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173). Dates/Time: June 29, 2010, 8:30 p.m.-5:30 p.m. June 30, 2010, 8... NSF concerning broadening participation in science and engineering. Agenda Monday, June 29, 2010...

  3. 77 FR 31893 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173) Dates/Time: June 19, 2012, 1:00 p.m.-6:00 p.m.; June 20, 2012, 9... advice and recommendations concerning broadening participation in science and engineering. Agenda Tuesday...

  4. 76 FR 55951 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173). Dates/Time: October 17, 2011, 9 a.m.-5:30 p.m. October 18, 2011... science and engineering. Agenda: Monday, Oct 17, 2011 Opening Statement by the CEOSE Chair Presentations...

  5. 75 FR 6063 - Committee on Equal Opportunities in Science and Engineering (CEOSE); Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering (CEOSE... Opportunities in Science and Engineering (1173). Dates/Time: March 8, 2010, 8:30 a.m.-5:30 p.m.; March 9, 2010... concerning broadening participation in science and engineering. Agenda Primary Focus of This Meeting...

  6. 76 FR 46769 - Applications for New Awards; Minority Science and Engineering Improvement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... DEPARTMENT OF EDUCATION Applications for New Awards; Minority Science and Engineering Improvement... Information: Minority Science and Engineering Improvement Program (MSEIP) Notice inviting applications for new... effect long-range improvement in science and engineering education at predominantly minority institutions...

  7. Astrobiobound! Search for Life in the Solar System: Scientists and Engineers Bringing their Challenges to K-12 Students

    NASA Astrophysics Data System (ADS)

    Klug Boonstra, S. L.; Swann, J.; Manfredi, L.; Zippay, A.; Boonstra, D.

    2014-12-01

    The Next Generation Science Standards (NGSS) brought many dynamic opportunities and capabilities to the K-12 science classroom - especially with the inclusion of engineering. Using science as a context to help students engage in the engineering practices and engineering disciplinary core ideas is an essential step to students' understanding of how science drives engineering and how engineering enables science. Real world examples and applications are critical for students to see how these disciplines are integrated. Furthermore, the interface of science and engineering raise the level of science understanding, and facilitate higher order thinking skills through relevant experiences. Astrobiobound! is designed for the NGSS (Next Generation Science Standards) and CCSS (Common Core State Standards). Students also practice and build 21st Century Skills. Astrobiobound! help students see how science and systems engineering are integrated to achieve a focused scientific goal. Students engage in the engineering design process to design a space mission which requires them to balance the return of their science data with engineering limitations such as power, mass and budget. Risk factors also play a role during this simulation and adds to the excitement and authenticity. Astrobiobound! presents the authentic first stages of NASA mission design process. This simulation mirrors the NASA process in which the science goals, type of mission, and instruments to return required data to meet mission goals are proposed within mission budget before any of the construction part of engineering can begin. NASA scientists and engineers were consulted in the development of this activity as an authentic simulation of their mission proposal process.

  8. Programmatic Efforts Affect Retention of Women in Science and Engineering

    NASA Astrophysics Data System (ADS)

    Hathaway, Russel S.; Sharp, Sally; Davis, Cinda-Sue

    This article presents findings from a study that investigated the impact of a women in science and engineering residence program (WISE-RP) on the retention of women in science and engineering disciplines. From a matched sample of 1,852 science and engineering students, the authors compared WISE-RP participants with male and female control students for science and engineering retention. The findings suggest a strong connection between WISE-KP participation and science retention, but not engineering retention. The results also indicate that a WISE-RP is more effective in retaining White and Asian students than underrepresented students of color. The authors highlight the importance of combining academic and personal support in a residential learning program and draw implications for retaining women т science, mathematics, and engineering disciplines.

  9. Climate Change: On Scientists and Advocacy

    NASA Technical Reports Server (NTRS)

    Schmidt, Gavin A.

    2014-01-01

    Last year, I asked a crowd of a few hundred geoscientists from around the world what positions related to climate science and policy they would be comfortable publicly advocating. I presented a list of recommendations that included increased research funding, greater resources for education, and specific emission reduction technologies. In almost every case, a majority of the audience felt comfortable arguing for them. The only clear exceptions were related to geo-engineering research and nuclear power. I had queried the researchers because the relationship between science and advocacy is marked by many assumptions and little clarity. This despite the fact that the basic question of how scientists can be responsible advocates on issues related to their expertise has been discussed for decades most notably in the case of climate change by the late Stephen Schneider.

  10. Environmental Science and Research Foundation, Inc. annual technical report: Calendar year 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, R.D.; Warren, R.W.

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The Foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provides environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs includingmore » Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. Summaries are included of the individual research projects.« less

  11. Current and Perspective Applications of Dense Plasma Focus Devices

    NASA Astrophysics Data System (ADS)

    Gribkov, V. A.

    2008-04-01

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement—MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  12. Anticipating Change: An Exploratory Analysis of Teachers' Conceptions of Engineering in an Era of Science Education Reform

    ERIC Educational Resources Information Center

    Sengupta-Irving, Tesha; Mercado, Janet

    2017-01-01

    While integrating engineering into science education is not new in the United States, technology and engineering have not been well emphasized in the preparation and professional development of science teachers. Recent science education reforms integrate science and engineering throughout K-12 education, making it imperative to explore the…

  13. How the Discovery Channel Television Show "Mythbusters" Accurately Depicts Science and Engineering Culture

    ERIC Educational Resources Information Center

    Zavrel, Erik A.

    2011-01-01

    High school science teachers, of course, want to motivate their students to consider studying science and engineering (S&E) in college. However, many high school students are not familiar with what science and engineering actually entail. They may know science as little more than "systematic discovery" and engineering as nothing but…

  14. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-01-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about…

  15. The Science of Solubility: Using Reverse Engineering to Brew a Perfect Cup of Coffee

    ERIC Educational Resources Information Center

    West, Andrew B.; Sickel, Aaron J.; Cribbs, Jennifer D.

    2015-01-01

    The Next Generation Science Standards call for the integration of science and engineering. Often, the introduction of engineering activities occurs after instruction in the science content. That is, engineering is used as a way for students to elaborate on science ideas that have already been explored. However, using only this sequence of…

  16. Digest of Key Science and Engineering Indicators, 2008. NSB-08-2

    ERIC Educational Resources Information Center

    National Science Foundation, 2008

    2008-01-01

    This digest of key science and engineering indicators draws primarily from the National Science Board's two-volume "Science and Engineering Indicators, 2008" report. The digest serves two purposes: (1) to draw attention to important trends and data points from across the chapters and volumes of "Science and Engineering Indicators, 2008," and (2)…

  17. UMCP-BG and E collaboration in nuclear power engineering in the framework of DOE-Utility Nuclear Power Engineering Education Matching Grant Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Lothar PhD

    2000-03-01

    The DOE-Utility Nuclear Power Engineering Education Matching Grant Program has been established to support the education of students in Nuclear Engineering Programs to maintain a knowledgeable workforce in the United States in order to keep nuclear power as a viable component in a mix of energy sources for the country. The involvement of the utility industry ensures that this grant program satisfies the needs and requirements of local nuclear energy producers and at the same time establishes a strong linkage between education and day-to-day nuclear power generation. As of 1997, seventeen pairs of university-utility partners existed. UMCP was never amore » member of that group of universities, but applied for the first time with a proposal to Baltimore Gas and Electric Company in January 1999 [1]. This proposal was generously granted by BG&E [2,3] in the form of a gift in the amount of $25,000 from BG&E's Corporate Contribution Program. Upon the arrival of a newly appointed Director of Administration in the Department of Materials and Nuclear Engineering, the BG&E check was deposited into the University's Maryland Foundation Fund. The receipt of the letter and the check enabled UMCP to apply for DOE's matching funds in the same amount by a proposal.« less

  18. Pre-Service Science Teachers' Cognitive Structures Regarding Science, Technology, Engineering, Mathematics (STEM) and Science Education

    ERIC Educational Resources Information Center

    Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret

    2016-01-01

    The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…

  19. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along withmore » summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.« less

  20. 10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL CROSS SECTION. Giffals & Vallet, Inc., L. Rosetti, Associated Architects and Engineers, Detroit, Michigan; and U.S. Army Engineer Division, New England Corps of Engineers, Boston, Massachusetts. Drawing Number 35-84-04. (Original: AMTL Engineering Division, Watertown). - Watertown Arsenal, Building No. 100, Wooley Avenue, Watertown, Middlesex County, MA

  1. Science with radioactive beams: the alchemist's dream

    NASA Astrophysics Data System (ADS)

    Gelletly, W.

    2001-05-01

    Nuclear science is being transformed by a new capacity to create beams of radioactive nuclei. Until now all of our knowledge of nuclear physics and the applications which flow from it has been derived from studies of radioactive decay and nuclear reactions induced by beams of the 283 stable or long-lived nuclear species we can find on Earth. Here we describe first how beams of radioactive nuclei can be created. The present status of nuclear physics is then reviewed before potential applications to nuclear physics, nuclear astrophysics, materials science, bio-medical, and environmental studies are described.

  2. Affordable Development and Demonstration of a Small NTR engine and Stage: A Preliminary NASA, DOE, and Industry Assessment

    NASA Technical Reports Server (NTRS)

    Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G; Werner, J.; Weitzberg, A.; Joyner, C. R.

    2015-01-01

    In FY'11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program A strategy was outlined by GRC and NASA HQ that included 2 key elements -"Foundational Technology Development" followed by specific "Technology Demonstration" projects. The "Technology Demonstration "element proposed ground technology demonstration (GTD) testing in the early 2020's, followed by a flight technology demonstration (FTD) mission by approx. 2025. In order to reduce development costs, the demonstration projects would focus on developing a small, low thrust (approx. 7.5 -16.5 klb(f)) engine that utilizes a "common" fuel element design scalable to the higher thrust (approx. 25 klb(f)) engines used in NASA's Mars DRA 5.0 study(NASA-SP-2009-566). Besides reducing development costs and allowing utilization of existing, flight proven engine hard-ware (e.g., hydrogen pumps and nozzles), small, lower thrust ground and flight demonstration engines can validate the technology and offer improved capability -increased payloads and decreased transit times -valued for robotic science missions identified in NASA's Decadal Study.

  3. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okrent, D.

    1997-06-23

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, withmore » the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident.« less

  4. The Stewardship Science Academic Alliance: A Model of Education for Fundamental and Applied Low-energy Nuclear Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cizewski, J.A., E-mail: cizewski@rutgers.edu

    The Stewardship Science Academic Alliances (SSAA) were inaugurated in 2002 by the National Nuclear Security Administration of the U. S. Department of Energy. The purpose is to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper highlights some of the ways that the SSAA fosters education and training of graduate students and postdoctoral scholars in low-energy nuclear science, preparing them for careers in fundamental and applied research and development.

