Sample records for nuclear envelope

  1. Condensins exert force on chromatin-nuclear envelope tethers to mediate nucleoplasmic reticulum formation in Drosophila melanogaster.

    PubMed

    Bozler, Julianna; Nguyen, Huy Q; Rogers, Gregory C; Bosco, Giovanni

    2014-12-30

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. Copyright © 2015 Bozler et al.

  2. Condensins Exert Force on Chromatin-Nuclear Envelope Tethers to Mediate Nucleoplasmic Reticulum Formation in Drosophila melanogaster

    PubMed Central

    Bozler, Julianna; Nguyen, Huy Q.; Rogers, Gregory C.; Bosco, Giovanni

    2014-01-01

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. PMID:25552604

  3. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maric, Martina; Haugo, Alison C.; Dauer, William

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but ismore » enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.« less

  4. Nuclear envelope: positioning nuclei and organizing synapses

    PubMed Central

    Razafsky, David; Hodzic, Didier

    2015-01-01

    The nuclear envelope plays an essential role in nuclear positioning within cells and tissues. This review highlights advances in understanding the mechanisms of nuclear positioning during skeletal muscle and central nervous system development. New findings, particularly about Atype lamins and Nesprin1, may link nuclear envelope integrity to synaptic integrity. Thus synaptic defects, rather than nuclear mispositioning, may underlie human pathologies associated with mutations of nuclear envelope proteins. PMID:26079712

  5. Identification of a major polypeptide of the nuclear pore complex

    PubMed Central

    1982-01-01

    The nuclear pore complex is a prominent structural component of the nuclear envelope that appears to regulate nucleoplasmic molecular movement. Up to now, none of its polypeptides have been defined. To identify possible pore complex proteins, we fractionated rat liver nuclear envelopes and microsomal membranes with strong protein perturbants into peripheral and intrinsic membrane proteins, and compared these fractions on SDS gels. From this analysis, we identified a prominent 190-kilodalton intrinsic membrane polypeptide that occurs specifically in nuclear envelopes. Lectin binding studies indicate that this polypeptide (gp 190) is the major nuclear envelope glycoprotein. Upon treatment of nuclear envelopes with Triton X-100, gp 190 remains associated with a protein substructure of the nuclear envelope consisting of pore complexes and nuclear lamina. We prepared monospecific antibodies to gp 190 for immunocytochemical localization. Immunofluorescence staining of tissue culture cells suggests that gp 190 occurs exclusively in the nucleus during interphase. This polypeptide becomes dispersed throughout the cell in mitotic prophase when the nuclear envelope is disassembled, and subsequently returns to the nuclear surfaces during telophase when the nuclear envelope is reconstructed. Immunoferritin labeling of Triton-treated rat liver nuclei demonstrates that gp 190 occurs exclusively in the nuclear pore complex, in the regions of the cytoplasmic (and possibly nucleoplasmic) pore complex annuli. A polypeptide that cross-reacts with gp 190 is present in diverse vertebrate species, as shown by antibody labeling of nitrocellulose SDS gel transfers. On the basis of its biochemical characteristics, we suggest that gp 190 may be involved in anchoring the pore complex to nuclear envelope membranes. PMID:7153248

  6. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins.

    PubMed

    Maric, Martina; Haugo, Alison C; Dauer, William; Johnson, David; Roller, Richard J

    2014-07-01

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models.

    PubMed

    Yokoi, Fumiaki; Dang, Mai T; Zhou, Tong; Li, Yuqing

    2012-02-15

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ε-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ε-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ε-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ε-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients.

  8. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Zhou, Tong; Li, Yuqing

    2012-01-01

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ɛ-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ɛ-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ɛ-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ɛ-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients. PMID:22080833

  9. Vesicular PtdIns(3,4,5)P3 and Rab7 are key effectors of sea urchin zygote nuclear membrane fusion.

    PubMed

    Lete, Marta G; Byrne, Richard D; Alonso, Alicia; Poccia, Dominic; Larijani, Banafshé

    2017-01-15

    Regulation of nuclear envelope dynamics is an important example of the universal phenomena of membrane fusion. The signalling molecules involved in nuclear membrane fusion might also be conserved during the formation of both pronuclear and zygote nuclear envelopes in the fertilised egg. Here, we determine that class-I phosphoinositide 3-kinases (PI3Ks) are needed for in vitro nuclear envelope formation. We show that, in vivo, PtdIns(3,4,5)P 3 is transiently located in vesicles around the male pronucleus at the time of nuclear envelope formation, and around male and female pronuclei before membrane fusion. We illustrate that class-I PI3K activity is also necessary for fusion of the female and male pronuclear membranes. We demonstrate, using coincidence amplified Förster resonance energy transfer (FRET) monitored using fluorescence lifetime imaging microscopy (FLIM), a protein-lipid interaction of Rab7 GTPase and PtdIns(3,4,5)P 3 that occurs during pronuclear membrane fusion to create the zygote nuclear envelope. We present a working model, which includes several molecular steps in the pathways controlling fusion of nuclear envelope membranes. © 2017. Published by The Company of Biologists Ltd.

  10. Automated analysis of cell migration and nuclear envelope rupture in confined environments.

    PubMed

    Elacqua, Joshua J; McGregor, Alexandra L; Lammerding, Jan

    2018-01-01

    Recent in vitro and in vivo studies have highlighted the importance of the cell nucleus in governing migration through confined environments. Microfluidic devices that mimic the narrow interstitial spaces of tissues have emerged as important tools to study cellular dynamics during confined migration, including the consequences of nuclear deformation and nuclear envelope rupture. However, while image acquisition can be automated on motorized microscopes, the analysis of the corresponding time-lapse sequences for nuclear transit through the pores and events such as nuclear envelope rupture currently requires manual analysis. In addition to being highly time-consuming, such manual analysis is susceptible to person-to-person variability. Studies that compare large numbers of cell types and conditions therefore require automated image analysis to achieve sufficiently high throughput. Here, we present an automated image analysis program to register microfluidic constrictions and perform image segmentation to detect individual cell nuclei. The MATLAB program tracks nuclear migration over time and records constriction-transit events, transit times, transit success rates, and nuclear envelope rupture. Such automation reduces the time required to analyze migration experiments from weeks to hours, and removes the variability that arises from different human analysts. Comparison with manual analysis confirmed that both constriction transit and nuclear envelope rupture were detected correctly and reliably, and the automated analysis results closely matched a manual analysis gold standard. Applying the program to specific biological examples, we demonstrate its ability to detect differences in nuclear transit time between cells with different levels of the nuclear envelope proteins lamin A/C, which govern nuclear deformability, and to detect an increase in nuclear envelope rupture duration in cells in which CHMP7, a protein involved in nuclear envelope repair, had been depleted. The program thus presents a versatile tool for the study of confined migration and its effect on the cell nucleus.

  11. Role of the nuclear envelope in the pathogenesis of age-related bone loss and osteoporosis

    PubMed Central

    Vidal, Christopher; Bermeo, Sandra; Fatkin, Diane; Duque, Gustavo

    2012-01-01

    The nuclear envelope is the most important border in the eukaryotic cell. The role of the nuclear envelope in cell differentiation and function is determined by a constant interaction between the elements of the nuclear envelope and the transcriptional regulators involved in signal transcription pathways. Among those components of the nuclear envelope, there is a growing evidence that changes in the expression of A-type lamins, which are essential components of the nuclear lamina, are associated with age-related changes in bone affecting the capacity of differentiation of mesenchymal stem cells into osteoblasts, favoring adipogenesis and affecting the function and survival of the osteocytes. Overall, as A-type lamins are considered as the 'guardians of the soma', these proteins are also essential for the integrity and quality of the bone and pivotal for the longevity of the musculoskeletal system. PMID:23951459

  12. Three-Dimensional Reconstruction of Nuclear Envelope Architecture Using Dual-Color Metal-Induced Energy Transfer Imaging.

    PubMed

    Chizhik, Anna M; Ruhlandt, Daja; Pfaff, Janine; Karedla, Narain; Chizhik, Alexey I; Gregor, Ingo; Kehlenbach, Ralph H; Enderlein, Jörg

    2017-12-26

    The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs), which are embedded in the nuclear envelope, control transport of macromolecules between the two compartments. Here, using dual-color metal-induced energy transfer (MIET), we determine the axial distance between Lap2β and Nup358 as markers for the inner nuclear membrane and the cytoplasmic side of the NPC, respectively. Using MIET imaging, we reconstruct the 3D profile of the nuclear envelope over the whole basal area, with an axial resolution of a few nanometers. This result demonstrates that optical microscopy can achieve nanometer axial resolution in biological samples and without recourse to complex interferometric approaches.

  13. Venture from the Interior-Herpesvirus pUL31 Escorts Capsids from Nucleoplasmic Replication Compartments to Sites of Primary Envelopment at the Inner Nuclear Membrane.

    PubMed

    Bailer, Susanne M.

    2017-11-25

    Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.

  14. The nuclear envelope from basic biology to therapy.

    PubMed

    Worman, Howard J; Foisner, Roland

    2010-02-01

    The nuclear envelope has long been a focus of basic research for a highly specialized group of cell biologists. More recently, an expanding group of scientists and physicians have developed a keen interest in the nuclear envelope since mutations in the genes encoding lamins and associated proteins have been shown to cause a diverse range of human diseases often called laminopathies or nuclear envelopathies. Most of these diseases have tissue-selective phenotypes, suggesting that the nuclear envelope must function in cell-type- and developmental-stage-specific processes such as chromatin organization, regulation of gene expression, controlled nucleocytoplasmic transport and response to stress in metazoans. On 22-23 April 2009, Professor Christopher Hutchison organized the 4th British Nuclear Envelope Disease and Chromatin Organization meeting at the College of St Hild and St Bede at Durham University, sponsored by the Biochemical Society. In attendance were investigators with one common interest, the nuclear envelope, but with diverse expertise and training in animal and plant cell biology, genetics, developmental biology and medicine. We were each honoured to be keynote speakers. This issue of Biochemical Society Transactions contains papers written by some of the presenters at this scientifically exciting meeting, held in a bucolic setting where the food was tasty and the wine flowed freely. Perhaps at the end of this excellent meeting more questions were raised than answered, which will stimulate future research. However, what became clear is that the nuclear envelope is a cellular structure with critical functions in addition to its traditional role as a barrier separating the nuclear and cytoplasmic compartments in interphase eukaryotic cells.

  15. Histone-poly(A) hybrid molecules as tools to block nuclear pores.

    PubMed

    Cremer, G; Wojtech, E; Kalbas, M; Agutter, P S; Prochnow, D

    1995-04-01

    Histone-poly(A) hybrid molecules were used for transport experiments with resealed nuclear envelopes and after attachment of a cleavable cross-linker (SASD) to identify nuclear proteins. In contrast to histones, the hybrid molecules cannot be accumulated in resealed nuclear envelopes, and in contrast to poly(A), the export of hybrids from preloaded nuclear envelopes is completely impaired. The experiments strongly confirm the existence of poly(A) as an export signal in mRNA which counteracts the nuclear location signals (NLS) in histones. The contradicting transport signals in the hybrid molecules impair translocation through the nuclear pore complex. The failure to accumulate hybrid molecules into resealed nuclear envelopes results from the covalent attachment of polyadenylic acid to histones in a strict 1:1 molar ratio. This was demonstrated in control transport experiments where radiolabeled histones were simply mixed with nonlabeled poly(A) or radiolabeled poly(A) mixed with nonlabeled histones. In comparison, control uptake experiments with histones covalently linked to a single UMP-mononucleotide are strongly enhanced. Such controls exclude the conceivable possibility of a simple masking of the nuclear location signal in the histones by the covalent attached poly(A) moiety. Photoreactive histone-poly(A) hybrid analogs serve to identify nuclear envelope proteins--presumably in the nuclear pore--with molecular weights of 110, 80, and 71.4 kDa.

  16. Genetics Home Reference: triple A syndrome

    MedlinePlus

    ... understood. Within cells, ALADIN is found in the nuclear envelope, the structure that surrounds the nucleus and ... protein from reaching its proper location in the nuclear envelope. The absence of ALADIN in the nuclear ...

  17. Overexpression of the lamina proteins Lamin and Kugelkern induces specific ultrastructural alterations in the morphology of the nuclear envelope of intestinal stem cells and enterocytes.

    PubMed

    Petrovsky, Roman; Krohne, Georg; Großhans, Jörg

    2018-03-01

    The nuclear envelope has a stereotypic morphology consisting of a flat double layer of the inner and outer nuclear membrane, with interspersed nuclear pores. Underlying and tightly linked to the inner nuclear membrane is the nuclear lamina, a proteinous layer of intermediate filament proteins and associated proteins. Physiological, experimental or pathological alterations in the constitution of the lamina lead to changes in nuclear morphology, such as blebs and lobulations. It has so far remained unclear whether the morphological changes depend on the differentiation state and the specific lamina protein. Here we analysed the ultrastructural morphology of the nuclear envelope in intestinal stem cells and differentiated enterocytes in adult Drosophila flies, in which the proteins Lam, Kugelkern or a farnesylated variant of LamC were overexpressed. Surprisingly, we detected distinct morphological features specific for the respective protein. Lam induced envelopes with multiple layers of membrane and lamina, surrounding the whole nucleus whereas farnesylated LamC induced the formation of a thick fibrillary lamina. In contrast, Kugelkern induced single-layered and double-layered intranuclear membrane structures, which are likely be derived from infoldings of the inner nuclear membrane or of the double layer of the envelope. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. STEF/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear actin cap.

    PubMed

    Woroniuk, Anna; Porter, Andrew; White, Gavin; Newman, Daniel T; Diamantopoulou, Zoi; Waring, Thomas; Rooney, Claire; Strathdee, Douglas; Marston, Daniel J; Hahn, Klaus M; Sansom, Owen J; Zech, Tobias; Malliri, Angeliki

    2018-05-29

    The perinuclear actin cap is an important cytoskeletal structure that regulates nuclear morphology and re-orientation during front-rear polarisation. The mechanisms regulating the actin cap are currently poorly understood. Here, we demonstrate that STEF/TIAM2, a Rac1 selective guanine nucleotide exchange factor, localises at the nuclear envelope, co-localising with the key perinuclear proteins Nesprin-2G and Non-muscle myosin IIB (NMMIIB), where it regulates perinuclear Rac1 activity. We show that STEF depletion reduces apical perinuclear actin cables (a phenotype rescued by targeting active Rac1 to the nuclear envelope), increases nuclear height and impairs nuclear re-orientation. STEF down-regulation also reduces perinuclear pMLC and decreases myosin-generated tension at the nuclear envelope, suggesting that STEF-mediated Rac1 activity regulates NMMIIB activity to promote stabilisation of the perinuclear actin cap. Finally, STEF depletion decreases nuclear stiffness and reduces expression of TAZ-regulated genes, indicating an alteration in mechanosensing pathways as a consequence of disruption of the actin cap.

  19. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    PubMed

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.

  20. Structural and functional adaptations of the mammalian nuclear envelope to meet the meiotic requirements.

    PubMed

    Link, Jana; Jahn, Daniel; Alsheimer, Manfred

    2015-01-01

    Numerous studies in the past years provided definite evidence that the nuclear envelope is much more than just a simple barrier. It rather constitutes a multifunctional platform combining structural and dynamic features to fulfill many fundamental functions such as chromatin organization, regulation of transcription, signaling, but also structural duties like maintaining general nuclear architecture and shape. One additional and, without doubt, highly impressive aspect is the recently identified key function of selected nuclear envelope components in driving meiotic chromosome dynamics, which in turn is essential for accurate recombination and segregation of the homologous chromosomes. Here, we summarize the recent work identifying new key players in meiotic telomere attachment and movement and discuss the latest advances in our understanding of the actual function of the meiotic nuclear envelope.

  1. Regulation of nuclear envelope dynamics via APC/C is necessary for the progression of semi-open mitosis in Schizosaccharomyces japonicus.

    PubMed

    Aoki, Keita; Shiwa, Yuh; Takada, Hiraku; Yoshikawa, Hirofumi; Niki, Hironori

    2013-09-01

    Three types of mitosis, which are open, closed or semi-open mitosis, function in eukaryotic cells, respectively. The open mitosis involves breakage of the nuclear envelope before nuclear division, whereas the closed mitosis proceeds with an intact nuclear envelope. To understand the mechanism and significance of three types of mitotic division in eukaryotes, we investigated the process of semi-open mitosis, in which the nuclear envelope is only partially broken, in the fission yeast Schizosaccharomyces japonicus. In anaphase-promoting complex/cyclosome (APC/C) mutants of Sz. japonicus, the nuclear envelope remained relatively intact during anaphase, resulting in impaired semi-open mitosis. As a suppressor of apc2 mutant, a mutation of Oar2, which was a 3-oxoacyl-[acyl carrier protein] reductase, was obtained. The level of the Oar2, which had two destruction-box motifs recognized by APC/C, was increased in APC/C mutants. Furthermore, the defective semi-open mitosis observed in an apc2 mutant was restored by mutated oar2+. Based on these findings, we propose that APC/C regulates the dynamics of the nuclear envelope through degradation of Oar2 dependent on APC/C during the metaphase-to-anaphase transition of semi-open mitosis in Sz. japonicus. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  2. Remodeling of the Nuclear Envelope and Lamina during Bovine Preimplantation Development and Its Functional Implications

    PubMed Central

    Popken, Jens; Graf, Alexander; Krebs, Stefan; Blum, Helmut; Schmid, Volker J.; Strauss, Axel; Guengoer, Tuna; Zakhartchenko, Valeri; Wolf, Eckhard; Cremer, Thomas

    2015-01-01

    The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA. PMID:25932910

  3. Remodeling of the Nuclear Envelope and Lamina during Bovine Preimplantation Development and Its Functional Implications.

    PubMed

    Popken, Jens; Graf, Alexander; Krebs, Stefan; Blum, Helmut; Schmid, Volker J; Strauss, Axel; Guengoer, Tuna; Zakhartchenko, Valeri; Wolf, Eckhard; Cremer, Thomas

    2015-01-01

    The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA.

  4. Human Cytomegalovirus Nuclear Egress Proteins Ectopically Expressed in the Heterologous Environment of Plant Cells are Strictly Targeted to the Nuclear Envelope.

    PubMed

    Lamm, Christian E; Link, Katrin; Wagner, Sabrina; Milbradt, Jens; Marschall, Manfred; Sonnewald, Uwe

    2016-03-10

    In all eukaryotic cells, the nucleus forms a prominent cellular compartment containing the cell's nuclear genome. Although structurally similar, animal and plant nuclei differ substantially in details of their architecture. One example is the nuclear lamina, a layer of tightly interconnected filament proteins (lamins) underlying the nuclear envelope of metazoans. So far no orthologous lamin genes could be detected in plant genomes and putative lamin-like proteins are only poorly described in plants. To probe for potentially conserved features of metazoan and plant nuclear envelopes, we ectopically expressed the core nuclear egress proteins of human cytomegalovirus pUL50 and pUL53 in plant cells. pUL50 localizes to the inner envelope of metazoan nuclei and recruits the nuclear localized pUL53 to it, forming heterodimers. Upon expression in plant cells, a very similar localization pattern of both proteins could be determined. Notably, pUL50 is specifically targeted to the plant nuclear envelope in a rim-like fashion, a location to which coexpressed pUL53 becomes strictly corecruited from its initial nucleoplasmic distribution. Using pUL50 as bait in a yeast two-hybrid screening, the cytoplasmic re-initiation supporting protein RISP could be identified. Interaction of pUL50 and RISP could be confirmed by coexpression and coimmunoprecipitation in mammalian cells and by confocal laser scanning microscopy in plant cells, demonstrating partial pUL50-RISP colocalization in areas of the nuclear rim and other intracellular compartments. Thus, our study provides strong evidence for conserved structural features of plant and metazoan nuclear envelops and identifies RISP as a potential pUL50-interacting plant protein.

  5. Parvoviruses Cause Nuclear Envelope Breakdown by Activating Key Enzymes of Mitosis

    PubMed Central

    Porwal, Manvi; Cohen, Sarah; Snoussi, Kenza; Popa-Wagner, Ruth; Anderson, Fenja; Dugot-Senant, Nathalie; Wodrich, Harald; Dinsart, Christiane; Kleinschmidt, Jürgen A.; Panté, Nelly; Kann, Michael

    2013-01-01

    Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca++ efflux from the lumen between inner and outer nuclear membrane we found that Ca++ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis. PMID:24204256

  6. C. elegans Nuclear Envelope Proteins Emerin, MAN1, Lamin, and Nucleoporins Reveal Unique Timing of Nuclear Envelope Breakdown during Mitosis

    PubMed Central

    Lee, Kenneth K.; Gruenbaum, Yosef; Spann, Perah; Liu, Jun; Wilson, Katherine L.

    2000-01-01

    Emerin, MAN1, and LAP2 are integral membrane proteins of the vertebrate nuclear envelope. They share a 43-residue N-terminal motif termed the LEM domain. We found three putative LEM domain genes in Caenorhabditis elegans, designated emr-1, lem-2, and lem-3. We analyzed emr-l, which encodes Ce-emerin, and lem-2, which encodes Ce-MAN1. Ce-emerin and Ce-MAN1 migrate on SDS-PAGE as 17- and 52-kDa proteins, respectively. Based on their biochemical extraction properties and immunolocalization, both Ce-emerin and Ce-MAN1 are integral membrane proteins localized at the nuclear envelope. We used antibodies against Ce-MAN1, Ce-emerin, nucleoporins, and Ce-lamin to determine the timing of nuclear envelope breakdown during mitosis in C. elegans. The C. elegans nuclear envelope disassembles very late compared with vertebrates and Drosophila. The nuclear membranes remained intact everywhere except near spindle poles during metaphase and early anaphase, fully disassembling only during mid-late anaphase. Disassembly of pore complexes, and to a lesser extent the lamina, depended on embryo age: pore complexes were absent during metaphase in >30-cell embryos but existed until anaphase in 2- to 24-cell embryos. Intranuclear mRNA splicing factors disassembled after prophase. The timing of nuclear disassembly in C. elegans is novel and may reflect its evolutionary position between unicellular and more complex eukaryotes. PMID:10982402

  7. SUNrises on the International Plant Nucleus Consortium: SEB Salzburg 2012.

    PubMed

    Graumann, Katja; Bass, Hank W; Parry, Geraint

    2013-01-01

    The nuclear periphery is a dynamic, structured environment, whose precise functions are essential for global processes-from nuclear, to cellular, to organismal. Its main components-the nuclear envelope (NE) with inner and outer nuclear membranes (INM and ONM), nuclear pore complexes (NPC), associated cytoskeletal and nucleoskeletal components as well as chromatin are conserved across eukaryotes (Fig. 1). In metazoans in particular, the structure and functions of nuclear periphery components are intensely researched partly because of their involvement in various human diseases. While far less is known about these in plants, the last few years have seen a significant increase in research activity in this area. Plant biologists are not only catching up with the animal field, but recent findings are pushing our advances in this field globally. In recognition of this developing field, the Annual Society of Experimental Biology Meeting in Salzburg kindly hosted a session co-organized by Katja Graumann and David E. Evans (Oxford Brookes University) highlighting new insights into plant nuclear envelope proteins and their interactions. This session brought together leading researchers with expertise in topics such as epigenetics, meiosis, nuclear pore structure and functions, nucleoskeleton and nuclear envelope composition. An open and friendly exchange of ideas was fundamental to the success of the meeting, which resulted in founding the International Plant Nucleus Consortium. This review highlights new developments in plant nuclear envelope research presented at the conference and their importance for the wider understanding of metazoan, yeast and plant nuclear envelope functions and properties.

  8. SUNrises on the International Plant Nucleus Consortium

    PubMed Central

    Graumann, Katja; Bass, Hank W.; Parry, Geraint

    2013-01-01

    The nuclear periphery is a dynamic, structured environment, whose precise functions are essential for global processes—from nuclear, to cellular, to organismal. Its main components—the nuclear envelope (NE) with inner and outer nuclear membranes (INM and ONM), nuclear pore complexes (NPC), associated cytoskeletal and nucleoskeletal components as well as chromatin are conserved across eukaryotes (Fig. 1). In metazoans in particular, the structure and functions of nuclear periphery components are intensely researched partly because of their involvement in various human diseases. While far less is known about these in plants, the last few years have seen a significant increase in research activity in this area. Plant biologists are not only catching up with the animal field, but recent findings are pushing our advances in this field globally. In recognition of this developing field, the Annual Society of Experimental Biology Meeting in Salzburg kindly hosted a session co-organized by Katja Graumann and David E. Evans (Oxford Brookes University) highlighting new insights into plant nuclear envelope proteins and their interactions. This session brought together leading researchers with expertise in topics such as epigenetics, meiosis, nuclear pore structure and functions, nucleoskeleton and nuclear envelope composition. An open and friendly exchange of ideas was fundamental to the success of the meeting, which resulted in founding the International Plant Nucleus Consortium. This review highlights new developments in plant nuclear envelope research presented at the conference and their importance for the wider understanding of metazoan, yeast and plant nuclear envelope functions and properties. PMID:23324458

  9. Kar5p is required for multiple functions in both inner and outer nuclear envelope fusion in Saccharomyces cerevisiae.

    PubMed

    Rogers, Jason V; Rose, Mark D

    2014-12-02

    During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p's functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. Copyright © 2015 Rogers and Rose.

  10. Kar5p Is Required for Multiple Functions in Both Inner and Outer Nuclear Envelope Fusion in Saccharomyces cerevisiae

    PubMed Central

    Rogers, Jason V.; Rose, Mark D.

    2014-01-01

    During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide–sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p’s functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. PMID:25467943

  11. Genetics Home Reference: mandibuloacral dysplasia

    MedlinePlus

    ... proteins act as scaffolding (supporting) components of the nuclear envelope, which is the membrane that surrounds the nucleus in cells. The nuclear envelope regulates the movement of molecules into and ...

  12. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability.

    PubMed

    Takaki, Tohru; Montagner, Marco; Serres, Murielle P; Le Berre, Maël; Russell, Matt; Collinson, Lucy; Szuhai, Karoly; Howell, Michael; Boulton, Simon J; Sahai, Erik; Petronczki, Mark

    2017-07-24

    Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability.

  13. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability

    PubMed Central

    Takaki, Tohru; Montagner, Marco; Serres, Murielle P.; Le Berre, Maël; Russell, Matt; Collinson, Lucy; Szuhai, Karoly; Howell, Michael; Boulton, Simon J.; Sahai, Erik; Petronczki, Mark

    2017-01-01

    Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability. PMID:28737169

  14. Role of Nuclear Lamina in Gene Repression and Maintenance of Chromosome Architecture in the Nucleus.

    PubMed

    Shevelyov, Y Y; Ulianov, S V

    2018-04-01

    Nuclear lamina is a protein meshwork composed of lamins and lamin-associated proteins that lines the nuclear envelope from the inside and forms repressive transcription compartment. The review presents current data on the contribution of nuclear lamina to the repression of genes located in this compartment and on the mechanisms of chromatin attachment to the nuclear envelope.

  15. Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.

    PubMed

    Shen, Shu; Tobery, Cynthia E; Rose, Mark D

    2009-05-01

    Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.

  16. Mouse CCDC79 (TERB1) is a meiosis-specific telomere associated protein.

    PubMed

    Daniel, Katrin; Tränkner, Daniel; Wojtasz, Lukasz; Shibuya, Hiroki; Watanabe, Yoshinori; Alsheimer, Manfred; Tóth, Attila

    2014-05-22

    Telomeres have crucial meiosis-specific roles in the orderly reduction of chromosome numbers and in ensuring the integrity of the genome during meiosis. One such role is the attachment of telomeres to trans-nuclear envelope protein complexes that connect telomeres to motor proteins in the cytoplasm. These trans-nuclear envelope connections between telomeres and cytoplasmic motor proteins permit the active movement of telomeres and chromosomes during the first meiotic prophase. Movements of chromosomes/telomeres facilitate the meiotic recombination process, and allow high fidelity pairing of homologous chromosomes. Pairing of homologous chromosomes is a prerequisite for their correct segregation during the first meiotic division. Although inner-nuclear envelope proteins, such as SUN1 and potentially SUN2, are known to bind and recruit meiotic telomeres, these proteins are not meiosis-specific, therefore cannot solely account for telomere-nuclear envelope attachment and/or for other meiosis-specific characteristics of telomeres in mammals. We identify CCDC79, alternatively named TERB1, as a meiosis-specific protein that localizes to telomeres from leptotene to diplotene stages of the first meiotic prophase. CCDC79 and SUN1 associate with telomeres almost concurrently at the onset of prophase, indicating a possible role for CCDC79 in telomere-nuclear envelope interactions and/or telomere movements. Consistent with this scenario, CCDC79 is missing from most telomeres that fail to connect to SUN1 protein in spermatocytes lacking the meiosis-specific cohesin SMC1B. SMC1B-deficient spermatocytes display both reduced efficiency in telomere-nuclear envelope attachment and reduced stability of telomeres specifically during meiotic prophase. Importantly, CCDC79 associates with telomeres in SUN1-deficient spermatocytes, which strongly indicates that localization of CCDC79 to telomeres does not require telomere-nuclear envelope attachment. CCDC79 is a meiosis-specific telomere associated protein. Based on our findings we propose that CCDC79 plays a role in meiosis-specific telomere functions. In particular, we favour the possibility that CCDC79 is involved in telomere-nuclear envelope attachment and/or the stabilization of meiotic telomeres. These conclusions are consistent with the findings of an independently initiated study that analysed CCDC79/TERB1 functions.

  17. Mouse CCDC79 (TERB1) is a meiosis-specific telomere associated protein

    PubMed Central

    2014-01-01

    Background Telomeres have crucial meiosis-specific roles in the orderly reduction of chromosome numbers and in ensuring the integrity of the genome during meiosis. One such role is the attachment of telomeres to trans-nuclear envelope protein complexes that connect telomeres to motor proteins in the cytoplasm. These trans-nuclear envelope connections between telomeres and cytoplasmic motor proteins permit the active movement of telomeres and chromosomes during the first meiotic prophase. Movements of chromosomes/telomeres facilitate the meiotic recombination process, and allow high fidelity pairing of homologous chromosomes. Pairing of homologous chromosomes is a prerequisite for their correct segregation during the first meiotic division. Although inner-nuclear envelope proteins, such as SUN1 and potentially SUN2, are known to bind and recruit meiotic telomeres, these proteins are not meiosis-specific, therefore cannot solely account for telomere-nuclear envelope attachment and/or for other meiosis-specific characteristics of telomeres in mammals. Results We identify CCDC79, alternatively named TERB1, as a meiosis-specific protein that localizes to telomeres from leptotene to diplotene stages of the first meiotic prophase. CCDC79 and SUN1 associate with telomeres almost concurrently at the onset of prophase, indicating a possible role for CCDC79 in telomere-nuclear envelope interactions and/or telomere movements. Consistent with this scenario, CCDC79 is missing from most telomeres that fail to connect to SUN1 protein in spermatocytes lacking the meiosis-specific cohesin SMC1B. SMC1B-deficient spermatocytes display both reduced efficiency in telomere-nuclear envelope attachment and reduced stability of telomeres specifically during meiotic prophase. Importantly, CCDC79 associates with telomeres in SUN1-deficient spermatocytes, which strongly indicates that localization of CCDC79 to telomeres does not require telomere-nuclear envelope attachment. Conclusion CCDC79 is a meiosis-specific telomere associated protein. Based on our findings we propose that CCDC79 plays a role in meiosis-specific telomere functions. In particular, we favour the possibility that CCDC79 is involved in telomere-nuclear envelope attachment and/or the stabilization of meiotic telomeres. These conclusions are consistent with the findings of an independently initiated study that analysed CCDC79/TERB1 functions. PMID:24885367

  18. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells

    PubMed Central

    Gu, Mingyu; LaJoie, Dollie; Chen, Opal S.; von Appen, Alexander; Ladinsky, Mark S.; Redd, Michael J.; Nikolova, Linda; Bjorkman, Pamela J.; Sundquist, Wesley I.; Ullman, Katharine S.; Frost, Adam

    2017-01-01

    Endosomal sorting complexes required for transport III (ESCRT-III) proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In Schizosaccharomyces pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disk periphery during this window of cell division and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A, and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope. PMID:28242692

  19. Three-dimensional visualization of the Autographa californica multiple nucleopolyhedrovirus occlusion-derived virion envelopment process gives new clues as to its mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yang; Li, Kunpeng; Tang, Peiping

    2015-02-15

    Baculoviruses produce two virion phenotypes, occlusion-derived virion (ODV) and budded virion (BV). ODV envelopment occurs in the nucleus. Morphogenesis of the ODV has been studied extensively; however, the mechanisms underlying microvesicle formation and ODV envelopment in nuclei remain unclear. In this study, we used electron tomography (ET) together with the conventional electron microscopy to study the envelopment of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ODV. Our results demonstrate that not only the inner but also the outer nuclear membrane can invaginate and vesiculate into microvesicles and that intranuclear microvesicles are the direct source of the ODV membrane. Five main events inmore » the ODV envelopment process are summarized, from which we propose a model to explain this process. - Highlights: • Both the inner and outer nuclear membranes could invaginate. • Both the inner and outer nuclear membranes could vesiculate into microvesicles. • Five main events in the ODV envelopment process are summarized. • A model is proposed to explain this ODV envelopment.« less

  20. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    PubMed

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  1. Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae.

    PubMed

    Melloy, Patricia G; Rose, Mark D

    2017-09-15

    Studies have shown that nuclear envelope fission (karyokinesis) in budding yeast depends on cytokinesis, but not distinguished whether this was a direct requirement, indirect, because of cell cycle arrest, or due to bud neck-localized proteins impacting both processes. To determine the requirements for karyokinesis, we examined mutants conditionally defective for bud emergence and/or nuclear migration. The common mutant phenotype was completion of the nuclear division cycle within the mother cell, but karyokinesis did not occur. In the cdc24 swe1 mutant, at the non-permissive temperature, multiple nuclei accumulated within the unbudded cell, with connected nuclear envelopes. Upon return to the permissive temperature, the cdc24 swe1 mutant initiated bud emergence, but only the nucleus spanning the neck underwent fission suggesting that the bud neck region is important for fission initiation. The neck may be critical for either mechanical reasons, as the contractile ring might facilitate fission, or for regulatory reasons, as the site of a protein network regulating nuclear envelope fission, mitotic exit, and cytokinesis. We also found that 77-85% of pairs of septin mutant nuclei completed nuclear envelope fission. In addition, 27% of myo1Δ mutant nuclei completed karyokinesis. These data suggested that fission is not dependent on mechanical contraction at the bud neck, but was instead controlled by regulatory proteins there. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    PubMed

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  3. Nuclear Envelope Protein SUN2 Promotes Cyclophilin-A-Dependent Steps of HIV Replication

    PubMed Central

    Lahaye, Xavier; Satoh, Takeshi; Gentili, Matteo; Cerboni, Silvia; Silvin, Aymeric; Conrad, Cécile; Ahmed-Belkacem, Abdelhakim; Rodriguez, Elisa C.; Guichou, Jean-François; Bosquet, Nathalie; Piel, Matthieu; Le Grand, Roger; King, Megan C.; Pawlotsky, Jean-Michel; Manel, Nicolas

    2016-01-01

    Summary During the early phase of replication, HIV reverse transcribes its RNA and crosses the nuclear envelope while escaping host antiviral defenses. The host factor Cyclophilin A (CypA) is essential for these steps and binds the HIV capsid; however, the mechanism underlying this effect remains elusive. Here, we identify related capsid mutants in HIV-1, HIV-2, and SIVmac that are restricted by CypA. This antiviral restriction of mutated viruses is conserved across species and prevents nuclear import of the viral cDNA. Importantly, the inner nuclear envelope protein SUN2 is required for the antiviral activity of CypA. We show that wild-type HIV exploits SUN2 in primary CD4+ T cells as an essential host factor that is required for the positive effects of CypA on reverse transcription and infection. Altogether, these results establish essential CypA-dependent functions of SUN2 in HIV infection at the nuclear envelope. PMID:27149839

  4. Mechanism of protein import across the chloroplast envelope.

    PubMed

    Chen, K; Chen, X; Schnell, D J

    2000-01-01

    The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.

  5. Integrity of the Linker of Nucleoskeleton and Cytoskeleton Is Required for Efficient Herpesvirus Nuclear Egress.

    PubMed

    Klupp, Barbara G; Hellberg, Teresa; Granzow, Harald; Franzke, Kati; Dominguez Gonzalez, Beatriz; Goodchild, Rose E; Mettenleiter, Thomas C

    2017-10-01

    Herpesvirus capsids assemble in the nucleus, while final virion maturation proceeds in the cytoplasm. This requires that newly formed nucleocapsids cross the nuclear envelope (NE), which occurs by budding at the inner nuclear membrane (INM), release of the primary enveloped virion into the perinuclear space (PNS), and subsequent rapid fusion with the outer nuclear membrane (ONM). During this process, the NE remains intact, even at late stages of infection. In addition, the spacing between the INM and ONM is maintained, as is that between the primary virion envelope and nuclear membranes. The linker of nucleoskeleton and cytoskeleton (LINC) complex consists of INM proteins with a luminal SUN (Sad1/UNC-84 homology) domain connected to ONM proteins with a KASH (Klarsicht, ANC-1, SYNE homology) domain and is thought to be responsible for spacing the nuclear membranes. To investigate the role of the LINC complex during herpesvirus infection, we generated cell lines constitutively expressing dominant negative (dn) forms of SUN1 and SUN2. Ultrastructural analyses revealed a significant expansion of the PNS and the contiguous intracytoplasmic lumen, most likely representing endoplasmic reticulum (ER), especially in cells expressing dn-SUN2. After infection, primary virions accumulated in these expanded luminal regions, also very distant from the nucleus. The importance of the LINC complex was also confirmed by reduced progeny virus titers in cells expressing dn-SUN2. These data show that the intact LINC complex is required for efficient nuclear egress of herpesviruses, likely acting to promote fusion of primary enveloped virions with the ONM. IMPORTANCE While the viral factors for primary envelopment of nucleocapsids at the inner nuclear membrane are known to the point of high-resolution structures, the roles of cellular components and regulators remain enigmatic. Furthermore, the machinery responsible for fusion with the outer nuclear membrane is unsolved. We show here that dominant negative SUN2 interferes with efficient herpesvirus nuclear egress, apparently by interfering with fusion between the primary virion envelope and outer nuclear membrane. This identifies a new cellular component important for viral egress and implicates LINC complex integrity in nonconventional nuclear membrane trafficking. Copyright © 2017 American Society for Microbiology.

  6. Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification

    PubMed Central

    Righolt, Christiaan H.; Zatreanu, Diana A.; Raz, Vered

    2013-01-01

    The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification. PMID:27335676

  7. Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification.

    PubMed

    Righolt, Christiaan H; Zatreanu, Diana A; Raz, Vered

    2013-01-01

    The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification.

  8. Old foes, new understandings: nuclear entry of small non-enveloped DNA viruses.

    PubMed

    Fay, Nikta; Panté, Nelly

    2015-06-01

    The nuclear import of viral genomes is an important step of the infectious cycle for viruses that replicate in the nucleus of their host cells. Although most viruses use the cellular nuclear import machinery or some components of this machinery, others have developed sophisticated ways to reach the nucleus. Some of these have been known for some time; however, recent studies have changed our understanding of how some non-enveloped DNA viruses access the nucleus. For example, parvoviruses enter the nucleus through small disruptions of the nuclear membranes and nuclear lamina, and adenovirus tugs at the nuclear pore complex, using kinesin-1, to disassemble their capsids and deliver viral proteins and genomes into the nucleus. Here we review recent findings of the nuclear import strategies of three small non-enveloped DNA viruses, including adenovirus, parvovirus, and the polyomavirus simian virus 40. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Breach of the nuclear lamina during assembly of herpes simplex viruses.

    PubMed

    Morrison, Lynda A; DeLassus, Gregory S

    2011-01-01

    Beneath the inner nuclear membrane lies the dense meshwork of the nuclear lamina, which provides structural support for the nuclear envelope and serves as an important organizing center for a number of nuclear and cytoplasmic constituents and processes. Herpesviruses have a significant and wide-ranging impact on human health, and their capacity to replicate and cause disease includes events that occur in the host cell nucleus. Herpesviruses begin assembly of progeny virus in the nuclei of infected cells and their capsids must escape the confines of the nucleus by budding through the inner nuclear membrane (INM) to proceed with later stages of virion assembly and egress. Access of viral capsids to the INM thus necessitates disruption of the dense nuclear lamina layer. We review herpesvirus effects on the nuclear lamina and in particular the roles of the herpes simplex virus-encoded nuclear envelope complex and viral kinases on lamin phosphorylation, dissociation, and nucleocapsid envelopment at the INM.

  10. Sequence and characterization of cytoplasmic nuclear protein import factor p97

    PubMed Central

    1995-01-01

    Nuclear location sequence-mediated binding of karyophilic proteins to the nuclear pore complexes is one of the earliest steps in nuclear protein import. We previously identified two cytosolic proteins that reconstitute this step in a permeabilized cell assay: the 54/56-kD NLS receptor and p97. A monoclonal antibody to p97 localizes the protein to the cytoplasm and the nuclear envelope. p97 is extracted from nuclear envelopes under the same conditions as the O-glycosylated nucleoporins indicating a tight association with the pore complex. The antibody inhibits import in a permeabilized cell assay but does not affect binding of karyophiles to the nuclear pore complex. Immunodepletion of p97 renders the cytosol inactive for import and identifies at least three other cytosolic proteins that interact with p97. cDNA cloning of p97 shows that it is a unique protein containing 23 cysteine residues. Recombinant p97 binds zinc and a bound metal ion is required for the nuclear envelope binding activity of the protein. PMID:7615630

  11. Alzheimer's disease: An acquired neurodegenerative laminopathy.

    PubMed

    Frost, Bess

    2016-05-03

    The nucleus is typically depicted as a sphere encircled by a smooth surface of nuclear envelope. For most cell types, this depiction is accurate. In other cell types and in some pathological conditions, however, the smooth nuclear exterior is interrupted by tubular invaginations of the nuclear envelope, often referred to as a "nucleoplasmic reticulum," into the deep nuclear interior. We have recently reported a significant expansion of the nucleoplasmic reticulum in postmortem human Alzheimer's disease brain tissue. We found that dysfunction of the nucleoskeleton, a lamin-rich meshwork that coats the inner nuclear membrane and associated invaginations, is causal for Alzheimer's disease-related neurodegeneration in vivo. Additionally, we demonstrated that proper function of the nucleoskeleton is required for survival of adult neurons and maintaining genomic architecture. Here, we elaborate on the significance of these findings in regard to pathological states and physiological aging, and discuss cellular causes and consequences of nuclear envelope invagination.

  12. Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function.

    PubMed

    Lombardi, Maria L; Lammerding, Jan

    2011-12-01

    Providing a stable physical connection between the nucleus and the cytoskeleton is essential for a wide range of cellular functions and it could also participate in mechanosensing by transmitting intra- and extra-cellular mechanical stimuli via the cytoskeleton to the nucleus. Nesprins and SUN proteins, located at the nuclear envelope, form the LINC (linker of nucleoskeleton and cytoskeleton) complex that connects the nucleus to the cytoskeleton; underlying nuclear lamins contribute to anchoring LINC complex components at the nuclear envelope. Disruption of the LINC complex or loss of lamins can result in disturbed perinuclear actin and intermediate filament networks and causes severe functional defects, including impaired nuclear positioning, cell polarization and cell motility. Recent studies have identified the LINC complex as the major force-transmitting element at the nuclear envelope and suggest that many of the aforementioned defects can be attributed to disturbed force transmission between the nucleus and the cytoskeleton. Thus mutations in nesprins, SUN proteins or lamins, which have been linked to muscular dystrophies and cardiomyopathies, may weaken or completely eliminate LINC complex function at the nuclear envelope and result in impaired intracellular force transmission, thereby disrupting critical cellular functions.

  13. The Role of the Nuclear Envelope Protein MAN1 in Mesenchymal Stem Cell Differentiation.

    PubMed

    Bermeo, Sandra; Al-Saedi, Ahmed; Kassem, Moustapha; Vidal, Christopher; Duque, Gustavo

    2017-12-01

    Mutations in MAN1, a protein of the nuclear envelope, cause bone phenotypes characterized by hyperostosis. The mechanism of this pro-osteogenic phenotype remains unknown. We increased and decreased MAN1 expression in mesenchymal stem cells (MSC) upon which standard osteogenic and adipogenic differentiation were performed. MAN1 knockdown increased osteogenesis and mineralization. In contrast, osteogenesis remained stable upon MAN1 overexpression. Regarding a mechanism, we found that low levels of MAN1 facilitated the nuclear accumulation of regulatory smads and smads-related complexes, with a concurrently high expression of nuclear β-Catenin. In addition, we found adipogenesis to be decreased in both conditions, although predominantly affected by MAN1 overexpression. Finally, lamin A, a protein of the nuclear envelope that regulates MSC differentiation, was unaffected by changes in MAN1. In conclusion, our studies demonstrated that lower levels of MAN1 in differentiating MSC are associated with higher osteogenesis and lower adipogenesis. High levels of MAN1 only affected adipogenesis. These effects could have an important role in the understanding of the role of the proteins of the nuclear envelope in bone formation. J. Cell. Biochem. 118: 4425-4435, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Nuclear transport of cancer extracellular vesicle-derived biomaterials through nuclear envelope invagination-associated late endosomes.

    PubMed

    Rappa, Germana; Santos, Mark F; Green, Toni M; Karbanová, Jana; Hassler, Justin; Bai, Yongsheng; Barsky, Sanford H; Corbeil, Denis; Lorico, Aurelio

    2017-02-28

    Extracellular membrane vesicles (EVs) function as vehicles of intercellular communication, but how the biomaterials they carry reach the target site in recipient cells is an open question. We report that subdomains of Rab7+ late endosomes and nuclear envelope invaginations come together to create a sub-nuclear compartment, where biomaterials associated with CD9+ EVs are delivered. EV-derived biomaterials were also found in the nuclei of host cells. The inhibition of nuclear import and export pathways abrogated the nuclear localization of EV-derived biomaterials or led to their accumulation therein, respectively, suggesting that their translocation is dependent on nuclear pores. Nuclear envelope invagination-associated late endosomes were observed in ex vivo biopsies in both breast carcinoma and associated stromal cells. The transcriptome of stromal cells exposed to cancer cell-derived CD9+ EVs revealed that the regulation of eleven genes, notably those involved in inflammation, relies on the nuclear translocation of EV-derived biomaterials. Our findings uncover a new cellular pathway used by EVs to reach nuclear compartment.

  15. Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase.

    PubMed

    Wisner, Todd W; Wright, Catherine C; Kato, Akihisa; Kawaguchi, Yasushi; Mou, Fan; Baines, Joel D; Roller, Richard J; Johnson, David C

    2009-04-01

    Herpesvirus capsids collect along the inner surface of the nuclear envelope and bud into the perinuclear space. Enveloped virions then fuse with the outer nuclear membrane (NM). We previously showed that herpes simplex virus (HSV) glycoproteins gB and gH act in a redundant fashion to promote fusion between the virion envelope and the outer NM. HSV mutants lacking both gB and gH accumulate enveloped virions in herniations, vesicles that bulge into the nucleoplasm. Earlier studies had shown that HSV mutants lacking the viral serine/threonine kinase US3 also accumulate herniations. Here, we demonstrate that HSV gB is phosphorylated in a US3-dependent manner in HSV-infected cells, especially in a crude nuclear fraction. Moreover, US3 directly phosphorylated the gB cytoplasmic (CT) domain in in vitro assays. Deletion of gB in the context of a US3-null virus did not add substantially to defects in nuclear egress. The majority of the US3-dependent phosphorylation of gB involved the CT domain and amino acid T887, a residue present in a motif similar to that recognized by US3 in other proteins. HSV recombinants lacking gH and expressing either gB substitution mutation T887A or a gB truncated at residue 886 displayed substantial defects in nuclear egress. We concluded that phosphorylation of the gB CT domain is important for gB-mediated fusion with the outer NM. This suggested a model in which the US3 kinase is incorporated into the tegument layer (between the capsid and envelope) in HSV virions present in the perinuclear space. By this packaging, US3 might be brought close to the gB CT tail, leading to phosphorylation and triggering fusion between the virion envelope and the outer NM.

  16. Dynamic Assembly of Brambleberry Mediates Nuclear Envelope Fusion during Early Development

    PubMed Central

    Abrams, Elliott W.; Zhang, Hong; Marlow, Florence L.; Kapp, Lee; Lu, Sumei; Mullins, Mary C.

    2012-01-01

    Summary To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, a mitotic intermediate wherein individual chromatin masses are surrounded by nuclear envelope, which then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion resulting in formation of multiple micronuclei. brambleberry is a previously unannotated gene homologous to Kar5p, which participates in nuclear fusion in yeast. We demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. As karyomeres form, Brambleberry localizes to the nuclear envelope with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. Our studies identify the first factor acting in karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres. PMID:22863006

  17. FHL1B Interacts with Lamin A/C and Emerin at the Nuclear Lamina and is Misregulated in Emery-Dreifuss Muscular Dystrophy.

    PubMed

    Ziat, Esma; Mamchaoui, Kamel; Beuvin, Maud; Nelson, Isabelle; Azibani, Feriel; Spuler, Simone; Bonne, Gisèle; Bertrand, Anne T

    2016-11-29

    Emery-Dreifuss muscular dystrophy (EDMD) is associated with mutations in EMD and LMNA genes, encoding for the nuclear envelope proteins emerin and lamin A/C, indicating that EDMD is a nuclear envelope disease. We recently reported mutations in FHL1 gene in X-linked EDMD. FHL1 encodes FHL1A, and the two minor isoforms FHL1B and FHL1C. So far, none have been described at the nuclear envelope. To gain insight into the pathophysiology of EDMD, we focused our attention on the poorly characterized FHL1B isoform. The amount and the localisation of FHL1B were evaluated in control and diseased human primary myoblasts using immunofluorescence and western blotting. We found that in addition to a cytoplasmic localization, this isoform strongly accumulated at the nuclear envelope of primary human myoblasts, like but independently of lamin A/C and emerin. During myoblast differentiation, we observed a major reduction of FHL1B protein expression, especially in the nucleus. Interestingly, we found elevated FHL1B expression level in myoblasts from an FHL1-related EDMD patient where the FHL1 mutation only affects FHL1A, as well as in myoblasts from an LMNA-related EDMD patient. Altogether, the specific localization of FHL1B and its modulation in disease-patient's myoblasts confirmed FHL1-related EDMD as a nuclear envelope disease.

  18. A Role for Caenorhabditis elegans Importin IMA-2 in Germ Line and Embryonic Mitosis

    PubMed Central

    Geles, Kenneth G.; Johnson, Jeffrey J.; Jong, Sena; Adam, Stephen A.

    2002-01-01

    The importin α family of nuclear-cytoplasmic transport factors mediates the nuclear localization of proteins containing classical nuclear localization signals. Metazoan animals express multiple importin α proteins, suggesting their possible roles in cell differentiation and development. Adult Caenorhabditis elegans hermaphrodites express three importin α proteins, IMA-1, IMA-2, and IMA-3, each with a distinct expression and localization pattern. IMA-2 was expressed exclusively in germ line cells from the early embryonic through adult stages. The protein has a dynamic pattern of localization dependent on the stage of the cell cycle. In interphase germ cells and embryonic cells, IMA-2 is cytoplasmic and nuclear envelope associated, whereas in developing oocytes, the protein is cytoplasmic and intranuclear. During mitosis in germ line cells and embryos, IMA-2 surrounded the condensed chromosomes but was not directly associated with the mitotic spindle. The timing of IMA-2 nuclear localization suggested that the protein surrounded the chromosomes after fenestration of the nuclear envelope in prometaphase. Depletion of IMA-2 by RNA-mediated gene interference (RNAi) resulted in embryonic lethality and a terminal aneuploid phenotype. ima-2(RNAi) embryos have severe defects in nuclear envelope formation, accumulating nucleoporins and lamin in the cytoplasm. We conclude that IMA-2 is required for proper chromosome dynamics in germ line and early embryonic mitosis and is involved in nuclear envelope assembly at the conclusion of mitosis. PMID:12221121

  19. Nuclear envelopathies: a complex LINC between nuclear envelope and pathology.

    PubMed

    Janin, Alexandre; Bauer, Delphine; Ratti, Francesca; Millat, Gilles; Méjat, Alexandre

    2017-08-30

    Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain.Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. For these reasons, the diagnosis and the identification of the molecular explanation of "nuclear envelopathies" is currently challenging.The aim of this review is to summarize the human diseases caused by mutations in genes coding for INM proteins, nuclear lamina, and ONM proteins, and to discuss their potential physiopathological mechanisms that could explain the large spectrum of observed symptoms.

  20. Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina.

    PubMed

    Gonzalez, Yanira; Saito, Akira; Sazer, Shelley

    2012-01-01

    In animal cells the nuclear lamina, which consists of lamins and lamin-associated proteins, serves several functions: it provides a structural scaffold for the nuclear envelope and tethers proteins and heterochromatin to the nuclear periphery. In yeast, proteins and large heterochromatic domains including telomeres are also peripherally localized, but there is no evidence that yeast have lamins or a fibrous nuclear envelope scaffold. Nonetheless, we found that the Lem2 and Man1 proteins of the fission yeast Schizosaccharomyces pombe, evolutionarily distant relatives of the Lap2/Emerin/Man1 (LEM) sub-family of animal cell lamin-associated proteins, perform fundamental functions of the animal cell lamina. These integral inner nuclear membrane localized proteins, with nuclear localized DNA binding Helix-Extension-Helix (HEH) domains, impact nuclear envelope structure and integrity, are essential for the enrichment of telomeres at the nuclear periphery and by means of their HEH domains anchor chromatin, most likely transcriptionally repressed heterochromatin, to the nuclear periphery. These data indicate that the core functions of the nuclear lamina are conserved between fungi and animal cells and can be performed in fission yeast, without lamins or other intermediate filament proteins.

  1. Dynamic assembly of brambleberry mediates nuclear envelope fusion during early development.

    PubMed

    Abrams, Elliott W; Zhang, Hong; Marlow, Florence L; Kapp, Lee; Lu, Sumei; Mullins, Mary C

    2012-08-03

    To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, mitotic intermediates wherein individual chromatin masses are surrounded by nuclear envelope; the karyomeres then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion, resulting in formation of multiple micronuclei. As karyomeres form, Brambleberry protein localizes to the nuclear envelope, with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. brambleberry corresponds to an unannotated gene with similarity to Kar5p, a protein that participates in nuclear fusion in yeast. We also demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. Our studies provide insight into the machinery required for karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai T.; Yang, Guang; Li, JinDong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2011-01-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ε-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally-inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ε-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ε-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally-inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ε-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ε-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. PMID:22040906

  3. The Origin and Fate of Annulate Lamellae in Maturing Sand Dollar Eggs

    PubMed Central

    Merriam, R. W.

    1959-01-01

    Electron micrograph evidence is presented that the nuclear envelope of the mature ovum of Dendraster excentricus is implicated in a proliferation of what appear as nuclear envelope replicas in the cytoplasm. The proliferation is associated with intranuclear vesicles which apparently coalesce to form comparatively simple replicas of the nuclear envelope closely applied to the inside of the nuclear envelope. The envelope itself may become disorganized at the time when fully formed annulate lamellae appear on the cytoplasmic side and parallel with it. The concept of interconvertibility of general cytoplasmic vesicles with most of the membrane systems of the cytoplasm is presented. The structure of the annuli in the annulate lamellae is shown to include small spheres or vesicles of variable size embedded in a dense matrix. Dense particles which are about 150 A in diameter are often found closely associated with annulate lamellae in the cytoplasm. Similar structures in other echinoderm eggs are basophilic. In this species, unlike other published examples, the association apparently takes place in the cytoplasm only after the lamellae have separated from the nucleus. If 150 A particles are synthesized by annulate lamellae, as their close physical relationship suggests, then in this species at least the necessary synthetic mechanisms and specificity must reside in the structure of annulate lamellae. PMID:13630942

  4. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export.

    PubMed

    Li, Ping; Noegel, Angelika A

    2015-11-16

    Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the l I: nker of N: ucleoskeleton and C: ytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Cdk1 Activates Pre-mitotic Nuclear Envelope Dynein Recruitment and Apical Nuclear Migration in Neural Stem Cells.

    PubMed

    Baffet, Alexandre D; Hu, Daniel J; Vallee, Richard B

    2015-06-22

    Dynein recruitment to the nuclear envelope is required for pre-mitotic nucleus-centrosome interactions in nonneuronal cells and for apical nuclear migration in neural stem cells. In each case, dynein is recruited to the nuclear envelope (NE) specifically during G2 via two nuclear pore-mediated mechanisms involving RanBP2-BicD2 and Nup133-CENP-F. The mechanisms responsible for cell-cycle control of this behavior are unknown. We now find that Cdk1 serves as a direct master controller for NE dynein recruitment in neural stem cells and HeLa cells. Cdk1 phosphorylates conserved sites within RanBP2 and activates BicD2 binding and early dynein recruitment. Late recruitment is triggered by a Cdk1-induced export of CENP-F from the nucleus. Forced NE targeting of BicD2 overrides Cdk1 inhibition, fully rescuing dynein recruitment and nuclear migration in neural stem cells. These results reveal how NE dynein recruitment is cell-cycle regulated and identify the trigger mechanism for apical nuclear migration in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models.

    PubMed

    Yokoi, Fumiaki; Dang, Mai T; Yang, Guang; Li, Jindong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2012-02-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ɛ-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ɛ-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ɛ-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ɛ-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ɛ-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. NUCLEAR ENVELOPE-ASSOCIATED RESUMPTION OF RNA SYNTHESIS IN LATE MITOSIS OF HELA CELLS

    PubMed Central

    Simmons, T.; Heywood, P.; Hodge, L.

    1973-01-01

    The restitution of RNA synthesis in cultures progressing from metaphase into interphase (G1) has been investigated in synchronized HeLa S3 cells by using inhibitors of macro-molecular synthesis and the technique of electron microscope autoradiography. The rate of incorporation of radioactive uridine into RNA approached interphase levels in the absence of renewed protein synthesis. In contrast, maintenance of this rate in G1 was dependent upon renewed protein synthesis. Restoration of synthesis of heterogeneous nuclear RNA occurred under conditions that inhibited production of ribosomal precursor RNA. In autoradiographs of individual cells exposed to radioactive uridine, silver grains were first detected after nuclear envelope reformation at the periphery of the chromosome mass but before chromosomal decondensation. These data are consistent with the following interpretation. Multiple RNA polymerase activities persist through mitosis and are involved in the initiation of RNA synthesis in early telophase at sites on the nuclear envelope. PMID:4752403

  8. Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Rumi; En, Atsuki; Ukekawa, Ryo

    2016-05-13

    5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.

  9. Breaching the nuclear envelope in development and disease

    PubMed Central

    Hatch, Emily

    2014-01-01

    In eukaryotic cells the nuclear genome is enclosed by the nuclear envelope (NE). In metazoans, the NE breaks down in mitosis and it has been assumed that the physical barrier separating nucleoplasm and cytoplasm remains intact during the rest of the cell cycle and cell differentiation. However, recent studies suggest that nonmitotic NE remodeling plays a critical role in development, virus infection, laminopathies, and cancer. Although the mechanisms underlying these NE restructuring events are currently being defined, one common theme is activation of protein kinase C family members in the interphase nucleus to disrupt the nuclear lamina, demonstrating the importance of the lamina in maintaining nuclear integrity. PMID:24751535

  10. Caenorhabditis elegans polo-like kinase PLK-1 is required for merging parental genomes into a single nucleus.

    PubMed

    Rahman, Mohammad M; Munzig, Mandy; Kaneshiro, Kiyomi; Lee, Brandon; Strome, Susan; Müller-Reichert, Thomas; Cohen-Fix, Orna

    2015-12-15

    Before the first zygotic division, the nuclear envelopes of the maternal and paternal pronuclei disassemble, allowing both sets of chromosomes to be incorporated into a single nucleus in daughter cells after mitosis. We found that in Caenorhabditis elegans, partial inactivation of the polo-like kinase PLK-1 causes the formation of two nuclei, containing either the maternal or paternal chromosomes, in each daughter cell. These two nuclei gave rise to paired nuclei in all subsequent cell divisions. The paired-nuclei phenotype was caused by a defect in forming a gap in the nuclear envelopes at the interface between the two pronuclei during the first mitotic division. This was accompanied by defects in chromosome congression and alignment of the maternal and paternal metaphase plates relative to each other. Perturbing chromosome congression by other means also resulted in failure to disassemble the nuclear envelope between the two pronuclei. Our data further show that PLK-1 is needed for nuclear envelope breakdown during early embryogenesis. We propose that during the first zygotic division, PLK-1-dependent chromosome congression and metaphase plate alignment are necessary for the disassembly of the nuclear envelope between the two pronuclei, ultimately allowing intermingling of the maternal and paternal chromosomes. © 2015 Rahman et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    PubMed Central

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-01-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by un-attached chromosomes, but that randomly-directed active forces applied to the telomeres speeds up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions. PMID:27046097

  12. Modeling meiotic chromosome pairing: nuclear envelope attachment, telomere-led active random motion, and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Marshall, Wallace F.; Fung, Jennifer C.

    2016-04-01

    The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.

  13. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

    PubMed

    Liu, Guan-Ting; Kung, Hsiu-Ni; Chen, Chung-Kuan; Huang, Cheng; Wang, Yung-Li; Yu, Cheng-Pu; Lee, Chung-Pei

    2018-02-26

    Although a vesicular nucleocytoplasmic transport system is believed to exist in eukaryotic cells, the features of this pathway are mostly unknown. Here, we report that the BFRF1 protein of the Epstein-Barr virus improves vesicular transport of nuclear envelope (NE) to facilitate the translocation and clearance of nuclear components. BFRF1 expression induces vesicles that selectively transport nuclear components to the cytoplasm. With the use of aggregation-prone proteins as tools, we found that aggregated nuclear proteins are dispersed when these BFRF1-induced vesicles are formed. BFRF1-containing vesicles engulf the NE-associated aggregates, exit through from the NE, and putatively fuse with autophagic vacuoles. Chemical treatment and genetic ablation of autophagy-related factors indicate that autophagosome formation and autophagy-linked FYVE protein-mediated autophagic proteolysis are involved in this selective clearance of nuclear proteins. Remarkably, vesicular transport, elicited by BFRF1, also attenuated nuclear aggregates accumulated in neuroblastoma cells. Accordingly, induction of NE-derived vesicles by BFRF1 facilitates nuclear protein translocation and clearance, suggesting that autophagy-coupled transport of nucleus-derived vesicles can be elicited for nuclear component catabolism in mammalian cells.-Liu, G.-T., Kung, H.-N., Chen, C.-K., Huang, C., Wang, Y.-L., Yu, C.-P., Lee, C.-P. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.

  14. A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim

    PubMed Central

    Rose, Annkatrin; Meier, Iris

    2001-01-01

    Ran is a small signaling GTPase that is involved in nucleocytoplasmic transport. Two additional functions of animal Ran in the formation of spindle asters and the reassembly of the nuclear envelope in mitotic cells have been recently reported. In contrast to Ras or Rho, Ran is not associated with membranes. Instead, the spatial sequestering of its accessory proteins, the Ran GTPase-activating protein RanGAP and the nucleotide exchange factor RCC1, appears to define the local concentration of RanGTP vs. RanGDP involved in signaling. Mammalian RanGAP is bound to the nuclear pore by a mechanism involving the attachment of small ubiquitin-related modifier protein (SUMO) to its C terminus and the subsequent binding of the SUMOylated domain to the nucleoporin Nup358. Here we show that plant RanGAP utilizes a different mechanism for nuclear envelope association, involving a novel targeting domain that appears to be unique to plants. The N-terminal WPP domain is highly conserved among plant RanGAPs and the small, plant-specific nuclear envelope-associated protein MAF1, but not present in yeast or animal RanGAP. Confocal laser scanning microscopy of green fluorescent protein (GFP) fusion proteins showed that it is necessary for RanGAP targeting and sufficient to target the heterologous protein GFP to the plant nuclear rim. The highly conserved tryptophan and proline residues of the WPP motif are necessary for its function. The 110-aa WPP domain is the first nuclear-envelope targeting domain identified in plants. Its fundamental difference to its mammalian counterpart implies that different mechanisms have evolved in plants and animals to anchor RanGAP at the nuclear surface. PMID:11752475

  15. Protoparvovirus Knocking at the Nuclear Door.

    PubMed

    Mäntylä, Elina; Kann, Michael; Vihinen-Ranta, Maija

    2017-10-02

    Protoparvoviruses target the nucleus due to their dependence on the cellular reproduction machinery during the replication and expression of their single-stranded DNA genome. In recent years, our understanding of the multistep process of the capsid nuclear import has improved, and led to the discovery of unique viral nuclear entry strategies. Preceded by endosomal transport, endosomal escape and microtubule-mediated movement to the vicinity of the nuclear envelope, the protoparvoviruses interact with the nuclear pore complexes. The capsids are transported actively across the nuclear pore complexes using nuclear import receptors. The nuclear import is sometimes accompanied by structural changes in the nuclear envelope, and is completed by intranuclear disassembly of capsids and chromatinization of the viral genome. This review discusses the nuclear import strategies of protoparvoviruses and describes its dynamics comprising active and passive movement, and directed and diffusive motion of capsids in the molecularly crowded environment of the cell.

  16. Direct observation of nanoparticle-cancer cell nucleus interactions.

    PubMed

    Dam, Duncan Hieu M; Lee, Jung Heon; Sisco, Patrick N; Co, Dick T; Zhang, Ming; Wasielewski, Michael R; Odom, Teri W

    2012-04-24

    We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultrafast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy.

  17. Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos.

    PubMed

    Hiraoka, Y; Agard, D A; Sedat, J W

    1990-12-01

    The spatial and temporal dynamics of diploid chromosome organization, microtubule arrangement, and the state of the nuclear envelope have been analyzed in syncytial blastoderm embryos of Drosophila melanogaster during the transition from prophase to metaphase, by three-dimensional optical sectioning microscopy. Time-lapse, three-dimensional data recorded in living embryos revealed that congression of chromosomes (the process whereby chromosomes move to form the metaphase plate) at prometaphase occurs as a wave, starting at the top of the nucleus near the embryo surface and proceeding through the nucleus to the bottom. The time-lapse analysis was augmented by a high-resolution analysis of fixed embryos where it was possible to unambiguously trace the three-dimensional paths of individual chromosomes. In prophase, the centromeres were found to be clustered at the top of the nucleus while the telomeres were situated at the bottom of the nucleus or towards the embryo interior. This polarized centromere-telomere orientation, perpendicular to the embryo surface, was preserved during the process of prometaphase chromosome congression. Correspondingly, breakdown of the nuclear envelope started at the top of the nucleus with the mitotic spindle being formed at the positions of the partial breakdown of the nuclear envelope. Our observation provide an example in which nuclear structures are spatially organized and their functions are locally and coordinately controlled in three dimensions.

  18. Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C. elegans.

    PubMed

    Martino, Lisa; Morchoisne-Bolhy, Stéphanie; Cheerambathur, Dhanya K; Van Hove, Lucie; Dumont, Julien; Joly, Nicolas; Desai, Arshad; Doye, Valérie; Pintard, Lionel

    2017-10-23

    In animal cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Whereas mitotic kinases have been implicated in NEBD, how they coordinate their activity to trigger this event is unclear. Here, we show that both in human cells and Caenorhabditis elegans, the Polo-like kinase 1 (PLK-1) is recruited to the nuclear pore complexes, just prior to NEBD, through its Polo-box domain (PBD). We provide evidence that PLK-1 localization to the nuclear envelope (NE) is required for efficient NEBD. We identify the central channel nucleoporins NPP-1/Nup58, NPP-4/Nup54, and NPP-11/Nup62 as the critical factors anchoring PLK-1 to the NE in C. elegans. In particular, NPP-1, NPP-4, and NPP-11 primed at multiple Polo-docking sites by Cdk1 and PLK-1 itself physically interact with the PLK-1 PBD. We conclude that nucleoporins play an unanticipated regulatory role in NEBD, by recruiting PLK-1 to the NE thereby facilitating phosphorylation of critical downstream targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The Cell Nucleus Serves as a Mechanotransducer of Tissue Damage-Induced Inflammation.

    PubMed

    Enyedi, Balázs; Jelcic, Mark; Niethammer, Philipp

    2016-05-19

    Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The herpes simplex virus 1 U{sub S}3 regulates phospholipid synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wild, Peter, E-mail: pewild@access.uzh.ch; Institute of Virology, University of Zuerich; Oliveira, Anna Paula de

    2012-10-25

    Herpes simplex virus type 1 capsids bud at nuclear and Golgi membranes for envelopment by phospholipid bilayers. In the absence of U{sub S}3, nuclear membranes form multiple folds harboring virions that suggests disturbance in membrane turnover. Therefore, we investigated phospholipid metabolism in cells infected with the U{sub S}3 deletion mutant R7041({Delta}U{sub S}3), and quantified membranes involved in viral envelopment. We report that (i) [{sup 3}H]-choline incorporation into nuclear membranes and cytoplasmic membranes was enhanced peaking at 12 or 20 h post inoculation with wild type HSV-1 and R7041({Delta}U{sub S}3), respectively, (ii) the surface area of nuclear membranes increased until 24more » h of R7041({Delta}U{sub S}3) infection forming folds that equaled {approx}45% of the nuclear surface, (iii) the surface area of viral envelopes between nuclear membranes equaled {approx}2400 R7041({Delta}U{sub S}3) virions per cell, and (iv) during R7041({Delta}U{sub S}3) infection, the Golgi complex expanded dramatically. The data indicate that U{sub S}3 plays a significant role in regulation of membrane biosynthesis.« less

  1. UL31 and UL34 Proteins of Herpes Simplex Virus Type 1 Form a Complex That Accumulates at the Nuclear Rim and Is Required for Envelopment of Nucleocapsids

    PubMed Central

    Reynolds, Ashley E.; Ryckman, Brent J.; Baines, Joel D.; Zhou, Yuping; Liang, Li; Roller, Richard J.

    2001-01-01

    The herpes simplex virus type 1 (HSV-1) UL34 protein is likely a type II membrane protein that localizes within the nuclear membrane and is required for efficient envelopment of progeny virions at the nuclear envelope, whereas the UL31 gene product of HSV-1 is a nuclear matrix-associated phosphoprotein previously shown to interact with UL34 protein in HSV-1-infected cell lysates. For these studies, polyclonal antisera directed against purified fusion proteins containing UL31 protein fused to glutathione-S-transferase (UL31-GST) and UL34 protein fused to GST (UL34-GST) were demonstrated to specifically recognize the UL31 and UL34 proteins of approximately 34,000 and 30,000 Da, respectively. The UL31 and UL34 gene products colocalized in a smooth pattern throughout the nuclear rim of infected cells by 10 h postinfection. UL34 protein also accumulated in pleiomorphic cytoplasmic structures at early times and associated with an altered nuclear envelope late in infection. Localization of UL31 protein at the nuclear rim required the presence of UL34 protein, inasmuch as cells infected with a UL34 null mutant virus contained UL31 protein primarily in central intranuclear domains separate from the nuclear rim, and to a lesser extent in the cytoplasm. Conversely, localization of UL34 protein exclusively at the nuclear rim required the presence of the UL31 gene product, inasmuch as UL34 protein was detectable at the nuclear rim, in replication compartments, and in the cytoplasm of cells infected with a UL31 null virus. When transiently expressed in the absence of other viral factors, UL31 protein localized diffusely in the nucleoplasm, whereas UL34 protein localized primarily in the cytoplasm and at the nuclear rim. In contrast, coexpression of the UL31 and UL34 proteins was sufficient to target both proteins exclusively to the nuclear rim. The proteins were also shown to directly interact in vitro in the absence of other viral proteins. In cells infected with a virus lacking the US3-encoded protein kinase, previously shown to phosphorylate the UL34 gene product, UL31 and UL34 proteins colocalized in small punctate areas that accumulated on the nuclear rim. Thus, US3 kinase is required for even distribution of UL31 and UL34 proteins throughout the nuclear rim. Taken together with the similar phenotypes of the UL31 and UL34 deletion mutants, these data strongly suggest that the UL31 and UL34 proteins form a complex that accumulates at the nuclear membrane and plays an important role in nucleocapsid envelopment at the inner nuclear membrane. PMID:11507225

  2. Electron microscopic studies of mitosis in amebae. I. Amoeba proteus.

    PubMed

    ROTH, L E; OBETZ, S W; DANIELS, E W

    1960-09-01

    Individual organisms of Amoeba proteus have been fixed in buffered osmium tetroxide in either 0.9 per cent NaCl or 0.01 per cent CaCl(2), sectioned, and studied in the electron microscope in interphase and in several stages of mitosis. The helices typical of interphase nuclei do not coexist with condensed chromatin and thus either represent a DNA configuration unique to interphase or are not DNA at all. The membranes of the complex nuclear envelope are present in all stages observed but are discontinuous in metaphase. The inner, thick, honeycomb layer of the nuclear envelope disappears during prophase, reappearing after telophase when nuclear reconstruction is in progress. Nucleoli decrease in size and number during prophase and re-form during telophase in association with the chromatin network. In the early reconstruction nucleus, the nucleolar material forms into thin, sheet-like configurations which are closely associated with small amounts of chromatin and are closely applied to the inner, partially formed layer of the nuclear envelope. It is proposed that nucleolar material is implicated in the formation of the inner layer of the envelope and that there is a configuration of nucleolar material peculiar to this time. The plasmalemma is partially denuded of its fringe-like material during division.

  3. ELECTRON MICROSCOPIC STUDIES OF MITOSIS IN AMEBAE

    PubMed Central

    Roth, L. E.; Obetz, S. W.; Daniels, E. W.

    1960-01-01

    Individual organisms of Amoeba proteus have been fixed in buffered osmium tetroxide in either 0.9 per cent NaCl or 0.01 per cent CaCl2, sectioned, and studied in the electron microscope in interphase and in several stages of mitosis. The helices typical of interphase nuclei do not coexist with condensed chromatin and thus either represent a DNA configuration unique to interphase or are not DNA at all. The membranes of the complex nuclear envelope are present in all stages observed but are discontinuous in metaphase. The inner, thick, honeycomb layer of the nuclear envelope disappears during prophase, reappearing after telophase when nuclear reconstruction is in progress. Nucleoli decrease in size and number during prophase and re-form during telophase in association with the chromatin network. In the early reconstruction nucleus, the nucleolar material forms into thin, sheet-like configurations which are closely associated with small amounts of chromatin and are closely applied to the inner, partially formed layer of the nuclear envelope. It is proposed that nucleolar material is implicated in the formation of the inner layer of the envelope and that there is a configuration of nucleolar material peculiar to this time. The plasmalemma is partially denuded of its fringe-like material during division. PMID:13743845

  4. The nuclear envelope as an integrator of nuclear and cytoplasmic architecture.

    PubMed

    Crisp, Melissa; Burke, Brian

    2008-06-18

    Initially perceived as little more than a container for the genome, our view of the nuclear envelope (NE) and its role in defining global nuclear architecture has evolved significantly in recent years. The recognition that certain human diseases arise from defects in NE components has provided new insight into its structural and regulatory functions. In particular, NE defects associated with striated muscle disease have been shown to cause structural perturbations not just of the nucleus itself but also of the cytoplasm. It is now becoming increasingly apparent that these two compartments display co-dependent mechanical properties. The identification of cytoskeletal binding complexes that localize to the NE now reveals a molecular framework that can seamlessly integrate nuclear and cytoplasmic architecture.

  5. Direct Observation of Nanoparticle-Cancer Cell Nucleus Interactions

    PubMed Central

    Dam, Duncan Hieu M.; Lee, Jung Heon; Sisco, Patrick N.; Co, Dick T.; Zhang, Ming; Wasielewski, Michael R.; Odom, Teri W.

    2012-01-01

    We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultra-fast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy. PMID:22424173

  6. Alteration of Mature Nucleocapsid and Enhancement of Covalently Closed Circular DNA Formation by Hepatitis B Virus Core Mutants Defective in Complete-Virion Formation.

    PubMed

    Cui, Xiuji; Luckenbaugh, Laurie; Bruss, Volker; Hu, Jianming

    2015-10-01

    Assembly of hepatitis B virus (HBV) begins with packaging of the pregenomic RNA (pgRNA) into immature nucleocapsids (NC), which are converted to mature NCs containing the genomic relaxed circular (RC) DNA as a result of reverse transcription. Mature NCs have two alternative fates: (i) envelopment by viral envelope proteins, leading to secretion extracellularly as virions, or (ii) disassembly (uncoating) to deliver their RC DNA content into the host cell nucleus for conversion to the covalently closed circular (CCC) DNA, the template for viral transcription. How these two alternative fates are regulated remains to be better understood. The NC shell is composed of multiple copies of a single viral protein, the HBV core (HBc) protein. HBc mutations located on the surface of NC have been identified that allow NC maturation but block its envelopment. The potential effects of some of these mutations on NC uncoating and CCC DNA formation have been analyzed by transfecting HBV replication constructs into hepatoma cells. All envelopment-defective HBc mutations tested were competent for CCC DNA formation, indicating that core functions in envelopment and uncoating/nuclear delivery of RC DNA were genetically separable. Some of the envelopment-defective HBc mutations were found to alter specifically the integrity of mature, but not immature, NCs such that RC DNA became susceptible to nuclease digestion. Furthermore, CCC DNA formation could be enhanced by NC surface mutations that did or did not significantly affect mature NC integrity, indicating that the NC surface residues may be closely involved in NC uncoating and/or nuclear delivery of RC DNA. Hepatitis B virus (HBV) infection is a major health issue worldwide. HBV assembly begins with the packaging into immature nucleocapsids (NCs) of a viral RNA pregenome, which is converted to the DNA genome in mature NCs. Mature NCs are then selected for envelopment and secretion as complete-virion particles or, alternatively, can deliver their DNA to the host cell nucleus to maintain the viral genome as nuclear episomes, which are the basis for virus persistence. Previous studies have identified mutations on the capsid surface that selectively block NC envelopment without affecting NC maturation. We have now discovered that some of the same mutations result in preferential alteration of mature NCs and increased viral nuclear episomes. These findings provide important new insights into the regulation of the two alternative fates of mature NCs and suggest new ways to perturb viral persistence by manipulating levels of viral nuclear episomes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Death of mitochondria during programmed cell death of leaf mesophyll cells.

    PubMed

    Selga, Tūrs; Selga, Maija; Pāvila, Vineta

    2005-12-01

    The role of plant mitochondria in the programmed cell death (PCD) is widely discussed. However, spectrum and sequence of mitochondrial structural changes during different types of PCD in leaves are poorly described. Pea, cucumber and rye plants were grown under controlled growing conditions. A part of them were sprinkled with ethylene releaser to accelerate cell death. During yellowing the palisade parenchyma mitochondria were attracted to nuclear envelope. Mitochondrial matrix became electron translucent. Mitochondria entered vacuole by invagination of tonoplast and formed multivesicular bodies. Ethephon treatment increased the frequency of sticking of mitochondria to the nuclear envelope or chloroplasts and peroxisomes. Mitochondria divided by different mechanisms and became enclosed in Golgi and ER derived authopagic vacuoles or in the central vacuole. Several fold increase of the diameter of cristae became typical. In all cases mitochondria were attached to nuclear envelope. It can be considered as structural mechanism of promoting of PCD.

  8. Data on the association of the nuclear envelope protein Sun1 with nucleoli.

    PubMed

    Moujaber, Ossama; Omran, Nawal; Kodiha, Mohamed; Pié, Brigitte; Cooper, Ellis; Presley, John F; Stochaj, Ursula

    2017-08-01

    SUN proteins participate in diverse cellular activities, many of which are connected to the nuclear envelope. Recently, the family member SUN1 has been linked to novel biological activities. These include the regulation of nucleoli, intranuclear compartments that assemble ribosomal subunits. We show that SUN1 associates with nucleoli in several mammalian epithelial cell lines. This nucleolar localization is not shared by all cell types, as SUN1 concentrates at the nuclear envelope in ganglionic neurons and non-neuronal satellite cells. Database analyses and Western blotting emphasize the complexity of SUN1 protein profiles in different mammalian cells. We constructed a STRING network which identifies SUN1-related proteins as part of a larger network that includes several nucleolar proteins. Taken together, the current data highlight the diversity of SUN1 proteins and emphasize the possible links between SUN1 and nucleoli.

  9. Control of nuclear β-dystroglycan content is crucial for the maintenance of nuclear envelope integrity and function.

    PubMed

    Vélez-Aguilera, Griselda; de Dios Gómez-López, Juan; Jiménez-Gutiérrez, Guadalupe E; Vásquez-Limeta, Alejandra; Laredo-Cisneros, Marco S; Gómez, Pablo; Winder, Steve J; Cisneros, Bulmaro

    2018-02-01

    β-Dystroglycan (β-DG) is a plasma membrane protein that has ability to target to the nuclear envelope (NE) to maintain nuclear architecture. Nevertheless, mechanisms controlling β-DG nuclear localization and the physiological consequences of a failure of trafficking are largely unknown. We show that β-DG has a nuclear export pathway in myoblasts that depends on the recognition of a nuclear export signal located in its transmembrane domain, by CRM1. Remarkably, NES mutations forced β-DG nuclear accumulation resulting in mislocalization and decreased levels of emerin and lamin B1 and disruption of various nuclear processes in which emerin (centrosome-nucleus linkage and β-catenin transcriptional activity) and lamin B1 (cell cycle progression and nucleoli structure) are critically involved. In addition to nuclear export, the lifespan of nuclear β-DG is restricted by its nuclear proteasomal degradation. Collectively our data show that control of nuclear β-DG content by the combination of CRM1 nuclear export and nuclear proteasome pathways is physiologically relevant to preserve proper NE structure and activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Role of ANC-1 in tethering nuclei to the actin cytoskeleton.

    PubMed

    Starr, Daniel A; Han, Min

    2002-10-11

    Mutations in anc-1 (nuclear anchorage defective) disrupt the positioning of nuclei and mitochondria in Caenorhabditis elegans. ANC-1 is shown to consist of mostly coiled regions with a nuclear envelope localization domain (called the KASH domain) and an actin-binding domain; this structure was conserved with the Drosophila protein Msp-300 and the mammalian Syne proteins. Antibodies against ANC-1 localized cytoplasmically and were enriched at the nuclear periphery in an UNC-84-dependent manner. Overexpression of the KASH domain or the actin-binding domain caused a dominant negative anchorage defect. Thus, ANC-1 may connect nuclei to the cytoskeleton by interacting with UNC-84 at the nuclear envelope and with actin in the cytoplasm.

  11. Nuclear movement regulated by non-Smad Nodal signaling via JNK is associated with Smad signaling during zebrafish endoderm specification.

    PubMed

    Hozumi, Shunya; Aoki, Shun; Kikuchi, Yutaka

    2017-11-01

    Asymmetric nuclear positioning is observed during animal development, but its regulation and significance in cell differentiation remain poorly understood. Using zebrafish blastulae, we provide evidence that nuclear movement towards the yolk syncytial layer, which comprises extraembryonic tissue, occurs in the first cells fated to differentiate into the endoderm. Nodal signaling is essential for nuclear movement, whereas nuclear envelope proteins are involved in movement through microtubule formation. Positioning of the microtubule-organizing center, which is proposed to be crucial for nuclear movement, is regulated by Nodal signaling and nuclear envelope proteins. The non-Smad JNK signaling pathway, which is downstream of Nodal signaling, regulates nuclear movement independently of the Smad pathway, and this nuclear movement is associated with Smad signal transduction toward the nucleus. Our study provides insight into the function of nuclear movement in Smad signaling toward the nucleus, and could be applied to the control of TGFβ signaling. © 2017. Published by The Company of Biologists Ltd.

  12. Phosphatidylserine colocalizes with epichromatin in interphase nuclei and mitotic chromosomes

    PubMed Central

    Prudovsky, Igor; Vary, Calvin P.H.; Markaki, Yolanda; Olins, Ada L.; Olins, Donald E.

    2012-01-01

    Cycling eukaryotic cells rapidly re-establish the nuclear envelope and internal architecture following mitosis. Studies with a specific anti-nucleosome antibody recently demonstrated that the surface (“epichromatin”) of interphase and mitotic chromatin possesses a unique and conserved conformation, suggesting a role in postmitotic nuclear reformation. Here we present evidence showing that the anionic glycerophospholipid phosphatidylserine is specifically located in epichromatin throughout the cell cycle and is associated with nucleosome core histones. This suggests that chromatin bound phosphatidylserine may function as a nucleation site for the binding of ER and re-establishment of the nuclear envelope. PMID:22555604

  13. Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates

    PubMed Central

    Franz, Cerstin; Askjaer, Peter; Antonin, Wolfram; Iglesias, Carmen López; Haselmann, Uta; Schelder, Malgorzata; de Marco, Ario; Wilm, Matthias; Antony, Claude; Mattaj, Iain W

    2005-01-01

    Nuclear envelope (NE) formation during cell division in multicellular organisms is a central yet poorly understood biological process. We report that the conserved nucleoporin Nup155 has an essential function in NE formation in Caenorhabditis elegans embryos and in Xenopus laevis egg extracts. In vivo depletion of Nup155 led to failure of nuclear lamina formation and defects in chromosome segregation at anaphase. Nup155 depletion inhibited accumulation of nucleoporins at the nuclear periphery, including those recruited to chromatin early in NE formation. Electron microscopy analysis revealed that Nup155 is also required for the formation of a continuous nuclear membrane in vivo and in vitro. Time-course experiments indicated that Nup155 is recruited to chromatin at the time of NE sealing, suggesting that nuclear pore complex assembly has to progress to a relatively late stage before NE membrane assembly occurs. PMID:16193066

  14. Fluorescent Labeling of the Nuclear Envelope by Localizing Green Fluorescent Protein on the Inner Nuclear Membrane.

    PubMed

    Taniyama, Toshiyuki; Tsuda, Natsumi; Sueda, Shinji

    2018-06-15

    The nuclear envelope (NE) is a double membrane that segregates nuclear components from the cytoplasm in eukaryotic cells. It is well-known that the NE undergoes a breakdown and reformation during mitosis in animal cells. However, the detailed mechanisms of the NE dynamics are not yet fully understood. Here, we propose a method for the fluorescent labeling of the NE in living cells, which enables the tracing of the NE dynamics during cell division under physiological conditions. In our method, labeling of the NE is accomplished by fixing green fluorescent protein carrying the nuclear localization signal on the inner nuclear membrane based on a unique biotinylation reaction from the archaeon Sulfolobus tokodaii. With this method, we observed HeLa cells during mitosis by confocal laser scanning microscopy and succeeded in clearly visualizing the difference in the timing of the formation of the NE and the nuclear lamina.

  15. New biological research and understanding of Papanicolaou's test.

    PubMed

    Smith, Elizabeth R; George, Sophia H; Kobetz, Erin; Xu, Xiang-Xi

    2018-06-01

    The development of the Papanicolaou smear test by Dr. George Nicholas Papanicolaou (1883-1962) is one of the most significant achievements in screening for disease and cancer prevention in history. The Papanicolaou smear has been used for screening of cervical cancer since the 1950s. The test is technically straightforward and practical and based on a simple scientific observation: malignant cells have an aberrant nuclear morphology that can be distinguished from benign cells. Here, we review the scientific understanding that has been achieved and continues to be made on the causes and consequences of abnormal nuclear morphology, the basis of Dr. Papanicolaou's invention. The deformed nuclear shape is caused by the loss of lamina and nuclear envelope structural proteins. The consequences of a nuclear envelope defect include chromosomal numerical instability, altered chromatin organization and gene expression, and increased cell mobility because of a malleable nuclear envelope. HPV (Human Papilloma Virus) infection is recognized as the key etiology in the development of cervical cancer. Persistent HPV infection causes disruption of the nuclear lamina, which presents as a change in nuclear morphology detectable by a Papanicolaou smear. Thus, the causes and consequences of nuclear deformation are now linked to the mechanisms of viral carcinogenesis, and are still undergoing active investigation to reveal the details. Recently a statue was installed in front of the Papanicolaou's Cancer Research Building to honor the inventor. Remarkably, the invention nearly 60 years ago by Dr. Papanicolaou still exerts clinical impacts and inspires scientific inquiries. © 2018 Wiley Periodicals, Inc.

  16. A statistical image analysis framework for pore-free islands derived from heterogeneity distribution of nuclear pore complexes.

    PubMed

    Mimura, Yasuhiro; Takemoto, Satoko; Tachibana, Taro; Ogawa, Yutaka; Nishimura, Masaomi; Yokota, Hideo; Imamoto, Naoko

    2017-11-24

    Nuclear pore complexes (NPCs) maintain cellular homeostasis by mediating nucleocytoplasmic transport. Although cyclin-dependent kinases (CDKs) regulate NPC assembly in interphase, the location of NPC assembly on the nuclear envelope is not clear. CDKs also regulate the disappearance of pore-free islands, which are nuclear envelope subdomains; this subdomain gradually disappears with increase in homogeneity of the NPC in response to CDK activity. However, a causal relationship between pore-free islands and NPC assembly remains unclear. Here, we elucidated mechanisms underlying NPC assembly from a new perspective by focusing on pore-free islands. We proposed a novel framework for image-based analysis to automatically determine the detailed 'landscape' of pore-free islands from a large quantity of images, leading to the identification of NPC intermediates that appear in pore-free islands with increased frequency in response to CDK activity. Comparison of the spatial distribution between simulated and the observed NPC intermediates within pore-free islands showed that their distribution was spatially biased. These results suggested that the disappearance of pore-free islands is highly related to de novo NPC assembly and indicated the existence of specific regulatory mechanisms for the spatial arrangement of NPC assembly on nuclear envelopes.

  17. An Unconventional Diacylglycerol Kinase That Regulates Phospholipid Synthesis and Nuclear Membrane Growth*♦

    PubMed Central

    Han, Gil-Soo; O'Hara, Laura; Carman, George M.; Siniossoglou, Symeon

    2008-01-01

    Changes in nuclear size and shape during the cell cycle or during development require coordinated nuclear membrane remodeling, but the underlying molecular events are largely unknown. We have shown previously that the activity of the conserved phosphatidate phosphatase Pah1p/Smp2p regulates nuclear structure in yeast by controlling phospholipid synthesis and membrane biogenesis at the nuclear envelope. Two screens for novel regulators of phosphatidate led to the identification of DGK1. We show that Dgk1p is a unique diacylglycerol kinase that uses CTP, instead of ATP, to generate phosphatidate. DGK1 counteracts the activity of PAH1 at the nuclear envelope by controlling phosphatidate levels. Overexpression of DGK1 causes the appearance of phosphatidate-enriched membranes around the nucleus and leads to its expansion, without proliferating the cortical endoplasmic reticulum membrane. Mutations that decrease phosphatidate levels decrease nuclear membrane growth in pah1Δ cells. We propose that phosphatidate metabolism is a critical factor determining nuclear structure by regulating nuclear membrane biogenesis. PMID:18458075

  18. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts.

    PubMed

    Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H

    2007-08-15

    Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.

  19. Glimpsing over the event horizon: evolution of nuclear pores and envelope.

    PubMed

    Jékely, Gáspár

    2005-02-01

    The origin of eukaryotes from prokaryotic ancestors is one of the major evolutionary transitions in the history of life. The nucleus, a membrane bound compartment for confining the genome, is a central feature of eukaryotic cells and its origin also has to be a central feature of any workable theory that ventures to explain eukaryotic origins. Recent bioinformatic analyses of components of the nuclear pore complex (NPC), the nuclear envelope (NE), and the nuclear transport systems revealed exciting evolutionary connections (e.g., between NPC and coated vesicles) and provided a useful record of the phyletic distribution and history of NPC and NE components. These analyses allow us to refine theories on the origin and evolution of the nucleus, and consequently, of the eukaryotic cell.

  20. Duplication and Nuclear Envelope Insertion of the Yeast Microtubule Organizing Centre, the Spindle Pole Body.

    PubMed

    Rüthnick, Diana; Schiebel, Elmar

    2018-05-10

    The main microtubule organizing centre in the unicellular model organisms Saccharomyces cerevisiae and Schizosaccharomyces pompe is the spindle pole body (SPB). The SPB is a multilayer structure, which duplicates exactly once per cell cycle. Unlike higher eukaryotic cells, both yeast model organisms undergo mitosis without breakdown of the nuclear envelope (NE), a so-called closed mitosis. Therefore, in order to simultaneously nucleate nuclear and cytoplasmic MTs, it is vital to embed the SPB into the NE at least during mitosis, similarly to the nuclear pore complex (NPC). This review aims to embrace the current knowledge of the SPB duplication cycle with special emphasis on the critical step of the insertion of the new SPB into the NE.

  1. Four signature motifs define the first class of structurally related large coiled-coil proteins in plants.

    PubMed Central

    Gindullis, Frank; Rose, Annkatrin; Patel, Shalaka; Meier, Iris

    2002-01-01

    Background Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants. Results We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP) were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms. Conclusion Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom. PMID:11972898

  2. Analysis of RNA-Seq datasets reveals enrichment of tissue-specific splice variants for nuclear envelope proteins.

    PubMed

    Capitanchik, Charlotte; Dixon, Charles; Swanson, Selene K; Florens, Laurence; Kerr, Alastair R W; Schirmer, Eric C

    2018-06-18

    Nuclear envelopathies/laminopathies yield tissue-specific pathologies, yet arise from mutation of ubiquitously-expressed genes. One possible explanation of this tissue specificity is that tissue-specific partners become disrupted from larger complexes, but a little investigated alternate hypothesis is that the mutated proteins themselves have tissue-specific splice variants. Here, we analyze RNA-Seq datasets to identify muscle-specific splice variants of nuclear envelope genes that could be relevant to the study of laminopathies, particularly muscular dystrophies, that are not currently annotated in sequence databases. Notably, we found novel isoforms or tissue-specificity of isoforms for: Lap2, linked to cardiomyopathy; Nesprin 2, linked to Emery-Dreifuss muscular dystrophy and Lmo7, a regulator of the emerin gene that is linked to Emery-Dreifuss muscular dystrophy. Interestingly, the muscle-specific exon in Lmo7 is rich in serine phosphorylation motifs, suggesting an important regulatory function. Evidence for muscle-specific splice variants in non-nuclear envelope proteins linked to other muscular dystrophies was also found. Tissue-specific variants were also indicated for several nucleoporins including Nup54, Nup133, Nup153 and Nup358/RanBP2. We confirmed expression of novel Lmo7 and RanBP2 variants with RT-PCR and found that specific knockdown of the Lmo7 variant caused a reduction in myogenic index during mouse C2C12 myogenesis. Global analysis revealed an enrichment of tissue-specific splice variants for nuclear envelope proteins in general compared to the rest of the genome, suggesting that splice variants contribute to regulating its tissue-specific functions.

  3. Messages from the voices within: regulation of signaling by proteins of the nuclear lamina.

    PubMed

    Gerace, Larry; Tapia, Olga

    2018-01-04

    The nuclear lamina (NL) is a protein scaffold lining the nuclear envelope that consists of nuclear lamins and associated transmembrane proteins. It helps to organize the nuclear envelope, chromosomes, and the cytoplasmic cytoskeleton. The NL also has an important role in regulation of signaling, as highlighted by the wide range of human diseases caused by mutations in the genes for NL proteins with associated signaling defects. This review will consider diverse mechanisms for signaling regulation by the NL that have been uncovered recently, including interaction with signaling effectors, modulation of actin assembly and compositional alteration of the NL. Cells with discrete NL mutations often show disruption of multiple signaling pathways, however, and for the most part the mechanistic basis for these complex phenotypes remains to be elucidated. Copyright © 2017. Published by Elsevier Ltd.

  4. Highlight on the dynamic organization of the nucleus.

    PubMed

    Thorpe, Stephen D; Charpentier, Myriam

    2017-01-02

    The last decade has seen rapid advances in our understanding of the proteins of the nuclear envelope, which have multiple roles including positioning the nucleus, maintaining its structural organization, and in events ranging from mitosis and meiosis to chromatin positioning and gene expression. Diverse new and stimulating results relating to nuclear organization and genome function from across kingdoms were presented in a session stream entitled "Dynamic Organization of the Nucleus" at this year's Society of Experimental Biology (SEB) meeting in Brighton, UK (July 2016). This was the first session stream run by the Nuclear Dynamics Special Interest Group, which was organized by David Evans, Katja Graumann (both Oxford Brookes University, UK) and Iris Meier (Ohio State University, USA). The session featured presentations on areas relating to nuclear organization across kingdoms including the nuclear envelope, chromatin organization, and genome function.

  5. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostlund, Cecilia; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Guan, Tinglu

    2009-11-13

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients withmore » FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.« less

  6. ELECTRON MICROSCOPY OF MITOSIS IN A RADIOSENSITIVE GIANT AMOEBA

    PubMed Central

    Daniels, E. W.; Roth, L. E.

    1964-01-01

    Various aspects of the ultrastructure of the dividing nuclei in the large radiosensitive amoeba Pelomyxa illinoisensis are demonstrated. Evidence of nuclear envelope breakdown is presented, and membrane fragments are traced throughout metaphase to envelope reconstruction in anaphase and telophase. Annuli in the nuclear envelope and its fragments are shown throughout mitosis. During metaphase and anaphase some 15 to 20 mitochondria are aligned at each end of the spindle, and are called polar mitochondria. The radioresistant amoebae Pelomyxa carolinensis and Amoeba proteus do not have polar mitochondria, and Pelomyxa illinoisensis is unique in this regard. The shape of the P. illinoisensis interphase nucleoli differs from that in the two radioresistant species, and certain aspects of nucleolar dissolution in the prophase vary. Helical coils in the interphase nucleoplasm are similar to those in the radioresistant amoebae. A "blister" phase in the flatly shaped telophase nuclei of P. illinoisensis is described which is interpreted to be the result of a rapid nuclear expansion leading to the formation of the normal spherical interphase nuclei. PMID:14105218

  7. Pushing the envelope: microinjection of Minute virus of mice into Xenopus oocytes causes damage to the nuclear envelope.

    PubMed

    Cohen, Sarah; Panté, Nelly

    2005-12-01

    Parvoviruses are small DNA viruses that replicate in the nucleus of their host cells. It has been largely assumed that parvoviruses enter the nucleus through the nuclear pore complex (NPC). However, the details of this mechanism remain undefined. To study this problem, the parvovirus Minute virus of mice (MVM) was microinjected into the cytoplasm of Xenopus oocytes and a transmission electron microscope was used to visualize the effect of the virus on the host cell. It was found that MVM caused damage to the nuclear envelope (NE) in a time- and concentration-dependent manner. Damage was predominantly to the outer nuclear membrane and was often near the NPCs. However, microinjection experiments in which the NPCs were blocked showed that NE damage induced by MVM was independent of the NPC. To address the question of whether this effect of MVM is specific to the NE, purified organelles were incubated with MVM. Visualization by electron microscopy revealed that MVM did not affect all intracellular membranes. These data represent a novel form of virus-induced damage to host cell nuclear structure and suggest that MVM is imported into the nucleus using a unique mechanism that is independent of the NPC, and involves disruption of the NE and import through the resulting breaks.

  8. Full-Waveform Envelope Templates for Low Magnitude Discrimination and Yield Estimation at Local and Regional Distances with Application to the North Korean Nuclear Tests

    NASA Astrophysics Data System (ADS)

    Yoo, S. H.

    2017-12-01

    Monitoring seismologists have successfully used seismic coda for event discrimination and yield estimation for over a decade. In practice seismologists typically analyze long-duration, S-coda signals with high signal-to-noise ratios (SNR) at regional and teleseismic distances, since the single back-scattering model reasonably predicts decay of the late coda. However, seismic monitoring requirements are shifting towards smaller, locally recorded events that exhibit low SNR and short signal lengths. To be successful at characterizing events recorded at local distances, we must utilize the direct-phase arrivals, as well as the earlier part of the coda, which is dominated by multiple forward scattering. To remedy this problem, we have developed a new hybrid method known as full-waveform envelope template matching to improve predicted envelope fits over the entire waveform and account for direct-wave and early coda complexity. We accomplish this by including a multiple forward-scattering approximation in the envelope modeling of the early coda. The new hybrid envelope templates are designed to fit local and regional full waveforms and produce low-variance amplitude estimates, which will improve yield estimation and discrimination between earthquakes and explosions. To demonstrate the new technique, we applied our full-waveform envelope template-matching method to the six known North Korean (DPRK) underground nuclear tests and four aftershock events following the September 2017 test. We successfully discriminated the event types and estimated the yield for all six nuclear tests. We also applied the same technique to the 2015 Tianjin explosions in China, and another suspected low-yield explosion at the DPRK test site on May 12, 2010. Our results show that the new full-waveform envelope template-matching method significantly improves upon longstanding single-scattering coda prediction techniques. More importantly, the new method allows monitoring seismologists to extend coda-based techniques to lower magnitude thresholds and low-yield local explosions.

  9. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope

    PubMed Central

    Otsuka, Shotaro; Bui, Khanh Huy; Schorb, Martin; Hossain, M Julius; Politi, Antonio Z; Koch, Birgit; Eltsov, Mikhail; Beck, Martin; Ellenberg, Jan

    2016-01-01

    The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the inner nuclear membrane (INM), that grew in diameter and depth until they fused with the flat outer nuclear membrane. Live and super-resolved fluorescence microscopy revealed the molecular maturation of the intermediates, which initially contained the nuclear and cytoplasmic ring component Nup107, and only later the cytoplasmic filament component Nup358. EM particle averaging showed that the evagination base was surrounded by an 8-fold rotationally symmetric ring structure from the beginning and that a growing mushroom-shaped density was continuously associated with the deforming membrane. Quantitative structural analysis revealed that interphase NPC assembly proceeds by an asymmetric inside-out extrusion of the INM. DOI: http://dx.doi.org/10.7554/eLife.19071.001 PMID:27630123

  10. Proteomics on the rims; insights into the biology of the nuclear envelope and flagellar pocket of trypanosomes

    PubMed Central

    Field, Mark C.; Adung’a, Vincent; Obado, Samson; Chait, Brian T.; Rout, Michael P.

    2014-01-01

    SUMMERY Trypanosomatids represent the causative agents of major diseases in humans, livestock and plants, with inevitable suffering and economic hardship as a result. They are also evolutionarily highly divergent organisms, and the many unique aspects of trypanosome biology provide opportunities in terms of identification of drug targets, the challenge of exploiting these putative targets, and at the same time significant scope for exploration of novel and divergent cell biology. We can estimate from genome sequences that the degree of divergence of trypanosomes from animals and fungi is extreme, with perhaps one third to one half of predicted trypanosome proteins having no known function based on homology or recognizable protein domains/architecture. Two highly important aspects of trypanosome biology are the flagellar pocket and the nuclear envelope, where in silico analysis clearly suggests great potential divergence in the proteome. The flagellar pocket is the sole site of endo- and exocytosis in trypanosomes and plays important roles in immune evasion via variant surface glycoprotein (VSG) trafficking and providing a location for sequestration of various invariant receptors. The trypanosome nuclear envelope has been largely unexplored, but by analogy with higher eukaryotes, roles in the regulation of chromatin and most significantly, in controlling VSG gene expression are expected. Here we discuss recent successful proteomics-based approaches towards characterization of the nuclear envelope and the endocytic apparatus, the identification of conserved and novel trypanosomatid-specific features, and the implications of these findings. PMID:22309600

  11. Nuclear Import of the Retrotransposon Tf1 Is Governed by a Nuclear Localization Signal That Possesses a Unique Requirement for the FXFG Nuclear Pore Factor Nup124p

    PubMed Central

    Dang, Van-Dinh; Levin, Henry L.

    2000-01-01

    Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein. PMID:11003674

  12. Nuclear import of the retrotransposon Tf1 is governed by a nuclear localization signal that possesses a unique requirement for the FXFG nuclear pore factor Nup124p.

    PubMed

    Dang, V D; Levin, H L

    2000-10-01

    Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein.

  13. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  14. From proto-mitosis to mitosis — An alternative hypothesis on the origin and evolution of the mitotic spindle

    NASA Astrophysics Data System (ADS)

    Roos, U.-P.

    1984-03-01

    Based on the assumption that the ancestral proto-eukaryote evolved from an ameboid prokarybte I propose the hypothesis that nuclear division of the proto-eukaryote was effected by the same system of contractile filaments it used for ameboid movement and cytosis. When the nuclear membranes evolved from the cell membrane, contractile filaments remained associated with them. The attachment site of the genome in the nuclear envelope was linked to the cell membrane by specialized contractile filaments. During protomitosis, i.e., nuclear and cell division of the proto-eukaryote, these filaments performed segregation of the chromosomes, whereas others constricted and cleaved the nucleus and the mother cell. When microtubules (MTs) had evolved in the cytoplasm, they also became engaged in nuclear division. Initially, an extranuolear bundle of MTs assisted chromosome segregation by establishing a defined axis. The evolutionary tendency then was towards an increasingly important role for MTs. Spindle pole bodies (SPBs) developed from the chromosomal attachment sites in the nuclear envelope and organized an extranuclear central spindle. The chromosomes remained attached to the SPBs during nuclear division. In a subsequent step the spindle became permanently lodged inside the nucleus. Chromosomes detached from the SPBs and acquired kinetochores and kinetochore-MTs. At first, this spindle segregated chromosomes by elongation, the kinetochore-MTs playing the role of static anchors. Later, spindle elongation was supplemented by poleward movement of the chromosomes. When dissolution of the nuclear envelope at the beginning of mitosis became a permanent feature, the open spindle of higher eukaryotes was born.

  15. Effect of chromosome tethering on nuclear organization in yeast.

    PubMed

    Avşaroğlu, Barış; Bronk, Gabriel; Gordon-Messer, Susannah; Ham, Jungoh; Bressan, Debra A; Haber, James E; Kondev, Jane

    2014-01-01

    Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB) at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML) on chromosome III in wild-type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination.

  16. A Novel Fission Yeast Gene, tht1 +, Is Required for the Fusion of Nuclear Envelopes during Karyogamy

    PubMed Central

    Tange, Yoshie; Horio, Tetsuya; Shimanuki, Mizuki; Ding, Da-Qiao; Hiraoka, Yasushi; Niwa, Osami

    1998-01-01

    We have isolated a fission yeast karyogamy mutant, tht1, in which nuclear congression and the association of two spindle pole bodies occurs but the subsequent fusion of nuclear envelopes is blocked. The tht1 mutation does not prevent meiosis, so cells execute meiosis with two unfused nuclei, leading to the production of aberrant asci. The tht1 + gene was cloned and sequenced. Predicted amino acid sequence has no significant homology to previously known proteins but strongly suggests that it is a type I membrane protein. The tht1 + gene is dispensable for vegetative growth and expressed only in conjugating cells. Tht1p is a glycoprotein susceptible to endoglycosilase H digestion. Site- directed mutagenesis showed that the N-glycosylation site, as well as the COOH-terminal region of Tht1p, is essential for its function. A protease protection assay indicated that the COOH terminus is cytoplasmic. Immunocytological analysis using a HA-tagged Tht1p suggested that the protein is localized in nuclear envelopes and in the ER during karyogamy and that its levels are reduced in cells containing fused nuclei. PMID:9442101

  17. Effect of Chromosome Tethering on Nuclear Organization in Yeast

    PubMed Central

    Avşaroğlu, Barış; Bronk, Gabriel; Gordon-Messer, Susannah; Ham, Jungoh; Bressan, Debra A.; Haber, James E.; Kondev, Jane

    2014-01-01

    Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB) at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML) on chromosome III in wild–type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination. PMID:25020108

  18. Differential detection of nuclear envelope autoantibodies in primary biliary cirrhosis using routine and alternative methods

    PubMed Central

    2010-01-01

    Background Detection of autoantibodies giving nuclear rim pattern by immunofluorescence (anti-nuclear envelope antibodies - ANEA) in sera from patients with primary biliary cirrhosis (PBC) is a useful tool for the diagnosis and prognosis of the disease. Differences in the prevalence of ANEA in PBC sera so far reported have been attributed to the methodology used for the detection as well as to ethnic/geographical variations. Therefore, we evaluated the prevalence of ANEA in sera of Greek patients with PBC by using methods widely used by clinical laboratories and a combination of techniques and materials. Methods We screened 103 sera by immunoblotting on nuclear envelopes and indirect immunofluorescence (IIF) using cells and purified nuclei. Reactivities against specific autoantigens were assessed using purified proteins, ELISA, immunoprecipitation and mass spectrometry. Results We found higher prevalence of ANEA when sera were assayed by IIF on purified nuclei or cultured cells (50%) compared to Hep2 commercially available slides (15%). Anti-gp210 antibodies were identified in 22.3% and 33% of sera using ELISA for the C-terminal of gp210 or both ELISA and immunoprecipitation, respectively. Immunoblotting on nuclear envelopes revealed that immunoreactivity for the 210 kDa zone is related to anti-gp210 antibodies (p < 0.0001). Moreover, we found that sera had antibodies for lamins A (6.8%), B (1%) and C (1%) and LBR (8.7%), whereas none at all had detectable anti-p62 antibodies. Conclusions The prevalence of ANEA or anti-gp210 antibodies is under-estimated in PBC sera which are analyzed by conventional commercially available IIF or ELISA, respectively. Therefore, new substrates for IIF and ELISA should be included by clinical laboratories in the analysis of ANEA in autoimmune sera. PMID:20205958

  19. Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast.

    PubMed

    Wolinski, Heimo; Hofbauer, Harald F; Hellauer, Klara; Cristobal-Sarramian, Alvaro; Kolb, Dagmar; Radulovic, Maja; Knittelfelder, Oskar L; Rechberger, Gerald N; Kohlwein, Sepp D

    2015-11-01

    Yeast Fld1 and Ldb16 resemble mammalian seipin, implicated in neutral lipid storage. Both proteins form a complex at the endoplasmic reticulum-lipid droplet (LD) interface. Malfunction of this complex either leads to LD clustering or to the generation of supersized LD (SLD) in close vicinity to the nuclear envelope, in response to altered phospholipid (PL) composition. We show that similar to mutants lacking Fld1, deletion of LDB16 leads to abnormal proliferation of a subdomain of the nuclear envelope, which is tightly associated with clustered LD. The human lipin-1 ortholog, the PAH1 encoded phosphatidic acid (PA) phosphatase, and its activator Nem1 are highly enriched at this site. The specific accumulation of PA-binding marker proteins indicates a local enrichment of PA in the fld1 and ldb16 mutants. Furthermore, we demonstrate that clustered LD in fld1 or ldb16 mutants are transformed to SLD if phosphatidylcholine synthesis is compromised by additional deletion of the phosphatidylethanolamine methyltransferase, Cho2. Notably, treatment of wild-type cells with oleate induced a similar LD clustering and nuclear membrane proliferation phenotype as observed in fld1 and ldb16 mutants. These data suggest that the Fld1-Ldb16 complex affects PA homeostasis at an LD-forming subdomain of the nuclear envelope. Lack of Fld1-Ldb16 leads to locally elevated PA levels that induce an abnormal proliferation of nER membrane structures and the clustering of associated LD. We suggest that the formation of SLD is a consequence of locally altered PL metabolism at this site. Copyright © 2015. Published by Elsevier B.V.

  20. Chromatin organization regulates viral egress dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aho, Vesa; Myllys, Markko; Ruokolainen, Visa

    Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walkmore » modelling of herpes simplex virus 1–sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.« less

  1. Chromatin organization regulates viral egress dynamics

    DOE PAGES

    Aho, Vesa; Myllys, Markko; Ruokolainen, Visa; ...

    2017-06-16

    Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walkmore » modelling of herpes simplex virus 1–sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.« less

  2. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    PubMed

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  3. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension.

    PubMed

    Ihalainen, Teemu O; Aires, Lina; Herzog, Florian A; Schwartlander, Ruth; Moeller, Jens; Vogel, Viola

    2015-12-01

    Nuclear lamins play central roles at the intersection between cytoplasmic signalling and nuclear events. Here, we show that at least two N- and C-terminal lamin epitopes are not accessible at the basal side of the nuclear envelope under environmental conditions known to upregulate cell contractility. The conformational epitope on the Ig-domain of A-type lamins is more buried in the basal than apical nuclear envelope of human mesenchymal stem cells undergoing osteogenesis (but not adipogenesis), and in fibroblasts adhering to rigid (but not soft) polyacrylamide hydrogels. This structural polarization of the lamina is promoted by compressive forces, emerges during cell spreading, and requires lamin A/C multimerization, intact nucleoskeleton-cytoskeleton linkages (LINC), and apical-actin stress-fibre assembly. Notably, the identified Ig-epitope overlaps with emerin, DNA and histone binding sites, and comprises various laminopathy mutation sites. Our findings should help decipher how the physical properties of cellular microenvironments regulate nuclear events.

  4. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension

    NASA Astrophysics Data System (ADS)

    Ihalainen, Teemu O.; Aires, Lina; Herzog, Florian A.; Schwartlander, Ruth; Moeller, Jens; Vogel, Viola

    2015-12-01

    Nuclear lamins play central roles at the intersection between cytoplasmic signalling and nuclear events. Here, we show that at least two N- and C-terminal lamin epitopes are not accessible at the basal side of the nuclear envelope under environmental conditions known to upregulate cell contractility. The conformational epitope on the Ig-domain of A-type lamins is more buried in the basal than apical nuclear envelope of human mesenchymal stem cells undergoing osteogenesis (but not adipogenesis), and in fibroblasts adhering to rigid (but not soft) polyacrylamide hydrogels. This structural polarization of the lamina is promoted by compressive forces, emerges during cell spreading, and requires lamin A/C multimerization, intact nucleoskeleton-cytoskeleton linkages (LINC), and apical-actin stress-fibre assembly. Notably, the identified Ig-epitope overlaps with emerin, DNA and histone binding sites, and comprises various laminopathy mutation sites. Our findings should help decipher how the physical properties of cellular microenvironments regulate nuclear events.

  5. LINCing complex functions at the nuclear envelope

    PubMed Central

    Rothballer, Andrea; Schwartz, Thomas U.; Kutay, Ulrike

    2013-01-01

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the double membrane of the nuclear envelope (NE) and physically connect nuclear structures to cytoskeletal elements. LINC complexes are envisioned as force transducers in the NE, which facilitate processes like nuclear anchorage and migration, or chromosome movements. The complexes are built from members of two evolutionary conserved families of transmembrane (TM) proteins, the SUN (Sad1/UNC-84) domain proteins in the inner nuclear membrane (INM) and the KASH (Klarsicht/ANC-1/SYNE homology) domain proteins in the outer nuclear membrane (ONM). In the lumen of the NE, the SUN and KASH domains engage in an intimate assembly to jointly form a NE bridge. Detailed insights into the molecular architecture and atomic structure of LINC complexes have recently revealed the molecular basis of nucleo-cytoskeletal coupling. They bear important implications for LINC complex function and suggest new potential and as yet unexplored roles, which the complexes may play in the cell. PMID:23324460

  6. The type 2 dengue virus envelope protein interacts with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9).

    PubMed

    Chiu, Mei-Wui; Shih, Hsiu-Ming; Yang, Tsung-Han; Yang, Yun-Liang

    2007-05-01

    Dengue viruses are mosquito-borne flaviviruses and may cause the life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its envelope protein is responsible mainly for the virus attachment and entry to host cells. To identify the human cellular proteins interacting with the envelope protein of dengue virus serotype 2 inside host cells, we have performed a screening with the yeast-two-hybrid-based "Functional Yeast Array". Interestingly, the small ubiquitin-like modifier-1 conjugating enzyme 9 protein, modulating cellular processes such as those regulating signal transduction and cell growth, was one of the candidates interacting with the dengue virus envelope protein. With co-precipitation assay, we have demonstrated that it indeed could interact directly with the Ubc9 protein. Site-directed mutagenesis has demonstrated that Ubc9 might interact with the E protein via amino acid residues K51 and K241. Furthermore, immunofluorescence microscopy has shown that the DV2E-EGFP proteins tended to progress toward the nuclear membrane and co-localized with Flag-Ubc9 proteins around the nuclear membrane in the cytoplasmic side, and DV2E-EGFP also shifted the distribution of Flag-Ubc9 from evenly in the nucleus toward concentrating around the nuclear membrane in the nucleic side. In addition, over-expression of Ubc9 could reduce the plaque formation of the dengue virus in mammalian cells. This is the first report that DV envelope proteins can interact with the protein of sumoylation system and Ubc9 may involve in the host defense system to prevent virus propagation.

  7. LEM4/ANKLE-2 deficiency impairs post-mitotic re-localization of BAF, LAP2α and LaminA to the nucleus, causes nuclear envelope instability in telophase and leads to hyperploidy in HeLa cells.

    PubMed

    Snyers, Luc; Erhart, Renate; Laffer, Sylvia; Pusch, Oliver; Weipoltshammer, Klara; Schöfer, Christian

    2018-01-01

    The human LEM-domain protein family is involved in fundamental aspects of nuclear biology. The LEM-domain interacts with the barrier-to-autointegration factor (BAF), which itself binds DNA. LEM-domain proteins LAP2, emerin and MAN1 are proteins of the inner nuclear membrane; they have important functions: maintaining the integrity of the nuclear lamina and regulating gene expression at the nuclear periphery. LEM4/ANKLE-2 has been proposed to participate in nuclear envelope reassembly after mitosis and to mediate dephosphorylation of BAF through binding to phosphatase PP2A. Here, we used CRISPR/Cas9 to create several cell lines deficient in LEM4/ANKLE-2. By using time-lapse video microscopy, we show that absence of this protein severely compromises the post mitotic re-association of the nuclear proteins BAF, LAP2α and LaminA to chromosomes. These defects give rise to a strong mechanical instability of the nuclear envelope in telophase and to a chromosomal instability leading to increased number of hyperploid cells. Reintroducing LEM4/ANKLE-2 in the cells by transfection could efficiently restore the telophase association of BAF and LAP2α to the chromosomes. This rescue phenotype was abolished for N- or C-terminally truncated mutants that had lost the capacity to bind PP2A. We demonstrate also that, in addition to binding to PP2A, LEM4/ANKLE-2 binds BAF through its LEM-domain, providing further evidence for a generic function of this domain as a principal interactor of BAF. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Dynamic nuclear envelope phenotype in rats overexpressing mutated human torsinA protein.

    PubMed

    Yu-Taeger, Libo; Gaiser, Viktoria; Lotzer, Larissa; Roenisch, Tina; Fabry, Benedikt Timo; Stricker-Shaver, Janice; Casadei, Nicolas; Walter, Michael; Schaller, Martin; Riess, Olaf; Nguyen, Huu Phuc; Ott, Thomas; Grundmann-Hauser, Kathrin

    2018-05-08

    A three-base-pair deletion in the human TOR1A gene is causative for the most common form of primary dystonia, the early-onset dystonia type 1 (DYT1 dystonia). The pathophysiological consequences of this mutation are still unknown.To study the pathology of the mutant torsinA (TOR1A) protein, we have generated a transgenic rat line that overexpresses the human mutant protein under the control of the human TOR1A promoter. This new animal model was phenotyped with several approaches, including behavioral tests and neuropathological analyses. A motor phenotype and cellular and ultrastructural key features of torsinA pathology were found in this new transgenic rat line supporting that it can be used as a model system for investigating the disease development. Analyses of mutant TOR1A protein expression in various brain regions also showed a dynamic expression pattern and a reversible nuclear envelope pathology. These findings suggest the differential vulnerabilities of distinct neuronal subpopulations. Furthermore the reversibility of the nuclear envelope pathology might be a therapeutic target to treat the disease. © 2018. Published by The Company of Biologists Ltd.

  9. Yield Determination of Underground and Near Surface Explosions

    NASA Astrophysics Data System (ADS)

    Pasyanos, M.

    2015-12-01

    As seismic coverage of the earth's surface continues to improve, we are faced with signals from a wide variety of explosions from various sources ranging from oil train and ordnance explosions to military and terrorist attacks, as well as underground nuclear tests. We present on a method for determining the yield of underground and near surface explosions, which should be applicable for many of these. We first review the regional envelope method that was developed for underground explosions (Pasyanos et al., 2012) and more recently modified for near surface explosions (Pasyanos and Ford, 2015). The technique models the waveform envelope templates as a product of source, propagation (geometrical spreading and attenuation), and site terms, while near surface explosions include an additional surface effect. Yields and depths are determined by comparing the observed envelopes to the templates and minimizing the misfit. We then apply the method to nuclear and chemical explosions for a range of yields, depths, and distances. We will review some results from previous work, and show new examples from ordnance explosions in Scandinavia, nuclear explosions in Eurasia, and chemical explosions in Nevada associated with the Source Physics Experiments (SPE).

  10. Dual roles of TRF1 in tethering telomeres to the nuclear envelope and protecting them from fusion during meiosis.

    PubMed

    Wang, Lina; Tu, Zhaowei; Liu, Chao; Liu, Hongbin; Kaldis, Philipp; Chen, Zijiang; Li, Wei

    2018-06-01

    Telomeres integrity is indispensable for chromosomal stability by preventing chromosome erosion and end-to-end fusions. During meiosis, telomeres attach to the inner nuclear envelope and cluster into a highly crowded microenvironment at the bouquet stage, which requires specific mechanisms to protect the telomeres from fusion. Here, we demonstrate that germ cell-specific knockout of a shelterin complex subunit, Trf1, results in arrest of spermatocytes at two different stages. The obliterated telomere-nuclear envelope attachment in Trf1-deficient spermatocytes impairs homologue synapsis and recombination, resulting in a pachytene-like arrest, while the meiotic division arrest might stem from chromosome end-to-end fusion due to the failure of recruiting meiosis specific telomere associated proteins. Further investigations uncovered that TRF1 could directly interact with Speedy A, and Speedy A might work as a scaffold protein to further recruit Cdk2, thus protecting telomeres from fusion at this stage. Together, our results reveal a novel mechanism of TRF1, Speedy A, and Cdk2 in protecting telomere from fusion in a highly crowded microenvironment during meiosis.

  11. Localization of the putative precursor of Alzheimer's disease-specific amyloid at nuclear envelopes of adult human muscle.

    PubMed Central

    Zimmermann, K; Herget, T; Salbaum, J M; Schubert, W; Hilbich, C; Cramer, M; Masters, C L; Multhaup, G; Kang, J; Lemaire, H G

    1988-01-01

    Cloning and sequence analysis revealed the putative amyloid A4 precursor (pre-A4) of Alzheimer's disease to have characteristics of a membrane-spanning glycoprotein. In addition to brain, pre-A4 mRNA was found in adult human muscle and other tissues. We demonstrate by in situ hybridization that pre-A4 mRNA is present in adult human muscle, in cultured human myoblasts and myotubes. Immunofluorescence with antipeptide antibodies shows the putative pre-A4 protein to be expressed in adult human muscle and associated with some but not all nuclear envelopes. Despite high levels of a single 3.5-kb pre-A4 mRNA species in cultured myoblasts and myotubes, the presence of putative pre-A4 protein could not be detected by immunofluorescence. This suggests that putative pre-A4 protein is stabilized and therefore functioning in the innervated muscle tissue but not in developing, i.e. non-innervated cultured muscle cells. The selective localization of the protein on distinct nuclear envelopes could reflect an interaction with motor endplates. Images PMID:2896589

  12. Nuclear lamins during gametogenesis, fertilization and early development

    NASA Technical Reports Server (NTRS)

    Maul, G. G.; Schatten, G.

    1986-01-01

    The distribution of lamins (described by Gerace, 1978, as major proteins of nuclear envelope) during gametogenesis, fertilization, and early development was investigated in germ cells of a mouse (Mus musculus), an echinoderm (Lytechinus variegatus), and the surf clam (Spisula solidissima) was investigated in order to determine whether the differences detected could be correlated with differences in the function of cells in these stages of the germ cells. In order to monitor the behavior of lamins, the gametes and embryos were labeled with antibodies to lamins A, C, and B extracted from autoimmune sera of patients with scleroderma and Lupus erythematosus. Results indicated that lamin B could be identified in nuclear envelopes on only those nuclei where chromatin is attached and where RNA synthesis takes place.

  13. Stage-dependent remodeling of the nuclear envelope and lamina during rabbit early embryonic development.

    PubMed

    Popken, Jens; Schmid, Volker J; Strauss, Axel; Guengoer, Tuna; Wolf, Eckhard; Zakhartchenko, Valeri

    2016-04-22

    Utilizing 3D structured illumination microscopy, we investigated the quality and quantity of nuclear invaginations and the distribution of nuclear pores during rabbit early embryonic development and identified the exact time point of nucleoporin 153 (NUP153) association with chromatin during mitosis. Contrary to bovine early embryonic nuclei, featuring almost exclusively nuclear invaginations containing a small volume of cytoplasm, nuclei in rabbit early embryonic stages show additionally numerous invaginations containing a large volume of cytoplasm. Small-volume invaginations frequently emanated from large-volume nuclear invaginations but not vice versa, indicating a different underlying mechanism. Large- and small-volume nuclear envelope invaginations required the presence of chromatin, as they were restricted to chromatin-positive areas. The chromatin-free contact areas between nucleolar precursor bodies (NPBs) and large-volume invaginations were free of nuclear pores. Small-volume invaginations were not in contact with NPBs. The number of invaginations and isolated intranuclear vesicles per nucleus peaked at the 4-cell stage. At this stage, the nuclear surface showed highly concentrated clusters of nuclear pores surrounded by areas free of nuclear pores. Isolated intranuclear lamina vesicles were usually NUP153 negative. Cytoplasmic, randomly distributed NUP153-positive clusters were highly abundant at the zygote stage and decreased in number until they were almost absent at the 8-cell stage and later. These large NUP153 clusters may represent a maternally provided NUP153 deposit, but they were not visible as clusters during mitosis. Major genome activation at the 8- to 16-cell stage may mark the switch from a necessity for a deposit to on-demand production. NUP153 association with chromatin is initiated during metaphase before the initiation of the regeneration of the lamina. To our knowledge, the present study demonstrates for the first time major remodeling of the nuclear envelope and its underlying lamina during rabbit preimplantation development.

  14. High-Resolution Scanning Electron Microscopy and Immuno-Gold Labeling of the Nuclear Lamina and Nuclear Pore Complex.

    PubMed

    Goldberg, Martin W

    2016-01-01

    Scanning electron microscopy (SEM) is a technique used to image surfaces. Field emission SEMs (feSEMs) can resolve structures that are ~0.5-1.5 nm apart. FeSEM, therefore is a useful technique for imaging molecular structures that exist at surfaces such as membranes. The nuclear envelope consists of four membrane surfaces, all of which may be accessible for imaging. Imaging of the cytoplasmic face of the outer membrane gives information about ribosomes and cytoskeletal attachments, as well as details of the cytoplasmic peripheral components of the nuclear pore complex, and is the most easily accessed surface. The nucleoplasmic face of the inner membrane is easily accessible in some cells, such as amphibian oocytes, giving valuable details about the organization of the nuclear lamina and how it interacts with the nuclear pore complexes. The luminal faces of both membranes are difficult to access, but may be exposed by various fracturing techniques. Protocols are presented here for the preparation, labeling, and feSEM imaging of Xenopus laevis oocyte nuclear envelopes.

  15. Nuclear transporters in a multinucleated organism: functional and localization analyses in Aspergillus nidulans

    PubMed Central

    Markina-Iñarrairaegui, Ane; Etxebeste, Oier; Herrero-García, Erika; Araújo-Bazán, Lidia; Fernández-Martínez, Javier; Flores, Jairo A.; Osmani, Stephen A.; Espeso, Eduardo A.

    2011-01-01

    Nuclear transporters mediate bidirectional macromolecule traffic through the nuclear pore complex (NPC), thus participating in vital processes of eukaryotic cells. A systematic functional analysis in Aspergillus nidulans permitted the identification of 4 essential nuclear transport pathways of a hypothetical number of 14. The absence of phenotypes for most deletants indicates redundant roles for these nuclear receptors. Subcellular distribution studies of these carriers show three main distributions: nuclear, nucleocytoplasmic, and in association with the nuclear envelope. These locations are not specific to predicted roles as exportins or importins but indicate that bidirectional transport may occur coordinately in all nuclei of a syncytium. Coinciding with mitotic NPC rearrangements, transporters dynamically modified their localizations, suggesting supplementary roles to nucleocytoplasmic transport specifically during mitosis. Loss of transportin-SR and Mex/TAP from the nuclear envelope indicates absence of RNA transport during the partially open mitosis of Aspergillus, whereas nucleolar accumulation of Kap121 and Kap123 homologues suggests a role in nucleolar disassembly. This work provides new insight into the roles of nuclear transporters and opens an avenue for future studies of the molecular mechanisms of transport among nuclei within a common cytoplasm, using A. nidulans as a model organism. PMID:21880896

  16. Response of gypsy moth larvae to homologous and heterologous nuclear polyhedrosis virus

    Treesearch

    Kathleen S. Shields; Edward M. Dougherty

    1991-01-01

    The gypsy moth, Lymantria dispar, is not particularly susceptible to baculoviruses other than the nuclear polyhedrosis virus originally isolated from the species (LdMNPV). The multiple enveloped nuclear polyhedrosis virus of Autographa californica (AcMNPV), a very virulent baculovirus that replicates in a large number of...

  17. ELECTRON MICROSCOPY OF MITOSIS IN A RADIOSENSITIVE GIANT AMOEBA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, E.W.; Roth, L.E.

    1962-10-01

    Pelomyxa illinoisensis amoebae, the large radiosensitive species, were fixed in OsO/sub 4/ and embedded in either Epon 812 or methacrylate. Ultrastructural morphology is demonstrated in subnuclear structures at interphase and during specific times in mitosis. Evidence of nuclear envelope breakdown and reconstruction is presented. Fragments of nuclear envelope membranes are traced throughout metaphase and anaphase to telophase. Annuli in the nuclear envelope and its fragments are demonstrated. P. illinoisensis is unique in mitochondrial arrangement during metaphase and anaphase-- mitochondria are aligned at the ends of fibrils distal to the chromosomes at the positions occupied by centrioles in other types ofmore » cells; there they remain until the end of anaphase. The radioresistant amoebae, Pelomyxa carolinensis and Amoeba proteus do not have polar mitochondria. P. illinoisensis also differs from the two radioresistant species in nucleolar morphology during interphase, and in the manner of nucleolar dissolution during prophase. On the other hand, helical coils are shown in the interphase nucleoplasm which appear similar to those in the radioresistant amoebae, P. carolinensis and A. groteus. A blister stage in the telophase of P. illinoisensis is described which is interpreted to be the result of a rapid nuclear expansion leading to interphase. This has not been observed in the radioresistant amoebae. (auth)« less

  18. Outer nuclear membrane protein Kuduk modulates the LINC complex and nuclear envelope architecture

    PubMed Central

    Ding, Zhao-Ying; Huang, Yu-Cheng; Lee, Myong-Chol; Tseng, Min-Jen; Chi, Ya-Hui

    2017-01-01

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes spanning the nuclear envelope (NE) contribute to nucleocytoskeletal force transduction. A few NE proteins have been found to regulate the LINC complex. In this study, we identify one, Kuduk (Kud), which can reside at the outer nuclear membrane and is required for the development of Drosophila melanogaster ovarian follicles and NE morphology of myonuclei. Kud associates with LINC complex components in an evolutionarily conserved manner. Loss of Kud increases the level but impairs functioning of the LINC complex. Overexpression of Kud suppresses NE targeting of cytoskeleton-free LINC complexes. Thus, Kud acts as a quality control mechanism for LINC-mediated nucleocytoskeletal connections. Genetic data indicate that Kud also functions independently of the LINC complex. Overexpression of the human orthologue TMEM258 in Drosophila proved functional conservation. These findings expand our understanding of the regulation of LINC complexes and NE architecture. PMID:28716842

  19. Identification and Ultrastructural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells

    PubMed Central

    Costello, M. Joseph; Brennan, Lisa A.; Gilliland, Kurt O.; Johnsen, Sönke; Kantorow, Marc

    2016-01-01

    An unresolved issue in structural biology is how the encapsulated lens removes membranous organelles to carry out its role as a transparent optical element. In this ultrastructural study, we establish a mechanism for nuclear elimination in the developing chick lens during the formation of the organelle-free zone. Day 12–15 chick embryo lenses were examined by high-resolution confocal light microscopy and thin section transmission electron microscopy (TEM) following fixation in 10% formalin and 4% paraformaldehyde, and then processing for confocal or TEM as described previously. Examination of developing fiber cells revealed normal nuclei with dispersed chromatin and clear nucleoli typical of cells in active ribosome production to support protein synthesis. Early signs of nuclear degradation were observed about 300 μm from the lens capsule in Day 15 lenses where the nuclei display irregular nuclear stain and prominent indentations that sometimes contained a previously undescribed macromolecular aggregate attached to the nuclear envelope. We have termed this novel structure the nuclear excisosome. This complex by confocal is closely adherent to the nuclear envelope and by TEM appears to degrade the outer leaflet of the nuclear envelope, then the inner leaflet up to 500 μm depth. The images suggest that the nuclear excisosome separates nuclear membrane proteins from lipids, which then form multilamellar assemblies that stain intensely in confocal and in TEM have 5 nm spacing consistent with pure lipid bilayers. The denuded nucleoplasm then degrades by condensation and loss of structure in the range 600 to 700 μm depth producing pyknotic nuclear remnants. None of these stages display any classic autophagic vesicles or lysosomes associated with nuclei. Uniquely, the origin of the nuclear excisosome is from filopodial-like projections of adjacent lens fiber cells that initially contact, and then appear to fuse with the outer nuclear membrane. These filopodial-like projections appear to be initiated with a clathrin-like coat and driven by an internal actin network. In summary, a specialized cellular organelle, the nuclear excisosome, generated in part by adjacent fiber cells degrades nuclei during fiber cell differentiation and maturation. PMID:27536868

  20. Herpes simplex virus 1 induces de novo phospholipid synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter, Esther; Oliveira, Anna Paula de; Tobler, Kurt

    2012-08-01

    Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [{sup 3}H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [{sup 3}H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and thatmore » de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.« less

  1. Localization of proteasomes and proteasomal proteolysis in the mammalian interphase cell nucleus by systematic application of immunocytochemistry.

    PubMed

    Scharf, Andrea; Rockel, Thomas Dino; von Mikecz, Anna

    2007-06-01

    Proteasomes are ATP-driven, multisubunit proteolytic machines that degrade endogenous proteins into peptides and play a crucial role in cellular events such as the cell cycle, signal transduction, maintenance of proper protein folding and gene expression. Recent evidence indicates that the ubiquitin-proteasome system is an active component of the cell nucleus. A characteristic feature of the nucleus is its organization into distinct domains that have a unique composition of macromolecules and dynamically form as a response to the requirements of nuclear function. Here, we show by systematic application of different immunocytochemical procedures and comparison with signature proteins of nuclear domains that during interphase endogenous proteasomes are localized diffusely throughout the nucleoplasm, in speckles, in nuclear bodies, and in nucleoplasmic foci. Proteasomes do not occur in the nuclear envelope region or the nucleolus, unless nucleoplasmic invaginations expand into this nuclear body. Confirmedly, proteasomal proteolysis is detected in nucleoplasmic foci, but is absent from the nuclear envelope or nucleolus. The results underpin the idea that the ubiquitin-proteasome system is not only located, but also proteolytically active in distinct nuclear domains and thus may be directly involved in gene expression, and nuclear quality control.

  2. Macromolecular Transport between the Nucleus and the Cytoplasm: Advances in Mechanism and Emerging Links to Disease

    PubMed Central

    Tran, Elizabeth J.; King, Megan C.; Corbett, Anita H.

    2014-01-01

    Transport of macromolecules between the cytoplasm and the nucleus is critical for the function of all eukaryotic cells. Large macromolecular channels termed nuclear pore complexes that span the nuclear envelope mediate the bidirectional transport of cargoes between the nucleus and cytoplasm. However, the influence of macromolecular trafficking extends past the nuclear pore complex to transcription and RNA processing within the nucleus and signaling pathways that reach into the cytoplasm and beyond. At the Mechanisms of Nuclear Transport biennial meeting held from October 18-23, 2013 in Woods Hole, MA, researchers in the field met to report on their recent findings. The work presented highlighted significant advances in understanding nucleocytoplasmic trafficking including how transport receptors and cargoes pass through the nuclear pore complex, the many signaling pathways that impinge on transport pathways, interplay between the nuclear envelope, nuclear pore complexes, and transport pathways, and numerous links between transport pathways and human disease. The goal of this review is to highlight newly emerging themes in nuclear transport and underscore the major questions that are likely to be the focus of future research in the field. PMID:25116306

  3. Nuclear envelope expansion is crucial for proper chromosomal segregation during a closed mitosis.

    PubMed

    Takemoto, Ai; Kawashima, Shigehiro A; Li, Juan-Juan; Jeffery, Linda; Yamatsugu, Kenzo; Elemento, Olivier; Nurse, Paul

    2016-03-15

    Here, we screened a 10,371 library of diverse molecules using a drug-sensitive fission yeast strain to identify compounds which cause defects in chromosome segregation during mitosis. We identified a phosphorium-ylide-based compound Cutin-1 which inhibits nuclear envelope expansion and nuclear elongation during the closed mitosis of fission yeast, and showed that its target is the β-subunit of fatty acid synthase. A point mutation in the dehydratase domain of Fas1 conferred in vivo and in vitro resistance to Cutin-1. Time-lapse photomicrography showed that the bulk of the chromosomes were only transiently separated during mitosis, and nucleoli separation was defective. Subsequently sister chromatids re-associated leading to chromosomal mis-segregation. These segregation defects were reduced when the nuclear volume was increased and were increased when the nuclear volume was reduced. We propose that there needs to be sufficient nuclear volume to allow the nuclear elongation necessary during a closed mitosis to take place for proper chromosome segregation, and that inhibition of fatty acid synthase compromises nuclear elongation and leads to defects in chromosomal segregation. © 2016. Published by The Company of Biologists Ltd.