  5. LANL Contributions to the B61 LIfe Extension Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corpion, Juan Carlos

    2016-02-10

    The Los Alamos National Laboratory (LANL) has a long, proud heritage in science and innovation that extends 70 years. Although the Laboratory’s primary responsibility is assuring the safety and reliability of the nation’s nuclear deterrent, Laboratory staff work on a broad range of advanced technologies to provide the best, most effective scientific and engineering solutions to the nation’s critical security challenges. The world is rapidly changing, but this essential responsibility remains the LANL’s core mission. LANL is the Design Laboratory for the nuclear explosive package of the B61 Air Force bomb. The B61-12 Life Extension Program (LEP) activities at LANLmore » will increase the lifetime of the bomb and provide safety and security options to meet security environments both today and in the future. The B61’s multiple-platform functionality, unique safety features, and large number of components make the B61-12 LEP one of the most complex LEPs ever attempted. Over 230 LANL scientists, engineers, technicians, and support personnel from across the Laboratory are bringing decades of interdisciplinary knowledge, technical expertise, and leading-edge capabilities to LANL’s work on the LEP.« less

  6. Scientists and artists: ""Hey! You got art in my science! You got science on my art

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elfman, Mary E; Hayes, Birchard P; Michel, Kelly D

    The pairing of science and art has proven to be a powerful combination since the Renaissance. The combination of these two seemingly disparate disciplines ensured that even complex scientific theories could be explored and effectively communicated to both the subject matter expert and the layman. In modern times, science and art have frequently been considered disjoint, with objectives, philosophies, and perspectives often in direct opposition to each other. However, given the technological advances in computer science and high fidelity 3-D graphics development tools, this marriage of art and science is once again logically complimentary. Art, in the form of computermore » graphics and animation created on supercomputers, has already proven to be a powerful tool for improving scientific research and providing insight into nuclear phenomena. This paper discusses the power of pairing artists with scientists and engineers in order to pursue the possibilities of a widely accessible lightweight, interactive approach. We will use a discussion of photo-realism versus stylization to illuminate the expected beneficial outcome of such collaborations and the societal advantages gained by a non-traditional pa11nering of these two fields.« less

  7. Nanoelectronics, Nanophotonics, and Nanomagnetics: Report of the National Nanotechnology Initiative Workshop February 11-13, 2004

    DTIC Science & Technology

    2004-02-01

    National Science and Technology Council Committee on Technology Subcommittee on Nanoscale Science, Engineering , and Technology National...18 About the Nanoscale Science, Engineering , and Technology Subcommittee The Nanoscale Science, Engineering , and Technology (NSET) Subcommittee is the...workshop was to examine trends and opportunities in nanoscale science and engineering as applied to electronic, photonic, and magnetic technologies

  8. The nuclear thermal electric rocket: a proposed innovative propulsion concept for manned interplanetary missions

    NASA Astrophysics Data System (ADS)

    Dujarric, C.; Santovincenzo, A.; Summerer, L.

    2013-03-01

    Conventional propulsion technology (chemical and electric) currently limits the possibilities for human space exploration to the neighborhood of the Earth. If farther destinations (such as Mars) are to be reached with humans on board, a more capable interplanetary transfer engine featuring high thrust, high specific impulse is required. The source of energy which could in principle best meet these engine requirements is nuclear thermal. However, the nuclear thermal rocket technology is not yet ready for flight application. The development of new materials which is necessary for the nuclear core will require further testing on ground of full-scale nuclear rocket engines. Such testing is a powerful inhibitor to the nuclear rocket development, as the risks of nuclear contamination of the environment cannot be entirely avoided with current concepts. Alongside already further matured activities in the field of space nuclear power sources for generating on-board power, a low level investigation on nuclear propulsion has been running since long within ESA, and innovative concepts have already been proposed at an IAF conference in 1999 [1, 2]. Following a slow maturation process, a new concept was defined which was submitted to a concurrent design exercise in ESTEC in 2007. Great care was taken in the selection of the design parameters to ensure that this quite innovative concept would in all respects likely be feasible with margins. However, a thorough feasibility demonstration will require a more detailed design including the selection of appropriate materials and the verification that these can withstand the expected mechanical, thermal, and chemical environment. So far, the predefinition work made clear that, based on conservative technology assumptions, a specific impulse of 920 s could be obtained with a thrust of 110 kN. Despite the heavy engine dry mass, a preliminary mission analysis using conservative assumptions showed that the concept was reducing the required Initial Mass in Low Earth Orbit compared to conventional nuclear thermal rockets for a human mission to Mars. Of course, the realization of this concept still requires proper engineering and the dimensioning of quite unconventional machinery. A patent was filed on the concept. Because of the operating parameters of the nuclear core, which are very specific to this type of concept, it seems possible to test on ground this kind of engine at full scale in close loop using a reasonable size test facility with safe and clean conditions. Such tests can be conducted within fully confined enclosure, which would substantially increase the associated inherent nuclear safety levels. This breakthrough removes a showstopper for nuclear rocket engines development. The present paper will disclose the NTER (Nuclear Thermal Electric Rocket) engine concept, will present some of the results of the ESTEC concurrent engineering exercise, and will explain the concept for the NTER on-ground testing facility. Regulations and safety issues related to the development and implementation of the NTER concept will be addressed as well.

  9. Arctic Science, Engineering and Education. Awards: Fiscal Years 1987 and 1988.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    This document summarizes the dispersal of funds on Arctic research by the National Science Foundation during fiscal years 1987 and 1988. Major areas considered were: atmospheric sciences; oceanography; biological sciences; earth sciences; science and engineering education; small business research; engineering and permafrost; Arctic information and…

  10. Design considerations in clustering nuclear rocket engines

    NASA Technical Reports Server (NTRS)

    Sager, Paul H.

    1992-01-01

    An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.

  11. Design considerations in clustering nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Sager, Paul H.

    1992-07-01

    An initial investigation of the design considerations in clustering nuclear rocket engines for space transfer vehicles has been made. The clustering of both propulsion modules (which include start tanks) and nuclear rocket engines installed directly to a vehicle core tank appears to be feasible. Special provisions to shield opposite run tanks and the opposite side of a core tank - in the case of the boost pump concept - are required; the installation of a circumferential reactor side shield sector appears to provide an effective solution to this problem. While the time response to an engine-out event does not appear to be critical, the gimbal displacement required appears to be important. Since an installation of three engines offers a substantial reduction in gimbal requirements for engine-out and it may be possible to further enhance mission reliability with the greater number of engines, it is recommended that a cluster of four engines be considered.

  12. Atlas 1.1: An Update to the Theory of Effective Systems Engineers

    DTIC Science & Technology

    2018-01-16

    Proficiency Model ........................................................................................................... 21 5.1.1 Area 1: Math ... Math /Science/General Engineering: Foundational concepts from mathematics, physical sciences, and general engineering; 2. System’s Domain...Table 5. Atlas Proficiency Areas, Categories, and Topics Area Category Topic 1. Math / Science / General Engineering 1.1. Natural Science

  13. Integrating Engineering into an Urban Science Classroom

    ERIC Educational Resources Information Center

    Meyer, Helen

    2017-01-01

    This article presents a single case study of an experienced physical science teacher (Janet) integrating engineering practices into her urban science classroom over a two-year time frame. The article traces how Janet's understanding of the role engineering in her teaching expanded beyond engineering as an application of science and mathematics to…

  14. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    ERIC Educational Resources Information Center

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  15. How the Discovery Channel Television Show Mythbusters Accurately Depicts Science and Engineering Culture

    NASA Astrophysics Data System (ADS)

    Zavrel, Erik A.

    2011-04-01

    High school science teachers, of course, want to motivate their students to consider studying science and engineering (S&E) in college. However, many high school students are not familiar with what science and engineering actually entail. They may know science as little more than "systematic discovery" and engineering as nothing but "math-intensive design." Without appreciation for the rich culture of science and engineering, students will be unlikely to choose such a field of study. The Discovery Channel television show Mythbusters helps remedy the lack of understanding many people, especially young people, have about S&E. Mythbusters presents a highly accurate vignette of the culture of science and engineering. Episodes of the show were analyzed for instances in which the culture of science and engineering was accurately depicted. Many resources, including several publications of the National Research Council, informed the media analysis. To encourage more high school students to pursue S&E in college, they need to be exposed to the culture of S&E. Mythbusters provides a window into the often unseen realm of science and engineering, allowing its viewers, who are disproportionately represented among the young adult age bracket, to see what it means to conduct science and engineering on a routine basis. High school science instructors should look to Mythbusters to provide insight into the culture of S&E that textbooks often have difficulty conveying to students.

  16. Performance potential of gas-core and fusion rockets - A mission applications survey.

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.; Willis, E. A., Jr.

    1971-01-01

    This paper reports an evaluation of the performance potential of five nuclear rocket engines for four mission classes. These engines are: the regeneratively cooled gas-core nuclear rocket; the light bulb gas-core nuclear rocket; the space-radiator cooled gas-core nuclear rocket; the fusion rocket; and an advanced solid-core nuclear rocket which is included for comparison. The missions considered are: earth-to-orbit launch; near-earth space missions; close interplanetary missions; and distant interplanetary missions. For each of these missions, the capabilities of each rocket engine type are compared in terms of payload ratio for the earth launch mission or by the initial vehicle mass in earth orbit for space missions (a measure of initial cost). Other factors which might determine the engine choice are discussed. It is shown that a 60 day manned round trip to Mars is conceivable.-

  17. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  18. Thrust Area Report, Engineering Research, Development and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Programmore » has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.« less

  19. White Paper on Nuclear Data Needs and Capabilities for Basic Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batchelder, J.; Kawano, T.; Kelley, J.

    Reliable nuclear structure and reaction data represent the fundamental building blocks of nuclear physics and astrophysics research, and are also of importance in many applications. There is a continuous demand for high-quality updates of the main nuclear physics databases via the prompt compilation and evaluation of the latest experimental and theoretical results. The nuclear physics research community benefits greatly from comprehensive, systematic and up-to-date reviews of the experimentally determined nuclear properties and observables, as well as from the ability to rapidly access these data in user-friendly forms. Such credible databases also act as a bridge between science, technology, and societymore » by making the results of basic nuclear physics research available to a broad audience of users, and hence expand the societal utilization of nuclear science. Compilation and evaluation of nuclear data has deep roots in the history of nuclear science research, as outlined in Appendix 1. They have an enormous impact on many areas of science and applications, as illustrated in Figure 2 for the Evaluated Nuclear Structure Data File (ENSDF) database. The present workshop concentrated on the needs of the basic nuclear science community for data and capabilities. The main role of this community is to generate and use data in order to understand the basic nuclear forces and interactions that are responsible for the existence and the properties of all nuclides and, as a consequence, to gain knowledge about the origins, evolution and structure of the universe. Thus, the experiments designed to measure a wealth of nuclear properties towards these fundamental scientific goals are typically performed from within this community.« less

  20. Negotiating Science and Engineering: An Exploratory Case Study of a Reform-Minded Science Teacher

    ERIC Educational Resources Information Center

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-01-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the…

  1. Knowledge Integration and Wise Engineering

    ERIC Educational Resources Information Center

    Chiu, Jennifer L.; Linn, M. C.

    2011-01-01

    Recent efforts in engineering education focus on introducing engineering into secondary math and science courses to improve science, technology, engineering, and math (STEM) education (NAS, 2010). Infusing engineering into secondary classrooms can increase awareness of and interest in STEM careers, help students see the relevance of science and…

  2. Review of Nuclear Thermal Propulsion Ground Test Options

    NASA Technical Reports Server (NTRS)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  3. 75 FR 45171 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555...-3040. This guide describes some engineering practices and methods generally considered by the NRC to be... they reflect the latest general engineering approaches that are acceptable to the NRC staff. If future...

  4. 78 FR 62609 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Secretariat, General Services Administration, notice is hereby given that the DOE/NSF Nuclear Science Advisory Committee (NSAC) will be renewed for a two-year period. The Committee will provide advice and... research. Additionally, the renewal of the DOE/NSF Nuclear Science Advisory Committee has been determined...

  5. Report of the Community Review of EIC Accelerator R&D for the Office of Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Nuclear Science Advisory Committee (NSAC) of the Department of Energy (DOE) Office of Nuclear Physics (NP) recommended in the 2015 Long Range Plan (LRP) for Nuclear Science that the proposed Electron Ion Collider (EIC) be the highest priority for new construction. This report noted that, at that time, two independent designs for such a facility had evolved in the United States, each of which proposed using infrastructure already available in the U.S. nuclear science community.

  6. 76 FR 50275 - Guidance for the Assessment of Beyond-Design-Basis Aircraft Impacts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ...: Mekonen M. Bayssie, Regulatory Guide Development Branch, Division of Engineering, Office of Nuclear... e-mail to [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction The Nuclear..., Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2011-20513 Filed 8-11-11; 8:45 am...

  7. Engineering Encounters: Blasting off with Engineering

    ERIC Educational Resources Information Center

    Dare, Emily A.; Childs, Gregory T.; Cannaday, E. Ashley; Roehrig, Gillian H

    2014-01-01

    What better way to engage young students in physical science concepts than to have them engineer flying toy rockets? The integration of engineering into science classrooms is advocated by the "Next Generation Science Standards" (NGSS) and researchers alike (Brophy et al. 2008), as engineering provides: (1) A "real-world…

  8. Rethinking healthcare as a safety--critical industry.

    PubMed

    Lwears, Robert

    2012-01-01

    The discipline of ergonomics, or human factors engineering, has made substantial contributions to both the development of a science of safety, and to the improvement of safety in a wide variety of hazardous industries, including nuclear power, aviation, shipping, energy extraction and refining, military operations, and finance. It is notable that healthcare, which in most advanced societies is a substantial sector of the economy (eg, 15% of US gross domestic product) and has been associated with large volumes of potentially preventable morbidity and mortality, has heretofore not been viewed as a safety-critical industry. This paper proposes that improving safety performance in healthcare must involve a re-envisioning of healthcare itself as a safety-critical industry, but one with considerable differences from most engineered safety-critical systems. This has implications both for healthcare, and for conceptions of safety-critical industries.

  9. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Brief History of NTP: Project Rover Began in 1950s by Los Alamos Scientific Labs (now Los Alamos National Labs) and ran until 1970s Tested a series of nuclear reactor engines of varying size at Nevada Test Site (now Nevada National Security Site) Ranged in scale from 111 kN (25 klbf) to 1.1 MN (250 klbf) Included Nuclear Furnace-1 tests Demonstrated the viability and capability of a nuclear rocket engine test program One of Kennedys 4 goals during famous moon speech to Congress Nuclear Engines for Rocket Vehicle Applications (NERVA) Atomic Energy Commission and NASA joint venture started in 1964 Parallel effort to Project Rover was focused on technology demonstration Tested XE engine, a 245-kN (55-klbf) engine to demonstrate startup shutdown sequencing. Hot-hydrogen stream is passed directly through fuel elements potential for radioactive material to be eroded into gaseous fuel flow as identified in previous programs NERVA and Project Rover (1950s-70s) were able to test in open atmosphere similar to conventional rocket engine test stands today Nuclear Furance-1 tests employed a full scrubber system Increased government and environmental regulations prohibit the modern testing in open atmosphere. Since the 1960s, there has been an increasing cessation on open air testing of nuclear material Political and national security concerns further compound the regulatory environment

  10. Foreign Science and Engineering Doctoral Attainment at American Universities

    ERIC Educational Resources Information Center

    Hamilton, Robert V.

    2010-01-01

    This dissertation analyzes the nearly 100,000 foreign students who attained science and engineering (S&E) doctorates in the five fields of physical sciences, life sciences, engineering, mathematics and computer sciences, and social and behavioral sciences at American universities from 1994 to 2005. Two models are presented. In the first model…

  11. 75 FR 9000 - Comment Request: National Science Foundation Proposal/Award Information-Grant Proposal Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... process; Programs to strengthen scientific and engineering research potential; Science and engineering..., authority to support applied research was added to the Organic Act. In 1980, The Science and Engineering... NATIONAL SCIENCE FOUNDATION Comment Request: National Science Foundation Proposal/Award...

  12. 77 FR 13159 - Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology, National Science and Technology Council Workshop ACTION: Notice of... Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  13. Building Alaska's Science and Engineering Pipeline: Evaluation of the Alaska Native Science & Engineering Program

    ERIC Educational Resources Information Center

    Bernstein, Hamutal; Martin, Carlos; Eyster, Lauren; Anderson, Theresa; Owen, Stephanie; Martin-Caughey, Amanda

    2015-01-01

    The Urban Institute conducted an implementation and participant-outcomes evaluation of the Alaska Native Science & Engineering Program (ANSEP). ANSEP is a multi-stage initiative designed to prepare and support Alaska Native students from middle school through graduate school to succeed in science, technology, engineering, and math (STEM)…

  14. Studying Science and Engineering Learning in Practice

    ERIC Educational Resources Information Center

    Penuel, William R.

    2016-01-01

    A key goal of science and engineering education is to provide opportunities for people to access, interpret, and make use of science and engineering to address practical human needs. Most education research, however, focuses on how best to prepare students in schools to participate in forms of science and engineering practices that resemble those…

  15. Committee on Women in Science, Engineering, and Medicine (CWSEM)

    Science.gov Websites

    Skip to Main Content Contact Us | Search: Search The National Academies of Sciences, Engineering and Medicine Committee on Women in Science, Engineering, and Medicine Committee on Women in Science , Engineering, and Medicine Policy and Global Affairs Home About Us Members Subscribe to CWSEM Alerts Resources

  16. 76 FR 20051 - Advisory Committee for International Science & Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science & Engineering; Notice of... Engineering ( 25104). Date/Time: April 25, 2011; 8:30 a.m. to 5 p.m. April 26, 2011; 8:30 a.m. to 12 p.m... International Science and Engineering, Reports from Advisory Committee Working Groups. April 26, 2011 AM...

  17. 75 FR 13313 - Advisory Committee for International Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science and Engineering; Notice... Science and Engineering ( 25104). Date/Time: April 19, 2010--8:30 a.m. to 5 p.m. April 20, 2010--8:30 a.m... Engineering. Agenda April 19, 2010 AM: Introductions and Updates--Presentation and Discussion of 2010...

  18. 78 FR 32475 - Committee on Equal Opportunities in Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering; Notice of... Engineering (CEOSE) Advisory Committee Meeting, 1173. Dates/Time: June 19, 2013, 9:00 a.m.-5:30 p.m. June 20... participation in science and engineering. Agenda: Opening Statement by the CEOSE Chair [[Page 32476...

  19. 75 FR 52996 - Advisory Committee for International Science & Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for International Science & Engineering; Notice of... Engineering ( 25104). Date/Time: September 20, 2010; 9 a.m. to 5:15 p.m.; September 21, 2009; 8:30 a.m. to 12..., education and related activities involving U.S. science and engineering working within a global context, as...

  20. Site Characterization Report (Building 202). Volume 2. Appendicies A-H.

    DTIC Science & Technology

    1996-04-01

    Bionetics,Groundwater and Wells, Environmental Science and Engineering, Inc., Installation Assessment of ERADCOM Activities, Environmental Science and...Engineering, Inc., Plan for the Assessment of Contamination at Woodbridge Research Facility, Environmental Science and Engineering, Inc., Remedial...Action Plan for the Woodbridge Research Facility PCB Disposal Site, Environmental Science and Engineering, Inc., Remedial Investigation and

  1. Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study

    ERIC Educational Resources Information Center

    Valtorta, Clara G.; Berland, Leema K.

    2015-01-01

    Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…

  2. Analysing the Integration of Engineering in Science Lessons with the Engineering-Infused Lesson Rubric

    ERIC Educational Resources Information Center

    Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.; Ross, Julia M.

    2017-01-01

    Science teachers are being called on to incorporate engineering practices into their classrooms. This study explores whether the Engineering-Infused Lesson Rubric, a new rubric designed to target best practices in engineering education, could be used to evaluate the extent to which engineering is infused into online science lessons. Eighty lessons…

  3. Pre-Engineering Program: Science, Technology, Engineering and Mathematics (STEM)

    DTIC Science & Technology

    2013-08-29

    educators in the Urbana-Champaign area. 15. SUBJECT TERMS STEM: science, technology , engineering, mathematics 16. SECURITY CLASSIFICATION OF: 19a. NAME...9132T-13-1-0002 4. TITLE AND SUBTITLE Pre-Engineering Program: Science, Technology , Engineering and Mathematics (STEM) 5c. PROGRAM ELEMENT NUMBER N...project was focused on underserved children in grades 1-6 who need, but have limited access to, out-of-school time STEM (science, technology

  4. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, D. K.

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC ismore » the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.« less

  5. Nuclear Astrophysics in underground laboratories: the LUNA experiment

    NASA Astrophysics Data System (ADS)

    2017-11-01

    One of the main ingredients of nuclear astrophysics is the knowledge of the thermonuclear reactions responsible for powering the stellar engine and for the synthesis of the chemical elements. At astrophysical energies the cross section of nuclear processes is extremely reduced by the effect of the Coulomb barrier. The low value of cross sections prevents their measurement at stellar energies on Earth surface and often extrapolations are needed. The Laboratory for Underground Nuclear Astrophysics (LUNA) is placed under the Gran Sasso mountain and thanks to the cosmic-ray background reduction provided by its position can investigate cross sections at energies close to the Gamow peak in stellar scenarios. Many crucial reactions involved in hydrogen burning has been measured directly at astrophysical energies with both the LUNA-50kV and the LUNA-400kV accelerators, and this intense work will continue with the installation of a MV machine able to explore helium and carbon burnings. Based on this progress, currently there are efforts in several countries to construct new underground accelerators. In this talk, the typical techniques adopted in underground nuclear astrophysics will be described and the most relevant results achieved by LUNA will be reviewed. The exciting science that can be probed with the new facilities will be highlighted.

  6. 75 FR 34439 - Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board Task Force on Nuclear Treaty... meetings. SUMMARY: The Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification will... Applications International Corporation, 4001 North Fairfax Drive, Suite 300, Arlington, VA. FOR FURTHER...

  7. Engineering Encounters: An Engineering Design Process for Early Childhood

    ERIC Educational Resources Information Center

    Lottero-Perdue, Pamela; Bowditch, Michelle; Kagan, Michelle; Robinson-Cheek, Linda; Webb, Tedra; Meller, Megan; Nosek, Theresa

    2016-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about trying (again) to engineer an egg package. Engineering is an essential part of science education, as emphasized in the "Next Generation Science Standards" (NGSS Lead States 2013). Engineering practices and performance…

  8. Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA

    ERIC Educational Resources Information Center

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-01-01

    The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…

  9. On intergenerational equity and its clash with intragenerational equity and on the need for policies to guide the regulation of disposal of wastes and other activities posing very long-term risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okrent, D.

    1999-10-01

    This article begins with some history of the derivation of 40 CFR Part 191, the US Environmental Protection Agency (EPA) standard that governs the geologic disposal of spent nuclear fuel and high-level and transuranic radioactive wastes. This is followed by criticisms of the standard that were made by a Sub-Committee of the EPA Science Advisory Board, by the staff of the US Nuclear Regulatory Commission, and by a penal of the National Academies of Science and Engineering. The large disparity in the EPA approaches to regulation of disposal of radioactive wastes and disposal of hazardous, long-lived, nonradioactive chemical waste ismore » illustrated. An examination of the intertwined matters of intergenerational equity and the discounting of future health effects follows, together with a discussion of the conflict between intergenerational equity and intragenerational equity. Finally, issues related to assumptions in the regulations concerning the future state of society and the biosphere are treated, as is the absence of any national philosophy or guiding policy for how to deal with societal activities that pose very long-term risks.« less

  10. Differentiating between Women in Hard and Soft Science and Engineering Disciplines

    ERIC Educational Resources Information Center

    Camp, Amanda G.; Gilleland, Diane S.; Pearson, Carolyn; Vander Putten, James

    2010-01-01

    The intent of this study was to investigate characteristics that differentiate between women in soft (social, psychological, and life sciences) and hard (engineering, mathematics, computer science, physical science) science and engineering disciplines. Using the Beginning Postsecondary Students Longitudinal Study: 1996-2001 (2002), a descriptive…

  11. 76 FR 4947 - Comment Request: National Science Foundation Proposal & Award Policies and Procedures Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... process; Programs to strengthen scientific and engineering research potential; Science and engineering..., authority to support applied research was added to the Organic Act. In 1980, The Science and Engineering... NATIONAL SCIENCE FOUNDATION Comment Request: National Science Foundation Proposal & Award Policies...

  12. Formative Assessment Probes: Pendulums and Crooked Swings--Connecting Science and Engineering

    ERIC Educational Resources Information Center

    Keeley, Page

    2013-01-01

    The "Next Generation Science Standards" provide opportunities for students to experience the link between science and engineering. In the December 2011 issue of "Science and Children," Rodger Bybee explains: "The relationship between science and engineering practices is one of complementarity. Given the inclusion of…

  13. Returning to the Moon: Building the Systems Engineering Base for Successful Science Missions

    NASA Astrophysics Data System (ADS)

    Eppler, D.; Young, K.; Bleacher, J.; Klaus, K.; Barker, D.; Evans, C.; Tewksbury, B.; Schmitt, H.; Hurtado, J.; Deans, M.; Yingst, A.; Spudis, P.; Bell, E.; Skinner, J.; Cohen, B.; Head, J.