  4. Human Cytomegalovirus nuclear egress and secondary envelopment are negatively affected in the absence of cellular p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, Man I; O’Dowd, John M.; Chughtai, Kamila

    2016-10-15

    Human Cytomegalovirus (HCMV) infection is compromised in cells lacking p53, a transcription factor that mediates cellular stress responses. In this study we have investigated compromised functional virion production in cells with p53 knocked out (p53KOs). Infectious center assays found most p53KOs released functional virions. Analysis of electron micrographs revealed modestly decreased capsid production in infected p53KOs compared to wt. Substantially fewer p53KOs displayed HCMV-induced infoldings of the inner nuclear membrane (IINMs). In p53KOs, fewer capsids were found in IINMs and in the cytoplasm. The deficit in virus-induced membrane remodeling within the nucleus of p53KOs was mirrored in the cytoplasm, withmore » a disproportionately smaller number of capsids re-enveloped. Reintroduction of p53 substantially recovered these deficits. Overall, the absence of p53 contributed to inhibition of the formation and function of IINMs and re-envelopment of the reduced number of capsids able to reach the cytoplasm. -- Highlights: •The majority of p53KO cells release fewer functional virions than wt cells. •Nucleocapsids do not efficiently exit the nucleus in p53KO cells. •Infoldings of the inner nuclear membrane are not efficiently formed in p53KO cells. •Cytoplasmic capsids are not efficiently re-enveloped in p53KO cells. •Reintroduction of p53 largely ameliorates these phenotypes.« less

  5. Nuclear envelope rupture: little holes, big openings.

    PubMed

    Hatch, Emily M

    2018-06-01

    The nuclear envelope (NE), which is a critical barrier between the DNA and the cytosol, is capable of extensive dynamic membrane remodeling events in interphase. One of these events, interphase NE rupture and repair, can occur in both normal and disease states and results in the loss of nucleus compartmentalization. NE rupture is not lethal, but new research indicates that it could have broad impacts on genome stability and activate innate immune responses. These observations suggest a new model for how changes in NE structure could be pathogenic in cancer, laminopathies, and autoinflammatory syndromes, and redefine the functions of nucleus compartmentalization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. GIP Contributions to the Regulation of Centromere at the Interface Between the Nuclear Envelope and the Nucleoplasm.

    PubMed

    Chabouté, Marie-Edith; Berr, Alexandre

    2016-01-01

    Centromeres are known as specific chromatin domains without which eukaryotic cells cannot divide properly during mitosis. Despite the considerable efforts to understand the centromere/kinetochore assembly during mitosis, until recently, comparatively few studies have dealt with the regulation of centromere during interphase. Here, we briefly review and discuss past and recent advances about the architecture of centromeres and their regulation during the cell cycle. Furthermore, we highlight and discuss new findings and hypotheses regarding the specific regulation of centromeres in both plant and animal nuclei, especially with GIP proteins at the interface between the nuclear envelope and the nucleoplasm.

  7. Loss of the integral nuclear envelope protein SUN1 induces alteration of nucleoli

    PubMed Central

    Matsumoto, Ayaka; Sakamoto, Chiyomi; Matsumori, Haruka; Katahira, Jun; Yasuda, Yoko; Yoshidome, Katsuhide; Tsujimoto, Masahiko; Goldberg, Ilya G; Matsuura, Nariaki; Nakao, Mitsuyoshi; Saitoh, Noriko; Hieda, Miki

    2016-01-01

    ABSTRACT A supervised machine learning algorithm, which is qualified for image classification and analyzing similarities, is based on multiple discriminative morphological features that are automatically assembled during the learning processes. The algorithm is suitable for population-based analysis of images of biological materials that are generally complex and heterogeneous. Here we used the algorithm wndchrm to quantify the effects on nucleolar morphology of the loss of the components of nuclear envelope in a human mammary epithelial cell line. The linker of nucleoskeleton and cytoskeleton (LINC) complex, an assembly of nuclear envelope proteins comprising mainly members of the SUN and nesprin families, connects the nuclear lamina and cytoskeletal filaments. The components of the LINC complex are markedly deficient in breast cancer tissues. We found that a reduction in the levels of SUN1, SUN2, and lamin A/C led to significant changes in morphologies that were computationally classified using wndchrm with approximately 100% accuracy. In particular, depletion of SUN1 caused nucleolar hypertrophy and reduced rRNA synthesis. Further, wndchrm revealed a consistent negative correlation between SUN1 expression and the size of nucleoli in human breast cancer tissues. Our unbiased morphological quantitation strategies using wndchrm revealed an unexpected link between the components of the LINC complex and the morphologies of nucleoli that serves as an indicator of the malignant phenotype of breast cancer cells. PMID:26962703

  8. Loss of the integral nuclear envelope protein SUN1 induces alteration of nucleoli.

    PubMed

    Matsumoto, Ayaka; Sakamoto, Chiyomi; Matsumori, Haruka; Katahira, Jun; Yasuda, Yoko; Yoshidome, Katsuhide; Tsujimoto, Masahiko; Goldberg, Ilya G; Matsuura, Nariaki; Nakao, Mitsuyoshi; Saitoh, Noriko; Hieda, Miki

    2016-01-01

    A supervised machine learning algorithm, which is qualified for image classification and analyzing similarities, is based on multiple discriminative morphological features that are automatically assembled during the learning processes. The algorithm is suitable for population-based analysis of images of biological materials that are generally complex and heterogeneous. Here we used the algorithm wndchrm to quantify the effects on nucleolar morphology of the loss of the components of nuclear envelope in a human mammary epithelial cell line. The linker of nucleoskeleton and cytoskeleton (LINC) complex, an assembly of nuclear envelope proteins comprising mainly members of the SUN and nesprin families, connects the nuclear lamina and cytoskeletal filaments. The components of the LINC complex are markedly deficient in breast cancer tissues. We found that a reduction in the levels of SUN1, SUN2, and lamin A/C led to significant changes in morphologies that were computationally classified using wndchrm with approximately 100% accuracy. In particular, depletion of SUN1 caused nucleolar hypertrophy and reduced rRNA synthesis. Further, wndchrm revealed a consistent negative correlation between SUN1 expression and the size of nucleoli in human breast cancer tissues. Our unbiased morphological quantitation strategies using wndchrm revealed an unexpected link between the components of the LINC complex and the morphologies of nucleoli that serves as an indicator of the malignant phenotype of breast cancer cells.

  9. NUCLEOPORINS NPP-1, NPP-3, NPP-4, NPP-11 and NPP-13 ARE REQUIRED FOR PROPER SPINDLE ORIENTATION IN C. ELEGANS

    PubMed Central

    Schetter, Aaron; Askjaer, Peter; Piano, Fabio; Mattaj, Iain; Kemphues, Kenneth

    2006-01-01

    Nucleoporins are components of the nuclear pore, which is required for nucleo-cytoplasmic transport. We report a role for a subclass of nucleoporins in orienting the mitotic spindle in C. elegans embryos. RNAi-mediated depletion of any of five putative nucleoporins npp-1, npp-3, npp-4, npp-11, and npp-13 leads to indistinguishable spindle orientation defects. Transgenic worms expressing NPP-1::GFP or NPP-11::GFP show GFP localization at the nuclear envelope, consistent with their predicted function. NPP-1 interacts with the other nucleoporins in yeast two-hybrid assays suggesting that the proteins affect spindle orientation by a common process. The failed orientation phenotype of npp-1(RNAi) is at least partially epistatic to the ectopic spindle rotation in the AB blastomere of par-3 mutant embryos. This suggests that NPP-1 contributes to the mechanics of spindle orientation. However, NPP-1 is also required for PAR-6 asymmetry at the two-cell stage, indicating that nucleoporins may be required to define cortical domains in the germ line blasotmere P1. Nuclear envelope structure is abnormal in npp-1(RNAi) embryos but the envelope maintains its integrity and most nuclear proteins we assayed accumulate normally. These findings raise the possibility that these nucleoporins may have direct roles in orienting the mitotic spindle and the maintenance of cell polarity. PMID:16325795

  10. 3D Analysis of HCMV Induced-Nuclear Membrane Structures by FIB/SEM Tomography: Insight into an Unprecedented Membrane Morphology

    PubMed Central

    Villinger, Clarissa; Neusser, Gregor; Kranz, Christine; Walther, Paul; Mertens, Thomas

    2015-01-01

    We show that focused ion beam/scanning electron microscopy (FIB/SEM) tomography is an excellent method to analyze the three-dimensional structure of a fibroblast nucleus infected with human cytomegalovirus (HCMV). We found that the previously described infoldings of the inner nuclear membrane, which are unique among its kind, form an extremely complex network of membrane structures not predictable by previous two-dimensional studies. In all cases they contained further invaginations (2nd and 3rd order infoldings). Quantification revealed 5498 HCMV capsids within two nuclear segments, allowing an estimate of 15,000 to 30,000 capsids in the entire nucleus five days post infection. Only 0.8% proved to be enveloped capsids which were exclusively detected in 1st order infoldings (perinuclear space). Distribution of the capsids between 1st, 2nd and 3rd order infoldings is in complete agreement with the envelopment/de-envelopment model for egress of HCMV capsids from the nucleus and we confirm that capsid budding does occur at the large infoldings. Based on our results we propose the pushing membrane model: HCMV infection induces local disruption of the nuclear lamina and synthesis of new membrane material which is pushed into the nucleoplasm, forming complex membrane infoldings in a highly abundant manner, which then may be also used by nucleocapsids for budding. PMID:26556360

  11. Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis.

    PubMed

    Cheng, Yu Ti; Germain, Hugo; Wiermer, Marcel; Bi, Dongling; Xu, Fang; García, Ana V; Wirthmueller, Lennart; Després, Charles; Parker, Jane E; Zhang, Yuelin; Li, Xin

    2009-08-01

    Plant immune responses depend on dynamic signaling events across the nuclear envelope through nuclear pores. Nuclear accumulation of certain resistance (R) proteins and downstream signal transducers are critical for their functions, but it is not understood how these processes are controlled. Here, we report the identification, cloning, and analysis of Arabidopsis thaliana modifier of snc1,7 (mos7-1), a partial loss-of-function mutation that suppresses immune responses conditioned by the autoactivated R protein snc1 (for suppressor of npr1-1, constitutive 1). mos7-1 single mutant plants exhibit defects in basal and R protein-mediated immunity and in systemic acquired resistance but do not display obvious pleiotropic defects in development, salt tolerance, or plant hormone responses. MOS7 is homologous to human and Drosophila melanogaster nucleoporin Nup88 and resides at the nuclear envelope. In animals, Nup88 attenuates nuclear export of activated NF-kappaB transcription factors, resulting in nuclear accumulation of NF-kappaB. Our analysis shows that nuclear accumulation of snc1 and the defense signaling components Enhanced Disease Susceptibility 1 and Nonexpresser of PR genes 1 is significantly reduced in mos7-1 plants, while nuclear retention of other tested proteins is unaffected. The data suggest that specifically modulating the nuclear concentrations of certain defense proteins regulates defense outputs.

  12. Evolution of centrosomes and the nuclear lamina: Amoebozoan assets.

    PubMed

    Gräf, Ralph; Batsios, Petros; Meyer, Irene

    2015-06-01

    The current eukaryotic tree of life groups most eukaryotes into one of five supergroups, the Opisthokonta, Amoebozoa, Archaeplastida, Excavata and SAR (Stramenopile, Alveolata, Rhizaria). Molecular and comparative morphological analyses revealed that the last eukaryotic common ancestor (LECA) already contained a rather sophisticated equipment of organelles including a mitochondrion, an endomembrane system, a nucleus with a lamina, a microtubule-organizing center (MTOC), and a flagellar apparatus. Recent studies of MTOCs, basal bodies/centrioles, and nuclear envelope organization of organisms in different supergroups have clarified our picture of how the nucleus and MTOCs co-evolved from LECA to extant eukaryotes. In this review we summarize these findings with special emphasis on valuable contributions of research on a lamin-like protein, nuclear envelope proteins, and the MTOC in the amoebozoan model organism Dictyostelium discoideum. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. The nuclear membrane-associated honeycomb structure of the unicellular organism Amoeba proteus: on the search for homologies with the nuclear lamina of metazoa.

    PubMed

    Schmidt, M; Grossmann, U; Krohne, G

    1995-07-01

    In the protozoon Amoeba proteus, a complex and highly organized structure with the morphology of a honeycomb is associated with the nucleoplasmic surface of the nuclear membrane. We have tested whether this structure exhibits similarity to the nuclear lamina of metazoic organisms. First, we have shown that the honeycomb layer is composed of 3 to 5 nm thick protein fibrils resistant to treatment with detergent, high salt, and digestion with nucleases, thus possessing properties typical for karyoskeletal elements. However, in contrast to the meshwork of lamin filaments in somatic cells of metazoic organisms, the honeycomb layer is not tightly anchored to the nucleoplasmic side of pore complexes, or to the inner nuclear membrane. Second, in microinjection experiments we investigated whether fluorescently labeled lamins of Xenopus laevis (lamins A and LI) and Drosophila melanogaster (lamin Dmo) were able to associate in vivo with the Amoeba proteus honeycomb structure. In microinjected amoeba these three lamins were efficiently transported into the nucleus, but did not associate with the nuclear envelope. Our results suggest that the Amoeba proteus nuclear envelope, including the honeycomb layer, does not contain proteins exhibiting high homologies to lamins of metazoan species thus preventing the localized assembly of microinjected lamins along the nuclear periphery.

  14. The nuclear import of ribosomal proteins is regulated by mTOR

    PubMed Central

    Kazyken, Dubek; Kaz, Yelimbek; Kiyan, Vladimir; Zhylkibayev, Assylbek A.; Chen, Chien-Hung; Agarwal, Nitin K.; Sarbassov, Dos D.

    2014-01-01

    Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins. PMID:25294810

  15. Expression of DNAJB12 or DNAJB14 Causes Coordinate Invasion of the Nucleus by Membranes Associated with a Novel Nuclear Pore Structure

    PubMed Central

    Goodwin, Edward C.; Motamedi, Nasim; Lipovsky, Alex; Fernández-Busnadiego, Rubén; DiMaio, Daniel

    2014-01-01

    DNAJB12 and DNAJB14 are transmembrane proteins in the endoplasmic reticulum (ER) that serve as co-chaperones for Hsc70/Hsp70 heat shock proteins. We demonstrate that over-expression of DNAJB12 or DNAJB14 causes the formation of elaborate membranous structures within cell nuclei, which we designate DJANGOS for DNAJ-associated nuclear globular structures. DJANGOS contain DNAJB12, DNAJB14, Hsc70 and markers of the ER lumen and ER and nuclear membranes. Strikingly, they are evenly distributed underneath the nuclear envelope and are of uniform size in any one nucleus. DJANGOS are composed primarily of single-walled membrane tubes and sheets that connect to the nuclear envelope via a unique configuration of membranes, in which the nuclear pore complex appears anchored exclusively to the outer nuclear membrane, allowing both the inner and outer nuclear membranes to flow past the circumference of the nuclear pore complex into the nucleus. DJANGOS break down rapidly during cell division and reform synchronously in the daughter cell nuclei, demonstrating that they are dynamic structures that undergo coordinate formation and dissolution. Genetic studies showed that the chaperone activity of DNAJ/Hsc70 is required for the formation of DJANGOS. Further analysis of these structures will provide insight into nuclear pore formation and function, activities of molecular chaperones, and mechanisms that maintain membrane identity. PMID:24732912

  16. The plant cell nucleus: a true arena for the fight between plants and pathogens.

    PubMed

    Deslandes, Laurent; Rivas, Susana

    2011-01-01

    Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.

  17. Non-senescent Hydra tolerates severe disturbances in the nuclear lamina.

    PubMed

    Klimovich, Alexander; Rehm, Arvid; Wittlieb, Jörg; Herbst, Eva-Maria; Benavente, Ricardo; Bosch, Thomas C G

    2018-05-10

    The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra . We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra , the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra . A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans.

  18. A role for the nucleoporin Nup170p in chromatin structure and gene silencing

    PubMed Central

    Van de Vosse, David W.; Wan, Yakun; Lapetina, Diego L.; Chen, Wei-Ming; Chiang, Jung-Hsien; Aitchison, John D.; Wozniak, Richard W.

    2013-01-01

    Embedded in the nuclear envelope, nuclear pore complexes (NPCs) not only regulate nuclear transport, but also interface with transcriptionally active euchromatin, largely silenced heterochromatin, as well as the boundaries between these regions. It is unclear what functional role NPCs play in establishing or maintaining these distinct chromatin domains. We report that the yeast NPC protein Nup170p interacts with regions of the genome containing ribosomal protein and subtelomeric genes. Here, it functions in nucleosome positioning and as a repressor of transcription. We show that the role of Nup170p in subtelomeric gene silencing is linked to its association with the RSC chromatin-remodeling complex and the silencing factor Sir4p, and that the binding of Nup170p and Sir4p to subtelomeric chromatin is cooperative and necessary for the association of telomeres with the nuclear envelope. Our results establish the NPC as an active participant in silencing and the formation of peripheral heterochromatin. PMID:23452847

  19. Non-senescent Hydra tolerates severe disturbances in the nuclear lamina

    PubMed Central

    Rehm, Arvid; Wittlieb, Jörg; Herbst, Eva-Maria; Benavente, Ricardo

    2018-01-01

    The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra. We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra, the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra. A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans. PMID:29754147

  20. Nuclear Physics in a biological context

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2012-02-01

    A solid tissue can be soft like fat or brain, stiff like striated muscle and heart, or rigid like bone -- and of course every cell has a nucleus that contributes in some way small or large to tissue mechanics. Indeed, nuclei generally exhibit rheology and plasticity that reflects both the chromatin and the nuclear envelope proteins called lamins, all of which change in differentiation. Profiling of tissue nuclei shows that the nuclear intermediate filament protein Lamin-A/C varies over 30-fold between adult tissues and scales strongly with micro-elasticity of tissue, while other nuclear envelope components such as Lamin-B exhibit small variations. Lamin-A/C has been implicated in aging syndromes that affect muscle and fat but not brain, and we find nuclei in brain-derived cells are indeed dominated by Lamin-B and are much softer than nuclei derived from muscle cells with predominantly Lamin-A/C. In vitro, matrix elasticity can affect expression of nuclear envelope components in adult stem cells, and major changes in Lamin-A/C are indeed shown to direct lineage with lower levels favoring soft tissue and higher levels promoting rigid tissue lineage. Further molecular studies provide evidence that the nucleus transduces physical stress. References: (1) J.D. Pajerowski, K.N. Dahl, F.L. Zhong, P.J. Sammak, and D.E. Discher. Physical plasticity of the nucleus in stem cell differentiation. PNAS 104: 15619-15624 (2007). (2) A. Buxboim, I. Ivanova, and D.E. Discher. Matrix Elasticity, Cytoskeletal Forces, and Physics of the Nucleus: how deeply do cells `feel' outside and in? Journal of Cell Science 123: 297-308 (2010).

  1. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum

    PubMed Central

    Echevarría, Wihelma; Leite, M. Fatima; Guerra, Mateus T.; Zipfel, Warren R.; Nathanson, Michael H.

    2013-01-01

    Calcium is a second messenger in virtually all cells and tissues1. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with the endoplasmic reticulum and the nuclear envelope. This network expresses inositol 1,4,5-trisphosphate (InsP3) receptors, and the nuclear component of InsP3-mediated calcium signals begins in its locality. Stimulation of these receptors with a little InsP3 results in small calcium signals that are initiated in this region of the nucleus. Localized release of calcium in the nucleus causes nuclear protein kinase C (PKC) to translocate to the region of the nuclear envelope, whereas release of calcium in the cytosol induces translocation of cytosolic PKC to the plasma membrane. Our findings show that the nucleus contains a nucleoplasmic reticulum with the capacity to regulate calcium signals in localized subnuclear regions. The presence of such machinery provides a potential mechanism by which calcium can simultaneously regulate many independent processes in the nucleus. PMID:12717445

  2. High resolution microscopy reveals the nuclear shape of budding yeast during cell cycle and in various biological states

    PubMed Central

    Kamgoue, Alain; Normand, Christophe; Léger-Silvestre, Isabelle; Mangeat, Thomas

    2016-01-01

    ABSTRACT How spatial organization of the genome depends on nuclear shape is unknown, mostly because accurate nuclear size and shape measurement is technically challenging. In large cell populations of the yeast Saccharomyces cerevisiae, we assessed the geometry (size and shape) of nuclei in three dimensions with a resolution of 30 nm. We improved an automated fluorescence localization method by implementing a post-acquisition correction of the spherical microscopic aberration along the z-axis, to detect the three dimensional (3D) positions of nuclear pore complexes (NPCs) in the nuclear envelope. Here, we used a method called NucQuant to accurately estimate the geometry of nuclei in 3D throughout the cell cycle. To increase the robustness of the statistics, we aggregated thousands of detected NPCs from a cell population in a single representation using the nucleolus or the spindle pole body (SPB) as references to align nuclei along the same axis. We could detect asymmetric changes of the nucleus associated with modification of nucleolar size. Stereotypical modification of the nucleus toward the nucleolus further confirmed the asymmetric properties of the nuclear envelope. PMID:27831493

  3. "To be or not to be in a good shape": diagnostic and clinical value of nuclear shape irregularities in thyroid and breast cancer.

    PubMed

    Bussolati, Gianni; Maletta, Francesca; Asioli, Sofia; Annaratone, Laura; Sapino, Anna; Marchiò, Caterina

    2014-01-01

    Variation in both nuclear shape and size ("pleomorphism"), coupled with changes in chromatin amount and distribution, remains the basic criteria for microscopy in a cytologic diagnosis of cancer. The biological determinants of nuclear shape irregularities are not clarified, so, rather than on the genesis of nuclear irregularities, we here focus our attention on a descriptive analysis of nuclear pleomorphism. We keep in mind that evaluation of nuclear shape as currently practiced in routine preparations is improper because it is indirectly based on the distribution of DNA as revealed by the affinity for basic dyes. Therefore, over the last years we have been using as criteria morphological features of nuclei of thyroid and breast carcinomas as determined by immunofluorescence, in situ hybridization, and 3D reconstruction. We have translated this approach to routine diagnostic pathology on tissue sections by employing immunoperoxidase staining for emerin. Direct detection of nuclear envelope irregularities by tagging nuclear membrane proteins such as lamin B and emerin has resulted in a more objective definition of the shape of the nucleus. In this review we discuss in detail methodological issues as well as diagnostic and prognostic implications provided by decoration/staining of the nuclear envelope in both thyroid and breast cancer, thus demonstrating how much it matters "to be in the right shape" when dealing with pathological diagnosis of cancer.

  4. Redirecting the Cyanobacterial Bicarbonate Transporters BicA and SbtA to the Chloroplast Envelope: Soluble and Membrane Cargos Need Different Chloroplast Targeting Signals in Plants

    PubMed Central

    Rolland, Vivien; Badger, Murray R.; Price, G. Dean

    2016-01-01

    Most major crops used for human consumption are C3 plants, which yields are limited by photosynthetic inefficiency. To circumvent this, it has been proposed to implement the cyanobacterial CO2-concentrating mechanism (CCM), principally consisting of bicarbonate transporters and carboxysomes, into plant chloroplasts. As it is currently not possible to recover homoplasmic transplastomic monocots, foreign genes must be introduced in these plants via nuclear transformation. Consequently, it is paramount to ensure that resulting proteins reach the appropriate sub-cellular compartment, which for cyanobacterial transporters BicA and SbtA, is the chloroplast inner-envelope membrane (IEM). At present, targeting signals to redirect large transmembrane proteins from non-chloroplastic organisms to plant chloroplast envelopes are unknown. The goal of this study was to identify such signals, using agrobacteria-mediated transient expression and confocal microscopy to determine the sub-cellular localization of ∼37 GFP-tagged chimeras. Initially, fragments of chloroplast proteins known to target soluble cargos to the stroma were tested for their ability to redirect BicA, but they proved ineffective. Next, different N-terminal regions from Arabidopsis IEM transporters were tested. We demonstrated that the N-terminus of AtHP59, AtPLGG1 or AtNTT1 (92–115 amino acids), containing a cleavable chloroplast transit peptide (cTP) and a membrane protein leader (MPL), was sufficient to redirect BicA or SbtA to the chloroplast envelope. This constitutes the first evidence that nuclear-encoded transmembrane proteins from non-chloroplastic organisms can be targeted to the envelope of plant chloroplasts; a finding which represents an important advance in chloroplast engineering by opening up the door to further manipulation of the chloroplastic envelope. PMID:26973659

  5. Nucleoporins redistribute inside the nucleus after cell cycle arrest induced by histone deacetylases inhibition.

    PubMed

    Pérez-Garrastachu, Miguel; Arluzea, Jon; Andrade, Ricardo; Díez-Torre, Alejandro; Urtizberea, Marta; Silió, Margarita; Aréchaga, Juan

    2017-09-03

    Nucleoporins are the main components of the nuclear-pore complex (NPC) and were initially considered as mere structural elements embedded in the nuclear envelope, being responsible for nucleocytoplasmic transport. Nevertheless, several recent scientific reports have revealed that some nucleoporins participate in nuclear processes such as transcription, replication, DNA repair and chromosome segregation. Thus, the interaction of NPCs with chromatin could modulate the distribution of chromosome territories relying on the epigenetic state of DNA. In particular, the nuclear basket proteins Tpr and Nup153, and the FG-nucleoporin Nup98 seem to play key roles in all these novel functions. In this work, histone deacetylase inhibitors (HDACi) were used to induce a hyperacetylated state of chromatin and the behavior of the mentioned nucleoporins was studied. Our results show that, after HDACi treatment, Tpr, Nup153 and Nup98 are translocated from the nuclear pore toward the interior of the cell nucleus, accumulating as intranuclear nucleoporin clusters. These transitory structures are highly dynamic, and are mainly present in the population of cells arrested at the G0/G1 phase of the cell cycle. Our results indicate that the redistribution of these nucleoporins from the nuclear envelope to the nuclear interior may be implicated in the early events of cell cycle initialization, particularly during the G1 phase transition.

  6. Mechanics of the Nucleus

    PubMed Central

    Lammerding, Jan

    2015-01-01

    The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics. PMID:23737203

  7. [AGGLUTINATION OF MESOPHYLL PLASTIDS AND OBLITERATION OF PHLOEM SIEVE TUBES ARE THE TOTAL RESULT OF SEASONAL PAUSES IN PHOTOSYNTHATE EXPORT].

    PubMed

    Gamalei, Yu V

    2015-01-01

    Chloroplast agglutination and sieve tube obliteration are related to the different plant tissues: the agglutination--to the leaf mesophyll, and the obliteration--to the axis phloem. Being equally produced by photosynthate export dynamics, both phenomena are synchronous and can be used for diagnostics of seasonal flashes and pauses of photosynthetic activity with equal success. The nature of the mobility of chloroplast and their shuttle displacements from the nuclear envelope to the cell periphery connected with export dynamics have been established. It is assumed that nuclear envelope is the base structure of the endoplasmic reticulum (ER) inside which the chloroplasts are localized. Activation of photosynthesis and sugar accumulation inside the ER induces its expansion followed by centrifugal diffusion of chloroplasts. Come back effect--ER collapse, its return to the source--can be induced by the blockade of photosynthesis. Centripetal collapse is accompanied by plastid concentration around the nuclear envelope. Displacements of ER and the chloroplasts dislocating inside it are reversible. It depends on seasonal fluctuations of photosynthesis and export intensities. Changes in the volume of sieve tubes, which are due to the same reason, are irreversible. Each seasonal wave of photosynthesis and sugar export forms new series of sieve tubes, replacing obliterated ones.

  8. Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Le Thanh; Boehm, Sabrina V.; Roberts, Roland G.

    2011-08-26

    Highlights: {yields} A novel epsilon isoform of nesprin-2 has been discovered. {yields} This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. {yields} It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. {yields} Like other nesprins, it is located at the nuclear envelope. {yields} We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2more » teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.« less

  9. SEPT12/SPAG4/LAMINB1 complexes are required for maintaining the integrity of the nuclear envelope in postmeiotic male germ cells.

    PubMed

    Yeh, Chung-Hsin; Kuo, Pao-Lin; Wang, Ya-Yun; Wu, Ying-Yu; Chen, Mei-Feng; Lin, Ding-Yen; Lai, Tsung-Hsuan; Chiang, Han-Sun; Lin, Ying-Hung

    2015-01-01

    Male infertility affects approximately 50% of all infertile couples. The male-related causes of intracytoplasmic sperm injection failure include the absence of sperm, immotile or immature sperm, and sperm with structural defects such as those caused by premature chromosomal condensation and DNA damage. Our previous studies based on a knockout mice model indicated that SEPT12 proteins are critical for the terminal morphological formation of sperm. SEPT12 mutations in men result in teratozospermia and oligozospermia. In addition, the spermatozoa exhibit morphological defects of the head and tail, premature chromosomal condensation, and nuclear damage. However, the molecular functions of SEPT12 during spermatogenesis remain unclear. To determine the molecular functions of SEPT12, we applied a yeast 2-hybrid system to identify SEPT12 interactors. Seven proteins that interact with SEPT12 were identified: SEPT family proteins (SEPT4 and SEPT6), nuclear or nuclear membrane proteins (protamine 2, sperm-associated antigen 4, and NDC1 transmembrane nucleoproine), and sperm-related structural proteins (pericentriolar material 1 and obscurin-like 1). Sperm-associated antigen 4 (SPAG4; also known as SUN4) belongs to the SUN family of proteins and acts as a linker protein between nucleoskeleton and cytoskeleton proteins and localizes in the nuclear membrane. We determined that SEPT12 interacts with SPAG4 in a male germ cell line through coimmunoprecipitation. During human spermiogenesis, SEPT12 is colocalized with SPAG4 near the nuclear periphery in round spermatids and in the centrosome region in elongating spermatids. Furthermore, we observed that SEPT12/SPAG4/LAMINB1 formed complexes and were coexpressed in the nuclear periphery of round spermatids. In addition, mutated SEPT12, which was screened from an infertile man, affected the integration of these nuclear envelope complexes through coimmunoprecipitation. This was the first study that suggested that SEPT proteins link to the SUN/LAMIN complexes during the formation of nuclear envelopes and are involved in the development of postmeiotic germ cells.

  10. Co-dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression.

    PubMed

    Maishman, Luke; Obado, Samson O; Alsford, Sam; Bart, Jean-Mathieu; Chen, Wei-Ming; Ratushny, Alexander V; Navarro, Miguel; Horn, David; Aitchison, John D; Chait, Brian T; Rout, Michael P; Field, Mark C

    2016-12-15

    The nuclear lamina is a filamentous structure subtending the nuclear envelope and required for chromatin organization, transcriptional regulation and maintaining nuclear structure. The trypanosomatid coiled-coil NUP-1 protein is a lamina component functionally analogous to lamins, the major lamina proteins of metazoa. There is little evidence for shared ancestry, suggesting the presence of a distinct lamina system in trypanosomes. To find additional trypanosomatid lamina components we identified NUP-1 interacting proteins by affinity capture and mass-spectrometry. Multiple components of the nuclear pore complex (NPC) and a second coiled-coil protein, which we termed NUP-2, were found. NUP-2 has a punctate distribution at the nuclear periphery throughout the cell cycle and is in close proximity to NUP-1, the NPCs and telomeric chromosomal regions. RNAi-mediated silencing of NUP-2 leads to severe proliferation defects, gross alterations to nuclear structure, chromosomal organization and nuclear envelope architecture. Further, transcription is altered at telomere-proximal variant surface glycoprotein (VSG) expression sites (ESs), suggesting a role in controlling ES expression, although NUP-2 silencing does not increase VSG switching. Transcriptome analysis suggests specific alterations to Pol I-dependent transcription. NUP-1 is mislocalized in NUP-2 knockdown cells and vice versa, implying that NUP-1 and NUP-2 form a co-dependent network and identifying NUP-2 as a second trypanosomatid nuclear lamina component. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Conservation of proteo-lipid nuclear membrane fusion machinery during early embryogenesis.

    PubMed

    Byrne, Richard D; Veeriah, Selvaraju; Applebee, Christopher J; Larijani, Banafshé

    2014-01-01

    The fusogenic lipid diacylglycerol is essential for remodeling gamete and zygote nuclear envelopes (NE) during early embryogenesis. It is unclear whether upstream signaling molecules are likewise conserved. Here we demonstrate PLCγ and its activator SFK1, which co-operate during male pronuclear envelope formation, also promote the subsequent male and female pronuclear fusion. PLCγ and SFK1 interact directly at the fusion site leading to PLCγ activation. This is accompanied by a spatially restricted reduction of PtdIns(4,5)P2. Consequently, pronuclear fusion is blocked by PLCγ or SFK1 inhibition. These findings identify new regulators of events in the early embryo and suggest a conserved "toolkit" of fusion machinery drives successive NE fusion events during embryogenesis.

  12. Lipid partitioning at the nuclear envelope controls membrane biogenesis

    PubMed Central

    Barbosa, Antonio Daniel; Sembongi, Hiroshi; Su, Wen-Min; Abreu, Susana; Reggiori, Fulvio; Carman, George M.; Siniossoglou, Symeon

    2015-01-01

    Partitioning of lipid precursors between membranes and storage is crucial for cell growth, and its disruption underlies pathologies such as cancer, obesity, and type 2 diabetes. However, the mechanisms and signals that regulate this process are largely unknown. In yeast, lipid precursors are mainly used for phospholipid synthesis in nutrient-rich conditions in order to sustain rapid proliferation but are redirected to triacylglycerol (TAG) stored in lipid droplets during starvation. Here we investigate how cells reprogram lipid metabolism in the endoplasmic reticulum. We show that the conserved phosphatidate (PA) phosphatase Pah1, which generates diacylglycerol from PA, targets a nuclear membrane subdomain that is in contact with growing lipid droplets and mediates TAG synthesis. We find that cytosol acidification activates the master regulator of Pah1, the Nem1-Spo7 complex, thus linking Pah1 activity to cellular metabolic status. In the absence of TAG storage capacity, Pah1 still binds the nuclear membrane, but lipid precursors are redirected toward phospholipids, resulting in nuclear deformation and a proliferation of endoplasmic reticulum membrane. We propose that, in response to growth signals, activation of Pah1 at the nuclear envelope acts as a switch to control the balance between membrane biogenesis and lipid storage. PMID:26269581

  13. STUDIES ON ISOLATED NUCLEI. I. ISOLATION AND CHEMICAL CHARACTERIZATION OF A NUCLEAR FRACTION FROM GUINEA PIG LIVER.

    PubMed

    MAGGIO, R; SIEKEVITZ, P; PALADE, G E

    1963-08-01

    This article describes a method for the isolation of nuclei from guinea pig liver. It involves the homogenization of the tissue in 0.88 M sucrose-1.5 mM CaCl(2) followed by centrifugation in a discontinuous density gradient in which the upper phase is the homogenate and the lower phase is 2.2 M sucrose-0.5 mM CaCl(2). Based on DNA recovery, the isolated fraction contains 25 to 30 per cent of the nuclei of the original homogenate. Electron microscopical observations showed that approximately 88 per cent of the isolated nuclei come from liver cells (the rest from von Kupffer cells and leucocytes) and that approximately 90 per cent of the nuclei appear intact, with well preserved nucleoli, nucleoplasm, nuclear envelope, and pores. Cytoplasmic contamination is minimal and consists primarily of the nuclear envelope and its attached ribosomes. The nuclear fraction consists of approximately 22.3 per cent DNA, approximately 4.7 per cent RNA, and approximately 73 per cent protein, the DNA/RNA ratio being 4.7. Data on RNA extractibility by phosphate and salt and on the base composition of total nuclear RNA are included.

  14. Protein Targeting: ER Leads the Way to the Inner Nuclear Envelope.

    PubMed

    Blackstone, Craig

    2017-12-04

    Efficient targeting of newly synthesized membrane proteins from the endoplasmic reticulum to the inner nuclear membrane depends on nucleotide hydrolysis. A new study shows that this dependence reflects critical actions of the atlastin family of GTPases in maintaining the morphology of the endoplasmic reticulum network. Published by Elsevier Ltd.

  15. Nup53 Is Required for Nuclear Envelope and Nuclear Pore Complex Assembly

    PubMed Central

    Hawryluk-Gara, Lisa A.; Platani, Melpomeni; Santarella, Rachel

    2008-01-01

    Transport across the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs). These structures are composed of various subcomplexes of proteins that are each present in multiple copies and together establish the eightfold symmetry of the NPC. One evolutionarily conserved subcomplex of the NPC contains the nucleoporins Nup53 and Nup155. Using truncation analysis, we have defined regions of Nup53 that bind to neighboring nucleoporins as well as those domains that target Nup53 to the NPC in vivo. Using this information, we investigated the role of Nup53 in NE and NPC assembly using Xenopus egg extracts. We show that both events require Nup53. Importantly, the analysis of Nup53 fragments revealed that the assembly activity of Nup53 depleted extracts could be reconstituted using a region of Nup53 that binds specifically to its interacting partner Nup155. On the basis of these results, we propose that the formation of a Nup53–Nup155 complex plays a critical role in the processes of NPC and NE assembly. PMID:18256286

  16. Plant nuclei can contain extensive grooves and invaginations

    NASA Technical Reports Server (NTRS)

    Collings, D. A.; Carter, C. N.; Rink, J. C.; Scott, A. C.; Wyatt, S. E.; Allen, N. S.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Plant cells can exhibit highly complex nuclear organization. Through dye-labeling experiments in untransformed onion epidermal and tobacco culture cells and through the expression of green fluorescent protein targeted to either the nucleus or the lumen of the endoplasmic reticulum/nuclear envelope in these cells, we have visualized deep grooves and invaginations into the large nuclei of these cells. In onion, these structures, which are similar to invaginations seen in some animal cells, form tubular or planelike infoldings of the nuclear envelope. Both grooves and invaginations are stable structures, and both have cytoplasmic cores containing actin bundles that can support cytoplasmic streaming. In dividing tobacco cells, invaginations seem to form during cell division, possibly from strands of the endoplasmic reticulum trapped in the reforming nucleus. The substantial increase in nuclear surface area resulting from these grooves and invaginations, their apparent preference for association with nucleoli, and the presence in them of actin bundles that support vesicle motility suggest that the structures might function both in mRNA export from the nucleus and in protein import from the cytoplasm to the nucleus.

  17. Plant Nuclei Can Contain Extensive Grooves and InvaginationsW⃞W⃞

    PubMed Central

    Collings, David A.; Carter, Crystal N.; Rink, Jochen C.; Scott, Amie C.; Wyatt, Sarah E.; Allen, Nina Strömgren

    2000-01-01

    Plant cells can exhibit highly complex nuclear organization. Through dye-labeling experiments in untransformed onion epidermal and tobacco culture cells and through the expression of green fluorescent protein targeted to either the nucleus or the lumen of the endoplasmic reticulum/nuclear envelope in these cells, we have visualized deep grooves and invaginations into the large nuclei of these cells. In onion, these structures, which are similar to invaginations seen in some animal cells, form tubular or planelike infoldings of the nuclear envelope. Both grooves and invaginations are stable structures, and both have cytoplasmic cores containing actin bundles that can support cytoplasmic streaming. In dividing tobacco cells, invaginations seem to form during cell division, possibly from strands of the endoplasmic reticulum trapped in the reforming nucleus. The substantial increase in nuclear surface area resulting from these grooves and invaginations, their apparent preference for association with nucleoli, and the presence in them of actin bundles that support vesicle motility suggest that the structures might function both in mRNA export from the nucleus and in protein import from the cytoplasm to the nucleus. PMID:11148288

  18. A baculovirus polyhedron envelope protein: immunogold localization in infected cells and mature polyhedra.

    PubMed

    Russell, R L; Rohrmann, G F

    1990-01-01

    A polyclonal antiserum against a trpE fusion protein containing the complete open reading frame of the polyhedron envelope (PE) protein from the nuclear polyhedrosis virus of Orgyia pseudotsugata (OpMNPV) was used for immunogold staining and electron microscopic examination of polyhedra, isolated polyhedron envelopes, and infected insect cells at selected times postinfection. The antiserum specifically stained the peripheral envelope of mature polyhedra and also stained the envelope structure which remained after polyhedra were dissolved in dilute alkaline solutions. In OpMNPV-infected Lymantria dispar cells, the PE protein was detected by 48 hr postinfection (hr p.i.) but specific localization and staining of developing polyhedra were not evident. However, by 72 hr p.i. substantial and preferential staining of the periphery of developing polyhedra was evident even though a distinct polyhedron envelope was not yet observed. In addition, the periphery of fibrillar structures was stained by the PE antiserum. By 96 hr p.i., mature envelopes surrounded polyhedra and these polyhedron envelopes were stained with the PE antibody. The progression of PE protein staining during polyhedron morphogenesis indicates that the PE protein accumulates and becomes associated with developing polyhedra in the nucleus between 48 and 72 hr p.i. Very late in infection the mature polyhedron envelope forms on the polyhedron surface. The apparent affinity of the PE protein for the surface of maturing polyhedra suggests that it may be a major component of the polyhedron envelope or may form the matrix for the deposition of other components which contribute to the mature envelope. Immunogold staining and protease digestion experiments indicate that protein is an essential component of the polyhedron envelope.

  19. The mechanism of a nuclear pore assembly: a molecular biophysics view.

    PubMed

    Kuvichkin, Vasily V

    2011-06-01

    The basic problem of nuclear pore assembly is the big perinuclear space that must be overcome for nuclear membrane fusion and pore creation. Our investigations of ternary complexes: DNA-PC liposomes-Mg²⁺, and modern conceptions of nuclear pore structure allowed us to introduce a new mechanism of nuclear pore assembly. DNA-induced fusion of liposomes (membrane vesicles) with a single-lipid bilayer or two closely located nuclear membranes is considered. After such fusion on the lipid bilayer surface, traces of a complex of ssDNA with lipids were revealed. At fusion of two identical small liposomes (membrane vesicles) < 100 nm in diameter, a "big" liposome (vesicle) with ssDNA on the vesicle equator is formed. ssDNA occurrence on liposome surface gives a biphasic character to the fusion kinetics. The "big" membrane vesicle surrounded by ssDNA is the base of nuclear pore assembly. Its contact with the nuclear envelope leads to fast fusion of half of the vesicles with one nuclear membrane; then ensues a fusion delay when ssDNA reaches the membrane. The next step is to turn inside out the second vesicle half and its fusion to other nuclear membrane. A hole is formed between the two membranes, and nucleoporins begin pore complex assembly around the ssDNA. The surface tension of vesicles and nuclear membranes along with the kinetic energy of a liquid inside a vesicle play the main roles in this process. Special cases of nuclear pore formation are considered: pore formation on both nuclear envelope sides, the difference of pores formed in various cell-cycle phases and linear nuclear pore clusters.

  20. Protein targeting and integration signal for the chloroplastic outer envelope membrane.

    PubMed Central

    Li, H M; Chen, L J

    1996-01-01

    Most proteins in chloroplasts are encoded by the nuclear genome and synthesized in the cytosol. With the exception of most quter envelope membrane proteins, nuclear-encoded chloroplastic proteins are synthesized with N-terminal extensions that contain the chloroplast targeting information of these proteins. Most outer membrane proteins, however, are synthesized without extensions in the cytosol. Therefore, it is not clear where the chloroplastic outer membrane targeting information resides within these polypeptides. We have analyzed a chloroplastic outer membrane protein, OEP14 (outer envelope membrane protein of 14 kD, previously named OM14), and localized its outer membrane targeting and integration signal to the first 30 amino acids of the protein. This signal consists of a positively charged N-terminal portion followed by a hydrophobic core, bearing resemblance to the signal peptides of proteins targeted to the endoplasmic reticulum. However, a chimeric protein containing this signal fused to a passenger protein did not integrate into the endoplasmic reticulum membrane. Furthermore, membrane topology analysis indicated that the signal inserts into the chloroplastic outer membrane in an orientation opposite to that predicted by the "positive inside" rule. PMID:8953775

  1. Structural response and gas dynamics of an airship exposed to a nuclear detonation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilstad, D.A.; Weeber, C.G.; Kviljord, A.

    1960-04-25

    Four Model ZSG-3 airships, U. S. Navy Bureau of Aeronautics Nos. 40, 46, 77, and 92, participated during Operation Plumbbob to determine the response characteristics of the Model ZSG-3 airship when subjected to a nuclear detonation in order to establish criteria for safe escape distances for airship delivery of antisubmarine warfare special weapons. Restrained response data for 0.40-psi overpressure input were obtained during Shot Franklin with the ZSG-3 No. 77 moored tail to the blast. Unrestrained response data for 0.75-psi overpressure input were obtained during Shot Stokes with the ZSG-3 No. 40 free ballooned, tail to the blast, 300 feetmore » aboveground. The first airship exposed to overpressure experienced a structural failure of the nose cone when it was rammed into the mooring mast, together with a tear of the forward ballonet which necessitated deflation of the envelope. The second airship broke in half and crashed following a circumferential failure of the envelope originating at the bottom of the envelope, forward of the car.« less

  2. Electrostatic association of glutathione transferase to the nuclear membrane. Evidence of an enzyme defense barrier at the nuclear envelope.

    PubMed

    Stella, Lorenzo; Pallottini, Valentina; Moreno, Sandra; Leoni, Silvia; De Maria, Francesca; Turella, Paola; Federici, Giorgio; Fabrini, Raffaele; Dawood, Kutayba F; Bello, Mario Lo; Pedersen, Jens Z; Ricci, Giorgio

    2007-03-02

    The possible nuclear compartmentalization of glutathione S-transferase (GST) isoenzymes has been the subject of contradictory reports. The discovery that the dinitrosyl-diglutathionyl-iron complex binds tightly to Alpha class GSTs in rat hepatocytes and that a significant part of the bound complex is also associated with the nuclear fraction (Pedersen, J. Z., De Maria, F., Turella, P., Federici, G., Mattei, M., Fabrini, R., Dawood, K. F., Massimi, M., Caccuri, A. M., and Ricci, G. (2007) J. Biol. Chem. 282, 6364-6371) prompted us to reconsider the nuclear localization of GSTs in these cells. Surprisingly, we found that a considerable amount of GSTs corresponding to 10% of the cytosolic pool is electrostatically associated with the outer nuclear membrane, and a similar quantity is compartmentalized inside the nucleus. Mainly Alpha class GSTs, in particular GSTA1-1, GSTA2-2, and GSTA3-3, are involved in this double modality of interaction. Confocal microscopy, immunofluorescence experiments, and molecular modeling have been used to detail the electrostatic association in hepatocytes and liposomes. A quantitative analysis of the membrane-bound Alpha GSTs suggests the existence of a multilayer assembly of these enzymes at the outer nuclear envelope that could represent an amazing novelty in cell physiology. The interception of potentially noxious compounds to prevent DNA damage could be the possible physiological role of the perinuclear and intranuclear localization of Alpha GSTs.

  3. NET23/STING Promotes Chromatin Compaction from the Nuclear Envelope

    PubMed Central

    de las Heras, Jose I.; Saiz-Ros, Natalia; Makarov, Alexandr A.; Lazou, Vassiliki; Meinke, Peter; Waterfall, Martin; Kelly, David A.; Schirmer, Eric C.

    2014-01-01

    Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture. PMID:25386906

  4. Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase.

    PubMed

    Kulkarni, Shilpa; Das, Sudipto; Funk, Colin D; Murray, Diana; Cho, Wonhwa

    2002-04-12

    The activation of 5-lipoxygenase (5-LO) involves its calcium-dependent translocation to the nuclear envelope, where it catalyzes the two-step transformation of arachidonic acid into leukotriene A(4), leading to the synthesis of various leukotrienes. To understand the mechanism by which 5-LO is specifically targeted to the nuclear envelope, we studied the membrane binding properties of the amino-terminal domain of 5-LO, which has been proposed to have a C2 domain-like structure. The model building, electrostatic potential calculation, and in vitro membrane binding studies of the isolated C2-like domain of 5-LO and selected mutants show that this Ca(2+)-dependent domain selectively binds zwitterionic phosphatidylcholine, which is conferred by tryptophan residues (Trp(13), Trp(75), and Trp(102)) located in the putative Ca(2+)-binding loops. The spatiotemporal dynamics of the enhanced green fluorescence protein-tagged C2-like domain of 5-LO and mutants in living cells also show that the phosphatidylcholine selectivity of the C2-like domain accounts for the specific targeting of 5-LO to the nuclear envelope. Together, these results show that the C2-like domain of 5-LO is a genuine Ca(2+)-dependent membrane-targeting domain and that the subcellular localization of the domain is governed in large part by its membrane binding properties.

  5. Analysis of codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) and its relation to evolution.

    PubMed

    Zhao, Yongchao; Zheng, Hao; Xu, Anying; Yan, Donghua; Jiang, Zijian; Qi, Qi; Sun, Jingchen

    2016-08-24

    Analysis of codon usage bias is an extremely versatile method using in furthering understanding of the genetic and evolutionary paths of species. Codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) has remained largely unexplored at present. Hence, the codon usage bias of NPV envelope glycoprotein was analyzed here to reveal the genetic and evolutionary relationships between different viral species in baculovirus genus. A total of 9236 codons from 18 different species of NPV of the baculovirus genera were used to perform this analysis. Glycoprotein of NPV exhibits weaker codon usage bias. Neutrality plot analysis and correlation analysis of effective number of codons (ENC) values indicate that natural selection is the main factor influencing codon usage bias, and that the impact of mutation pressure is relatively smaller. Another cluster analysis shows that the kinship or evolutionary relationships of these viral species can be divided into two broad categories despite all of these 18 species are from the same baculovirus genus. There are many elements that can affect codon bias, such as the composition of amino acids, mutation pressure, natural selection, gene expression level, and etc. In the meantime, cluster analysis also illustrates that codon usage bias of virus envelope glycoprotein can serve as an effective means of evolutionary classification in baculovirus genus.

  6. Computer simulation of magnetic resonance spectra employing homotopy.

    PubMed

    Gates, K E; Griffin, M; Hanson, G R; Burrage, K

    1998-11-01

    Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence transitions in the presence of energy level anticrossings and looping transitions. Herein we describe the application and implementation of homotopy to the analysis of continuous wave electron paramagnetic resonance spectra. The method can also be applied to electron nuclear double resonance, electron spin echo envelope modulation, solid-state nuclear magnetic resonance, and nuclear quadrupole resonance spectra. Copyright 1998 Academic Press.

  7. Mechanism and regulation of rapid telomere prophase movements in mouse meiotic chromosomes

    PubMed Central

    Lee, Chih-Ying; Horn, Henning F.; Stewart, Colin L.; Burke, Brian; Bolcun-Filas, Ewelina; Schimenti, John C.; Dresser, Michael E.; Pezza, Roberto J.

    2015-01-01

    SUMMARY Telomere-led rapid prophase movements (RPMs) in meiotic prophase have been observed in diverse eukaryote species. A shared feature of RPMs is that the force that drives the chromosomal movements is transmitted from the cytoskeleton, through the nuclear envelope, to the telomeres. Studies in mice suggested that dynein movement along microtubules is transmitted to telomeres through SUN1/KASH5 nuclear envelope bridges to generate RPMs. We monitored RPMs in mouse seminiferous tubules using four-dimensional fluorescence imaging and quantitative motion analysis to characterize patterns of movement in the RPM process. We find that RPMs reflect a combination of nuclear rotation and individual chromosome movements. The telomeres move along microtubule tracks which are apparently continuous with the cytoskeletal network, and exhibit characteristic arrangements at different stages of prophase. Quantitative measurements confirmed that SUN1/KASH5, microtubules, and dynein but not actin were necessary for RPMs and that defects in meiotic recombination and synapsis resulted in altered RPMs. PMID:25892231

  8. Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability.

    PubMed

    Dubińska-Magiera, Magda; Chmielewska, Magdalena; Kozioł, Katarzyna; Machowska, Magdalena; Hutchison, Christopher J; Goldberg, Martin W; Rzepecki, Ryszard

    2016-05-01

    Xenopus LAP2β protein is the single isoform expressed in XTC cells. The protein localizes on heterochromatin clusters both at the nuclear envelope and inside a cell nucleus. The majority of XLAP2β fraction neither colocalizes with TPX2 protein during interphase nor can be immunoprecipitated with XLAP2β antibody. Knockdown of the XLAP2β protein expression in XTC cells by synthetic siRNA and plasmid encoded siRNA resulted in nuclear abnormalities including changes in shape of nuclei, abnormal chromatin structure, loss of nuclear envelope, mislocalization of integral membrane proteins of INM such as lamin B2, mislocalization of nucleoporins, and cell death. Based on timing of cell death, we suggest mechanism associated with nucleus reassembly or with entry into mitosis. This confirms that Xenopus LAP2 protein is essential for the maintenance of cell nucleus integrity and the process of its reassembly after mitosis.

  9. Brownian dynamics simulation of fission yeast mitotic spindle formation

    NASA Astrophysics Data System (ADS)

    Edelmaier, Christopher

    2014-03-01

    The mitotic spindle segregates chromosomes during mitosis. The dynamics that establish bipolar spindle formation are not well understood. We have developed a computational model of fission-yeast mitotic spindle formation using Brownian dynamics and kinetic Monte Carlo methods. Our model includes rigid, dynamic microtubules, a spherical nuclear envelope, spindle pole bodies anchored in the nuclear envelope, and crosslinkers and crosslinking motor proteins. Crosslinkers and crosslinking motor proteins attach and detach in a grand canonical ensemble, and exert forces and torques on the attached microtubules. We have modeled increased affinity for crosslinking motor attachment to antiparallel microtubule pairs, and stabilization of microtubules in the interpolar bundle. We study parameters controlling the stability of the interpolar bundle and assembly of a bipolar spindle from initially adjacent spindle-pole bodies.

  10. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype.

    PubMed

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis.

  11. Nuclear envelope disruption involving host caspases plays a role in the parvovirus replication cycle.

    PubMed

    Cohen, Sarah; Marr, Alexandra K; Garcin, Pierre; Panté, Nelly

    2011-05-01

    Parvoviruses are small, nonenveloped, single-stranded DNA viruses which replicate in the nucleus of the host cell. We have previously found that early during infection the parvovirus minute virus of mice (MVM) causes small, transient disruptions of the nuclear envelope (NE). We have now investigated the mechanism used by MVM to disrupt the NE. Here we show that the viral phospholipase A2, the only known enzymatic domain on the parvovirus capsid, is not involved in causing NE disruption. Instead, the virus utilizes host cell caspases, which are proteases involved in causing NE breakdown during apoptosis, to facilitate these nuclear membrane disruptions. Studies with pharmacological inhibitors indicate that caspase-3 in particular is involved. A caspase-3 inhibitor prevents nuclear lamin cleavage and NE disruption in MVM-infected mouse fibroblast cells and reduces nuclear entry of MVM capsids and viral gene expression. Caspase-3 is, however, not activated above basal levels in MVM-infected cells, and other aspects of apoptosis are not triggered during early MVM infection. Instead, basally active caspase-3 is relocalized to the nuclei of infected cells. We propose that NE disruption involving caspases plays a role in (i) parvovirus entry into the nucleus and (ii) alteration of the compartmentalization of host proteins in a way that is favorable for the virus.

  12. Aspects of nuclear envelope dynamics in mitotic cells.

    PubMed

    Burke, Brian; Shanahan, Catherine; Salina, Davide; Crisp, Melissa

    2005-01-01

    Major features of the nuclear envelope (NE) are a pair of inner and outer nuclear membranes (INM, ONM) spanned by nuclear pore complexes. While the composition of the ONM resembles that of the endoplasmic reticulum, the INM contains a unique spectrum of proteins. Localization of INM proteins involves a mechanism of selective retention whereby integral proteins are immobilized and concentrated by virtue of interactions with nuclear components. In the case of emerin, INM localization involves interaction with A-type lamins. Interactions between membrane proteins may also play a significant role in INM localization. This conclusion stems from studies on nesprins, a family of membrane proteins that feature a large cytoplasmic domain, a single C-terminal membrane-spanning domain and a small lumenal domain. The nesprin membrane anchor and lumenal (KASH) domains are related to the Drosophila Klarsicht protein. Evidence is emerging that this KASH region interacts with other NE proteins and may influence their distributions. Overexpression of GFP-KASH causes loss of emerin and LAP2 from the NE. This is not due to global reorganization of the NE since LAP1 as well as lamins and NPCs remain unaffected. Our results suggest that interactions between NE membrane components are far more extensive and complex than current models suggest.

  13. Nuclear pore complex tethers to the cytoskeleton.

    PubMed

    Goldberg, Martin W

    2017-08-01

    The nuclear envelope is tethered to the cytoskeleton. The best known attachments of all elements of the cytoskeleton are via the so-called LINC complex. However, the nuclear pore complexes, which mediate the transport of soluble and membrane bound molecules, are also linked to the microtubule network, primarily via motor proteins (dynein and kinesins) which are linked, most importantly, to the cytoplasmic filament protein of the nuclear pore complex, Nup358, by the adaptor BicD2. The evidence for such linkages and possible roles in nuclear migration, cell cycle control, nuclear transport and cell architecture are discussed. Copyright © 2017. Published by Elsevier Ltd.

  14. RanGTPase regulates the interaction between the inner nuclear membrane proteins, Samp1 and Emerin.

    PubMed

    Vijayaraghavan, Balaje; Figueroa, Ricardo A; Bergqvist, Cecilia; Gupta, Amit J; Sousa, Paulo; Hallberg, Einar

    2018-06-01

    Samp1, spindle associated membrane protein 1, is a type II integral membrane protein localized in the inner nuclear membrane. Recent studies have shown that the inner nuclear membrane protein, Emerin and the small monomeric GTPase, Ran are direct binding partners of Samp1. Here we addressed the question whether Ran could regulate the interaction between Samp1 and Emerin in the inner nuclear membrane. To investigate the interaction between Samp1 and Emerin in live cells, we performed FRAP experiments in cells overexpressing YFP-Emerin. We compared the mobility of YFP-Emerin in Samp1 knock out cells and cells overexpressing Samp1. The results showed that the mobility of YFP-Emerin was higher in Samp1 knock out cells and lower in cells overexpressing Samp1, suggesting that Samp1 significantly attenuates the mobility of Emerin in the nuclear envelope. FRAP experiments using tsBN2 cells showed that the mobility of Emerin depends on RanGTP. Consistently, in vitro binding experiments showed that the affinity between Samp1 and Emerin is decreased in the presence of Ran, suggesting that Ran attenuates the interaction between Samp1 and Emerin. This is the first demonstration that Ran can regulate the interaction between two proteins in the nuclear envelope. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Induction of a massive endoplasmic reticulum and perinuclear space expansion by expression of lamin B receptor mutants and the related sterol reductases TM7SF2 and DHCR7.

    PubMed

    Zwerger, Monika; Kolb, Thorsten; Richter, Karsten; Karakesisoglou, Iakowos; Herrmann, Harald

    2010-01-15

    Lamin B receptor (LBR) is an inner nuclear membrane protein involved in tethering the nuclear lamina and the underlying chromatin to the nuclear envelope. In addition, LBR exhibits sterol reductase activity. Mutations in the LBR gene cause two different human diseases: Pelger-Huët anomaly and Greenberg skeletal dysplasia, a severe chrondrodystrophy causing embryonic death. Our study aimed at investigating the effect of five LBR disease mutants on human cultured cells. Three of the tested LBR mutants caused a massive compaction of chromatin coincidental with the formation of a large nucleus-associated vacuole (NAV) in several human cultured cell lines. Live cell imaging and electron microscopy revealed that this structure was generated by the separation of the inner and outer nuclear membrane. During NAV formation, nuclear pore complexes and components of the linker of nucleoskeleton and cytoskeleton complex were lost in areas of membrane separation. Concomitantly, a large number of smaller vacuoles formed throughout the cytoplasm. Notably, forced expression of the two structurally related sterol reductases transmembrane 7 superfamily member 2 and 7-dehydrocholesterol reductase caused, even in their wild-type form, a comparable phenotype in susceptible cell lines. Hence, LBR mutant variants and sterol reductases can severely interfere with the regular organization of the nuclear envelope and the endoplasmic reticulum.

  16. Enhancing Electrotransfection Efficiency through Improvement in Nuclear Entry of Plasmid DNA.

    PubMed

    Cervia, Lisa D; Chang, Chun-Chi; Wang, Liangli; Mao, Mao; Yuan, Fan

    2018-06-01

    The nuclear envelope is a physiological barrier to electrogene transfer. To understand different mechanisms of the nuclear entry for electrotransfected plasmid DNA (pDNA), the current study investigated how manipulation of the mechanisms could affect electrotransfection efficiency (eTE), transgene expression level (EL), and cell viability. In the investigation, cells were first synchronized at G2-M phase prior to electrotransfection so that the nuclear envelope breakdown (NEBD) occurred before pDNA entered the cells. The NEBD significantly increased the eTE and the EL while the cell viability was not compromised. In the second experiment, the cells were treated with a nuclear pore dilating agent (i.e., trans-1,2-cyclohexanediol). The treatment could increase the EL, but had only minor effects on eTE. Furthermore, the treatment was more cytotoxic, compared with the cell synchronization. In the third experiment, a nuclear targeting sequence (i.e., SV40) was incorporated into the pDNA prior to electrotransfection. The incorporation was more effective than the cell synchronization for enhancing the EL, but not the eTE, and the effectiveness was cell type dependent. Taken together, the data described above suggested that synchronization of the NEBD could be a practical approach to improving electrogene transfer in all dividing cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Nuclear lamina at the crossroads of the cytoplasm and nucleus.

    PubMed

    Gerace, Larry; Huber, Michael D

    2012-01-01

    The nuclear lamina is a protein meshwork that lines the nuclear envelope in metazoan cells. It is composed largely of a polymeric assembly of lamins, which comprise a distinct sequence homology class of the intermediate filament protein family. On the basis of its structural properties, the lamina originally was proposed to provide scaffolding for the nuclear envelope and to promote anchoring of chromatin and nuclear pore complexes at the nuclear surface. This viewpoint has expanded greatly during the past 25 years, with a host of surprising new insights on lamina structure, molecular composition and functional attributes. It has been established that the self-assembly properties of lamins are very similar to those of cytoplasmic intermediate filament proteins, and that the lamin polymer is physically associated with components of the cytoplasmic cytoskeleton and with a multitude of chromatin and inner nuclear membrane proteins. Cumulative evidence points to an important role for the lamina in regulating signaling and gene activity, and in mechanically coupling the cytoplasmic cytoskeleton to the nucleus. The significance of the lamina has been vaulted to the forefront by the discovery that mutations in lamins and lamina-associated polypeptides lead to an array of human diseases. A key future challenge is to understand how the lamina integrates pathways for mechanics and signaling at the molecular level. Understanding the structure of the lamina from the atomic to supramolecular levels will be essential for achieving this goal. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction.

    PubMed

    Szczesny, Spencer E; Mauck, Robert L

    2017-02-01

    Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment and stiffness) or external forces have a significant impact on cell function and behavior. Recently, the cell nucleus has been identified as a mechanosensitive organelle that contributes to the perception and response to mechanical stimuli. However, the specific mechanotransduction mechanisms that mediate these effects have not been clearly established. Here, we offer a comprehensive review of the evidence supporting (and refuting) three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension due to nuclear remodeling. Our goal is to provide a reference detailing the progress that has been made and the areas that still require investigation regarding the role of nuclear mechanotransduction in cell biology. Additionally, we will briefly discuss the role that mathematical models of cell mechanics can play in testing these hypotheses and in elucidating how biophysical stimulation of the nucleus drives changes in cell behavior. While force-induced alterations in signaling pathways involving lamina-associated polypeptides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors (TFs) located at the nuclear envelope currently appear to be the most clearly supported mechanism of nuclear mechanotransduction, additional work is required to examine this process in detail and to more fully test alternative mechanisms. The combination of sophisticated experimental techniques and advanced mathematical models is necessary to enhance our understanding of the role of the nucleus in the mechanotransduction processes driving numerous critical cell functions.

  19. The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction

    PubMed Central

    Szczesny, Spencer E.; Mauck, Robert L.

    2017-01-01

    Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment and stiffness) or external forces have a significant impact on cell function and behavior. Recently, the cell nucleus has been identified as a mechanosensitive organelle that contributes to the perception and response to mechanical stimuli. However, the specific mechanotransduction mechanisms that mediate these effects have not been clearly established. Here, we offer a comprehensive review of the evidence supporting (and refuting) three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension due to nuclear remodeling. Our goal is to provide a reference detailing the progress that has been made and the areas that still require investigation regarding the role of nuclear mechanotransduction in cell biology. Additionally, we will briefly discuss the role that mathematical models of cell mechanics can play in testing these hypotheses and in elucidating how biophysical stimulation of the nucleus drives changes in cell behavior. While force-induced alterations in signaling pathways involving lamina-associated polypeptides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors (TFs) located at the nuclear envelope currently appear to be the most clearly supported mechanism of nuclear mechanotransduction, additional work is required to examine this process in detail and to more fully test alternative mechanisms. The combination of sophisticated experimental techniques and advanced mathematical models is necessary to enhance our understanding of the role of the nucleus in the mechanotransduction processes driving numerous critical cell functions. PMID:27918797

  20. Massive black hole factories: Supermassive and quasi-star formation in primordial halos

    NASA Astrophysics Data System (ADS)

    Schleicher, Dominik R. G.; Palla, Francesco; Ferrara, Andrea; Galli, Daniele; Latif, Muhammad

    2013-10-01

    Context. Supermassive stars and quasi-stars (massive stars with a central black hole) are both considered as potential progenitors for the formation of supermassive black holes. They are expected to form from rapidly accreting protostars in massive primordial halos. Aims: We explore how long rapidly accreting protostars remain on the Hayashi track, implying large protostellar radii and weak accretion luminosity feedback. We assess the potential role of energy production in the nuclear core, and determine what regulates the evolution of such protostars into quasi-stars or supermassive stars. Methods: We followed the contraction of characteristic mass shells in rapidly accreting protostars, and inferred the timescales for them to reach nuclear densities. We compared the characteristic timescales for nuclear burning with those for which the extended protostellar envelope can be maintained. Results: We find that the extended envelope can be maintained up to protostellar masses of 3.6 × 108 ṁ3 M⊙, where ṁ denotes the accretion rate in solar masses per year. We expect the nuclear core to exhaust its hydrogen content in 7 × 106 yr. If accretion rates ṁ ≫ 0.14 can still be maintained at this point, a black hole may form within the accreting envelope, leading to a quasi-star. Alternatively, the accreting object will gravitationally contract to become a main-sequence supermassive star. Conclusions: Due to the limited gas reservoir in typical 107 M⊙ dark matter halos, the accretion rate onto the central object may drop at late times, implying the formation of supermassive stars as the typical outcome of direct collapse. However, if high accretion rates are maintained, a quasi-star with an interior black hole may form.

  1. Dynein pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair

    PubMed Central

    Penfield, Lauren; Wysolmerski, Brian; Mauro, Michael; Farhadifar, Reza; Martinez, Michael A.; Biggs, Ronald; Wu, Hai-Yin; Broberg, Curtis; Needleman, Daniel; Bahmanyar, Shirin

    2018-01-01

    Recent work done exclusively in tissue culture cells revealed that the nuclear envelope (NE) ruptures and repairs in interphase. The duration of NE ruptures depends on lamins; however, the underlying mechanisms and relevance to in vivo events are not known. Here, we use the Caenorhabditis elegans zygote to analyze lamin’s role in NE rupture and repair in vivo. Transient NE ruptures and subsequent NE collapse are induced by weaknesses in the nuclear lamina caused by expression of an engineered hypomorphic C. elegans lamin allele. Dynein-generated forces that position nuclei enhance the severity of transient NE ruptures and cause NE collapse. Reduction of dynein forces allows the weakened lamin network to restrict nucleo–cytoplasmic mixing and support stable NE recovery. Surprisingly, the high incidence of transient NE ruptures does not contribute to embryonic lethality, which is instead correlated with stochastic chromosome scattering resulting from premature NE collapse, suggesting that C. elegans tolerates transient losses of NE compartmentalization during early embryogenesis. In sum, we demonstrate that lamin counteracts dynein forces to promote stable NE repair and prevent catastrophic NE collapse, and thus provide the first mechanistic analysis of NE rupture and repair in an organismal context. PMID:29386297

  2. Self locking drive system for rotating plug of a nuclear reactor

    DOEpatents

    Brubaker, James E.

    1979-01-01

    This disclosure describes a self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event should occur during reactor refueling. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm.

  3. Nuclear envelope-distributed CD147 interacts with and inhibits the transcriptional function of RING1 and promotes melanoma cell motility.