    2018-04-01

    Enabling science return on future lunar missions will require coordination between the science community, design engineers, and mission operators. Our chapter is based on developing science-based systems engineering and operations requirements.

  14. Developing the Next Generation of Science Data System Engineers

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.

    2016-01-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data.This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.

  15. Developing the Next Generation of Science Data System Engineers

    NASA Astrophysics Data System (ADS)

    Moses, J. F.; Durachka, C. D.; Behnke, J.

    2015-12-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational data. This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.

  16. LANL continuity of operations plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senutovitch, Diane M

    2010-12-22

    The Los Alamos National Laboratory (LANL) is a premier national security research institution, delivering scientific and engineering solutions for the nation's most crucial and complex problems. Our primary responsibility is to ensure the safety, security, and reliability of the nation's nuclear stockpile. LANL emphasizes worker safety, effective operational safeguards and security, and environmental stewardship, outstanding science remains the foundation of work at the Laboratory. In addition to supporting the Laboratory's core national security mission, our work advances bioscience, chemistry, computer science, earth and environmental sciences, materials science, and physics disciplines. To accomplish LANL's mission, we must ensure that the Laboratorymore » EFs continue to be performed during a continuity event, including localized acts of nature, accidents, technological or attack-related emergencies, and pandemic or epidemic events. The LANL Continuity of Operations (COOP) Plan documents the overall LANL COOP Program and provides the operational framework to implement continuity policies, requirements, and responsibilities at LANL, as required by DOE 0 150.1, Continuity Programs, May 2008. LANL must maintain its ability to perform the nation's PMEFs, which are: (1) maintain the safety and security of nuclear materials in the DOE Complex at fixed sites and in transit; (2) respond to a nuclear incident, both domestically and internationally, caused by terrorist activity, natural disaster, or accident, including mobilizing the resources to support these efforts; and (3) support the nation's energy infrastructure. This plan supports Continuity of Operations for Los Alamos National Laboratory (LANL). This plan issues LANL policy as directed by the DOE 0 150.1, Continuity Programs, and provides direction for the orderly continuation of LANL EFs for 30 days of closure or 60 days for a pandemic/epidemic event. Initiation of COOP operations may be required to support an allhazards event, including a national security emergency, major fire, catastrophic natural disaster, man-made disaster, terrorism event, or technological disaster by rendering LANL buildings, infrastructure, or Technical Areas unsafe, temporarily unusable, or inaccessible.« less

  17. Sandia technology: Engineering and science applications

    NASA Astrophysics Data System (ADS)

    Maydew, M. C.; Parrot, H.; Dale, B. C.; Floyd, H. L.; Leonard, J. A.; Parrot, L.

    1990-12-01

    This report discusses: protecting environment, safety, and health; Sandia's quality initiative; Sandia vigorously pursues technology transfer; scientific and technical education support programs; nuclear weapons development; recognizing battlefield targets with trained artificial neural networks; battlefield robotics: warfare at a distance; a spinning shell sizes up the enemy; thwarting would-be nuclear terrorists; unattended video surveillance system for nuclear facilities; making the skies safer for travelers; onboard instrumentation system to evaluate performance of stockpile bombs; keeping track with lasers; extended-life lithium batteries; a remote digital video link acquires images securely; guiding high-performance missiles with laser gyroscopes; nonvolatile memory chips for space applications; initiating weapon explosives with lasers; next-generation optoelectronics and microelectronics technology developments; chemometrics: new methods for improving chemical analysis; research team focuses ion beam to record-breaking intensities; standardizing the volt to quantum accuracy; new techniques improve robotic software development productivity; a practical laser plasma source for generating soft x-rays; exploring metal grain boundaries; massively parallel computing; modeling the amount of desiccant needed for moisture control; attacking pollution with sunshine; designing fuel-conversion catalysts with computers; extending a nuclear power plant's useful life; plasma-facing components for the International Thermonuclear Experimental Reactor.

  18. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  19. Therapeutic and reproductive cloning: a critique.

    PubMed

    Bowring, Finn

    2004-01-01

    This article is a critical examination of the science and ethics of human cloning. It summarises the key scientific milestones in the development of nuclear transplantation, explains the importance of cloning to research into the medical potential of embryonic stem cells, and discusses the well-worn distinction between 'therapeutic' and 'reproductive' cloning. Suggesting that this distinction will be impossible to police, it goes on to consider the ethics of full human cloning. It is concluded that it represents an unacceptable form of parental despotism, and that the genetic engineering and cloning of future human beings will fracture the foundations of modern humanism.

  20. Abstracts for student symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, B.

    Lawrence Livermore National Laboratory Science and Engineering Research Semester (SERS) students are participants in a national program sponsored by the DOE Office of Energy Research. Presented topics from Fall 1993 include: Laser glass, wiring codes, lead in food and food containers, chromium removal from ground water, fiber optic sensors for ph measurement, CFC replacement, predator/prey simulation, detection of micronuclei in germ cells, DNA conformation, stimulated brillouin scattering, DNA sequencing, evaluation of education programs, neural network analysis of nuclear glass, lithium ion batteries, Indonesian snails, optical switching systems, and photoreceiver design. Individual papers are indexed separately on the Energy Data Base.

  1. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors crowd the NASA exhibits during the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, on the National Mall in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  2. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors to the USA Science and Engineering Festival look over the many exhibits, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  3. The Impact of Design-Based STEM Integration Curricula on Student Achievement in Engineering, Science, and Mathematics

    ERIC Educational Resources Information Center

    Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.

    2017-01-01

    The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering…

  4. 77 FR 24538 - Advisory Committee for Computer and Information Science And Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... Engineering; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as... Computer and Information Science and Engineering (1115). Date and Time: May 10, 2012 12 p.m.-5:30 p.m., May... Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Suite 1105, Arlington VA 22230...

  5. 76 FR 61118 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... Engineering; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as... Computer and Information Science and Engineering (1115). Date and Time: November 1, 2011 from 12 p.m.-5:30... Computer and Information Science and Engineering, National Science Foundation, 4201 Wilson Blvd., Suite...

  6. Examining Elementary School Students' Mental Models of Sun-Earth Relationships as a Result of Engaging in Engineering Design

    ERIC Educational Resources Information Center

    Dankenbring, Chelsey; Capobianco, Brenda M.

    2016-01-01

    Current reform efforts in science education in the United States call for students to learn science through the integration of science and engineering practices. Studies have examined the effect of engineering design on students' understanding of engineering, technology, and science concepts. However, the majority of studies emphasize the accuracy…

  7. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Participants look through telescopes to observe the Sun during the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  8. Associations and Committees of or for Women in Science, Engineering, Mathematics and Medicine.

    ERIC Educational Resources Information Center

    Aldrich, Michele, Comp.; Leach, Alicia, Comp.

    Provided is a list of associations and committees of or for women in science, engineering, mathematics, and medicine. The list is organized by discipline, with cross-referencing to cognate specialties. The disciplines include: anthropology; astronomy; atmospheric sciences; biology; chemistry; computer sciences; earth sciences; energy; engineering;…

  9. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    ERIC Educational Resources Information Center

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  10. Performance Criteria of Nuclear Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  11. Nuclear engineering enrollments and degrees, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, J R; Shirley, D L

    1982-05-01

    This report presents data on the number of students enrolled and the degrees awarded in academic year 1980-81 from 73 US institutions offering degree programs in nuclear engineering or nuclear options within other engineering fields. Presented here are historical data for the last decade, which provide information such as trends by degree level, foreign national student participation, female and minority student participation, and placement of graduates. Also included is a listing of the universities by type of program and number of students.

  12. Presentation Stations of the General Atomics Fusion Educational Program

    NASA Astrophysics Data System (ADS)

    Lee, R. L.; Fusion Group Education Outreach Team

    1996-11-01

    The General Atomics Fusion Group's Educational Program has been actively promoting fusion science and applications throughout San Diego County's secondary school systems for over three years. The educational program allows many students to learn more about nuclear fusion science, its applications, and what it takes to become an active participant in an important field of study. It also helps educators to better understand how to teach fusion science in their classroom. Tours of the DIII--D facility are a centerpiece of the program. Over 1000 students visited the DIII--D research facility during the 1995--1996 school year for a half-day of presentations, discussions, and hands-on learning. Interactive presentations are provided at six different stations by GA scientists and engineers to small groups of students during the tours. Stations include topics on energy, plasma science, the electromagnetic spectrum, radiation and risk assessment, and data acquisition. Included also is a tour of the DIII--D machine hall and model where students can see and discuss many aspects of the tokamak. Portions of each station will be presented and discussed.

  13. Copper Doping of Zinc Oxide by Nuclear Transmutation

    DTIC Science & Technology

    2014-03-27

    Copper Doping of Zinc Oxide by Nuclear Transmutation THESIS Matthew C. Recker, Captain, USAF AFIT-ENP-14-M-30 DEPARTMENT OF THE AIR FORCE AIR...NUCLEAR TRANSMUTATION THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...COPPER DOPING OF ZINC OXIDE BY NUCLEAR TRANSMUTATION Matthew C. Recker, BS Captain, USAF Approved: //signed// 27 February 2014 John W. McClory, PhD

  14. Women in science & engineering and minority engineering scholarships : year 5.

    DOT National Transportation Integrated Search

    2011-06-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  15. Women in science & engineering and minority engineering scholarships : year 4.

    DOT National Transportation Integrated Search

    2010-04-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  16. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  17. Early Program Development

    NASA Image and Video Library

    1963-01-01

    This artist's concept from 1963 shows a proposed NERVA (Nuclear Engine for Rocket Vehicle Application) incorporating the NRX-A1, the first NERVA-type cold flow reactor. The NERVA engine, based on Kiwi nuclear reactor technology, was intended to power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which Marshall Space Flight Center had development responsibility.

  18. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  19. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  20. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  1. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  2. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  3. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  4. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  5. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  6. 34 CFR 637.3 - What regulations apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineering Improvement Program? 637.3 Section 637.3 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.3 What regulations apply to the Minority Science and Engineering Improvement Program? The following regulations apply to the Minority Science and Engineering Improvement...

  7. 34 CFR 637.4 - What definitions apply to the Minority Science and Engineering Improvement Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineering Improvement Program? 637.4 Section 637.4 Education Regulations of the Offices of the Department of... ENGINEERING IMPROVEMENT PROGRAM General § 637.4 What definitions apply to the Minority Science and Engineering... American origin), Pacific Islander or other ethnic group underrepresented in science and engineering...

  8. Environmental Science and Engineering Merit Badges: An Exploratory Case Study of a Non-Formal Science Education Program and the U.S. Scientific and Engineering Practices

    ERIC Educational Resources Information Center

    Vick, Matthew E.; Garvey, Michael P.

    2016-01-01

    The Boy Scouts of America's Environmental Science and Engineering merit badges are two of their over 120 merit badges offered as a part of a non-formal educational program to U.S. boys. The Scientific and Engineering Practices of the U.S. Next Generation Science Standards provide a vision of science education that includes integrating eight…

  9. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to housemore » the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.« less

  10. Nuclear Science Teaching Aids and Activities.

    ERIC Educational Resources Information Center

    Woodburn, John H.

    This publication is a sourcebook for science teachers. It provides guides for basic laboratory work in nuclear energy, suggesting various teacher and student demonstrations. Ideas for science clubs, science fairs, and project research seminars are presented. Problem-solving activities for both science and mathematics classes are included, as well…

  11. Nuclear Science References Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritychenko, B., E-mail: pritychenko@bnl.gov; Běták, E.; Singh, B.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energymore » Agency (http://www-nds.iaea.org/nsr)« less

  12. The Congressional Science Fellow Program and Other Efforts to Help Congress and the Public Make Wiser Decisions on Technology

    NASA Astrophysics Data System (ADS)

    Primack, Joel

    2004-05-01

    For thirty years the AAAS Congressional Science and Technology Fellow Program, with which the APS program is affiliated, has been bringing scientists and engineers to work on the staffs of Congress. During the same period, many independent technology policy groups at universities, professional societies including the APS, and non-profit organizations have prepared excellent reports. But despite these efforts, U.S. science and technology policy is often terrible! For example, the current Administration contends that there is not enough scientific evidence of global warming to actually begin to do something to slow the growth in fossil fuel use, but there is plenty of evidence to support deploying a missile defense system now, and we need to be ready to test new generations of nuclear weapons. We scientists must develop a bigger public constituency for good decisions. We need to present, not only sound recommendations backed up by convincing studies, but also wise moral leadership.

  13. Argonne Chemical Sciences & Engineering - Awards Home

    Science.gov Websites

    Argonne National Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Computational Postdoctoral Fellowships Contact Us CSE Intranet Awards Argonne's Chemical Sciences and

  14. Environmental Science and Research Foundation annual technical report: Calendar year 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R.C.; Blew, R.D.

    1997-07-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The authors conduct an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provide environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research in the Idaho National Environmental Research Park. This research benefits major DOE-ID programs includingmore » Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. The major accomplishments of the Foundation and its University Affiliates during the calendar year 1996 are discussed.« less

  15. Using a 400 kV Van de Graaff accelerator to teach physics at West Point

    NASA Astrophysics Data System (ADS)

    Marble, D. K.; Bruch, S. E.; Lainis, T.

    1997-02-01

    A small accelerator visitation laboratory is being built at the United States Military Academy using two 400 kV Van de Graaff accelerators. This laboratory will provide quality teaching experiments and increased research opportunities for both faculty and cadets as well as enhancing the department's ability to teach across the curriculum by using nuclear techniques to solve problems in environmental engineering, material science, archeology, art, etc. This training enhances a students ability to enter non-traditional fields that are becoming a large part of the physics job market. Furthermore, a small accelerator visitation laboratory for high school students can stimulate student interest in science and provide an effective means of communicating the scientific method to a general audience. A discussion of the USMA facility, class experiments and student research projects will be presented.

  16. The Nexus between Science Literacy & Technical Literacy: A State by State Analysis of Engineering Content in State Science Standards

    ERIC Educational Resources Information Center

    Koehler, Catherine M.; Faraclas, Elias; Giblin, David; Moss, David M.; Kazerounian, Kazem

    2013-01-01

    This study explores how engineering concepts are represented in secondary science standards across the nation by examining how engineering and technical concepts are infused into these frameworks. Secondary science standards from 49 states plus the District of Columbia were analyzed and ranked based on how many engineering concepts were found.…

  17. Engineering Science--Raising Awareness of Engineering through Key Stage 3 (Age 11-14) Science

    ERIC Educational Resources Information Center

    Mannion, Ken

    2012-01-01

    During 2011, a team from the Centre for Science Education (CSE) worked with four local schools and five Sheffield city region engineering organisations on a project to identify ways to increase the input into young people's awareness of engineering that comes from activities they do in school science. The project also tested an hypothesis that…

  18. 76 FR 31642 - Committee on Equal Opportunities in Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering; Notice of... Engineering (1173). Dates/Time: June 13, 2011, 9 a.m.-4:30 p.m. June 14, 2011, 9 a.m.-2 p.m. Places: June 13... participation in science and engineering. Agenda Monday, June 13, 2011 Opening Statement by the CEOSE Chair...

  19. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Visitors to the USA Science and Engineering Festival look on at one of the many exhibits, Saturday, Oct. 23, 2010, on the National Mall in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  20. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Children react as a tiny Mars Rover rolls over their backs at the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  1. The founding of ISOTT: the Shamattawa of engineering science and medical science.

    PubMed

    Bruley, Duane F

    2014-01-01

    The founding of ISOTT was based upon the blending of Medical and Engineering sciences. This occurrence is portrayed by the Shamattawa, the joining of the Chippewa and Flambeau rivers. Beginning with Carl Scheele's discovery of oxygen, the medical sciences advanced the knowledge of its importance to physiological phenomena. Meanwhile, engineering science was evolving as a mathematical discipline used to define systems quantitatively from basic principles. In particular, Adolf Fick's employment of a gradient led to the formalization of transport phenomena. These two rivers of knowledge were blended to found ISOTT at Clemson/Charleston, South Carolina, USA, in 1973.The establishment of our society with a mission to support the collaborative work of medical scientists, clinicians and all disciplines of engineering was a supporting step in the evolution of bioengineering. Traditional engineers typically worked in areas not requiring knowledge of biology or the life sciences. By encouraging collaboration between medical science and traditional engineering, our society became one of the forerunners in establishing bioengineering as the fifth traditional discipline of engineering.

  2. Negotiating science and engineering: an exploratory case study of a reform-minded science teacher

    NASA Astrophysics Data System (ADS)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-05-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the perspective of the science teacher, this would require not only the development of knowledge and pedagogies associated with engineering, but also the construction of new identities operating within the reforms and within the context of their school. In this study, a middle school science teacher was observed and interviewed over a period of nine months to explore his experiences as he adopted new values, discourses, and practices and constructed his identity as a reform-minded science teacher. Our findings revealed that, as the teacher attempted to become a reform-minded science teacher, he constantly negotiated his professional identities - a dynamic process that created conflicts in his classroom practices. Several differences were observed between the teacher's science and engineering instruction: hands-on activities, depth and detail of content, language use, and the way the teacher positioned himself and his students with respect to science and engineering. Implications for science teacher professional development are discussed.

  3. A study of the historical role of African Americans in science, engineering and technology

    NASA Astrophysics Data System (ADS)

    Jones, Keith Wayne

    2000-11-01

    The purpose of this study was to determine if there is adequate documentation of an historical role of African and African American involvement in science, engineering, and technology. Through the use of history of science and technology research methodology, along with an examination of the sociological and economic impacts of adequately accredited innovations and inventions contributed by Africans and African Americans, the researcher investigated their contributions to the following areas of science and technology: life science, physical sciences and chemistry, engineering, and science education. In regard to the timeframe for this study, the researcher specifically investigated African and African American involvement in science and technology that includes periods prior to black enslavement, scientific racism and colonialism, as well as during and after those periods. This research study reveals that there are adequate historical data regarding African and African American contributions to science, engineering, and technology. The data reveals that for many millennia African peoples have been continually involved in science and world science histories. The data further show that the numbers of African Americans acquiring BS, MS, Ph.D., Doctor of Science and Doctor of Engineering degrees in science and engineering disciplines are increasing. That these increases are not happening at a rate representative of the present or future African American percentages of the population. Consequently, because of future changes in our nation's demographics, increasing the numbers of people from under-represented groups who pursue scientific and engineering professions has become a matter of national security at the highest levels of government. Moreover, African Americans, Hispanics, and Native Americans are not pursuing careers or taking courses in science and engineering at a rate high enough to fulfill the prospective needs for the United States' industries, government, and military. Projections are that, in the 21st century, there will be even greater needs for more scientists, engineers, information technologists, and other types of scientific workers. The data from this study indicate that more inclusive history of science and technology can be used as a means for encouraging more people from under-represented groups to become scientifically literate and to pursue science and engineering careers.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bily, T.

    Thermoluminescent dosimeters represent very useful tool for gamma fields parameters measurements at nuclear research reactors, especially at zero power ones. {sup 7}LiF:Mg,Ti and {sup 7}LiF:Mg,Cu,P type TL dosimeters enable determination of only gamma component in mixed neutron - gamma field. At VR-1 reactor operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague the integral characteristics of gamma rays field were investigated, especially its spatial distribution and time behaviour, i.e. the non-saturated delayed gamma ray emission influence. Measured spatial distributions were compared with monte carlo code MCNP5 calculations. Although MCNP cannot generate delayedmore » gamma rays from fission, the relative gamma dose rate distribution is within {+-} 15% with measured values. The experiments were carried out with core configuration C1 consisting of LEU fuel IRT-4M (19.7 %). (author)« less

  5. The Revised OB-1 Method for Metal-Water Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westfall, Robert Michael; Wright, Richard Q

    The OB-1 method for the calculation of the minimum critical mass (mcm) of fissile actinides in metal/water systems was described in a 2008 Nuclear Science and Engineering (NS&E) article. The purpose of the present work is to update and expand the application of this method with current nuclear data, including data uncertainties. The mcm and the hypothetical fissile metal density ({rho}{sub F}) in grams of metal/liter are obtained by a fit to values predicted with transport calculations. The input parameters required are thermal values for fission and absorption cross sections and nubar. A factor of ({radical}{pi})/2 is used to convertmore » to Maxwellian averaged values. The uncertainties for the fission and capture cross sections and the estimated nubar uncertainties are used to determine the uncertainties in the mcm, either in percent or grams.« less

  6. Radioisotope Electric Propulsion (REP): A Near-Term Approach to Nuclear Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2009-01-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  7. AMTD: Update of Engineering Specifications Derived from Science Requirements for Future UVOIR Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    AMTD is using a Science Driven Systems Engineering approach to develop Engineering Specifications based on Science Measurement Requirements and Implementation Constraints. Science requirements meet the needs of both Exoplanet and General Astrophysics science. Engineering Specifications are guiding our effort to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review.

  8. Reaching for the Horizon: The 2015 NSAC Long Range Plan

    NASA Astrophysics Data System (ADS)

    Geesaman, Donald

    2015-10-01

    In April 2014, the Nuclear Science Advisory Committee was charged to conduct a new study of the opportunities and priorities for United States nuclear physics research and to recommend a long range plan for the coordinated advancement of the Nation's nuclear science program over the next decade. The entire community actively contributed to developing this plan. Ideas and goals, new and old, were examined and community priorities were established. The Long Range Plan Working Group gathered at Kitty Hawk, NC to converge on the recommendations. In this talk I will discuss the vision for the future that has emerged from this process. The new plan, ``Reaching for the Horizon,'' offers the promise of great leaps forward in our understanding of nuclear science and new opportunities for nuclear science to serve society. This work was supported by the U. S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  9. Women in science & engineering and minority engineering scholarships : year 2 report for 2007-2008 activities.

    DOT National Transportation Integrated Search

    2008-08-01

    Support will make scholarships available to minority and women students interested in engineering and science and will increase : significantly the number of minority and female students that Missouri S&T can recruit to its science and engineering pr...

  10. Women in science & engineering and minority engineering scholarships : year 3, report for 2008-2009 activities.

    DOT National Transportation Integrated Search

    2009-05-01

    Support made scholarships available to minority and women students interested in engineering and science and significantly increased : the number of minority and female students that Missouri S&T can recruit to its science and engineering programs. R...

  11. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    NASA Astrophysics Data System (ADS)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  12. Science/Engineering: Open Doors

    NASA Technical Reports Server (NTRS)

    White, Susan; Arnold, James O. (Technical Monitor)

    1999-01-01

    Trends in American society are changing the role of women in science and engineering, but all the elements in our society change at different rates. Women, like men, must choose during their teenage years to continue their training in math or science, or they close the door that can lead them to futures in the interesting and satisfying fields of science and engineering. The key is to keep girls involved in the hard sciences through the adolescent crisis. Many mentoring and outreach programs exist to help young women cross this threshold. These programs include hands-on science experiences, mentoring or putting young women in contact with women scientists and engineers, and internships, Viewpoints and histories of contemporary women engineers are discussed.