    PubMed

    Chen, Junchen; Peng, Cong; Lei, Li; Zhang, Jianglin; Zeng, Weiqi; Chen, Xiang

    2017-01-01

    Melanoma accounts for nearly 80% of all deaths associated with skin cancer.CD147 plays a very important role in melanoma progression and the expression level may correlate with tumor malignancy. RING1 can bind DNA and act as a transcriptional repressor, play an important role in the aggressive phenotype in melanoma. The interactions between CD147 and RING1 were identified with a yeast two-hybrid and RING1 interacted with CD147 through the transmembrane domain. RING1 inhibits CD147's capability promoting melanoma cell migration. In conclusion, the study identified novel interactions between CD147 and RING1, recovered CD147 nuclear envelope distribution in melanoma cells, and suggested a new mechanism underlying how cytoplasmic CD147 promotes melanoma development.

  4. Nuclear envelope-distributed CD147 interacts with and inhibits the transcriptional function of RING1 and promotes melanoma cell motility

    PubMed Central

    Peng, Cong; Lei, Li; Zhang, Jianglin; Zeng, Weiqi; Chen, Xiang

    2017-01-01

    Melanoma accounts for nearly 80% of all deaths associated with skin cancer.CD147 plays a very important role in melanoma progression and the expression level may correlate with tumor malignancy. RING1 can bind DNA and act as a transcriptional repressor, play an important role in the aggressive phenotype in melanoma. The interactions between CD147 and RING1 were identified with a yeast two-hybrid and RING1 interacted with CD147 through the transmembrane domain. RING1 inhibits CD147’s capability promoting melanoma cell migration. In conclusion, the study identified novel interactions between CD147 and RING1, recovered CD147 nuclear envelope distribution in melanoma cells, and suggested a new mechanism underlying how cytoplasmic CD147 promotes melanoma development. PMID:28832687

  5. Mechanisms of nuclear lamina growth in interphase.

    PubMed

    Zhironkina, Oxana A; Kurchashova, Svetlana Yu; Pozharskaia, Vasilisa A; Cherepanynets, Varvara D; Strelkova, Olga S; Hozak, Pavel; Kireev, Igor I

    2016-04-01

    The nuclear lamina represents a multifunctional platform involved in such diverse yet interconnected processes as spatial organization of the genome, maintenance of mechanical stability of the nucleus, regulation of transcription and replication. Most of lamina activities are exerted through tethering of lamina-associated chromatin domains (LADs) to the nuclear periphery. Yet, the lamina is a dynamic structure demonstrating considerable expansion during the cell cycle to accommodate increased number of LADs formed during DNA replication. We analyzed dynamics of nuclear growth during interphase and changes in lamina structure as a function of cell cycle progression. The nuclear lamina demonstrates steady growth from G1 till G2, while quantitative analysis of lamina meshwork by super-resolution microscopy revealed that microdomain organization of the lamina is maintained, with lamin A and lamin B microdomain periodicity and interdomain gap sizes unchanged. FRAP analysis, in contrast, demonstrated differences in lamin A and B1 exchange rates; the latter showing higher recovery rate in S-phase cells. In order to further analyze the mechanism of lamina growth in interphase, we generated a lamina-free nuclear envelope in living interphase cells by reversible hypotonic shock. The nuclear envelope in nuclear buds formed after such a treatment initially lacked lamins, and analysis of lamina formation revealed striking difference in lamin A and B1 assembly: lamin A reassembled within 30 min post-treatment, whereas lamin B1 did not incorporate into the newly formed lamina at all. We suggest that in somatic cells lamin B1 meshwork growth is coordinated with replication of LADs, and lamin A meshwork assembly seems to be chromatin-independent process.

  6. RASCAL is a new human cytomegalovirus-encoded protein that localizes to the nuclear lamina and in cytoplasmic vesicles at late times postinfection.

    PubMed

    Miller, Matthew S; Furlong, Wendy E; Pennell, Leesa; Geadah, Marc; Hertel, Laura

    2010-07-01

    The products of numerous open reading frames (ORFs) present in the genome of human cytomegalovirus (CMV) have not been characterized. Here, we describe the identification of a new CMV protein localizing to the nuclear envelope and in cytoplasmic vesicles at late times postinfection. Based on this distinctive localization pattern, we called this new protein nuclear rim-associated cytomegaloviral protein, or RASCAL. Two RASCAL isoforms exist, a short version of 97 amino acids encoded by the majority of CMV strains and a longer version of 176 amino acids encoded by the Towne, Toledo, HAN20, and HAN38 strains. Both isoforms colocalize with lamin B in deep intranuclear invaginations of the inner nuclear membrane (INM) and in novel cytoplasmic vesicular structures possibly derived from the nuclear envelope. INM infoldings have been previously described as sites of nucleocapsid egress, which is mediated by the localized disruption of the nuclear lamina, promoted by the activities of viral and cellular kinases recruited by the lamina-associated proteins UL50 and UL53. RASCAL accumulation at the nuclear membrane required the presence of UL50 but not of UL53. RASCAL and UL50 also appeared to specifically interact, suggesting that RASCAL is a new component of the nuclear egress complex (NEC) and possibly involved in mediating nucleocapsid egress from the nucleus. Finally, the presence of RASCAL within cytoplasmic vesicles raises the intriguing possibility that this protein might participate in additional steps of virion maturation occurring after capsid release from the nucleus.

  7. Biophysical assays to probe the mechanical properties of the interphase cell nucleus: substrate strain application and microneedle manipulation.

    PubMed

    Lombardi, Maria L; Zwerger, Monika; Lammerding, Jan

    2011-09-14

    In most eukaryotic cells, the nucleus is the largest organelle and is typically 2 to 10 times stiffer than the surrounding cytoskeleton; consequently, the physical properties of the nucleus contribute significantly to the overall biomechanical behavior of cells under physiological and pathological conditions. For example, in migrating neutrophils and invading cancer cells, nuclear stiffness can pose a major obstacle during extravasation or passage through narrow spaces within tissues.(1) On the other hand, the nucleus of cells in mechanically active tissue such as muscle requires sufficient structural support to withstand repetitive mechanical stress. Importantly, the nucleus is tightly integrated into the cellular architecture; it is physically connected to the surrounding cytoskeleton, which is a critical requirement for the intracellular movement and positioning of the nucleus, for example, in polarized cells, synaptic nuclei at neuromuscular junctions, or in migrating cells.(2) Not surprisingly, mutations in nuclear envelope proteins such as lamins and nesprins, which play a critical role in determining nuclear stiffness and nucleo-cytoskeletal coupling, have been shown recently to result in a number of human diseases, including Emery-Dreifuss muscular dystrophy, limb-girdle muscular dystrophy, and dilated cardiomyopathy.(3) To investigate the biophysical function of diverse nuclear envelope proteins and the effect of specific mutations, we have developed experimental methods to study the physical properties of the nucleus in single, living cells subjected to global or localized mechanical perturbation. Measuring induced nuclear deformations in response to precisely applied substrate strain application yields important information on the deformability of the nucleus and allows quantitative comparison between different mutations or cell lines deficient for specific nuclear envelope proteins. Localized cytoskeletal strain application with a microneedle is used to complement this assay and can yield additional information on intracellular force transmission between the nucleus and the cytoskeleton. Studying nuclear mechanics in intact living cells preserves the normal intracellular architecture and avoids potential artifacts that can arise when working with isolated nuclei. Furthermore, substrate strain application presents a good model for the physiological stress experienced by cells in muscle or other tissues (e.g., vascular smooth muscle cells exposed to vessel strain). Lastly, while these tools have been developed primarily to study nuclear mechanics, they can also be applied to investigate the function of cytoskeletal proteins and mechanotransduction signaling.

  8. Non-Nuclear Testing of Space Nuclear Systems at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, Boise J.; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky; Emrich, William J.; Garber, Anne; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; hide

    2010-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA's Marshall Space Flight Center (MSFC).

  9. The nuclear lamina as a gene-silencing hub.

    PubMed

    Shevelyov, Yuri Y; Nurminsky, Dmitry I

    2012-01-01

    There is accumulating evidence that the nuclear periphery is a transcriptionally repressive compartment. A surprisingly large fraction of the genome is either in transient or permanent contact with nuclear envelope, where the majority of genes are maintained in a silent state, waiting to be awakened during cell differentiation. The integrity of the nuclear lamina and the histone deacetylase activity appear to be essential for gene repression at the nuclear periphery. However, the molecular mechanisms of silencing, as well as the events that lead to the activation of lamina-tethered genes, require further elucidation. This review summarizes recent advances in understanding of the mechanisms that link nuclear architecture, local chromatin structure, and gene regulation.

  10. The physics design of accelerator-driven transmutation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venneri, F.

    1995-10-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safe, lessmore » expensive and more environmentally sound approach to nuclear power.« less

  11. The coolest extremely low-mass white dwarfs

    NASA Astrophysics Data System (ADS)

    Calcaferro, Leila M.; Althaus, Leandro G.; Córsico, Alejandro H.

    2018-06-01

    Context. Extremely low-mass white dwarf (ELM WD; M⋆ ≲ 0.18-0.20 M⊙) stars are thought to be formed in binary systems via stable or unstable mass transfer. Although stable mass transfer predicts the formation of ELM WDs with thick hydrogen (H) envelopes that are characterized by dominant residual nuclear burning along the cooling branch, the formation of ELM WDs with thinner H envelopes from unstable mass loss cannot be discarded. Aims: We compute new evolutionary sequences for helium (He) core WD stars with thin H envelopes with the main aim of assessing the lowest Teff that could be reached by this type of stars. Methods: We generate a new grid of evolutionary sequences of He-core WD stars with thin H envelopes in the mass range from 0.1554 to 0.2025 M⊙, and assess the changes in both the cooling times and surface gravity induced by a reduction of the H envelope. We also determine, taking into account the predictions of progenitor evolution, the lowest Teff reached by the resulting ELM WDs. Results: We find that a slight reduction in the H envelope yields a significant increase in the cooling rate of ELM WDs. Because of this, ELM WDs with thin H envelopes could cool down to 2500 K, in contrast to their canonical counterparts that cool down to 7000 K. In addition, we find that a reduction of the thickness of the H envelope markedly increases the surface gravity (g) of these stars. Conclusions: If ELM WDs are formed with thin H envelopes, they could be detected at very low Teff. The detection of such cool ELM WDs would be indicative that they were formed with thin H envelopes, thus opening the possibility of placing constraints on the possible mechanisms of formation of this type of star. Last but not least, the increase in g due to the reduction of the H envelope leads to consequences in the spectroscopic determinations of these stars.

  12. Examining the contents of isolated Xenopus germinal vesicles.

    PubMed

    Gall, Joseph G; Wu, Zheng'an

    2010-05-01

    One can manually isolate the giant oocyte nucleus or germinal vesicle (GV) of Xenopus from a living oocyte with nothing more complicated than jewelers' forceps and a dissecting microscope. Similarly, one can remove the nuclear envelope by hand and allow the lampbrush chromosomes and other nuclear organelles to spread on a microscope slide. After centrifugation, the nuclear contents adhere tightly to the slide, where they can be subjected to immunostaining or fluorescent in situ hybridization for visualization by conventional or confocal microscopy. Preparations of isolated GV contents reveal details of nuclear structure that are almost impossible to attain by more conventional techniques.

  13. Solution Structure and Molecular Interactions of Lamin B Receptor Tudor Domain*

    PubMed Central

    Liokatis, Stamatis; Edlich, Christian; Soupsana, Katerina; Giannios, Ioannis; Panagiotidou, Parthena; Tripsianes, Konstantinos; Sattler, Michael; Georgatos, Spyros D.; Politou, Anastasia S.

    2012-01-01

    Lamin B receptor (LBR) is a polytopic protein of the nuclear envelope thought to connect the inner nuclear membrane with the underlying nuclear lamina and peripheral heterochromatin. To better understand the function of this protein, we have examined in detail its nucleoplasmic region, which is predicted to harbor a Tudor domain (LBR-TD). Structural analysis by multidimensional NMR spectroscopy establishes that LBR-TD indeed adopts a classical β-barrel Tudor fold in solution, which, however, features an incomplete aromatic cage. Removal of LBR-TD renders LBR more mobile at the plane of the nuclear envelope, but the isolated module does not bind to nuclear lamins, heterochromatin proteins (MeCP2), and nucleosomes, nor does it associate with methylated Arg/Lys residues through its aromatic cage. Instead, LBR-TD exhibits tight and stoichiometric binding to the “histone-fold” region of unassembled, free histone H3, suggesting an interesting role in histone assembly. Consistent with such a role, robust binding to native nucleosomes is observed when LBR-TD is extended toward its carboxyl terminus, to include an area rich in Ser-Arg residues. The Ser-Arg region, alone or in combination with LBR-TD, binds both unassembled and assembled H3/H4 histones, suggesting that the TD/RS interface may operate as a “histone chaperone-like platform.” PMID:22052904

  14. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype

    PubMed Central

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis. PMID:27031510

  15. Nuclear Envelope Disruption Involving Host Caspases Plays a Role in the Parvovirus Replication Cycle ▿

    PubMed Central

    Cohen, Sarah; Marr, Alexandra K.; Garcin, Pierre; Panté, Nelly

    2011-01-01

    Parvoviruses are small, nonenveloped, single-stranded DNA viruses which replicate in the nucleus of the host cell. We have previously found that early during infection the parvovirus minute virus of mice (MVM) causes small, transient disruptions of the nuclear envelope (NE). We have now investigated the mechanism used by MVM to disrupt the NE. Here we show that the viral phospholipase A2, the only known enzymatic domain on the parvovirus capsid, is not involved in causing NE disruption. Instead, the virus utilizes host cell caspases, which are proteases involved in causing NE breakdown during apoptosis, to facilitate these nuclear membrane disruptions. Studies with pharmacological inhibitors indicate that caspase-3 in particular is involved. A caspase-3 inhibitor prevents nuclear lamin cleavage and NE disruption in MVM-infected mouse fibroblast cells and reduces nuclear entry of MVM capsids and viral gene expression. Caspase-3 is, however, not activated above basal levels in MVM-infected cells, and other aspects of apoptosis are not triggered during early MVM infection. Instead, basally active caspase-3 is relocalized to the nuclei of infected cells. We propose that NE disruption involving caspases plays a role in (i) parvovirus entry into the nucleus and (ii) alteration of the compartmentalization of host proteins in a way that is favorable for the virus. PMID:21367902

  16. Nuclear Lamin A/C Deficiency Induces Defects in Cell Mechanics, Polarization, and Migration

    PubMed Central

    Lee, Jerry S. H.; Hale, Christopher M.; Panorchan, Porntula; Khatau, Shyam B.; George, Jerry P.; Tseng, Yiider; Stewart, Colin L.; Hodzic, Didier; Wirtz, Denis

    2007-01-01

    Lamin A/C is a major constituent of the nuclear lamina, a thin filamentous protein layer that lies beneath the nuclear envelope. Here we show that lamin A/C deficiency in mouse embryonic fibroblasts (Lmna−/− MEFs) diminishes the ability of these cells to polarize at the edge of a wound and significantly reduces cell migration speed into the wound. Moreover, lamin A/C deficiency induces significant separation of the microtubule organizing center (MTOC) from the nuclear envelope. Investigations using ballistic intracellular nanorheology reveal that lamin A/C deficiency also dramatically affects the micromechanical properties of the cytoplasm. Both the elasticity (stretchiness) and the viscosity (propensity of a material to flow) of the cytoplasm in Lmna−/− MEFs are significantly reduced. Disassembly of either the actin filament or microtubule networks in Lmna+/+ MEFs results in decrease of cytoplasmic elasticity and viscosity down to levels found in Lmna−/− MEFs. Together these results show that both the mechanical properties of the cytoskeleton and cytoskeleton-based processes, including cell motility, coupled MTOC and nucleus dynamics, and cell polarization, depend critically on the integrity of the nuclear lamina, which suggest the existence of a functional mechanical connection between the nucleus and the cytoskeleton. These results also suggest that cell polarization during cell migration requires tight mechanical coupling between MTOC and nucleus, which is mediated by lamin A/C. PMID:17631533

  17. Mitotic phosphorylation of SUN1 loosens its connection with the nuclear lamina while the LINC complex remains intact.

    PubMed

    Patel, Jennifer T; Bottrill, Andrew; Prosser, Suzanna L; Jayaraman, Sangeetha; Straatman, Kees; Fry, Andrew M; Shackleton, Sue

    2014-01-01

    At the onset mitosis in higher eukaryotes, the nuclear envelope (NE) undergoes dramatic deconstruction to allow separation of duplicated chromosomes. Studies have shown that during this process of nuclear envelope breakdown (NEBD), the extensive protein networks of the nuclear lamina are disassembled through phosphorylation of lamins and several inner nuclear membrane (INM) proteins. The LINC complex, composed of SUN and nesprin proteins, is involved in multiple interactions at the NE and plays vital roles in nuclear and cellular mechanics by connecting the nucleus to the cytoskeleton. Here, we show that SUN1, located in the INM, undergoes mitosis-specific phosphorylation on at least 3 sites within its nucleoplasmic N-terminus. We further identify Cdk1 as the kinase responsible for serine 48 and 333 phosphorylation, while serine 138 is phosphorylated by Plk1. In mitotic cells, SUN1 loses its interaction with N-terminal domain binding partners lamin A/C, emerin, and short nesprin-2 isoforms. Furthermore, a triple phosphomimetic SUN1 mutant displays increased solubility and reduced retention at the NE. In contrast, the central LINC complex interaction between the SUN1 C-terminus and the KASH domain of nesprin-2 is maintained during mitosis. Together, these data support a model whereby mitotic phosphorylation of SUN1 disrupts interactions with nucleoplasmic binding partners, promoting disassembly of the nuclear lamina and, potentially, its chromatin interactions. At the same time, our data add to an emerging picture that the core LINC complex plays an active role in NEBD.

  18. The Use of Two-Photon FRET-FLIM to Study Protein Interactions During Nuclear Envelope Fusion In Vivo and In Vitro.

    PubMed

    Byrne, Richard D; Larijani, Banafshé; Poccia, Dominic L

    2016-01-01

    FRET-FLIM techniques have wide application in the study of protein and protein-lipid interactions in cells. We have pioneered an imaging platform for accurate detection of functional states of proteins and their interactions in fixed cells. This platform, two-site-amplified Förster resonance energy transfer (a-FRET), allows greater signal generation while retaining minimal noise thus enabling application of fluorescence lifetime imaging microscopy (FLIM) to be routinely deployed in different types of cells and tissue. We have used the method described here, time-resolved FRET monitored by two-photon FLIM, to demonstrate the direct interaction of Phospholipase Cγ (PLCγ) by Src Family Kinase 1 (SFK1) during nuclear envelope formation and during male and female pronuclear membrane fusion in fertilized sea urchin eggs. We describe here a generic method that can be applied to monitor any proteins of interest.

  19. Kid-mediated chromosome compaction ensures proper nuclear envelope formation.

    PubMed

    Ohsugi, Miho; Adachi, Kenjiro; Horai, Reiko; Kakuta, Shigeru; Sudo, Katsuko; Kotaki, Hayato; Tokai-Nishizumi, Noriko; Sagara, Hiroshi; Iwakura, Yoichiro; Yamamoto, Tadashi

    2008-03-07

    Toward the end of mitosis, neighboring chromosomes gather closely to form a compact cluster. This is important for reassembling the nuclear envelope around the entire chromosome mass but not individual chromosomes. By analyzing mice and cultured cells lacking the expression of chromokinesin Kid/kinesin-10, we show that Kid localizes to the boundaries of anaphase and telophase chromosomes and contributes to the shortening of the anaphase chromosome mass along the spindle axis. Loss of Kid-mediated anaphase chromosome compaction often causes the formation of multinucleated cells, specifically at oocyte meiosis II and the first couple of mitoses leading to embryonic death. In contrast, neither male meiosis nor somatic mitosis after the morula-stage is affected by Kid deficiency. These data suggest that Kid-mediated anaphase/telophase chromosome compaction prevents formation of multinucleated cells. This protection is especially important during the very early stages of development, when the embryonic cells are rich in ooplasm.

  20. Nuclear envelope and genome interactions in cell fate

    PubMed Central

    Talamas, Jessica A.; Capelson, Maya

    2015-01-01

    The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate. PMID:25852741

  1. Nuclear Exodus: Herpesviruses Lead the Way

    PubMed Central

    Bigalke, Janna M.; Heldwein, Ekaterina E.

    2016-01-01

    Most DNA viruses replicate in the nucleus and exit it either by passing through the nuclear pores or by rupturing the nuclear envelope. Unusually, herpesviruses have evolved a complex mechanism of nuclear escape whereby nascent capsids bud at the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. Although this general scheme is accepted in the field, the players and their roles are still debated. Recent studies illuminated critical mechanistic features of this enigmatic process and uncovered surprising parallels with a novel cellular nuclear export process. This review summarizes our current understanding of nuclear egress in herpesviruses, examines the experimental evidence and models, and outlines outstanding questions with the goal of stimulating new research in this area. PMID:27482898

  2. Nuclear glycogen and glycogen synthase kinase 3.

    PubMed

    Ragano-Caracciolo, M; Berlin, W K; Miller, M W; Hanover, J A

    1998-08-19

    Glycogen is the principal storage form of glucose in animal cells. It accumulates in electron-dense cytoplasmic granules and is synthesized by glycogen synthase (GS), the rate-limiting enzyme of glycogen deposition. Glycogen synthase kinase-3 (GSK-3) is a protein kinase that phosphorylates GS. Two nearly identical forms of GSK-3 exist: GSK-3 alpha and GSK-3 beta. Both are constitutively active in resting cells and their activity can be modulated by hormones and growth factors. GSK-3 is implicated in the regulation of many physiological responses in mammalian cells by phosphorylating substrates including neuronal cell adhesion molecule, neurofilaments, synapsin I, and tau. Recent observations point to functions for glycogen and glycogen metabolism in the nucleus. GSK-3 phosphorylates several transcription factors, and we have recently shown that it modifies the major nuclear pore protein p62. It also regulates PK1, a protein kinase required for maintaining the interphase state and for DNA replication in cycling Xenopus egg extracts. Recently, glycogen was shown to be required for nuclear reformation in vitro using ovulated Xenopus laevis egg lysates. Because neither glycogen nor GSK-3 has been localized to the nuclear envelope or intranuclear sites, glycogen and GSK-3 activites were measured in rat liver nuclei and nuclear reformation extracts. Significant quantities of glycogen-like material co-purified with the rat-liver nuclear envelope. GSK-3 is also highly enriched in the glycogen pellet of egg extracts of Xenopus that is required for nuclear assembly in vitro. Based on the finding that enzymes of glycogen metabolism copurify with glycogen, we propose that glycogen may serve a structural role as a scaffold for nuclear assembly and sequestration of critical kinases and phosphatases in the nucleus. Copyright 1998 Academic Press.

  3. Nesprin-1α-Dependent Microtubule Nucleation from the Nuclear Envelope via Akap450 Is Necessary for Nuclear Positioning in Muscle Cells.

    PubMed

    Gimpel, Petra; Lee, Yin Loon; Sobota, Radoslaw M; Calvi, Alessandra; Koullourou, Victoria; Patel, Rutti; Mamchaoui, Kamel; Nédélec, François; Shackleton, Sue; Schmoranzer, Jan; Burke, Brian; Cadot, Bruno; Gomes, Edgar R

    2017-10-09

    The nucleus is the main microtubule-organizing center (MTOC) in muscle cells due to the accumulation of centrosomal proteins and microtubule (MT) nucleation activity at the nuclear envelope (NE) [1-4]. The relocalization of centrosomal proteins, including Pericentrin, Pcm1, and γ-tubulin, depends on Nesprin-1, an outer nuclear membrane (ONM) protein that connects the nucleus to the cytoskeleton via its N-terminal region [5-7]. Nesprins are also involved in the recruitment of kinesin to the NE and play a role in nuclear positioning in skeletal muscle cells [8-12]. However, a function for MT nucleation from the NE in nuclear positioning has not been established. Using the proximity-dependent biotin identification (BioID) method [13, 14], we found several centrosomal proteins, including Akap450, Pcm1, and Pericentrin, whose association with Nesprin-1α is increased in differentiated myotubes. We show that Nesprin-1α recruits Akap450 to the NE independently of kinesin and that Akap450, but not other centrosomal proteins, is required for MT nucleation from the NE. Furthermore, we demonstrate that this mechanism is disrupted in congenital muscular dystrophy patient myotubes carrying a nonsense mutation within the SYNE1 gene (23560 G>T) encoding Nesprin-1 [15, 16]. Finally, using computer simulation and cell culture systems, we provide evidence for a role of MT nucleation from the NE on nuclear spreading in myotubes. Our data thus reveal a novel function for Nesprin-1α/Nesprin-1 in nuclear positioning through recruitment of Akap450-mediated MT nucleation activity to the NE. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. cAMP-dependent protein kinase phosphorylates and activates nuclear Ca2+-ATPase

    PubMed Central

    Rogue, Patrick J.; Humbert, Jean-Paul; Meyer, Alphonse; Freyermuth, Solange; Krady, Marie-Marthe; Malviya, Anant N.

    1998-01-01

    A Ca2+-pump ATPase, similar to that in the endoplasmic reticulum, has been located on the outer membrane of rat liver nuclei. The effect of cAMP-dependent protein kinase (PKA) on nuclear Ca2+-ATPase (NCA) was studied by using purified rat liver nuclei. Treatment of isolated nuclei with the catalytic unit of PKA resulted in the phosphorylation of a 105-kDa band that was recognized by antibodies specific for sarcoplasmic reticulum Ca2+-ATPase type 2b. Partial purification and immunoblotting confirmed that the 105-kDa protein band phosphorylated by PKA is NCA. The stoichiometry of phosphorylation was 0.76 mol of phosphate incorporated/mol of partially purified enzyme. Measurement of ATP-dependent 45Ca2+ uptake into purified nuclei showed that PKA phosphorylation enhanced the Ca2+-pumping activity of NCA. We show that PKA phosphorylation of Ca2+-ATPase enhances the transport of 10-kDa fluorescent-labeled dextrans across the nuclear envelope. The findings reported in this paper are consistent with the notion that the crosstalk between the cAMP/PKA- and Ca2+-dependent signaling pathways identified at the cytoplasmic level extends to the nucleus. Furthermore, these data support a function for crosstalk in the regulation of calcium-dependent transport across the nuclear envelope. PMID:9689054

  5. Shape Transformation of the Nuclear Envelope during Closed Mitosis.

    PubMed

    Zhu, Qian; Zheng, Fan; Liu, Allen P; Qian, Jin; Fu, Chuanhai; Lin, Yuan

    2016-11-15

    The nuclear envelope (NE) in lower eukaryotes such as Schizosaccharomyces pombe undergoes large morphology changes during closed mitosis. However, which physical parameters are important in governing the shape evolution of the NE, and how defects in the dividing chromosomes/microtubules are reflected in those parameters, are fundamental questions that remain unresolved. In this study, we show that improper separation of chromosomes in genetically deficient cells leads to membrane tethering or asymmetric division in contrast to the formation of two equal-sized daughter nuclei in wild-type cells. We hypothesize that the poleward force is transmitted to the nuclear membrane through its physical contact with the separated sister chromatids at the two spindle poles. A theoretical model is developed to predict the morphology evolution of the NE where key factors such as the work done by the poleward force and bending and surface energies stored in the membrane have been taken into account. Interestingly, the predicted phase diagram, summarizing the dependence of nuclear shape on the size of the load transmission regions, and the pole-to-pole distance versus surface area relationship all quantitatively agree well with our experimental observations, suggesting that this model captures the essential physics involved in closed mitosis. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Structural associations between organelle membranes in nectary parenchyma cells.

    PubMed

    Machado, Silvia Rodrigues; Gregório, Elisa A; Rodrigues, Tatiane M

    2018-05-01

    The close association between membranes and organelles, and the intense chloroplast remodeling in parenchyma cells of extrafloral nectaries occurred only at the secretion time and suggest a relationship with the nectar secretion. Associations between membranes and organelles have been well documented in different tissues and cells of plants, but poorly explored in secretory cells. Here, we described the close physical juxtaposition between membranes and organelles, mainly with chloroplasts, in parenchyma cells of Citharexylum myrianthum (Verbenaeceae) extrafloral nectaries under transmission electron microscopy, using conventional and microwave fixation. At the time of nectar secretion, nectary parenchyma cells exhibit a multitude of different organelle and membrane associations as mitochondria-mitochondria, mitochondria-endoplasmic reticulum, mitochondria-chloroplast, chloroplast-nuclear envelope, mitochondria-nuclear envelope, chloroplast-plasmalemma, chloroplast-chloroplast, chloroplast-tonoplast, chloroplast-peroxisome, and mitochondria-peroxisome. These associations were visualized as amorphous electron-dense material, a network of dense fibrillar material and/or dense bridges. Chloroplasts exhibited protrusions variable in shape and extension, which bring them closer to each other and to plasmalemma, tonoplast, and nuclear envelope. Parenchyma cells in the pre- and post-secretory stages did not exhibit any association or juxtaposition of membranes and organelles, and chloroplast protrusions were absent. Chloroplasts had peripheral reticulum that was more developed in the secretory stage. We propose that such subcellular phenomena during the time of nectar secretion optimize the movement of signaling molecules and the exchange of metabolites. Our results open new avenues on the potential mechanisms of organelle contact in parenchyma nectary cells, and reveal new attributes of the secretory cells on the subcellular level.

  7. Ubiquitin-dependent Protein Degradation at the Yeast Endoplasmic Reticulum and Nuclear Envelope

    PubMed Central

    Zattas, Dimitrios; Hochstrasser, Mark

    2014-01-01

    The endoplasmic reticulum (ER) is the primary organelle in eukaryotic cells where membrane and secreted proteins are inserted into or across cell membranes. Its membrane bilayer and luminal compartments provide a favorable environment for the folding and assembly of thousands of newly synthesized proteins. However, protein folding is intrinsically error-prone, and various stress conditions can further increase levels of protein misfolding and damage, particularly in the ER, which can lead to cellular dysfunction and disease. The ubiquitin-proteasome system (UPS) is responsible for the selective destruction of a vast array of protein substrates, either for protein quality control or to allow rapid changes in the levels of specific regulatory proteins. In this review, we will focus on the components and mechanisms of ER-associated protein degradation (ERAD), an important branch of the UPS. ER membranes extend from subcortical regions of the cell to the nuclear envelope, with its continuous outer and inner membranes; the nuclear envelope is a specialized subdomain of the ER. ERAD presents additional challenges to the UPS beyond those faced with soluble substrates of the cytoplasm and nucleus. These include recognition of sugar modifications that occur in the ER, retrotranslocation of proteins across the membrane bilayer, and transfer of substrates from the ER extraction machinery to the proteasome. Here we review characteristics of ERAD substrate degradation signals (degrons), mechanisms underlying substrate recognition and processing by the ERAD machinery, and ideas on the still unresolved problem of how substrate proteins are moved across and extracted from the ER membrane. PMID:25231236

  8. Immunological and biochemical evidence for nuclear localization of annexin in peas

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Dauwalder, M.; Roux, S. J.

    1998-01-01

    Immunofluorescent localization of annexins using an anti-pea annexin polyclonal antibody (anti-p35) in pea (Pisum sativum) leaf and stem epidermal peels showed staining of the nuclei and the cell periphery. Nuclear staining was also seen in cell teases prepared from pea plumules. The amount of nuclear stain was reduced both by fixation time and by dehydration and organic solvent treatment. Observation with confocal microscopy demonstrated that the anti-p35 stain was diffusely distributed throughout the nuclear structure. Immunoblots of purified nuclei, nuclear envelope matrix, nucleolar, and chromatin fractions showed a cross-reactive protein band of 35 kDa. These data are the first to show annexins localized in plant cell nuclei where they may play a role in nuclear function.

  9. Role for a Zinc Finger Protein (Zfp111) in Transformation of 208F Rat Fibroblasts by Jaagsiekte Sheep Retrovirus Envelope Protein

    PubMed Central

    Hsu, Tom; Phung, An; Choe, Kevin; Kim, Jung Woo

    2015-01-01

    ABSTRACT The native envelope gene (env) of Jaagsiekte sheep retrovirus (JSRV) also acts as an oncogene. To investigate the mechanism of transformation, we performed yeast 2-hybrid screening for cellular proteins that interact with Env. Among several candidates, we identified mouse or rat zinc finger protein 111 (zfp111). The interaction between Env and Zfp111 was confirmed through in vivo coimmunoprecipitation assays. Knockdown of endogenous Zfp111 caused a decrease in cell transformation by JSRV Env, while overexpression of Zfp111 increased overall Env transformation, supporting a role for Zfp111 in Env transformation. Knockdown of Zfp111 had no effect on the growth rate of parental rat 208F cells, while it decreased the proliferation rate of JSRV-transformed 208F cells, suggesting that JSRV-transformed cells became dependent on Zfp111. In addition, Zfp111 preferentially bound to a higher-mobility form of JSRV Env that has not been described previously. The higher-mobility form of Env (P70env) was found exclusively in the nuclear fraction, and size of its polypeptide backbone was the same as that of the cytoplasmic Env polyprotein (Pr80env). The differences in glycosylation between the two versions of Env were characterized. These results identify a novel cellular protein, Zfp111, that binds to the JSRV Env protein, and this binding plays a role in Env transformation. These results indicate that JSRV transformation also involves proteins and interactions in the nucleus. IMPORTANCE The envelope protein (Env) of Jaagsiekte sheep retrovirus (JSRV) is an oncogene, but its mechanism of cell transformation is still unclear. Here we identified seven candidate cellular proteins that can interact with JSRV Env by yeast two-hybrid screening. This study focused on one of the seven candidates, zinc finger protein 111 (Zfp111). Zfp111 was shown to interact with JSRV Env in cells and to be involved in JSRV transformation. Moreover, coexpression of JSRV Env and Zfp111 led to the identification of a novel nuclear form of the JSRV Env protein that binds Zfp111. Nuclear Env was found to differ by glycosylation from the cytoplasmic Env precursor to the virion envelope proteins. These results suggest that JSRV Env transformation may involve nuclear events such as an alteration in transcription mediated by Env-Zfp111 interactions. PMID:26246563

  10. Formation and mosaicity of coccolith segment calcite of the marine algae Emiliania huxleyi.

    PubMed

    Yin, Xiaofei; Ziegler, Andreas; Kelm, Klemens; Hoffmann, Ramona; Watermeyer, Philipp; Alexa, Patrick; Villinger, Clarissa; Rupp, Ulrich; Schlüter, Lothar; Reusch, Thorsten B H; Griesshaber, Erika; Walther, Paul; Schmahl, Wolfgang W

    2018-02-01

    Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark-field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small-angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion-by-ion growth mechanisms. Using cryo-preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well-controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the "nuclear envelope junction". The narrow gap of this junction likely facilitates transport of Ca 2+ ions from the nuclear envelope to the coccolith vesicle. On the basis of our observations, we propose that formation of the coccolith utilizes the nuclear envelope-endoplasmic reticulum Ca 2+ -store of the cell for the transport of Ca 2+ ions from the external medium to the coccolith vesicle and that E. huxleyi calcite forms by ion-by-ion growth rather than by a nanoparticle accretion mechanism. © 2017 Phycological Society of America.

  11. Intermediate Temperature Fluids Life Tests - Theory

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Sarraf, David B.; Locci, Ivan E.; Anderson, William G.

    2008-01-01

    There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 750 K, including space nuclear power system radiators, and high temperature electronics cooling. Potential working fluids include organic fluids, elements, and halides, with halides being the least understood, with only a few life tests conducted. Potential envelope materials for halide working fluids include pure aluminum, aluminum alloys, commercially pure (CP) titanium, titanium alloys, and corrosion resistant superalloys. Life tests were conducted with three halides (AlBr3, SbBr3, and TiCl4) and water in three different envelopes: two aluminum alloys (Al-5052, Al-6061) and Cp-2 titanium. The AlBr3 attacked the grain boundaries in the aluminum envelopes, and formed TiAl compounds in the titanium. The SbBr3 was incompatible with the only envelope material that it was tested with, Al-6061. TiCl4 and water were both compatible with CP2-titanium. A theoretical model was developed that uses electromotive force differences to predict the compatibility of halide working fluids with envelope materials. This theory predicts that iron, nickel, and molybdenum are good envelope materials, while aluminum and titanium halides are good working fluids. The model is in good agreement with results form previous life tests, as well as the current life tests.

  12. The controversial nuclear matrix: a balanced point of view.

    PubMed

    Martelli, A M; Falcieri, E; Zweyer, M; Bortul, R; Tabellini, G; Cappellini, A; Cocco, L; Manzoli, L

    2002-10-01

    The nuclear matrix is defined as the residual framework after the removal of the nuclear envelope, chromatin, and soluble components by sequential extractions. According to several investigators the nuclear matrix provides the structural basis for intranuclear order. However, the existence itself and the nature of this structure is still uncertain. Although the techniques used for the visualization of the nuclear matrix have improved over the years, it is still unclear to what extent the isolated nuclear matrix corresponds to an in vivo existing structure. Therefore, considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the situation in living cells. Here, we summarize the experimental evidence in favor of, or against, the presence of a diffuse nucleoskeleton as a facilitating organizational nonchromatin structure of the nucleus.

  13. Non-Nuclear Testing of Fission Technologies at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Robert G.; Pearson, J. Boise; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky E.; Emrich, William J.; Garber, Anne E.; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; hide

    2011-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing also provides an excellent way for screening potential advanced fuels and materials prior to nuclear testing, and for investigating innovative geometries and operating regimes. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA s Marshall Space Flight Center (MSFC).

  14. Mapping of protein- and chromatin-interactions at the nuclear lamina.

    PubMed

    Kubben, Nard; Voncken, Jan Willem; Misteli, Tom

    2010-01-01

    The nuclear envelope and the lamina define the nuclear periphery and are implicated in many nuclear processes including chromatin organization, transcription and DNA replication. Mutations in lamin A proteins, major components of the lamina, interfere with these functions and cause a set of phenotypically diverse diseases referred to as laminopathies. The phenotypic diversity of laminopathies is thought to be the result of alterations in specific protein- and chromatin interactions due to lamin A mutations. Systematic identification of lamin A-protein and -chromatin interactions will be critical to uncover the molecular etiology of laminopathies. Here we summarize and critically discuss recent technology to analyze lamina-protein and-chromatin interactions.

  15. Application of Advanced Methods for Identification and Detection of Nuclear Explosions from the Asian Continent

    DTIC Science & Technology

    1975-12-01

    of Technology. The authors wish to extend their sincere appreciation to Ms . Bernadine Ludwig and Ms . Darlene Roddy for the many hours spent on the...lHftiliilliltlHil^^irlii^l/■’■"^*’■"^•^■•■—"•-’■ inrnmanopfj .wv^jii«iW9npipniqp<iPr~v>« ’-’■WTOU wliere max H.-2792 = envelope peak value...at that frequency is subtracted as a constant. This will cause the less significant signal envelope peaks to be sub- merged, and they can be

  16. Bidirectional Increase in Permeability of Nuclear Envelope upon Poliovirus Infection and Accompanying Alterations of Nuclear Pores

    PubMed Central

    Belov, George A.; Lidsky, Peter V.; Mikitas, Olga V.; Egger, Denise; Lukyanov, Konstantin A.; Bienz, Kurt; Agol, Vadim I.

    2004-01-01

    Poliovirus and some other picornaviruses trigger relocation of certain nuclear proteins into the cytoplasm. Here, by using a protein changing its fluorescence color with time and containing a nuclear localization signal (NLS), we demonstrate that the poliovirus-triggered relocation is largely due to the exit of presynthesized nuclear protein into the cytoplasm. The leakiness of the nuclear envelope was also documented by the inability of nuclei from digitonin-permeabilized, virus-infected (but not mock-infected) cells to retain an NLS-containing derivative of green fluorescent protein (GFP). The cytoplasm-to-nucleus traffic was also facilitated during infection, as evidenced by experiments with GAPDH (glyceraldehyde-3-phosphate dehydrogenase), cyclin B1, and an NLS-lacking derivative of GFP, which are predominantly cytoplasmic in uninfected cells. Electron microscopy demonstrated that a bar-like barrier structure in the channel of the nuclear pores, seen in uninfected cells, was missing in the infected cells, giving the impression of fully open pores. Transient expression of poliovirus 2A protease also resulted in relocation of the nuclear proteins. Lysates from poliovirus-infected or 2A-expressing cells induced efflux of 3×EGFP-NLS from the nuclei of permeabilized uninfected cells. This activity was inhibited by the elastase inhibitors elastatinal and N-(methoxysuccinyl)-l-alanyl-l-alanyl-l-prolyl-l-valine chloromethylketone (drugs known also to be inhibitors of poliovirus protease 2A), a caspase inhibitor zVAD(OMe), fmk, and some other protease inhibitors. These data suggest that 2A elicited nuclear efflux, possibly in cooperation with a zVAD(OMe).fmk-sensitive protease. However, poliovirus infection facilitated nuclear protein efflux also in cells deficient in caspase-3 and caspase-9, suggesting that the efflux may occur without the involvement of these enzymes. The biological relevance of nucleocytoplasmic traffic alterations in infected cells is discussed. PMID:15331749

  17. A dynamic meiotic SUN belt includes the zygotene-stage telomere bouquet and is disrupted in chromosome segregation mutants of maize (Zea mays L.)

    PubMed Central

    Murphy, Shaun P.; Gumber, Hardeep K.; Mao, Yunyun; Bass, Hank W.

    2014-01-01

    The nuclear envelope (NE) plays an essential role in meiotic telomere behavior and links the cytoplasm and nucleoplasm during homologous chromosome pairing and recombination in many eukaryotic species. Resident NE proteins including SUN (Sad-1/UNC-84) and KASH (Klarsicht/ANC-1/Syne-homology) domain proteins are known to interact forming the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex that connects chromatin to the cytoskeleton. To investigate the possible cross-kingdom conservation of SUN protein functions in plant meiosis, we immunolocalized maize SUN2 using 3D microscopy of pollen mother cells from maize (Zea mays L.), a large-genome plant model with a canonical NE zygotene-stage telomere bouquet. We detected SUN2 at the nuclear periphery and found that it exhibited a distinct belt-like structure that transitioned to a half-belt during the zygotene stage and back to a full belt during and beyond the pachytene stage. The zygotene-stage half-belt SUN structure was shown by 3D immuno-FISH to include the NE-associated telomere cluster that defines the bouquet stage and coincides with homologous chromosome synapsis. Microtubule and filamentous actin staining patterns did not show any obvious belt or a retracted-like structure other than a general enrichment of tubulin staining distributed widely around the nucleus and throughout the cytoplasm. Genetic disruption of the meiotic SUN belt staining patterns with three different meiosis-specific mutants, desynaptic (dy1), asynaptic1 (as1), and divergent spindle1 (dv1) provides additional evidence for the role of the nuclear envelope in meiotic chromosome behavior. Taking into account all of the observations from this study, we propose that the maize SUN belt is directly or indirectly involved in meiotic telomere dynamics, chromosome synapsis, and possibly integration of signals and forces across the meiotic prophase nuclear envelope. PMID:25071797

  18. Parvoviral nuclear import: bypassing the host nuclear-transport machinery.

    PubMed

    Cohen, Sarah; Behzad, Ali R; Carroll, Jeffrey B; Panté, Nelly

    2006-11-01

    The parvovirus Minute virus of mice (MVM) is a small DNA virus that replicates in the nucleus of its host cells. However, very little is known about the mechanisms underlying parvovirus' nuclear import. Recently, it was found that microinjection of MVM into the cytoplasm of Xenopus oocytes causes damage to the nuclear envelope (NE), suggesting that the nuclear-import mechanism of MVM involves disruption of the NE and import through the resulting breaks. Here, fluorescence microscopy and electron microscopy were used to examine the effect of MVM on host-cell nuclear structure during infection of mouse fibroblast cells. It was found that MVM caused dramatic changes in nuclear shape and morphology, alterations of nuclear lamin immunostaining and breaks in the NE of infected cells. Thus, it seems that the unusual nuclear-import mechanism observed in Xenopus oocytes is in fact used by MVM during infection of host cells.

  19. Atomic structure of the nuclear pore complex targeting domain of a Nup116 homologue from the yeast, Candida glabrata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampathkumar, Parthasarathy; Kim, Seung Joong; Manglicmot, Danalyn

    2012-10-23

    The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of {approx}456 polypeptide chains contributed by {approx}30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal 'FG' repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain ofmore » Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 {angstrom} resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed.« less

  20. Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure.

    PubMed

    Thompson, Gary L; Roth, Caleb C; Kuipers, Marjorie A; Tolstykh, Gleb P; Beier, Hope T; Ibey, Bennett L

    2016-01-29

    Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known to be sequestered for cellular chromosomal function within the nucleus - histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn in 24 h viability, measured by MTT assay, is observed at the number of pulses required to induce permeabilization of the nucleus. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization

    PubMed Central

    Okada, Naoyuki; Sato, Masamitsu

    2015-01-01

    Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells. PMID:26308057

  2. Greatwall is essential to prevent mitotic collapse after nuclear envelope breakdown in mammals.

    PubMed

    Álvarez-Fernández, Mónica; Sánchez-Martínez, Ruth; Sanz-Castillo, Belén; Gan, Pei Pei; Sanz-Flores, María; Trakala, Marianna; Ruiz-Torres, Miguel; Lorca, Thierry; Castro, Anna; Malumbres, Marcos

    2013-10-22

    Greatwall is a protein kinase involved in the inhibition of protein phosphatase 2 (PP2A)-B55 complexes to maintain the mitotic state. Although its biochemical activity has been deeply characterized in Xenopus, its specific relevance during the progression of mitosis is not fully understood. By using a conditional knockout of the mouse ortholog, Mastl, we show here that mammalian Greatwall is essential for mouse embryonic development and cell cycle progression. Yet, Greatwall-null cells enter into mitosis with normal kinetics. However, these cells display mitotic collapse after nuclear envelope breakdown (NEB) characterized by defective chromosome condensation and prometaphase arrest. Intriguingly, Greatwall is exported from the nucleus to the cytoplasm in a CRM1-dependent manner before NEB. This export occurs after the nuclear import of cyclin B-Cdk1 complexes, requires the kinase activity of Greatwall, and is mediated by Cdk-, but not Polo-like kinase 1-dependent phosphorylation. The mitotic collapse observed in Greatwall-deficient cells is partially rescued after concomitant depletion of B55 regulatory subunits, which are mostly cytoplasmic before NEB. These data suggest that Greatwall is an essential protein in mammals required to prevent mitotic collapse after NEB.

  3. Changes in the position and volume of inactive X chromosomes during the G0/G1 transition.

    PubMed

    Lyu, Guoliang; Tan, Tan; Guan, Yiting; Sun, Lei; Liang, Qianjin; Tao, Wei

    2018-04-21

    In female mammals, each cell silences one X chromosome by converting it into transcriptionally inert heterochromatin. The inactivation is concomitant with epigenetic changes including methylation of specific histone residues and incorporation of macroH2A. Such epigenetic changes may exert influence on the positioning of the inactive X chromosome (Xi) within the nucleus beyond the level of chromatin structure. However, the dynamic positioning of the inactive X chromosome during cell cycle remains unclear. Here, we show that H3K27me3 is a cell-cycle-independent marker for the inactivated X chromosomes in WI38 cells. By utilizing this marker, three types of Xi locations in the nuclei are classified, which are envelope position (associated with envelope), mid-position (between the envelope and nucleolus), and nucleolus position (associated with the nucleolus). Moreover, serial-section analysis revealed that the inactive X chromosomes in the mid-position appear to be sparser and less condensed than those associated with the nuclear envelope or nucleolus. During the transition from G0 to G1 phase, the inactive X chromosomes tend to move from the envelope position to the nucleolus position in WI38 cells. Our results imply a role of chromosome positioning in maintaining the organization of the inactive X chromosomes in different cell phases.

  4. Genome-wide identification of horizontal gene transfer in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different lineages, breaks species boundaries and generates new biological diversity. In eukaryotes, despite potential barriers, like the nuclear envelope and multicellularity, HGT may be facilitated by t...

  5. Nuclear targeting of viral and non-viral DNA.

    PubMed

    Chowdhury, E H

    2009-07-01

    The nuclear envelope presents a major barrier to transgene delivery and expression using a non-viral vector. Virus is capable of overcoming the barrier to deliver their genetic materials efficiently into the nucleus by virtue of the specialized protein components with the unique amino acid sequences recognizing cellular nuclear transport machinery. However, considering the safety issues in the clinical gene therapy for treating critical human diseases, non-viral systems are highly promising compared with their viral counterparts. This review summarizes the progress on exploring the nuclear traffic mechanisms for the prominent viral vectors and the technological innovations for the nuclear delivery of non-viral DNA by mimicking those natural processes evolved for the viruses as well as for many cellular proteins.

  6. Research activities in nuclear astrophysics and related areas

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA/GRO grant NAG 5-2081, at the University of Chicago, has provided support for a broad program of theoretical research in nuclear astrophysics and related areas, with regard to gamma-ray and hard X-ray emission from classical nova explosions. This research emphasized the possible detection of 22Na gamma-ray line emission from nearby novae involving ONeMg white dwarfs, the detailed examination of 26Al production in novae, and the possible detection of the predicted early gamma ray emission from novae that arises from the decay of the short lived, positron emitting isotopes of CNO elements. Studies of nova related problems have consumed an increasing fraction of the Principal Investigator's research efforts over the past decade. Current research addresses problems associated with the standard model for the outbursts of the classical novae: the occurrence of thermonuclear runaways (TNR) in the accreted hydrogen rich envelopes on white dwarfs in close binary systems (see, e.g., the reviews by Truran 1982; and Shara 1989). Research in progress and planned for the next three years has three main objectives: (1) to gain an improved understanding of the early evolution of the light curves of, particularly, the fastest novae; (2) to gain an improved understanding of the relative importance of the various possible mechanisms of envelope hydrogen depletion (e.g. winds, common envelope driven mass loss, and nuclear burning) to the long term evolution of novae in outburst; and (3) to seek to provide a somewhat more definitive statement of the role of classical novae in nucleosynthesis. Our proposed 2-D studies of convection during the early phases of the TNR and our systematic attempt to incorporate an improved treatment of radiation hydrodynamics into the hydrodynamic code utilized in our calculations, are particularly relevant to the first of these objectives. Further 2-D studies of the effects of common envelope evolution are intended to provide more realistic constraints on the mass depletion mechanisms. Finally, detailed calculations of the thermonuclear history of the matter ejected in novae will be carried out for representative nova configurations involving both carbon-oxygen (CO) and oxygen-neon-magnesium (ONeMg) white dwarfs.

  7. Low-mass White Dwarfs with Hydrogen Envelopes as a Missing Link in the Tidal Disruption Menu

    NASA Astrophysics Data System (ADS)

    Law-Smith, Jamie; MacLeod, Morgan; Guillochon, James; Macias, Phillip; Ramirez-Ruiz, Enrico

    2017-06-01

    We construct a menu of objects that can give rise to bright flares when disrupted by massive black holes (BHs), ranging from planets to evolved stars. Through their tidal disruption, main sequence and evolved stars can effectively probe the existence of otherwise quiescent supermassive BHs, and white dwarfs can probe intermediate mass BHs. Many low-mass white dwarfs possess extended hydrogen envelopes, which allow for the production of prompt flares in disruptive encounters with moderately massive BHs of 105-{10}7 {M}⊙ —masses that may constitute the majority of massive BHs by number. These objects are a missing link in two ways: (1) for probing moderately massive BHs and (2) for understanding the hydrodynamics of the disruption of objects with tenuous envelopes. A flare arising from the tidal disruption of a 0.17 {M}⊙ white dwarf by a {10}5 {M}⊙ {BH} reaches a maximum between 0.6 and 11 days, with a peak fallback rate that is usually super-Eddington and results in a flare that is likely brighter than a typical tidal disruption event. Encounters stripping only the envelope can provide hydrogen-only fallback, while encounters disrupting the core evolve from H- to He-rich fallback. While most tidal disruption candidates observed thus far are consistent with the disruptions of main sequence stars, the rapid timescales of nuclear transients such as Dougie and PTF10iya are naturally explained by the disruption of low-mass white dwarfs. As the number of observed flares continues to increase, the menu presented here will be essential for characterizing nuclear BHs and their environments through tidal disruptions.

  8. Induction of apoptosis by fungal culture materials containing cyclopiazonic acid and T-2 toxin in primary lymphoid organs of broiler chickens.

    PubMed

    Venkatesh, P Kamala; Vairamuthu, S; Balachandran, C; Manohar, B Murali; Raj, G Dhinakar

    2005-04-01

    Thirty-six, twenty-eight-day-old broiler chicks were randomly distributed into three groups of 12 birds each. Two groups were fed diets containing 10 ppm cyclopiazonic acid (CPA) and 1ppm T-2 toxin, respectively, to determine the mechanism of cell death in spleen and thymus at 6, 12, 24, and 36 h of post-treatment. The other group served as control. T-2 toxin treated group showed significant (P < 0.01) induction of apoptosis in thymus with peak induction at 24 h post-treatment where as, no significant differences were observed between the control and CPA groups. The CPA toxin treated group showed significant (P < 0.01) induction of apoptosis in spleen with peak induction at 24 h post-treatment. No significant differences were observed between the control and T-2 toxin group even though the latter showed a slight increase in the quantity of apoptotic cells at 36 h post-treatment in spleen. The semi-thin sections stained with toluidine blue from the spleen of CPA treated group exhibited crescent margination of chromatin against the nuclear envelope and shrinkage of lymphoid cells without any surrounding inflammation, the characteristics of apoptosis. The apoptotic thymocytes from T-2 fed birds appeared shrunken with condensed nucleus and showed crescent margination of chromatin against the nuclear envelope without any surrounding inflammation when compared with well-defined nuclei with dispersed chromatin in normal thymocytes. Ultrastructurally, splenocytes of the CPA treated group and thymocytes of the T-2 toxin treated birds showed apoptotic bodies characterized by crescent margination of the chromatin against the nuclear envelope. The study indicates that one route of the CPA and T-2 toxin induced cell death in lymphoid organs of broiler chicken is by apoptosis.

  9. ELECTRON MICROSCOPY OF MITOSIS IN AMEBAE

    PubMed Central

    Roth, L. E.

    1967-01-01

    The mitotic apparatus (MA) of the giant ameba, Chaos carolinensis, has characteristic sequences of microtubule arrays and deployment of nuclear envelope fragments. If mitotic organisms are subjected to 2°C for 5 min, the MA microtubules are completely degraded, and the envelope fragments are released from the chromosomes which remain condensed but lose their metaphase-plate orientation. On warming, microtubules reform but show partial loss of their parallel alignment; displacement of the envelope fragments persists or is increased by microtubule reformation. This study demonstrates that cooling causes destruction of microtubules and intermicrotubular cross-bonds and further shows that such controlled dissolution and reformation can provide an in vivo test sequence for studies on the effects of inhibitor-compounds on microtubule subunit aggregation. Urea, at the comparatively low concentration of 0.8 M, inhibited reformation following cooling and rewarming but was ineffective in altering microtubules that had formed before treatment. PMID:6040537

  10. Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation.

    PubMed

    Shi, Anqi; Hu, Zhaoyang; Zuo, Yachao; Wang, Yan; Wu, Wenbi; Yuan, Meijin; Yang, Kai

    2018-02-15

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf75 ( ac75 ) is a highly conserved gene of unknown function. In this study, we constructed an ac75 knockout AcMNPV bacmid and investigated the role of ac75 in the baculovirus life cycle. The expression and distribution of the Ac75 protein were characterized, and its interaction with another viral protein was analyzed to further understand its function. Our data indicated that ac75 was required for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent budded virion (BV) formation, as well as occlusion-derived virion (ODV) envelopment and embedding of ODVs into polyhedra. Western blot analyses showed that two forms, of 18 and 15 kDa, of FLAG-tagged Ac75 protein were detected. Ac75 was associated with both nucleocapsid and envelope fractions of BVs but with only the nucleocapsid fraction of ODVs; the 18-kDa form was associated with only BVs, whereas the 15-kDa form was associated with both types of virion. Ac75 was localized predominantly in the intranuclear ring zone during infection and exhibited a nuclear rim distribution during the early phase of infection. A phase separation assay suggested that Ac75 was not an integral membrane protein. A coimmunoprecipitation assay revealed an interaction between Ac75 and the integral membrane protein Ac76, and bimolecular fluorescence complementation assays identified the sites of the interaction within the cytoplasm and at the nuclear membrane and ring zone in AcMNPV-infected cells. Our results have identified ac75 as a second gene that is required for both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. IMPORTANCE During the baculovirus life cycle, the morphogenesis of both budded virions (BVs) and occlusion-derived virions (ODVs) is proposed to involve a budding process at the nuclear membrane, which occurs while nucleocapsids egress from the nucleus or when intranuclear microvesicles are produced. However, the exact mechanism of virion morphogenesis remains unknown. In this study, we identified ac75 as a second gene, in addition to ac93 , that is essential for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent BV formation, as well as ODV envelopment and embedding of ODVs into polyhedra. Ac75 is not an integral membrane protein. However, it interacts with an integral membrane protein (Ac76) and is associated with the nuclear membrane. These data enhance our understanding of the commonalities between nuclear egress of nucleocapsids and intranuclear microvesicle formation and may help to reveal insights into the mechanism of baculovirus virion morphogenesis. Copyright © 2018 American Society for Microbiology.

  11. Functional characterization of Autographa californica multiple nucleopolyhedrovirus gp16 (ac130)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ming; Huang, Cui; Qian, Duo-Duo

    2014-09-15

    To investigate the function of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) gp16, multiple gp16-knockout and repair mutants were constructed and characterized. No obvious difference in productivity of budded virus, DNA synthesis, late gene expression and morphogenesis was observed between gp16-knockout and repair viruses, but gp16 deletion resulted in six hours of lengthening in ST{sub 50} to the third instar Spodoptera exigua larvae in bioassays. GP16 was fractionated mainly in the light membrane fraction, by subcellular fractionation. A GP16-EGFP fusion protein was predominantly localized close around the nuclear membrane in infected cells, being coincident with formation of the vesicles associated with themore » nuclear membrane, which hosted nucleocapsids released from the nucleus. These data suggest that gp16 is not required for viral replication, but may be involved in membrane trafficking associated with the envelopment/de-envelopment of budded viruses when they cross over the nuclear membrane and pass through cytoplasm. - Highlights: • gp16 knockout and repair mutants of AcMNPV were constructed and characterized. • AcMNPV gp16 is not essential to virus replication. • Deletion of gp16 resulted in time lengthening to kill S. exigua larvae. • GP16 was localized close around the nuclear membrane of infected cells. • GP16 was fractionated in the light membrane fraction in subcellular fractionation.« less

  12. Impact of Leishmania Infection on Host Macrophage Nuclear Physiology and Nucleopore Complex Integrity

    PubMed Central

    Isnard, Amandine; Christian, Jan G.; Kodiha, Mohamed; Stochaj, Ursula; McMaster, W. Robert; Olivier, Martin

    2015-01-01

    The protease GP63 is an important virulence factor of Leishmania parasites. We previously showed that GP63 reaches the perinuclear area of host macrophages and that it directly modifies nuclear translocation of the transcription factors NF-κB and AP-1. Here we describe for the first time, using molecular biology and in-depth proteomic analyses, that GP63 alters the host macrophage nuclear envelope, and impacts on nuclear processes. Our results suggest that GP63 does not appear to use a classical nuclear localization signal common between Leishmania species for import, but degrades nucleoporins, and is responsible for nuclear transport alterations. In the nucleoplasm, GP63 activity accounts for the degradation and mislocalization of proteins involved amongst others in gene expression and in translation. Collectively, our data indicates that Leishmania infection strongly affects nuclear physiology, suggesting that targeting of nuclear physiology may be a strategy beneficial for virulent Leishmania parasites. PMID:25826301

  13. Nuclear networking.

    PubMed

    Xie, Wei; Burke, Brian

    2017-07-04

    Nuclear lamins are intermediate filament proteins that represent important structural components of metazoan nuclear envelopes (NEs). By combining proteomics and superresolution microscopy, we recently reported that both A- and B-type nuclear lamins form spatially distinct filament networks at the nuclear periphery of mouse fibroblasts. In particular, A-type lamins exhibit differential association with nuclear pore complexes (NPCs). Our studies reveal that the nuclear lamina network in mammalian somatic cells is less ordered and more complex than that of amphibian oocytes, the only other system in which the lamina has been visualized at high resolution. In addition, the NPC component Tpr likely links NPCs to the A-type lamin network, an association that appears to be regulated by C-terminal modification of various A-type lamin isoforms. Many questions remain, however, concerning the structure and assembly of lamin filaments, as well as with their mode of association with other nuclear components such as peripheral chromatin.

  14. Mechanical stability of the cell nucleus: roles played by the cytoskeleton in nuclear deformation and strain recovery.

    PubMed

    Wang, Xian; Liu, Haijiao; Zhu, Min; Cao, Changhong; Xu, Zhensong; Tsatskis, Yonit; Lau, Kimberly; Kuok, Chikin; Filleter, Tobin; McNeill, Helen; Simmons, Craig A; Hopyan, Sevan; Sun, Yu

    2018-05-18

    Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformation increases the risk of disrupting the nuclear envelope's integrity and causing DNA damage. Mechanical stability of the nucleus defines its capability of maintaining nuclear shape by minimizing nuclear deformation and recovering strain when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin. © 2018. Published by The Company of Biologists Ltd.

  15. Promyelocytic leukemia bodies tether to early endosomes during mitosis.

    PubMed

    Palibrk, Vuk; Lång, Emma; Lång, Anna; Schink, Kay Oliver; Rowe, Alexander D; Bøe, Stig Ove

    2014-01-01

    During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.

  16. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells

    PubMed Central

    Peddie, Christopher J.; Blight, Ken; Wilson, Emma; Melia, Charlotte; Marrison, Jo; Carzaniga, Raffaella; Domart, Marie-Charlotte; O׳Toole, Peter; Larijani, Banafshe; Collinson, Lucy M.

    2014-01-01

    Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and scanning electron microscope. We show, for the first time, that GFP is stable and active in resin sections in vacuo. We applied our protocol to study the subcellular localisation of diacylglycerol (DAG), a modulator of membrane morphology and membrane dynamics in nuclear envelope assembly. We show that DAG is localised to the nuclear envelope, nucleoplasmic reticulum and curved tips of the Golgi apparatus. With these developments, we demonstrate that integrated imaging is maturing into a powerful tool for accurate molecular localisation to structure. PMID:24637200

  17. Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening.

    PubMed

    Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z; Wickrema, Amittha; Yang, Jing; Ji, Peng

    2016-03-07

    Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step toward chromatin condensation during erythropoiesis in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Nuclear condensation during mouse erythropoiesis requires caspase-3-mediated nuclear opening

    PubMed Central

    Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z.; Wickrema, Amittha; Yang, Jing; Ji, Peng

    2016-01-01

    SUMMARY Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step towards chromatin condensation during erythropoiesis in mice. PMID:26954545

  19. Rabi oscillation and electron-spin-echo envelope modulation of the photoexcited triplet spin system in silicon

    NASA Astrophysics Data System (ADS)

    Akhtar, Waseem; Sekiguchi, Takeharu; Itahashi, Tatsumasa; Filidou, Vasileia; Morton, John J. L.; Vlasenko, Leonid; Itoh, Kohei M.

    2012-09-01

    We report on a pulsed electron paramagnetic resonance (EPR) study of the photoexcited triplet state (S=1) of oxygen-vacancy centers in silicon. Rabi oscillations between the triplet sublevels are observed using coherent manipulation with a resonant microwave pulse. The Hahn echo and stimulated echo decay profiles are superimposed with strong modulations known as electron-spin-echo envelope modulation (ESEEM). The ESEEM spectra reveal a weak but anisotropic hyperfine coupling between the triplet electron spin and a 29Si nuclear spin (I=1/2) residing at a nearby lattice site, that cannot be resolved in conventional field-swept EPR spectra.

  20. Analysis of the internal nuclear matrix. Oligomers of a 38 kD nucleolar polypeptide stabilized by disulfide bonds.

    PubMed

    Fields, A P; Kaufmann, S H; Shaper, J H

    1986-05-01

    When rat liver nuclei are treated with the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) prior to nuclease treatment and extraction with 1.6 M NaCl, residual nucleoli and an extensive non-chromatin intranuclear network remain associated with the nuclear envelope. Subsequent treatment of this structure with 1 M NaCl containing 20 mM dithiothreitol (DTT) solubilizes the intranuclear material, while the nuclear envelope remains structurally intact. We have isolated and partially characterized a major polypeptide of the disulfide-stabilized internal nuclear matrix. The polypeptide, which has an apparent molecular mass 38 kD and isoelectric point 5.3, has been localized to the nucleolus of rat liver nuclei by indirect immunofluorescence using a specific polyclonal chicken antiserum. Based on its molecular mass, isoelectric point, intracellular localization and amino acid composition, the 38 kD polypeptide appears to be analogous to the nucleolar phosphoprotein B23 described by Prestayko et al. (Biochemistry 13 (1974) 1945) [20]. Immunologically related polypeptides have likewise been localized to the nucleoli of both hamster and human tissue culture cell lines as well as the cellular slime mold Physarum polycephalum. By immunoblotting, a single 38 kD polypeptide is recognized by the antiserum in rat, mouse, hamster and human cell lines. The antiserum has been utilized to investigate the oligomeric structure of the 38 kD polypeptide and the nature of its association with the rat liver nuclear matrix. By introducing varying numbers of disulfide bonds, we have found that the 38 kD polypeptide becomes incorporated into the internal nuclear matrix in a two-step process. Soluble disulfide-bonded homodimers of the polypeptide are first formed and then are rendered salt-insoluble by more extensive disulfide cross-linking.

  1. Intracellular calcium: a prerequisite for aldosterone action.

    PubMed

    Schäfer, C; Shahin, V; Albermann, L; Schillers, H; Hug, M J; Oberleithner, H

    2003-12-01

    Transport of salt and water in various tissues is under control of the mineralocorticoid hormone aldosterone. As a liphophilic hormone, aldosterone diffuses through the plasma membrane and, then, binds to cytosolic mineralocorticoid receptors in the target cells. After binding to nuclear pore complexes, the activated receptor is translocated to the nucleus where transcription processes are initiated. After a lag period of about 20 minutes hormone-specific early mRNA transcripts leave the nucleus through nuclear pores. Some of the steps in this cascade can be followed by electrophysiology in Xenopus laevis oocyte nuclei. In addition to the genomic pathway, aldosterone exerts a rapid pre-genomic response that involves an increase in intracellular calcium. In this study, we tested for the potential role of Ca(2+) in the genomic response of the hormone. We measured the electrical resistance across the nuclear envelope in response to aldosterone, in presence and absence of intracellular Ca(2+). Nuclear envelope electrical resistance reflects receptor binding to the nuclear pore complexes ("early" resistance peak, 2 minutes after aldosterone), ongoing transcription ("transient" resistance drop, 5-15 minutes after aldosterone) and mRNA export ("late" resistance peak, 20 minutes after aldosterone). Pre-injection of the Ca(2+) chelator EGTA eliminated all electrical responses evoked by aldosterone. The transient resistance drop and the late resistance peak, induced by the hormone, were prevented by the transcription inhibitor actinomycin D, coinjected with aldosterone, while the early resistance peak remained unaffected. We conclude that (i). the presence of intracellular Ca(2+) is a prerequisite for the genomic action of aldosterone. (ii). Intracellular calcium plays a role early in the signaling cascade, either in agonist-receptor interaction, or receptor transport/docking to the nuclear pore complexes.

  2. Membrane and Nuclear Permeabilization by Polymeric pDNA Vehicles: Efficient Method for Gene Delivery or Mechanism of Cytotoxicity?

    PubMed Central

    Grandinetti, Giovanna; Smith, Adam E.; Reineke, Theresa M.

    2012-01-01

    The aim of this study is to compare the cytotoxicity mechanisms of linear PEI to two analogous polymers synthesized by our group: a hydroxyl-containing poly(L-tartaramidoamine) (T4) and a version containing an alkyl chain spacer poly(adipamidopentaethylenetetramine) (A4) by studying the cellular responses to polymer transfection. We have also synthesized analogues of T4 with different molecular weights (degrees of polymerization of 6, 12, and 43) to examine the role of molecular weight on the cytotoxicity mechanisms. Several mechanisms of polymer-induced cytotoxicity are investigated, including plasma membrane permeabilization, the formation of potentially harmful polymer degradation products during transfection including reactive oxygen species, and nuclear membrane permeabilization. We hypothesized that since cationic polymers are capable of disrupting the plasma membrane, they may also be capable of disrupting the nuclear envelope, which could be a potential mechanism of how the pDNA is delivered into the nucleus (other than nuclear envelope breakdown during mitosis). Using flow cytometry and confocal microscopy, we show that the polycations with the highest amount of protein expression and toxicity, PEI and T443, are capable of inducing nuclear membrane permeability. This finding is important for the field of nucleic acid delivery in that not only could direct nucleus permeabilization be a mechanism for pDNA nuclear import but also a potential mechanism of cytotoxicity and cell death. We also show that the production of reactive oxygen species is not a main mechanism of cytotoxicity, and that the presence or absence of hydroxyl groups as well as polymer length plays a role in polyplex size and charge in addition to protein expression efficiency and toxicity. PMID:22175236

  3. Static and dynamic high power, space nuclear electric generating systems

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.; Begg, L. L.; Koester, J. K.