  13. Make Room for Engineering

    ERIC Educational Resources Information Center

    Boesdorfer, Sarah; Greenhalgh, Scott

    2014-01-01

    The "Next Generation Science Standards" (NGSS Lead States 2013) urge science teachers to include engineering practices and ideas in their already full science curriculum, but many teachers do not know where to start. Only 7% of high school science teachers report feeling "very well prepared" to teach engineering. The…

  14. Interdisciplinary Team-Teaching Experience for a Computer and Nuclear Energy Course for Electrical and Computer Engineering Students

    ERIC Educational Resources Information Center

    Kim, Charles; Jackson, Deborah; Keiller, Peter

    2016-01-01

    A new, interdisciplinary, team-taught course has been designed to educate students in Electrical and Computer Engineering (ECE) so that they can respond to global and urgent issues concerning computer control systems in nuclear power plants. This paper discusses our experience and assessment of the interdisciplinary computer and nuclear energy…

  15. 78 FR 15009 - Consideration of Withdrawal From Commercial Production and Distribution of the Radioisotope...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... may be addressed to: Dr. Marc Garland, Program Manager, Office of Nuclear Physics, Office of Science... Management Division, Office of Nuclear Physics, Office of Science, U.S. Department of Energy, Germantown..., Office of Nuclear Physics, Office of Science. [FR Doc. 2013-05444 Filed 3-7-13; 8:45 am] BILLING CODE...

  16. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    A young girl watches as her paper airplane is flown in a small wind tunnel during the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  17. USA Science and Engineering Festival

    NASA Image and Video Library

    2010-10-22

    Priniciples of air flow are explained to visitors to the wind tunnel exhibit at the USA Science and Engineering Festival, Saturday, Oct. 23, 2010, at Freedom Plaza in Washington. NASA, joined with more than 500 science organizations this weekend to inspire the next generation of scientists and engineers during the first national science and engineering festival held in the nation's capital. Photo Credit: (NASA/Paul E. Alers)

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laughlin, Gary L.

    The International, Homeland, and Nuclear Security (IHNS) Program Management Unit (PMU) oversees a broad portfolio of Sandia’s programs in areas ranging from global nuclear security to critical asset protection. We use science and technology, innovative research, and global engagement to counter threats, reduce dangers, and respond to disasters. The PMU draws on the skills of scientists and engineers from across Sandia. Our programs focus on protecting US government installations, safeguarding nuclear weapons and materials, facilitating nonproliferation activities, securing infrastructures, countering chemical and biological dangers, and reducing the risk of terrorist threats. We conduct research in risk and threat analysis, monitoringmore » and detection, decontamination and recovery, and situational awareness. We develop technologies for verifying arms control agreements, neutralizing dangerous materials, detecting intruders, and strengthening resiliency. Our programs use Sandia’s High-Performance Computing resources for predictive modeling and simulation of interdependent systems, for modeling dynamic threats and forecasting adaptive behavior, and for enabling decision support and processing large cyber data streams. In this report, we highlight four advanced computation projects that illustrate the breadth of the IHNS mission space.« less

  19. Marketing Strategy and Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report documents the marketing campaign that has been designed for middle and high school students in New Mexico to increase interest in participation in national security careers at the National Nuclear Security Administration. This marketing campaign builds on the research that was previously conducted, as well as the focus groups that were conducted. This work is a part of the National Nuclear Security Preparedness Project (NSPP) being performed under a Department of Energy (DOE) / National Nuclear Security Administration (NNSA) grant. Outcome analysis was performed to determine appropriate marketing strategies. The analysis was based upon focus groups with middlemore » school and high school students, student interactions, and surveys completed by students to understand and gauge student interest in Science, Technology, Engineering, and Math (STEM) subjects, interest in careers at NNSA, future job considerations, and student desire to pursue post-secondary education. Further, through the focus groups, students were asked to attend a presentation on NNSA job opportunities and employee requirements. The feedback received from the students was utilized to develop the focus and components of the marketing campaign.« less

  20. 75 FR 22576 - Minority Science and Engineering Improvement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... DEPARTMENT OF EDUCATION [CFDA No. 84.120A] Minority Science and Engineering Improvement Program... the fiscal year (FY) 2009 grant slate for the Minority Science and Engineering Improvement Program... Engineering Improvement Program (MSEIP), authorized by Title III, Part E of the Higher Education Act of 1965...

  1. Is It Engineering or Not?

    ERIC Educational Resources Information Center

    Whitworth, Brooke A.; Wheeler, Lindsay B.

    2017-01-01

    With the widespread adoption of the "Next Generation Science Standards" (NGSS Lead States 2013), science teachers now aspire to integrate engineering into science instruction, as the standards suggest, yet many do not know how. The first steps are to define engineering and identify tasks that incorporate engineering, which can be…

  2. Stationary Engineering. Science Manual--2.

    ERIC Educational Resources Information Center

    Frost, Harold J.; Steingress, Frederick M.

    This second-year student manual contains 140 brief related science lessons applying science and math to trade activities in the field of stationary engineering. The lessons are organized into 16 units: (1) Introduction to Stationary Engineering, (2) Engineering Fundamentals, (3) Steam Boilers, (4) Boiler Fittings, (5) Boilerroom System, (6)…

  3. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    ERIC Educational Resources Information Center

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-01-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This…

  4. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  5. MSTD 2007 Publications and Patents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, W E

    2008-04-01

    The Materials Science and Technology Division (MSTD) supports the central scientific and technological missions of the Laboratory, and at the same time, executes world-class, fundamental research and novel technological development over a wide range of disciplines. Our organization is driven by the institutional needs in nuclear weapons stockpile science, high-energy-density science, nuclear reactor science, and energy and environment science and technology. We maintain expertise and capabilities in many diverse areas, including actinide science, electron microscopy, laser-materials interactions, materials theory, simulation and modeling, materials synthesis and processing, materials science under extreme conditions, ultrafast materials science, metallurgy, nanoscience and technology, nuclear fuelsmore » and energy security, optical materials science, and surface science. MSTD scientists play leadership roles in the scientific community in these key and emerging areas.« less

  6. 1976 annual summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-03-01

    Abstracts of papers published during the previous calendar year, arranged in accordance with the project titles used in the USDOE Schedule 189 Budget Proposals, are presented. The collection of abstracts supplements the listing of papers published in the Schedule 189. The following subject areas are represented: high-energy physics; nuclear physics; basic energy sciences (nuclear science, materials sciences, solid state physics, materials chemistry); molecular, mathematical, and earth sciences (fundamental interactions, processes and techniques, mathematical and computer sciences); environmental research and development; physical and technological studies (characterization, measurement and monitoring); and nuclear research and applications.

  7. 76 FR 8359 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... of Energy and National Science Foundation's Nuclear Physics Office. Status of the Isotopes Program... available on the U.S. Department of Energy's Office of Nuclear Physics Web site for viewing at: http://www...

  8. Science and Engineering Indicators 2010

    ERIC Educational Resources Information Center

    National Science Foundation, 2010

    2010-01-01

    The Science Indicators series was designed to provide a broad base of quantitative information about U.S. science, engineering, and technology for use by policymakers, researchers, and the general public. "Science and Engineering Indicators 2010" contains analyses of key aspects of the scope, quality, and vitality of the Nation's science…

  9. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    ScienceCinema

    Thomas D'Agostino

    2017-12-09

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  10. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    ScienceCinema

    Thomas D'Agostino

    2017-12-09

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  11. Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

    NASA Astrophysics Data System (ADS)

    Chan, V. S.; Costley, A. E.; Wan, B. N.; Garofalo, A. M.; Leuer, J. A.

    2015-02-01

    This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher BT and Ip can result in a high gain Qfus ˜ 12, Pfus ˜ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target.

  12. 77 FR 3073 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 [NRC-2008-0554] RIN 3150-AI35 American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases; Corrections AGENCY: Nuclear Regulatory... the American Society of Mechanical Engineers, Three Park Avenue, New York, NY 10016, phone (800) 843...

  13. A field release of genetically engineered gypsy moth (Lymantria dispar L.) Nuclear Polyhedrosis Virus (LdNPV)

    Treesearch

    Vincent D' Amico; Joseph S. Elkinton; John D. Podgwaite; James M. Slavicek; Michael L. McManus; John P. Burand

    1999-01-01

    The gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus was genetically engineered for nonpersistence by removal of the gene coding for polyhedrin production and stabilized using a coocclusion process. A β-galactosidase marker gene was inserted into the genetically engineered virus (LdGEV) so that infected larvae could be tested for...

  14. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  15. PREFACE: International Conference on Applied Sciences (ICAS2014)

    NASA Astrophysics Data System (ADS)

    Lemle, Ludovic Dan; Jiang, Yiwen

    2015-06-01

    The International Conference on Applied Sciences (ICAS2014) took place in Hunedoara, Romania from 2-4 October 2014 at the Engineering Faculty of Hunedoara. The conference takes place alternately in Romania and in P.R. China and is organized by "Politehnica" University of Timisoara, Romania, and Military Economics Academy of Wuhan, P.R. China, with the aim to serve as a platform for exchange of information between various areas of applied sciences and to promote the communication between scientists of different nations, countries and continents. The topics of the conference covered a comprehensive spectrum of issues: 1. Economical Sciences 2. Engineering Sciences 3. Fundamental Sciences 4. Medical Sciences The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has the potential for application in economics, defense, medicine, etc. There were nearly 100 registered participants from six countries, and four invited and 56 oral talks were delivered during the two days of the conference. Based on the work presented at the conference, selected papers are included in this volume of IOP Conference Series: Materials Science and Engineering. These papers present new research in the various fields of Materials Engineering, Mechanical Engineering, Computer Engineering, and Mathematical Engineering. It is our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering to the scientific community to promote further research in these areas. We sincerely hope that the papers published in this volume will contribute to the advancement of knowledge in their respective fields.

  16. Multiple case studies of STEM teachers' orientations to science teaching through engineering design

    NASA Astrophysics Data System (ADS)

    Rupp, Madeline

    The following master's thesis is composed of two manuscripts describing STEM teachers' orientations to science teaching through engineering within the context of the Science Learning through Engineering Design (SLED) partnership. The framework guiding both studies was science teaching orientations, a component of pedagogical content knowledge. Data were collected via semi-structured interviews, multi-day classroom observations, pre- and post-observation interviews, implementation plans, and written reflections. Data sources were analyzed to generate two orientations to science teaching through engineering design for each participant. The first manuscript illustrates a single case study conducted with a sixth grade STEM teacher. Results of this study revealed a detailed picture of the teacher's goals, practices, assessments, and general views when teaching science through engineering design. Common themes across the teacher's instruction were used to characterize her orientations to science teaching through engineering design. Overall, the teacher's orientations showed a shift in her practice from didactic to student-centered methods of teaching as a result of integrating engineering design-based curriculum. The second manuscript describes a comparative case study of two sixth grade SLED participants. Results of this study revealed more complex and diverse relationships between the teachers' orientations to teaching science through engineering design and their instruction. Participants' orientations served as filters for instruction, guided by their divergent purposes for science teaching. Furthermore, their orientations and resulting implementation were developed from knowledge gained in teacher education, implying that teacher educators and researchers can use this framework to learn more about how teachers' knowledge is used to integrate engineering and science practices in the K-12 classroom.

  17. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    NASA Astrophysics Data System (ADS)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  18. Los Alamos Neutron Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less

  19. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  20. DOE Chair of Excellence in Environmental Disciplines-Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurunganty, Sastry; Loran, Roberto; Roque-Malherbe, Rolando

    The report Massie Chair of Excellence Program at Universidad del Turabo, contract DE-FG02-95EW12610, during the period of 9/29/1995 to 9/29/2011. The initial program aims included development of academic programs in the Environmental Sciences and Engineering, and Research and Development focused initially on environmentally friendly processes and later revised also include: renewable energy and international cooperation. From 1995 -2005, the Program at UT lead the establishment of the new undergraduate program in electrical engineering at the School of Engineering (SoE), worked on requirements to achieve ABET accreditation of the SoE B.S. Mechanical Engineering and B.S. Electrical Engineering programs, mentored junior faculty,more » taught undergraduate courses in electrical engineering, and revised the electrical engineering curriculum. Engineering undergraduate laboratories were designed and developed. The following research sub-project was developed: Research and development of new perovskite-alumina hydrogen permeable asymmetrical nanostructured membranes for hydrogen purification, and extremely high specific surface area silica materials for hydrogen storage in the form of ammonia, Dr. Rolando Roque-Malherbe Subproject PI, Dr. Santander Nieto and Mr. Will Gómez Research Assistants. In 2006, the Massie Chair of Excellence Program was transferred to the National Nuclear Security Agency, NNSA and DNN. DoE required a revised proposal aligned with the priorities of the Administration. The revised approved program aims included: (1) Research (2) Student Development: promote the development of minority undergraduate and graduate students through research teams, internships, conferences, new courses; and, (3) Support: (a) Research administration and (b) Dissemination through international conferences, the UT Distinguished Lecturer Series in STEM fields and at the annual Universidad del Turabo (UT) Researchers Conference. Research included: Sub-Project 1: Synthesis and Characterization of low Refractive Index Aerogel Silica for Cherenkov Counters- Dr. Rolando Roque-Malherbe Sub-project PI, Dr. Jose Duconge Sub-project Co-PI, Dr. Santander Nieto Assistant Researcher, Francisco Diaz and Carlos Neira Associate Researchers. The initial aim of this sub-project was changed to the synthesis and characterization of extremely high specific surface area aerogel silica for gas storage. A high specific surface area silica gel that has applications in gas drying, cleaning operation useful in nuclear industry in process was developed. Sub-Project 2: Investigation Study of Magnetic and Electronic Transport Properties at Material Interfaces in Magnetic Multilayer Heterostructure using Gd. – Dr. Yazan Hijazi, Sub-project Co-PI. UT developed the capability and infrastructure to produce high quality thin-film magnetic films and magnetic multilayer structures with fine control over film quality and thickness using sputter deposition capability to perform in-house electric and magnetic characterization of these films. The research experimentally quantified the effect of Gd incorporation within the magnetic multilayer structure and produce magnetic media with exchanged decoupled multilevel magnetic anisotropy. From September 2006 to September 2011 the Massie Chair produced nineteen (19) publications, (including 3 books), five (5) presentations and three (3) international conferences abstracts. A total of fourteen (14) undergraduates and (6) graduate students acquired research experience. Two Ph.D. students presented their dissertations on topics related to nuclear energy and graduated as follows: María Cotto (May 2009) and Eric Calderón (May 2011). Five of the participating undergraduate students graduated: Ramon Polanco (BSME, May 2009), Jason Pérez (BSEE, May 2008), Rafael Colón (BSME, May 2008), Jessenia Marfisi (BS Chemistry, May 2008). Eleven (11) students were sent to National Laboratories (LANL, SNL and LLNL), NNSA and DoE facilities for summer internships. Twenty eight (28) undergraduate students participated in Summer Internships (2010, 2011) at the Puerto Rico Energy Center (PREC). Four international energy symposiums were held aligned with the DoE and the NNSA missions and dissemination of Massie Chair research activities (660 attendees). Academic programs developed or revised under advice of the Massie Chair: Ph.D. in Environmental Sciences (revised); MSc in Environmental Sciences (revised); MSc in Mechanical Engineering with concentration in Alternative Energy (new); BS in Industrial Management & Engineering (revised to fulfill the ABET requirements); BS in Civil Engineering including an environmental option (new); BS in Electrical Engineering (revised); and, Associate in Renewable Energy (new). The Puerto Rico Energy Center (PREC) was designed and developed under the Massie Chair initiative. Thirty-three (33) proposals were developed and submitted during the period of which 12 were approved in the amount of $ $1,931,306.« less

  1. Research opportunities with compact accelerator-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  2. PREFACE: International Conference on Applied Sciences 2015 (ICAS2015)

    NASA Astrophysics Data System (ADS)

    Lemle, Ludovic Dan; Jiang, Yiwen

    2016-02-01

    The International Conference on Applied Sciences ICAS2015 took place in Wuhan, China on June 3-5, 2015 at the Military Economics Academy of Wuhan. The conference is regularly organized, alternatively in Romania and in P.R. China, by Politehnica University of Timişoara, Romania, and Military Economics Academy of Wuhan, P.R. China, with the joint aims to serve as a platform for exchange of information between various areas of applied sciences, and to promote the communication between the scientists of different nations, countries and continents. The topics of the conference cover a comprehensive spectrum of issues from: >Economical Sciences and Defense: Management Sciences, Business Management, Financial Management, Logistics, Human Resources, Crisis Management, Risk Management, Quality Control, Analysis and Prediction, Government Expenditure, Computational Methods in Economics, Military Sciences, National Security, and others... >Fundamental Sciences and Engineering: Interdisciplinary applications of physics, Numerical approximation and analysis, Computational Methods in Engineering, Metallic Materials, Composite Materials, Metal Alloys, Metallurgy, Heat Transfer, Mechanical Engineering, Mechatronics, Reliability, Electrical Engineering, Circuits and Systems, Signal Processing, Software Engineering, Data Bases, Modeling and Simulation, and others... The conference gathered qualified researchers whose expertise can be used to develop new engineering knowledge that has applicability potential in Engineering, Economics, Defense, etc. The number of participants was 120 from 11 countries (China, Romania, Taiwan, Korea, Denmark, France, Italy, Spain, USA, Jamaica, and Bosnia and Herzegovina). During the three days of the conference four invited and 67 oral talks were delivered. Based on the work presented at the conference, 38 selected papers have been included in this volume of IOP Conference Series: Materials Science and Engineering. These papers present new research in the various fields of Materials Engineering, Mechanical Engineering, Computers Engineering, and Electrical Engineering. It's our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering to the scientific community to promote further research in these areas. We sincerely hope that the papers published in this volume will contribute to the advancement of knowledge in the respective fields.

  3. Benefiting Female Students in Science, Math, and Engineering: The Nuts and Bolts of Establishing a WISE (Women in Science and Engineering) Learning Community

    ERIC Educational Resources Information Center

    Pace, Diana; Witucki, Laurie; Blumreich, Kathleen

    2008-01-01

    This paper describes the rationale and the step by step process for setting up a WISE (Women in Science and Engineering) learning community at one institution. Background information on challenges for women in science and engineering and the benefits of a learning community for female students in these major areas are described. Authors discuss…

  4. 75 FR 14128 - Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Measurement Science and Engineering Program; Availability of Funds AGENCY: National Institute of Standards and... Measurement Science and Engineering Program. This program is intended to promote research, training, and... Visiting Fellow Measurement Science and Engineering Program are as follows: 1. To advance, through...

  5. Science & Engineering Indicators 2016. National Science Board

    ERIC Educational Resources Information Center

    National Science Foundation, 2016

    2016-01-01

    "Science and Engineering Indicators" (SEI) is first and foremost a volume of record comprising high-quality quantitative data on the U.S. and international science and engineering enterprise. SEI includes an overview and seven chapters that follow a generally consistent pattern. The chapter titles are as follows: (1) Elementary and…

  6. 78 FR 64255 - Committee on Equal Opportunities in Science and Engineering; Cancellation of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... NATIONAL SCIENCE FOUNDATION Committee on Equal Opportunities in Science and Engineering; Cancellation of Meeting SUMMARY: As a result of the impact of the recent government shutdown, the National... in Science and Engineering meeting. The public notice for this committee was published in the Federal...

  7. 78 FR 64255 - Advisory Committee for Computer and Information Science and Engineering; Cancellation of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Cancellation of Meeting SUMMARY: As a result of the impact of the recent government shutdown, the... Committee for Computer and Information Science and Engineering meeting. The public notice for this committee...

  8. 34 CFR 637.2 - Who is eligible to receive a grant?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.2 Who... defined in § 637.4; (3) Have a curriculum that includes science or engineering subjects; and (4) Enter... baccalaureate degrees in science and engineering. (c) Nonprofit science-oriented organizations, professional...

  9. 34 CFR 637.2 - Who is eligible to receive a grant?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.2 Who... defined in § 637.4; (3) Have a curriculum that includes science or engineering subjects; and (4) Enter... baccalaureate degrees in science and engineering. (c) Nonprofit science-oriented organizations, professional...

  10. 34 CFR 637.2 - Who is eligible to receive a grant?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.2 Who... defined in § 637.4; (3) Have a curriculum that includes science or engineering subjects; and (4) Enter... baccalaureate degrees in science and engineering. (c) Nonprofit science-oriented organizations, professional...

  11. 34 CFR 637.2 - Who is eligible to receive a grant?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.2 Who... defined in § 637.4; (3) Have a curriculum that includes science or engineering subjects; and (4) Enter... baccalaureate degrees in science and engineering. (c) Nonprofit science-oriented organizations, professional...

  12. 34 CFR 637.2 - Who is eligible to receive a grant?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM General § 637.2 Who... defined in § 637.4; (3) Have a curriculum that includes science or engineering subjects; and (4) Enter... baccalaureate degrees in science and engineering. (c) Nonprofit science-oriented organizations, professional...

  13. Optical Science and Engineering. New Directions and Opportunities in Research and Education. NSF Workshop (Arlington, VA, May 23-24, 1994).

    ERIC Educational Resources Information Center

    National Science Foundation, Arlington, VA.

    The National Science Foundation (NSF) workshop on Optical Science and Engineering was organized to examine approaches NSF could use to identify opportunities in optical science, engineering, and education that meet both the mission of NSF and its broader national goals. The workshop participants identified opportunities where optical science and…

  14. Nuclear Forensics for High School Science

    NASA Astrophysics Data System (ADS)

    Mader, Catherine; Doss, Heide; Plisch, Monica; Isola, Drew; Mirakovitz, Kathy

    2011-04-01

    We developed an education module on nuclear forensics, designed for high school science classrooms. The lessons include a mix of hands-on activities, computer simulations, and written exercises. Students are presented with realistic scenarios designed to develop their knowledge of nuclear science and its application to nuclear forensics. A two-day teacher workshop offered at Hope College attracted 20 teachers. They were loaned kits to implement activities with their students, and each teacher spent 3--7 days on the lessons. All who reported back said they would do it again and would share the lessons with colleagues. Many said that access to equipment and ready-made lessons enabled them to expand what they taught about nuclear science and introduce nuclear forensics. A few teachers invited guest speakers to their classroom, which provided an excellent opportunity to share career information with students. We acknowledge generous support from the Department of Homeland Security and the AIP Meggars Award.

  15. Does it matter what we call it?

    USDA-ARS?s Scientific Manuscript database

    Agronomy, soil science, plant science, crop science, agricultural science, computer science, environmental science, environmental engineering, agricultural and irrigation engineering, hydrology, meteorology – all are names that describe fields of study relevant to agriculture and the environment in ...

  16. Your Career and Nuclear Weapons: A Guide for Young Scientists and Engineers.

    ERIC Educational Resources Information Center

    Albrecht, Andreas; And Others

    This four-part booklet examines various issues related to nuclear weapons and how they will affect an individual working as a scientist or engineer. It provides information about the history of nuclear weapons, about the weapons industry which produces them, and about new weapons programs. Issues are raised so that new or future graduates may make…

  17. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  18. Teaching on Science, Technology and the Nuclear Arms Race.

    ERIC Educational Resources Information Center

    Schroeer, Dietrich

    1983-01-01

    Describes a course focusing on science, technology, and the nuclear arms race. Two sample homework exercises and course topics are provided. Topics, with lists of questions that might be addressed, focus on nuclear weapons, alternatives to deterrence, and arms control. Approaches to teaching about the nuclear arms race are also provided. (JN)

  19. Archival and Dissemination of the U.S. and Canadian Experimental Nuclear Reaction Data (EXFOR Project)

    NASA Astrophysics Data System (ADS)

    Pritychenko, Boris; Hlavac, Stanislav; Schwerer, Otto; Zerkin, Viktor

    2017-09-01

    The Exchange Format (EXFOR) or experimental nuclear reaction database and the associated Web interface provide access to the wealth of low- and intermediate-energy nuclear reaction physics data. This resource includes numerical data sets and bibliographical information for more than 22,000 experiments since the beginning of nuclear science. Analysis of the experimental data sets, recovery and archiving will be discussed. Examples of the recent developments of the data renormalization, uploads and inverse reaction calculations for nuclear science and technology applications will be presented. The EXFOR database, updated monthly, provides an essential support for nuclear data evaluation, application development and research activities. It is publicly available at the National Nuclear Data Center website http://www.nndc.bnl.gov/exfor and the International Atomic Energy Agency mirror site http://www-nds.iaea.org/exfor. This work was sponsored in part by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 with Brookha ven Science Associates, LLC.