    1985-01-01

    Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed.

  4. The tethering of chromatin to the nuclear envelope supports nuclear mechanics

    PubMed Central

    Schreiner, Sarah M.; Koo, Peter K.; Zhao, Yao; Mochrie, Simon G. J.; King, Megan C.

    2015-01-01

    The nuclear lamina is thought to be the primary mechanical defence of the nucleus. However, the lamina is integrated within a network of lipids, proteins and chromatin; the interdependence of this network poses a challenge to defining the individual mechanical contributions of these components. Here, we isolate the role of chromatin in nuclear mechanics by using a system lacking lamins. Using novel imaging analyses, we observe that untethering chromatin from the inner nuclear membrane results in highly deformable nuclei in vivo, particularly in response to cytoskeletal forces. Using optical tweezers, we find that isolated nuclei lacking inner nuclear membrane tethers are less stiff than wild-type nuclei and exhibit increased chromatin flow, particularly in frequency ranges that recapitulate the kinetics of cytoskeletal dynamics. We suggest that modulating chromatin flow can define both transient and long-lived changes in nuclear shape that are biologically important and may be altered in disease. PMID:26074052

  5. Nuclear Shield: A Multi-Enzyme Task-Force for Nucleus Protection

    PubMed Central

    Pallottini, Valentina; Canuti, Lorena; De Canio, Michele; Urbani, Andrea; Marzano, Valeria; Cornetta, Tommaso; Stano, Pasquale; Giovanetti, Anna; Stella, Lorenzo; Canini, Antonella; Federici, Giorgio; Ricci, Giorgio

    2010-01-01

    Background In eukaryotic cells the nuclear envelope isolates and protects DNA from molecules that could damage its structure or interfere with its processing. Moreover, selected protection enzymes and vitamins act as efficient guardians against toxic compounds both in the nucleoplasm and in the cytosol. The observation that a cytosolic detoxifying and antioxidant enzyme i.e. glutathione transferase is accumulated in the perinuclear region of the rat hepatocytes suggests that other unrecognized modalities of nuclear protection may exist. Here we show evidence for the existence of a safeguard enzyme machinery formed by an hyper-crowding of cationic enzymes and proteins encompassing the nuclear membrane and promoted by electrostatic interactions. Methodology/Principal Findings Electron spectroscopic imaging, zeta potential measurements, isoelectrofocusing, comet assay and mass spectrometry have been used to characterize this surprising structure that is present in the cells of all rat tissues examined (liver, kidney, heart, lung and brain), and that behaves as a “nuclear shield”. In hepatocytes, this hyper-crowding structure is about 300 nm thick, it is mainly formed by cationic enzymes and the local concentration of key protection enzymes, such as glutathione transferase, catalase and glutathione peroxidase is up to seven times higher than in the cytosol. The catalytic activity of these enzymes, when packed in the shield, is not modified and their relative concentrations vary remarkably in different tissues. Removal of this protective shield renders chromosomes more sensitive to damage by oxidative stress. Specific nuclear proteins anchored to the outer nuclear envelope are likely involved in the shield formation and stabilization. Conclusions/Significance The characterization of this previously unrecognized nuclear shield in different tissues opens a new interesting scenario for physiological and protection processes in eukaryotic cells. Selection and accumulation of protection enzymes near sensitive targets represents a new safeguard modality which deeply differs from the adaptive response which is based on expression of specific enzymes. PMID:21170318

  6. Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Gary L., E-mail: gary.l.thompson.3@gmail.com; Roth, Caleb C.; Kuipers, Marjorie A.

    2016-01-29

    Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known tomore » be sequestered for cellular chromosomal function within the nucleus – histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn in 24 h viability, measured by MTT assay, is observed at the number of pulses required to induce permeabilization of the nucleus. - Highlights: • The ability of nsPEF to damage nuclear structures within cells is investigated. • Leakage of proliferating nuclear antigen from nuclei is induced by nsPEF. • High doses of nsPEF disrupt cortical lamin and cause chromatin decompaction. • Histone H2B remains attached to chromatin following nsPEF exposure. • DNA does not leak out of nsPEF-permeabilized nuclei.« less

  7. A hydrodynamic study of a slow nova outburst. [computerized simulation of thermonuclear runaway in white dwarf envelope

    NASA Technical Reports Server (NTRS)

    Sparks, W. M.; Starrfield, S.; Truran, J. W.

    1978-01-01

    The paper reports use of a Lagrangian implicit hydrodynamics computer code incorporating a full nuclear-reaction network to follow a thermonuclear runaway in the hydrogen-rich envelope of a 1.25 solar-mass white dwarf. In this evolutionary sequence the envelope was assumed to be of normal (solar) composition and the resulting outburst closely resembles that of the slow nova HR Del. In contrast, previous CNO-enhanced models resemble fast nova outbursts. The slow-nova model ejects material by radiation pressure when the high luminosity of the rekindled hydrogen shell source exceeds the local Eddington luminosity of the outer layers. This is in contrast to the fast nova outburst where ejection is caused by the decay of the beta(+)-unstable nuclei. Nevertheless, radiation pressure probably plays a major role in ejecting material from the fast nova remnants. Therefore, the sequence from slow to fast novae can be interpreted as a sequence of white dwarfs with increasing amounts of enhanced CNO nuclei in their hydrogen envelopes, although other parameters such as the white-dwarf mass and accretion rate probably contribute to the observed variation between novae.

  8. Effluent treatment for nuclear thermal propulsion ground testing

    NASA Technical Reports Server (NTRS)

    Shipers, Larry R.

    1993-01-01

    The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.

  9. 32 CFR 291.7 - Administrative instruction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.7... requester. The requester must provide a description of the desired record that enables DNA to locate it with..., both on the envelope and in the body of the letter. Persons appealing DNA denial letters should include...

  10. 32 CFR 291.7 - Administrative instruction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.7... requester. The requester must provide a description of the desired record that enables DNA to locate it with..., both on the envelope and in the body of the letter. Persons appealing DNA denial letters should include...

  11. 32 CFR 291.7 - Administrative instruction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.7... requester. The requester must provide a description of the desired record that enables DNA to locate it with..., both on the envelope and in the body of the letter. Persons appealing DNA denial letters should include...

  12. 32 CFR 291.7 - Administrative instruction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.7... requester. The requester must provide a description of the desired record that enables DNA to locate it with..., both on the envelope and in the body of the letter. Persons appealing DNA denial letters should include...

  13. 32 CFR 291.7 - Administrative instruction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OF INFORMATION ACT PROGRAM DEFENSE NUCLEAR AGENCY (DNA) FREEDOM OF INFORMATION ACT PROGRAM § 291.7... requester. The requester must provide a description of the desired record that enables DNA to locate it with..., both on the envelope and in the body of the letter. Persons appealing DNA denial letters should include...

  14. Room-temperature coupling between electrical current and nuclear spins in OLEDs

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.

    2014-09-01

    The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.

  15. Essential roles of LEM-domain protein MAN1 during organogenesis in Xenopus laevis and overlapping functions of emerin.

    PubMed

    Reil, Michael; Dabauvalle, Marie-Christine

    2013-01-01

    Mutations in nuclear envelope proteins are linked to an increasing number of human diseases, called envelopathies. Mutations in the inner nuclear membrane protein emerin lead to X-linked Emery-Dreifuss muscular dystrophy, characterized by muscle weakness or wasting. Conversely, mutations in nuclear envelope protein MAN1 are linked to bone and skin disorders. Both proteins share a highly conserved domain, called LEM-domain. LEM proteins are known to interact with Barrier-to-autointegration factor and several transcription factors. Most envelopathies are tissue-specific, but knowledge on the physiological roles of related LEM proteins is still unclear. For this reason, we investigated the roles of MAN1 and emerin during Xenopus laevis organogenesis. Morpholino-mediated knockdown of MAN1 revealed that MAN1 is essential for the formation of eye, skeletal and cardiac muscle tissues. The MAN1 knockdown could be compensated by ectopic expression of emerin, leading to a proper organ development. Further investigations revealed that MAN1 is involved in regulation of genes essential for organ development and tissue homeostasis. Thereby our work supports that LEM proteins might be involved in signalling essential for organ development during early embryogenesis and suggests that loss of MAN1 may cause muscle and retina specific diseases. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Structure-function relationship of biological gels revealed by multiple-particle tracking and differential interference contrast microscopy: The case of human lamin networks

    NASA Astrophysics Data System (ADS)

    Panorchan, Porntula; Wirtz, Denis; Tseng, Yiider

    2004-10-01

    Lamin B1 filaments organize into a thin dense meshwork underlying the nucleoplasmic side of the nuclear envelope. Recent experiments in vivo suggest that lamin B1 plays a key structural role in the nuclear envelope, but the intrinsic mechanical properties of lamin B1 networks remain unknown. To assess the potential mechanical contribution of lamin B1 in maintaining the integrity and providing structural support to the nucleus, we measured the micromechanical properties and examined the ultrastructural distribution of lamin B1 networks in vitro using particle tracking methods and differential interference contrast (DIC) microscopy. We exploit various surface chemistries of the probe microspheres (carboxylated, polyethylene glycol-coated, and amine-modified) to differentiate lamin-rich from lamin-poor regions and to rigorously extract local viscoelastic moduli from the mean-squared displacements of noninteracting particles. Our results show that human lamin B1 can, even in the absence of auxiliary proteins, form stiff and yet extremely porous networks that are well suited to provide structural strength to the nuclear lamina. Combining DIC microscopy and particle tracking allows us to relate directly the local organization of a material to its local mechanical properties, a general methodology that can be extended to living cells.

  17. Arabidopsis WPP-Domain Proteins Are Developmentally Associated with the Nuclear Envelope and Promote Cell DivisionW⃞

    PubMed Central

    Patel, Shalaka; Rose, Annkatrin; Meulia, Tea; Dixit, Ram; Cyr, Richard J.; Meier, Iris

    2004-01-01

    The nuclear envelope (NE) acts as a selective barrier to macromolecule trafficking between the nucleus and the cytoplasm and undergoes a complex reorganization during mitosis. Different eukaryotic kingdoms show specializations in NE function and composition. In contrast with vertebrates, the protein composition of the NE and the function of NE proteins are barely understood in plants. MFP1 attachment factor 1 (MAF1) is a plant-specific NE-associated protein first identified in tomato (Lycopersicon esculentum). Here, we demonstrate that two Arabidopsis thaliana MAF1 homologs, WPP1 and WPP2, are associated with the NE specifically in undifferentiated cells of the root tip. Reentry into cell cycle after callus induction from differentiated root segments reprograms their NE association. Based on green fluorescent protein fusions and immunogold labeling data, the proteins are associated with the outer NE and the nuclear pores in interphase cells and with the immature cell plate during cytokinesis. RNA interference–based suppression of the Arabidopsis WPP family causes shorter primary roots, a reduced number of lateral roots, and reduced mitotic activity of the root meristem. Together, these data demonstrate the existence of regulated NE targeting in plants and identify a class of plant-specific NE proteins involved in mitotic activity. PMID:15548735

  18. Cellular Mechanosensing: Getting to the nucleus of it all

    PubMed Central

    Fedorchak, Gregory R.; Kaminski, Ashley; Lammerding, Jan

    2014-01-01

    Cells respond to mechanical forces by activating specific genes and signaling pathways that allow the cells to adapt to their physical environment. Examples include muscle growth in response to exercise, bone remodeling based on their mechanical load, or endothelial cells aligning under fluid shear stress. While the involved downstream signaling pathways and mechanoresponsive genes are generally well characterized, many of the molecular mechanisms of the initiating ‘mechanosensing’ remain still elusive. In this review, we discuss recent findings and accumulating evidence suggesting that the cell nucleus plays a crucial role in cellular mechanotransduction, including processing incoming mechanoresponsive signals and even directly responding to mechanical forces. Consequently, mutations in the involved proteins or changes in nuclear envelope composition can directly impact mechanotransduction signaling and contribute to the development and progression of a variety of human diseases, including muscular dystrophy, cancer, and the focus of this review, dilated cardiomyopathy. Improved insights into the molecular mechanisms underlying nuclear mechanotransduction, brought in part by the emergence of new technologies to study intracellular mechanics at high spatial and temporal resolution, will not only result in a better understanding of cellular mechanosensing in normal cells but may also lead to the development of novel therapies in the many diseases linked to defects in nuclear envelope proteins. PMID:25008017

  19. Electrophoretic characterization of the Mammalian nuclear matrix proteome, nuclear envelope, nucleoli and covalently bound ADP-ribose polymers: potential applications to cancer.

    PubMed

    Aranda, Xavier G; Racho, Ronald G; Pacheco-Rodríguez, Gustavo; Alvarez-González, Rafael

    2014-01-01

    Nucleic acid metabolism is biochemically compartmentalized to the nucleus. Thus, it is necessary to define the proteome of the various macromolecular structures within this organelle. We isolated the nuclear matrix (NM) fraction from rat liver by sequential centrifugation steps at 13,000 rpm, staggered between endogenous nuclease treatment for 2 h at 37°C, followed by high-salt (H.S.; 2.0 M NaCl) and non-ionic detergent extractions (0.1%- or 1.0% Triton X-100) to eliminate the bulk of chromosomal DNA/RNA, histone proteins and the nuclear envelope (NE). Integrity of the NM and NE structures was confirmed by electron microscopy. Next, we analyzed the NM proteome on a 20% polyacrylamide gel using the PhastSystem. We observed the absence of histone proteins and the characteristic presence of the lamins by Coomassie blue staining. By contrast, upon silver staining, following electrophoretic separation with a Tris-Borate-EDTA buffer, we observed the NM-associated nucleic RNA and protein-free ADP-ribose polymers. While polymers are found in much lower concentration than RNA in NM, they were purified by affinity chromatography on boronate resin prior to electrophoresis. We observed the electrophoretic resolution of free ADP-ribose chains (5-25 units) by silver staining. The significance of our observations to cancer studies and carcinogenesis is discussed. Copyright© 2014, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  20. Distinct functional domains in nesprin-1{alpha} and nesprin-2{beta} bind directly to emerin and both interactions are disrupted in X-linked Emery-Dreifuss muscular dystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Matthew A.; Davies, John D.; Zhang Qiuping

    2007-08-01

    Emerin and specific isoforms of nesprin-1 and -2 are nuclear membrane proteins which are binding partners in multi-protein complexes spanning the nuclear envelope. We report here the characterisation of the residues both in emerin and in nesprin-1{alpha} and -2{beta} which are involved in their interaction and show that emerin requires nesprin-1 or -2 to retain it at the nuclear membrane. Using several protein-protein interaction methods, we show that residues 368 to 627 of nesprin-1{alpha} and residues 126 to 219 of nesprin-2{beta}, which show high homology to one another, both mediate binding to emerin residues 140-176. This region has previously beenmore » implicated in binding to F-actin, {beta}-catenin and lamin A/C suggesting that it is critical for emerin function. Confirmation that these protein domains interact in vivo was shown using GFP-dominant negative assays. Exogenous expression of either of these nesprin fragments in mouse myoblast C2C12 cells displaced endogenous emerin from the nuclear envelope and reduced the targeting of newly synthesised emerin. Furthermore, we are the first to report that emerin mutations which give rise to X-linked Emery-Dreifuss muscular dystrophy, disrupt binding to both nesprin-1{alpha} and -2{beta} isoforms, further indicating a role of nesprins in the pathology of Emery-Dreifuss muscular dystrophy.« less

  1. The Malleable Nature of the Budding Yeast Nuclear Envelope: Flares, Fusion, and Fenestrations.

    PubMed

    Meseroll, Rebecca A; Cohen-Fix, Orna

    2016-11-01

    In eukaryotes, the nuclear envelope (NE) physically separates nuclear components and activities from rest of the cell. The NE also provides rigidity to the nucleus and contributes to chromosome organization. At the same time, the NE is highly dynamic; it must change shape and rearrange its components during development and throughout the cell cycle, and its morphology can be altered in response to mutation and disease. Here we focus on the NE of budding yeast, Saccharomyces cerevisiae, which has several unique features: it remains intact throughout the cell cycle, expands symmetrically during interphase, elongates during mitosis and, expands asymmetrically during mitotic delay. Moreover, its NE is safely breached during mating and when large structures, such as nuclear pore complexes and the spindle pole body, are embedded into its double membrane. The budding yeast NE lacks lamins and yet the nucleus is capable of maintaining a spherical shape throughout interphase. Despite these eccentricities, studies of the budding yeast NE have uncovered interesting, and likely conserved, processes that contribute to NE dynamics. In particular, we discuss the processes that drive and enable NE expansion and the dramatic changes in the NE that lead to extensions and fenestrations. J. Cell. Physiol. 231: 2353-2360, 2016. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  2. The nuclear lamina in health and disease.

    PubMed

    Dobrzynska, Agnieszka; Gonzalo, Susana; Shanahan, Catherine; Askjaer, Peter

    2016-05-03

    The nuclear lamina (NL) is a structural component of the nuclear envelope and makes extensive contacts with integral nuclear membrane proteins and chromatin. These interactions are critical for many cellular processes, such as nuclear positioning, perception of mechanical stimuli from the cell surface, nuclear stability, 3-dimensional organization of chromatin and regulation of chromatin-binding proteins, including transcription factors. The NL is present in all nucleated metazoan cells but its composition and interactome differ between tissues. Most likely, this contributes to the broad spectrum of disease manifestations in humans with mutations in NL-related genes, ranging from muscle dystrophies to neurological disorders, lipodystrophies and progeria syndromes. We review here exciting novel insight into NL function at the cellular level, in particular in chromatin organization and mechanosensation. We also present recent observations on the relation between the NL and metabolism and the special relevance of the NL in muscle tissues. Finally, we discuss new therapeutic approaches to treat NL-related diseases.

  3. Soft X-Ray Tomography Reveals Gradual Chromatin Compaction and Reorganization during Neurogenesis In Vivo

    DOE PAGES

    Le Gros, Mark A.; Clowney, E. Josephine; Magklara, Angeliki; ...

    2016-11-15

    The realization that nuclear distribution of DNA, RNA, and proteins differs between cell types and developmental stages suggests that nuclear organization serves regulatory functions. Understanding the logic of nuclear architecture and how it contributes to differentiation and cell fate commitment remains challenging. Here, we use soft X-ray tomography (SXT) to image chromatin organization, distribution, and biophysical properties during neurogenesis in vivo. Our analyses reveal that chromatin with similar biophysical properties forms an elaborate connected network throughout the entire nucleus. Although this interconnectivity is present in every developmental stage, differentiation proceeds with concomitant increase in chromatin compaction and re-distribution of condensed chromatinmore » toward the nuclear core. HP1β, but not nucleosome spacing or phasing, regulates chromatin rearrangements because it governs both the compaction of chromatin and its interactions with the nuclear envelope. Our experiments introduce SXT as a powerful imaging technology for nuclear architecture.« less

  4. Functional association of Sun1 with nuclear pore complexes

    PubMed Central

    Liu, Qian; Pante, Nelly; Misteli, Tom; Elsagga, Mohamed; Crisp, Melissa; Hodzic, Didier; Burke, Brian; Roux, Kyle J.

    2007-01-01

    Sun1 and 2 are A-type lamin-binding proteins that, in association with nesprins, form a link between the inner nuclear membranes (INMs) and outer nuclear membranes of mammalian nuclear envelopes. Both immunofluorescence and immunoelectron microscopy reveal that Sun1 but not Sun2 is intimately associated with nuclear pore complexes (NPCs). Topological analyses indicate that Sun1 is a type II integral protein of the INM. Localization of Sun1 to the INM is defined by at least two discrete regions within its nucleoplasmic domain. However, association with NPCs is dependent on the synergy of both nucleoplasmic and lumenal domains. Cells that are either depleted of Sun1 by RNA interference or that overexpress dominant-negative Sun1 fragments exhibit clustering of NPCs. The implication is that Sun1 represents an important determinant of NPC distribution across the nuclear surface. PMID:17724119

  5. Immunogenicity of Japanese encephalitis virus envelope protein by Hyphantria cunea nuclear polyhedrosis virus vector in guinea pig.

    PubMed

    Lee, Hyung-Hoan; Hong, Seung-Kuk; Yoon, Sang-Ho; Jang, Sung-Jae; Bahk, Young-Yil; Song, Min-Dong; Park, Pyo-Jam; Lee, Kwang-Ho; Kim, Chan-Gil; Kim, Bokyung; Park, Tae-Kyu; Kang, Hyun

    2012-05-01

    Japanese encephalitis virus (JEV) is an important pathogen causing febrile syndrome, encephalitis, and death. Envelop (E) glycoprotein is the major target of inducing neutralizing antibodies and protective immunity in host. In this study, E glycoprotein of JEV was expressed in Spodoptera frugiperd 9 cells as a fusion protein containing a gX signal sequence of pseudorabies virus. This purified HcE recombinant protein was evaluated for their immunogenicity and protective efficacy in guinea pig. The survival rates of guinea pig immunized with HcE protein was significantly increased over that of JE vaccine. This result indicates helpful information for developing a subunit vaccine against JEV.

  6. Induction of polyploidy by nuclear fusion mechanism upon decreased expression of the nuclear envelope protein LAP2β in the human osteosarcoma cell line U2OS.

    PubMed

    Ben-Shoshan, Shirley Oren; Simon, Amos J; Jacob-Hirsch, Jasmine; Shaklai, Sigal; Paz-Yaacov, Nurit; Amariglio, Ninette; Rechavi, Gideon; Trakhtenbrot, Luba

    2014-01-28

    Polyploidy has been recognized for many years as an important hallmark of cancer cells. Polyploid cells can arise through cell fusion, endoreplication and abortive cell cycle. The inner nuclear membrane protein LAP2β plays key roles in nuclear envelope breakdown and reassembly during mitosis, initiation of replication and transcriptional repression. Here we studied the function of LAP2β in the maintenance of cell ploidy state, a role which has not yet been assigned to this protein. By knocking down the expression of LAP2β, using both viral and non-viral RNAi approaches in osteosarcoma derived U2OS cells, we detected enlarged nuclear size, nearly doubling of DNA content and chromosomal duplications, as analyzed by fluorescent in situ hybridization and spectral karyotyping methodologies. Spectral karyotyping analyses revealed that near-hexaploid karyotypes of LAP2β knocked down cells consisted of not only seven duplicated chromosomal markers, as could be anticipated by genome duplication mechanism, but also of four single chromosomal markers. Furthermore, spectral karyotyping analysis revealed that both of two near-triploid U2OS sub-clones contained the seven markers that were duplicated in LAP2β knocked down cells, whereas the four single chromosomal markers were detected only in one of them. Gene expression profiling of LAP2β knocked down cells revealed that up to a third of the genes exhibiting significant changes in their expression are involved in cancer progression. Our results suggest that nuclear fusion mechanism underlies the polyploidization induction upon LAP2β reduced expression. Our study implies on a novel role of LAP2β in the maintenance of cell ploidy status. LAP2β depleted U2OS cells can serve as a model to investigate polyploidy and aneuploidy formation by nuclear fusion mechanism and its involvement in cancerogenesis.

  7. Robust nuclear lamina-based cell classification of aging and senescent cells

    PubMed Central

    Righolt, Christiaan H.; van 't Hoff, Merel L.R.; Vermolen, Bart J.; Young, Ian T.; Raz, Vered

    2011-01-01

    Changes in the shape of the nuclear lamina are exhibited in senescent cells, as well as in cells expressing mutations in lamina genes. To identify cells with defects in the nuclear lamina we developed an imaging method that quantifies the intensity and curvature of the nuclear lamina. We show that this method accurately describes changes in the nuclear lamina. Spatial changes in nuclear lamina coincide with redistribution of lamin A proteins and local reduction in protein mobility in senescent cell. We suggest that local accumulation of lamin A in the nuclear envelope leads to bending of the structure. A quantitative distinction of the nuclear lamina shape in cell populations was found between fresh and senescent cells, and between primary myoblasts from young and old donors. Moreover, with this method mutations in lamina genes were significantly distinct from cells with wild-type genes. We suggest that this method can be applied to identify abnormal cells during aging, in in vitro propagation, and in lamina disorders. PMID:22199022

  8. Robust nuclear lamina-based cell classification of aging and senescent cells.

    PubMed

    Righolt, Christiaan H; van 't Hoff, Merel L R; Vermolen, Bart J; Young, Ian T; Raz, Vered

    2011-12-01

    Changes in the shape of the nuclear lamina are exhibited in senescent cells, as well as in cells expressing mutations in lamina genes. To identify cells with defects in the nuclear lamina we developed an imaging method that quantifies the intensity and curvature of the nuclear lamina. We show that this method accurately describes changes in the nuclear lamina. Spatial changes in nuclear lamina coincide with redistribution of lamin A proteins and local reduction in protein mobility in senescent cell. We suggest that local accumulation of lamin A in the nuclear envelope leads to bending of the structure. A quantitative distinction of the nuclear lamina shape in cell populations was found between fresh and senescent cells, and between primary myoblasts from young and old donors. Moreover, with this method mutations in lamina genes were significantly distinct from cells with wild-type genes. We suggest that this method can be applied to identify abnormal cells during aging, in in vitro propagation, and in lamina disorders.

  9. Calcium-regulated nuclear enzymes: potential mediators of phytochrome-induced changes in nuclear metabolism?

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1992-01-01

    Calcium ions have been proposed to serve as important regulatory elements in stimulus-response coupling for phytochrome responses. An important test of this hypothesis will be to identify specific targets of calcium action that are required for some growth or development process induced by the photoactivated form of phytochrome (Pfr). Initial studies have revealed that there are at least two enzymes in pea nuclei that are stimulated by Pfr in a Ca(2+)-dependent fashion, a calmodulin-regulated nucleoside triphosphatase and a calmodulin-independent but Ca(2+)-dependent protein kinase. The nucleoside triphosphatase appears to be associated with the nuclear envelope, while the protein kinase co-purifies with a nuclear fraction highly enriched for chromatin. This short review summarizes the latest findings on these enzymes and relates them to what is known about Pfr-regulated nuclear metabolism.

  10. Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis.

    PubMed

    Eggleton, Peter P; Dearborn, David S P; Lattanzio, John C

    2006-12-08

    Low-mass stars, approximately 1 to 2 solar masses, near the Main Sequence are efficient at producing the helium isotope 3He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of 3He with the predictions of both stellar and Big Bang nucleosynthesis. Here we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus, we are able to remove the threat that 3He production in low-mass stars poses to the Big Bang nucleosynthesis of 3He.

  11. The effects of variations in the number and sequence of targeting signals on nuclear uptake

    PubMed Central

    1988-01-01

    To determine if the number of targeting signals affects the transport of proteins into the nucleus, Xenopus oocytes were injected with colloidal gold particles, ranging in diameter from 20 to 280 A, that were coated with BSA cross-linked with synthetic peptides containing the SV-40 large T-antigen nuclear transport signal. Three BSA conjugate preparations were used; they had an average of 5, 8, and 11 signals per molecule of carrier protein. In addition, large T-antigen, which contains one signal per monomer, was used as a coating agent. The cells were fixed at various times after injection and subsequently analyzed by electron microscopy. Gold particles coated with proteins containing the SV-40 signal entered the nucleus through central channels located within the nuclear pores. Analysis of the intracellular distribution and size of the tracers that entered the nucleus indicated that the number of signals per molecule affect both the relative uptake of particles and the functional size of the channels available for translocation. In control experiments, gold particles coated with BSA or BSA conjugated with inactive peptides similar to the SV-40 transport signal were virtually excluded from the nucleus. Gold particles coated with nucleoplasmin, an endogenous karyophilic protein that contains five targeting signals per molecule, was transported through the nuclear pores more effectively than any of the BSA-peptide conjugates. Based on a correlation between the peri-envelope density of gold particles and their relative uptake, it is suggested that the differences in the activity of the two targeting signals is related to their binding affinity for envelope receptors. It was also determined, by performing coinjection experiments, that individual pores are capable of recognizing and transporting proteins that contain different nuclear targeting signals. PMID:3170630

  12. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes

    PubMed Central

    Zebrowski, David C; Vergarajauregui, Silvia; Wu, Chi-Chung; Piatkowski, Tanja; Becker, Robert; Leone, Marina; Hirth, Sofia; Ricciardi, Filomena; Falk, Nathalie; Giessl, Andreas; Just, Steffen; Braun, Thomas; Weidinger, Gilbert; Engel, Felix B

    2015-01-01

    Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins to the nuclear envelope. Consequently, postnatal cardiomyocytes are unable to undergo ciliogenesis and the nuclear envelope adopts the function as cellular microtubule organizing center. Loss of centrosome integrity is associated with, and can promote, cardiomyocyte G0/G1 cell cycle arrest suggesting that centrosome disassembly is developmentally utilized to achieve the post-mitotic state in mammalian cardiomyocytes. Adult cardiomyocytes of zebrafish and newt, which are able to proliferate, maintain centrosome integrity. Collectively, our data provide a novel mechanism underlying the post-mitotic state of mammalian cardiomyocytes as well as a potential explanation for why zebrafish and newts, but not mammals, can regenerate their heart. DOI: http://dx.doi.org/10.7554/eLife.05563.001 PMID:26247711

  13. Formation Mechanisms for Helium White Dwarfs in Binaries

    NASA Astrophysics Data System (ADS)

    Sandquist, E. L.; Taam, R. E.; Burkert, A.

    1999-05-01

    We discuss the constraints that can be placed on formation mechanisms for helium degenerate stars in binary systems, as well as the orbital parameters of the progenitor binaries, by using observed systems and numerical simulations of common envelope evolution. For pre-cataclysmic variable stars having a helium white dwarf, common envelope simulations covering the range of observed companion masses indicate that the initial mass of the red giant (parent of the white dwarf) can be constrained by the final period of the system. The formation mechanisms for double helium degenerate systems are also restricted. Using energy arguments, we find that there are almost no parameter combinations for which such a system can be formed using two successive common envelope phases. Observed short-period systems appear to favor an Algol-like phase of stable mass transfer followed by a common envelope phase. However, theory predicts that the brighter component is also the most massive, which is not observed in at least one system. This may require that nuclear burning must have occurred on the white dwarf that formed first, but after its formation. Systems which instead go through a common envelope episode, followed by a phase of nonconservative mass transfer from secondary to primary, would tend to form double degenerates with low mass ratios, which have not been observed to date. Finally, we discuss a new mechanism for producing subdwarf B stars in binaries. This work was supported by NSF grants AST-9415423 and AST-9727875.

  14. Nucleoporin MOS7/Nup88 contributes to plant immunity and nuclear accumulation of defense regulators.

    PubMed

    Wiermer, Marcel; Germain, Hugo; Cheng, Yu Ti; García, Ana V; Parker, Jane E; Li, Xin

    2010-01-01

    Controlled nucleocytoplasmic trafficking is an important feature for fine-tuning signaling pathways in eukaryotic organisms. Nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups) are essential for the exchange of macromolecules across the nuclear envelope. A recent genetic screen in our laboratory identified a partial loss-of-function mutation in Arabidopsis MOS7/Nup88 that causes defects in basal immunity, Resistance (R) protein-mediated defense and systemic acquired resistance. In Drosophila and mammalian cells, exportin-mediated nuclear export of activated Rel/NFκB transcription factors is enhanced in nup88 mutants resulting in immune response failure. Consistent with Nup88 promoting nuclear retention of NFκB, our functional analyses revealed that MOS7/Nup88 is required for appropriate nuclear accumulation of the autoactivated R protein snc1, as well as the key immune regulators EDS1 and NPR1. These results suggest that controlling the nuclear concentrations of specific immune regulators is fundamental for defining defense outputs.

  15. Nuclear BK Channels Regulate Gene Expression via the Control of Nuclear Calcium Signaling

    PubMed Central

    Li, Boxing; Jie, Wei; Huang, Lianyan; Wei, Peng; Li, Shuji; Luo, Zhengyi; Friedman, Allyson K.; Meredith, Andrea L.; Han, Ming-Hu; Zhu, Xin-Hong; Gao, Tian-Ming

    2014-01-01

    Ion channels are essential for the regulation of neuronal functions. The significance of plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal ion channels in the regulation of Ca2+ is well established. In contrast, surprisingly less is known about the function of ion channels on the nuclear envelope (NE). Here we demonstrate the presence of functional large-conductance, calcium-activated potassium channels (BK channels) on the NE of rodent hippocampal neurons. Functionally blockade of nuclear BK channels (nBK channels) induces NE-derived Ca2+ release, nucleoplasmic Ca2+ elevation, and cAMP response element binding protein (CREB)-dependent transcription. More importantly, blockade of nBK channels regulates nuclear Ca2+-sensitive gene expression and promotes dendritic arborization in a nuclear Ca2+-dependent manner. These results suggest that nBK channel functions as a molecular linker between neuronal activity and nuclear Ca2+ to convey the signals from synapse to nucleus and is a new modulator for synaptic activity-dependent neuronal functions at the NE level. PMID:24952642

  16. The Inner Nuclear Membrane Is a Metabolically Active Territory that Generates Nuclear Lipid Droplets.

    PubMed

    Romanauska, Anete; Köhler, Alwin

    2018-06-13

    The inner nuclear membrane (INM) encases the genome and is fused with the outer nuclear membrane (ONM) to form the nuclear envelope. The ONM is contiguous with the endoplasmic reticulum (ER), the main site of phospholipid synthesis. In contrast to the ER and ONM, evidence for a metabolic activity of the INM has been lacking. Here, we show that the INM is an adaptable membrane territory capable of lipid metabolism. S. cerevisiae cells target enzymes to the INM that can promote lipid storage. Lipid storage involves the synthesis of nuclear lipid droplets from the INM and is characterized by lipid exchange through Seipin-dependent membrane bridges. We identify the genetic circuit for nuclear lipid droplet synthesis and a role of these organelles in regulating this circuit by sequestration of a transcription factor. Our findings suggest a link between INM metabolism and genome regulation and have potential relevance for human lipodystrophy. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Influence of acute promyelocytic leukemia therapeutic drugs on nuclear pore complex density and integrity.

    PubMed

    Lång, Anna; Øye, Alexander; Eriksson, Jens; Rowe, Alexander D; Lång, Emma; Bøe, Stig Ove

    2018-05-15

    During cell division, a large number of nuclear proteins are released into the cytoplasm due to nuclear envelope breakdown. Timely nuclear import of these proteins following exit from mitosis is critical for establishment of the G1 nuclear environment. Dysregulation of post-mitotic nuclear import may affect the fate of newly divided stem or progenitor cells and may lead to cancer. Acute promyelocytic leukemia (APL) is a malignant disorder that involves a defect in blood cell differentiation at the promyelocytic stage. Recent studies suggest that pharmacological concentrations of the APL therapeutic drugs, all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), affect post-mitotic nuclear import of the APL-associated oncoprotein PML/RARA. In the present study, we have investigated the possibility that ATRA and ATO affect post-mitotic nuclear import through interference with components of the nuclear import machinery. We observe reduced density and impaired integrity of nuclear pore complexes after ATRA and/or ATO exposure. Using a post-mitotic nuclear import assay, we demonstrate distinct import kinetics among different nuclear import pathways while nuclear import rates were similar in the presence or absence of APL therapeutic drugs. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Nuclear Graphite - Fracture Behavior and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D; Battiste, Rick; Strizak, Joe P

    2011-01-01

    Evidence for the graphite fracture mechanism is reviewed and discussed. The roles of certain microstructural features in the graphite fracture process are reported. The Burchell fracture model is described and its derivation reported. The successful application of the fracture model to uniaxial tensile data from several graphites with widely ranging structure and texture is reported. The extension of the model to multiaxial loading scenarios using two criteria is discussed. Initially, multiaxial strength data for H-451 graphite were modeled using the fracture model and the Principle of Independent Action. The predicted 4th stress quadrant failure envelope was satisfactory but the 1stmore » quadrant predictions were not conservative and thus were unsatisfactory. Multiaxial strength data from the 1st and 4th stress quadrant for NBG-18 graphite are reported. To improve the conservatism of the predicted 1st quadrant failure envelope for NBG-18 the Shetty criterion has been applied to obtain the equivalent critical stress intensity factor, KIc (Equi), for each applied biaxial stress ratio. The equivalent KIc value is used in the Burchell fracture model to predict the failure envelope. The predicted 1st stress quadrant failure envelope is conservative and thus more satisfactory than achieved previously using the fracture model combined with the Principle of Independent Action.« less

  19. Cell fusion through a microslit between adhered cells and observation of their nuclear behavior.

    PubMed

    Wada, Ken-Ichi; Hosokawa, Kazuo; Kondo, Eitaro; Ito, Yoshihiro; Maeda, Mizuo

    2014-07-01

    This paper describes a novel cell fusion method which induces cell fusion between adhered cells through a microslit for preventing nuclear mixing. For this purpose, a microfluidic device which had ∼ 100 cell pairing structures (CPSs) making cell pairs through microslits with 2.1 ± 0.3 µm width was fabricated. After trapping NIH3T3 cells with hydrodynamic forces at the CPSs, the cells were fused through the microslit by the Sendai virus envelope method. With following timelapse observation, we discovered that the spread cells were much less susceptible to nuclear migration passing through the microslit compared with round cells, and that cytoplasmic fraction containing mitochondria was transferred through the microslit without nuclear mixing. These findings will provide an effective method for cell fusion without nuclear mixing, and will lead to an efficient method for reprograming and transdifferentiation of target cells toward regenerative medicine. © 2014 Wiley Periodicals, Inc.

  20. Epstein–Barr virus glycoprotein gM can interact with the cellular protein p32 and knockdown of p32 impairs virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changotra, Harish; Turk, Susan M.; Artigues, Antonio

    The Epstein–Barr virus glycoprotein complex gMgN has been implicated in assembly and release of fully enveloped virus, although the precise role that it plays has not been elucidated. We report here that the long predicted cytoplasmic tail of gM is not required for complex formation and that it interacts with the cellular protein p32, which has been reported to be involved in nuclear egress of human cytomegalovirus and herpes simplex virus. Although redistribution of p32 and colocalization with gM was not observed in virus infected cells, knockdown of p32 expression by siRNA or lentivirus-delivered shRNA recapitulated the phenotype of amore » virus lacking expression of gNgM. A proportion of virus released from cells sedimented with characteristics of virus lacking an intact envelope and there was an increase in virus trapped in nuclear condensed chromatin. The observations suggest the possibility that p32 may also be involved in nuclear egress of Epstein–Barr virus. - Highlights: • The predicted cytoplasmic tail of gM is not required to complex with gN. • Cellular p32 can interact with the predicted cytoplasmic tail of EBV gM. • Knockdown of p32 recapitulates the phenotype of virus lacking the gNgM complex.« less

  1. Yeast Nucleoporins Involved in Passive Nuclear Envelope Permeability

    PubMed Central

    Shulga, Nataliya; Mosammaparast, Nima; Wozniak, Richard; Goldfarb, David S.

    2000-01-01

    The vertebrate nuclear pore complex (NPC) harbors an ∼10-nm diameter diffusion channel that is large enough to admit 50-kD polypeptides. We have analyzed the permeability properties of the Saccharomyces cerevisiae nuclear envelope (NE) using import (NLS) and export (NES) signal-containing green fluorescent protein (GFP) reporters. Compared with wild-type, passive export rates of a classical karyopherin/importin (Kap) Kap60p/Kap95p-targeted NLS-GFP reporter (cNLS-GFP) were significantly faster in nup188-Δ and nup170-Δ cells. Similar results were obtained using two other NLS-GFP reporters, containing either the Kap104p-targeted Nab2p NLS (rgNLS) or the Kap121p-targeted Pho4p NLS (pNLS). Elevated levels of Hsp70 stimulated cNLS-GFP import, but had no effect on the import of rgNLS-GFP. Thus, the role of Hsp70 in NLS-directed import may be NLS- or targeting pathway-specific. Equilibrium sieving limits for the diffusion channel were assessed in vivo using NES-GFP reporters of 36–126 kD and were found to be greater than wild-type in nup188-Δ and nup170-Δ cells. We propose that Nup170p and Nup188p are involved in establishing the functional resting diameter of the NPC's central transport channel. PMID:10831607

  2. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favreau, Catherine; Delbarre, Erwan; Courvalin, Jean-Claude

    2008-04-01

    Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation ofmore » proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.« less

  3. Molecular Characterization of the SUMO-1 Modification of RanGAP1 and Its Role in Nuclear Envelope Association

    PubMed Central

    Mahajan, Rohit; Gerace, Larry; Melchior, Frauke

    1998-01-01

    The mammalian guanosine triphosphate (GTP)ase-activating protein RanGAP1 is the first example of a protein covalently linked to the ubiquitin-related protein SUMO-1. Here we used peptide mapping, mass spectroscopy analysis, and mutagenesis to identify the nature of the link between RanGAP1 and SUMO-1. SUMO-1 is linked to RanGAP1 via glycine 97, indicating that the last 4 amino acids of this 101– amino acid protein are proteolytically removed before its attachment to RanGAP1. Recombinant SUMO-1 lacking the last four amino acids is efficiently used for modification of RanGAP1 in vitro and of multiple unknown proteins in vivo. In contrast to most ubiquitinated proteins, only a single lysine residue (K526) in RanGAP1 can serve as the acceptor site for modification by SUMO-1. Modification of RanGAP1 with SUMO-1 leads to association of RanGAP1 with the nuclear envelope (NE), where it was previously shown to be required for nuclear protein import. Sufficient information for modification and targeting resides in a 25-kD domain of RanGAP1. RanGAP1–SUMO-1 remains stably associated with the NE during many cycles of in vitro import. This indicates that removal of RanGAP1 from the NE is not a required element of nuclear protein import and suggests that the reversible modification of RanGAP1 may have a regulatory role. PMID:9442102

  4. Proteomic Analysis of the Multimeric Nuclear Egress Complex of Human Cytomegalovirus*

    PubMed Central

    Milbradt, Jens; Kraut, Alexandra; Hutterer, Corina; Sonntag, Eric; Schmeiser, Cathrin; Ferro, Myriam; Wagner, Sabrina; Lenac, Tihana; Claus, Claudia; Pinkert, Sandra; Hamilton, Stuart T.; Rawlinson, William D.; Sticht, Heinrich; Couté, Yohann; Marschall, Manfred

    2014-01-01

    Herpesviral capsids are assembled in the host cell nucleus before being translocated into the cytoplasm for further maturation. The crossing of the nuclear envelope represents a major event that requires the formation of the nuclear egress complex (NEC). Previous studies demonstrated that human cytomegalovirus (HCMV) proteins pUL50 and pUL53, as well as their homologs in all members of Herpesviridae, interact with each other at the nuclear envelope and form the heterodimeric core of the NEC. In order to characterize further the viral and cellular protein content of the multimeric NEC, the native complex was isolated from HCMV-infected human primary fibroblasts at various time points and analyzed using quantitative proteomics. Previously postulated components of the HCMV-specific NEC, as well as novel potential NEC-associated proteins such as emerin, were identified. In this regard, interaction and colocalization between emerin and pUL50 were confirmed by coimmunoprecipitation and confocal microscopy analyses, respectively. A functional validation of viral and cellular NEC constituents was achieved through siRNA-mediated knockdown experiments. The important role of emerin in NEC functionality was demonstrated by a reduction of viral replication when emerin expression was down-regulated. Moreover, under such conditions, reduced production of viral proteins and deregulation of viral late cytoplasmic maturation were observed. Combined, these data prove the functional importance of emerin as an NEC component, associated with pUL50, pUL53, pUL97, p32/gC1qR, and further regulatory proteins. Summarized, our findings provide the first proteomics-based characterization and functional validation of the HCMV-specific multimeric NEC. PMID:24969177

  5. Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly.

    PubMed

    Romero-Brey, Inés; Bartenschlager, Ralf

    2016-06-07

    The endoplasmic reticulum (ER) is the largest intracellular organelle. It forms a complex network of continuous sheets and tubules, extending from the nuclear envelope (NE) to the plasma membrane. This network is frequently perturbed by positive-strand RNA viruses utilizing the ER to create membranous replication factories (RFs), where amplification of their genomes occurs. In addition, many enveloped viruses assemble progeny virions in association with ER membranes, and viruses replicating in the nucleus need to overcome the NE barrier, requiring transient changes of the NE morphology. This review first summarizes some key aspects of ER morphology and then focuses on the exploitation of the ER by viruses for the sake of promoting the different steps of their replication cycles.

  6. FABRICATION AND DEPLOYMENT OF THE 9979 TYPE AF RADIOACTIVE WASTE PACKAGING FOR THE DEPARTMENT OF ENERGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, P.; Eberl, K.

    2013-10-10

    This paper summarizes the development, testing, and certification of the 9979 Type A Fissile Packaging that replaces the UN1A2 Specification Shipping Package eliminated from Department of Transportation (DOT) 49 CFR 173. The DOT Specification Package was used for many decades by the U.S. nuclear industry as a fissile waste container until its removal as an authorized container by DOT. This paper will discuss stream lining procurement of high volume radioactive material packaging manufacturing, such as the 9979, to minimize packaging production costs without sacrificing Quality Assurance. The authorized content envelope (combustible and non-combustible) as well as planned content envelope expansionmore » will be discussed.« less

  7. Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly

    PubMed Central

    Romero-Brey, Inés; Bartenschlager, Ralf

    2016-01-01

    The endoplasmic reticulum (ER) is the largest intracellular organelle. It forms a complex network of continuous sheets and tubules, extending from the nuclear envelope (NE) to the plasma membrane. This network is frequently perturbed by positive-strand RNA viruses utilizing the ER to create membranous replication factories (RFs), where amplification of their genomes occurs. In addition, many enveloped viruses assemble progeny virions in association with ER membranes, and viruses replicating in the nucleus need to overcome the NE barrier, requiring transient changes of the NE morphology. This review first summarizes some key aspects of ER morphology and then focuses on the exploitation of the ER by viruses for the sake of promoting the different steps of their replication cycles. PMID:27338443

  8. HD{sup +} in a short strong laser pulse: Practical consideration of the observability of carrier-envelope phase effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roudnev, V.; Esry, B. D.

    2007-08-15

    We summarize the results of numerical calculations of HD{sup +} in a 7.1 fs (intensity full width at half maximum) 790 nm laser pulse. The molecule is assumed to be aligned with the linearly polarized laser field and includes two electronic and one nuclear degrees of freedom. We report total dissociation and ionization probabilities from the lowest 10 vibrational states for a range of intensities from 10{sup 13} to 7x10{sup 14} W/cm{sup 2}. The conditions for the observability of carrier-envelope phase (CEP) effects for a mixed initial state and for intensity averaging over the laser focal volume are discussed inmore » detail.« less

  9. Nuclear Architecture of Mouse Spermatocytes: Chromosome Topology, Heterochromatin, and Nucleolus.

    PubMed

    Berrios, Soledad

    2017-01-01

    The nuclear organization of spermatocytes in meiotic prophase I is primarily determined by the synaptic organization of the bivalents that are bound by their telomeres to the nuclear envelope and described as arc-shaped trajectories through the 3D nuclear space. However, over this basic meiotic organization, a spermatocyte nuclear architecture arises that is based on higher-ordered patterns of spatial associations among chromosomal domains from different bivalents that are conditioned by the individual characteristics of chromosomes and the opportunity for interactions between their domains. Consequently, the nuclear architecture is species-specific and prone to modification by chromosomal rearrangements. This model is valid for the localization of any chromosomal domain in the meiotic prophase nucleus. However, constitutive heterochromatin plays a leading role in shaping nuclear territories. Thus, the nuclear localization of nucleoli depends on the position of NORs in nucleolar bivalents, but the association among nucleolar chromosomes mainly depends on the presence of constitutive heterochromatin that does not affect the expression of the ribosomal genes. Constitutive heterochromatin and nucleoli form complex nuclear territories whose distribution in the nuclear space is nonrandom, supporting the hypothesis regarding the existence of a species-specific nuclear architecture in first meiotic prophase spermatocytes. © 2017 S. Karger AG, Basel.

  10. Single HIV-1 Imaging Reveals Progression of Infection through CA-Dependent Steps of Docking at the Nuclear Pore, Uncoating, and Nuclear Transport.

    PubMed

    Francis, Ashwanth C; Melikyan, Gregory B

    2018-04-11

    The HIV-1 core consists of capsid proteins (CA) surrounding viral genomic RNA. After virus-cell fusion, the core enters the cytoplasm and the capsid shell is lost through uncoating. CA loss precedes nuclear import and HIV integration into the host genome, but the timing and location of uncoating remain unclear. By visualizing single HIV-1 infection, we find that CA is required for core docking at the nuclear envelope (NE), whereas early uncoating in the cytoplasm promotes proteasomal degradation of viral complexes. Only docked cores exhibiting accelerated loss of CA at the NE enter the nucleus. Interestingly, a CA mutation (N74D) altering virus engagement of host factors involved in nuclear transport does not alter the uncoating site at the NE but reduces the nuclear penetration depth. Thus, CA protects HIV-1 complexes from degradation, mediates docking at the nuclear pore before uncoating, and determines the depth of nuclear penetration en route to integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The nuclear lamina in health and disease

    PubMed Central

    Dobrzynska, Agnieszka; Gonzalo, Susana; Shanahan, Catherine; Askjaer, Peter

    2016-01-01

    ABSTRACT The nuclear lamina (NL) is a structural component of the nuclear envelope and makes extensive contacts with integral nuclear membrane proteins and chromatin. These interactions are critical for many cellular processes, such as nuclear positioning, perception of mechanical stimuli from the cell surface, nuclear stability, 3-dimensional organization of chromatin and regulation of chromatin-binding proteins, including transcription factors. The NL is present in all nucleated metazoan cells but its composition and interactome differ between tissues. Most likely, this contributes to the broad spectrum of disease manifestations in humans with mutations in NL-related genes, ranging from muscle dystrophies to neurological disorders, lipodystrophies and progeria syndromes. We review here exciting novel insight into NL function at the cellular level, in particular in chromatin organization and mechanosensation. We also present recent observations on the relation between the NL and metabolism and the special relevance of the NL in muscle tissues. Finally, we discuss new therapeutic approaches to treat NL-related diseases. PMID:27158763

  12. Nuclear fusion during yeast mating occurs by a three-step pathway.

    PubMed

    Melloy, Patricia; Shen, Shu; White, Erin; McIntosh, J Richard; Rose, Mark D

    2007-11-19

    In Saccharomyces cerevisiae, mating culminates in nuclear fusion to produce a diploid zygote. Two models for nuclear fusion have been proposed: a one-step model in which the outer and inner nuclear membranes and the spindle pole bodies (SPBs) fuse simultaneously and a three-step model in which the three events occur separately. To differentiate between these models, we used electron tomography and time-lapse light microscopy of early stage wild-type zygotes. We observe two distinct SPBs in approximately 80% of zygotes that contain fused nuclei, whereas we only see fused or partially fused SPBs in zygotes in which the site of nuclear envelope (NE) fusion is already dilated. This demonstrates that SPB fusion occurs after NE fusion. Time-lapse microscopy of zygotes containing fluorescent protein tags that localize to either the NE lumen or the nucleoplasm demonstrates that outer membrane fusion precedes inner membrane fusion. We conclude that nuclear fusion occurs by a three-step pathway.

  13. The Yeast Nuclear Pore Complex and Transport Through It

    PubMed Central

    Aitchison, John D.; Rout, Michael P.

    2012-01-01

    Exchange of macromolecules between the nucleus and cytoplasm is a key regulatory event in the expression of a cell’s genome. This exchange requires a dedicated transport system: (1) nuclear pore complexes (NPCs), embedded in the nuclear envelope and composed of proteins termed nucleoporins (or “Nups”), and (2) nuclear transport factors that recognize the cargoes to be transported and ferry them across the NPCs. This transport is regulated at multiple levels, and the NPC itself also plays a key regulatory role in gene expression by influencing nuclear architecture and acting as a point of control for various nuclear processes. Here we summarize how the yeast Saccharomyces has been used extensively as a model system to understand the fundamental and highly conserved features of this transport system, revealing the structure and function of the NPC; the NPC’s role in the regulation of gene expression; and the interactions of transport factors with their cargoes, regulatory factors, and specific nucleoporins. PMID:22419078

  14. Distinct molecular cues ensure a robust microtubule-dependent nuclear positioning in the Drosophila oocyte

    PubMed Central

    Tissot, Nicolas; Lepesant, Jean-Antoine; Bernard, Fred; Legent, Kevin; Bosveld, Floris; Martin, Charlotte; Faklaris, Orestis; Bellaïche, Yohanns; Coppey, Maïté; Guichet, Antoine

    2017-01-01

    Controlling nucleus localization is crucial for a variety of cellular functions. In the Drosophila oocyte, nuclear asymmetric positioning is essential for the reorganization of the microtubule (MT) network that controls the polarized transport of axis determinants. A combination of quantitative three-dimensional live imaging and laser ablation-mediated force analysis reveal that nuclear positioning is ensured with an unexpected level of robustness. We show that the nucleus is pushed to the oocyte antero-dorsal cortex by MTs and that its migration can proceed through distinct tracks. Centrosome-associated MTs favour one migratory route. In addition, the MT-associated protein Mud/NuMA that is asymmetrically localized in an Asp-dependent manner at the nuclear envelope hemisphere where MT nucleation is higher promotes a separate route. Our results demonstrate that centrosomes do not provide an obligatory driving force for nuclear movement, but together with Mud, contribute to the mechanisms that ensure the robustness of asymmetric nuclear positioning. PMID:28447612

  15. Transient and Partial Nuclear Lamina Disruption Promotes Chromosome Movement in Early Meiotic Prophase.

    PubMed

    Link, Jana; Paouneskou, Dimitra; Velkova, Maria; Daryabeigi, Anahita; Laos, Triin; Labella, Sara; Barroso, Consuelo; Pacheco Piñol, Sarai; Montoya, Alex; Kramer, Holger; Woglar, Alexander; Baudrimont, Antoine; Markert, Sebastian Mathias; Stigloher, Christian; Martinez-Perez, Enrique; Dammermann, Alexander; Alsheimer, Manfred; Zetka, Monique; Jantsch, Verena

    2018-04-23

    Meiotic chromosome movement is important for the pairwise alignment of homologous chromosomes, which is required for correct chromosome segregation. Movement is driven by cytoplasmic forces, transmitted to chromosome ends by nuclear membrane-spanning proteins. In animal cells, lamins form a prominent scaffold at the nuclear periphery, yet the role lamins play in meiotic chromosome movement is unclear. We show that chromosome movement correlates with reduced lamin association with the nuclear rim, which requires lamin phosphorylation at sites analogous to those that open lamina network crosslinks in mitosis. Failure to remodel the lamina results in delayed meiotic entry, altered chromatin organization, unpaired or interlocked chromosomes, and slowed chromosome movement. The remodeling kinases are delivered to lamins via chromosome ends coupled to the nuclear envelope, potentially enabling crosstalk between the lamina and chromosomal events. Thus, opening the lamina network plays a role in modulating contacts between chromosomes and the nuclear periphery during meiosis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice.

    PubMed

    Nacerddine, Karim; Lehembre, François; Bhaumik, Mantu; Artus, Jérôme; Cohen-Tannoudji, Michel; Babinet, Charles; Pandolfi, Pier Paolo; Dejean, Anne

    2005-12-01

    Covalent modification by SUMO regulates a wide range of cellular processes, including transcription, cell cycle, and chromatin dynamics. To address the biological function of the SUMO pathway in mammals, we generated mice deficient for the SUMO E2-conjugating enzyme Ubc9. Ubc9-deficient embryos die at the early postimplantation stage. In culture, Ubc9 mutant blastocysts are viable, but fail to expand after 2 days and show apoptosis of the inner cell mass. Loss of Ubc9 leads to major chromosome condensation and segregation defects. Ubc9-deficient cells also show severe defects in nuclear organization, including nuclear envelope dysmorphy and disruption of nucleoli and PML nuclear bodies. Moreover, RanGAP1 fails to accumulate at the nuclear pore complex in mutant cells that show a collapse in Ran distribution. Together, these findings reveal a major role for Ubc9, and, by implication, for the SUMO pathway, in nuclear architecture and function, chromosome segregation, and embryonic viability in mammals.

  17. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Tadanobu; Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, CREST, JST, and COE Program in the 21st Century, Shizuoka 422-8526; Moriyama, Yusuke

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism.

  18. Exotic mitotic mechanisms

    PubMed Central

    Drechsler, Hauke; McAinsh, Andrew D.

    2012-01-01

    The emergence of eukaryotes around two billion years ago provided new challenges for the chromosome segregation machineries: the physical separation of multiple large and linear chromosomes from the microtubule-organizing centres by the nuclear envelope. In this review, we set out the diverse solutions that eukaryotic cells use to solve this problem, and show how stepping away from ‘mainstream’ mitosis can teach us much about the mechanisms and mechanics that can drive chromosome segregation. We discuss the evidence for a close functional and physical relationship between membranes, nuclear pores and kinetochores in generating the forces necessary for chromosome segregation during mitosis. PMID:23271831

  19. Nucleoporins and chromatin metabolism.

    PubMed

    Ptak, Christopher; Wozniak, Richard W

    2016-06-01

    Mounting evidence has implicated a group of proteins termed nucleoporins, or Nups, in various processes that regulate chromatin structure and function. Nups were first recognized as building blocks for nuclear pore complexes, but several members of this group of proteins also reside in the cytoplasm and within the nucleus. Moreover, many are dynamic and move between these various locations. Both at the nuclear envelope, as part of nuclear pore complexes, and within the nucleoplasm, Nups interact with protein complexes that function in gene transcription, chromatin remodeling, DNA repair, and DNA replication. Here, we review recent studies that provide further insight into the molecular details of these interactions and their role in regulating the activity of chromatin modifying factors. Copyright © 2016. Published by Elsevier Ltd.

  20. Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggleton, P P; Dearborn, D P; Lattanzio, J

    2006-07-26

    Low-mass stars, {approx} 1-2 solar masses, near the Main Sequence are efficient at producing {sup 3}He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of {sup 3}He with the predictions of both stellar and Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between themore » hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus we are able to remove the threat that {sup 3}He production in low-mass stars poses to the Big Bang nucleosynthesis of {sup 3}He.« less

  1. NEUTRONIC REACTOR FUEL ELEMENT AND METHOD OF MANUFACTURE

    DOEpatents

    Finniston, H.M.; Plail, O.S.

    1961-01-24

    BS>A uranium body for use in a nuclear fission reactor is described. It has a homogeneous rod of uranium metal enclosed in an envelope of aluminum, wherein a thin metallic layer of higher melting point than aluminum and of relatively low competitive neutron absorption between the uranium and the aluminum is bonded to the uranium and to the aluminum of the sheath.

  2. Baculovirus infection induces disruption of the nuclear lamina.

    PubMed

    Zhang, Xiaomei; Xu, Kaiyan; Wei, Denghui; Wu, Wenbi; Yang, Kai; Yuan, Meijin

    2017-08-10

    Baculovirus nucleocapsids egress from the nucleus primarily via budding at the nuclear membrane. The nuclear lamina underlying the nuclear membrane represents a substantial barrier to nuclear egress. Whether the nuclear lamina undergoes disruption during baculovirus infection remains unknown. In this report, we generated a clonal cell line, Sf9-L, that stably expresses GFP-tagged Drosophila lamin B. GFP autofluorescence colocalized with immunofluorescent anti-lamin B at the nuclear rim of Sf9-L cells, indicating GFP-lamin B was incorporated into the nuclear lamina. Meanwhile, virus was able to replicate normally in Sf9-L cells. Next, we investigated alterations to the nuclear lamina during baculovirus infection in Sf9-L cells. A portion of GFP-lamin B localized diffusely at the nuclear rim, and some GFP-lamin B was redistributed within the nucleus during the late phase of infection, suggesting the nuclear lamina was partially disrupted. Immunoelectron microscopy revealed associations between GFP-lamin B and the edges of the electron-dense stromal mattes of the virogenic stroma, intranuclear microvesicles, and ODV envelopes and nucleocapsids within the nucleus, indicating the release of some GFP-lamin B from the nuclear lamina. Additionally, GFP-lamin B phosphorylation increased upon infection. Based on these data, baculovirus infection induced lamin B phosphorylation and disruption of the nuclear lamina.

  3. Regulation of glutamate receptor internalization by the spine cytoskeleton is mediated by its PKA-dependent association with CPG2

    PubMed Central

    Loebrich, Sven; Djukic, Biljana; Tong, Zachary J.; Cottrell, Jeffrey R.; Turrigiano, Gina G.; Nedivi, Elly

    2013-01-01

    A key neuronal mechanism for adjusting excitatory synaptic strength is clathrin-mediated endocytosis of postsynaptic glutamate receptors (GluRs). The actin cytoskeleton is critical for clathrin-mediated endocytosis, yet we lack a mechanistic understanding of its interaction with the endocytic process and how it may be regulated. Here we show that F-actin in dendritic spines physically binds the synaptic nuclear envelope 1 gene product candidate plasticity gene 2 (CPG2) in a PKA-dependent manner, and that this association is required for synaptic GluR internalization. Mutating two PKA sites on CPG2 disrupts its cytoskeletal association, attenuating GluR endocytosis and affecting the efficacy of synaptic transmission in vivo. These results identify CPG2 as an F-actin binding partner that functionally mediates interaction of the spine cytoskeleton with postsynaptic endocytosis. Further, the regulation of CPG2/F-actin association by PKA provides a gateway for cellular control of synaptic receptor internalization through second messenger signaling pathways. Recent identification of human synaptic nuclear envelope 1 as a risk locus for bipolar disorder suggests that CPG2 could play a role in synaptic dysfunction underlying neuropsychiatric disease. PMID:24191017

  4. Expanded polyglutamine embedded in the endoplasmic reticulum causes membrane distortion and coincides with Bax insertion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Masashi; Li, Shimo; Itoh, Masanori

    The endoplasmic reticulum (ER) is important in various cellular functions, such as secretary and membrane protein biosynthesis, lipid synthesis, and calcium storage. ER stress, including membrane distortion, is associated with many diseases such as Huntington's disease. In particular, nuclear envelope distortion is related to neuronal cell death associated with polyglutamine. However, the mechanism by which polyglutamine causes ER membrane distortion remains unclear. We used electron microscopy, fluorescence protease protection assay, and alkaline treatment to analyze the localization of polyglutamine in cells. We characterized polyglutamine embedded in the ER membrane and noted an effect on morphology, including the dilation of ERmore » luminal space and elongation of ER-mitochondria contact sites, in addition to the distortion of the nuclear envelope. The polyglutamine embedded in the ER membrane was observed at the same time as Bax insertion. These results demonstrated that the ER membrane may be a target of polyglutamine, which triggers cell death through Bax. -- Highlights: •We characterized polyglutamine embedded in the ER membrane. •The polyglutamine embedded in the ER membrane was observed at the same time as Bax insertion. •The ER membrane may be a target of polyglutamine, which triggers cell death.« less

  5. Orgyia pseudotsugata baculovirus p10 and polyhedron envelope protein genes: analysis of their relative expression levels and role in polyhedron structure.

    PubMed

    Gross, C H; Russell, R L; Rohrmann, G F

    1994-05-01

    To investigate the regulation of p10 and polyhedron envelope protein (PEP) gene expression and their role in polyhedron development, Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis viruses lacking these genes were constructed. Recombinant viruses were produced, in which the p10 gene, the PEP gene or both genes were disrupted with the beta-glucuronidase (GUS) or beta-galactosidase (lacZ) genes. GUS activity under the control of the PEP protein promoter was observed later in infection and its maximal expression was less than 10% the level for p10 promoter-GUS constructs. Tissues from O. pseudotsugata larvae infected with these recombinants were examined by electron microscopy. Cells from insects infected with the p10- viruses lacked p10-associated fibrillar structures, but fragments of polyhedron envelope-like structures were observed on the surface of some polyhedra. Immunogold labelling of cells infected with the p10-GUS+ virus with an antibody directed against PEP showed that the PEP was concentrated at the surface of polyhedra. Although polyhedra produced by p10 and PEP gene deletion mutants demonstrated what appeared to be a polyhedron envelope by transmission electron microscopy, scanning electron microscopy showed that they had irregular, pitted surfaces that were different from wild-type polyhedra. These data suggested that both p10 and PEP are important for the proper formation of the periphery of polyhedra.

  6. Polyhedron-like inclusion body formation by a mutant nucleopolyhedrovirus expressing the granulin gene from a granulovirus.

    PubMed

    Zhou, C E; Ko, R; Maeda, S

    1998-01-20

    The polyhedrin gene in Bombyx mori nucleopolyhedrovirus (BmNPV) was replaced with the granulin gene of Trichoplusia ni granulovirus (TnGV). The substitution was verified by Southern hybridization, and expression of granulin by the mutant virus, BmGran, was demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by amino acid sequencing of the predominant protein of BmGran inclusion bodies (IBs). Light and electron microscopy examination of BmGran-infected B. mori and BmN cells revealed large, cuboidal, polyhedron-like IBs in the nucleus and cytoplasm, but granules were not seen. IBs contained small, parallel, electron-dense streaks, which defined the geometric pattern of crystallization. Geometric patterns of nuclear IBs were frequently disrupted by occlusion of polyhedron envelope fragments, resulting in IB instability and fracturing. Virions were not embedded in most of the polyhedron-like IBs, but accumulated with polyhedron envelope fragments. Some virions were coated with matrix protein and were partially wrapped by polyhedron envelope. These results suggested that (1) the amino acid sequence of granulin insufficient for determining IB morphology in TnGV-infected cells, and TnGV may have genes, not present in BmNPV, that control granule formation, and (2) interactions among the virion, the IB envelope, and the matrix protein may be important in virion occlusion and IB morphology and stability.

  7. Integrative Structure–Function Mapping of the Nucleoporin Nup133 Suggests a Conserved Mechanism for Membrane Anchoring of the Nuclear Pore Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy

    2014-08-19

    The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup133 55–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one constructmore » of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes.« less

  8. Integrative Structure–Function Mapping of the Nucleoporin Nup133 Suggests a Conserved Mechanism for Membrane Anchoring of the Nuclear Pore Complex*

    PubMed Central

    Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy; Martel, Anne; Matsui, Tsutomu; Tsuruta, Hiro; Weiss, Thomas M.; Shi, Yi; Markina-Inarrairaegui, Ane; Bonanno, Jeffery B.; Sauder, J. Michael; Burley, Stephen K.; Chait, Brian T.; Almo, Steven C.; Rout, Michael P.; Sali, Andrej

    2014-01-01

    The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup13355–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes. PMID:25139911

  9. Overexpression of OsRAN2 in rice and Arabidopsis renders transgenic plants hypersensitive to salinity and osmotic stress

    PubMed Central

    Zang, Aiping; Xu, Xiaojie; Neill, Steven; Cai, Weiming

    2010-01-01

    Nucleo-cytoplasmic partitioning of regulatory proteins is increasingly being recognized as a major control mechanism for the regulation of signalling in plants. Ras-related nuclear protein (Ran) GTPase is required for regulating transport of proteins and RNA across the nuclear envelope and also has roles in mitotic spindle assembly and nuclear envelope (NE) assembly. However, thus far little is known of any Ran functions in the signalling pathways in plants in response to changing environmental stimuli. The OsRAN2 gene, which has high homology (77% at the amino acid level) with its human counterpart, was isolated here. Subcellular localization results showed that OsRan2 is mainly localized in the nucleus, with some in the cytoplasm. Transcription of OsRAN2 was reduced by salt, osmotic, and exogenous abscisic acid (ABA) treatments, as determined by real-time PCR. Overexpression of OsRAN2 in rice resulted in enhanced sensitivity to salinity, osmotic stress, and ABA. Seedlings of transgenic Arabidopsis thaliana plants overexpressing OsRAN2 were overly sensitive to salinity stress and exogenous ABA treatment. Furthermore, three ABA- or stress-responsive genes, AtNCED3, AtPLC1, and AtMYB2, encoding a key enzyme in ABA synthesis, a phospholipase C homologue, and a putative transcriptional factor, respectively, were shown to have differentially induced expression under salinity and ABA treatments in transgenic and wild-type Arabidopsis plants. OsRAN2 overexpression in tobacco epidermal leaf cells disturbed the nuclear import of a maize (Zea mays L.) leaf colour transcription factor (Lc). In addition, gene-silenced rice plants generated via RNA interference (RNAi) displayed pleiotropic developmental abnormalities and were male sterile. PMID:20018899

  10. The O-β-linked N-acetylglucosaminylation of the Lamin B receptor and its impact on DNA binding and phosphorylation.

    PubMed

    Smet-Nocca, Caroline; Page, Adeline; Cantrelle, François-Xavier; Nikolakaki, Eleni; Landrieu, Isabelle; Giannakouros, Thomas

    2018-04-01

    Lamin B Receptor (LBR) is an integral protein of the interphase inner nuclear membrane that is implicated in chromatin anchorage to the nuclear envelope. Phosphorylation of a stretch of arginine-serine (RS) dipeptides in the amino-terminal nucleoplasmic domain of LBR regulates the interactions of the receptor with other nuclear proteins, DNA and RNA and thus modulates tethering of heterochromatin to the nuclear envelope. While phosphorylation has been extensively studied, very little is known about other post-translational modifications of the protein. There is only one report on the O-β-linked N-acetyl-glucosaminylation (O-GlcNAcylation) of a serine residue downstream of the RS domain of rat LBR. In the present study we identify additional O-GlcNAcylation sites by using as substrates of O-β-N-acetylglucosaminyltransferase (OGT) a set of peptides containing the entire LBR RS domain or parts of it as well as flanking sequences. The in vitro activity of OGT was assessed by tandem mass spectrometry and NMR spectroscopy. Furthermore, we provide evidence that O-GlcNAcylation hampers DNA binding while it marginally affects RS domain phosphorylation mediated by SRPK1, Akt2 and cdk1 kinases. Our methodology providing a quantitative description of O-GlcNAc patterns based on a combination of mass spectrometry and high resolution NMR spectroscopy on short peptide substrates allows subsequent functional analyses. Hence, our approach is of general interest to a wide audience of biologists aiming at deciphering the functional role of O-GlcNAc glycosylation and its crosstalk with phosphorylation. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity.

    PubMed

    Mattout, Anna; Pike, Brietta L; Towbin, Benjamin D; Bank, Erin M; Gonzalez-Sandoval, Adriana; Stadler, Michael B; Meister, Peter; Gruenbaum, Yosef; Gasser, Susan M

    2011-10-11

    In worms, as in other organisms, many tissue-specific promoters are sequestered at the nuclear periphery when repressed and shift inward when activated. It has remained unresolved, however, whether the association of facultative heterochromatin with the nuclear periphery, or its release, has functional relevance for cell or tissue integrity. Using ablation of the unique lamin gene in C. elegans, we show that lamin is necessary for the perinuclear positioning of heterochromatin. We then express at low levels in otherwise wild-type worms a lamin carrying a point mutation, Y59C, which in humans is linked to an autosomal-dominant form of Emery-Dreifuss muscular dystrophy. Using embryos and differentiated tissues, we track the subnuclear position of integrated heterochromatic arrays and their expression. In LMN-1 Y59C-expressing worms, we see abnormal retention at the nuclear envelope of a gene array bearing a muscle-specific promoter. This correlates with impaired activation of the array-borne myo-3 promoter and altered expression of a number of muscle-specific genes. However, an equivalent array carrying the intestine-specific pha-4 promoter is expressed normally and shifts inward when activated in gut cells of LMN-1 Y59C worms. Remarkably, adult LMN-1 Y59C animals have selectively perturbed body muscle ultrastructure and reduced muscle function. Lamin helps sequester heterochromatin at the nuclear envelope, and wild-type lamin permits promoter release following tissue-specific activation. A disease-linked point mutation in lamin impairs muscle-specific reorganization of a heterochromatic array during tissue-specific promoter activation in a dominant manner. This dominance and the correlated muscle dysfunction in LMN-1 Y59C worms phenocopies Emery-Dreifuss muscular dystrophy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The nuclear pore complex protein ALADIN is anchored via NDC1 but not via POM121 and GP210 in the nuclear envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kind, Barbara, E-mail: barbara.kind@uniklinikum-dresden.de; Koehler, Katrin, E-mail: katrin.koehler@uniklinikum-dresden.de; Lorenz, Mike, E-mail: mlorenz@mpi-cbg.de

    2009-12-11

    The nuclear pore complex (NPC) consists of {approx}30 different proteins and provides the only sites for macromolecular transport between cytoplasm and nucleus. ALADIN was discovered as a new member of the NPC. Mutations in ALADIN are known to cause triple A syndrome, a rare autosomal recessive disorder characterized by adrenal insufficiency, alacrima, and achalasia. The function and exact location of the nucleoporin ALADIN within the NPC multiprotein complex is still unclear. Using a siRNA-based approach we downregulated the three known membrane integrated nucleoporins NDC1, GP210, and POM121 in stably expressing GFP-ALADIN HeLa cells. We identified NDC1 but not GP210 andmore » POM121 as the main anchor of ALADIN within the NPC. Solely the depletion of NDC1 caused mislocalization of ALADIN. Vice versa, the depletion of ALADIN led also to disappearance of NDC1 at the NPC. However, the downregulation of two further membrane-integral nucleoporins GP210 and POM121 had no effect on ALADIN localization. Furthermore, we could show a direct association of NDC1 and ALADIN in NPCs by fluorescence resonance energy transfer (FRET) measurements. Based on our findings we conclude that ALADIN is anchored in the nuclear envelope via NDC1 and that this interaction gets lost, if ALADIN is mutated. The loss of integration of ALADIN in the NPC is a main pathogenetic aspect for the development of the triple A syndrome and suggests that the interaction between ALADIN and NDC1 may be involved in the pathogenesis of the disease.« less

  13. X-ray-enhanced cancer cell migration requires the linker of nucleoskeleton and cytoskeleton complex.

    PubMed

    Imaizumi, Hiromasa; Sato, Katsutoshi; Nishihara, Asuka; Minami, Kazumasa; Koizumi, Masahiko; Matsuura, Nariaki; Hieda, Miki

    2018-04-01

    The linker of nucleoskeleton and cytoskeleton (LINC) complex is a multifunctional protein complex that is involved in various processes at the nuclear envelope, including nuclear migration, mechanotransduction, chromatin tethering and DNA damage response. We recently showed that a nuclear envelope protein, Sad1 and UNC84 domain protein 1 (SUN1), a component of the LINC complex, has a critical function in cell migration. Although ionizing radiation activates cell migration and invasion in vivo and in vitro, the underlying molecular mechanism remains unknown. Here, we examined the involvement of the LINC complex in radiation-enhanced cell migration and invasion. A sublethal dose of X-ray radiation promoted human breast cancer MDA-MB-231 cell migration and invasion, whereas carbon ion beam radiation suppressed these processes in a dose-dependent manner. Depletion of SUN1 and SUN2 significantly suppressed X-ray-enhanced cell migration and invasion. Moreover, depletion or overexpression of each SUN1 splicing variant revealed that SUN1_888 containing 888 amino acids of SUN1 but not SUN1_916 was required for X-ray-enhanced migration and invasion. In addition, the results suggested that X-ray irradiation affected the expression level of SUN1 splicing variants and a SUN protein binding partner, nesprins. Taken together, our findings supported that the LINC complex contributed to photon-enhanced cell migration and invasion. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Zeeman perturbed nuclear quadrupole spin echo envelope modulations for spin 3/2 nuclei in polycrystalline specimens

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Narasimhan, P. T.

    The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.

  15. Cell fusion and nuclear fusion in plants.

    PubMed

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Physiological and Pathological Aging Affects Chromatin Dynamics, Structure and Function at the Nuclear Edge

    PubMed Central

    Robin, Jérôme D.; Magdinier, Frédérique

    2016-01-01

    Lamins are intermediate filaments that form a complex meshwork at the inner nuclear membrane. Mammalian cells express two types of Lamins, Lamins A/C and Lamins B, encoded by three different genes, LMNA, LMNB1, and LMNB2. Mutations in the LMNA gene are associated with a group of phenotypically diverse diseases referred to as laminopathies. Lamins interact with a large number of binding partners including proteins of the nuclear envelope but also chromatin-associated factors. Lamins not only constitute a scaffold for nuclear shape, rigidity and resistance to stress but also contribute to the organization of chromatin and chromosomal domains. We will discuss here the impact of A-type Lamins loss on alterations of chromatin organization and formation of chromatin domains and how disorganization of the lamina contributes to the patho-physiology of premature aging syndromes. PMID:27602048

  17. Nuclear fusion and genome encounter during yeast zygote formation.

    PubMed

    Tartakoff, Alan Michael; Jaiswal, Purnima

    2009-06-01

    When haploid cells of Saccharomyces cerevisiae are crossed, parental nuclei congress and fuse with each other. To investigate underlying mechanisms, we have developed assays that evaluate the impact of drugs and mutations. Nuclear congression is inhibited by drugs that perturb the actin and tubulin cytoskeletons. Nuclear envelope (NE) fusion consists of at least five steps in which preliminary modifications are followed by controlled flux of first outer and then inner membrane proteins, all before visible dilation of the waist of the nucleus or coalescence of the parental spindle pole bodies. Flux of nuclear pore complexes occurs after dilation. Karyogamy requires both the Sec18p/NSF ATPase and ER/NE luminal homeostasis. After fusion, chromosome tethering keeps tagged parental genomes separate from each other. The process of NE fusion and evidence of genome independence in yeast provide a prototype for understanding related events in higher eukaryotes.

  18. Nanoscale invaginations of the nuclear envelope: Shedding new light on wormholes with elusive function.

    PubMed

    Schoen, Ingmar; Aires, Lina; Ries, Jonas; Vogel, Viola

    2017-09-03

    Recent advances in fluorescence microscopy have opened up new possibilities to investigate chromosomal and nuclear 3D organization on the nanoscale. We here discuss their potential for elucidating topographical details of the nuclear lamina. Single molecule localization microscopy (SMLM) in combination with immunostainings of lamina proteins readily reveals tube-like invaginations with a diameter of 100-500 nm. Although these invaginations have been established as a frequent and general feature of interphase nuclei across different cell types, their formation mechanism and function have remained largely elusive. We critically review the current state of research, propose possible connections to lamina associated domains (LADs), and revisit the discussion about the potential role of these invaginations for accelerating mRNA nuclear export. Illustrative studies using 3D super-resolution imaging are shown and will be instrumental to decipher the physiological role of these nanoscale invaginations.

  19. The dynamic landscape of the cell nucleus.

    PubMed

    Austin, Christopher M; Bellini, Michel

    2010-01-01

    While the cell nucleus was described for the first time almost two centuries ago, our modern view of the nuclear architecture is primarily based on studies from the last two decades. This surprising late start coincides with the development of new, powerful strategies to probe for the spatial organization of nuclear activities in both fixed and live cells. As a result, three major principles have emerged: first, the nucleus is not just a bag filled with nucleic acids and proteins. Rather, many distinct functional domains, including the chromosomes, resides within the confines of the nuclear envelope. Second, all these nuclear domains are highly dynamic, with molecules exchanging rapidly between them and the surrounding nucleoplasm. Finally, the motion of molecules within the nucleoplasm appears to be mostly driven by random diffusion. Here, the emerging roles of several subnuclear domains are discussed in the context of the dynamic functions of the cell nucleus.

  20. Packaging of the virion host shutoff (Vhs) protein of herpes simplex virus: two forms of the Vhs polypeptide are associated with intranuclear B and C capsids, but only one is associated with enveloped virions.

    PubMed

    Read, G Sullivan; Patterson, Mary

    2007-02-01

    The virion host shutoff (Vhs) protein (UL41) is a minor component of herpes simplex virus virions which, following penetration, accelerates turnover of host and viral mRNAs. Infected cells contain 58-kDa and 59.5-kDa forms of Vhs, which differ in the extent of phosphorylation, yet only a 58-kDa polypeptide is incorporated into virions. In pulse-chase experiments, the primary Vhs translation product comigrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with the 58-kDa virion polypeptide, and could be chased to 59.5 kDa. While both 59.5-kDa and 58-kDa forms were found in nuclear and cytoplasmic fractions, the 59.5-kDa form was significantly enriched in the nucleus. Both forms were associated with intranuclear B and C capsids, yet only the 58-kDa polypeptide was found in enveloped cytoplasmic virions. A 58-kDa form, but not the 59.5-kDa form, was found in L particles, noninfectious particles that contain an envelope and tegument but no capsid. The data suggest that virions contain two populations of Vhs that are packaged by different pathways. In the first pathway, the primary translation product is processed to 59.5 kDa, is transported to the nucleus, binds intranuclear capsids, and is converted to 58 kDa at some stage prior to final envelopment. The second pathway does not involve the 59.5-kDa form or interactions between Vhs and capsids. Instead, the primary translation product is phosphorylated to the 58-kDa virion form and packaged through interactions with other tegument proteins in the cytoplasm or viral envelope proteins at the site of final envelopment.

  1. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  2. Next Generation Nuclear Plant Methods Technical Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  3. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  4. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C

    PubMed Central

    Margutti, Raffaella; Kamble, A.; Milisavljevic, D.; Zapartas, E.; de Mink, S. E.; Drout, M.; Chornock, R.; Risaliti, G.; Zauderer, B. A.; Bietenholz, M.; Cantiello, M.; Chakraborti, S.; Chomiuk, L.; Fong, W.; Grefenstette, B.; Guidorzi, C.; Kirshner, R.; Parrent, J. T.; Patnaude, D.; Soderberg, A. M.; Gehrels, N. C.; Harrison, F.

    2017-01-01

    We present multi-wavelength observations of SN 2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays ~40 keV. SN 2014C shows ordinary explosion parameters (Ek ~ 1.8 × 1051 erg and Mej ~ 1.7 M⊙). However, over an ~1 year timescale, SN 2014C evolved from an ordinary hydrogen-poor supernova into a strongly interacting, hydrogen-rich supernova, violating the traditional classification scheme of type-I versus type-II SNe. Signatures of the SN shock interaction with a dense medium are observed across the spectrum, from radio to hard X-rays, and revealed the presence of a massive shell of ~1 M⊙of hydrogen-rich material at ~6 × 1016 cm. The shell was ejected by the progenitor star in the decades to centuries before collapse. This result challenges current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last nuclear burning stages as potential triggers of the highly time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN 2014C-like signatures in ~10% of SNe. This fraction is reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution if the ejected material can survive in the close environment for 103–104 years. Alternatively, nuclear burning instabilities extending to core C-burning might play a critical role. PMID:28684881

  5. BRP-187: A potent inhibitor of leukotriene biosynthesis that acts through impeding the dynamic 5-lipoxygenase/5-lipoxygenase-activating protein (FLAP) complex assembly.

    PubMed

    Garscha, Ulrike; Voelker, Susanna; Pace, Simona; Gerstmeier, Jana; Emini, Besa; Liening, Stefanie; Rossi, Antonietta; Weinigel, Christina; Rummler, Silke; Schubert, Ulrich S; Scriba, Gerhard K E; Çelikoğlu, Erşan; Çalışkan, Burcu; Banoglu, Erden; Sautebin, Lidia; Werz, Oliver

    2016-11-01

    The pro-inflammatory leukotrienes (LTs) are formed from arachidonic acid (AA) in activated leukocytes, where 5-lipoxygenase (5-LO) translocates to the nuclear envelope to assemble a functional complex with the integral nuclear membrane protein 5-LO-activating protein (FLAP). FLAP, a MAPEG family member, facilitates AA transfer to 5-LO for efficient conversion, and LT biosynthesis critically depends on FLAP. Here we show that the novel LT biosynthesis inhibitor BRP-187 prevents the 5-LO/FLAP interaction at the nuclear envelope of human leukocytes without blocking 5-LO nuclear redistribution. BRP-187 inhibited 5-LO product formation in human monocytes and polymorphonuclear leukocytes stimulated by lipopolysaccharide plus N-formyl-methionyl-leucyl-phenylalanine (IC 50 =7-10nM), and upon activation by ionophore A23187 (IC 50 =10-60nM). Excess of exogenous AA markedly impaired the potency of BRP-187. Direct 5-LO inhibition in cell-free assays was evident only at >35-fold higher concentrations, which was reversible and not improved under reducing conditions. BRP-187 prevented A23187-induced 5-LO/FLAP complex assembly in leukocytes but failed to block 5-LO nuclear translocation, features that were shared with the FLAP inhibitor MK886. Whereas AA release, cyclooxygenases and related LOs were unaffected, BRP-187 also potently inhibited microsomal prostaglandin E 2 synthase-1 (IC 50 =0.2μM), another MAPEG member. In vivo, BRP-187 (10mg/kg) exhibited significant effectiveness in zymosan-induced murine peritonitis, suppressing LT levels in peritoneal exudates as well as vascular permeability and neutrophil infiltration. Together, BRP-187 potently inhibits LT biosynthesis in vitro and in vivo, which seemingly is caused by preventing the 5-LO/FLAP complex assembly and warrants further preclinical evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Impact of the Nuclear Equation of State in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Baird, M. L.; Lentz, E. J.; Hix, W. R.; Mezzacappa, A.; Messer, O. E. B.; Liebendoerfer, M.; TeraScale Supernova Initiative Collaboration

    2005-12-01

    One of the key ingredients to the core collapse supernova mechanism is the physics of matter at or near nuclear density. Included in simulations as part of the Equation of State (EOS), nuclear repulsion experienced at high densities are responsible for the bounce shock, which initially causes the outer envelope of the supernova to expand, as well as determining the structure of the newly formed proto-neutron star. Recent years have seen renewed interest in this fundamental piece of supernova physics, resulting in several promising candidate EOS parameterizations. We will present the impact of these variations in the nuclear EOS using spherically symmetric, Newtonian and General Relativistic neutrino transport simulations of stellar core collapse and bounce. This work is supported in part by SciDAC grants to the TeraScale Supernovae Initiative from the DOE Office of Science High Energy, Nuclear, and Advanced Scientific Computing Research Programs. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. Department of Energy under contract DEAC05-00OR22725

  7. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus

    PubMed Central

    Stephens, Andrew D.; Banigan, Edward J.; Adam, Stephen A.; Goldman, Robert D.; Marko, John F.

    2017-01-01

    The cell nucleus must continually resist and respond to intercellular and intracellular mechanical forces to transduce mechanical signals and maintain proper genome organization and expression. Altered nuclear mechanics is associated with many human diseases, including heart disease, progeria, and cancer. Chromatin and nuclear envelope A-type lamin proteins are known to be key nuclear mechanical components perturbed in these diseases, but their distinct mechanical contributions are not known. Here we directly establish the separate roles of chromatin and lamin A/C and show that they determine two distinct mechanical regimes via micromanipulation of single isolated nuclei. Chromatin governs response to small extensions (<3 μm), and euchromatin/heterochromatin levels modulate the stiffness. In contrast, lamin A/C levels control nuclear strain stiffening at large extensions. These results can be understood through simulations of a polymeric shell and cross-linked polymer interior. Our results provide a framework for understanding the differential effects of chromatin and lamin A/C in cell nuclear mechanics and their alterations in disease. PMID:28057760

  8. Volume regulation and shape bifurcation in the cell nucleus

    PubMed Central

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M.; Wirtz, Denis; Sun, Sean X.

    2015-01-01

    ABSTRACT Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. PMID:26243474

  9. Volume regulation and shape bifurcation in the cell nucleus.

    PubMed

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X

    2015-09-15

    Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. © 2015. Published by The Company of Biologists Ltd.

  10. 4Pi microscopy of the nuclear pore complex.

    PubMed

    Kahms, Martin; Hüve, Jana; Peters, Reiner

    2015-01-01

    4Pi microscopy is a far-field fluorescence microscopy technique, in which the wave fronts of two opposing illuminating beams are adjusted to constructively interfere in a common focus. This yields a diffraction pattern in the direction of the optical axis, which essentially consists of a main focal spot accompanied by two smaller side lobes. At optimal conditions, the main peak of this so-called point spread function has a full width at half maximum: fixed phrase of 100 nm in the direction of the optical axis, and thus is 6-7-fold smaller than that of a confocal microscope. In this chapter, we describe the basic features of 4Pi microscopy and its application to cell biology using the example of the nuclear pore complex, a large protein assembly spanning the nuclear envelope.

  11. Materials for Active Engagement in Nuclear and Particle Physics Courses

    NASA Astrophysics Data System (ADS)

    Loats, Jeff; Schwarz, Cindy; Krane, Ken

    2013-04-01

    Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.

  12. Postage for the messenger: Designating routes for Nuclear mRNA Export

    PubMed Central

    Natalizio, Barbara J.; Wente, Susan R.

    2013-01-01

    Transcription of messenger(m) RNA occurs in the nucleus, making the translocation of mRNA across the nuclear envelope (NE) boundary a critical determinant of proper gene expression and cell survival. A major mRNA export route occurs via the NXF1-dependent pathway through the nuclear pore complexes (NPCs) embedded in the NE. However, recent findings have discovered new evidence supporting the existence of multiple mechanisms for crossing the NE, including both NPC-mediated and NE budding-mediated pathways. An analysis of the trans-acting factors and cis components that define these pathways reveals shared elements as well as mechanistic differences. We review here the current understanding of the mechanisms that characterize each pathway and highlight the determinants that influence mRNA transport fate. PMID:23583578

  13. Method of bonding

    DOEpatents

    Saller, deceased, Henry A.; Hodge, Edwin S.; Paprocki, Stanley J.; Dayton, Russell W.

    1987-12-01

    1. A method of making a fuel-containing structure for nuclear reactors, comprising providing an assembly comprising a plurality of fuel units; each fuel unit consisting of a core plate containing thermal-neutron-fissionable material, sheets of cladding metal on its bottom and top surfaces, said cladding sheets being of greater width and length than said core plates whereby recesses are formed at the ends and sides of said core plate, and end pieces and first side pieces of cladding metal of the same thickness as the core plate positioned in said recesses, the assembly further comprising a plurality of second side pieces of cladding metal engaging the cladding sheets so as to space the fuel units from one another, and a plurality of filler plates of an acid-dissolvable nonresilient material whose melting point is above 2000.degree. F., each filler plate being arranged between a pair of said second side pieces and the cladding plates of two adjacent fuel units, the filler plates having the same thickness as the second side pieces; the method further comprising enclosing the entire assembly in an envelope; evacuating the interior of the entire assembly through said envelope; applying inert gas under a pressure of about 10,000 psi to the outside of said envelope while at the same time heating the assembly to a temperature above the flow point of the cladding metal but below the melting point of any material of the assembly, whereby the envelope is pressed against the assembly and integral bonds are formed between plates, sheets, first side pieces, and end pieces and between the sheets and the second side pieces; slowly cooling the assembly to room temperature; removing the envelope; and dissolving the filler plates without attacking the cladding metal.

  14. Intermediate Temperature Fluids Life Tests - Experiments

    NASA Technical Reports Server (NTRS)

    Anderson, William G.; Bonner, Richard W.; Dussinger, Peter M.; Hartenstine, John R.; Sarraf, David B.; Locci, Ivan E.

    2007-01-01

    There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 725 K (170 to 450 C), including space nuclear power system radiators, fuel cells, and high temperature electronics cooling. Historically, water has been used in heat pipes at temperatures up to about 425 K (150 C). Recent life tests, updated below, demonstrate that titanium/water and Monel/water heat pipes can be used at temperatures up to 550 K (277 C), due to water's favorable transport properties. At temperatures above roughly 570 K (300 C), water is no longer a suitable fluid, due to high vapor pressure and low surface tension as the critical point is approached. At higher temperatures, another working fluid/envelope combination is required, either an organic or halide working fluid. An electromotive force method was used to predict the compatibility of halide working fluids with envelope materials. This procedure was used to reject aluminum and aluminum alloys as envelope materials, due to their high decomposition potential. Titanium and three corrosion resistant superalloys were chosen as envelope materials. Life tests were conducted with these envelopes and six different working fluids: AlBr3, GaCl3, SnCl4, TiCl4, TiBr4, and eutectic diphenyl/diphenyl oxide (Therminol VP-1/Dowtherm A). All of the life tests except for the GaCl3 are ongoing; the GaCl3 was incompatible. As the temperature approaches 725 K (450 C), cesium is a potential heat pipe working fluid. Life tests results are also presented for cesium/Monel 400 and cesium/70-30 copper/nickel heat pipes operating near 750 K (477 C). These materials are not suitable for long term operation, due to copper transport from the condenser to the evaporator.

  15. The fate and origin of the nuclear envelope during and after mitosis in Amoeba proteus. I. Synthesis and behavior of phospholipids of the nuclear envelope during the cell life cycle

    PubMed Central

    1975-01-01

    The synthesis and behavior of Amoeba proteus nuclear envelope (NE) phospholipids were studied. Most NE phospholipid synthesis occurs during G2 and little during mitosis or S. (A. proteus has no G1 phase). Autoradiographic observations after implantation of [3-H] choline nuclei into unlabeled cells reveal little turnover of NE phospholipid during interphase but during mitosis all the label is dispersed through the cytoplasm. Beginning at telophase all the label is dispersed through the cytoplasm. Beginning at telophase all the NE phospholipid label returns to the daughter NEs. This observation, along with the finding that no NE phospholipid synthesis occurs during mitosis or S, indicates that no de novo NE phospholipid production is required for newly forming NEs. Similarlyemetine, at concentrations that inhibit 97 percent of protein synthesis, does not prevent the post mitotic formation of NEs, suggesting that previously manufactured proteins are used in making new NEs. If a nucleus containing labeled NE phospholipids is transplanted into an unlabeled nucleate cell and the cell is allowed to grow and divide, the resultant four nuclei are equally labeled. This finding supports, but does not prove (see next paragraph), the conclusion that there probably is no continuity of the A. proteus NE during mitosis. When a phospholipid-labeled nucleus is implanted into a cell in mitosis, the grafted nucleus is not induced to enter mitosis. There is, however, a marked increase in the turnover of that nucleus's NE phospholipids with no apparent breakdown of the NE; this indicated that the mitotic cytoplasm possesses a factor that stimulates NE phospholipid exchange with the cytoplasm. That enhanced turnover is not accompanied by visible structural alteration makes less certain the earlier conclusion that no NE continuity exists during mitosis. Perhaps the most important finding in this study is that there are present, at restricted times in the cell cycle, factors capable of inducing accelerated exchange of structural components without microscopically detectable disruptions of structure. PMID:805790

  16. The meiotic nuclear lamina regulates chromosome dynamics and promotes efficient homologous recombination in the mouse.

    PubMed

    Link, Jana; Jahn, Daniel; Schmitt, Johannes; Göb, Eva; Baar, Johannes; Ortega, Sagrario; Benavente, Ricardo; Alsheimer, Manfred

    2013-01-01

    The nuclear lamina is the structural scaffold of the nuclear envelope and is well known for its central role in nuclear organization and maintaining nuclear stability and shape. In the past, a number of severe human disorders have been identified to be associated with mutations in lamins. Extensive research on this topic has provided novel important clues about nuclear lamina function. These studies have contributed to the knowledge that the lamina constitutes a complex multifunctional platform combining both structural and regulatory functions. Here, we report that, in addition to the previously demonstrated significance for somatic cell differentiation and maintenance, the nuclear lamina is also an essential determinant for germ cell development. Both male and female mice lacking the short meiosis-specific A-type lamin C2 have a severely defective meiosis, which at least in the male results in infertility. Detailed analysis revealed that lamin C2 is required for telomere-driven dynamic repositioning of meiotic chromosomes. Loss of lamin C2 affects precise synapsis of the homologs and interferes with meiotic double-strand break repair. Taken together, our data explain how the nuclear lamina contributes to meiotic chromosome behaviour and accurate genome haploidization on a mechanistic level.

  17. Transcriptional repression mediated by repositioning of genes to the nuclear lamina.

    PubMed

    Reddy, K L; Zullo, J M; Bertolino, E; Singh, H

    2008-03-13

    Nuclear compartmentalization seems to have an important role in regulating metazoan genes. Although studies on immunoglobulin and other loci have shown a correlation between positioning at the nuclear lamina and gene repression, the functional consequences of this compartmentalization remain untested. We devised an approach for inducible tethering of genes to the inner nuclear membrane (INM), and tested the consequences of such repositioning on gene activity in mouse fibroblasts. Here, using three-dimensional DNA-immunoFISH, we demonstrate repositioning of chromosomal regions to the nuclear lamina that is dependent on breakdown and reformation of the nuclear envelope during mitosis. Moreover, tethering leads to the accumulation of lamin and INM proteins, but not to association with pericentromeric heterochromatin or nuclear pore complexes. Recruitment of genes to the INM can result in their transcriptional repression. Finally, we use targeted adenine methylation (DamID) to show that, as is the case for our model system, inactive immunoglobulin loci at the nuclear periphery are contacted by INM and lamina proteins. We propose that these molecular interactions may be used to compartmentalize and to limit the accessibility of immunoglobulin loci to transcription and recombination factors.

  18. Mechanism regulating nuclear calcium signaling.

    PubMed

    Malviya, Anant N; Klein, Christian

    2006-01-01

    Although the outer nuclear membrane is continuous with the endoplasmic reticulum, it is possible to isolate nuclei both intact and free from endoplasmic reticulum contaminants. The outer and the inner nuclear membranes can be purified free from cross-contamination. Evidence in support of autonomous regulation of nuclear calcium signaling relies upon the investigations with isolated nuclei. Mechanisms for generating calcium signaling in the nucleus have been identified. Two calcium transporting systems, an ATP-dependant nuclear Ca(2+)-ATPase and an IP4-mediated inositol 1,3,4,5-tetrakisphosphate receptor, are located on the outer nuclear membrane. Thus, ATP and IP4, depending on external free calcium concentrations, are responsible for filling the nuclear envelope calcium pool. The inositol 1,4,5-trisphosphate receptor is located on the inner nuclear membrane with its ligand binding domain facing toward the nucleoplasm. Likewise, the ryanodine receptor is located on the inner nuclear membrane and its ligand cADP-ribose is generated within the nucleus. A 120 kDa protein fragment of nuclear PLC-gamma1 is stimulated in vivo by epidermal growth factor nuclear signaling coincident with the time course of nuclear membrane epidermal growth factor receptor activation. Stimulated 120 kDa protein fragment interacts with PIKE, a nuclear GTPase, and together they form a complex with PI[3]kinase serving as a module for nuclear PI[3]K stimulation. Thus, the nucleus has its own IP(3) generating system.

  19. Mechanisms of nuclear pore complex assembly - two different ways of building one molecular machine.

    PubMed

    Otsuka, Shotaro; Ellenberg, Jan

    2018-02-01

    The nuclear pore complex (NPC) mediates all macromolecular transport across the nuclear envelope. In higher eukaryotes that have an open mitosis, NPCs assemble at two points in the cell cycle: during nuclear assembly in late mitosis and during nuclear growth in interphase. How the NPC, the largest nonpolymeric protein complex in eukaryotic cells, self-assembles inside cells remained unclear. Recent studies have started to uncover the assembly process, and evidence has been accumulating that postmitotic and interphase NPC assembly use fundamentally different mechanisms; the duration, structural intermediates, and regulation by molecular players are different and different types of membrane deformation are involved. In this Review, we summarize the current understanding of these two modes of NPC assembly and discuss the structural and regulatory steps that might drive the assembly processes. We furthermore integrate understanding of NPC assembly with the mechanisms for rapid nuclear growth in embryos and, finally, speculate on the evolutionary origin of the NPC implied by the presence of two distinct assembly mechanisms. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  20. Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore.

    PubMed

    Bao, Xun X; Spanos, Christos; Kojidani, Tomoko; Lynch, Eric M; Rappsilber, Juri; Hiraoka, Yasushi; Haraguchi, Tokuko; Sawin, Kenneth E

    2018-05-29

    Non-centrosomal microtubule organizing centers (MTOCs) are important for microtubule organization in many cell types. In fission yeast Schizosaccharomyces pombe , the protein Mto1, together with partner protein Mto2 (Mto1/2 complex), recruits the g-tubulin complex to multiple non-centrosomal MTOCs, including the nuclear envelope (NE). Here, we develop a comparative-interactome mass spectrometry approach to determine how Mto1 localizes to the NE. Surprisingly, we find that Mto1, a constitutively cytoplasmic protein, docks at nuclear pore complexes (NPCs), via interaction with exportin Crm1 and cytoplasmic FG-nucleoporin Nup146. Although Mto1 is not a nuclear export cargo, it binds Crm1 via a nuclear export signal-like sequence, and docking requires both Ran in the GTP-bound state and Nup146 FG repeats. In addition to determining the mechanism of MTOC formation at the NE, our results reveal a novel role for Crm1 and the nuclear export machinery in the stable docking of a cytoplasmic protein complex at NPCs. © 2018, Bao et al.

  1. Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore

    PubMed Central

    Bao, Xun X; Spanos, Christos; Kojidani, Tomoko; Lynch, Eric M; Rappsilber, Juri; Hiraoka, Yasushi; Haraguchi, Tokuko

    2018-01-01

    Non-centrosomal microtubule organizing centers (MTOCs) are important for microtubule organization in many cell types. In fission yeast Schizosaccharomyces pombe, the protein Mto1, together with partner protein Mto2 (Mto1/2 complex), recruits the γ-tubulin complex to multiple non-centrosomal MTOCs, including the nuclear envelope (NE). Here, we develop a comparative-interactome mass spectrometry approach to determine how Mto1 localizes to the NE. Surprisingly, we find that Mto1, a constitutively cytoplasmic protein, docks at nuclear pore complexes (NPCs), via interaction with exportin Crm1 and cytoplasmic FG-nucleoporin Nup146. Although Mto1 is not a nuclear export cargo, it binds Crm1 via a nuclear export signal-like sequence, and docking requires both Ran in the GTP-bound state and Nup146 FG repeats. In addition to determining the mechanism of MTOC formation at the NE, our results reveal a novel role for Crm1 and the nuclear export machinery in the stable docking of a cytoplasmic protein complex at NPCs. PMID:29809148

  2. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97

    PubMed Central

    Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-01

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction. PMID:29342872

  3. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97.

    PubMed

    Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-13

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  4. In silico synchronization reveals regulators of nuclear ruptures in lamin A/C deficient model cells

    NASA Astrophysics Data System (ADS)

    Robijns, J.; Molenberghs, F.; Sieprath, T.; Corne, T. D. J.; Verschuuren, M.; de Vos, W. H.

    2016-07-01

    The nuclear lamina is a critical regulator of nuclear structure and function. Nuclei from laminopathy patient cells experience repetitive disruptions of the nuclear envelope, causing transient intermingling of nuclear and cytoplasmic components. The exact causes and consequences of these events are not fully understood, but their stochastic occurrence complicates in-depth analyses. To resolve this, we have established a method that enables quantitative investigation of spontaneous nuclear ruptures, based on co-expression of a firmly bound nuclear reference marker and a fluorescent protein that shuttles between the nucleus and cytoplasm during ruptures. Minimally invasive imaging of both reporters, combined with automated tracking and in silico synchronization of individual rupture events, allowed extracting information on rupture frequency and recovery kinetics. Using this approach, we found that rupture frequency correlates inversely with lamin A/C levels, and can be reduced in genome-edited LMNA knockout cells by blocking actomyosin contractility or inhibiting the acetyl-transferase protein NAT10. Nuclear signal recovery followed a kinetic that is co-determined by the severity of the rupture event, and could be prolonged by knockdown of the ESCRT-III complex component CHMP4B. In conclusion, our approach reveals regulators of nuclear rupture induction and repair, which may have critical roles in disease development.

  5. Essential Roles for Caenorhabditis elegans Lamin Gene in Nuclear Organization, Cell Cycle Progression, and Spatial Organization of Nuclear Pore Complexes

    PubMed Central

    Liu, Jun; Ben-Shahar, Tom Rolef; Riemer, Dieter; Treinin, Millet; Spann, Perah; Weber, Klaus; Fire, Andrew; Gruenbaum, Yosef

    2000-01-01

    Caenorhabditis elegans has a single lamin gene, designated lmn-1 (previously termed CeLam-1). Antibodies raised against the lmn-1 product (Ce-lamin) detected a 64-kDa nuclear envelope protein. Ce-lamin was detected in the nuclear periphery of all cells except sperm and was found in the nuclear interior in embryonic cells and in a fraction of adult cells. Reductions in the amount of Ce-lamin protein produce embryonic lethality. Although the majority of affected embryos survive to produce several hundred nuclei, defects can be detected as early as the first nuclear divisions. Abnormalities include rapid changes in nuclear morphology during interphase, loss of chromosomes, unequal separation of chromosomes into daughter nuclei, abnormal condensation of chromatin, an increase in DNA content, and abnormal distribution of nuclear pore complexes (NPCs). Under conditions of incomplete RNA interference, a fraction of embryos escaped embryonic arrest and continue to develop through larval life. These animals exhibit additional phenotypes including sterility and defective segregation of chromosomes in germ cells. Our observations show that lmn-1 is an essential gene in C. elegans, and that the nuclear lamins are involved in chromatin organization, cell cycle progression, chromosome segregation, and correct spacing of NPCs. PMID:11071918

  6. Quantitative analysis of condensation/decondensation status of pDNA in the nuclear sub-domains by QD-FRET.

    PubMed

    Shaheen, Sharif M; Akita, Hidetaka; Yamashita, Atsushi; Katoono, Ryo; Yui, Nobuhiko; Biju, Vasudevanpillai; Ishikawa, Mitsuru; Harashima, Hideyoshi

    2011-04-01

    Recent studies indicate that controlling the nuclear decondensation and intra-nuclear localization of plasmid DNA (pDNA) would result in an increased transfection efficiency. In the present study, we established a technology for imaging the nuclear condensation/decondensation status of pDNA in nuclear subdomains using fluorescence resonance energy transfer (FRET) between quantum dot (QD)-labeled pDNA as donor, and rhodamine-labeled polycations as acceptor. The FRET-occurring pDNA/polycation particle was encapsulated in a nuclear delivery system; a tetra-lamellar multifunctional envelope-type nano device (T-MEND), designed to overcome the endosomal membrane and nuclear membrane via step-wise fusion. Nuclear subdomains (i.e. heterochromatin and euchromatin) were distinguished by Hoechst33342 staining. Thereafter, Z-series of confocal images were captured by confocal laser scanning microscopy. pDNA in condensation/decondensation status in heterochromatin or euchromatin were quantified based on the pixel area of the signals derived from the QD and rhodamine. The results obtained indicate that modulation of the supra-molecular structure of polyrotaxane (DMAE-ss-PRX), a condenser that is cleaved in a reductive environment, conferred euchromatin-preferred decondensation. This represents the first demonstration of the successful control of condensation/decondensation in specific nuclear sub-domain via the use of an artificial DNA condenser.

  7. Quantitative analysis of condensation/decondensation status of pDNA in the nuclear sub-domains by QD-FRET

    PubMed Central

    Shaheen, Sharif M.; Akita, Hidetaka; Yamashita, Atsushi; Katoono, Ryo; Yui, Nobuhiko; Biju, Vasudevanpillai; Ishikawa, Mitsuru; Harashima, Hideyoshi

    2011-01-01

    Recent studies indicate that controlling the nuclear decondensation and intra-nuclear localization of plasmid DNA (pDNA) would result in an increased transfection efficiency. In the present study, we established a technology for imaging the nuclear condensation/decondensation status of pDNA in nuclear subdomains using fluorescence resonance energy transfer (FRET) between quantum dot (QD)-labeled pDNA as donor, and rhodamine-labeled polycations as acceptor. The FRET-occurring pDNA/polycation particle was encapsulated in a nuclear delivery system; a tetra-lamellar multifunctional envelope-type nano device (T-MEND), designed to overcome the endosomal membrane and nuclear membrane via step-wise fusion. Nuclear subdomains (i.e. heterochromatin and euchromatin) were distinguished by Hoechst33342 staining. Thereafter, Z-series of confocal images were captured by confocal laser scanning microscopy. pDNA in condensation/decondensation status in heterochromatin or euchromatin were quantified based on the pixel area of the signals derived from the QD and rhodamine. The results obtained indicate that modulation of the supra-molecular structure of polyrotaxane (DMAE-ss-PRX), a condenser that is cleaved in a reductive environment, conferred euchromatin-preferred decondensation. This represents the first demonstration of the successful control of condensation/decondensation in specific nuclear sub-domain via the use of an artificial DNA condenser. PMID:21288880

  8. Electron microscopic characterization of nuclear egress in the sea urchin gastrula.

    PubMed

    LaMassa, Nicole; Arenas-Mena, Cesar; Phillips, Greg R

    2018-05-01

    Nuclear egress, also referred to as nuclear envelope (NE) budding, is a process of transport in which vesicles containing molecular complexes or viral particles leave the nucleus through budding from the inner nuclear membrane (INM) to enter the perinuclear space. Following this event, the perinuclear vesicles (PNVs) fuse with the outer nuclear membrane (ONM), where they release their contents into the cytoplasm. Nuclear egress is thought to participate in many functions such as viral replication, cellular differentiation, and synaptic development. The molecular basis for nuclear egress is now beginning to be elucidated. Here, we observe in the sea urchin gastrula, using serial section transmission electron microscopy, strikingly abundant PNVs containing as yet unidentified granules that resemble the ribonucleoprotein complexes (RNPs) previously observed in similar types of PNVs. Some PNVs were observed in the process of fusion with the ONM where they appeared to release their contents into the cytoplasm. These vesicles were abundantly observed in all three presumptive germ layers. These findings indicate that nuclear egress is likely to be an important mechanism for nucleocytoplasmic transfer during sea urchin development. The sea urchin may be a useful model to characterize further and gain a better understanding of the process of nuclear egress. © 2018 Wiley Periodicals, Inc.

  9. [ULTRASTRUCTURE OF PARENCHYMA IN THE SYNCYTIAL DIGESTIVE SYSTEM IN TURBELLARIA Convoluta convoluta (Acoela].

    PubMed

    Gazizova, G R; Zabotin, Ya I; Golubev, A I

    2015-01-01

    The paper presents data on the ultrastructure of parenchyma that is involved in the digestion in turbellaria Convoluta convoluta (n = 15). Unusual connections between the nuclear envelope, endoplasmic reticulum and plasma membrane of parenchymal cells were found for the first time, which may indicate the origin of these cell structures. The double trophic role of zooxanthellae in the organism of Convoluta is described.

  10. Thermonuclear runaways in nova outbursts

    NASA Technical Reports Server (NTRS)

    Shankar, Anurag; Arnett, David; Fryxell, Bruce A.

    1992-01-01

    Results of exploratory, two-dimensional numerical calculations of a local thermonuclear runaway on the surface of a white dwarf are reported. It is found that the energy released by the runaway can induce a significant amount of vorticity near the burning region. Such mass motions account naturally for mixing of core matter into the envelope during the explosion. A new mechanism for the lateral spread of nuclear burning is also discussed.

  11. TorsinA controls TAN line assembly and the retrograde flow of dorsal perinuclear actin cables during rearward nuclear movement

    PubMed Central

    Saunders, Cosmo A.; Harris, Nathan J.; Willey, Patrick T.; Woolums, Brian M.; Wang, Yuexia; McQuown, Alex J.; Schoenhofen, Amy; Dauer, William T.

    2017-01-01

    The nucleus is positioned toward the rear of most migratory cells. In fibroblasts and myoblasts polarizing for migration, retrograde actin flow moves the nucleus rearward, resulting in the orientation of the centrosome in the direction of migration. In this study, we report that the nuclear envelope–localized AAA+ (ATPase associated with various cellular activities) torsinA (TA) and its activator, the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1), are required for rearward nuclear movement during centrosome orientation in migrating fibroblasts. Both TA and LAP1 contributed to the assembly of transmembrane actin-associated nuclear (TAN) lines, which couple the nucleus to dorsal perinuclear actin cables undergoing retrograde flow. In addition, TA localized to TAN lines and was necessary for the proper mobility of EGFP-mini–nesprin-2G, a functional TAN line reporter construct, within the nuclear envelope. Furthermore, TA and LAP1 were indispensable for the retrograde flow of dorsal perinuclear actin cables, supporting the recently proposed function for the nucleus in spatially organizing actin flow and cytoplasmic polarity. Collectively, these results identify TA as a key regulator of actin-dependent rearward nuclear movement during centrosome orientation. PMID:28242745

  12. Acute Depletion of Diacylglycerol from the Cis-Golgi Affects Localised Nuclear Envelope Morphology During Mitosis.

    PubMed

    Chung, Gary Hong Chun; Domart, Marie Charlotte; Peddie, Christopher; Mantell, Judith; Mclaverty, Kieran; Arabiotorre, Angela; Hodgson, Lorna; Byrne, Richard D; Verkade, Paul; Arkill, Kenton; Collinson, Lucy M; Larijani, Banafshe

    2018-06-12

    Dysregulation of nuclear envelope (NE) assembly results in various cancers; for example, renal and some lung carcinomas ensue due to NE malformation. The NE is a dynamic membrane compartment and its completion during mitosis, is a highly regulated process but the detailed mechanism still remains incompletely understood. Previous studies have found isolated diacylglycerol (DAG) containing vesicles are essential for completing the fusion of NE in non-somatic cells. We investigated the impact of DAG depletion from cis-Golgi in mammalian cells on NE reassembly. Using advanced electron microscopy, we observed an enriched DAG population of vesicles at the vicinity of the NE gaps of telophase mammalian cells. We applied a miniSOG-C1-domain tag that localized DAG-enriched vesicles at the perinuclear region, which suggested the existence of NE fusogenic vesicles. We quantified the impact of Golgi-DAG depletion by measuring the in situ NE rim curvature of the re-forming NE. The rim curvature in these cells was significantly reduced compared with controls, which indicated a localized defect in NE morphology. Our novel results demonstrate the significance of the role of DAG from cis-Golgi for the regulation of NE assembly. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Mitosis in Barbulanympha. I. Spindle structure, formation, and kinetochore engagement

    PubMed Central

    1978-01-01

    Successful culture of the obligatorily anaerobic symbionts residing in the hindgut of the wood-eating cockroach Cryptocercus punctulatus now permits continuous observation of mitosis in individual Barbulanympha cells. In Part I of this two-part paper, we report methods for culture of the protozoa, preparation of microscope slide cultures in which Barbulanympha survived and divided for up to 3 days, and an optical arrangement which permits observation and through-focus photographic recording of dividing cells, sequentially in differential interference contrast and rectified polarized light microscopy. We describe the following prophase events and structures: development of the astral rays and large extranuclear central spindle from the tips of the elongate-centrioles; the fine structure of spindle fibers and astral rays which were deduced in vivo from polarized light microscopy and seen as a particular array of microtubules in thin-section electron micrographs; formation of chromosomal spindle fibers by dynamic engagement of astral rays to the kinetochores embedded in the persistent nuclear envelope; and repetitive shortening of chromosomal spindle fibers which appear to hoist the nucleus to the spindle surface, cyclically jostle the kinetochores within the nuclear envelope, and churn the prophase chromosomes. The observations described here and in Part II have implications both for the evolution of mitosis and for understanding the mitotic process generally. PMID:681451

  14. Dystonin/Bpag1 is a necessary endoplasmic reticulum/nuclear envelope protein in sensory neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Kevin G.; University of Ottawa Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario; Kothary, Rashmi

    2008-09-10

    Dystonin/Bpag1 proteins are cytoskeletal linkers whose loss of function in mice results in a hereditary sensory neuropathy with a progressive loss of limb coordination starting in the second week of life. These mice, named dystonia musculorum (dt), succumb to the disease and die of unknown causes prior to sexual maturity. Previous evidence indicated that cytoskeletal defects in the axon are a primary cause of dt neurodegeneration. However, more recent data suggests that other factors may be equally important contributors to the disease process. In the present study, we demonstrate perikaryal defects in dorsal root ganglion (DRG) neurons at stages precedingmore » the onset of loss of limb coordination in dt mice. Abnormalities include alterations in endoplasmic reticulum (ER) chaperone protein expression, indicative of an ER stress response. Dystonin in sensory neurons localized in association with the ER and nuclear envelope (NE). A fusion protein ofthe dystonin-a2 isoform, which harbors an N-terminal transmembrane domain, associated with and reorganized the ER in cell culture. This isoform also interacts with the NE protein nesprin-3{alpha}, but not nesprin-3{beta}. Defects in dt mice, as demonstrated here, may ultimately result in pathogenesis involving ER dysfunction and contribute significantly to the dt phenotype.« less

  15. New views on the neural crest epithelial-mesenchymal transition and neuroepithelial interkinetic nuclear migration

    PubMed Central

    Erickson, Carol A

    2009-01-01

    By developing a technique for imaging the avian neural crest epithelial-mesenchymal transition (EMT), we have discovered cellular behaviors that challenge current thinking on this important developmental event, including the probability that complete disassembly of the adherens junctions may not control whether or not a neural epithelial cell undergoes an EMT. Further, neural crest cells can adopt multiple modes of cell motility in order to emigrate from the neuroepithelium. We also gained insights into interkinetic nuclear migration (INM). For example, the movement of the nucleus from the basal to apical domain may not require microtubule motors nor an intact nuclear envelope, and the nucleus does not always need to reach the apical surface in order for cytokinesis to occur. These studies illustrate the value of live-cell imaging to elucidate cellular processes. PMID:20195454

  16. Chromosomes of Protists: The crucible of evolution.

    PubMed

    Soyer-Gobillard, Marie-Odile; Dolan, Michael F

    2015-12-01

    As early as 1925, the great protozoologist Edouard Chatton classified microorganisms into two categories, the prokaryotic and the eukaryotic microbes, based on light microscopical observation of their nuclear organization. Now, by means of transmission electron microscopy, we know that prokaryotic microbes are characterized by the absence of nuclear envelope surrounding the bacterial chromosome, which is more or less condensed and whose chromatin is deprived of histone proteins but presents specific basic proteins. Eukaryotic microbes, the protists, have nuclei surrounded by a nuclear envelope and have chromosomes more or less condensed, with chromatin-containing histone proteins organized into nucleosomes. The extraordinary diversity of mitotic systems presented by the 36 phyla of protists (according to Margulis et al., Handbook of Protoctista, 1990) is in contrast to the relative homogeneity of their chromosome structure and chromatin components. Dinoflagellates are the exception to this pattern. The phylum is composed of around 2000 species, and characterized by unique features including their nucleus (dinokaryon), dinomitosis, chromosome organization and chromatin composition. Although their DNA synthesis is typically eukaryotic, dinoflagellates are the only eukaryotes in which the chromatin, organized into quasi-permanently condensed chromosomes, is in some species devoid of histones and nucleosomes. In these cases, their chromatin contains specific DNA-binding basic proteins. The permanent compaction of their chromosomes throughout the cell cycle raises the question of the modalities of their division and their transcription. Successful in vitro reconstitution of nucleosomes using dinoflagellate DNA and heterologous corn histones raises questions about dinoflagellate evolution and phylogeny. [Int Microbiol 18(4):209-216 (2015)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  17. Electrical detection of electron-spin-echo envelope modulations in thin-film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Fehr, M.; Behrends, J.; Haas, S.; Rech, B.; Lips, K.; Schnegg, A.

    2011-11-01

    Electrically detected electron-spin-echo envelope modulations (ED-ESEEM) were employed to detect hyperfine interactions between nuclear spins and paramagnetic sites, determining spin-dependent transport processes in multilayer thin-film microcrystalline silicon solar cells. Electrical detection in combination with a modified Hahn-echo sequence was used to measure echo modulations induced by 29Si, 31P, and 1H nuclei weakly coupled to electron spins of paramagnetic sites in the amorphous and microcrystalline solar cell layers. In the case of CE centers in the μc-Si:H i-layer, the absence of 1H ESEEM modulations indicates that the adjacencies of CE centers are depleted from hydrogen atoms. On the basis of this result, we discuss several models for the microscopic origin of the CE center and conclusively assign those centers to coherent twin boundaries inside of crystalline grains in μc-Si:H.

  18. Polaron spin echo envelope modulations in an organic semiconducting polymer

    DOE PAGES

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    Here, we present a theoretical analysis of the electron spin echo envelope modulation (ESEEM) spectra of polarons in semiconducting π -conjugated polymers. We show that the contact hyperfine coupling and the dipolar interaction between the polaron and the proton spins give rise to different features in the ESEEM spectra. Our theory enables direct selective probe of different groups of nuclear spins, which affect the polaron spin dynamics. Namely, we demonstrate how the signal from the distant protons (coupled to the polaron spin via dipolar interactions) can be distinguished from the signal coming from the protons residing on the polaron sitemore » (coupled to the polaron spin via contact hyperfine interaction). We propose a method for directly probing the contact hyperfine interaction, that would enable detailed study of the polaron orbital state and its immediate environment. Lastly, we also analyze the decay of the spin echo modulation, and its connection to the polaron transport.« less

  19. Insights into nuclear dynamics using live-cell imaging approaches.

    PubMed

    Bigley, Rachel B; Payumo, Alexander Y; Alexander, Jeffrey M; Huang, Guo N

    2017-03-01

    The nucleus contains the genetic blueprint of the cell and myriad interactions within this subcellular structure are required for gene regulation. In the current scientific era, characterization of these gene regulatory networks through biochemical techniques coupled with systems-wide 'omic' approaches has become commonplace. However, these strategies are limited because they represent a mere snapshot of the cellular state. To obtain a holistic understanding of nuclear dynamics, relevant molecules must be studied in their native contexts in living systems. Live-cell imaging approaches are capable of providing quantitative assessment of the dynamics of gene regulatory interactions within the nucleus. We survey recent insights into what live-cell imaging approaches have provided the field of nuclear dynamics. In this review, we focus on interactions of DNA with other DNA loci, proteins, RNA, and the nuclear envelope. WIREs Syst Biol Med 2017, 9:e1372. doi: 10.1002/wsbm.1372 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  20. Altering lamina assembly reveals lamina-dependent and -independent functions for A-type lamins.

    PubMed

    Zwerger, Monika; Roschitzki-Voser, Heidi; Zbinden, Reto; Denais, Celine; Herrmann, Harald; Lammerding, Jan; Grütter, Markus G; Medalia, Ohad

    2015-10-01

    Lamins are intermediate filament proteins that form a fibrous meshwork, called the nuclear lamina, between the inner nuclear membrane and peripheral heterochromatin of metazoan cells. The assembly and incorporation of lamin A/C into the lamina, as well as their various functions, are still not well understood. Here, we employed designed ankyrin repeat proteins (DARPins) as new experimental tools for lamin research. We screened for DARPins that specifically bound to lamin A/C, and interfered with lamin assembly in vitro and with incorporation of lamin A/C into the native lamina in living cells. The selected DARPins inhibited lamin assembly and delocalized A-type lamins to the nucleoplasm without modifying lamin expression levels or the amino acid sequence. Using these lamin binders, we demonstrate the importance of proper integration of lamin A/C into the lamina for nuclear mechanical properties and nuclear envelope integrity. Finally, our study provides evidence for cell-type-specific differences in lamin functions. © 2015. Published by The Company of Biologists Ltd.

  1. Altering lamina assembly reveals lamina-dependent and -independent functions for A-type lamins

    PubMed Central

    Zwerger, Monika; Roschitzki-Voser, Heidi; Zbinden, Reto; Denais, Celine; Herrmann, Harald; Lammerding, Jan; Grütter, Markus G.; Medalia, Ohad

    2015-01-01

    ABSTRACT Lamins are intermediate filament proteins that form a fibrous meshwork, called the nuclear lamina, between the inner nuclear membrane and peripheral heterochromatin of metazoan cells. The assembly and incorporation of lamin A/C into the lamina, as well as their various functions, are still not well understood. Here, we employed designed ankyrin repeat proteins (DARPins) as new experimental tools for lamin research. We screened for DARPins that specifically bound to lamin A/C, and interfered with lamin assembly in vitro and with incorporation of lamin A/C into the native lamina in living cells. The selected DARPins inhibited lamin assembly and delocalized A-type lamins to the nucleoplasm without modifying lamin expression levels or the amino acid sequence. Using these lamin binders, we demonstrate the importance of proper integration of lamin A/C into the lamina for nuclear mechanical properties and nuclear envelope integrity. Finally, our study provides evidence for cell-type-specific differences in lamin functions. PMID:26275827

  2. Function of Nup98 subtypes and their fusion proteins, Nup98-TopIIβ and Nup98-SETBP1 in nuclear-cytoplasmic transport.

    PubMed

    Saito, Shoko; Yokokawa, Takafumi; Iizuka, Gemmei; Cigdem, Sadik; Okuwaki, Mitsuru; Nagata, Kyosuke

    2017-05-20

    Nup98 is a component of the nuclear pore complex. The nup98-fusion genes derived by chromosome translocations are involved in hematopoietic malignancies. Here, we investigated the functions of Nup98 isoforms and two unexamined Nup98-fusion proteins, Nup98-TopIIβ and Nup98-SETBP1. We first demonstrated that two Nup98 isoforms are expressed in various mouse tissues and similarly localized in the nucleus and the nuclear envelope. We also showed that Nup98-TopIIβ and Nup98-SETBP1 are localized in the nucleus and partially co-localized with full-length Nup98 and a nuclear export receptor XPO1. We demonstrated that Nup98-TopIIβ and Nup98-SETBP1 negatively regulate the XPO1-mediated protein export. Our results will contribute to the understanding of the molecular mechanism by which the Nup98-fusion proteins induce tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The molecular mechanism of nuclear transport revealed by atomic-scale measurements

    PubMed Central

    Hough, Loren E; Dutta, Kaushik; Sparks, Samuel; Temel, Deniz B; Kamal, Alia; Tetenbaum-Novatt, Jaclyn; Rout, Michael P; Cowburn, David

    2015-01-01

    Nuclear pore complexes (NPCs) form a selective filter that allows the rapid passage of transport factors (TFs) and their cargoes across the nuclear envelope, while blocking the passage of other macromolecules. Intrinsically disordered proteins (IDPs) containing phenylalanyl-glycyl (FG)-rich repeats line the pore and interact with TFs. However, the reason that transport can be both fast and specific remains undetermined, through lack of atomic-scale information on the behavior of FGs and their interaction with TFs. We used nuclear magnetic resonance spectroscopy to address these issues. We show that FG repeats are highly dynamic IDPs, stabilized by the cellular environment. Fast transport of TFs is supported because the rapid motion of FG motifs allows them to exchange on and off TFs extremely quickly through transient interactions. Because TFs uniquely carry multiple pockets for FG repeats, only they can form the many frequent interactions needed for specific passage between FG repeats to cross the NPC. DOI: http://dx.doi.org/10.7554/eLife.10027.001 PMID:26371551

  4. Thermodynamic Paradigm for Solution Demixing Inspired by Nuclear Transport in Living Cells

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Hao; Mehta, Pankaj; Elbaum, Michael

    2017-04-01

    Living cells display a remarkable capacity to compartmentalize their functional biochemistry. A particularly fascinating example is the cell nucleus. Exchange of macromolecules between the nucleus and the surrounding cytoplasm does not involve traversing a lipid bilayer membrane. Instead, large protein channels known as nuclear pores cross the nuclear envelope and regulate the passage of other proteins and RNA molecules. Beyond simply gating diffusion, the system of nuclear pores and associated transport receptors is able to generate substantial concentration gradients, at the energetic expense of guanosine triphosphate hydrolysis. In contrast to conventional approaches to demixing such as reverse osmosis and dialysis, the biological system operates continuously, without application of cyclic changes in pressure or solvent exchange. Abstracting the biological paradigm, we examine this transport system as a thermodynamic machine of solution demixing. Building on the construct of free energy transduction and biochemical kinetics, we find conditions for the stable operation and optimization of the concentration gradients as a function of dissipation in the form of entropy production.

  5. Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis

    PubMed Central

    1993-01-01

    We have developed a cell-free system that induces the morphological transformations characteristic of apoptosis in isolated nuclei. The system uses extracts prepared from mitotic chicken hepatoma cells following a sequential S phase/M phase synchronization. When nuclei are added to these extracts, the chromatin becomes highly condensed into spherical domains that ultimately extrude through the nuclear envelope, forming apoptotic bodies. The process is highly synchronous, and the structural changes are completed within 60 min. Coincident with these morphological changes, the nuclear DNA is cleaved into a nucleosomal ladder. Both processes are inhibited by Zn2+, an inhibitor of apoptosis in intact cells. Nuclear lamina disassembly accompanies these structural changes in added nuclei, and we show that lamina disassembly is a characteristic feature of apoptosis in intact cells of mouse, human and chicken. This system may provide a powerful means of dissecting the biochemical mechanisms underlying the final stages of apoptosis. PMID:8408207

  6. Emerin modulates spatial organization of chromosome territories in cells on softer matrices

    PubMed Central

    Pradhan, Roopali; Ranade, Devika

    2018-01-01

    Abstract Cells perceive and relay external mechanical forces into the nucleus through the nuclear envelope. Here we examined the effect of lowering substrate stiffness as a paradigm to address the impact of altered mechanical forces on nuclear structure-function relationships. RNA sequencing of cells on softer matrices revealed significant transcriptional imbalances, predominantly in chromatin associated processes and transcriptional deregulation of human Chromosome 1. Furthermore, 3-Dimensional fluorescence in situ hybridization (3D-FISH) analyses showed a significant mislocalization of Chromosome 1 and 19 Territories (CT) into the nuclear interior, consistent with their transcriptional deregulation. However, CT18 with relatively lower transcriptional dysregulation, also mislocalized into the nuclear interior. Furthermore, nuclear Lamins that regulate chromosome positioning, were mislocalized into the nuclear interior in response to lowered matrix stiffness. Notably, Lamin B2 overexpression retained CT18 near the nuclear periphery in cells on softer matrices. While, cells on softer matrices also activated emerin phosphorylation at a novel Tyr99 residue, the inhibition of which in a phospho-deficient mutant (emerinY99F), selectively retained chromosome 18 and 19 but not chromosome 1 territories at their conserved nuclear locations. Taken together, emerin functions as a key mechanosensor, that modulates the spatial organization of chromosome territories in the interphase nucleus. PMID:29684168

  7. Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane

    PubMed Central

    Mitchell, Jana M.; Mansfeld, Jörg; Capitanio, Juliana; Kutay, Ulrike

    2010-01-01

    Nuclear pore complexes (NPCs) control the movement of molecules across the nuclear envelope (NE). We investigated the molecular interactions that exist at the interface between the NPC scaffold and the pore membrane. We show that key players mediating these interactions in mammalian cells are the nucleoporins Nup155 and Nup160. Nup155 depletion massively alters NE structure, causing a dramatic decrease in NPC numbers and the improper targeting of membrane proteins to the inner nuclear membrane. The role of Nup155 in assembly is likely closely linked to events at the membrane as we show that Nup155 interacts with pore membrane proteins Pom121 and NDC1. Furthermore, we demonstrate that the N terminus of Pom121 directly binds the β-propeller regions of Nup155 and Nup160. We propose a model in which the interactions of Pom121 with Nup155 and Nup160 are predicted to assist in the formation of the nuclear pore and the anchoring of the NPC to the pore membrane. PMID:20974814

  8. The E3 Ubiquitin Ligase MIB-1 Is Necessary To Form the Nuclear Halo in Caenorhabditis elegans Sperm.

    PubMed

    Herrera, Leslie A; Starr, Daniel A

    2018-05-18

    Unlike the classical nuclear envelope with two membranes found in other eukaryotic cells, most nematode sperm nuclei are not encapsulated by membranes. Instead, they are surrounded by a nuclear halo of unknown composition. How the halo is formed and regulated is unknown. We used forward genetics to identify molecular lesions behind three classical fer (fertilization defective) mutations that disrupt the ultrastructure of the Caenorhabditis elegans sperm nuclear halo. We found fer-2 and fer-4 alleles to be nonsense mutations in mib-1. fer-3 was caused by a nonsense mutation in eri-3 GFP::MIB-1 was expressed in the germline during early spermatogenesis, but not in mature sperm. mib-1 encodes a conserved E3 ubiquitin ligase homologous to vertebrate Mib1 and Mib2, which function in Notch signaling. Here, we show that mib-1 is important for male sterility and is involved in the regulation or formation of the nuclear halo during nematode spermatogenesis. Copyright © 2018, G3: Genes, Genomes, Genetics.

  9. Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules

    PubMed Central

    Elhanany-Tamir, Hadas; Yu, Yanxun V.; Shnayder, Miri; Jain, Ankit; Welte, Michael

    2012-01-01

    Striated muscle fibers are characterized by their tightly organized cytoplasm. Here, we show that the Drosophila melanogaster KASH proteins Klarsicht (Klar) and MSP-300 cooperate in promoting even myonuclear spacing by mediating a tight link between a newly discovered MSP-300 nuclear ring and a polarized network of astral microtubules (aMTs). In either klar or msp-300ΔKASH, or in klar and msp-300 double heterozygous mutants, the MSP-300 nuclear ring and the aMTs retracted from the nuclear envelope, abrogating this even nuclear spacing. Anchoring of the myonuclei to the core acto-myosin fibrillar compartment was mediated exclusively by MSP-300. This protein was also essential for promoting even distribution of the mitochondria and ER within the muscle fiber. Larval locomotion is impaired in both msp-300 and klar mutants, and the klar mutants were rescued by muscle-specific expression of Klar. Thus, our results describe a novel mechanism of nuclear spacing in striated muscles controlled by the cooperative activity of MSP-300, Klar, and astral MTs, and demonstrate its physiological significance. PMID:22927463

  10. Tight coupling between nucleus and cell migration through the perinuclear actin cap

    PubMed Central

    Kim, Dong-Hwee; Cho, Sangkyun; Wirtz, Denis

    2014-01-01

    ABSTRACT Although eukaryotic cells are known to alternate between ‘advancing’ episodes of fast and persistent movement and ‘hesitation’ episodes of low speed and low persistence, the molecular mechanism that controls the dynamic changes in morphology, speed and persistence of eukaryotic migratory cells remains unclear. Here, we show that the movement of the interphase nucleus during random cell migration switches intermittently between two distinct modes – rotation and translocation – that follow with high fidelity the sequential rounded and elongated morphologies of the nucleus and cell body, respectively. Nuclear rotation and translocation mediate the stop-and-go motion of the cell through the dynamic formation and dissolution, respectively, of the contractile perinuclear actin cap, which is dynamically coupled to the nuclear lamina and the nuclear envelope through LINC complexes. A persistent cell movement and nuclear translocation driven by the actin cap are halted following the disruption of the actin cap, which in turn allows the cell to repolarize for its next persistent move owing to nuclear rotation mediated by cytoplasmic dynein light intermediate chain 2. PMID:24639463

  11. Improved Determination of Subnuclear Position Enabled by Three-Dimensional Membrane Reconstruction.

    PubMed

    Zhao, Yao; Schreiner, Sarah M; Koo, Peter K; Colombi, Paolo; King, Megan C; Mochrie, Simon G J

    2016-07-12

    Many aspects of chromatin biology are influenced by the nuclear compartment in which a locus resides, from transcriptional regulation to DNA repair. Further, the dynamic and variable localization of a particular locus across cell populations and over time makes analysis of a large number of cells critical. As a consequence, robust and automatable methods to measure the position of individual loci within the nuclear volume in populations of cells are necessary to support quantitative analysis of nuclear position. Here, we describe a three-dimensional membrane reconstruction approach that uses fluorescently tagged nuclear envelope or endoplasmic reticulum membrane marker proteins to precisely map the nuclear volume. This approach is robust to a variety of nuclear shapes, providing greater biological accuracy than alternative methods that enforce nuclear circularity, while also describing nuclear position in all three dimensions. By combining this method with established approaches to reconstruct the position of diffraction-limited chromatin markers-in this case, lac Operator arrays bound by lacI-GFP-the distribution of loci positions within the nuclear volume with respect to the nuclear periphery can be quantitatively obtained. This stand-alone image analysis pipeline should be of broad practical utility for individuals interested in various aspects of chromatin biology, while also providing, to our knowledge, a new conceptual framework for investigators who study organelle shape. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Tic20 forms a channel independent of Tic110 in chloroplasts

    PubMed Central

    2011-01-01

    Background The Tic complex (Translocon at the inner envelope membrane of chloroplasts) mediates the translocation of nuclear encoded chloroplast proteins across the inner envelope membrane. Tic110 forms one prominent protein translocation channel. Additionally, Tic20, another subunit of the complex, was proposed to form a protein import channel - either together with or independent of Tic110. However, no experimental evidence for Tic20 channel activity has been provided so far. Results We performed a comprehensive biochemical and electrophysiological study to characterize Tic20 in more detail and to gain a deeper insight into its potential role in protein import into chloroplasts. Firstly, we compared transcript and protein levels of Tic20 and Tic110 in both Pisum sativum and Arabidopsis thaliana. We found the Tic20 protein to be generally less abundant, which was particularly pronounced in Arabidopsis. Secondly, we demonstrated that Tic20 forms a complex larger than 700 kilodalton in the inner envelope membrane, which is clearly separate from Tic110, migrating as a dimer at about 250 kilodalton. Thirdly, we defined the topology of Tic20 in the inner envelope, and found its N- and C-termini to be oriented towards the stromal side. Finally, we successfully reconstituted overexpressed and purified full-length Tic20 into liposomes. Using these Tic20-proteoliposomes, we could demonstrate for the first time that Tic20 can independently form a cation selective channel in vitro. Conclusions The presented data provide first biochemical evidence to the notion that Tic20 can act as a channel protein within the chloroplast import translocon complex. However, the very low abundance of Tic20 in the inner envelope membranes indicates that it cannot form a major protein translocation channel. Furthermore, the independent complex formation of Tic20 and Tic110 argues against a joint channel formation. Thus, based on the observed channel activity of Tic20 in proteoliposomes, we speculate that the chloroplast inner envelope contains multiple (at least two) translocation channels: Tic110 as the general translocation pore, whereas Tic20 could be responsible for translocation of a special subset of proteins. PMID:21961525

  13. Preparation of isolated nuclei from K 562 haemopoietic cell line for high resolution scanning electron microscopy.

    PubMed

    Reipert, S; Reipert, B M; Allen, T D

    1994-09-01

    The aim of the work is to visualise nuclear pore complexes (NPCs) in mammalian cells by high resolution scanning electron microscopy. A detergent-free isolation protocol was employed to obtain clean nuclei from the haemopoietic cell line K 562. Nuclear isolation was performed by mechanical homogenisation under hypotonic conditions followed by purification of the nuclear fraction. The isolated nuclei were attached to silicon chips, fixed, critical point dried, and sputter coated with a thin film (3-4 nm) of tantalum. Analysis of the nuclear surface by scanning electron microscopy (SEM) revealed a strong sensitivity of the outer nuclear membrane (ONM) to disruption during the isolation procedure. A significant reduction of the characteristic pattern of damage to the ONM was achieved by means of an isopicnic centrifugation on an isoosmolar balanced Percoll gradient. Analysis of the population of isolated nuclei by flow cytometry showed no signs of cell cycle specific losses of nuclei during isolation. The SEM investigations of the morphology of the nuclear envelope (NE) and of substructural details of NPCs and polyribosomes were performed using an in-lens field emission scanning electron microscope.