  20. Radiological Protection and Nuclear Engineering Studies in Multi-MW Target Systems

    NASA Astrophysics Data System (ADS)

    Luis, Raul Fernandes

    Several innovative projects involving nuclear technology have emerged around the world in recent years, for applications such as spallation neutron sources, accelerator-driven systems for the transmutation of nuclear waste and radioactive ion beam (RIB) production. While the available neutron Wuxes from nuclear reactors did not increase substantially in intensity over the past three decades, the intensities of neutron sources produced in spallation targets have increased steadily, and should continue to do so during the 21st century. Innovative projects like ESS, MYRRHA and EURISOL lie at the forefront of the ongoing pursuit for increasingly bright neutron sources; driven by proton beams with energies up to 2 GeV and intensities up to several mA, the construction of their proposed facilities involves complex Nuclear Technology and Radiological Protection design studies executed by multidisciplinary teams of scientists and engineers from diUerent branches of Science. The intense neutron Wuxes foreseen for those facilities can be used in several scientiVc research Velds, such as Nuclear Physics and Astrophysics, Medicine and Materials Science. In this work, the target systems of two facilitites for the production of RIBs using the Isotope Separation On-Line (ISOL) method were studied in detail: ISOLDE, operating at CERN since 1967, and EURISOL, the next-generation ISOL facility to be built in Europe. For the EURISOL multi-MW target station, a detailed study of Radiological Protection was carried out using the Monte Carlo code FLUKA. Simulations were done to assess neutron Wuences, Vssion rates, ambient dose equivalent rates during operation and after shutdown and the production of radioactive nuclei in the targets and surrounding materials. DiUerent materials were discussed for diUerent components of the target system, aiming at improving its neutronics performance while keeping the residual activities resulting from material activation as low as possible. The second goal of this work was to perform an optimisation study for the ISOLDE neutron converter and Vssion target system. The target system was simulated using FLUKA and the cross section codes TALYS and ABRABLA, with the objective of maximising the performance of the system for the production of pure beams of neutron-rich isotopes, suppressing the contaminations by undesired neutron-deficient isobars. Two alternative target systems were proposed in the optimisation studies; the simplest of the two, with some modiVcations, was built as a prototype and tested at ISOLDE. The experimental results clearly show that it is possible, with simple changes in the layouts of the target systems, to produce purer beams of neutron-rich isotopes around the doubly magic nuclei 78Ni and 132Sn. A study of Radiological Protection was also performed, comparing the performances of the prototype target system and the standard ISOLDE target system. None

  1. Public Outreach of the South Texas Health Physic Society and Texas A&M University Nuclear Engineering Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, R. O.

    In a cooperative effort of the members of the South Texas Chapter of the Heath Physics Society (STC-HPS) and the Texas A&M University Nuclear Engineering Department, great efforts have been made to reach out and provide educational opportunities to members of the general public, school age children, and specifically teachers. These efforts have taken the form of Science Teacher Workshops (STW), visits to schools all over the state of Texas, public forums, and many other educational arenas. A major motivational factor for these most recent efforts can be directly tied to the attempt of the State of Texas to sitemore » a low-level radioactive waste facility near Sierra Blanca in West Texas. When the State of Texas first proposed to site a low level radioactive waste site after the Low-Level Radioactive Waste Policy Act of 1980 was passed, many years of political struggle ensued. Finally, a site at Sierra Blanca in far West Texas was selected for study and characterization for a disposal site for waste generated in the Texas Compact states of Maine, Vermont and Texas. During this process, the outreach to and education of the local public became a paramount issue.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizwan-uddin

    Recently, various branches of engineering and science have seen a rapid increase in the number of dynamical analyses undertaken. This modern phenomenon often obscures the fact that such analyses were sometimes carried out even before the current trend began. Moreover, these earlier analyses, which even now seem very ingenuous, were carried out at a time when the available information about dynamical systems was not as well disseminated as it is today. One such analysis, carried out in the early 1960s, showed the existence of stable limit cycles in a simple model for space-independent xenon dynamics in nuclear reactors. The authors,more » apparently unaware of the now well-known bifurcation theorem by Hopf, could not numerically discover unstable limit cycles, though they did find regions in parameter space where the fixed points are stable for small perturbations but unstable for very large perturbations. The analysis was carried out both analytically and numerically. As a tribute to these early nonlinear dynamicists in the field of nuclear engineering, in this paper, the Hopf theorem and its conclusions are briefly described, and then the solution of the space-independent xenon oscillation problem is presented, which was obtained using the bifurcation analysis BIFDD code. These solutions are presented along with a discussion of the earlier results.« less

  3. Reaching Students: What Research Says about Effective Instruction in Undergraduate Science and Engineering

    ERIC Educational Resources Information Center

    Kober, Nancy

    2015-01-01

    The undergraduate years are a turning point in producing scientifically literate citizens and future scientists and engineers. Evidence from research about how students learn science and engineering shows that teaching strategies that motivate and engage students will improve their learning. So how do students best learn science and engineering?…

  4. Distance Learning and Skill Acquisition in Engineering Sciences: Present State and Prospects

    ERIC Educational Resources Information Center

    Potkonjak, Veljko; Jovanovic, Kosta; Holland, Owen; Uhomoibhi, James

    2013-01-01

    Purpose: The purpose of this paper is to present an improved concept of software-based laboratory exercises, namely a Virtual Laboratory for Engineering Sciences (VLES). Design/methodology/approach: The implementation of distance learning and e-learning in engineering sciences (such as Mechanical and Electrical Engineering) is still far behind…

  5. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  6. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  7. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  8. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... knowledge and understanding in science and engineering, rather than the practical application of that... part, basic research includes: (1) Research-related, science and engineering education, including... to enhance the infrastructure for science and engineering research. Claim. A written demand or...

  9. The role of ethics in science and engineering.

    PubMed

    Johnson, Deborah G

    2010-12-01

    It is generally thought that science and engineering should never cross certain ethical lines. The idea connects ethics to science and engineering, but it frames the relationship in a misleading way. Moral notions and practices inevitably influence and are influenced by science and engineering. The important question is how such interactions should take place. Anticipatory ethics is a new approach that integrates ethics into technological development. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Reactor engineering support of operations at the Davis-Besse nuclear power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, D.B.

    1995-12-31

    Reactor engineering functions differ greatly from unit to unit; however, direct support of the reactor operators during reactor startups and operational transients is common to all units. This paper summarizes the support the reactor engineers provide the reactor operators during reactor startups and power changes through the use of automated computer programs at the Davis-Besse nuclear power station.

  11. A Report of the Nuclear Engineering Division Sessions at the 1971 ASEE Annual Conference

    ERIC Educational Resources Information Center

    Eckley, Wayne; Nelson, George W.

    1972-01-01

    Summarizes the discussions at the conference under the topics, Objective Criteria for the Future" and Teaching Concepts Basic to Nuclear Engineering." Includes comments from personnel representing universities, industries, and government laboratories. (TS)

  12. MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Projections of Science and Engineering Doctorate Supply and Utilization 1982 and 1987.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    This report represents the National Science Foundation's fourth projection analysis of science and engineering doctorate supply and utilization through 1987. The 1979 study incorporates the effect of the domestic market for highly trained science and engineering (S/E) personnel upon the numbers of S/E doctorates awarded by American universities.…

  14. Student Interest in Engineering Design-Based Science

    ERIC Educational Resources Information Center

    Selcen Guzey, S.; Moore, Tamara J.; Morse, Gillian

    2016-01-01

    Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K-12 science education standards. However, there is relatively little is known about effective ways…

  15. 78 FR 61870 - Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-04

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering; Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended... Committee for Computer and Information Science and Engineering (1115). Date/Time: Oct 31, 2013: 12:30 p.m...

  16. 78 FR 79014 - Advisory Committee for Computer and Information Science and Engineering Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Computer and Information Science and Engineering Notice of Meeting In accordance with Federal Advisory Committee Act (Pub. L. 92-463, as amended... and Information Science and Engineering (1115) DATE/TIME: January 14, 2014, 3:00 p.m. to 5:00 p.m...

  17. Conference on Nuclear Energy and Science for the 21st Century: Atoms for Peace Plus Fifty - Washington, D.C., October 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfaltzgraff, Robert L

    2006-10-22

    This conference's focus was the peaceful uses of the atom and their implications for nuclear science, energy security, nuclear medicine and national security. The conference also provided the setting for the presentation of the prestigious Enrico Fermi Prize, a Presidential Award which recognizes the contributions of distinguished members of the scientific community for a lifetime of exceptional achievement in the science and technology of nuclear, atomic, molecular, and particle interactions and effects. An impressive group of distinguished speakers addressed various issues that included: the impact and legacy of the Eisenhower Administration’s “Atoms for Peace” concept, the current and future rolemore » of nuclear power as an energy source, the challenges of controlling and accounting for existing fissile material, and the horizons of discovery for particle or high-energy physics. The basic goal of the conference was to examine what has been accomplished over the past fifty years as well as to peer into the future to gain insights into what may occur in the fields of nuclear energy, nuclear science, nuclear medicine, and the control of nuclear materials.« less

  18. Mentor awards

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The Association of Women in Science (AWIS) and the American Indian Science and Engineering Society (AISES) were two of 19 institutions and individuals that received presidential awards for excellence in science, mathematics, and engineering mentoring, on September 11.Neal Lane, Director of the National Science Foundation, says the awards, which include $10,000 grants, recognize “individuals and institutions working to heighten the participation of underrepresented groups in science, mathematics, and engineering.”

  19. Plutonium: Advancing our Understanding to Support Sustainable Nuclear Fuel Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Amanda M.; Adami, Susan R.; Casella, Amanda

    With Global energy needs increasing, real energy solutions to meet demands now, are needed. Fossil fuels are not an ideal candidate to meet these needs because of their negative impact on the environment. Renewables such as wind and solar have huge potential, but still need major technological advancements (particularly in the area of battery storage) before they can effectively meet growing world needs. The best option for meeting large energy needs without a large carbon footprint is nuclear energy. Of course, nuclear energy can face a fair amount of opposition and concern. However, through modern engineering and science many ofmore » these concerns can now be addressed. Many safety concerns can be met by engineering advancements, but perhaps the biggest area of concern is what to do with the used nuclear fuel after it is removed from the reactor. Currently the United States (and several other countries) utilize an open fuel cycle, meaning fuel is only used once and then discarded. It should be noted that fuel coming out of a reactor has utilized approximately 1% of the total energy that could be produced by the uranium in the fuel rod. The answer here is to close the fuel cycle and recycle the nuclear materials. By reprocessing used nuclear fuel, all the U can be repurposed without requiring disposal. The various fission products can be removed and either discarded (hugely reduced waste volume) or more reasonably, utilized in specialty reactors to make more energy or needed research/medical isotopes. While reprocessing technology is currently advanced enough to meet energy needs, completing research to improve and better understand these techniques is still needed. Better understanding behavior of fission products is one area of important research. Despite it being discovered over 75 years ago, plutonium is still an exciting element to study because of the complex solution chemistry it exhibits. In aqueous solutions Pu can exist simultaneously in multiple oxidation states, including 3+, 4+, and 6+. It also readily forms a variety of metal-ligand complexes depending on solution pH and available ligands. Understanding of the behavior of Pu in solution remains an important area of research today, with relevance to developing sustainable nuclear fuel cycles, minimizing its impact on the environment, and detecting and preventing the spread of nuclear weapons technology.« less

  20. Evaluation of the Retrieval of Nuclear Science Document References Using the Universal Decimal Classification as the Indexing Language for a Computer-Based System

    ERIC Educational Resources Information Center

    Atherton, Pauline; And Others

    A single issue of Nuclear Science Abstracts, containing about 2,300 abstracts, was indexed by Universal Decimal Classification (UDC) using the Special Subject Edition of UDC for Nuclear Science and Technology. The descriptive cataloging and UDC-indexing records formed a computer-stored data base. A systematic random sample of 500 additional…

Top