  14. In vitro modulation of the interaction between HA95 and LAP2beta by cAMP signaling.

    PubMed

    Martins, Sandra B; Marstad, Anne; Collas, Philippe

    2003-09-09

    The nuclear envelope mediates key functions by interacting with chromatin. We recently reported an interaction between the chromatin- and nuclear matrix-associated protein HA95 and the inner nuclear membrane integral protein LAP2beta, implicated in initiation of DNA replication (Martins et al. (2003) J. Cell Biol. 160, 177-188). Here, we show that in vitro, interaction between HA95 and LAP2beta is modulated by cAMP signaling via PKA. Exposure of an anti-HA95 immune precipitate from interphase HeLa cells to a mitotic extract promotes ATP-dependent release of LAP2beta from the HA95 complex. This coincides with Ser and Thr phosphorylation of HA95 and LAP2beta. Inhibition of PKA with PKI abolishes phosphorylation of HA95 and dissociation of LAP2beta from HA95, although LAPbeta remains phosphorylated. Antagonizing cAMP signaling in mitotic extract also abolishes the release of LAP2beta from HA95; however, disrupting PKA anchoring to A-kinase anchoring proteins has no effect. Inhibition of CDK activity in the extract greatly reduces LAP2beta phosphorylation but does not prevent LAP2beta release from HA95. Inhibition of PKC, MAP kinase, or CaM kinase II does not affect mitotic extract-induced dissociation of LAP2beta from HA95. PKA phosphorylates HA95 but not LAP2beta in vitro and elicits a release of LAP2beta from HA95. CDK1 or PKC phosphorylates LAP2beta within the HA95 complex, but neither kinase induces LAP2beta release. Our results indicate that in vitro, the interaction between HA95 and LAP2beta is influenced by a PKA-mediated phosphorylation of HA95 rather than by CDK1- or PKC-mediated phosphorylation of LAP2beta. This suggests an additional level of regulation of a chromatin-nuclear envelope interaction in dividing cells.

  15. Matefin/SUN-1 Phosphorylation Is Part of a Surveillance Mechanism to Coordinate Chromosome Synapsis and Recombination with Meiotic Progression and Chromosome Movement

    PubMed Central

    Woglar, Alexander; Daryabeigi, Anahita; Adamo, Adele; Habacher, Cornelia; Machacek, Thomas; La Volpe, Adriana; Jantsch, Verena

    2013-01-01

    Faithful chromosome segregation during meiosis I depends on the establishment of a crossover between homologous chromosomes. This requires induction of DNA double-strand breaks (DSBs), alignment of homologs, homolog association by synapsis, and repair of DSBs via homologous recombination. The success of these events requires coordination between chromosomal events and meiotic progression. The conserved SUN/KASH nuclear envelope bridge establishes transient linkages between chromosome ends and cytoskeletal forces during meiosis. In Caenorhabditis elegans, this bridge is essential for bringing homologs together and preventing nonhomologous synapsis. Chromosome movement takes place during synapsis and recombination. Concomitant with the onset of chromosome movement, SUN-1 clusters at chromosome ends associated with the nuclear envelope, and it is phosphorylated in a chk-2- and plk-2-dependent manner. Identification of all SUN-1 phosphomodifications at its nuclear N terminus allowed us to address their role in prophase I. Failures in recombination and synapsis led to persistent phosphorylations, which are required to elicit a delay in progression. Unfinished meiotic tasks elicited sustained recruitment of PLK-2 to chromosome ends in a SUN-1 phosphorylation–dependent manner that is required for continued chromosome movement and characteristic of a zygotene arrest. Furthermore, SUN-1 phosphorylation supported efficient synapsis. We propose that signals emanating from a failure to successfully finish meiotic tasks are integrated at the nuclear periphery to regulate chromosome end–led movement and meiotic progression. The single unsynapsed X chromosome in male meiosis is precluded from inducing a progression delay, and we found it was devoid of a population of phosphorylated SUN-1. This suggests that SUN-1 phosphorylation is critical to delaying meiosis in response to perturbed synapsis. SUN-1 may be an integral part of a checkpoint system to monitor establishment of the obligate crossover, inducible only in leptotene/zygotene. Unrepaired DSBs and unsynapsed chromosomes maintain this checkpoint, but a crossover intermediate is necessary to shut it down. PMID:23505384

  16. An impact source localization technique for a nuclear power plant by using sensors of different types.

    PubMed

    Choi, Young-Chul; Park, Jin-Ho; Choi, Kyoung-Sik

    2011-01-01

    In a nuclear power plant, a loose part monitoring system (LPMS) provides information on the location and the mass of a loosened or detached metal impacted onto the inner surface of the primary pressure boundary. Typically, accelerometers are mounted on the surface of a reactor vessel to localize the impact location caused by the impact of metallic substances on the reactor system. However, in some cases, the number of accelerometers is not sufficient to estimate the impact location precisely. In such a case, one of useful methods is to utilize other types of sensor that can measure the vibration of the reactor structure. For example, acoustic emission (AE) sensors are installed on the reactor structure to detect leakage or cracks on the primary pressure boundary. However, accelerometers and AE sensors have a different frequency range. The frequency of interest of AE sensors is higher than that of accelerometers. In this paper, we propose a method of impact source localization by using both accelerometer signals and AE signals, simultaneously. The main concept of impact location estimation is based on the arrival time difference of the impact stress wave between different sensor locations. However, it is difficult to find the arrival time difference between sensors, because the primary frequency ranges of accelerometers and AE sensors are different. To overcome the problem, we used phase delays of an envelope of impact signals. This is because the impact signals from the accelerometer and the AE sensor are similar in the whole shape (envelope). To verify the proposed method, we have performed experiments for a reactor mock-up model and a real nuclear power plant. The experimental results demonstrate that we can enhance the reliability and precision of the impact source localization. Therefore, if the proposed method is applied to a nuclear power plant, we can obtain the effect of additional installed sensors. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  17. Evolutionary gradient of predicted nuclear localization signals (NLS)-bearing proteins in genomes of family Planctomycetaceae.

    PubMed

    Guo, Min; Yang, Ruifu; Huang, Chen; Liao, Qiwen; Fan, Guangyi; Sun, Chenghang; Lee, Simon Ming-Yuen

    2017-04-04

    The nuclear envelope is considered a key classification marker that distinguishes prokaryotes from eukaryotes. However, this marker does not apply to the family Planctomycetaceae, which has intracellular spaces divided by lipidic intracytoplasmic membranes (ICMs). Nuclear localization signal (NLS), a short stretch of amino acid sequence, destines to transport proteins from cytoplasm into nucleus, and is also associated with the development of nuclear envelope. We attempted to investigate the NLS motifs in Planctomycetaceae genomes to demonstrate the potential molecular transition in the development of intracellular membrane system. In this study, we identified NLS-like motifs that have the same amino acid compositions as experimentally identified NLSs in genomes of 11 representative species of family Planctomycetaceae. A total of 15 NLS types and 170 NLS-bearing proteins were detected in the 11 strains. To determine the molecular transformation, we compared NLS-bearing protein abundances in the 11 representative Planctomycetaceae genomes with them in genomes of 16 taxonomically varied microorganisms: nine bacteria, two archaea and five fungi. In the 27 strains, 29 NLS types and 1101 NLS-bearing proteins were identified, principal component analysis showed a significant transitional gradient from bacteria to Planctomycetaceae to fungi on their NLS-bearing protein abundance profiles. Then, we clustered the 993 non-redundant NLS-bearing proteins into 181 families and annotated their involved metabolic pathways. Afterwards, we aligned the ten types of NLS motifs from the 13 families containing NLS-bearing proteins among bacteria, Planctomycetaceae or fungi, considering their diversity, length and origin. A transition towards increased complexity from non-planctomycete bacteria to Planctomycetaceae to archaea and fungi was detected based on the complexity of the 10 types of NLS-like motifs in the 13 NLS-bearing proteins families. The results of this study reveal that Planctomycetaceae separates slightly from the members of non-planctomycete bacteria but still has substantial differences from fungi, based on the NLS-like motifs and NLS-bearing protein analysis.

  18. Fluorescence anisotropy reveals order and disorder of protein domains in the nuclear pore complex.

    PubMed

    Mattheyses, Alexa L; Kampmann, Martin; Atkinson, Claire E; Simon, Sanford M

    2010-09-22

    We present a new approach for studying individual protein domains within the nuclear pore complex (NPC) using fluorescence polarization microscopy. The NPC is a large macromolecular complex, the size and complexity of which presents experimental challenges. Using fluorescence anisotropy and exploiting the symmetry of the NPC and its organization in the nuclear envelope, we have resolved order and disorder of individual protein domains. Fluorescently tagging specific domains of individual nucleoporins revealed both rigid and flexible domains: the tips of the FG domains are disordered, whereas the NPC-anchored domains are ordered. Our technique allows the collection of structural information in vivo, providing the ability to probe the organization of protein domains within the NPC. This has particular relevance for the FG domain nucleoporins, which are crucial for nucleocytoplasmic transport. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Electrical detection of nuclear spins in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.

    2014-03-01

    We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myllys, Markko; Ruokolainen, Visa; Aho, Vesa

    Lytic infection with herpes simplex virus type 1 (HSV-1) induces profound modification of the cell nucleus including formation of a viral replication compartment and chromatin marginalization into the nuclear periphery. Here, we used three-dimensional soft X-ray tomography, combined with cryogenic fluorescence, confocal and electron microscopy, to analyse the transformation of peripheral chromatin during HSV-1 infection. Our data showed an increased presence of low-density gaps in the marginalized chromatin at late infection. Advanced data analysis indicated the formation of virus-nucleocapsid-sized (or wider) channels extending through the compacted chromatin of the host. Importantly, confocal and electron microscopy analysis showed that these gapsmore » frequently contained viral nucleocapsids. Our results demonstrated that HSV-1 infection induces the formation of channels penetrating the compacted layer of cellular chromatin and allowing for the passage of progeny viruses to the nuclear envelope, their site of nuclear egress.« less

  1. In situ architecture of the algal nuclear pore complex.

    PubMed

    Mosalaganti, Shyamal; Kosinski, Jan; Albert, Sahradha; Schaffer, Miroslava; Strenkert, Daniela; Salomé, Patrice A; Merchant, Sabeeha S; Plitzko, Jürgen M; Baumeister, Wolfgang; Engel, Benjamin D; Beck, Martin

    2018-06-18

    Nuclear pore complexes (NPCs) span the nuclear envelope and mediate nucleocytoplasmic exchange. They are a hallmark of eukaryotes and deeply rooted in the evolutionary origin of cellular compartmentalization. NPCs have an elaborate architecture that has been well studied in vertebrates. Whether this architecture is unique or varies significantly in other eukaryotic kingdoms remains unknown, predominantly due to missing in situ structural data. Here, we report the architecture of the algal NPC from the early branching eukaryote Chlamydomonas reinhardtii and compare it to the human NPC. We find that the inner ring of the Chlamydomonas NPC has an unexpectedly large diameter, and the outer rings exhibit an asymmetric oligomeric state that has not been observed or predicted previously. Our study provides evidence that the NPC is subject to substantial structural variation between species. The divergent and conserved features of NPC architecture provide insights into the evolution of the nucleocytoplasmic transport machinery.

  2. Herpes simplex virus 1 induces egress channels through marginalized host chromatin

    DOE PAGES

    Myllys, Markko; Ruokolainen, Visa; Aho, Vesa; ...

    2016-06-28

    Lytic infection with herpes simplex virus type 1 (HSV-1) induces profound modification of the cell nucleus including formation of a viral replication compartment and chromatin marginalization into the nuclear periphery. Here, we used three-dimensional soft X-ray tomography, combined with cryogenic fluorescence, confocal and electron microscopy, to analyse the transformation of peripheral chromatin during HSV-1 infection. Our data showed an increased presence of low-density gaps in the marginalized chromatin at late infection. Advanced data analysis indicated the formation of virus-nucleocapsid-sized (or wider) channels extending through the compacted chromatin of the host. Importantly, confocal and electron microscopy analysis showed that these gapsmore » frequently contained viral nucleocapsids. Our results demonstrated that HSV-1 infection induces the formation of channels penetrating the compacted layer of cellular chromatin and allowing for the passage of progeny viruses to the nuclear envelope, their site of nuclear egress.« less

  3. Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Naoyuki; Department of Molecular Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934; Kobayashi, Masahiko

    The Ran GTPase system regulates the direction and timing of several cellular events, such as nuclear-cytosolic transport, centrosome formation, and nuclear envelope assembly in telophase. To gain insight into the Ran system's involvement in chromatin formation, we investigated gene silencing at the telomere in several mutants of the budding yeast Saccharomyces cerevisiae, which had defects in genes involved in the Ran system. A mutation of the RanGAP gene, rna1-1, caused reduced silencing at the telomere, and partial disruption of the nuclear Ran binding factor, yrb2-{delta}2, increased this silencing. The reduced telomere silencing in rna1-1 cells was suppressed by a highmore » dosage of the SIR3 gene or the SIT4 gene. Furthermore, hyperphosphorylated Sir3 protein accumulated in the rna1-1 mutant. These results suggest that RanGAP is required for the heterochromatin structure at the telomere in budding yeast.« less

  4. An integrated mechanism of cardiomyocyte nuclear Ca(2+) signaling.

    PubMed

    Ibarra, Cristián; Vicencio, Jose Miguel; Varas-Godoy, Manuel; Jaimovich, Enrique; Rothermel, Beverly A; Uhlén, Per; Hill, Joseph A; Lavandero, Sergio

    2014-10-01

    In cardiomyocytes, Ca(2+) plays a central role in governing both contraction and signaling events that regulate gene expression. Current evidence indicates that discrimination between these two critical functions is achieved by segregating Ca(2+) within subcellular microdomains: transcription is regulated by Ca(2+) release within nuclear microdomains, and excitation-contraction coupling is regulated by cytosolic Ca(2+). Accordingly, a variety of agonists that control cardiomyocyte gene expression, such as endothelin-1, angiotensin-II or insulin-like growth factor-1, share the feature of triggering nuclear Ca(2+) signals. However, signaling pathways coupling surface receptor activation to nuclear Ca(2+) release, and the phenotypic responses to such signals, differ between agonists. According to earlier hypotheses, the selective control of nuclear Ca(2+) signals by activation of plasma membrane receptors relies on the strategic localization of inositol trisphosphate receptors at the nuclear envelope. There, they mediate Ca(2+) release from perinuclear Ca(2+) stores upon binding of inositol trisphosphate generated in the cytosol, which diffuses into the nucleus. More recently, identification of such receptors at nuclear membranes or perinuclear sarcolemmal invaginations has uncovered novel mechanisms whereby agonists control nuclear Ca(2+) release. In this review, we discuss mechanisms for the selective control of nuclear Ca(2+) signals with special focus on emerging models of agonist receptor activation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Protein Sub-Nuclear Localization Prediction Using SVM and Pfam Domain Information

    PubMed Central

    Kumar, Ravindra; Jain, Sohni; Kumari, Bandana; Kumar, Manish

    2014-01-01

    The nucleus is the largest and the highly organized organelle of eukaryotic cells. Within nucleus exist a number of pseudo-compartments, which are not separated by any membrane, yet each of them contains only a specific set of proteins. Understanding protein sub-nuclear localization can hence be an important step towards understanding biological functions of the nucleus. Here we have described a method, SubNucPred developed by us for predicting the sub-nuclear localization of proteins. This method predicts protein localization for 10 different sub-nuclear locations sequentially by combining presence or absence of unique Pfam domain and amino acid composition based SVM model. The prediction accuracy during leave-one-out cross-validation for centromeric proteins was 85.05%, for chromosomal proteins 76.85%, for nuclear speckle proteins 81.27%, for nucleolar proteins 81.79%, for nuclear envelope proteins 79.37%, for nuclear matrix proteins 77.78%, for nucleoplasm proteins 76.98%, for nuclear pore complex proteins 88.89%, for PML body proteins 75.40% and for telomeric proteins it was 83.33%. Comparison with other reported methods showed that SubNucPred performs better than existing methods. A web-server for predicting protein sub-nuclear localization named SubNucPred has been established at http://14.139.227.92/mkumar/subnucpred/. Standalone version of SubNucPred can also be downloaded from the web-server. PMID:24897370

  6. The Metabolite Transporters of the Plastid Envelope: An Update

    PubMed Central

    Facchinelli, Fabio; Weber, Andreas P. M.

    2011-01-01

    The engulfment of a photoautotrophic cyanobacterium by a primitive mitochondria-bearing eukaryote traces back to more than 1.2 billion years ago. This single endosymbiotic event not only provided the early petroalgae with the metabolic capacity to perform oxygenic photosynthesis, but also introduced a plethora of other metabolic routes ranging from fatty acids and amino acids biosynthesis, nitrogen and sulfur assimilation to secondary compounds synthesis. This implicated the integration and coordination of the newly acquired metabolic entity with the host metabolism. The interface between the host cytosol and the plastidic stroma became of crucial importance in sorting precursors and products between the plastid and other cellular compartments. The plastid envelope membranes fulfill different tasks: they perform important metabolic functions, as they are involved in the synthesis of carotenoids, chlorophylls, and galactolipids. In addition, since most genes of cyanobacterial origin have been transferred to the nucleus, plastidial proteins encoded by nuclear genes are post-translationally transported across the envelopes through the TIC–TOC import machinery. Most importantly, chloroplasts supply the photoautotrophic cell with photosynthates in form of reduced carbon. The innermost bilayer of the plastidic envelope represents the permeability barrier for the metabolites involved in the carbon cycle and is literally stuffed with transporter proteins facilitating their transfer. The intracellular metabolite transporters consist of polytopic proteins containing membrane spans usually in the number of four or more α-helices. Phylogenetic analyses revealed that connecting the plastid with the host metabolism was mainly a process driven by the host cell. In Arabidopsis, 58% of the metabolite transporters are of host origin, whereas only 12% are attributable to the cyanobacterial endosymbiont. This review focuses on the metabolite transporters of the inner envelope membrane of plastids, in particular the electrochemical potential-driven class of transporters. Recent advances in elucidating the plastidial complement of metabolite transporters are provided, with an update on phylogenetic relationship of selected proteins. PMID:22645538

  7. Hormone- and light-regulated nucleocytoplasmic transport in plants: current status.

    PubMed

    Lee, Yew; Lee, Hak-Soo; Lee, June-Seung; Kim, Seong-Ki; Kim, Soo-Hwan

    2008-01-01

    The gene regulation mechanisms underlying hormone- and light-induced signal transduction in plants rely not only on post-translational modification and protein degradation, but also on selective inclusion and exclusion of proteins from the nucleus. For example, plant cells treated with light or hormones actively transport many signalling regulatory proteins, transcription factors, and even photoreceptors and hormone receptors into the nucleus, while actively excluding other proteins. The nuclear envelope (NE) is the physical and functional barrier that mediates this selective partitioning, and nuclear transport regulators transduce hormone- or light-initiated signalling pathways across the membrane to mediate nuclear activities. Recent reports revealed that mutating the proteins regulating nuclear transport through the pores, such as nucleoporins, alters the plant's response to a stimulus. In this review, recent works are introduced that have revealed the importance of regulated nucleocytoplasmic partitioning. These important findings deepen our understanding about how co-ordinated plant hormone and light signal transduction pathways facilitate communication between the cytoplasm and the nucleus. The roles of nucleoporin components within the nuclear pore complex (NPC) are also emphasized, as well as nuclear transport cargo, such as Ran/TC4 and its binding proteins (RanBPs), in this process. Recent findings concerning these proteins may provide a possible direction by which to characterize the regulatory potential of hormone- or light-triggered nuclear transport.

  8. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margutti, Raffaella; Kamble, A.; Milisavljevic, D.

    2017-02-01

    We present multi-wavelength observations of SN 2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays ∼40 keV. SN 2014C shows ordinary explosion parameters ( E {sub k} ∼ 1.8 × 10{sup 51} erg and M {sub ej} ∼ 1.7 M{sub ⊙}). However, over an ∼1 year timescale, SN 2014C evolved from an ordinary hydrogen-poor supernova into a strongly interacting, hydrogen-rich supernova, violating the traditional classification scheme of type-I versus type-II SNe. Signatures of the SN shock interaction with a dense medium are observed across the spectrum,more » from radio to hard X-rays, and revealed the presence of a massive shell of ∼1 M {sub ⊙} of hydrogen-rich material at ∼6 × 10{sup 16} cm. The shell was ejected by the progenitor star in the decades to centuries before collapse. This result challenges current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last nuclear burning stages as potential triggers of the highly time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN 2014C-like signatures in ∼10% of SNe. This fraction is reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution if the ejected material can survive in the close environment for 10{sup 3}–10{sup 4} years. Alternatively, nuclear burning instabilities extending to core C-burning might play a critical role.« less

  9. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope.

    PubMed

    Tsai, Shang-Yi A; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-Fei; Xi, Zheng-Xiong; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-11-24

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal.

  10. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope

    PubMed Central

    Tsai, Shang-Yi A.; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-fei; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-01-01

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER–mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal. PMID:26554014

  11. OPTESIM, a Versatile Toolbox for Numerical Simulation of Electron Spin Echo Envelope Modulation (ESEEM) that Features Hybrid Optimization and Statistical Assessment of Parameters

    PubMed Central

    Sun, Li; Hernandez-Guzman, Jessica; Warncke, Kurt

    2009-01-01

    Electron spin echo envelope modulation (ESEEM) is a technique of pulsed-electron paramagnetic resonance (EPR) spectroscopy. The analyis of ESEEM data to extract information about the nuclear and electronic structure of a disordered (powder) paramagnetic system requires accurate and efficient numerical simulations. A single coupled nucleus of known nuclear g value (gN) and spin I=1 can have up to eight adjustable parameters in the nuclear part of the spin Hamiltonian. We have developed OPTESIM, an ESEEM simulation toolbox, for automated numerical simulation of powder two- and three-pulse one-dimensional ESEEM for arbitrary number (N) and type (I, gN) of coupled nuclei, and arbitrary mutual orientations of the hyperfine tensor principal axis systems for N>1. OPTESIM is based in the Matlab environment, and includes the following features: (1) a fast algorithm for translation of the spin Hamiltonian into simulated ESEEM, (2) different optimization methods that can be hybridized to achieve an efficient coarse-to-fine grained search of the parameter space and convergence to a global minimum, (3) statistical analysis of the simulation parameters, which allows the identification of simultaneous confidence regions at specific confidence levels. OPTESIM also includes a geometry-preserving spherical averaging algorithm as default for N>1, and global optimization over multiple experimental conditions, such as the dephasing time ( ) for three-pulse ESEEM, and external magnetic field values. Application examples for simulation of 14N coupling (N=1, N=2) in biological and chemical model paramagnets are included. Automated, optimized simulations by using OPTESIM lead to a convergence on dramatically shorter time scales, relative to manual simulations. PMID:19553148

  12. Simulating aggregates of bivalents in 2n = 40 mouse meiotic spermatocytes through inhomogeneous site percolation processes.

    PubMed

    Berríos, Soledad; López Fenner, Julio; Maignan, Aude

    2018-06-19

    We show that an inhomogeneous Bernoulli site percolation process running upon a fullerene's dual [Formula: see text] can be used for representing bivalents attached to the nuclear envelope in mouse Mus M. Domesticus 2n = 40 meiotic spermatocytes during pachytene. It is shown that the induced clustering generated by overlapping percolation domains correctly reproduces the probability distribution observed in the experiments (data) after fine tuning the parameters.

  13. The solar Lithium problem: is the explanation due solely to mixing or also to the e-capture decay rate of 7Be?

    NASA Astrophysics Data System (ADS)

    Vescovi, Diego; Busso, Maurizio; Palmerini, Sara; Trippella, Oscar

    2018-01-01

    The nucleosynthesis of 7Li is one of the most crucial problems in nuclear as- trophysics, as its observations in several sites are hard to be explained. Concerning the Sun, the most common interpretations of the low Li abundance invoke either burning in early stages or non-convective mixing below the envelope. Here we apply a diffusive mechanism of mixing, together with a recent estimate of the rate for e-captures on 7Be, to establish whether the solar Li destruction should be attributed to purely pre-Main Se- quence (MS) nuclear processes or if the coupling of mixing and nucleosynthesis on the MS can account for it. Our preliminary results indicate that, whether Li survives the pre- MS phase, the changes of the 7Be e--capture rate do not affect its production/destruction. The low Li abundance should then depend only on diffusion processes from the bottom of the convective envelope to the lowerlying tachocline zone. We suggest that, if diffusive processes occurred over the age of the Sun, they required diffusive mass transfers of a few 10-13 M⊙/yr to explain the Li drop. This is a high estimate: future works will tell us if it is realistic or not. In this second case, pre-MS burning would remain the only alternative.

  14. The intriguing plant nuclear lamina.

    PubMed

    Ciska, Malgorzata; Moreno Díaz de la Espina, Susana

    2014-01-01

    The nuclear lamina is a complex protein mesh attached to the inner nuclear membrane (INM), which is also associated with nuclear pore complexes. It provides mechanical support to the nucleus and nuclear envelope, and as well as facilitating the connection of the nucleoskeleton to the cytoskeleton, it is also involved in chromatin organization, gene regulation, and signaling. In metazoans, the nuclear lamina consists of a polymeric layer of lamins and other interacting proteins responsible for its association with the INM and chromatin. In plants, field emission scanning electron microscopy of nuclei, and thin section transmission electron microscopy of isolated nucleoskeletons, reveals the lamina to have a similar structure to that of metazoans. Moreover, although plants lack lamin genes and the genes encoding most lamin-binding proteins, the main functions of the lamina are fulfilled in plants. Hence, it would appear that the plant lamina is not based on lamins and that other proteins substitute for lamins in plant cells. The nuclear matrix constituent proteins are the best characterized structural proteins in the plant lamina. Although these proteins do not display strong sequence similarity to lamins, their predicted secondary structure and sub-nuclear distribution, as well as their influence on nuclear size and shape, and on heterochromatin organization, suggest they could be functional lamin analogs. In this review we shall summarize what is currently known about the organization and composition of the plant nuclear lamina and its interacting complexes, and we will discuss the activity of this structure in the plant cell and its nucleus.

  15. Apoptosis leads to a degradation of vital components of active nuclear transport and a dissociation of the nuclear lamina.

    PubMed

    Kramer, A; Liashkovich, I; Oberleithner, H; Ludwig, S; Mazur, I; Shahin, V

    2008-08-12

    Apoptosis, a physiologically critical process, is characterized by a destruction of the cell after sequential degradation of key cellular components. Here, we set out to explore the fate of the physiologically indispensable nuclear envelope (NE) in this process. The NE mediates the critical nucleocytoplasmic transport through nuclear pore complexes (NPCs). In addition, the NE is involved in gene expression and contributes significantly to the overall structure and mechanical stability of the cell nucleus through the nuclear lamina, which underlies the entire nucleoplasmic face of the NE and thereby interconnects the NPCs, the NE, and the genomic material. Using the nano-imaging and mechanical probing approach atomic force microscopy (AFM) and biochemical methods, we unveiled the fate of the NE during apoptosis. The doomed NE sustains a degradation of both the mediators of the critical selective nucleocytoplasmic transport, namely NPC cytoplasmic filaments and basket, and the nuclear lamina. These observations are paralleled by marked softening and destabilization of the NE and the detection of vesicle-like nuclear fragments. We conclude that destruction of the cell nucleus during apoptosis proceeds in a strategic fashion. Degradation of NPC cytoplasmic filaments and basket shuts down the critical selective nucleocytoplasmic cross-talk. Degradation of the nuclear lamina disrupts the pivotal connection between the NE and the chromatin, breaks up the overall nuclear architecture, and softens the NE, thereby enabling the formation of nuclear fragments at later stages of apoptosis.

  16. RNA Nuclear Export: From Neurological Disorders to Cancer.

    PubMed

    Hautbergue, Guillaume M

    2017-01-01

    The presence of a nuclear envelope, also known as nuclear membrane, defines the structural framework of all eukaryotic cells by separating the nucleus, which contains the genetic material, from the cytoplasm where the synthesis of proteins takes place. Translation of proteins in Eukaryotes is thus dependent on the active transport of DNA-encoded RNA molecules through pores embedded within the nuclear membrane. Several mechanisms are involved in this process generally referred to as RNA nuclear export or nucleocytoplasmic transport of RNA. The regulated expression of genes requires the nuclear export of protein-coding messenger RNA molecules (mRNAs) as well as non-coding RNAs (ncRNAs) together with proteins and pre-assembled ribosomal subunits. The nuclear export of mRNAs is intrinsically linked to the co-transcriptional processing of nascent transcripts synthesized by the RNA polymerase II. This functional coupling is essential for the survival of cells allowing for timely nuclear export of fully processed transcripts, which could otherwise cause the translation of abnormal proteins such as the polymeric repeat proteins produced in some neurodegenerative diseases. Alterations of the mRNA nuclear export pathways can also lead to genome instability and to various forms of cancer. This chapter will describe the molecular mechanisms driving the nuclear export of RNAs with a particular emphasis on mRNAs. It will also review their known alterations in neurological disorders and cancer, and the recent opportunities they offer for the potential development of novel therapeutic strategies.

  17. Characterization of a 65 kDa NIF in the nuclear matrix of the monocot Allium cepa that interacts with nuclear spectrin-like proteins.

    PubMed

    Pérez-Munive, Clara; Blumenthal, Sonal S D; de la Espina, Susana Moreno Díaz

    2012-01-01

    Plant cells have a well organized nucleus and nuclear matrix, but lack orthologues of the main structural components of the metazoan nuclear matrix. Although data is limited, most plant nuclear structural proteins are coiled-coil proteins, such as the NIFs (nuclear intermediate filaments) in Pisum sativum that cross-react with anti-intermediate filament and anti-lamin antibodies, form filaments 6-12 nm in diameter in vitro, and may play the role of lamins. We have investigated the conservation and features of NIFs in a monocot species, Allium cepa, and compared them with onion lamin-like proteins. Polyclonal antisera against the pea 65 kDa NIF were used in 1D and 2D Western blots, ICM (imunofluorescence confocal microscopy) and IEM (immunoelectron microscopy). Their presence in the nuclear matrix was analysed by differential extraction of nuclei, and their association with structural spectrin-like proteins by co-immunoprecipitation and co-localization in ICM. NIF is a conserved structural component of the nucleus and its matrix in monocots with Mr and pI values similar to those of pea 65 kDa NIF, which localized to the nuclear envelope, perichromatin domains and foci, and to the nuclear matrix, interacting directly with structural nuclear spectrin-like proteins. Its similarities with some of the proteins described as onion lamin-like proteins suggest that they are highly related or perhaps the same proteins.

  18. Sun-mediated mechanical LINC between nucleus and cytoskeleton regulates βcatenin nuclear access.

    PubMed

    Uzer, Gunes; Bas, Guniz; Sen, Buer; Xie, Zhihui; Birks, Scott; Olcum, Melis; McGrath, Cody; Styner, Maya; Rubin, Janet

    2018-06-06

    βcatenin acts as a primary intracellular signal transducer for mechanical and Wnt signaling pathways to control cell function and fate. Regulation of βcatenin in the cytoplasm has been well studied but βcatenin nuclear trafficking and function remains unclear. In a previous study we showed that, in mesenchymal stem cells (MSC), mechanical blockade of adipogenesis relied on inhibition of βcatenin destruction complex element GSK3β (glycogen synthase kinase 3β) to increase nuclear βcatenin as well as the function of Linker of Cytoskeleton and Nucleoskeleton (LINC) complexes, suggesting that these two mechanisms may be linked. Here we show that shortly after inactivation of GSK3β due to either low intensity vibration (LIV), substrate strain or pharmacologic inhibition, βcatenin associates with the nucleoskeleton, defined as the insoluble nuclear fraction that provides structure to the integrated nuclear envelope, nuclear lamina and chromatin. Co-depleting LINC elements Sun-1 and Sun-2 interfered with both nucleoskeletal association and nuclear entry of βcatenin, resulting in decreased nuclear βcatenin levels. Our findings reveal that the insoluble structural nucleoskeleton actively participates in βcatenin dynamics. As the cytoskeleton transmits applied mechanical force to the nuclear surface to influence the nucleoskeleton and its LINC mediated interaction, our results suggest a pathway by which LINC mediated connectivity may play a role in signaling pathways that depend on nuclear access of βcatenin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Deep nuclear invaginations are linked to cytoskeletal filaments – integrated bioimaging of epithelial cells in 3D culture

    PubMed Central

    Inman, Jamie L.; Wojcik, Michal; Robertson, Claire; Tsai, Wen-Ting; Huang, Haina; Bruni-Cardoso, Alexandre; López, Claudia S.; Bissell, Mina J.; Xu, Ke

    2017-01-01

    ABSTRACT The importance of context in regulation of gene expression is now an accepted principle; yet the mechanism by which the microenvironment communicates with the nucleus and chromatin in healthy tissues is poorly understood. A functional role for nuclear and cytoskeletal architecture is suggested by the phenotypic differences observed between epithelial and mesenchymal cells. Capitalizing on recent advances in cryogenic techniques, volume electron microscopy and super-resolution light microscopy, we studied human mammary epithelial cells in three-dimensional (3D) cultures forming growth-arrested acini. Intriguingly, we found deep nuclear invaginations and tunnels traversing the nucleus, encasing cytoskeletal actin and/or intermediate filaments, which connect to the outer nuclear envelope. The cytoskeleton is also connected both to other cells through desmosome adhesion complexes and to the extracellular matrix through hemidesmosomes. This finding supports a physical and/or mechanical link from the desmosomes and hemidesmosomes to the nucleus, which had previously been hypothesized but now is visualized for the first time. These unique structures, including the nuclear invaginations and the cytoskeletal connectivity to the cell nucleus, are consistent with a dynamic reciprocity between the nucleus and the outside of epithelial cells and tissues. PMID:27505896

  20. Methods to Monitor DNA Repair Defects and Genomic Instability in the Context of a Disrupted Nuclear Lamina.

    PubMed

    Gonzalo, Susana; Kreienkamp, Ray

    2016-01-01

    The organization of the genome within the nuclear space is viewed as an additional level of regulation of genome function, as well as a means to ensure genome integrity. Structural proteins associated with the nuclear envelope, in particular lamins (A- and B-type) and lamin-associated proteins, play an important role in genome organization. Interestingly, there is a whole body of evidence that links disruptions of the nuclear lamina with DNA repair defects and genomic instability. Here, we describe a few standard techniques that have been successfully utilized to identify mechanisms behind DNA repair defects and genomic instability in cells with an altered nuclear lamina. In particular, we describe protocols to monitor changes in the expression of DNA repair factors (Western blot) and their recruitment to sites of DNA damage (immunofluorescence); kinetics of DNA double-strand break repair after ionizing radiation (neutral comet assays); frequency of chromosomal aberrations (FISH, fluorescence in situ hybridization); and alterations in telomere homeostasis (Quantitative-FISH). These techniques have allowed us to shed some light onto molecular mechanisms by which alterations in A-type lamins induce genomic instability, which could contribute to the pathophysiology of aging and aging-related diseases.

  1. The arginine methyltransferase Rmt2 is enriched in the nucleus and co-purifies with the nuclear porins Nup49, Nup57 and Nup100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsson, Ida; Berrez, Jean-Marc; Leipus, Arunas

    2007-05-15

    Arginine methylation is a post-translational modification of proteins implicated in RNA processing, protein compartmentalization, signal transduction, transcriptional regulation and DNA repair. In a screen for proteins associated with the nuclear envelope in the yeast Saccharomyces cerevisiae, we have identified the arginine methyltransferase Rmt2, previously shown to methylate the ribosomal protein L12. By indirect immunofluorescence and subcellular fractionations we demonstrate here that Rmt2 has nuclear and cytoplasmic localizations. Biochemical analysis of a fraction enriched in nuclei reveals that nuclear Rmt2 is resistant to extractions with salt and detergent, indicating an association with structural components. This was supported by affinity purification experimentsmore » with TAP-tagged Rmt2. Rmt2 was found to co-purify with the nucleoporins Nup49, Nup57 and Nup100, revealing a novel link between arginine methyltransferases and the nuclear pore complex. In addition, a genome-wide transcription study of the rmt2{delta} mutant shows significant downregulation of the transcription of MYO1, encoding the Type II myosin heavy chain required for cytokinesis and cell separation.« less

  2. Deep nuclear invaginations are linked to cytoskeletal filaments – integrated bioimaging of epithelial cells in 3D culture

    DOE PAGES

    Jorgens, Danielle M.; Inman, Jamie L.; Wojcik, Michal; ...

    2016-08-05

    The importance of context in regulation of gene expression is now an accepted principle; yet the mechanism by which the microenvironment communicates with the nucleus and chromatin in healthy tissues is poorly understood. A functional role for nuclear and cytoskeletal architecture is suggested by the phenotypic differences observed between epithelial and mesenchymal cells. Capitalizing on recent advances in cryogenic techniques, volume electron microscopy and super-resolution light microscopy, we studied human mammary epithelial cells in three-dimensional (3D) cultures forming growtharrested acini. Intriguingly, we found deep nuclear invaginations and tunnels traversing the nucleus, encasing cytoskeletal actin and/or intermediate filaments, which connect tomore » the outer nuclear envelope. Also, the cytoskeleton is connected both to other cells through desmosome adhesion complexes and to the extracellular matrix through hemidesmosomes. This finding supports a physical and/or mechanical link from the desmosomes and hemidesmosomes to the nucleus, which had previously been hypothesized but now is visualized for the first time. These unique structures, including the nuclear invaginations and the cytoskeletal connectivity to the cell nucleus, are consistent with a dynamic reciprocity between the nucleus and the outside of epithelial cells and tissues.« less

  3. Antigen 85C Inhibition Restricts Mycobacterium tuberculosis Growth through Disruption of Cord Factor Biosynthesis

    PubMed Central

    Warrier, Thulasi; Tropis, Marielle; Werngren, Jim; Diehl, Anne; Gengenbacher, Martin; Schlegel, Brigitte; Schade, Markus; Oschkinat, Hartmut; Daffe, Mamadou; Hoffner, Sven; Eddine, Ali Nasser

    2012-01-01

    The antigen 85 (Ag85) protein family, consisting of Ag85A, -B, and -C, is vital for Mycobacterium tuberculosis due to its role in cell envelope biogenesis. The mycoloyl transferase activity of these proteins generates trehalose dimycolate (TDM), an envelope lipid essential for M. tuberculosis virulence, and cell wall arabinogalactan-linked mycolic acids. Inhibition of these enzymes through substrate analogs hinders growth of mycobacteria, but a link to mycolic acid synthesis has not been established. In this study, we characterized a novel inhibitor of Ag85C, 2-amino-6-propyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile (I3-AG85). I3-AG85 was isolated from a panel of four inhibitors that exhibited structure- and dose-dependent inhibition of M. tuberculosis division in broth culture. I3-AG85 also inhibited M. tuberculosis survival in infected primary macrophages. Importantly, it displayed an identical MIC against the drug-susceptible H37Rv reference strain and a panel of extensively drug-resistant/multidrug-resistant M. tuberculosis strains. Nuclear magnetic resonance analysis indicated binding of I3-AG85 to Ag85C, similar to its binding to the artificial substrate octylthioglucoside. Quantification of mycolic acid-linked lipids of the M. tuberculosis envelope showed a specific blockade of TDM synthesis. This was accompanied by accumulation of trehalose monomycolate, while the overall mycolic acid abundance remained unchanged. Inhibition of Ag85C activity also disrupted the integrity of the M. tuberculosis envelope. I3-AG85 inhibited the division of and reduced TDM synthesis in an M. tuberculosis strain deficient in Ag85C. Our results indicate that Ag85 proteins are promising targets for novel antimycobacterial drug design. PMID:22290959

  4. The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts.

    PubMed

    Nakai, Masato

    2015-09-01

    Chloroplasts must import thousands of nuclear-encoded preproteins synthesized in the cytosol through two successive protein translocons at the outer and inner envelope membranes, termed TOC and TIC, respectively, to fulfill their complex physiological roles. The molecular identity of the TIC translocon had long remained controversial; two proteins, namely Tic20 and Tic110, had been proposed to be central to protein translocation across the inner envelope membrane. Tic40 also had long been considered to be another central player in this process. However, recently, a novel 1-megadalton complex consisting of Tic20, Tic56, Tic100, and Tic214 was identified at the chloroplast inner membrane of Arabidopsis and was demonstrated to constitute a general TIC translocon which functions in concert with the well-characterized TOC translocon. On the other hand, direct interaction between this novel TIC transport system and Tic110 or Tic40 was hardly observed. Consequently, the molecular model for protein translocation across the inner envelope membrane of chloroplasts might need to be extensively revised. In this review article, I intend to propose such alternative view regarding the TIC transport system in contradistinction to the classical view. I also would emphasize importance of reevaluation of previous works in terms of with what methods these classical Tic proteins such as Tic110 or Tic40 were picked up as TIC constituents at the very beginning as well as what actual evidence there were to support their direct and specific involvement in chloroplast protein import. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Three-dimensional simulations of turbulent convective mixing in ONe and CO classical nova explosions

    DOE PAGES

    Casanova, Jordi; José, Jordi; García-Berro, Enrique; ...

    2016-10-25

    Classical novae are thermonuclear explosions that take place in the envelopes of accreting white dwarfs in binary systems. The material piles up under degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures of ~(1-4) × 10 8 K. During these events, about 10 -3-10 -7 M ⊙, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, Al) are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, the high concentrations of metalsmore » spectroscopically inferred in the ejecta), models require mixing between the (solar-like) material transferred from the secondary and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Recent multidimensional simulations have demonstrated that Kelvin-Helmholtz instabilities can naturally produce self-enrichment of the accreted envelope with material from the underlying white dwarf at levels that agree with observations. However, the feasibility of this mechanism has been explored in the framework of CO white dwarfs, while mixing with different substrates still needs to be properly addressed. We performed three-dimensional simulations of mixing at the core-envelope interface during nova outbursts with the multidimensional code FLASH, for two types of substrates: CO- and ONe-rich. We also show that the presence of an ONe-rich substrate, as in “neon novae”, yields higher metallicity enhancements in the ejecta than CO-rich substrates (i.e., non-neon novae). Finally, a number of requirements and constraints for such 3D simulations (e.g., minimum resolution, size of the computational domain) are also outlined.« less

  6. Mixing in classical novae: a 2-D sensitivity study

    NASA Astrophysics Data System (ADS)

    Casanova, J.; José, J.; García-Berro, E.; Calder, A.; Shore, S. N.

    2011-03-01

    Context. Classical novae are explosive phenomena that take place in stellar binary systems. They are powered by mass transfer from a low-mass, main sequence star onto a white dwarf. The material piles up under degenerate conditions and a thermonuclear runaway ensues. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures of ~(1-4) × 108 K. During these events, about 10-4-10-5M⊙, enriched in CNO and other intermediate-mass elements, are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, a metallicity enhancement in the ejecta above solar values), numerical models assume mixing between the (solar-like) material transferred from the companion and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Aims: The nature of the mixing mechanism that operates at the core-envelope interface has puzzled stellar modelers for about 40 years. Here we investigate the role of Kelvin-Helmholtz instabilities as a natural mechanism for self-enrichment of the accreted envelope with core material. Methods: The feasibility of this mechanism is studied by means of the multidimensional code FLASH. Here, we present a series of 9 numerical simulations perfomed in two dimensions aimed at testing the possible influence of the initial perturbation (duration, strength, location, and size), the resolution adopted, or the size of the computational domain on the results. Results: We show that results do not depend substantially on the specific choice of these parameters, demonstrating that Kelvin-Helmholtz instabilities can naturally lead to self-enrichment of the accreted envelope with core material, at levels that agree with observations. Movie is only available in electronic form at http://www.aanda.org

  7. P and S wave Coda Calibration in Central Asia and South Korea

    NASA Astrophysics Data System (ADS)

    Kim, D.; Mayeda, K.; Gok, R.; Barno, J.; Roman-Nieves, J. I.

    2017-12-01

    Empirically derived coda source spectra provide unbiased, absolute moment magnitude (Mw) estimates for events that are normally too small for accurate long-period waveform modeling. In this study, we obtain coda-derived source spectra using data from Central Asia (Kyrgyzstan networks - KN and KR, and Tajikistan - TJ) and South Korea (Korea Meteorological Administration, KMA). We used a recently developed coda calibration module of Seismic WaveForm Tool (SWFT). Seismic activities during this recording period include the recent Gyeongju earthquake of Mw=5.3 and its aftershocks, two nuclear explosions from 2009 and 2013 in North Korea, and a small number of construction and mining-related explosions. For calibration, we calculated synthetic coda envelopes for both P and S waves based on a simple analytic expression that fits the observed narrowband filtered envelopes using the method outlined in Mayeda et al. (2003). To provide an absolute scale of the resulting source spectra, path and site corrections are applied using independent spectral constraints (e.g., Mw and stress drop) from three Kyrgyzstan events and the largest events of the Gyeongju sequence in Central Asia and South Korea, respectively. In spite of major tectonic differences, stable source spectra were obtained in both regions. We validated the resulting spectra by comparing the ratio of raw envelopes and source spectra from calibrated envelopes. Spectral shapes of earthquakes and explosions show different patterns in both regions. We also find (1) the source spectra derived from S-coda is more robust than that from the P-coda at low frequencies; (2) unlike earthquake events, the source spectra of explosions have a large disagreement between P and S waves; and (3) similarity is observed between 2016 Gyeongju and 2011 Virginia earthquake sequence in the eastern U.S.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgens, Danielle M.; Inman, Jamie L.; Wojcik, Michal

    The importance of context in regulation of gene expression is now an accepted principle; yet the mechanism by which the microenvironment communicates with the nucleus and chromatin in healthy tissues is poorly understood. A functional role for nuclear and cytoskeletal architecture is suggested by the phenotypic differences observed between epithelial and mesenchymal cells. Capitalizing on recent advances in cryogenic techniques, volume electron microscopy and super-resolution light microscopy, we studied human mammary epithelial cells in three-dimensional (3D) cultures forming growtharrested acini. Intriguingly, we found deep nuclear invaginations and tunnels traversing the nucleus, encasing cytoskeletal actin and/or intermediate filaments, which connect tomore » the outer nuclear envelope. Also, the cytoskeleton is connected both to other cells through desmosome adhesion complexes and to the extracellular matrix through hemidesmosomes. This finding supports a physical and/or mechanical link from the desmosomes and hemidesmosomes to the nucleus, which had previously been hypothesized but now is visualized for the first time. These unique structures, including the nuclear invaginations and the cytoskeletal connectivity to the cell nucleus, are consistent with a dynamic reciprocity between the nucleus and the outside of epithelial cells and tissues.« less

  9. TorsinA dysfunction causes persistent neuronal nuclear pore defects.

    PubMed

    Pappas, Samuel S; Liang, Chun-Chi; Kim, Sumin; Rivera, CheyAnne O; Dauer, William T

    2018-02-01

    A critical challenge to deciphering the pathophysiology of neurodevelopmental disease is identifying which of the myriad abnormalities that emerge during CNS maturation persist to contribute to long-term brain dysfunction. Childhood-onset dystonia caused by a loss-of-function mutation in the AAA+ protein torsinA exemplifies this challenge. Neurons lacking torsinA develop transient nuclear envelope (NE) malformations during CNS maturation, but no NE defects are described in mature torsinA null neurons. We find that during postnatal CNS maturation torsinA null neurons develop mislocalized and dysfunctional nuclear pore complexes (NPC) that lack NUP358, normally added late in NPC biogenesis. SUN1, a torsinA-related molecule implicated in interphase NPC biogenesis, also exhibits localization abnormalities. Whereas SUN1 and associated nuclear membrane abnormalities resolve in juvenile mice, NPC defects persist into adulthood. These findings support a role for torsinA function in NPC biogenesis during neuronal maturation and implicate altered NPC function in dystonia pathophysiology. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Aged induced pluripotent stem cell (iPSCs) as a new cellular model for studying premature aging.

    PubMed

    Petrini, Stefania; Borghi, Rossella; D'Oria, Valentina; Restaldi, Fabrizia; Moreno, Sandra; Novelli, Antonio; Bertini, Enrico; Compagnucci, Claudia

    2017-05-31

    Nuclear integrity and mechanical stability of the nuclear envelope (NE) are conferred by the nuclear lamina, a meshwork of intermediate filaments composed of A- and B-type lamins, supporting the inner nuclear membrane and playing a pivotal role in chromatin organization and epigenetic regulation. During cell senescence, nuclear alterations also involving NE architecture are widely described. In the present study, we utilized induced pluripotent stem cells (iPSCs) upon prolonged in vitro culture as a model to study aging and investigated the organization and expression pattern of NE major constituents. Confocal and four-dimensional imaging combined with molecular analyses, showed that aged iPSCs are characterized by nuclear dysmorphisms, nucleoskeletal components (lamin A/C-prelamin isoforms, lamin B1, emerin, and nesprin-2) imbalance, leading to impaired nucleo-cytoplasmic MKL1 shuttling, actin polymerization defects, mitochondrial dysfunctions, SIRT7 downregulation and NF-kBp65 hyperactivation. The observed age-related NE features of iPSCs closely resemble those reported for premature aging syndromes (e.g., Hutchinson-Gilford progeria syndrome) and for somatic cell senescence. These findings validate the use of aged iPSCs as a suitable cellular model to study senescence and for investigating therapeutic strategies aimed to treat premature aging.

  11. Aged induced pluripotent stem cell (iPSCs) as a new cellular model for studying premature aging

    PubMed Central

    D'Oria, Valentina; Restaldi, Fabrizia; Moreno, Sandra; Novelli, Antonio; Bertini, Enrico; Compagnucci, Claudia

    2017-01-01

    Nuclear integrity and mechanical stability of the nuclear envelope (NE) are conferred by the nuclear lamina, a meshwork of intermediate filaments composed of A- and B-type lamins, supporting the inner nuclear membrane and playing a pivotal role in chromatin organization and epigenetic regulation. During cell senescence, nuclear alterations also involving NE architecture are widely described. In the present study, we utilized induced pluripotent stem cells (iPSCs) upon prolonged in vitro culture as a model to study aging and investigated the organization and expression pattern of NE major constituents. Confocal and four-dimensional imaging combined with molecular analyses, showed that aged iPSCs are characterized by nuclear dysmorphisms, nucleoskeletal components (lamin A/C-prelamin isoforms, lamin B1, emerin, and nesprin-2) imbalance, leading to impaired nucleo-cytoplasmic MKL1 shuttling, actin polymerization defects, mitochondrial dysfunctions, SIRT7 downregulation and NF-kBp65 hyperactivation. The observed age-related NE features of iPSCs closely resemble those reported for premature aging syndromes (e.g., Hutchinson-Gilford progeria syndrome) and for somatic cell senescence. These findings validate the use of aged iPSCs as a suitable cellular model to study senescence and for investigating therapeutic strategies aimed to treat premature aging. PMID:28562315

  12. Human Cytomegalovirus UL50 and UL53 Recruit Viral Protein Kinase UL97, Not Protein Kinase C, for Disruption of Nuclear Lamina and Nuclear Egress in Infected Cells

    PubMed Central

    Sharma, Mayuri; Kamil, Jeremy P.; Coughlin, Margaret; Reim, Natalia I.

    2014-01-01

    Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them. PMID:24155370

  13. Human cytomegalovirus UL50 and UL53 recruit viral protein kinase UL97, not protein kinase C, for disruption of nuclear lamina and nuclear egress in infected cells.

    PubMed

    Sharma, Mayuri; Kamil, Jeremy P; Coughlin, Margaret; Reim, Natalia I; Coen, Donald M

    2014-01-01

    Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them.

  14. Supernova 1987A - the evolution from blue to red

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuchman, Y.; Wheeler, J.C.

    1989-09-01

    The evolution of stars with mass comparable to that of the progenitor of SN 1987A from the main sequence to the Hayashi track is critically examined to determine why some models evolve to the red on nuclear time scales, some on thermal time scales, and some not at all. Thermal equilibrium solutions to a parametrized series of structural models with active hydrogen burning shells have two stable solutions with different T(eff) for the same helium core M(He) mass and a minimum M(He) below which no blue thermal equlibrium solution is possible. The dependence of the equilibrium solutions on stellar mass,more » envelope composition, and mass loss are investigated. The solutions quantitatively account for the 'gap' in the HR diagrams of massive stars in the Galaxy and LMC and suggest that the outer envelopes are not substantially enriched in helium during the first passage from the main sequence to the Hayashi track. 23 refs.« less

  15. On observing comets for nuclear rotation

    NASA Astrophysics Data System (ADS)

    Whipple, F. L.

    1981-10-01

    The prevalent non-gravitational motions among comets demonstrate that the sublimination does not reach a maximum at the instant of maximum insolation on the nucleus. The occurrence of halos or "parabolic" envelopes in the comae of some comets and of jets, rays, fans, streamers and similar phenomena very near the nucleus in the brightest comets demonstrates that the sublimation process is not uniform over the nuclei. In other words, the nuclei of many comets contain relatively small active regions which provide much or most of the sublimation when these areas are turned toward the Sun. The period of rotation can be determind by measurement of the diameters of the halos or of the latus recta of the "parabolic" envelopes, if the expansion velocities are averaged from observations as a function of solar distance. Experience from analyses of some 80 well observed comets shows that the nuclei are "spotted" for more than a third of all comets, regardless of the "age" as measured by the original inverse semimajor axis including correction for planetary perturbations.

  16. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria

    PubMed Central

    Lee, Junho; Kim, Dae Heon; Hwang, Inhwan

    2014-01-01

    Chloroplasts and mitochondria are endosymbiotic organelles thought to be derived from endosymbiotic bacteria. In present-day eukaryotic cells, these two organelles play pivotal roles in photosynthesis and ATP production. In addition to these major activities, numerous reactions, and cellular processes that are crucial for normal cellular functions occur in chloroplasts and mitochondria. To function properly, these organelles constantly communicate with the surrounding cellular compartments. This communication includes the import of proteins, the exchange of metabolites and ions, and interactions with other organelles, all of which heavily depend on membrane proteins localized to the outer envelope membranes. Therefore, correct and efficient targeting of these membrane proteins, which are encoded by the nuclear genome and translated in the cytosol, is critically important for organellar function. In this review, we summarize the current knowledge of the mechanisms of protein targeting to the outer membranes of mitochondria and chloroplasts in two different directions, as well as targeting signals and cytosolic factors. PMID:24808904

  17. On the Theory of Type 1 X-Ray Bursts: The Energetics of Bursts and the Nuclear Fuel Reservoir in the Envelope

    NASA Technical Reports Server (NTRS)

    Fujimoto, Masayuki Y.; Sztajno, Mirek; Lewin, Walter H. G.; Vanparadijs, Jan

    1986-01-01

    The observed properties of type 1 X-ray bursts from 4U/MXB 1636-53 and those of models of thermonuclear flashes on accreting neutron stars are compared. Ways to explain variations in the burst recurrence properties without an apparent correlation with the accretion rate, including the rapid succession of bursts at intervals 10 min are discussed. The strongest X-ray bursts, which occur after a very long interval, are well described by thermonuclear flash models with simple accumulation of accreted fuel, and a spherically symmetric structure in the burning shell. The majority of observed bursts, however, occur after much shorter intervals, and radiate much smaller amounts of energy, by a factor of up to 10 times that predicted by the spherical models. An ignition mechanism of the bursts is proposed in terms of elemental mixing and dissipative heating associated with hydrodynamical instabilities in the neutron star envelope caused by angular momentum carried inward by accreted gas.

  18. Coherent control at its most fundamental: carrier-envelope-phase-dependent electron localization in photodissociation of a H2(+) molecular ion beam target.

    PubMed

    Rathje, T; Sayler, A M; Zeng, S; Wustelt, P; Figger, H; Esry, B D; Paulus, G G

    2013-08-30

    Measurements and calculations of the absolute carrier-envelope-phase (CEP) effects in the photodissociation of the simplest molecule, H2(+), with a 4.5-fs Ti:sapphire laser pulse at intensities up to (4±2)×10(14)  W/cm2 are presented. Localization of the electron with respect to the two nuclei (during the dissociation process) is controlled via the CEP of the ultrashort laser pulses. In contrast to previous CEP-dependent experiments with neutral molecules, the dissociation of the molecular ions is not preceded by a photoionization process, which strongly influences the CEP dependence. Kinematically complete data are obtained by time- and position-resolved coincidence detection. The phase dependence is determined by a single-shot phase measurement correlated to the detection of the dissociation fragments. The experimental results show quantitative agreement with ab initio 3D time-dependent Schrödinger equation calculations that include nuclear vibration and rotation.

  19. Effects of ROCK inhibitor Y-27632 on cell fusion through a microslit.

    PubMed

    Wada, Ken-Ichi; Hosokawa, Kazuo; Ito, Yoshihiro; Maeda, Mizuo

    2015-11-01

    We previously reported a direct cytoplasmic transfer method using a microfluidic device, in which cell fusion was induced through a microslit (slit-through-fusion) by the Sendai virus envelope (HVJ-E) to prevent nuclear mixing. However, the method was impractical due to low efficiency of slit-through-fusion formation and insufficient prevention of nuclear mixing. The purpose of this study was to establish an efficient method for inducing slit-through-fusion without nuclear mixing. We hypothesized that modulation of cytoskeletal component can decrease nuclear migration through the microslit considering its functions. Here we report that supplementation with Y-27632, a specific ROCK inhibitor, significantly enhances cell fusion induction and prevention of nuclear mixing. Supplementation with Y-27632 increased the formation of slit-through-fusion efficiency by more than twofold. Disruption of F-actin by Y-27632 prevented nuclear migration between fused cells through the microslit. These two effects of Y-27632 led to promotion of the slit-through-fusion without nuclear mixing with a 16.5-fold higher frequency compared to our previous method (i.e., cell fusion induction by HVJ-E without supplementation with Y-27632). We also confirmed that mitochondria were successfully transferred to the fusion partner under conditions of Y-27632 supplementation. These findings demonstrate the practicality of our cell fusion system in producing direct cytoplasmic transfer between live cells. © 2015 Wiley Periodicals, Inc.

  20. NUCLEAR PORE ANCHOR, the Arabidopsis Homolog of Tpr/Mlp1/Mlp2/Megator, Is Involved in mRNA Export and SUMO Homeostasis and Affects Diverse Aspects of Plant Development[W

    PubMed Central

    Xu, Xianfeng Morgan; Rose, Annkatrin; Muthuswamy, Sivaramakrishnan; Jeong, Sun Yong; Venkatakrishnan, Sowmya; Zhao, Qiao; Meier, Iris

    2007-01-01

    Vertebrate Tpr and its yeast homologs Mlp1/Mlp2, long coiled-coil proteins of nuclear pore inner basket filaments, are involved in mRNA export, telomere organization, spindle pole assembly, and unspliced RNA retention. We identified Arabidopsis thaliana NUCLEAR PORE ANCHOR (NUA) encoding a 237-kD protein with similarity to Tpr. NUA is located at the inner surface of the nuclear envelope in interphase and in the vicinity of the spindle in prometaphase. Four T-DNA insertion lines were characterized, which comprise an allelic series of increasing severity for several correlating phenotypes, such as early flowering under short days and long days, increased abundance of SUMO conjugates, altered expression of several flowering regulators, and nuclear accumulation of poly(A)+ RNA. nua mutants phenocopy mutants of EARLY IN SHORT DAYS4 (ESD4), an Arabidopsis SUMO protease concentrated at the nuclear periphery. nua esd4 double mutants resemble nua and esd4 single mutants, suggesting that the two proteins act in the same pathway or complex, supported by yeast two-hybrid interaction. Our data indicate that NUA is a component of nuclear pore-associated steps of sumoylation and mRNA export in plants and that defects in these processes affect the signaling events of flowering time regulation and additional developmental processes. PMID:17513499

  1. MASTER OT J004207.99+405501.1/M31LRN 2015 luminous red nova in M31: discovery, light curve, hydrodynamics and evolution

    NASA Astrophysics Data System (ADS)

    Lipunov, V. M.; Blinnikov, S.; Gorbovskoy, E.; Tutukov, A.; Baklanov, P.; Krushinski, V.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Gorbunov, I.; Shumkov, V.; Vladimirov, V.; Gress, O.; Budnev, N. M.; Ivanov, K.; Tlatov, A.; Gabovich, A.; Yurkov, V.; Sergienko, Yu.; Zalozhnykh, I.

    2017-09-01

    We report the discovery and multicolour (VRIW) photometry of the rare explosive star MASTER OT J004207.99+405501.1 - a luminous red nova - in the Andromeda galaxy M31N2015-01a. We use our original light curve acquired with identical MASTER Global Robotic Net telescopes in one photometric system: VRI during the first 30 d and W (unfiltered) during 70 d. Also, we added published multicolour photometry data to estimate the mass and energy of the ejected shell and we discuss the likely formation scenarios of outbursts of this type. We propose an interpretation of the explosion that is consistent with an evolutionary scenario where the merging of stellar components or the disruption of the common envelope of a close binary can explain some luminous red novae. Radiative hydrodynamic simulations of a luminous red nova were carried out in extended parameter space to fit its light curves. We find that the multicolour passband light curves of the luminous red nova are consistent with an initial common envelope radius of 10 R⊙, a merger mass of 3 M⊙ and an explosion energy of 3 × 1048 erg. As a result, the phenomenon of novae consists of two classes: classical nuclear novae and more rare events (red novae) connected with the loss of compact common envelopes.

  2. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2003-01-22

    This Chandra X-ray observatory image of M83 shows numerous point-like neutron stars and black hole x-ray sources scattered throughout the disk of this spiral galaxy. The bright nuclear region of the galaxy glows prominently due to a burst of star formation that is estimated to have begun about 20 million years ago in the galaxy's time frame. The nuclear region, enveloped by a 7 million degree Celsius gas cloud of carbon, neon, magnesium, silicon, and sulfur atoms, contains a much higher concentration of neutron stars and black holes than the rest of the galaxy. Hot gas with a slightly lower temperature of 4 million degrees observed along the spiral arms of the galaxy suggests that star formation in this region may be occurring at a more sedate rate.

  3. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression.

    PubMed

    Streatfield, S J; Weber, A; Kinsman, E A; Häusler, R E; Li, J; Post-Beittenmiller, D; Kaiser, W M; Pyke, K A; Flügge, U I; Chory, J

    1999-09-01

    The Arabidopsis chlorophyll a/b binding protein (CAB) gene underexpressed 1 (cue1) mutant underexpresses light-regulated nuclear genes encoding chloroplast-localized proteins. cue1 also exhibits mesophyll-specific chloroplast and cellular defects, resulting in reticulate leaves. Both the gene underexpression and the leaf cell morphology phenotypes are dependent on light intensity. In this study, we determine that CUE1 encodes the plastid inner envelope phosphoenolpyruvate/phosphate translocator (PPT) and define amino acid residues that are critical for translocator function. The biosynthesis of aromatics is compromised in cue1, and the reticulate phenotype can be rescued by feeding aromatic amino acids. Determining that CUE1 encodes PPT indicates the in vivo role of the translocator in metabolic partitioning and reveals a mesophyll cell-specific requirement for the translocator in Arabidopsis leaves. The nuclear gene expression defects in cue1 suggest that a light intensity-dependent interorganellar signal is modulated through metabolites dependent on a plastid supply of phosphoenolpyruvate.

  4. LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosa, Brian A.; Rothballer, Andrea; Kutay, Ulrike

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansivemore » grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.« less

  5. The Drosophila nuclear lamina protein otefin is required for germline stem cell survival.

    PubMed

    Barton, Lacy J; Pinto, Belinda S; Wallrath, Lori L; Geyer, Pamela K

    2013-06-24

    LEM domain (LEM-D) proteins are components of an extensive protein network that assembles beneath the inner nuclear envelope. Defects in LEM-D proteins cause tissue-restricted human diseases associated with altered stem cell homeostasis. Otefin (Ote) is a Drosophila LEM-D protein that is intrinsically required for female germline stem cell (GSC) maintenance. Previous studies linked Ote loss with transcriptional activation of the key differentiation gene bag-of-marbles (bam), leading to the model in which Ote tethers the bam gene to the nuclear periphery for gene silencing. Using genetic and phenotypic analyses of multiple ote(-/-) backgrounds, we obtained evidence that is inconsistent with this model. We show that bam repression is maintained in ote(-/-) GSCs and that germ cell loss persists in ote(-/-), bam(-/-) mutants, together demonstrating that GSC loss is independent of bam transcription. We show that the primary defect in ote(-/-) GSCs is a block of differentiation, which ultimately leads to germ cell death. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Inheritance of yeast nuclear pore complexes requires the Nsp1p subcomplex

    PubMed Central

    Makio, Tadashi; Lapetina, Diego L.

    2013-01-01

    In the yeast Saccharomyces cerevisiae, organelles and macromolecular complexes are delivered from the mother to the emerging daughter during cell division, thereby ensuring progeny viability. Here, we have shown that during mitosis nuclear pore complexes (NPCs) in the mother nucleus are actively delivered through the bud neck and into the daughter cell concomitantly with the nuclear envelope. Furthermore, we show that NPC movement into the daughter cell requires members of an NPC subcomplex containing Nsp1p and its interacting partners. NPCs lacking these nucleoporins (Nups) were blocked from entry into the daughter by a putative barrier at the bud neck. This selection process could be observed within individual cells such that NPCs containing Nup82p (an Nsp1p-interacting Nup) were transferred to the daughter cells while functionally compromised NPCs lacking Nup82p were retained in the mother. This mechanism is proposed to facilitate the inheritance of functional NPCs by daughter cells. PMID:24165935

  7. New insights into the dynamics of plant cell nuclei and chromosomes.

    PubMed

    Matsunaga, Sachihiro; Katagiri, Yohei; Nagashima, Yoshinobu; Sugiyama, Tomoya; Hasegawa, Junko; Hayashi, Kohma; Sakamoto, Takuya

    2013-01-01

    The plant lamin-like protein NMCP/AtLINC and orthologues of the SUN-KASH complex across the nuclear envelope (NE) show the universality of nuclear structure in eukaryotes. However, depletion of components in the connection complex of the NE in plants does not induce severe defects, unlike in animals. Appearance of the Rabl configuration is not dependent on genome size in plant species. Topoisomerase II and condensin II are not essential for plant chromosome condensation. Plant endoreduplication shares several common characteristics with animals, including involvement of cyclin-dependent kinases and E2F transcription factors. Recent finding regarding endomitosis regulator GIG1 shed light on the suppression mechanism of endomitosis in plants. The robustness of plants, compared with animals, is reflected in their genome redundancy. Spatiotemporal functional analyses using chromophore-assisted light inactivation, super-resolution microscopy, and 4D (3D plus time) imaging will reveal new insights into plant nuclear and chromosomal dynamics. © 2013, Elsevier Inc. All Rights Reserved.

  8. Drosophila TIM binds importin α1, and acts as an adapter to transport PER to the nucleus.

    PubMed

    Jang, A Reum; Moravcevic, Katarina; Saez, Lino; Young, Michael W; Sehgal, Amita

    2015-02-01

    Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER.

  9. Seismic stops for nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cloud, R.L.; Leung, J.S.M.; Anderson, P.H.

    1989-10-01

    In the regulated world of nuclear power, the need to have analytical proof of performance in hypothetical design-basis events such as earth quakes has placed a premium on design configurations that are mathematically tractable and easily analyzed. This is particularly true for the piping design. Depending on how the piping analyses are organized and on how old the plant is, there may be from 200 to 1000 separate piping runs to be designed, analyzed, and qualified. In this situation, the development of snubbers seemed like the answer to a piping engineer's prayer. At any place where seismic support was requiredmore » but thermal motion had to be accommodated, a snubber could be specified. But, as experience has now shown, the program was solved only on paper. This article presents an alternative to conventional snubbers. These new devices, termed Seismic Stops are designed to replace snubbers directly and look like snubbers on the outside. But their design is based on a completely different principle. The original concept has adapted from early seismic-resistant pipe support designs used on fossil power plants in California. The fundamental idea is to provide a space envelope in which the pipe can expand freely between the hot and cold positions, but cannot move outside the envelope. Seismic Stops are designed to transmit any possible impact load, as would occur in an earthquake, away from the pipe itself to the Seismic Stop. The Seismic Stop pipe support is shown.« less

  10. Nuclear envelope alterations generate an aging-like epigenetic pattern in mice deficient in Zmpste24 metalloprotease.

    PubMed

    Osorio, Fernando G; Varela, Ignacio; Lara, Ester; Puente, Xose S; Espada, Jesús; Santoro, Raffaella; Freije, José M P; Fraga, Mario F; López-Otín, Carlos

    2010-12-01

    Mutations in the nuclear envelope protein lamin A or in its processing protease ZMPSTE24 cause human accelerated aging syndromes, including Hutchinson-Gilford progeria syndrome. Similarly, Zmpste24-deficient mice accumulate unprocessed prelamin A and develop multiple progeroid symptoms, thus representing a valuable animal model for the study of these syndromes. Zmpste24-deficient mice also show marked transcriptional alterations associated with chromatin disorganization, but the molecular links between both processes are unknown. We report herein that Zmpste24-deficient mice show a hypermethylation of rDNA that reduces the transcription of ribosomal genes, being this reduction reversible upon treatment with DNA methyltransferase inhibitors. This alteration has been previously described during physiological aging in rodents, suggesting its potential role in the development of the progeroid phenotypes. We also show that Zmpste24-deficient mice present global hypoacetylation of histones H2B and H4. By using a combination of RNA sequencing and chromatin immunoprecipitation assays, we demonstrate that these histone modifications are associated with changes in the expression of several genes involved in the control of cell proliferation and metabolic processes, which may contribute to the plethora of progeroid symptoms exhibited by Zmpste24-deficient mice. The identification of these altered genes may help to clarify the molecular mechanisms underlying aging and progeroid syndromes as well as to define new targets for the treatment of these dramatic diseases. © 2010 The Authors. Aging Cell © 2010 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  11. Preimplantation diagnosis of repeated miscarriage due to chromosomal translocations using metaphase chromosomes of a blastomere biopsied from 4- to 6-cell-stage embryos.

    PubMed

    Tanaka, Atsushi; Nagayoshi, Motoi; Awata, Shoichiro; Mawatari, Yoshifumi; Tanaka, Izumi; Kusunoki, Hiroshi

    2004-01-01

    To evaluate the safety and accuracy of karyotyping the blastomere chromosomes at metaphase in the natural cell cycle for preimplantation diagnosis. A pilot study. A private infertility clinic and a university laboratory. Eleven patients undergoing IVF and preimplantation diagnosis. Intact human embryos at the 4- to 6-cell stage and human-mouse heterokaryons were cultured and checked hourly for disappearance of the nuclear envelope. After it disappeared, the metaphase chromosomes were analyzed by fluorescence in situ hybridization. Percentage of analyzable metaphase plates and safety and accuracy of the method. The success rate of electrofusion to form human-mouse heterokaryons was 87.1% (27/31), and analyzable chromosomes were obtained from 77.4% (24/31) of the heterokaryons. On the other hand, disappearance of the nuclear envelope occurred in 89.5% (17/19) of the human embryos and it began earlier than that in the heterokaryons. Analyzable chromosomes were obtained and their translocation sites were identified in all blastomeres biopsied from the 17 embryos. After the biopsy, 67.0% of the embryos could develop to the blastocyst stage. The natural cell cycle method reported herein requires frequent observation, but it is safe, with no artificial effects on the chromosomes and without loss of or damage to blastomeres, which occurred with the electrofusion method. Using the natural cell cycle method, we could perform preimplantation diagnosis with nearly 100% accuracy.

  12. Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein.

    PubMed

    Massiah, M A; Starich, M R; Paschall, C; Summers, M F; Christensen, A M; Sundquist, W I

    1994-11-25

    The HIV-1 matrix protein forms an icosahedral shell associated with the inner membrane of the mature virus. Genetic analyses have indicated that the protein performs important functions throughout the viral life-cycle, including anchoring the transmembrane envelope protein on the surface of the virus, assisting in viral penetration, transporting the proviral integration complex across the nuclear envelope, and localizing the assembling virion to the cell membrane. We now report the three-dimensional structure of recombinant HIV-1 matrix protein, determined at high resolution by nuclear magnetic resonance (NMR) methods. The HIV-1 matrix protein is the first retroviral matrix protein to be characterized structurally and only the fourth HIV-1 protein of known structure. NMR signal assignments required recently developed triple-resonance (1H, 13C, 15N) NMR methodologies because signals for 91% of 132 assigned H alpha protons and 74% of the 129 assignable backbone amide protons resonate within chemical shift ranges of 0.8 p.p.m. and 1 p.p.m., respectively. A total of 636 nuclear Overhauser effect-derived distance restraints were employed for distance geometry-based structure calculations, affording an average of 13.0 NMR-derived distance restraints per residue for the experimentally constrained amino acids. An ensemble of 25 refined distance geometry structures with penalties (sum of the squares of the distance violations) of 0.32 A2 or less and individual distance violations under 0.06 A was generated; best-fit superposition of ordered backbone heavy atoms relative to mean atom positions afforded root-mean-square deviations of 0.50 (+/- 0.08) A. The folded HIV-1 matrix protein structure is composed of five alpha-helices, a short 3(10) helical stretch, and a three-strand mixed beta-sheet. Helices I to III and the 3(10) helix pack about a central helix (IV) to form a compact globular domain that is capped by the beta-sheet. The C-terminal helix (helix V) projects away from the beta-sheet to expose carboxyl-terminal residues essential for early steps in the HIV-1 infectious cycle. Basic residues implicated in membrane binding and nuclear localization functions cluster about an extruded cationic loop that connects beta-strands 1 and 2. The structure suggests that both membrane binding and nuclear localization may be mediated by complex tertiary structures rather than simple linear determinants.

  13. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    NASA Astrophysics Data System (ADS)

    Deibel, Alex Thomas

    When the most massive stars perish, their cores may remain intact in the form of extremely dense and compact stars. These stellar remnants, called neutron stars, are on the cusp of becoming black holes and reach mass densities greater than an atomic nucleus in their centers. Although the interiors of neutron stars were difficult to investigate at the time of their discovery, the advent of modern space-based telescopes (e.g., Chandra X-ray Observatory) has pushed our understanding of the neutron star interior into exciting new realms. It has been shown that the neutron star interior spans an enormous range of densities and contains many phases of matter, and further theoretical progress must rely on numerical calculations of neutron star phenomena built with detailed nuclear physics input. To further investigate the properties of the neutron star interior, this dissertation constructs numerical models of neutron stars, applies models to various observations of neutron star high-energy phenomena, and draws new conclusions about the neutron star interior from these analyses. In particular, we model the neutron star's outermost ? 1 km that encompasses the neutron star's envelope, ocean, and crust. The model must implement detailed nuclear physics to properly simulate the hydrostatic and thermal structure of the neutron star. We then apply our model to phenomena that occur in these layers, such as: thermonuclear bursts in the envelope, g-modes in the ocean, torsional oscillations of the crust, and crust cooling of neutron star transients. A comparison of models to observations provides new insights on the properties of dense matter that are often difficult to probe through terrestrial experiments. For example, models of the quiescent cooling of neutron stars, such as the accreting transient MAXI J0556-332, at late times into quiescence probe the thermal transport properties of the deep neutron star crust. This modeling provides independent data from astronomical observations on the nature of neutron superfluidity and the thermal conductivity of nuclear pasta. Our neutron star modeling efforts also pose new questions. For instance, reaction networks find that neutrino emission from cycling nuclear reactions is present in the neutron star ocean and crust, and potentially cools an accreting neutron star. This is a theory we attempt to verify using observations of neutron star transients and thermonuclear bursts, although it remains unclear if this cooling occurs. Furthermore, on some accreting neutron stars, more heat than supplied by nuclear reactions is needed to explain their high temperatures at the outset of quiescence. Although the presence of heating anomalies seems common, the source of extra heating is difficult to determine.

  14. Novel mode of phosphorylation-triggered reorganization of the nuclear lamina during nuclear egress of human cytomegalovirus.

    PubMed

    Milbradt, Jens; Webel, Rike; Auerochs, Sabrina; Sticht, Heinrich; Marschall, Manfred

    2010-04-30

    The nucleocytoplasmic egress of viral capsids is a rate-limiting step in the replication of the human cytomegalovirus (HCMV). As reported recently, an HCMV-specific nuclear egress complex is composed of viral and cellular proteins, in particular protein kinases with the capacity to induce destabilization of the nuclear lamina. Viral protein kinase pUL97 and cellular protein kinase C (PKC) play important roles by phosphorylating several types of nuclear lamins. Using pUL97 mutants, we show that the lamin-phosphorylating activity of pUL97 is associated with a reorganization of nuclear lamin A/C. Either pUL97 or PKC has the potential to induce distinct punctate lamina-depleted areas at the periphery of the nuclear envelope, which were detectable in transiently transfected and HCMV-infected cells. Using recombinant HCMV, which produces green fluorescent protein-labeled viral capsids, the direct transition of viral capsids through these areas could be visualized. This process was sensitive to an inhibitor of pUL97/PKC activity. The pUL97-mediated phosphorylation of lamin A/C at Ser(22) generated a novel binding motif for the peptidyl-prolyl cis/trans-isomerase Pin1. In HCMV-infected fibroblasts, the physiological localization of Pin1 was altered, leading to recruitment of Pin1 to viral replication centers and to the nuclear lamina. The local increase in Pin1 peptidyl-prolyl cis/trans-isomerase activity may promote conformational modulation of lamins. Thus, we postulate a novel phosphorylation-triggered mechanism for the reorganization of the nuclear lamina in HCMV-infected cells.

  15. Novel Mode of Phosphorylation-triggered Reorganization of the Nuclear Lamina during Nuclear Egress of Human Cytomegalovirus*

    PubMed Central

    Milbradt, Jens; Webel, Rike; Auerochs, Sabrina; Sticht, Heinrich; Marschall, Manfred

    2010-01-01

    The nucleocytoplasmic egress of viral capsids is a rate-limiting step in the replication of the human cytomegalovirus (HCMV). As reported recently, an HCMV-specific nuclear egress complex is composed of viral and cellular proteins, in particular protein kinases with the capacity to induce destabilization of the nuclear lamina. Viral protein kinase pUL97 and cellular protein kinase C (PKC) play important roles by phosphorylating several types of nuclear lamins. Using pUL97 mutants, we show that the lamin-phosphorylating activity of pUL97 is associated with a reorganization of nuclear lamin A/C. Either pUL97 or PKC has the potential to induce distinct punctate lamina-depleted areas at the periphery of the nuclear envelope, which were detectable in transiently transfected and HCMV-infected cells. Using recombinant HCMV, which produces green fluorescent protein-labeled viral capsids, the direct transition of viral capsids through these areas could be visualized. This process was sensitive to an inhibitor of pUL97/PKC activity. The pUL97-mediated phosphorylation of lamin A/C at Ser22 generated a novel binding motif for the peptidyl-prolyl cis/trans-isomerase Pin1. In HCMV-infected fibroblasts, the physiological localization of Pin1 was altered, leading to recruitment of Pin1 to viral replication centers and to the nuclear lamina. The local increase in Pin1 peptidyl-prolyl cis/trans-isomerase activity may promote conformational modulation of lamins. Thus, we postulate a novel phosphorylation-triggered mechanism for the reorganization of the nuclear lamina in HCMV-infected cells. PMID:20202933

  16. Deep nuclear invaginations are linked to cytoskeletal filaments - integrated bioimaging of epithelial cells in 3D culture.

    PubMed

    Jorgens, Danielle M; Inman, Jamie L; Wojcik, Michal; Robertson, Claire; Palsdottir, Hildur; Tsai, Wen-Ting; Huang, Haina; Bruni-Cardoso, Alexandre; López, Claudia S; Bissell, Mina J; Xu, Ke; Auer, Manfred

    2017-01-01

    The importance of context in regulation of gene expression is now an accepted principle; yet the mechanism by which the microenvironment communicates with the nucleus and chromatin in healthy tissues is poorly understood. A functional role for nuclear and cytoskeletal architecture is suggested by the phenotypic differences observed between epithelial and mesenchymal cells. Capitalizing on recent advances in cryogenic techniques, volume electron microscopy and super-resolution light microscopy, we studied human mammary epithelial cells in three-dimensional (3D) cultures forming growth-arrested acini. Intriguingly, we found deep nuclear invaginations and tunnels traversing the nucleus, encasing cytoskeletal actin and/or intermediate filaments, which connect to the outer nuclear envelope. The cytoskeleton is also connected both to other cells through desmosome adhesion complexes and to the extracellular matrix through hemidesmosomes. This finding supports a physical and/or mechanical link from the desmosomes and hemidesmosomes to the nucleus, which had previously been hypothesized but now is visualized for the first time. These unique structures, including the nuclear invaginations and the cytoskeletal connectivity to the cell nucleus, are consistent with a dynamic reciprocity between the nucleus and the outside of epithelial cells and tissues. © 2017. Published by The Company of Biologists Ltd.

  17. Confocal Analysis of Nuclear Lamina Behavior during Male Meiosis and Spermatogenesis in Drosophila melanogaster.

    PubMed

    Fabbretti, Fabiana; Iannetti, Ilaria; Guglielmi, Loredana; Perconti, Susanna; Evangelistella, Chiara; Proietti De Santis, Luca; Bongiorni, Silvia; Prantera, Giorgio

    2016-01-01

    Lamin family proteins are structural components of a filamentous framework, the nuclear lamina (NL), underlying the inner membrane of nuclear envelope. The NL not only plays a role in nucleus mechanical support and nuclear shaping, but is also involved in many cellular processes including DNA replication, gene expression and chromatin positioning. Spermatogenesis is a very complex differentiation process in which each stage is characterized by nuclear architecture dramatic changes, from the early mitotic stage to the sperm differentiation final stage. Nevertheless, very few data are present in the literature on the NL behavior during this process. Here we show the first and complete description of NL behavior during meiosis and spermatogenesis in Drosophila melanogaster. By confocal imaging, we characterized the NL modifications from mitotic stages, through meiotic divisions to sperm differentiation with an anti-laminDm0 antibody against the major component of the Drosophila NL. We observed that continuous changes in the NL structure occurred in parallel with chromatin reorganization throughout the whole process and that meiotic divisions occurred in a closed context. Finally, we analyzed NL in solofuso meiotic mutant, where chromatin segregation is severely affected, and found the strict correlation between the presence of chromatin and that of NL.

  18. Confocal Analysis of Nuclear Lamina Behavior during Male Meiosis and Spermatogenesis in Drosophila melanogaster

    PubMed Central

    Fabbretti, Fabiana; Iannetti, Ilaria; Guglielmi, Loredana; Perconti, Susanna; Evangelistella, Chiara; Proietti De Santis, Luca; Bongiorni, Silvia; Prantera, Giorgio

    2016-01-01

    Lamin family proteins are structural components of a filamentous framework, the nuclear lamina (NL), underlying the inner membrane of nuclear envelope. The NL not only plays a role in nucleus mechanical support and nuclear shaping, but is also involved in many cellular processes including DNA replication, gene expression and chromatin positioning. Spermatogenesis is a very complex differentiation process in which each stage is characterized by nuclear architecture dramatic changes, from the early mitotic stage to the sperm differentiation final stage. Nevertheless, very few data are present in the literature on the NL behavior during this process. Here we show the first and complete description of NL behavior during meiosis and spermatogenesis in Drosophila melanogaster. By confocal imaging, we characterized the NL modifications from mitotic stages, through meiotic divisions to sperm differentiation with an anti-laminDm0 antibody against the major component of the Drosophila NL. We observed that continuous changes in the NL structure occurred in parallel with chromatin reorganization throughout the whole process and that meiotic divisions occurred in a closed context. Finally, we analyzed NL in solofuso meiotic mutant, where chromatin segregation is severely affected, and found the strict correlation between the presence of chromatin and that of NL. PMID:26963718

  19. An Elastic Model of Blebbing in Nuclear Lamin Meshworks

    NASA Astrophysics Data System (ADS)

    Funkhouser, Chloe; Sknepnek, Rastko; Shimi, Takeshi; Goldman, Anne; Goldman, Robert; Olvera de La Cruz, Monica

    2013-03-01

    A two-component continuum elastic model is introduced to analyze a nuclear lamin meshwork, a structural element of the lamina of the nuclear envelope. The main component of the lamina is a meshwork of lamin protein filaments providing mechanical support to the nucleus and also playing a role in gene expression. Abnormalities in nuclear shape are associated with a variety of pathologies, including some forms of cancer and Hutchinson-Gilford progeria syndrome, and are often characterized by protruding structures termed nuclear blebs. Nuclear blebs are rich in A-type lamins and may be related to pathological gene expression. We apply the two-dimensional elastic shell model to determine which characteristics of the meshwork could be responsible for blebbing, including heterogeneities in the meshwork thickness and mesh size. We find that if one component of the lamin meshwork, rich in A-type lamins, has a tendency to form a larger mesh size than that rich in B-type lamins, this is sufficient to cause segregation of the lamin components and also to form blebs rich in A-type lamins. The model produces structures with comparable morphologies and mesh size distributions as the lamin meshworks of real, pathological nuclei. Funded by US DoE Award DEFG02-08ER46539 and by the DDR&E and AFOSR under Award FA9550-10-1-0167; simulations performed on NU Quest cluster

  20. The shape of things to come: regulation of shape changes in endoplasmic reticulum.

    PubMed

    Paiement, J; Bergeron, J

    2001-01-01

    Shape changes in the endoplasmic reticulum control fundamental cell processes including nuclear envelope assembly in mitotic cells, calcium homeostasis in cytoplasmic domains of secreting and motile cells, and membrane traffic in the early secretion apparatus between the endoplasmic reticulum and Golgi. Opposing forces of assembly (membrane fusion) and disassembly (membrane fragmentation) ultimately determine the size and shape of this organelle. This review examines some of the regulatory mechanisms involved in these processes and how they occur at specific sites or subcompartments of the endoplasmic reticulum.

  1. Visual Snapshots of Intracellular Kinase Activity At The Onset of Mitosis

    PubMed Central

    Dai, Zhaohua; Dulyaninova, Natalya G.; Kumar, Sanjai; Bresnick, Anne R.; Lawrence, David S.

    2007-01-01

    Summary Visual snapshots of intracellular kinase activity can be acquired with exquisite temporal control using a light-activatable (caged) sensor, thereby providing a means to interrogate enzymatic activity at any point during the cell division cycle. Robust protein kinase activity transpires just prior to, but not immediately following, nuclear envelope breakdown (NEB). Furthermore, kinase activity is required for progression from prophase into metaphase. Finally, the application of selective protein kinase C (PKC) inhibitors, in combination with the caged sensor, correlates the action of the PKC β isoform with subsequent NEB. PMID:18022564

  2. Superresolution Microscopy of the Nuclear Envelope and Associated Proteins.

    PubMed

    Xie, Wei; Horn, Henning F; Wright, Graham D

    2016-01-01

    Superresolution microscopy is undoubtedly one of the most exciting technologies since the invention of the optical microscope. Capable of nanometer-scale resolution to surpass the diffraction limit and coupled with the versatile labeling techniques available, it is revolutionizing the study of cell biology. Our understanding of the nucleus, the genetic and architectural center of the cell, has gained great advancements through the application of various superresolution microscopy techniques. This chapter describes detailed procedures of multichannel superresolution imaging of the mammalian nucleus, using structured illumination microscopy and single-molecule localization microscopy.

  3. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue.

    PubMed

    Swift, Joe; Discher, Dennis E

    2014-07-15

    How cells respond to physical cues in order to meet and withstand the physical demands of their immediate surroundings has been of great interest for many years, with current research efforts focused on mechanisms that transduce signals into gene expression. Pathways that mechano-regulate the entry of transcription factors into the cell nucleus are emerging, and our most recent studies show that the mechanical properties of the nucleus itself are actively controlled in response to the elasticity of the extracellular matrix (ECM) in both mature and developing tissue. In this Commentary, we review the mechano-responsive properties of nuclei as determined by the intermediate filament lamin proteins that line the inside of the nuclear envelope and that also impact upon transcription factor entry and broader epigenetic mechanisms. We summarize the signaling pathways that regulate lamin levels and cell-fate decisions in response to a combination of ECM mechanics and molecular cues. We will also discuss recent work that highlights the importance of nuclear mechanics in niche anchorage and cell motility during development, hematopoietic differentiation and cancer metastasis, as well as emphasizing a role for nuclear mechanics in protecting chromatin from stress-induced damage. © 2014. Published by The Company of Biologists Ltd.

  4. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue

    PubMed Central

    Swift, Joe; Discher, Dennis E.

    2014-01-01

    ABSTRACT How cells respond to physical cues in order to meet and withstand the physical demands of their immediate surroundings has been of great interest for many years, with current research efforts focused on mechanisms that transduce signals into gene expression. Pathways that mechano-regulate the entry of transcription factors into the cell nucleus are emerging, and our most recent studies show that the mechanical properties of the nucleus itself are actively controlled in response to the elasticity of the extracellular matrix (ECM) in both mature and developing tissue. In this Commentary, we review the mechano-responsive properties of nuclei as determined by the intermediate filament lamin proteins that line the inside of the nuclear envelope and that also impact upon transcription factor entry and broader epigenetic mechanisms. We summarize the signaling pathways that regulate lamin levels and cell-fate decisions in response to a combination of ECM mechanics and molecular cues. We will also discuss recent work that highlights the importance of nuclear mechanics in niche anchorage and cell motility during development, hematopoietic differentiation and cancer metastasis, as well as emphasizing a role for nuclear mechanics in protecting chromatin from stress-induced damage. PMID:24963133

  5. Early morphological nuclear events and developmental capacity of embryos reconstructed with fetal fibroblasts at the M or G1 phase after intracytoplasmic nuclear injection in cattle.

    PubMed

    Ideta, Atsushi; Urakawa, Manami; Aoyagi, Yoshito; Saeki, Kazuhiro

    2005-04-01

    We examined morphological nuclear events during the first cell cycle of bovine embryos reconstructed with somatic cells at the M and G1 phases (M-embryos and G1-embryos, respectively) by intracytoplasmic nuclear injection, and the subsequent development of these embryos in vitro and in vivo. Bovine fetal fibroblasts (BFFs) at the M or G1 phase were directly injected into enucleated oocytes, and activated immediately. Only half (48%) of the M-embryos extruded polar body-like cells (PBCs) at 6 h post injection (hpi). At 15 to 19 hpi, 54% of the M-embryos formed a single pronucleus-like nucleus. Nuclear envelope-breakdown, premature chromosome condensation and single nuclear clusters were observed in most of the G1-embryos (88%) within 30 min following the nuclear injection. At 15 to 19 hpi, single pronucleus-like nuclei were formed in most G1-embryos (83%). The potential of G1-embryos to develop to blastocysts was significantly higher than that of M-embryos (31% vs 16%). Three of five recipients following transfer of blastocysts derived from the G1-embryos became pregnant on Day 30, and one recipient delivered a calf. Our results indicate that almost a half of the M-embryos failed to extrude PBCs and that the G1-embryos developed to blastocysts at a higher rate than the M-embryos.

  6. The karyopherin Kap95 and the C-termini of Rfa1, Rfa2, and Rfa3 are necessary for efficient nuclear import of functional RPA complex proteins in Saccharomyces cerevisiae.

    PubMed

    Belanger, Kenneth D; Griffith, Amanda L; Baker, Heather L; Hansen, Jeanne N; Kovacs, Laura A Simmons; Seconi, Justin S; Strine, Andrew C

    2011-09-01

    Nuclear protein import in eukaryotic cells is mediated by karyopherin proteins, which bind to specific nuclear localization signals on substrate proteins and transport them across the nuclear envelope and into the nucleus. Replication protein A (RPA) is a nuclear protein comprised of three subunits (termed Rfa1, Rfa2, and Rfa3 in Saccharomyces cerevisiae) that binds single-stranded DNA and is essential for DNA replication, recombination, and repair. RPA associates with two different karyopherins in yeast, Kap95, and Msn5/Kap142. However, it is unclear which of these karyopherins is responsible for RPA nuclear import. We have generated GFP fusion proteins with each of the RPA subunits and demonstrate that these Rfa-GFP chimeras are functional in yeast cells. The intracellular localization of the RPA proteins in live cells is similar in wild-type and msn5Δ deletion strains but becomes primarily cytoplasmic in cells lacking functional Kap95. Truncating the C-terminus of any of the RPA subunits results in mislocalization of the proteins to the cytoplasm and a loss of protein-protein interactions between the subunits. Our data indicate that Kap95 is likely the primary karyopherin responsible for RPA nuclear import in yeast and that the C-terminal regions of Rfa1, Rfa2, and Rfa3 are essential for efficient nucleocytoplasmic transport of each RPA subunit.

  7. Description of a new planktonic mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. from the coastal waters off Western Korea: morphology, pigments, and ribosomal DNA gene sequence.

    PubMed

    Kang, Nam Seon; Jeong, Hae Jin; Moestrup, Øjvind; Shin, Woongghi; Nam, Seung Won; Park, Jae Yeon; De Salas, Miguel F; Kim, Ki Woo; Noh, Jae Hoon

    2010-01-01

    The mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. is described from living cells and from cells prepared by light, scanning electron, and transmission electron microscopy. In addition, sequences of the small subunit (SSU) and large subunit (LSU) rDNA and photosynthetic pigments are reported. The episome is conical, while the hyposome is hemispherical. Cells are covered with polygonal amphiesmal vesicles arranged in 16 rows and containing a very thin plate-like component. There is neither an apical groove nor apical line of narrow plates. Instead, there is a sulcal extension-like furrow. The cingulum is as wide as 0.2-0.3 x cell length and displaced by 0.2-0.3 x cell length. Cell length and width of live cells fed Amphidinium carterae were 8.4-19.3 and 6.1-16.0 microm, respectively. Paragymnodinium shiwhaense does not have a nuclear envelope chamber nor a nuclear fibrous connective (NFC). Cells contain chloroplasts, nematocysts, trichocysts, and peduncle, though eyespots, pyrenoids, and pusules are absent. The main accessory pigment is peridinin. The sequence of the SSU rDNA of this dinoflagellate (GenBank AM408889) is 4% different from that of Gymnodinium aureolum, Lepidodinium viride, and Gymnodinium catenatum, the three closest species, while the LSU rDNA was 17-18% different from that of G. catenatum, Lepidodinium chlorophorum, and Gymnodinium nolleri. The phylogenetic trees show that this dinoflagellate belongs within the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers, NFC, and an apical groove. Unlike Polykrikos spp., which have a taeniocyst-nematocyst complex, P. shiwhaense has nematocysts without taeniocysts. In addition, P. shiwhaense does not have ocelloids in contrast to Warnowia spp. and Nematodinium spp. Therefore, based on morphological and molecular analyses, we suggest that this taxon is a new species, also within a new genus.

  8. Drosophila TIM Binds Importin α1, and Acts as an Adapter to Transport PER to the Nucleus

    PubMed Central

    Jang, A. Reum; Moravcevic, Katarina; Saez, Lino; Young, Michael W.; Sehgal, Amita

    2015-01-01

    Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER. PMID:25674790

  9. PDE4 and mAKAPβ are nodal organizers of β2-ARs nuclear PKA signaling in cardiac myocytes.

    PubMed

    Bedioune, Ibrahim; Lefebvre, Florence; Lechêne, Patrick; Varin, Audrey; Domergue, Valérie; Kapiloff, Michael S; Fischmeister, Rodolphe; Vandecasteele, Grégoire

    2018-05-03

    β1- and β2-adrenergic receptors (β-ARs) produce different acute contractile effects on the heart partly because they impact on different cytosolic pools of cAMP-dependent protein kinase (PKA). They also exert different effects on gene expression but the underlying mechanisms remain unknown. The aim of this study was to understand the mechanisms by which β1- and β2-ARs regulate nuclear PKA activity in cardiomyocytes. We used cytoplasmic and nuclear targeted biosensors to examine cAMP signals and PKA activity in adult rat ventricular myocytes upon selective β1- or β2-ARs stimulation. Both β1- and β2-AR stimulation increased cAMP and activated PKA in the cytoplasm. While the two receptors also increased cAMP in the nucleus, only β1-ARs increased nuclear PKA activity and up-regulated the PKA target gene and pro-apoptotic factor, inducible cAMP element repressor (ICER). Inhibition of PDE4, but not Gi, PDE3, GRK2 nor caveolae disruption disclosed nuclear PKA activation and ICER induction by β2-ARs. Both nuclear and cytoplasmic PKI prevented nuclear PKA activation and ICER induction by β1-ARs, indicating that PKA activation outside the nucleus is required for subsequent nuclear PKA activation and ICER mRNA expression. Cytoplasmic PKI also blocked ICER induction by β2-AR stimulation (with concomitant PDE4 inhibition). However, in this case nuclear PKI decreased ICER up-regulation by only 30%, indicating that other mechanisms are involved. Down-regulation of mAKAPβ partially inhibited nuclear PKA activation upon β1-AR stimulation, and drastically decreased nuclear PKA activation upon β2-AR stimulation in the presence of PDE4 inhibition. β1- and β2-ARs differentially regulate nuclear PKA activity and ICER expression in cardiomyocytes. PDE4 insulates a mAKAPβ-targeted PKA pool at the nuclear envelope that prevents nuclear PKA activation upon β2-AR stimulation.

  10. A double-pulse approach for electrotransfection.

    PubMed

    Pasquet, L; Bellard, E; Golzio, M; Rols, M P; Teissie, J

    2014-12-01

    Gene transfer and expression can be obtained by delivering calibrated electric pulses on cells in the presence of plasmids coding for the activity of interest. The electric treatment affects the plasma membrane and induces the formation of a transient complex between nucleic acids and the plasma membrane. It results in a delivery of the plasmid in the cytoplasm. Expression is only obtained if the plasmid is translocated inside the nucleus. This is a key limit in the process. We previously showed that delivery of a high-field short-duration electric pulse was inducing a structural alteration of the nuclear envelope. This study investigates if the double-pulse approach (first pulse to transfer the plasmid to the cytoplasm, and second pulse to induce the structural alteration of the envelope) was a way to enhance the protein expression using the green fluorescent protein as a reporter. We observed that not only the double-pulse approach induced the transfection of a lower number of cells but moreover, these transfected cells were less fluorescent than the cells treated only with the first pulse.

  11. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane

    PubMed Central

    Richardson, Lynn G. L.; Paila, Yamuna D.; Siman, Steven R.; Chen, Yi; Smith, Matthew D.; Schnell, Danny J.

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus. PMID:24966864

  12. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    PubMed

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  13. Structure, development, and cytochemical properties of the nucleolus-associated "round body" in rat spermatocytes and early spermatids.

    PubMed

    Schultz, M C; Hermo, L; Leblond, C P

    1984-09-01

    The "round body," a spherical structure typically associated with a nucleolus in male germ cells of the rat, has been examined in the electron microscope using routine and cytochemical methods to determine its structure, composition, and mode of development. Cytochemical analysis indicates that the round body includes neither nucleic acid nor lipid, but is composed of nonhistone protein which appears in the form of 1.6-nm-wide fibrils. Development begins in late leptotene, when a single round body appears in each spermatocyte as an irregular spheroid located along the inner surface of the nuclear envelope. During subsequent stages of the meiotic prophase, the round body leaves the nuclear envelope, becomes a regular sphere, and gradually enlarges from a diameter of 0.4 micron in leptotene to 1.6 micron in diplotene. Concurrently, lacunae appear within its substance and enlarge. At each maturation division, the amount of round-body material is decreased by about half, presumably because the constituent proteins are dissociated at metaphase, distributed between the two daughter cells at telophase, and reconstituted into half-sized round bodies. As spermiogenesis proceeds, the round body shrinks gradually and disappears at step 8. Soon after its appearance at leptotene, the round body becomes associated with and is surrounded by the pars granulosa of one of the nucleoli. Moreover, 3H-uridine incorporation into nucleolar RNA is high as long as the size of the round body increases, but is low or absent when it decreases. It is possible, therefore, that the round body exerts some control on nucleolar activity in meiotic cells.

  14. Meiosis, egg activation, and nuclear envelope breakdown are differentially reliant on Ca2+, whereas germinal vesicle breakdown is Ca2+ independent in the mouse oocyte

    NASA Technical Reports Server (NTRS)

    Tombes, R. M.; Simerly, C.; Borisy, G. G.; Schatten, G.

    1992-01-01

    During early development, intracellular Ca2+ mobilization is not only essential for fertilization, but has also been implicated during other meiotic and mitotic events, such as germinal vesicle breakdown (GVBD) and nuclear envelope breakdown (NEBD). In this study, the roles of intracellular and extracellular Ca2+ were examined during meiotic maturation and reinitiation at parthenogenetic activation and during first mitosis in a single species using the same methodologies. Cumulus-free metaphase II mouse oocytes immediately resumed anaphase upon the induction of a large, transient Ca2+ elevation. This resumption of meiosis and associated events, such as cortical granule discharge, were not sensitive to extracellular Ca2+ removal, but were blocked by intracellular Ca2+ chelators. In contrast, meiosis I was dependent on external Ca2+; in its absence, the formation and function of the first meiotic spindle was delayed, the first polar body did not form and an interphase-like state was induced. GVBD was not dependent on external Ca2+ and showed no associated Ca2+ changes. NEBD at first mitosis in fertilized eggs, on the other hand, was frequently, but not always associated with a brief Ca2+ transient and was dependent on Ca2+ mobilization. We conclude that GVBD is Ca2+ independent, but that the dependence of NEBD on Ca2+ suggests regulation by more than one pathway. As cells develop from Ca(2+)-independent germinal vesicle oocytes to internal Ca(2+)-dependent pronuclear eggs, internal Ca2+ pools increase by approximately fourfold.

  15. Nuclear envelope proteins Nesprin2 and LaminA regulate proliferation and apoptosis of vascular endothelial cells in response to shear stress.

    PubMed

    Han, Yue; Wang, Lu; Yao, Qing-Ping; Zhang, Ping; Liu, Bo; Wang, Guo-Liang; Shen, Bao-Rong; Cheng, Binbin; Wang, Yingxiao; Jiang, Zong-Lai; Qi, Ying-Xin

    2015-05-01

    The dysfunction of vascular endothelial cells (ECs) influenced by flow shear stress is crucial for vascular remodeling. However, the roles of nuclear envelope (NE) proteins in shear stress-induced EC dysfunction are still unknown. Our results indicated that, compared with normal shear stress (NSS), low shear stress (LowSS) suppressed the expression of two types of NE proteins, Nesprin2 and LaminA, and increased the proliferation and apoptosis of ECs. Targeted small interfering RNA (siRNA) and gene overexpression plasmid transfection revealed that Nesprin2 and LaminA participate in the regulation of EC proliferation and apoptosis. A protein/DNA array was further used to detect the activation of transcription factors in ECs following transfection with target siRNAs and overexpression plasmids. The regulation of AP-2 and TFIID mediated by Nesprin2 and the activation of Stat-1, Stat-3, Stat-5 and Stat-6 by LaminA were verified under shear stress. Furthermore, using Ingenuity Pathway Analysis software and real-time RT-PCR, the effects of Nesprin2 or LaminA on the downstream target genes of AP-2, TFIID, and Stat-1, Stat-3, Stat-5 and Stat-6, respectively, were investigated under LowSS. Our study has revealed that NE proteins are novel mechano-sensitive molecules in ECs. LowSS suppresses the expression of Nesprin2 and LaminA, which may subsequently modulate the activation of important transcription factors and eventually lead to EC dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Motor Deficits and Decreased Striatal Dopamine Receptor 2 Binding Activity in the Striatum-Specific Dyt1 Conditional Knockout Mice

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Jianyong; Standaert, David G.; Li, Yuqing

    2011-01-01

    DYT1 early-onset generalized dystonia is a hyperkinetic movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Recently, significant progress has been made in studying pathophysiology of DYT1 dystonia using targeted mouse models. Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 knock-down (KD) mice exhibit motor deficits and alterations of striatal dopamine metabolisms, while Dyt1 knockout (KO) and Dyt1 ΔGAG homozygous KI mice show abnormal nuclear envelopes and neonatal lethality. However, it has not been clear whether motor deficits and striatal abnormality are caused by Dyt1 mutation in the striatum itself or the end results of abnormal signals from other brain regions. To identify the brain region that contributes to these phenotypes, we made a striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mouse. Dyt1 sKO mice exhibited motor deficits and reduced striatal dopamine receptor 2 (D2R) binding activity, whereas they did not exhibit significant alteration of striatal monoamine contents. Furthermore, we also found normal nuclear envelope structure in striatal medium spiny neurons (MSNs) of an adult Dyt1 sKO mouse and cerebral cortical neurons in cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice. The results suggest that the loss of striatal torsinA alone is sufficient to produce motor deficits, and that this effect may be mediated, at least in part, through changes in D2R function in the basal ganglia circuit. PMID:21931745

  17. Decreased Bone Formation and Osteopenia in Lamin A/C-Deficient Mice

    PubMed Central

    Vidal, Christopher; McCorquodale, Thomas; Herrmann, Markus; Fatkin, Diane; Duque, Gustavo

    2011-01-01

    Age-related bone loss is associated with changes in bone cellularity with characteristically low levels of osteoblastogenesis. The mechanisms that explain these changes remain unclear. Although recent in vitro evidence has suggested a new role for proteins of the nuclear envelope in osteoblastogenesis, the role of these proteins in bone cells differentiation and bone metabolism in vivo remains unknown. In this study, we used the lamin A/C null (Lmna −/−) mice to identify the role of lamin A/C in bone turnover and bone structure in vivo. At three weeks of age, histological and micro computed tomography measurements of femurs in Lmna −/− mice revealed a significant decrease in bone mass and microarchitecture in Lmna −/− mice as compared with their wild type littermates. Furthermore, quantification of cell numbers after normalization with bone surface revealed a significant reduction in osteoblast and osteocyte numbers in Lmna −/− mice compared with their WT littermates. In addition, Lmna −/− mice have significantly lower osteoclast number, which show aberrant changes in their shape and size. Finally, mechanistic analysis demonstrated that absence of lamin A/C is associated with increase expression of MAN-1 a protein of the nuclear envelope closely regulated by lamin A/C, which also colocalizes with Runx2 thus affecting its capacity as osteogenic transcription factor. In summary, these data clearly indicate that the presence of lamin A/C is necessary for normal bone turnover in vivo and that absence of lamin A/C induces low bone turnover osteopenia resembling the cellular changes of age-related bone loss. PMID:21547077

  18. Nuclear Import of β-Dystroglycan Is Facilitated by Ezrin-Mediated Cytoskeleton Reorganization

    PubMed Central

    Vásquez-Limeta, Alejandra; Wagstaff, Kylie M.; Ortega, Arturo; Crouch, Dorothy H.; Jans, David A.; Cisneros, Bulmaro

    2014-01-01

    The β-dystroglycan (β-DG) protein has the ability to target to multiple sites in eukaryotic cells, being a member of diverse protein assemblies including the transmembranal dystrophin-associated complex, and a nuclear envelope-localised complex that contains emerin and lamins A/C and B1. We noted that the importin α2/β1-recognised nuclear localization signal (NLS) of β-DG is also a binding site for the cytoskeletal-interacting protein ezrin, and set out to determine whether ezrin binding might modulate β-DG nuclear translocation for the first time. Unexpectedly, we found that ezrin enhances rather than inhibits β-DG nuclear translocation in C2C12 myoblasts. Both overexpression of a phosphomimetic activated ezrin variant (Ez-T567D) and activation of endogenous ezrin through stimulation of the Rho pathway resulted in both formation of actin-rich surface protrusions and significantly increased nuclear translocation of β-DG as shown by quantitative microscopy and subcellular fractionation/Western analysis. In contrast, overexpression of a nonphosphorylatable inactive ezrin variant (Ez-T567A) or inhibition of Rho signaling, decreased nuclear translocation of β-DG concomitant with a lack of cell surface protrusions. Further, a role for the actin cytoskeleton in ezrin enhancement of β-DG nuclear translocation was implicated by the observation that an ezrin variant lacking its actin-binding domain failed to enhance nuclear translocation of β-DG, while disruption of the actin cytoskeleton led to a reduction in β-DG nuclear localization. Finally, we show that ezrin-mediated cytoskeletal reorganization enhances nuclear translocation of the cytoplasmic but not the transmembranal fraction of β-DG. This is the first study showing that cytoskeleton reorganization can modulate nuclear translocation of β-DG, with the implication that β-DG can respond to cytoskeleton-driven changes in cell morphology by translocating from the cytoplasm to the nucleus to orchestrate nuclear processes in response to the functional requirements of the cell. PMID:24599031

  19. Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes

    PubMed Central

    Burdick, Ryan C.; Chen, Jianbo; Sastri, Jaya; Hu, Wei-Shau

    2017-01-01

    The dynamics and regulation of HIV-1 nuclear import and its intranuclear movements after import have not been studied. To elucidate these essential HIV-1 post-entry events, we labeled viral complexes with two fluorescently tagged virion-incorporated proteins (APOBEC3F or integrase), and analyzed the HIV-1 dynamics of nuclear envelope (NE) docking, nuclear import, and intranuclear movements in living cells. We observed that HIV-1 complexes exhibit unusually long NE residence times (1.5±1.6 hrs) compared to most cellular cargos, which are imported into the nuclei within milliseconds. Furthermore, nuclear import requires HIV-1 capsid (CA) and nuclear pore protein Nup358, and results in significant loss of CA, indicating that one of the viral core uncoating steps occurs during nuclear import. Our results showed that the CA-Cyclophilin A interaction regulates the dynamics of nuclear import by delaying the time of NE docking as well as transport through the nuclear pore, but blocking reverse transcription has no effect on the kinetics of nuclear import. We also visualized the translocation of viral complexes docked at the NE into the nucleus and analyzed their nuclear movements and determined that viral complexes exhibited a brief fast phase (<9 min), followed by a long slow phase lasting several hours. A comparison of the movement of viral complexes to those of proviral transcription sites supports the hypothesis that HIV-1 complexes quickly tether to chromatin at or near their sites of integration in both wild-type cells and cells in which LEDGF/p75 was deleted using CRISPR/cas9, indicating that the tethering interactions do not require LEDGF/p75. These studies provide novel insights into the dynamics of viral complex-NE association, regulation of nuclear import, viral core uncoating, and intranuclear movements that precede integration site selection. PMID:28827840

  20. Cytosol-nucleus traffic and colocalization with FXR of conjugated bile acids in rat hepatocytes.

    PubMed

    Monte, Maria J; Rosales, Ruben; Macias, Rocio I R; Iannota, Valeria; Martinez-Fernandez, Almudena; Romero, Marta R; Hofmann, Alan F; Marin, Jose J G

    2008-07-01

    Bile acids (BAs) are natural ligands of nuclear receptors, in particular farnesoid X receptor (FXR). Whether, in addition to protein-mediated cytosolic-nuclear BA translocation, other mechanisms are involved in the access of BAs to nuclear FXR was investigated. When rat hepatocytes were incubated with radiolabeled taurocholic acid, taurodeoxycholic acid, taurochenodeoxycholic acid, and tauroursodeoxycholic acid, their nuclear accumulation was proportional to their intracellular levels. With the use of flow cytometry analysis, the accumulation by nuclei isolated from rat liver cells was found to differ for several fluorescent compounds of similar molecular weight and different charge, including fluorescein-tagged BAs [cholylglycyl amidofluorescein (CGamF), ursodeoxycholylglycyl amidofluorescein, or chenodeoxycholylglycyl amidofluorescein]. When we varied nuclear volume by incubation with different sucrose concentrations, a similar relationship between nuclear volume and content of FITC and 4-kDa FITC-dextran was found. In contrast, this relationship was markedly lower for CGamF. Confocal microscopy studies revealed that fluorescein-tagged BAs, but also FITC or 10-kDa FITC-dextran were found in the nuclear envelope and concentrated in regions where DNA was less densely packed. In contrast to the cytosolic subcellular localization of peroxisome proliferator-activated receptor-alpha, FXR and nucleolin (a marker of transcriptional active chromatin) were also localized by immunoreactivity in these intranuclear regions. In conclusion, although intranuclear levels of small organic molecules including conjugated BAs depend on their concentrations in the extranuclear space, the existence of certain molecular selectivity (not strictly dependent on molecular weight or charge) suggests that, in addition to simple diffusional exchange, other mechanisms may be also involved in determining their overall nuclear content in regions where these compounds coincide and may interact with nuclear receptors such as FXR.

  1. Nuclear removal during terminal lens fiber cell differentiation requires CDK1 activity: appropriating mitosis-related nuclear disassembly

    PubMed Central

    Chaffee, Blake R.; Shang, Fu; Chang, Min-Lee; Clement, Tracy M.; Eddy, Edward M.; Wagner, Brad D.; Nakahara, Masaki; Nagata, Shigekazu; Robinson, Michael L.; Taylor, Allen

    2014-01-01

    Lens epithelial cells and early lens fiber cells contain the typical complement of intracellular organelles. However, as lens fiber cells mature they must destroy their organelles, including nuclei, in a process that has remained enigmatic for over a century, but which is crucial for the formation of the organelle-free zone in the center of the lens that assures clarity and function to transmit light. Nuclear degradation in lens fiber cells requires the nuclease DNase IIβ (DLAD) but the mechanism by which DLAD gains access to nuclear DNA remains unknown. In eukaryotic cells, cyclin-dependent kinase 1 (CDK1), in combination with either activator cyclins A or B, stimulates mitotic entry, in part, by phosphorylating the nuclear lamin proteins leading to the disassembly of the nuclear lamina and subsequent nuclear envelope breakdown. Although most post-mitotic cells lack CDK1 and cyclins, lens fiber cells maintain these proteins. Here, we show that loss of CDK1 from the lens inhibited the phosphorylation of nuclear lamins A and C, prevented the entry of DLAD into the nucleus, and resulted in abnormal retention of nuclei. In the presence of CDK1, a single focus of the phosphonuclear mitotic apparatus is observed, but it is not focused in CDK1-deficient lenses. CDK1 deficiency inhibited mitosis, but did not prevent DNA replication, resulting in an overall reduction of lens epithelial cells, with the remaining cells possessing an abnormally large nucleus. These observations suggest that CDK1-dependent phosphorylations required for the initiation of nuclear membrane disassembly during mitosis are adapted for removal of nuclei during fiber cell differentiation. PMID:25139855

  2. Structure–function mapping of a heptameric module in the nuclear pore complex

    PubMed Central

    Fernandez-Martinez, Javier; Phillips, Jeremy; Sekedat, Matthew D.; Diaz-Avalos, Ruben; Velazquez-Muriel, Javier; Franke, Josef D.; Williams, Rosemary; Stokes, David L.; Chait, Brian T.

    2012-01-01

    The nuclear pore complex (NPC) is a multiprotein assembly that serves as the sole mediator of nucleocytoplasmic exchange in eukaryotic cells. In this paper, we use an integrative approach to determine the structure of an essential component of the yeast NPC, the ∼600-kD heptameric Nup84 complex, to a precision of ∼1.5 nm. The configuration of the subunit structures was determined by satisfaction of spatial restraints derived from a diverse set of negative-stain electron microscopy and protein domain–mapping data. Phenotypic data were mapped onto the complex, allowing us to identify regions that stabilize the NPC’s interaction with the nuclear envelope membrane and connect the complex to the rest of the NPC. Our data allow us to suggest how the Nup84 complex is assembled into the NPC and propose a scenario for the evolution of the Nup84 complex through a series of gene duplication and loss events. This work demonstrates that integrative approaches based on low-resolution data of sufficient quality can generate functionally informative structures at intermediate resolution. PMID:22331846

  3. Super-resolution mapping of scaffold nucleoporins in the nuclear pore complex.

    PubMed

    Ma, Jiong; Kelich, Joseph M; Junod, Samuel L; Yang, Weidong

    2017-04-01

    The nuclear pore complex (NPC), composed of ∼30 different nucleoporins (Nups), is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. However, the precise copy number and the spatial location of each Nup in the native NPC remain obscure due to the inherent difficulty of counting and localizing proteins inside of the sub-micrometer supramolecular complex. Here, we combined super-resolution single-point edge-excitation subdiffraction (SPEED) microscopy and nanobody-specific labeling to reveal the spatial distribution of scaffold Nups within three separate layers in the native NPC with a precision of ∼3 nm. Our data reveal both the radial and axial spatial distributions for Pom121, Nup37 and Nup35 and provide evidence for their copy numbers of 8, 32 and 16, respectively, per NPC. This approach can help pave the path for mapping the entirety of Nups in native NPCs and also other structural components of macromolecular complexes. © 2017. Published by The Company of Biologists Ltd.

  4. Super-resolution mapping of scaffold nucleoporins in the nuclear pore complex

    PubMed Central

    Ma, Jiong; Kelich, Joseph M.; Junod, Samuel L.

    2017-01-01

    ABSTRACT The nuclear pore complex (NPC), composed of ∼30 different nucleoporins (Nups), is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. However, the precise copy number and the spatial location of each Nup in the native NPC remain obscure due to the inherent difficulty of counting and localizing proteins inside of the sub-micrometer supramolecular complex. Here, we combined super-resolution single-point edge-excitation subdiffraction (SPEED) microscopy and nanobody-specific labeling to reveal the spatial distribution of scaffold Nups within three separate layers in the native NPC with a precision of ∼3 nm. Our data reveal both the radial and axial spatial distributions for Pom121, Nup37 and Nup35 and provide evidence for their copy numbers of 8, 32 and 16, respectively, per NPC. This approach can help pave the path for mapping the entirety of Nups in native NPCs and also other structural components of macromolecular complexes. PMID:28202688

  5. Yeast silencing factor Sir4 and a subset of nucleoporins form a complex distinct from nuclear pore complexes

    PubMed Central

    Ptak, Christopher; Roesner, Ulyss K.

    2017-01-01

    Interactions occurring at the nuclear envelope (NE)–chromatin interface influence both NE structure and chromatin organization. Insights into the functions of NE–chromatin interactions have come from the study of yeast subtelomeric chromatin and its association with the NE, including the identification of various proteins necessary for tethering subtelomeric chromatin to the NE and the silencing of resident genes. Here we show that four of these proteins—the silencing factor Sir4, NE-associated Esc1, the SUMO E3 ligase Siz2, and the nuclear pore complex (NPC) protein Nup170—physically and functionally interact with one another and a subset of NPC components (nucleoporins or Nups). Importantly, this group of Nups is largely restricted to members of the inner and outer NPC rings, but it lacks numerous others including cytoplasmically and nucleoplasmically positioned Nups. We propose that this Sir4-associated Nup complex is distinct from holo-NPCs and that it plays a role in subtelomeric chromatin organization and NE tethering. PMID:28883038

  6. Yeast silencing factor Sir4 and a subset of nucleoporins form a complex distinct from nuclear pore complexes.

    PubMed

    Lapetina, Diego L; Ptak, Christopher; Roesner, Ulyss K; Wozniak, Richard W

    2017-10-02

    Interactions occurring at the nuclear envelope (NE)-chromatin interface influence both NE structure and chromatin organization. Insights into the functions of NE-chromatin interactions have come from the study of yeast subtelomeric chromatin and its association with the NE, including the identification of various proteins necessary for tethering subtelomeric chromatin to the NE and the silencing of resident genes. Here we show that four of these proteins-the silencing factor Sir4, NE-associated Esc1, the SUMO E3 ligase Siz2, and the nuclear pore complex (NPC) protein Nup170-physically and functionally interact with one another and a subset of NPC components (nucleoporins or Nups). Importantly, this group of Nups is largely restricted to members of the inner and outer NPC rings, but it lacks numerous others including cytoplasmically and nucleoplasmically positioned Nups. We propose that this Sir4-associated Nup complex is distinct from holo-NPCs and that it plays a role in subtelomeric chromatin organization and NE tethering. © 2017 Lapetina et al.

  7. Physical modelling of the nuclear pore complex

    PubMed Central

    Fassati, Ariberto; Ford, Ian J.; Hoogenboom, Bart W.

    2013-01-01

    Physically interesting behaviour can arise when soft matter is confined to nanoscale dimensions. A highly relevant biological example of such a phenomenon is the Nuclear Pore Complex (NPC) found perforating the nuclear envelope of eukaryotic cells. In the central conduit of the NPC, of ∼30–60 nm diameter, a disordered network of proteins regulates all macromolecular transport between the nucleus and the cytoplasm. In spite of a wealth of experimental data, the selectivity barrier of the NPC has yet to be explained fully. Experimental and theoretical approaches are complicated by the disordered and heterogeneous nature of the NPC conduit. Modelling approaches have focused on the behaviour of the partially unfolded protein domains in the confined geometry of the NPC conduit, and have demonstrated that within the range of parameters thought relevant for the NPC, widely varying behaviour can be observed. In this review, we summarise recent efforts to physically model the NPC barrier and function. We illustrate how attempts to understand NPC barrier function have employed many different modelling techniques, each of which have contributed to our understanding of the NPC.

  8. Dynamics of Lamin-A Processing Following Precursor Accumulation

    PubMed Central

    Liu, Qian; Kim, Dae In; Syme, Janet; LuValle, Phyllis; Burke, Brian; Roux, Kyle J.

    2010-01-01

    Lamin A (LaA) is a component of the nuclear lamina, an intermediate filament meshwork that underlies the inner nuclear membrane (INM) of the nuclear envelope (NE). Newly synthesized prelamin A (PreA) undergoes extensive processing involving C-terminal farnesylation followed by proteolysis yielding non-farnesylated mature lamin A. Different inhibitors of these processing events are currently used therapeutically. Hutchinson-Gilford Progeria Syndrome (HGPS) is most commonly caused by mutations leading to an accumulation of a farnesylated LaA isoform, prompting a clinical trial using farnesyltransferase inhibitors (FTI) to reduce this modification. At therapeutic levels, HIV protease inhibitors (PI) can unexpectedly inhibit the final processing step in PreA maturation. We have examined the dynamics of LaA processing and associated cellular effects during PI or FTI treatment and following inhibitor washout. While PI reversibility was rapid, with respect to both LaA maturation and associated cellular phenotype, recovery from FTI treatment was more gradual. FTI reversibility is influenced by both cell type and rate of proliferation. These results suggest a less static lamin network than has previously been observed. PMID:20526372

  9. Our Sun IV: The Standard Model and Helioseismology: Consequences of Uncertainties in Input Physics and in Observed Solar Parameters

    NASA Technical Reports Server (NTRS)

    Boothroyd, Arnold I.; Sackmann, I.-Juliana

    2001-01-01

    Helioseismic frequency observations provide an extremely accurate window into the solar interior; frequencies from the Michaelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO) spacecraft, enable the adiabatic sound speed and adiabatic index to be inferred with an accuracy of a few parts in 10(exp 4) and the density with an accuracy of a few parts in 10(exp 3). This has become a Serious challenge to theoretical models of the Sun. Therefore, we have undertaken a self-consistent, systematic study of the sources of uncertainties in the standard solar models. We found that the largest effect on the interior structure arises from the observational uncertainties in the photospheric abundances of the elements, which affect the sound speed profile at the level of 3 parts in 10(exp 3). The estimated 4% uncertainty in the OPAL opacities could lead to effects of 1 part in 10(exp 3); the approximately 5%, uncertainty in the basic pp nuclear reaction rate would have a similar effect, as would uncertainties of approximately 15% in the diffusion constants for the gravitational settling of helium. The approximately 50% uncertainties in diffusion constants for the heavier elements would have nearly as large an effect. Different observational methods for determining the solar radius yield results differing by as much as 7 parts in 10(exp 4); we found that this leads to uncertainties of a few parts in 10(exp 3) in the sound speed int the solar convective envelope, but has negligible effect on the interior. Our reference standard solar model yielded a convective envelope position of 0.7135 solar radius, in excellent agreement with the observed value of 0.713 +/- 0.001 solar radius and was significantly affected only by Z/X, the pp rate, and the uncertainties in helium diffusion constants. Our reference model also yielded envelope helium abundance of 0.2424, in good agreement with the approximate range of 0.24 to 0.25 inferred from helioseismic observations; only extreme Z/X values yielded envelope helium abundance outside this range. We found that other current uncertainties, namely, in the solar age and luminosity, in nuclear rates other than the pp reaction, in the low-temperature molecular opacities, and in the low-density equation of state, have no significant effect on the quantities that can be inferred from helioseismic observations. The predicted pre-main-sequence lithium depletion is uncertain by a factor of 2. The predicted neutrino capture rate is uncertain by approximately 30% for the Cl-27 experiment and by approximately 3% for Ga-71 experiments, while the B-8 neutrino flux is uncertain by approximately 30%.

  10. AGC-2 Graphite Pre-irradiation Data Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Swank; Joseph Lord; David Rohrbaugh

    2010-08-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less

  11. Nuclear fusion and carbon flashes on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  12. Contributions of microtubule rotation and dynamic instability to kinetochore capture

    NASA Astrophysics Data System (ADS)

    Sweezy-Schindler, Oliver; Edelmaier, Christopher; Blackwell, Robert; Glaser, Matt; Betterton, Meredith

    2014-03-01

    The capture of lost kinetochores (KCs) by microtubules (MTs) is a crucial part of prometaphase during mitosis. Microtubule dynamic instability has been considered the primary mechanism of KC capture, but recent work discovered that lateral KC attachment to pivoting MTs enabled rapid capture even with significantly reduced MT dynamics. We aim to understand the relative contributions of MT rotational diffusion and dynamic instability to KC capture, as well as KC capture through end-on and/or lateral attachment. Our model consists of rigid MTs and a spherical KC, which are allowed to diffuse inside a spherical nuclear envelope consistent with the geometry of fission yeast. For simplicity, we include a single spindle pole body, which is anchored to the nuclear membrane, and its associated polar MTs. Brownian dynamics treats the diffusion of the MTs and KC and kinetic Monte Carlo models stochastic processes such as dynamic instability. NSF 1546021.

  13. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells.

    PubMed

    Oufir, Mouhssin; Bisset, Leslie R; Hoffmann, Stefan R K; Xue, Gongda; Klauser, Stephan; Bergamaschi, Bianca; Gervaix, Alain; Böni, Jürg; Schüpbach, Jörg; Gutte, Bernd

    2011-01-01

    An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo.

  14. Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells

    PubMed Central

    Oufir, Mouhssin; Bisset, Leslie R.; Hoffmann, Stefan R. K.; Xue, Gongda; Klauser, Stephan; Bergamaschi, Bianca; Gervaix, Alain; Böni, Jürg; Schüpbach, Jörg; Gutte, Bernd

    2011-01-01

    An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo. PMID:22312334

  15. Macrophages discriminate glycosylation patterns of apoptotic cell-derived microparticles.

    PubMed

    Bilyy, Rostyslav O; Shkandina, Tanya; Tomin, Andriy; Muñoz, Luis E; Franz, Sandra; Antonyuk, Volodymyr; Kit, Yuriy Ya; Zirngibl, Matthias; Fürnrohr, Barbara G; Janko, Christina; Lauber, Kirsten; Schiller, Martin; Schett, Georg; Stoika, Rostyslav S; Herrmann, Martin

    2012-01-02

    Inappropriate clearance of apoptotic remnants is considered to be the primary cause of systemic autoimmune diseases, like systemic lupus erythematosus. Here we demonstrate that apoptotic cells release distinct types of subcellular membranous particles (scMP) derived from the endoplasmic reticulum (ER) or the plasma membrane. Both types of scMP exhibit desialylated glycotopes resulting from surface exposure of immature ER-derived glycoproteins or from surface-borne sialidase activity, respectively. Sialidase activity is activated by caspase-dependent mechanisms during apoptosis. Cleavage of sialidase Neu1 by caspase 3 was shown to be directly involved in apoptosis-related increase of surface sialidase activity. ER-derived blebs possess immature mannosidic glycoepitopes and are prioritized by macrophages during clearance. Plasma membrane-derived blebs contain nuclear chromatin (DNA and histones) but not components of the nuclear envelope. Existence of two immunologically distinct types of apoptotic blebs may provide new insights into clearance-related diseases.

  16. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome.

    PubMed

    Dahl, Kris Noel; Scaffidi, Paola; Islam, Mohammad F; Yodh, Arjun G; Wilson, Katherine L; Misteli, Tom

    2006-07-05

    The nuclear lamina is a network of structural filaments, the A and B type lamins, located at the nuclear envelope and throughout the nucleus. Lamin filaments provide the nucleus with mechanical stability and support many basic activities, including gene regulation. Mutations in LMNA, the gene encoding A type lamins, cause numerous human diseases, including the segmental premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Here we show that structural and mechanical properties of the lamina are altered in HGPS cells. We demonstrate by live-cell imaging and biochemical analysis that lamins A and C become trapped at the nuclear periphery in HGPS patient cells. Using micropipette aspiration, we show that the lamina in HGPS cells has a significantly reduced ability to rearrange under mechanical stress. Based on polarization microscopy results, we suggest that the lamins are disordered in the healthy nuclei, whereas the lamins in HGPS nuclei form orientationally ordered microdomains. The reduced deformability of the HGPS nuclear lamina possibly could be due to the inability of these orientationally ordered microdomains to dissipate mechanical stress. Surprisingly, intact HGPS cells exhibited a degree of resistance to acute mechanical stress similar to that of cells from healthy individuals. Thus, in contrast to the nuclear fragility seen in lmna null cells, the lamina network in HGPS cells has unique mechanical properties that might contribute to disease phenotypes by affecting responses to mechanical force and misregulation of mechanosensitive gene expression.

  17. Nuclear γ-tubulin associates with nucleoli and interacts with tumor suppressor protein C53.

    PubMed

    Hořejší, Barbora; Vinopal, Stanislav; Sládková, Vladimíra; Dráberová, Eduarda; Sulimenko, Vadym; Sulimenko, Tetyana; Vosecká, Věra; Philimonenko, Anatoly; Hozák, Pavel; Katsetos, Christos D; Dráber, Pavel

    2012-01-01

    γ-Tubulin is assumed to be a typical cytosolic protein necessary for nucleation of microtubules from microtubule organizing centers. Using immunolocalization and cell fractionation techniques in combination with siRNAi and expression of FLAG-tagged constructs, we have obtained evidence that γ-tubulin is also present in nucleoli of mammalian interphase cells of diverse cellular origins. Immunoelectron microscopy has revealed γ-tubulin localization outside fibrillar centers where transcription of ribosomal DNA takes place. γ-Tubulin was associated with nucleolar remnants after nuclear envelope breakdown and could be translocated to nucleoli during mitosis. Pretreatment of cells with leptomycin B did not affect the distribution of nuclear γ-tubulin, making it unlikely that rapid active transport via nuclear pores participates in the transport of γ-tubulin into the nucleus. This finding was confirmed by heterokaryon assay and time-lapse imaging of photoconvertible protein Dendra2 tagged to γ-tubulin. Immunoprecipitation from nuclear extracts combined with mass spectrometry revealed an association of γ-tubulin with tumor suppressor protein C53 located at multiple subcellular compartments including nucleoli. The notion of an interaction between γ-tubulin and C53 was corroborated by pull-down and co-immunoprecipitation experiments. Overexpression of γ-tubulin antagonized the inhibitory effect of C53 on DNA damage G(2) /M checkpoint activation. The combined results indicate that aside from its known role in microtubule nucleation, γ-tubulin may also have nuclear-specific function(s). Copyright © 2011 Wiley Periodicals, Inc.

  18. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus.

    PubMed

    Stephens, Andrew D; Banigan, Edward J; Adam, Stephen A; Goldman, Robert D; Marko, John F

    2017-07-07

    The cell nucleus must continually resist and respond to intercellular and intracellular mechanical forces to transduce mechanical signals and maintain proper genome organization and expression. Altered nuclear mechanics is associated with many human diseases, including heart disease, progeria, and cancer. Chromatin and nuclear envelope A-type lamin proteins are known to be key nuclear mechanical components perturbed in these diseases, but their distinct mechanical contributions are not known. Here we directly establish the separate roles of chromatin and lamin A/C and show that they determine two distinct mechanical regimes via micromanipulation of single isolated nuclei. Chromatin governs response to small extensions (<3 μm), and euchromatin/heterochromatin levels modulate the stiffness. In contrast, lamin A/C levels control nuclear strain stiffening at large extensions. These results can be understood through simulations of a polymeric shell and cross-linked polymer interior. Our results provide a framework for understanding the differential effects of chromatin and lamin A/C in cell nuclear mechanics and their alterations in disease. © 2017 Stephens et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Dredge-up and Envelope Burning in Intermediate-Mass Giants of Very Low Metallicity

    NASA Astrophysics Data System (ADS)

    Herwig, Falk

    2004-04-01

    The evolution of intermediate-mass stars at very low metallicity during their final thermal pulse asymptotic giant branch (AGB) phase is studied in detail. As representative examples, models with initial masses of 4 and 5Msolar and with a metallicity of Z=0.0001 ([Fe/H]~-2.3) are discussed. The one-dimensional stellar structure and evolution model includes time- and depth-dependent overshooting motivated by hydrodynamic simulations, as well as a full nuclear network and time-dependent mixing. Particular attention is given to high time and space resolution to avoid numerical artifacts related to third dredge-up and hot bottom burning predictions. The model calculations predict very efficient third dredge-up that mixes the envelope with the entire intershell layer or a large fraction thereof and in some cases penetrates into the C/O core below the He shell. In all cases primary oxygen is mixed into the envelope. The models predict efficient envelope burning during the interpulse phase. Depending on the envelope-burning temperature, oxygen is destroyed to varying degrees. The combined effect of dredge-up and envelope burning does not lead to any significant oxygen depletion in any of the cases considered in this study. The large dredge-up efficiency in our model is closely related to the particular properties of the H shell during the dredge-up phase in low-metallicity very metal-poor stars, which is followed here over many thermal pulses. During the dredge-up phase, the temperature just below the convective boundary is large enough for protons to burn vigorously when they are brought into the C-rich environment below the convection boundary by the time- and depth-dependent overshooting. H-burning luminosities of 105 to ~2×106Lsolar are generated. C, and to lesser degree O, is transformed into N in this dredge-up overshooting layer and enters the envelope. The global effect on the CNO abundance is similar to that of hot bottom burning. If the overshoot efficiency is larger, then dredge-up H burning causes a further increase in the dredge-up efficiency. After some thermal pulses, the dredge-up proceeds through the He shell and into the CO core beneath. Then neutrons may not be released from 13C in radiative conditions during the interpulse phase because of the scarcity of α-particles for the 13C(α,n)16O reactions. Conditions for the s-process are discussed qualitatively. The abundance evolution of H, He, C, N, O, and Na is described. Finally, the model predictions for sodium and oxygen are compared with observed abundances. The notion that massive AGB stars are the origin of the O-Na abundance anticorrelation in globular cluster giants is not consistent with the model predictions of this study. The abundance of the C-rich extremely metal-poor binaries LP 625-44, CS 29497-030, and HE 0024-2523 is discussed.

  20. Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution

    PubMed Central

    1978-01-01

    This laboratory has previously isolated a fraction from rat liver nuclei consisting of nuclear pore complexes associated with the proteinaceous lamina which underlies the inner nuclear membrane. Using protein eluted from sodium dodecyl sulfate (SDS) gels, we have prepared antibodies in chickens to each of the three predominant pore complex- lamina bands. Ouchterlony double diffusion analysis shows that each of these individual bands cross-reacts strongly with all three antisera. In immunofluorescence localization performed on tissue culture cells with these antibodies, we obtain a pattern of intense staining at the periphery of the interphase nucleus, with little or no cytoplasmic reaction. Electron microscope immunoperoxidase staining of rat liver nuclei with these antibodies labels exclusively the nuclear periphery. Furthermore, reaction occurs in areas which contain the lamina, but not at the pore complexes. While our isolation procedure extracts the internal contents of nuclei completely, semiquantitative Ouchterlony analysis shows that it releases negligible amounts of these lamina antigens. Considered together, our results indicate that these three bands represent major components of a peripheral nuclear lamina, and are not structural elements of an internal "nuclear protein matrix." Fluorescence microscopy shows that the perinuclear interphase localization of these lamina proteins undergoes dramatic changes during mitosis. Concomitant with nuclear envelope disassembly in prophase, these antigens assume a diffuse localization throughout the cell. This distribution persists until telophase, when the antigens become progressively and completely localized at the surface of the daughter chromosome masses. We propose that the lamina is a biological polymer which can undergo reversible disassembly during mitosis. PMID:102651

Top